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Abstract

This paper studies convergence properties, including local and global strong
E-stability, of the rational expectations equilibrium (REE) under non-smooth
learning dynamics, and the role of monetary policy in agents’ expectation for-
mation. In a New Keynesian model, we consider two types of informational
constraints that operate jointly - Sparse Rationality under Adaptive Learning.
We study the dynamics of the learning algorithm for the positive costs of atten-
tion, initialized from the equilibrium with mis-specified beliefs. We find that, for
any initial beliefs, the agents’ forecasting rule converges either to the Minimum
State Variable (MSV) REE, or, for large attention costs, to a rule with anchored
inflation expectations. With stricter monetary policy the convergence is faster.
A mis-specified forecasting rule that uses a variable not present in the MSV REE
does not survive this learning algorithm. We apply the theory of non-smooth
differential equations to study the dynamics of our learning algorithm.
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1 Introduction

1.1 Sparse Adaptive Learning

Modelling agents’ expectation formation in self-referential systems has been exten-
sively debated in the literature. The debate has received a different angle when
increased computer power and data availability simplified dimensionality reduction
and variable selection.1 With a large stock of predictors available without theoretical
justification for their forecasting power, finding a meaningful and intuitive model spec-
ification becomes a challenging task. In a dynamic self-referential system, the choice of
variables in the forecasting models affects the system itself. A vast Adaptive Learning
(AL) literature has studied the conditions under which coefficients, or ‘beliefs’, of a
fixed forecasting model in self-referential systems converge. The convergence has been
shown to depend on the stability of an ordinary differential equation approximating
the dynamics under learning with particular beliefs updating rule; if the learning uses
a Least Squares regression, the concept is called Expectational-, or E-stability. The
dynamics and stability of learning in the presence of variable selection have not been
studied sufficiently in the literature.

In this paper, we contribute to the literature by studying three aspects of learn-
ing with selection of forecasting rules under attention costs.2 First, we extend the
standard AL setup by incorporating a dynamic dimensionality reduction, realized as
a costly attention allocation problem. This makes the number of variables used in the
forecasting rule time-varying and make the learning algorithm non-smooth. This non-
smoothness could give rise to the sliding dynamics that appear along the boundary
where more than one forecasting rule is optimal. We believe that a description of slid-

1Examples include principal components analysis: Stock and Watson (2002), dynamic factor mod-
els: Banbura et al. (2013), Stock and Watson (2016)), and active spaces or penalized regressions: see
Hansen and Liao (2019), Korobilis (2013), and Nazemi and Fabozzi (2018). A systematic way of using
many variables in econometric and forecasting models is represented by many variants of penalized
regressions, including Ridge, Lasso, elastic nets, etc.: see Gefang (2014), Tibshirani (1996), De Mol
et al. (2008), or Yuan and Lin (2007). See also Andrle and Bruha (2023) for sparse Kalman filter
estimation.

2We are using terms “forecasting models” and “forecasting rules” interchangeably unless there is
a reason to distinguish them.
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ing dynamics in the adaptive learning literature is novel. Second, we contribute to the
AL literature by addressing the global stability of the Minimum State Variable (MSV)
Rational Expectations Equilibrium (REE) taking into account this non-smooth learn-
ing algorithm, where the agents start in a Restrictive Perception Equilibrium (RPE)
with a forecasting rule that differs from MSV REE, and can switch the rule during
learning. This RPE can be thought of as an outcome of an AL procedure with zero
attention costs, when the agents are allowed to take only one variable into account.
However, after such a convergence, if the agents could include the second variable into
their forecasting rule subject to attention costs, and continue learning, they will change
their rules and converge to the MSV REE. Thus, global E-Stability of the MSV REE
can be envisioned in a very large region of initial beliefs. The RPE can be considered
an artifact of adaptive learning under a very strong information exclusion constraint.
Third, we study the role of monetary policy for dynamics and the equilibrium choice of
forecasting rules and anchoring of inflation expectations. Although we study a model
with only a few variables, the intuition we develop regarding model selection can be
extended to large scale models with multiple variables or groups of variables.

To address these aspects, we study the dynamics of a model with boundedly ratio-
nal agents, who operate under a combination of two types of information constraints:
Recursive Least Squares (RLS) learning3, with the agents updating their beliefs about
the coefficients in their forecasting rules, and Sparse Rationality, which imposes costs
on the attention weights of different variables in the forecasting rule, thus selecting
variables to be used in the rule. We call this algorithm Sparse Adaptive Learning
(Sparse AL). The combination of these two concepts of bounded rationality allows us
to study dynamic model selection with costly attention for a variety of initial beliefs,
including when agents start with mis-specified forecasting rules.

Our agents use their estimates of the forecasting rules to form expectations of the
future values of macroeconomic variables and agent actions that affect future realiza-
tions of data. The process of expectations formation then becomes self-referential. In
Sparse AL, the agents are not only updating the regression estimates, but are also

3A variety of other variants is possible, such as Constant Gain learning, Kalman Filter learning,
etc.
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constantly deciding on the amount of attention they will pay to different variables,
thus adding another mechanism into the usual self-referential feedback loop studied in
the adaptive learning literature.

The Sparse Rationality approach formulated in Gabaix (2014) is a type of penalized
regression, specifically a non-negative garrote. A penalized regression minimizes the
loss function that consists of the sum of squared prediction errors plus a penalty term.
In garrote, the penalty is imposed on the sum of absolute values of attention weights
on different variables. Solving the problem of minimizing the loss function results in
the derivation of optimal attention weights, some of which could be zero due to the
functional form of the penalty, thus inducing sparsity. The choice of garrote estimator
for a dimensionality reduction is motivated by its forecasting performance combined
with its ability to preserve the story-telling properties of the model. In macroeconomic
modelling, it is important to understand the economic logic behind predictions and,
even more importantly, to be able to communicate the results to policy makers. Some
classical dimensionality reduction methods clearly lack story-telling properties, while
garrote allows us to study agents making choices among models that support economic
narrative.

We are interested in the dynamics of the model that starts with initial beliefs
that are significantly different from those consistent with the Minimum State Variable
Rational Expectations (MSV REE) equilibrium developed by McCallum (1983, 2003).
In particular, motivated by Audzei and Slobodyan (2022), we allow our agents to
start arbitrarily close to the “wrong” RPE, in which case the initial forecasting rule is
over-parametrized and includes a variable that is absent from the MSV REE solution.

We study the approximating dynamics of our learning algorithm represented by the
solutions to a system of ordinary differential equations (ODEs). This approach allows
us to more precisely characterize the convergence properties and dynamics across the
areas where different forecasting rules are optimal. Our analysis of sliding dynamics
is enabled by our reliance on continuous time ODEs.

We find that the dynamics under under Sparse AL generally converge to the MSV
REE-consistent forecasting rule, even if the agents’ initial beliefs are consistent with
the RPE and are far away from MSV consistent beliefs. Because this convergence
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happens for initial beliefs that are not located in a small neighborhood of the MSV
REE, we can speak about the global E-Stability of the MSV REE. The area in the
parameter space consistent with convergence to the MSV REE forecasting rule under
Sparse AL learning dynamics with attention costs constraints is significantly larger
than in Audzei and Slobodyan (2022). Moreover, the RPE in our model, which is
E-stable conditional on the limited information set, is unstable when a richer infor-
mation set is introduced, and does not survive in the long run under Sparse AL. This
suggests that the very existence of the RPE could be a fragile event that is caused
by conditioning on the limited information available to the agents. Further, for larger
values of the attention costs, the forecasting rule that contains only the constant can
become stable, anchoring the inflation expectations to that constant. We call this an
anchored rule.

A stronger monetary policy reaction to inflation facilitates the model’s transition
from an RPE towards an MSV-consistent rule. A stronger monetary policy reaction
decreases the feedback from expectations and limits the possibility of a “wrong” fore-
cast becoming self-fulfilling. Thus, the agents switch to include a “correct” variable
and drop the “wrong” variable sooner, in a shorter time and thus a smaller number of
iterations.

A more aggressive monetary policy somewhat expands the area in which an an-
chored rule is a stable equilibrium, consistently with Audzei and Slobodyan (2022).
This happens because a stronger monetary policy reaction to inflation reduces the
volatility and persistence of inflation in the model economy. When attention is costly
and the volatility and predictability of the variables in question is low, the agents are
less willing to pay costly attention to learn about their dynamics. Instead, agents uti-
lize an anchored rule so that their inflation expectations are anchored at the long-term
inflation average.4

4In case of inflation, this long term average may or may not coincide with the inflation target,
therefore for the purpose of this paper we abstract from normative statements about desirability of
such an outcome for a central bank.
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1.2 Literature Review

This paper is related to a literature on the survival of mis-specified equilibra in self-
referential systems. Evans et al. (2012) showed that the convergence to a mis-specified
equilibrium occurs when the feedback parameter on the expectations is strong. A
similar conclusion was obtained by Adam (2005), Hommes and Zhu (2014), Hommes
(2014), Branch et al. (2022) and Hajdini (2022), but under different formulations of
mis-specification and learning processes. Our main contribution to this literature is
adding variable selection and sparsity considerations as in Gabaix (2014) to Adaptive
Learning, and studying the global (Sparse) E-stability of the resulting dynamic system.
We find that asymptotic stability of a particular mis-specified equilibrium (the RPE)
can be very fragile, and that the RPE would not survive after allowing the agents
to consider combinations of mis- and well-specified rules, instead of comparing the
performance of a fixed set of rules, as is typically done in this literature. As in Audzei
and Slobodyan (2022), we also show that a stronger monetary policy response to
inflation, which is inversely related to the expectational feedback parameter, makes
the survival of a mis-specified equilibrium less likely.

In our framework, agents’ dynamic decisions on including or excluding the variables
from the forecasting rules introduces discontinuity into the model dynamics when the
set and number of included variables changes. This potential discontinuity forces us
to rely on the theory of non-smooth differential equations, (see Filippov (1988) and
Jeffrey (2019)), for studying the approximating behavior of the Sparse AL algorithm.
In addition to the standard convergence of learning dynamics, sliding dynamics along
the boundary where the agents are indifferent between two different forecasting rules
can be observed. The appearance of sliding affects the convergence properties of
different equilibria.

Further, we refer to a large strand of literature on AL and its interaction with mon-
etary policy. Summaries of the AL approach are provided in Evans and Honkapohja
(2001) and Marcet and Sargent (1989). Seminal contributions related to AL interac-
tion with monetary policy include Orphanides and Williams (2007), who studied the
robustness of monetary policy rules when agents are learning. The monetary policy
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analysis in our paper is more related to the studies that address how monetary policy
affects the learnability and stability of the equilibria under the learning process: see
Mele et al. (2020), Bullard and Mitra (2002), Slobodyan et al. (2016), Christev and
Slobodyan (2014) and Gibbs (2017). In these studies, the learnability and stability of
a desired equilibrium is viewed as additional desiderata for a monetary policy rule. We
distinguish this work from this literature by considering an environment with costly
attention. Large attention costs alter monetary policy impact on expectation forma-
tion, as stabilizing inflation and output results in lower agent incentives to learn about
them.

Our research question is also related to the literature on model validation: Cho and
Kasa (2015) study validation of alternative models based on large deviations theory.
In contrast to large deviation theory, we study only the mean or average, dynamics of
the model rather than the probabilities of tail events. An important difference between
our analysis and that of Cho and Kasa (2015) is that one of the forecasting rules is
MSV consistent, which allows our agents to learn the true model of the world, while
in Cho and Kasa (2015), all models are potentially mis-specified.

Our formulation of the initial mis-specified equilibrium is inspired by empirical and
theoretical literature on RPEs. Studies have demonstrated that models with simple
prediction rules for inflation outperform those applying complicated rules in survey
and experimental settings: see Branch and Evans (2006), Adam (2007), Hommes
(2014), and Pfajfar and Žakelj (2014). Survey literature supports the existence of
different mental models: For example, Jiang et al. (2024) finds that most consumers
do not adjust their consumption in the short run to changes in inflation expectations.
Heterogeneity in macroeconomic forecasts due to emphasis on different transmission
mechanisms is highlighted in Andre et al. (2022). In relation to the models’ behav-
ior at the effective lower bound, Ascari et al. (2023) show that combining the RPE
and bounded rationality helps to restore the uniqueness of an equilibrium. In the
context of estimated New Keynesian models, Slobodyan and Wouters (2012a, 2012b),
Audzei (2023), Ormeno and Molnar (2015) and Vázquez and Aguilar (2021), have
shown that assuming that agents use very simple forecasting rules leads to model fit
in estimated DSGE models under adaptive learning that is superior to that under
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RE. Hajdini (2022) shows that simple rules are consistent with consensus inflation
forecasts. While Hajdini (2022) combines mis-specified forecasting rules with myopia
à la Gabaix (2020), we combine mis-specified rules with costly attention as in Gabaix
(2014), such that agents’ choices depend on the volatility and persistence of the vari-
ables given attention costs. This type of formulation changes model predictions for
some range of attention costs and variable predictability, when it becomes optimal for
the agents to use only a constant as a predictor for inflation.

The paper is structured as follows. We start by describing the concept of Sparse AL
and the global stability of the models in this context. We illustrate global convergence
under Sparse AL concept in a simple framework of learning about the Fisher equation
in Section 3. In this framework, we are able to study the transition of models between
equilibria and the role of monetary policy in the evolution of forecasting models. We
continue with a small-scale general equilibrium NK model with expert advice.

in Section 4. We further study the stability and learnability of different equilibria
in Section 5, where we also address the global E-stability of MSV REE using the
theory of non-smooth differential equations. We demonstrate analytically how the
non-smooth dynamics allow us to compare the model dynamics under fast and slow
updating of underlying variable selection. The final Section concludes.

2 Sparse Rationality under Adaptive Learning
The Sparse Rationality concept, introduced by Gabaix (2014, 2017) considers the
following decision problem. Suppose an agent wants to minimize a loss function as-
sociated with some costly action. If the loss function is given as a sum of squares of
forecast errors from a linear forecasting problem plus the cost of action, which is a
function of the regression coefficients of this regression, the problem is that of penal-
ized regression. The penalty term can be interpreted as the sum of the costs of paying
attention to the variables due to information or data collection efforts.

Under Gabaix’s concept, agents choose the weights of attention to the variables
depending on their importance in decision making, where importance depends on the
predictors’ contribution to the variance of the predicted variable and the utility of
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agents. In the context of the forecasting process, one could interpret the weight of
attention as the frequency of data revisions, recalibration of trends, and/or of steady
states. If the weight on a variable is zero, agents use its default or steady state value.
In a model linearized around the steady state, zero attention weight means that the
agents do not include the variable in their regressions. When the attention weight is
unity, it means that the forecast is fully adjusted for deviation of the variable from the
steady state value. Selecting attention weights equal to zero or one is thus equivalent
to a classical model selection exercise. For example, when energy prices rise, central
banks can ignore their deviation from the steady state when the deviation is considered
to be temporary and with little propagation to quarterly inflation. Thus, the weight
of energy prices in an inflation forecast will be zero. At the other extreme, when a
central bank estimates that energy prices are the major driver of inflation, the weight
on energy prices in the forecast is unity. An attention weight between zero and unity
reflects the degree by which a deviation in energy prices is incorporated into inflation
forecasts.

Formally, the decision problem is formulated as follows. Suppose that the agents
populate an economy that is described by a general expectational difference equation
with matrices of coefficients A,B,C:

yt = AEtyt+1 +BEtyt−1 + Cut. (1)

Note that the agents’ expectations about future inflation affect the actual dynamics
of inflation. The choice of forecasting model influences the dynamics of the model
through the expectational term.

The agents form their expectations by using a linear forecasting rule - a perceived
law of motion (PLM). They obtain the regression coefficients β in their forecasting
rules by applying the usual OLS regression or a linear projection of the response
variable y on a set of regressors x:

yt = β1x1,t−1 + ...+ βnxn,t−1 + ϵt = (βt−1 ⊙mt−1)
Txt−1 + ϵt, (2)
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where β, m and x are vectors of beliefs, weights, and regressors, respectively.
They then form forecasts as ŷt = β1m1x1,t−1 + ...+ βnmnxn,t−1, with mi being the

attention weight allocated to the variable xi. The agents then maximize the quality
of their forecast: u = −1

2
E
[
(ŷt − yt)

2], subject to attention costs κ
∑

i=1...n

|mi|, where
κ is the attention costs parameter. The optimal attention vector m is thus obtained
as a solution to the following problem:

m∗ = arg min
m∈[0,1]n

{
1

2
E
[
(ŷt − yt)

2]+ κ
∑

i=1...n

|mi|

}
≡ G(βt−1,mt−1). (3)

The problem (3) is known as a (non-negative) garrote, and the weights can take
any value between 0 and 1. Specifying the penalty term as the sum of absolute
values ensures that the corner solutions with attention weights of 0 and 1 are possible.
Minimizing the loss function with an attention cost penalty is then akin to running a
classic model selection exercise; however, it is also possible to pay partial attention to
a variable when 0 < mi < 1.

We now allow the agents to continue learning adaptively, taking into account the
attention cost. As is usual in the adaptive learning literature, they run Recursive
Least Squares (RLS) to adjust the values of beliefs β and the second moments of the
explanatory variables R, according to equations (4-5):

βt = βt−1+

+ t−1 ·R−1
t · xt−1 · (T (βt−1 ⊙mt−1)

T · xt−1 + ϵt − (βt−1 ⊙mt−1)
T · xt−1)

T , (4)
Rt = Rt−1 + t−1 · (xt−1x

T
t−1 −Rt−1). (5)

However, in addition to the standard RLS, the agents also recompute the optimal
attention weights m∗ given βt−1 and mt−1, and adjust their current weights m
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towards the optimal values, as in equations (6)-(7):5

mt = mt−1 + nt−1 · (m∗
t −mt−1) , (6)

m∗
t = G (βt−1,mt−1) . (7)

We call this combination of a usual Adaptive Learning and Sparse Rationality a Sparse
AL.

2.1 Approximating the Dynamics of Sparse AL

While the algorithm in (4)-(7) could be studied in its original discrete-time form, we
opt to investigate its approximating average dynamics, which is a multi dimensional
nonlinear ODEs. While we show most numerical simulations for the models in Sec-
tions 3-4 using the algorithm in (4)-(7), working with the approximating ODE is very
helpful for analyzing the dynamics of the simple model in Section 3 around the RPE
and sliding dynamics for the New Keynesian model in Section 5.2. Further, we obtain
E-Stability results using approximating ODE.

The approximating ODE for the described learning algorithm is given by the equa-
tions (8) below:

·
β = T (β ⊙m)− β ⊙m,
·
R = Σ−R,
·
m = n · (G (β,m)−m) .

(8)

Following Evans and Honkapohja (2001), section 6.2.2, one can interpret this ODE
as the agents fixing the parameters of their forecasting rules - β, R, and m - and
observing the terms, multiplied by the gain, on the right-hand side of (4)-(7), for a
very large number of periods. Then, they average these right-hand side terms, and
make an infinitesimal step in the direction of the average value. They also make an
infinitesimal step towards the attention weights that would be optimal in these periods.

Fixing n = 1 in (6) then implies that the agents adjust their beliefs, β and R,
5Note that we allow for difference in the gain in beliefs updating equations (4)-(5), 1/t, and in the

weights updating equation (6), n/t.
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as often as they adjust the attention weights m, while n < 1 signifies a less frequent
adjustment of attention weights than of beliefs. Given that solving an OLS problem
is much simpler than obtaining the solution to (3), which in general requires usage
of advanced convex optimization tools such as LARS, it is natural to assume that
the agents would update weights less often than beliefs and thus use n ≪ 1. In our
numerical simulations later in the text we compare the results for n = 1 and n = 0.01.

2.2 Global Convergence and Initial Beliefs

When the agents are using the MSV functional form to formulate their PLM and then
use the RLS learning algorithm to learn the coefficients in their PLM, the dynamics
of their currently assumed coefficients (beliefs) is asymptotically governed by the ap-
proximating ODE. Asymptotic stability of a stationary point of this approximating
ODE, or weak E-stability, is related to the convergence of the agents’ beliefs to their
MSV REE values: see Evans and Honkapohja (2001) and Marcet and Sargent (1989).

In this paper, we are mainly interested in a form of the global strong E-stability
concept of the MSV solution. The weak E-stability guarantees only that if the agents’
forecasting rule has the same functional form as the MSV solution, and the values of
coefficients they believe in are initially contained in some small neighborhood of the
MSV values, then under appropriate assumptions, the RLS learning will converge to
MSV REE with a probability approaching 1; see Evans and Honkapohja (2001). This
result leaves two unanswered questions. First, what happens if the initial forecasting
rule contains more variables than the MSV-consistent rule? Will the agents asymp-
totically learn that the values of extraneous coefficients in the PLM are zero? In other
words, does the strong E-stability obtain? Second, what happens if the initial beliefs
are far away from the MSV ones: will we still observe convergence? That is to say, is
the weak or strong E-stability not just local (asymptotic), but global?

Unlike the weak E-stability, a strong E-stability concept is not unique. It is defined
only with respect to the specific mis-specification of the PLM from which the learning
is assumed to begin. To answer the first question, we derive the conditions under which
the strong E-stability obtains when the agents allow an additional endogenous variable
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to be present in their PLM for the two models we consider in this paper. We show
that if the sufficient condition for the weak E-stability is satisfied, strong E-stability
obtains as well. With strong E-stability, the beliefs will still converge to the correct
MSV REE beliefs and the agents will learn that the additional variable does not belong
in their PLM; this is guaranteed to occur when the initial beliefs are sufficiently close
to the MSV REE ones, and thus the initial beliefs about the additional variable are
close to zero.

In order to answer the second question, we consider agents’ initial beliefs that are
as far away from the MSV as possible, while still resembling the MSV functional form.
To do so, in this paper we start with the beliefs that are consistent with the Restricted
Perceptions Equilibrium. That is, with all agents using a forecasting rule that includes
some “wrong” variables that are absent from the MSV and/or that exclude “correct”
ones. When the agents use the ‘incorrect’ set of variables for forecasting, due to the
self-referential nature of the beliefs, the resulting Restricted Perceptions Equilibrium
is skewed, and it could happen that the forecasting errors are smaller than they would
have been had the agents used the ‘correct’ variables in this skewed RPE.

We start with a simple self-referential univariate model and then move to a New-
Keynesian model with a richer structure and standard set of frictions.

3 Simple Model: Fisher Equation
To illustrate the dynamics of model selection under Sparse AL in a simple example
with analytical results, we employ a Fisher equation with an exogenous real interest
rate. The nominal interest rate is given by a simple Taylor rule with a zero inflation
target. The model can be summarized as follows:

Rt = rt + Etπt+1, (9)
rt = ρrt−1 + ut, (10)
Rt = ϕπt, (11)
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where rt is the real interest rate and πt is inflation. Eq. (9) is the Fisher equation with
the nominal interest rate Rt set according to the Taylor rule (11), and the real interest
rate in (10) is an AR(1) exogenous process with stochastic disturbance ut. Parameter
ϕ controls the strength of monetary policy reaction to inflation. The agents observe
the current real rate rt and inflation from the prior period πt−1 while making forecasts
for inflation in the next period.

Plugging (11) into (9) we obtain the dynamics of inflation:

πt =
1

ϕ
rt +

1

ϕ
Etπt+1, (12)

where the term 1/ϕ determines how strongly the expectations affect the actual dynam-
ics of inflation: The higher this term is, the stronger the effect of agents’ forecasting
rule on actual inflation.

To form their forecasts, our agents run regressions using one or both observables -
the current real interest rate or lagged inflation. In general, the agents can use a PLM
of the following form:

πt = γrt + βπt−1, (13)

where γ and β are their beliefs on rt and πt−1 respectively. Note that the rule (13)
nests cases in which only one variable is used for forecasting (γ = 0 or β = 0), or
where none of the variables are used (γ = β = 0).

Computing agent expectations and plugging them into (12), we receive the actual
law of motion - ALM:

πt =
1

ϕ
rt +

1

ϕ

(
γ (β + ρ) rt + β2πt−1

)
= c̄rt + b̄πt−1, (14)

with c̄ = 1
ϕ
(γ(β + ρ) + 1) and b̄ = 1

ϕ
β2 being the ALM coefficients on rt and πt−1.

In Appendix A.1 we derive the REE MSV and show that sufficient conditions
for strong E-stability coincide with sufficient conditions for weak E-Stability. We are
interested in the dynamics of model selection when the agents start with a “wrong”
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forecasting rule. Motivated by empirical and theoretical work on restricted perception,
we allow our agents to use only one variable in their initial PLM. There are two such
rules:

Mπ : πt = βπt−1 ⇒ Etπt+1 = β2πt−1, (15)
Mr : πt = γrt ⇒ Etπt+1 = γρrt. (16)

While Mr is the MSV-consistent forecasting rule, Mπ is the “wrong”, mis-specified
rule as it omits the state variable rt and contains the “wrong” extra variable πt−1. We
also call the equilibria induced by these forecasting rules Mπ and My respectively. Mπ

is the RPE.
Mπ could exist if agents’ perceived autocorrelation of inflation equals its true value

obtained from projecting πt on πt−1. As shown in the Appendix A, the equilibrium β

is given by the unique real solution of (17):

β =
cov(πt, πt−1)

var(π)
≡ Γ(β). (17)

We list other conditions for RPE to be an equilibrium in Definition 1.

Definition 1. The RPE Mπ exists if all of the following conditions are satisfied:
(i): There exists β s.t. |β| < 1, which is a fixed point of mapping Γ in (17);
(ii): the ex-post forecasting performance of Mπ is better than that of Mr;
(iii) Mπ equilibrium is E-stable.

In the RPE, the forecasting performance of the rule Mπ measured by the mean
squared forecast errors (MSFE) should be better than that of Mr. Appendix A shows
that for the rule Mπ to have lower MSFE than Mr, the variation explained by the lag
of inflation should be larger than that explained by the real interest rate:

b̄2σ2
π > c̄2σ2

r . (18)

For condition (iii) to be satisfied, that is, for the solution to be E-Stable, the following
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should hold:

∂Γ(β)

∂β
< 1. (19)

Proposition 1 states the conditions under which this mis-specified rule becomes an
equilibrium.

Proposition 1. The necessary condition for (i)-(iii) to be satisfied is the Taylor
principle ϕ > 1, the sufficient condition is ϕ2−2β(ρ,ϕ)4

ϕβ(ρ,ϕ)2
< ρ < 1 plus the Taylor principle.

Proof. Appendix A.2.

The Taylor principle is a usual necessary condition for E-stability in monetary
models. As higher persistence of the real interest rate results in greater correlation
with inflation, a larger portion of the actual variation of the forecast variable (inflation)
is explained by the “wrong” variable (lagged inflation), makingMπ perform better than
Mr.

Further, for a more aggressive monetary policy, the explanatory power of Mπ

becomes too small to produce better forecasts than Mr. As ϕ becomes larger, the
expectational feedback in Eq. 12 becomes smaller, lowering the contribution of the
mis-specifed rule to the dynamics of inflation.

3.1 Dynamics Under Sparse Rationality

Suppose that the parameters of the model are such that the RPE exists and is given
by the corresponding ALM in (14). We allow the agents to have initial beliefs (β, γ, R)
consistent with the RPE. Their initial attention weights are (mπ,mr) = (1, 0). The
agents then dynamically reconsider their forecasting rules in line with Sparse AL de-
scribed in Section 2. They update their beliefs about (β, γ, R) according to the stan-
dard adaptive learning procedure (4)-(5), solve the optimal weight selection problem
by computing the function G(β,m) in (3), and update the weights as in (6). The
resulting dynamics are approximated by the system of ODEs (8). Analyzing the RHS
of (8) under the assumption that agents’ beliefs about second moments R are also at
their equilibrium values, we state the Proposition 2:
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Proposition 2. Under Sparse AL, the agents’ beliefs about inflation are always de-
creasing as ∂β

∂τ
< 0. Their beliefs about the interest rate are non-decreasing as ∂γ

∂τ
> 0.

Proof. Appendix A.3.

Proposition 2 states that, as we start from the RPE beliefs with (mπ,mr) = (1, 0)

and β < 1, β is decreasing as the agents learn. As weight on inflation lag mπ cannot
increase above unity, mπβ also falls. On the other hand, the belief about interest rate
γ increases. The value mrγ initially stays at zero as the optimal m∗

r is 0 at the RPE.
In other words, as soon as we allow the agents to move along two dimensions rather

than one, the dynamics is to decrease the beliefs about inflation and to increase them
about the interest rate. As shown in the Appendix A.3, this behavior is likely to be
preserved even if the agents are mistaken about the second moments matrix R implied
by the RPE ALM, but their beliefs about it are not too far from its true value.

Thus, the RPE is a stable fixed point in 1D space, as the condition (iii) of Definition
1 is satisfied, but it is not a stable fixed point in the 2D space. This is explained
by the difference between the RPE’s approximating ODE and the first line of the
2D approximating ODE in (A52). The reason for this is that, in the 1D case, any
movement away from the RPE value of β leads to changes in correlation between
inflation and interest rate that need to be taken into account, while in the 2D case
these dynamics can be ‘moved’ into the second dimension. This means that the RPE
value of β is not the first component of the stationary point in the 2D case, and
therefore immediately after opening the second dimension, we have the dynamics of
learning moving agents away from the RPE beliefs.

Asymptotically as β → 0 in (A52), the ODE for β becomes linear and has a fixed
point β = 0. Therefore, Sparse AL dynamics can reach the point at which agents
take no account of inflation in their PLM. But what will their final forecasting rules
be? There are two model candidates that pay no attention to inflation: the anchored
(constant only) rule and the MSV-consistent rule. When the weights become such
that a set of variables in a forecasting rule changes in the updating process, we call it
a model switch. Therefore, we now consider the sequence of switches that could lead
the agents from the attention weights with (mπ > 0,mr = 0) to (mπ = 0,mr ≥ 0).
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3.2 Forecasting Model Switches and Sparse Rationality

Under sparse rationality, the agents’ forecast depends not only on the underlying
beliefs β and γ, but also on the selected weights. The expectations are formed using
these beliefs and the weights mπ and mr, which produce the ALM:6

πt =
1

ϕ
(mrγ (mπβ + ρ) + 1) rt +

(βmπ)
2

ϕ
πt−1 = c̄rt + b̄πt−1. (20)

The agents use a standard AL procedure to update their beliefs. On the average,
this is given by the first line of the ODE (8). In order to find optimal weights under
sparse rationality, they then standardize the variables and compute the modified ALM
coefficients:

b̄s = b̄
σπ
σπ

= b̄, (21)

c̄s = c̄
σr
σπ

=

√
(1− ρb̄)(1− b̄2)

1 + ρb̄
. (22)

Note that the standardized value of c̄s in (22) is independent of c̄ and thus of γ,
leaving only b̄ = (mπβ)

2

ϕ
as the relevant PLM belief for the purposes of computing

forecasts in the attention weights problem. This is due to the fact that the true state
variable of the model, rt, is exogenous, and its variance is thus independent of PLM
beliefs. Moreover, in this setup, c̄s is decreasing in b̄, so that while mπβ is decreasing
while the agents learn, c̄s increases. This leads to very simple sequencing of optimal
model switches, as we show below.

Solving for the weights in (3) is equivalent to selecting the lowest of the nine value
functions (term in the figure brackets in Eq. 3), which are derived in Appendix A,
Eqs. A57-A64. This determines the forecasting model that is optimal for particular
values of the agents’ beliefs and given the parameter values. To further understand the
dynamics of model selection, we therefore compute the boundaries between different
value functions being optimal, which informs us about the order in which the agents

6Note that the Eq. (14) is a special case of this expression for mπ = mr = 1.
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Figure 1: Dynamic Model Selection and Costs of Attention

Note: For the Figure we use numerical values of ρ = 0.5 and ϕ = 1.15. The black arrow illustrates
dynamics from RPE to MSV, the red arrow - from (0,0) to MSV.

switch between different forecasting models. As only the product of their beliefs and
the weight on inflation is relevant for the forecasts, expected forecast errors, and thus
the weight selection problem, for particular parameter values these boundaries will be
points in a 1-dimensional space.

The result of selecting the optimal weights is illustrated in Figure 1. The Figure
shows agents’ selection of attention weights as a function of their current value of mπβ

and of the attention cost parameter κ. The arrows illustrate the dynamic trajectories
of the agents’ beliefs as well as the outcomes of the model selection. While Figure 1
is plotted for a specific value of ρ and ϕ, below we provide a general characterization
of the agents’ decision to switch between the optimal models.

Depending on the value of costs κ, the trajectory of beliefs towards β = 0 crosses
several boundaries between the regions where a particular combination of weights is
optimal, summarized in the following Proposition:

Proposition 3. There exist boundaries b1 < b2, such that for low values of κ:
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• for mπβ > b2 agents use the RPE-consistent rule, (mπ,mr) = (1, 0);

• for b1 < mπβ ≤ b2 both attention weights are positive, (mπ > 0,mr > 0);

• for mπβ ≤ b1 the agents choose the MSV-consistent rule, (mπ,mr) = (0, 1).

For large values of κ there exists one border b3, such that if

• for mπβ > b3, the agents choose the anchored rule,

• for mπβ ≤ b3, the agents choose the MSV-consistent rule

There exists κ̄ such that b3 ≤ 0. For κ ≥ κ̄, only the anchored rule is possible.

Proof. Appendix A.4

Proposition 3 states that, as we move from a pure RPE with the weights (mπ,mr) =

(1, 0) along the path shown as a black arrow, the agent beliefs first hit the boundary
b2 between the area with RPE consistent beliefs (mπ,mr) = (1, 0) being optimal,
and the area where there are positive weights on both variables (mπ,mr) = (x, x).
When mπβ ≤ b2, it becomes optimal for the agents to allow a nonzero weight on the
real interest rate. The actual value of mrγ starts to increase above 0 after crossing
boundary b2, in accordance with (8).

As agents add the real interest rate to their regressions, mπβ continues to decrease,
eventually becoming such that b̄2 < κ. This is the boundary with the region where
including the lag of inflation into the forecasting rule is not optimal. In this region,
mπ and mπβ decrease towards 0 while mrγ converges to MSV-consistent value.

Proposition 3 further states that, when attention costs κ are large (the trajectory
of beliefs shown as a red arrow in Figure 1), for large initial beliefs about mπβ it is
optimal to include no variables in the forecasting rule, (m∗

π = m∗
r = 0). According to

Eq. 8, mπ starts to decline while β falls as per Proposition 2. With mπβ declining, the
explanatory power of the real interest rate grows because c̄s is a decreasing function
of mπβ as noted above. Eventually, the trajectory hits the boundary mπβ = b3, where
the MSV-consistent forecasting rule starts to be optimal, so that convergence to the
MSV beliefs ensues.
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For still higher attention cost κ the MSV-consistent beliefs never become optimal,
and the agents stick with the anchored rule forever (0, 0).

When costs of attention κ are zero, standard adaptive learning dynamics ensue,
and the beliefs converge to the MSV, which is weakly and strongly E-stable as long as
ϕ > 1, as shown in the Appendix A.1.

Finally, for intermediate values of κ one can observe additional boundaries, for
example between (mπ,mr) = (0, 0) and (mπ,mr) = (x, x). Convergence to the MSV
is still the ultimate outcome of the Sparse AL algorithm.

3.3 Monetary Policy and Discussion

We next comment on the effect the monetary policy has on the convergence of the
agents’ beliefs to the rest point, where inflation is not taken into account.

Proposition 4. As monetary policy reaction to inflation becomes stronger (ϕ in-
creases), the speed of convergence of beliefs to mπβ = 0 increases.

Proof. From (A52) and (A53) it follows that dβ
dτ

is decreasing in ϕ. Therefore the
product mπβ = 0 declines faster, and thus the speed of convergence to the fixed point
with mπβ = 0 is greater.

Proposition 4 states that the effect of strong monetary policy reaction to inflation
on the dynamics of Sparse AL is unambiguous. The convergence from any initial
beliefs, including the RPE-consistent ones, to an equilibrium where inflation does not
matter for the agents’ forecasting, is accelerated by the strength of monetary policy:
in this simple model, a more aggressive monetary policy results in the agents’ learning
more quickly that the wrong variable does not belong to their forecasting rules.

Our simple model analysis allows us to show the following findings regarding the
dynamics of model selection. First, we have shown how agents’ forecasting models
converge to the MSV-consistent one even if they start with beliefs far from the MSV,
with initial RPE-consistent PLM being ‘orthogonal’ to the MSV. In other words,
the dynamics confirm global strong E-stability of the MSV REE in the model. The
existence of the RPE is thus an artifact that is caused by artificially restricting the
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agents’ information set. For very large attention costs, the agents asymptotically
choose to use the anchored rule, which shows that, while the region of attraction of
the MSV is large, it does not contain all possible parameter values.

Second, in line with the literature and our previous work in a static context Audzei
and Slobodyan (2022), a stronger monetary policy reaction to inflation reduces the
feedback of expectations to the realized variables. In the dynamic context, even if we
start in the RPE and then allow the agents to consider including the true state variable
into their forecasting rule, stronger monetary policy results in a faster switch to the
MSV-consistent rule. We further illustrate the role of attention costs. Intuitively, with
larger attention costs, the agents stop paying attention to any variables and start using
the anchored rule. Nevertheless, they stop paying attention to the wrong variable first:
the RPE-consistent rule disappears for κ > 0.5 while the MSV one does so for larger
values of κ; see Figure 1.

In the next section, we study a more realistic text-book New Keynesian model with
a richer structure, in which both possible variables in the PLM are endogenous. We
show that the basic intuition about the instability of RPE under Sparse AL carries
through even in this larger model. In addition, we investigate a novel phenomenon of
sliding dynamics taking place between regions in which two different forecasting rules
are optimal.

4 Full Model
To account for the role of monetary policy in expectation formation, we chose a stan-
dard New Keynesian (NK) model in which consumer utility possesses external habit
persistence7 and a central bank reacts to the deviation of expected inflation from the
zero inflation target. The model has been studied extensively, including for monetary
policy analysis; therefore we present below the key equations and leave the detailed
derivations to the Appendix B. The model is a three equations NK model, with
the investment - savings curve, new Keynesian Phillips curve and monetary policy

7We want to study a framework where the RPE includes a lag of output gap. That is why we
have chosen to consider a model with habit persistence.
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Taylor-like rule:

yt = − 1− h

(1 + h)σ
(it − Etπt+1) +

1

1 + h
Etyt+1 +

h

1 + h
yt−1 + gt, (23)

πt = βEtπt+1 + ωyt + ut, (24)
it = ϕπEtπt+1. (25)

Here π is inflation and y the output gap, while the shocks u and g are both i.i.d. zero
mean random variables with finite variances.

We plug the central bank’s policy rule (25) into (23)-(24) and rearrange to express
the dynamics of inflation and output as a function of their lagged and expected values
and shock realizations:

yt = − 1− h

(1 + h)σ
(ϕπ − 1)Etπt+1 +

1

1 + h
Etyt+1 +

h

1 + h
yt−1 +

1− h

(1 + h)σ
gt, (26)

πt =

(
β − ω(1− h)(ϕπ − 1)

(1 + h)σ

)
Etπt+1+

+
ω

1 + h
Etyt+1 +

ωh

1 + h
yt−1 +

ω(1− h)

(1 + h)σ
gt + ut. (27)

Next, we describe how agents formulate their inflation and output expectations.

4.1 Expert Forecasts of Output Gap

Following Molnar (2007), we assume that the agents have access to the expert advice
on output gap forecasts. These experts are fully aware of the structure of the model in
(26)-(27) and underlying parameters, and make forecasts given agents’ inflation beliefs.
We introduce the experts in order to reduce the dimensionality of the space of agents’
beliefs, which allows us to generate some analytical results in the two-dimensional
model in Section 5. Without experts, our model becomes four-dimensional and unable
to produce intuitive results.

In Appendix C we characterize the dynamics of output and inflation as a function of
expectations of the output gap, given the agents’ beliefs about inflation. As experts are
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fully rational, we solve for their output gap forecasts using the method of undetermined
coefficients. As a result, the forecast of the output gap can be written as

Etyt+1 = γ̃yyt−1 + γ̃ππt−1 + γ̃uut + γ̃ggt, (28)

where the coefficients are functions of the agents’ inflation beliefs defined in (C82)-
(C85) and (C86)-(C89).

With these output gap expectations, we can re-write the model in (26)-(27) as a
function of inflation expectations and lags of inflation and output gap:

yt = − 1− h

(1 + h)σ
(ϕπ − 1)Etπt+1 +

γ̃π
1 + h

πt−1+

+
h+ γ̃y
1 + h

yt−1 +
1− h+ σγ̃g
(1 + h)σ

gt +
γ̃u

1 + h
ut, (29)

πt =

(
β − ω(1− h)(ϕπ − 1)

(1 + h)σ

)
Etπt+1+ (30)

γ̃πω

1 + h
πt−1 +

ω(h+ γ̃y)

1 + h
yt−1 +

ω((1− h) + σγ̃g)

(1 + h)σ
gt +

(
ωγ̃u
1 + h

+ 1

)
ut.

4.2 The Equilibria

4.2.1 Minimal State Variable Solution

Having defined the forecast of the output gap we begin our analysis by defining and
studying the properties of MSV REE solution for inflation. At MSV, the agents’ beliefs
about the inflation - PLM, contain only the state variables: output gap and observed
shocks. Such beliefs are given by:

πt = cyπyt−1 + γyπgt + ut, (31)
yt = cyyyt−1 + γyygt, (32)

with the coefficients derived in Appendix D.
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4.2.2 Restricted Perceptions Equilibrium

Next we derive the Restricted Perceptions Equilibrium, where the ‘correct’ variable
from the MSV is not present at all while the agents forecast using the variable that is
irrelevant in the MSV, and then initialize the agents’ beliefs in a small neighborhood
of the RPE-consistent values.

We restrict the agents to use only one endogenous variable in their forecasting
models - either a lag of inflation or a lag of output gap. Under the assumption of
i.i.d. shocks the agents then choose between two models, based on their forecasting
performance:

πt = απ
π + βπ

ππt−1, (33)
πt = αy

π + βy
πyt−1, (34)

with the coefficients determined by the respective regressions. We call the mis-specified
rule in (33) Mπ, and the MSV-consistent one in (34) is denoted My.8 The equilibria
induced by these forecasting rules are also called Mπ and My.

The ALM when the agents are using the Mπ forecasting rule is given by the follow-
ing equations, with the coefficients defined in Appendix E in equations (E118)-(E125):

πt = āπ + b̄ππt−1 + c̄πyt−1 + η̄gπgt + η̄uπut, (35)
yt = āy + b̄yπt−1 + c̄yyt−1 + η̄gygt + η̄uyut. (36)

We measure the forecasting performance of rules Mπ and My by the mean squared
forecast errors (MSFE). We define the error term for MSFE criterion as E(πt − π̂t)

2,
where πt is given by the above ALM under the condition that all agents were using
(33) to form the expectations.

Proposition 5 summarizes the conditions for Mπ - a mis-specified rule, to be Re-
stricted Perceptions Equilibrium.

8We call My an MSV-consistent rule because it uses the same lagged endogenous variable - out-
put gap -as the MSV REE. Therefore, in what follows we use ’MSV-consistent’ and ’MSV REE’
interchangeably.
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Proposition 5. For the model described in (26-27), Mπ equilibrium in (33) 1) exists;
2) is weakly E-stable under condition (E145); 3) Mπ produces MSFE that is smaller
than My MSFE when condition (E150) holds.

Proof. Appendix E.

5 Dynamics of Sparse AL
In this section we study the convergence of agents beliefs to the MSV consistent rule.
In particular, we are interested in the question: will the agents using penalized RLS
in (8) eventually learn that the coefficient on π is zero, and converge to the MSV-
consistent equilibrium? If they do, then global strong E-stability of MSV REE is
supported.

The derivation of attention weights resembles that for learning about the Fisher
equation, that is why we leave the weights derivation to the Appendix F.

As shown in the in Appendix D when the agents do not face attention costs the
asymptotic strong E-stability for the MSV REE is obtained when the condition (D105)
is satisfied. The numerical analysis in the next section supports the likely global
convergence for zero attention costs.9 We further study the global strong E-stability
with positive attention costs.

5.1 Convergence to the MSV REE

Figure 2 presents the start and end points of the Sparse AL learning dynamics, equa-
tions (8), for different values of the attention cost κ and the policy rule’s aggressiveness
ϕπ. The left panel presents initial weights, obtained by a single application of the pe-
nalized regression (3) in the RPE Mπ. When the derived attention costs are zero,
or close to zero, the agents initially choose (mπ,my) = (1, 1) to pay full attention to
both variables - black squares in the figures. There is a wide region of the parameter
space at the lower values of ϕπ where the initial weights are consistent with the RPE,

9Outside of the MSV REE, the approximating Strong E-Stability ODE is nonlinear; therefore we
cannot prove analytically that the convergence is global.

26



Figure 2: Attention Weights

Initial Attention Weights Final Attention Weights

(mπ,my) = (1, 0), pink asterisks. Here, the restricted choice of the variables in the
forecasting rule - only π - is reconfirmed by sparse rationality. This region is located
at intermediate values of the attention costs and low to medium monetary policy ag-
gressiveness. For low values of attention cost as well as for intermediate κ combined
with higher ϕπ, both the inflation and output gap tend to have non-zero (yellow area)
weights. Also, for even higher attention costs, especially when the Taylor rule is very
aggressive, the agents tend to disregard both π and y and forecast inflation using
an anchored rule, red area. Finally, the highest values of the aggressiveness by the
central bank lead to the RPE Mπ forecasting rule producing worse forecasts than the
alternative My one; thus RPE does not exist in the area of green squares. Notably,
the MSV-consistent equilibrium is never an optimal solution. At best, the agents give
some weight to the ‘correct’ variable (output gap), but they never replace the ‘wrong’
(inflation) with the ‘correct’ variable. However, this is only a static outcome.

In this paper we initialize the Sparse AL learning algorithm in two ways. In both
ways for every point on the (κ, ϕπ) grid, the agents start with the attention weights m
obtained from the single run of optimization problem in (3) when the data is generated
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by the RPE ALM (35)-(36).10 The vector of belief coefficients β is either taken from
the same regression, and thus is consistent with the RPE ALM, or it is equal to
that at the RPE PLM. This procedure results in two sets of combined initial beliefs
(βπ, βy,mπ,my) which are very far away from those one would observe at the MSV
REE for these values of (κ, ϕπ). Importantly, given our initialization procedure, the
agents’ initial PLM would always include lagged π, the variable that is not present in
the MSV REE.

We then trace the approximating ODE for a sufficiently long time11 and observe
the final beliefs and weights. The final weights are significantly more uniform than
the initial ones. The weights converge to the MSV REE (blue area) for a wide range
of parameters, to the anchored forecasting rule (red area), or are on the way towards
theanchored rule (yellow area) with both variables having non-zero weights. The
RPE Mπ does not survive for any combination of the parameters (ϕπ, κ). Naturally,
convergence to the anchored rule is observed for high values of κ, while the MSV REE
is the limit point for lower values of the attention costs. Convergence to the MSV is
observed even for many initial points with zero output gap weight. Thus, the agents
who are allowed to continue learning, while taking into account the attention penalty,
are still able to learn the true equilibrium, unless the attention cost is too high.

Our results do not depend on whether the initial beliefs are consistent with the
RPE ALM or RPE PLM: the eventual outcome of learning is the same for both ways
of initialization. This result suggests that not only the MSV REE could be strongly
E-stable under the attention cost constraint, as we start from over-parametrized PLM
that always includes positive coefficient on a variable that is not present at the MSV,
but also that it could be globally strongly E-stable in a large region of the parameter
space, with the initial beliefs very far from the MSV ones. In particular, with the
second initialization method the agents start by having almost zero beliefs in the
correct MSV variable y and positive beliefs in the incorrect variable π that is absent

10If one or both weights are equal to zero, for technical reasons we initiate them with a small
positive number ϵ, as otherwise computation of the matrix Σ in (E139) becomes impossible.

11We typically use T=30, which in the case of a small constant gain g = 0.01 is equivalent to 3,000
periods. In the case of RLS with gains gn = 1/n, continuous time of 30 is equivalent to 1e+13
periods.
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in the MSV solution, and still converge to it. However, as mentioned previously, we
cannot prove the global stability analytically or numerically due to nonlinearity and
high dimensionality of the problem.

Finally, we note that the conduct of monetary policy affects the asymptotic equilib-
rium to which our learning algorithm converges. With stricter monetary policy, agents
switch to the anchored only rule (yellow and red area in the Figure 2) for smaller κ.
The reason for this is that more aggressive reaction of the central bank to inflation
lowers volatility and hampers predictability of both the inflation and the output gap,
which reduces the benefits of paying attention to these variables while the attention
costs are the same. Therefore, using the correct variable (output gap) for predicting
inflation is justified only for lower values of the cost.

The exact evolution of the PLM beliefs and the attention weights leading to the
switch from the RPE, (mπ,my) = (1, 0), to the MSV REE, (mπ,my) = (0, 1), is also
of interest. Figure 3 presents the evolution of the PLM beliefs, optimal and actual
attention weights, as well as the product of the PLM coefficient and the attention
which determines the impact of a specific variable on the agents’ inflation forecast.
The agents start from the RPE PLM, so that their attention weights are equal to
(1,0), see the starting point in the upper right panel. The RPE is a corner solution.
When we allow both beliefs to be adjusted, βπ starts to decline while βy increases,
see the top panels. However, as (1,0) remains the optimal solution to (3) - see the
lower left panel, - the agents continue to predict inflation using only the inflation lag.
Around t = 2.5 the output gap belief becomes so large that it now is optimal to
start paying some attention to the output gap variable. The lower right panel shows
the optimal selected model - V (mπ,my): a combination of weights that minimize the
objective function in (3). The optimal solution switches from (1,0) (yellow asterisks)
to (0,1) (purple asterisks) after a short transition interval where having both attention
weights positive is optimal (blue, red, and green asterisks).

This evolution of the agents’ PLM allows us to comment on the relationship be-
tween E-stability of the RPE, established by Audzei and Slobodyan (2022), and the
strong E-stability of the MSV described above. In the RPE, the agents include only the
inflation variable into their forecasting rule. The approximating ODE that allowed us
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to establish E-stability of the RPE is thus 1-dimensional in the beliefs (β) space. The
implicit attention weights were fixed at (1,0). In contrast, once the agents start learn-
ing subject to attention costs, they explicitly take into account that there could be two
variables in their PLM, and thus the approximating ODE becomes 2-dimensional in β

space. In addition, there are dynamics in the m space which were not present in the
analysis of RPE E-stability. In other words, the nature of the dynamic adjustment of
beliefs (and of attention weights) changes dramatically, in particular through expan-
sion of dimensionality. In the Figure 3 the agents first utilized the second dimension
of the PLM beliefs, by decreasing βπ and increasing βy, and then moved away from
(1,0) and towards (0,1) in the attention weights space. Thus, even if the initial belief
on output gap in the agents’ PLM is zero, they still could move along that dimension,
while during convergence to the RPE implicit in the RPE E-stability derivation, the
βy dimension didn’t exist. An even simpler process of adjustment towards the MSV
REE is presented in the Figure 4. Along this trajectory the optimal attention weights
remain equal to (0,1) from the very beginning, and the actual attention weights are
adjusted monotonically to their limit values. The weight on inflation mπ declines while
the weight on output gap my is monotonically increasing. Asymptotically the total
impact of the output gap on the agents’ inflation forecast, my · βy, upper left panel,
is the same as the corresponding value at the MSV REE despite the attention costs.
The agents pay the costs but still prefer to use the correct forecasting rule and the
correct coefficient in it. The lower right panel shows that the corner solution (0, 1)

remains optimal (violet asterisks) throughout the whole trajectory.
We now turn to discussion of the thin yellow wedge on the final weights panel of

Figure 2, which exhibits rather non-trivial dynamics with switching of the forecasting
rule’s functional form.

5.2 Sliding Dynamics

For most trajectories that converge to the (0, 0) limit weights we observe monotonic
convergence similar to that in (4): the corner solution (0, 0) remains optimal for the
whole duration of the simulation. However, there are other types of trajectories that
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Figure 3: Convergence of Weights and Beliefs
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Note: The figure illustrates the convergence of weights to MSV REE consistent values for attention
costs κ = 0.065 and monetary policy reaction to inflation ϕπ = 1.05. Continuous time units of the
approximating ODE are on the horizontal axis. Asymptotic convergence to MSV REE is observed,

with the MSV becoming the optimal solution after t = 2.5.

exhibit a switching behavior of the optimal solution in the attention weights space, and
we now turn to the detailed discussion of these solutions. These are the trajectories
converging to the yellow marks, see Figure 5 for an example. At some point along the
trajectory around t=2.5, the value of the objective function in (3) obtained for the
MSV-consistent weights, V(0,1), becomes equal to the value generated by anchored
rule weights, V(0,0). After this point, the monotonic convergence to the MSV weights
is replaced with a convergence to the anchored rule (0, 0). The switch is best seen
in the lower right panel of the Figure 5: Before t ≈ 2.5 it is the (0,1) solution that
produces the minimal value (violet asterisks), but after this time it’s the (0,0) solution
which becomes the best (orange asterisks).

The points where such a situation happens form a surface in the (β, R,m) space.
At one side of the surface, we have V(0,0)>V(0,1), while at the other side the opposite
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Figure 4: Convergence of Weights and Beliefs
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Note: The figure illustrates the convergence of weights to MSV REE consistent values for attention
costs κ = 0.06 and monetary policy reaction to inflation ϕπ = 1.29. Continuous time units of the
approximating ODE are on the horizontal axis. Monotonic convergence to MSV REE is observed.

The bottom right graph shows the value of value functions (which exist) with the asterisks denoting
the optimal (minimal) value function.

situation takes place. The optimal weights, respectively, are (0,1) and (0,0). From the
ODE for attention weights (8) we then see that the right-hand side in the equation
for my is discontinuous at this boundary. Importantly, it could happen that due to
this discontinuity the flow described by (8) points back to the boundary on both sides
of it, making it intuitively clear that locally the ODE trajectories will be attracted to
the boundary.

In order to study the dynamics in this case, we need to turn to the theory of non-
smooth differential equations described in Appendix G. As is described there, sliding
dynamics could occur along the boundary on which the two solutions to the problem
(3) give exactly the same value. This happens when the flow described by (8) points in
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Figure 5: Convergence of Weights and Beliefs
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Note: The figure illustrates the convergence of weights to (mπ,my) = (0, 0) for selected values of
attention costs κ = 0.13 and monetary policy reaction to inflation ϕπ = 1.29. Continuous time units
of the approximating ODE are on the horizontal axis. Convergence to the anchored forecasting rule.
The bottom right graph shows the value of value functions (which exist) with the asterisks denoting

the optimal (minimal) value function.

the direction of the boundary on both sides of it, making possible a stable trajectory
that lies entirely within the boundary for some time interval.

In our case, we observed several types of the trajectories encountering the boundary
between the solutions (mπ,my) = (0, 0) and (0, 1). Two were the most common.
The first type encounters the boundary, punches through it (the scalar product of
projections of the flow on the normal to the boundary from two sides is positive), and
continues evolving according to the ODE (8) towards the anchored forecasting rule.
These are the yellow diamonds in Figure 2. Another type encounters the boundary and
settles into the sliding dynamics as the scalar product of projections on the normal is
negative, eventually converging to the anchored forecasting rule. All points represented
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by the yellow circles in Figure 2 denote such dynamics. Occasionally, a trajectory that
first punched through the boundary, then encountered it for a second time and settled
for the sliding dynamics, was observed. We also encountered a few trajectories whereby
the sliding dynamics ended before time T = 30 and the trajectory then continued
along the non-boundary ODE (8). Up to three episodes of sliding could occur along
the convergence trajectory for some parameter values.

Importantly, no trajectories that encountered the boundary were observed to con-
verge to the MSV REE attention weights, whether or not the trajectory was converging
to the MSV before the encounter.

5.3 The Slow Weights Learning Case and Non-Smooth Dy-
namics

The case n = 1 assumes that the agents update attention weights with the same speed
as their OLS beliefs. One, however, could entertain different hypotheses. Generally
speaking, reconsideration of the set of variables to be included into the forecasting rule
and of the attention weights for different variables is a significantly more complex task
than updating R, computing its inverse and multiplying it by the forecast error to get
the iteration of β. Determining optimal weights is a constrained optimization problem
that in a multi-dimensional case requires comparison of multiple corner solutions.
Therefore, it is reasonable for the agents to reconsider their weights less frequently
than their OLS beliefs. This would then amount to n ≪ 1 in the updating equations
(7-8).

We present the results of the relatively slow learning of attention weights (n = 0.01)
in Figure 6. The left panel shows the final weights, while on the right we show the
difference with the results for n = 1. Blue points are the parameter values for which in
the case n = 1 we had convergence to the MSV REE, but with n = 0.01 the anchored
forecasting rule is the final outcome. All of these trajectories that have switched the
final attention weights are those that encounter the boundary between (0,1) and (0,0)
solutions along the way. In order to understand this behavior we look carefully into a
simplified version of the model dynamics.
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Figure 6: Attention Weights
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In order to generate the intuition for the results on the slow sliding dynamics we
inspect the equations (8) and see that what matters for the dynamics of both beliefs
and attention weights are the element-wise products of attention weight and belief
vectors m⊙β, which are the total effects of the two variables (mx · βx) on the overall
inflation forecast. For the trajectories where the optimal attention weight on inflation,
mπ, remains equal to 0, only the impact Ψy = my · βy matters. Therefore, in order to
simplify the exposition we switch our attention to the dynamics in a two-dimensional
space x = (my, βy).12 The ODE (8) in this space is given by the following equations:

β̇y = c̄π −my · βy,

ṁy = n ·
(
m∗

y −my

)
.

(37)

In this space, the boundary between the two corner solutions (0,0) and (0,1) is
given as the solution to the equation V (0, 0) = V (0, 1) which is Ψy = my · βy = Ψ̄y,
a hyperbola in the two-dimensional space (my, βy). Using notation from Appendix G,

12We further assume that the second moments R have converged to their equilibrium values Σ in
order to simplify the exposition.
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the equation for the boundary is

σ(my, βy) = my · βy − Ψ̄y = 0.

The discontinuity above and below the boundary comes from the fact that the
optimal solution for my is either 0 or 1 at different sides of it. For σ(my, βy) below the
boundary, m∗

y = 1 while above the boundary m∗
y = 0.13 We write the time derivative

of σ as

σ̇ = ˙(my · βy) = ṁy · βy +my · β̇y
=
(
c̄π − Ψ̄y

)
·my + n ·

(
m∗

y −my

)
.

The first term in the last line is always positive, while the second is negative above the
boundary, where m∗

y = 0, and positive below it, because m∗
y = 1. When the second

term is larger in absolute value than the first, the boundary is stable, as σ̇ is negative
for σ > 0 and positive for σ < 0. Sliding dynamics ensue. However, when we decrease
n, the second term becomes smaller in the absolute value. It is now possible to have
σ̇ > 0 also for σ > 0, and there is no sliding as the boundary is simply punched
through.

With sliding, the system evolves along the boundary σ(x) = 0. Given that the time
derivative of βy is a positive constant at the boundary, the value of βy grows without
bounds during sliding. However, as the product of βy and my at the boundary is con-
stant, my must converge to zero. Therefore, the limit point of the sliding dynamics in
this simple case could only be (mπ,my) = (0, 0). This behavior is probably responsible
for the fact that once the sliding dynamics commences in our simulations that take
place in 7D space, the anchored solution (0,0) is the ultimate outcome, even when the
sliding is consequently discontinued: sliding brings the trajectory ever closer to (0,0)
rather than back to the (0,1) solution, the MSV REE.

Another consequence of the slow updating of attention weights consists of affect-
13This is because the value of the penalty term is increasing in my, and so the forecasting rule with

fewer variables is preferred when we increase my marginally from the boundary.
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ing whether the trajectory even reaches the (0,0)-(0,1) boundary. Outside of the
simplified 2D case we just considered, the boundary is a complicated object in the
seven-dimensional space rather than a simple hyperbola Ψy = my · βy = Ψ̄y. It is
possible that when the trajectory is moving towards my = 1 very fast (n = 1) hitting
the boundary becomes impossible, thus expanding the region in the parameter space
where convergence to the MSV REE is observed.

6 Conclusions
In this paper, we extend the standard Recursive Least Square learning algorithm to
the case of penalized regression as in Gabaix (2014). We investigate the convergence
properties of the continuous time approximating ODE for this combined algorithm,
called Sparse Adaptive Learning, and establish that allowing for dynamic choices of
attention to be paid to different model variables rules out convergence to the RPE.
The attention weights corresponding to the RPE are never the ultimate outcome, even
though initially the beliefs are consistent with the RPE. This result is in stark contrast
with a single application of the sparsity penalized regression, which never delivered
the MSV REE as an outcome in Audzei and Slobodyan (2022). The global E-Stability
of MSV REE we demonstrate in the paper implies that even when the agents, who are
allowed to reconsider their forecasting rule choices in a self-referential system subject to
attention costs, initiate learning from the ‘wrong’ equilibrium, they still typically learn
the MSV REE. Alternatively, in a system with little volatility or autocorrelation of
the endogenous variables, they will switch to using the anchored rule. This result also
raises doubts regarding the RPE as the outcome of some learning process, because
its existence relies on the agents using only the variables present in the restricted
information set and ignoring others along the transition trajectory. Whether this
fragility of the RPE is a general result in a wider set of self-referential models remains
an interesting topic for future research.

The learning algorithm considered in this paper could lead to non-smooth dynamics
due to the agents discontinuously selecting the set of variables to be included into
their forecasting rule. During such discontinuous steps, the number of variables in the
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agents’ information set changes. The presence of these non-smooth dynamics forces us
to rely on the theory of non-smooth differential equations to study the approximating
ODE. We demonstrate that the presence of discontinuous jumps in the number of
variables present in the forecasting rule could result in sliding dynamics, which has
not been observed previously in the adaptive learning literature.

We also establish that the relative speed at which belief coefficients and attention
weights are adjusted has important implications for the trajectories that could en-
counter the boundary between the two corner solutions, and develop analytical results
in a specific restricted case. Less frequent updating of the attention weights relative
to the beliefs results in marginal expansion of the region in the parameter space where
the anchored forecasting rule is the asymptotic outcome of the learning.

The strictness of the monetary policy affects the evolution of the learning algo-
rithm. When the Taylor rule is more aggressive, the convergence from the mis-specified
rule to either the MSV or the anchored rule is faster. With the stricter monetary pol-
icy, the model variables become less volatile and less correlated across time, making
lags of endogenous variables less useful for forecasting. In the presence of attention
costs, this could lead to the agents selecting an anchored forecasting rule – anchored
to the long-term inflation or inflation target – rather than the rule that is consistent
with the MSV REE.
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A Simple model
A.1 Rational Expectations MSV
The REE MSV - consistent forecasting rule for the system (12) takes the form:

πt = γrt ⇒ Etπt+1 = γrt, (A38)

where γ denotes agents’ beliefs. This results in the ALM:

πt =
1 + ργ

ϕ
rt. (A39)

In the MSV REE, the PLM and ALM coincide:

γ =
1 + ργ∗

ϕ
= T (γ∗) ⇒ γ∗ =

1

ϕ− ρ
. (A40)

Note that for ϕ− ρ < 1, γ∗ > 1.
E-Stability For the simple model, the conditions could be derived as follows.
The MSV solution is weakly E-Stable when ∂T (γ)

∂γ
= ρ

ϕ
< 1. This condition is

satisfied for any 0 < ρ < 1 and ϕ > 1.
To derive the condition for strong E-stability, we assume that the over-parametrized

rule takes the form:
πt = γrt + ωπt−1. (A41)

With the resulting ALM being

πt =
1 + (ρ+ ω)γ

ϕ
rt +

ω2

ϕ
, (A42)

and the equilibrium conditions given by

γ∗ =
1

ϕ− ρ− ω∗ ,

ω∗ =
(ω∗)2

ϕ
.

There are two solutions for ω∗: 0 (corresponding to the MSV REE) and ϕ. The
Jacobian takes the following form:

J =

[
ρ+ω∗

ϕ
− 1 γ∗

ϕ

0 2ω∗

ϕ
− 1

]
,
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with the eigenvalues (ρ+ω∗

ϕ
− 1, 2ω∗

ϕ
− 1). For ω∗ = ϕ both eigenvalues are positive and

thus this solution is always E-unstable. For ω∗ = 0 one eigenvalue equals -1 <0, while
the other produces the following strong E-stability condition

ρ

ϕ
< 1, (A43)

which coincides with the weak E-stability condition.

A.2 Proof of Proposition 1
A.2.1 Existence of stable β

The agents’ perceived PLM coefficient β at the RPE must be equal to the OLS coef-
ficient. Using that cov(πt, πt−1) =

(ρ+b̄)c̄2σ2
r

1−ρb̄
and var(π) = 1+ρb̄

(1−ρb̄)(1−b̄2)
c̄2σ2

r , β must be
the solution to the following equation:

β =
cov(πt, πt−1)

var(π)
=

(ρ+b̄)c̄2σ2
r

(1−ρb̄)(1−b̄2)

1+ρb̄
(1−ρb̄)(1−b̄2)

c̄2σ2
r

=
ρ+ b̄

1 + ρb̄
=
β2 + ρϕ

ρβ2 + ϕ
= Γ(β). (A44)

In Figure 7 for a wide parameter region, we show the area where β is unique and
where the E-Stability and MSFE conditions are satisfied in green. In the black area,
the solution is unique and E-Stable, but the MSFE criterion is not satisfied. In the
blue area, there are multiple real solutions and neither is E-Stable. Below we formally
present the conditions. From Eq. (A44) one can immediately observe that as long as
ϕ > 1

Γ(0) = ρ,

ρ < Γ(1) =
1 + ρϕ

ρ+ ϕ
= 1− (ϕ− 1)(1− ρ)

ϕ+ ρ
< 1,

Γ′(β) =
2βϕ(1− ρ2)

(ρβ2 + ϕ)2
=

2ϕβ(1− ρβ)2

ϕ(1− ρ2)
> 0.

Thus, there must exist at least one intersection of the functions β and Γ(β) in the
[0; 1] interval. To check for more than one intersection, we re-write (A44) further as

ρβ3 − β2 + ϕβ − ϕρ = f(β) = 0, (A45)
where we observe that

f(0) < 0,

f(1) = (ϕ− 1)(1− ρ) > 0,

f(ρ) = ρ2(ρ2 − 1) < 0.
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Figure 7: Uniqueness of RPE

Note: In the green area E-stability and MSFE criteria are satisfied and the solution is unique. In
the black area the solution is unique, but MSFE criterion is not satisfied. In the blue area there are

multiple solutions and at least one of the criteria is not satisfied.

As long as the Taylor principle ϕ > 1 is satisfied, there exists at least one root of
the cubic equation (A45) in the [ρ; 1] interval. Using Descartes’ rule of signs one can
easily establish that there could be either 1 or 3 positive real roots, as there are 3 sign
changes in the coefficients of the f(β) polynomial, and 0 negative real roots, as there
are no sign changes of the f(−β) polynomial. We could further compute the turning
points of f as points where f ′(β) = 0:

β1,2 =
1±

√
1− 3ρϕ

3ρ
.

If we have 3ρϕ > 1, there are no turning points of f and thus no other real roots.14

A.2.2 RPE E-stability

In order to prove weak E-stability of the RPE, we need to show that for β∗ satisfying
Eq. (A45) the value of 2ϕβ(1−ρβ)2

ϕ(1−ρ2
is less than unity, which cannot be done analytically.

Numerically, for all points in the open set {(ρ, ϕ) : 1 > ρ > 0, 5 > ϕ > 1} this
condition is satisfied as shown as the black and green area in Figure 7.

Thus, for ϕ > 1 the RPE is weakly E-Stable.
14Further, one can use the Sturm’s theorem to show that for all ϕ such that 3ρϕ < 1 and 1 < ϕ < 2

there is only one root in the [ρ; 1] interval; however, the derivations become cumbersome.
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A.2.3 MSFE criterion

To establish the region in the (ρ, ϕ) space where the Mπ forecasting rule predicts better
than the Mr rule while the Mπ ALM is operative, we first derive the condition (18).
Denote ϵit ≡ π̂i

t − πt an error of inflation forecast under a model i provided that the
ALM is generated under model Mπ.

ϵπt = (β − b̄)πt−1 − c̄rt = (b̄+ c̄
σπt−1,rt

σ2
π

− b̄)πt−1 − c̄rt,

Et(ϵ
π
t )

2 = c̄2σ2
r

(
1−

σ2
πt−1,rt

σ2
πσ

2
r

)
, (A46)

ϵrt = −b̄πt−1 + (γ̂ − c̄)rt = −b̄πt−1 + (c̄+ b̄
σπt−1,rt

σ2
r

− c̄)rt,

Et(ϵ
r
t )

2 = b̄2σ2
π

(
1−

σ2
πt−1,rt

σ2
πσ

2
r

)
. (A47)

Model Mπ produces smaller MSFE if:
Et(ϵ

π
t )

2 < Et(ϵ
r
t )

2 ⇒ c̄2σ2
r < b̄2σ2

π, (A48)
which is the condtion (18) in the text. The condition (18) reduces to:

b̄2(1 + ρb̄)

(1− ρb̄)(1− b̄2)
≥ 1 ⇒ ρ ≥ ϕ2 − 2β4

ϕβ2
. (A49)

As β = β(ρ, ϕ) the condition (A49) is a complicated object in (ρ, ϕ) space. We consider
a solution for the root of β at the E-Stability boundary where ϕ = 1. The (A45) can
then be factored as (β − 1) · (ρβ2 − (1 − ρ)β + ρ) = 0. There is always a unit root.
In addition, for ρ ≤ 1/3, the discriminant of the quadratic term is positive and has
another root in the [ρ; 1] interval. For ρ > 1/3, the discriminant of the quadratic term
is negative, and there are only complex roots, so the only RPE solution is β = 1.
Close to the boundary ϕ = 1 the agents continue believing that inflation is a near unit
root process, b̄ ≈ 1 and so the variance of inflation is very large. Lagged inflation thus
explains a significantly larger share of the variance than the real interest rate, and so
the Mπ forecasting rule has better performance than the Mr one.

Consider now what happens to the unique root for the values {(ρ, ϕ) : ϕ =
1+ ϵ, ρ > 1/3}. Taking the full differential of (A45) with respect to ϕ and plugging in
the values of ϕ = β = 1, we obtain

βϕ =
1− ρ

1− 3ρ
< 0,

b̄ϕ = 2βϕ − 1 < 0.
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Therefore, as ϕ increases above unity, the value of β and b̄ starts to drop.
We now consider the boundary where the forecasting performance of the two single

equation rules is exactly the same. Setting the LHS of Eq. (A49) equal to one and
solving the resulting quadratic equation, we obtain that the value of b̄ on the boundary
is decreasing in ρ. As b̄ϕ < 0, this means that, in order to stay on the boundary as
ϕ increases, ρ must increase as well. Thus, the boundary where the forecasting rules
Mπ and Mr perform exactly the same is upward-sloping in the (ρ, ϕ) space. Below the
boundary Mπ is better, as discussed above. This is the green area in Figure 7.

For ρ = 1/3 and ϕ = 1 the equation (A45) has a triple root of unity. As ρ decreases
below 1/3, one of the roots drops while another becomes larger than unity. Taking the
lower root as the solution, with β and b̄ decreasing, the condition (A49) is no longer
satisfied for a value of ρ ≈ 0.328, which defines the intersection of the (A49) boundary
with the horizontal line ϕ = 1 and determines the initial point of the border between
the green and the black area in Figure 7. To derive the value of ρ, plug ϕ = 1 into
(A44) and (A49) evaluated at equality:

ρ =
β

1 + β + β2
, (A50)

ρ =
1− 2β4

β2
. (A51)

While (A50) is a non-decreasing function of β with ρ(0) = 0 and ρ(1) = 1/3, (A51)
describes a decreasing function of β with ρ(0) → +∞ and ρ(1) = −1; therefore, there
is a single intersection in the [0; 1] interval of β. The equation for β that we then
obtain by setting expressions (A50) and (A51) equal to each other is a polynomial of
order 6. By plugging its unique real root from [0; 1] interval into (A50), we obtain a
numerical solution for ρ mentioned above.

A.3 Proof of Proposition 2
Suppose the agents use two variables in their PLM: rt and πt−1, such that the PLM is
an RPE-consistent with γ = 0. The ‘data’ that the agents see is created by the RPE
ALM, and we assume that the agents are using the second-moments matrix R that is
consistent with this ALM.

The updating differential equation for beliefs is given by the E-stability ODE where
the functional forms of the PLM and ALM coincide:

d

dτ

[
β
γ

]
=

[
b̄(β)− β
c̄(β, γ)− γ

]
. (A52)
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One can immediately see that b̄(β) − β = 1
ϕ
β2 − β = β

(
β
ϕ
− 1
)
< 0 as typically

ϕ > 1 > β > 0. Similarly, looking at the second line of (A52), it is clear that
c̄(β, γ) − γ = 1

ϕ
− γ > 0 as long as the PLM coefficient is not too different from the

RPE value of γ = 0. At the RPE, the agents start with γ = 0, which means that the
derivative is positive.

In case the agents do not exactly know the matrix of second moments, the RHS of
the E-stability ODE will be given by:

d

dτ

[
β
γ

]
= R−1 · Σ ·

[
b̄(β)− β
c̄(β, γ)− γ

]
. (A53)

As long as R, the agents’ beliefs about the DGP in which they live is not too far from
the true DGP that is summarized in Σ, we still have a derivative of β negative and of
γ positive.

A.4 Dynamics
Solving (3) results in nine possible cases, with the corresponding value functions de-
noted as V (mπ,mr). V reflects the agents’ forecast errors, which the agents minimize
in (3). When a weight takes the value ∈ [0; 1] we mark it as x in the name of the value
function. For example, we denote the inner solution as V (x, x). The inner solution
takes the form:

mr = 1− κ

(c̄s)2 (1−R2)

b̄− c̄sR

b̄
, (A54)

mπ = 1− κ

b̄2 (1−R2)

c̄s − b̄R

c̄s
, (A55)

V (x, x) = 2κ− κ2(b̄2π − 2Rc̄sb̄+ (c̄s)
2)

2(b̄2π(c̄s)
2 −R2b̄2(c̄s)2)

. (A56)

Clearly, if the weights from (A55) and (A54) are within the [0; 1] interval, V (x, x) is
the minimum. When one or both of the weights are outside [0; 1], we define the rest

44



of the value functions for corner solutions in (A57)-(A64).

[mπ = 0, 0 < mr < 1] V (0, x) =
1

2
b̄2 + κ− (Rb̄c̄s − κ)2

2(c̄s)2
, (A57)

[0 < mπ < 1,mr = 0] V (x, 0) =
1

2
(c̄s)

2 + κ− (Rc̄sb̄− κ)2

2b̄2
, (A58)

[mπ = 0,mr = 0] V (0, 0) =
1

2
((c̄s)

2 + b̄2 +Rb̄c̄s), (A59)

[mπ = 1,mr = 0] V (1, 0) =
1

2
(c̄s)

2 + κ, (A60)

[mπ = 0,mr = 1] V (0, 1) =
1

2
b̄2 + κ, (A61)

[mπ = 1,mr = 1] V (1, 1) = 2κ, (A62)

[mπ = 1, 0 < mr < 1] V (1, x) = 2κ− κ2

2c̄2σ
, (A63)

[0 < mπ < 1,mr = 1] V (x, 1) = 2κ− κ2

2b̄2
. (A64)

Proof of Proposition 3. Boundaries for small values of κ. The boundary
for switching from V (1, 0) to V (1, x) b2 is defined from the existence of V (1, x) as
V (1, x) < V (1, 0) whenever there exists weight on real interest rate 0 ≤ mr ≤ 1

1 < 1− κ

c̄2s
< 0 ⇒ κ

c̄2s
< 1 ⇒ κ(1 + ρb̄)

(1− ρb̄)(1− b̄2)
< 1, (A65)

where we have used the fact that κ > 0 and c̄2s > 0. Consider the Eq. (A65) as
equality, and write the solution to it as κ̄2(b̄). Obviously, κ̄2(0) = 1 and κ̄2(1) = 0.
Moreover, ∂κ̄2

∂b̄
< 0 everywhere, as the numerator of the derivative contains 3 terms

that are always negative for 0 ≤ b̄ ≤ 1 and the denominator is positive. Therefore, the
function κ̄2(b̄) is monotonically decreasing. This means that the function κ̄2(b̄) has a
unique monotonically declining inverse b̄2(κ) such that b̄2(0) = 1 and b̄2(1) = 0.

The threshold b1 is defined as mπβ such that V (0, 1) < V (x, 1), when adding a
positive weight on lag of inflation is no longer optimal. Again, as V (x, 1) < V (0, 1)
whenever there exists 0 ≤ mπ ≤ 1, the threshold is given by the condition 0 ≥ mπ or
mπ ≥ 1:

1− κ

b̄2
≤ 0 ⇒ b̄2 ≤ κ⇒ mπβ ≤ 4

√
ϕ2κ, (A66)

where in the derivations we have used the fact that κ > 0 and ϕ > 0. Thus, b1 = 4
√
ϕ2κ.
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The condition for the boundary b1 (A66) is given as a monotonically increasing
function κ̄1(b̄) = b̄2, or alternatively its unique inverse b̄1(κ) =

√
κ. This function is

monotonically increasing, starts at the origin and reaches unity at κ = 1. Therefore,
there is a single intersection at some 1 > κ̄∗ > 0. For κ ≤ κ̄∗ we then immediately
have that b̄1 ≤ b̄2.

Moreover, the condition κ̄2(b̄) = κ̄1(b̄) yields the quadratic equation 2b̄2+ρb̄−1 = 0
that has a unique solution in [0; 1] interval for any ρ ∈ [0; 1]. This solution is related
to the horizontal coordinate of the peak of the green area, where the boundaries of
the (0, 1) and (1, 0) regions merge.

Boundaries for large values of κ. Boundary b3 is defined as a threshold between
the areas where the optimal solution is either a constant only (0, 0) or MSV-consistent
(0, 1):

1

2
(c̄2s + b̄2π +Rb̄c̄s) <

1

2
b̄2 + κ⇒ κ >

1

2

(1− b̄2)

(1 + ρb̄)
(1− ρb̄+ b̄). (A67)

B New Keynesian Model Derivations
Households maximize the infinite discounted sum of utility over consumption Ct and
labour decisions Nt:

∞∑
t=0

βtU(Ct, Ht, Nt), (B68)

where Ht = hCt−1 is external habit and 0 < β < 1 is the discount factor. The
optimization results in the familiar conditions:

−Un,t

Uc,t

=
Wt

Pt

, (B69)

Qt = Et

[
Uc,t+1

Uc,t

Pt

Pt+1

]
. (B70)

The first equation equalizes agent’s utility of consumption and dis-utility of labour.
The second is an Euler equation determining agents’ inter-temporal consumption deci-
sions. We assume utility separable in consumption and labour, with σ - relative utility
of risk aversion, ϕ - Frisch elasticity of labour supply, and gt a preference shock:

Ut = egt

(
(Ct −Ht)

1−σ

1− σ
− N1+ϕ

t

1 + ϕ

)
(B71)
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so that
Uc,t = egt(Ct −Ht)

−σ. (B72)
Plugging Yt = Ct into the linearized Euler equation, we obtain the investment-savings
curve (23).

For the rest of the model, we utilize a textbook model from Galí (2015). The firms
use labour to produce differentiated final goods and face nominal rigidities á la Calvo
with the probability of optimizing a price θ. The differentiated good is aggregated
using a consumption index: Ct =

[∫ 1

0
Ct(i)

ϵ−1
ϵ

] ϵ
ϵ−1 . Firms’ pricing decisions result in

a new Keynesian Phillips curve in (24) with ω ≡ (1− θ)(1− βθ)(σ + ϕ)/θ.
It is convenient to rewrite the system of equation (26)-(27) as:[

πt
yt

]
= AEt

[
πt+1

yt+1

]
+ C

[
πt−1

yt−1

]
+B

[
ut
gt

]
, (B73)

with A =

[
β − ω(1−h)(ϕπ−1)

(1+h)σ
ω

1+h

− 1−h
(1+h)σ

(ϕπ − 1) 1
1+h

]
, C =

[
0 ωh

(1+h)

0 h
(1+h)

]
, B =

[
1 ω(1−h)

(1+h)σ

0 1−h
(1+h)σ

]
.

C Expert Forecast of the Output Gap
We first derive output gap expectations, given the inflation PLM, which can be poten-
tially inconsistent with REE MSV solution. Suppose inflation PLM has the following
form

πt = ψππt−1 + ψyyt−1, (C74)
Etπt+1 = ψππt + ψyyt = ψ2

ππt−1 + ψπψyyt−1 + ψyyt. (C75)

Plugging this PLM into (26) - (27) and denoting bππ =
(
β − ω(1−h)(ϕπ−1)

(1+h)σ

)
and byπ =

− 1−h
(1+h)σ

(ϕπ − 1), we get:

yt =
1

1− byπψy

(
byπψ

2
ππt−1 + (byπψπψy +

h

1 + h
)yt−1 +

1

1 + h
Etyt+1 +

1− h

(1 + h)σ
gt

)
.

(C76)
Similarly, for inflation:

πt =
bππψ

2
π

1− byπψy

πt−1 +
ω + βψy

(1− byπψy)(1 + h)
Etyt+1

+

(
bππψπψy

1− byπψy

+
h(ω + ψyβ)

(1 + h)(1− byπψy)

)
yt−1 +

(1− h)(ω + ψyβ)

(1 + h)σ(1− byπψy)
gt + ut, (C77)
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where we have used bππ − ωbyπ = β.
We further assume that the agents receive ”expert advice” which coincides with

the MSV solution for output given the current ALM.15. Thus the expert forecasting
model is:

yt = γyyt−1 + γππt−1 + γggt + γuut, (C78)
yt+1 = γyyt + γππt = γ2yyt−1 + γπγyπt−1 + γππt + γyγggt + γyγuut. (C79)

Now, because these experts know the system in (C76)-(C77), they plug the expression
for inflation and rearrange using bππ − ωbyπ = β:

Etyt+1((1− byπψy)(1 + h)− γπ(ω + βψy))

= (γπψyψπb
π
π(1 + h) + γπh(ω + ψyβ) + (h+ 1)γ2y (1− byπψy))yt−1

+ γπ(1 + h)(γy(1− byπψy) + bππψ
2
π)πt−1+

(γyγg(1− byπψy)(1 + h) +
γπ(1− h)

σ
(βψy + ω))gt

+ (1 + h)(1− byπψy)(γyγu + γπ)ut. (C80)

Now, we redefine the coefficients such that

Etyt+1 = γ̃yyt−1 + γ̃ππt−1 + γ̃uut + γ̃ggt, (C81)

with

γ̃y =
(γπψyψπb

π
π(1 + h) + γπh(ω + ψyβ) + (h+ 1)γ2y (1− byπψy))

((1− byπψy)(1 + h)− γπ(ω + βψy))
, (C82)

γ̃π =
γπ(1 + h)(γy(1− byπψy) + bππψ

2
π)

((1− byπψy)(1 + h)− γπ(ω + βψy))
, (C83)

γ̃u =
(1 + h)(1− byπψy)(γyγu + γπ)

((1− byπψy)(1 + h)− γπ(ω + βψy))
, (C84)

γ̃g =
(γyγg(1− byπψy)(1 + h) + γπ(1−h)

σ
(βψy + ω))

((1− byπψy)(1 + h)− γπ(ω + βψy))
, (C85)

which will be the expert advice.
To calculate the coefficients, we plug the (C82)-(C85) into (C76). The coefficients

of the experts’ rule will be the solution to the following equations and are functions
15That is, taking into account agents’ PLM for inflation.
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of agents’ PLM.

γπ =
byπψ

2
π

(1− byπψy)
+

γπ(γy(1− byπψy) + bππψ
2
π)

(1− byπψy)((1− byπψy)(1 + h)− γπ(ω + βψy))
, (C86)

γy =
byπψπψy(1 + h) + h

(1− byπψy)(1 + h)

+
1

(1− byπψy)(1 + h)

(γπψyψπb
π
π(1 + h) + γπh(ω + ψyβ) + (h+ 1)γ2y (1− byπψy))

((1− byπψy)(1 + h)− γπ(ω + βψy))
,

(C87)

γg =
h− 1

σ ((h+ 1) (byπψy − 1) + γπ (βψy + ω) + γy)
, (C88)

γu =
γπ

(h+ 1) (1− byπψy)− γπ (βψy + ω)− γy
. (C89)

D Rational Expectations MSV
Under REE MSV, the perceived law of motion for the system in (B73) is:[

πt
yt

]
= Ω+ C̄

[
πt−1

yt−1

]
+ Γ

[
ut
gt

]
, (D90)

Et

[
πt+1

yt+1

]
= Ω+ C̄

[
πt
yt

]
= Ω+ C̄Ω + C̄2

[
πt−1

yt−1

]
+ C̄Γ

[
ut
gt

]
. (D91)

Plugging the PLM into (B73):[
πt
yt

]
= A(I + C̄)Ω +

[
A
(
C̄
)2

+ C
] [πt−1

yt−1

]
+
[
AC̄Γ + B

] [ut
gt

]
. (D92)

Using the method of undetermined coefficients, we can solve for the PLM coefficients
from:

C̄ = AC̄2 + C = 0, (D93)
Γ = B + AC̄Γ, (D94)
Ω = A(I + C̄)Ω. (D95)

Generically, the eigenvalues of A(I + C̄) are not equal to unity, and therefore the
solution for the constant vector Ω is a zero vector.
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The MSV coefficients are the solution for the following system

cyπ =
ωh

1 + h
+ (β − ω(1− h)(ϕπ − 1)

(1 + h)σ
)cyπc

y
y +

ω

1 + h
cyy

2, (D96)

cyy =
h

1 + h
− (1− h)(ϕπ − 1)

(1 + h)σ
cyπc

y
y +

1

1 + h
cyy

2. (D97)

While the first equation is quadratic, the second is cubic, with the determinant chang-
ing signs depending on the central bank’s reaction function. Thus we have 3 possible
solutions. Following McCallum (1983), we choose the solution for cyπ which goes to
zero when ω = 0 and we impose the condition 0 < cyy < 1.

Multiplying the second equation by ω and subtracting from the first, we get an
expression for cyπ:

cyπ =
ωcyy

1− βcyy
. (D98)

For 0 < cyy < 1 it follows form (D98), that cyπ > 0.
It is instructive to consider cyy as a function of cyπ solving the second equation. The

two solutions will be:

cyy = 1+h
2

(
1 + (1−h)(ϕπ−1)

(1+h)σ
cyπ +

√
(1 + (1−h)(ϕπ−1)

(1+h)σ
cyπ)2 − 4h

(1+h)2

)
,

cyy = 1+h
2

(
1 + (1−h)(ϕπ−1)

(1+h)σ
cyπ −

√
(1 + (1−h)(ϕπ−1)

(1+h)σ
cyπ)2 − 4h

(1+h)2

)
.

Clearly, for ϕπ > 1, the first solution is larger than unity. The second solution for
ϕπ > 1 is larger than zero and smaller than 1+h

2
:

0 < 1+h
2

(
1 + (1−h)(ϕπ−1)

(1+h)σ
cyπ −

√
(1 + (1−h)(ϕπ−1)

(1+h)σ
cyπ)2 − 4h

(1+h)2

)
< 1+h

2
,

⇒ (1−h)(ϕπ−1)
(1+h)σ

cyπ −
√

(1 + (1−h)(ϕπ−1)
(1+h)σ

cyπ)2 − 4h
(1+h)2

< 0. (D99)

We define the solution as C̄ =

[
0 cyπ
0 cyy

]
, Γ =

[
1 γyπ
0 γyy

]
, Ω =

[
0
0

]
.

D.1 E-Stability
To study E-Stability for our model, we write T-mapping as a system of equations:

cyπ − >
ωh

1 + h
+ (β − ω(1− h)(ϕπ − 1)

(1 + h)σ
)cyπc

y
y +

ω

1 + h
cyy

2, (D100)

cyy − >
h

1 + h
− (1− h)(ϕπ − 1)

(1 + h)σ
cyπc

y
y +

1

1 + h
cyy

2, (D101)
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with the Jacobian[
(β − ω(1−h)(ϕπ−1)

(1+h)σ
)cyy − 1 (β − ω(1−h)(ϕπ−1)

(1+h)σ
)cyπ +

2ω
1+h

cyy
− (1−h)(ϕπ−1)

(1+h)σ
cyy − (1−h)(ϕπ−1)

(1+h)σ
cyπ − 1 + 2

1+h
cyy

]
=

[
J11 J12
J21 J22

]
.(D102)

As long as the Taylor principle ϕπ > 1 is satisfied, J11 and J21 are negative. For
reasonable ϕπ, J12 > 0.16

For J22 < 0, the following conditions must hold: cyy ≤ (1 + h)/2 and ϕπ > 1. As
shown in D99 for ϕπ > 1, cyy < (1 + h)/2.

The discriminant (product of eigenvalues) of (D102) is then −J12J21 + J11J22
and the trace (sum of eigenvalues) is J11 + J22. The discriminant is positive and the
trace is negative.

Thus, the sufficient condition for both eigenvalues to be negative is the Taylor
principle ϕπ > 1.

To study strong E-Stability, we allow for arbitrary matrix C̄ with the following
coefficients:

C̄ =

[
v cyπ
w cyy

]
. (D103)

The part of T-mapping responsible for C̄ is modified:[
bππ

ω
1+h

byπ
1

1+h

] [
v cyπ
w cyy

] [
v cyπ
w cyπ

]
+

[
0 ωh

1+h

0 h
1+h

]
=[

bππ(v
2 + wcyπ) +

ωw
1+h

(v + cyy) bππ(v + cyy)c
y
π +

ω
1+h

(wcyπ + (cyy)
2) + ωh

1+h

byπ(v
2 + wcyπ) +

w
1+h

(v + cyy) byπ(v + cyy)c
y
π +

h
1+h

(wcyπ + (cyy)
2) + h

1+h

]
, (D104)

where the elements of matrices A and C are given in (B73).
The part of the Jacobian responsible for these coefficients becomes:

J =


2bππv̄ +

ω
1+h

w̄ − 1 bππ c̄
y
π +

ω
1+h

(v̄ + c̄yy) bππw̄
ω

1+h
w̄

2byπv̄ +
1

1+h
w̄ byπ c̄

y
π +

1
1+h

(v̄ + c̄yy)− 1 byπw̄
1

1+h
w̄

bππ c̄
y
π

ω
1+h

c̄yπ bππ(v̄ + c̄yy) +
ω

1+h
w̄ − 1 bππ c̄

y
π + 2 ω

1+h
c̄yy

byπ c̄
y
π

1
1+h

c̄yπ byπ c̄
y
y byπ c̄

y
π + 2 1

1+h
c̄yy − 1

 .
The condition for strong E-Stability is

Eig(J) < 0. (D105)
16To make J12 negative, the reaction of monetary policy to inflation should be stronger than

empirically plausible.
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With v̄ = w̄ = 0, the Jacobian becomes:

J =


−1 bππ c̄

y
π +

ω
1+h

c̄yy 0 0

0 byπ c̄
y
π +

1
1+h

c̄yy − 1 0 0

bππ c̄
y
π

ω
1+h

c̄yπ bππ c̄
y
y − 1 bππ c̄

y
π + 2 ω

1+h
c̄yy

byπ c̄
y
π

1
1+h

c̄yπ byπ c̄
y
y byπ c̄

y
π + 2 1

1+h
c̄yy − 1

 , (D106)

where the lower 2× 2 block is the same as (D102) for weak E-stability. In addition to
two eigenvalues identical to those of (D102), this matrix has two more eigenvalues: −1
and byπ c̄yπ+ 1

1+h
c̄yy−1. For the second extra eigenvalue to be negative, byπ c̄yπ+ 1

1+h
c̄yy−1 =

J22− 1 < J22 must hold.
Thus, the sufficient condition for strong E-stability is satisfied as long as the suf-

ficient condition for weak E-stability is satisfied.

E Restricted Perception Equilibrium
E.1 Definition of RPE and ALM coefficients
We focus on the RPE Mπ and derive the conditions for its existence below.

The agents’ inflation expectations with the Mπ forecasting rule (33) are formulated
as follows:

πt+1 = απ
π + βπ

ππt = απ
π(1 + βπ

π ) + (βπ
π )

2πt−1. (E107)

When we plug the above Mπ into the model in (27) using an expert forecast for
output (C81), we get the inflation ALM:

πt = bππα
π
π(1 + βπ

π ) +

(
bππ(β

π
π )

2 +
γ̃πω

1 + h

)
πt−1 +

ω(h+ γ̃y)

1 + h
yt−1

+
ω((1− h) + σγ̃g)

(1 + h)σ
gt + (

ωγ̃u
1 + h

+ 1)ut =

= āπ + b̄ππt−1 + c̄πyt−1 + η̄gπgt + η̄uπut, (E108)

with bπ = β − ω(ϕπ−1)(1−h)
σ(1+h)

, and x̄π being the coefficients in inflation ALM.
Similarly, the ALM for the output gap is:

yt = byπ(α
π
π(1 + βπ

π )) +

(
byπ(β

π
π )

2 +
γ̃π

1 + h

)
πt−1 +

h+ γ̃y
1 + h

yt−1 +
1− h+ σγ̃g
(1 + h)σ

gt+

γ̃u
1 + h

ut = āy + b̄yπt−1 + c̄yyt−1 + η̄gygt + η̄uyut, (E109)
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with byπ = − 1−h
(1+h)σ

(ϕπ − 1), and x̄y are output gap ALM coefficients.
When we focus on a converged RPE Mπ, we can plug ψy = 0 and ψπ = βπ

π into
expert forecast coefficients. The solution for γ and γ̃ is the solution to the following
equations:

γπ = byπ(β
π
π )

2 +
γπ(γy + bππ(β

π
π )

2)

1 + h− γπω
, (E110)

γy =
h+ γ2y

1 + h− γπω
, (E111)

γg =
1− h

σ (1 + h− γπω − γy)
, (E112)

γu =
γπ

((1 + h)− γπω)− γy
; (E113)

and

γ̃y =
γπhω + (1 + h)γ2y

1 + h− γπω
, (E114)

γ̃π =
γπ(1 + h)(γy + bππ(β

π
π )

2)

1 + h− γπω
, (E115)

γ̃u =
(1 + h)γπ

((1 + h)− γπω − γy)
, (E116)

γ̃g = (1− h)
γy + ωγπ

(σ (1 + h− γπω − γy))
. (E117)

It is instructive to examine the coefficients. An economically meaningful coefficient
on lagged output is 0 < γy < 1. It follows from (E111) that ωγπ ≤ 1 + h− 2

√
h and

γπ < (1− γ2y)/ω; and 0 < γ̃y < 1.
Plugging (E110):(E117) into (E108):(E109), we obtain ALM coefficients for output

and inflation.

c̄π = ω
(h+ γ̃y)

1 + h
= ωγy, (E118)

b̄π = bππ(β
π
π )

2 +
γ̃πω

1 + h
= ωγπ + β(βπ

π )
2, (E119)

c̄y =
h+ γ̃y
1 + h

= γy, (E120)

b̄y = byπ(β
π
π )

2 +
γ̃π

1 + h
= γπ. (E121)
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Now, the ALM coefficients for shock processes:

η̄gπ =
(1− h)ω

(1 + h− γπω − γy)σ
, (E122)

η̄uπ =
(1 + h)− γy

((1 + h)− γπω − γy)
, (E123)

η̄gy =
1− h

(1 + h− γπω − γy)σ
, (E124)

η̄uy =
γπ

1 + h− γπω − γy
. (E125)

E.2 RPE Beliefs
We treat the agents as econometricians, who learn the coefficients from running re-
gressions of the corresponding PLMs. Denoting the covariance between inflation and
output Cov(π, y) ≡ σπy, and the variances of output and inflation as σ2

y and σ2
π re-

spectively, we can derive the coefficients for the Mπ forecasting rule:

βπ
π =

Cov(πt, πt−1)

V ar (πt−1)
=
Cov(b̄ππt−1 + c̄πyt−1, πt−1)

V ar (πt−1)
=

= b̄π + c̄π
σπy
σ2
π

, (E126)

απ
π = (1− βπ

π )π̄. (E127)

For the My rule, the regression coefficients are computed with the inflation ALM given
by Mπ in (E108):

βy
y =

Cov (πt, yt−1)

V ar (yt−1)
=
Cov

(
b̄ππt−1 + c̄πyt−1, yt−1

)
V ar (yt−1)

=

= b̄π
σπy
σ2
y

+ c̄π, (E128)

αy
y = (1− βy

y )π̄. (E129)
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E.2.1 Proof of Proposition 5

Existence of RPE.

For the Mπ to exist, there must exist a βπ
π , which is a solution for (E126). Audzei

and Slobodyan (2022) has shown that there exists a unique solution for (E126), as
long as the following matrix D is stable:

D =

[
b̄π c̄π
b̄y c̄y

]
=

[
ωγπ + β(βπ

π )
2 ωγy

γπ γy

]
. (E130)

Determinant and trace are given by the following expressions:

det(D) = −γπωγy + (ωγπ + β(βπ
π )

2)γy = (βπ
π )

2γyβ (E131)
tr(D) = ωγπ + β(βπ

π )
2 + γy. (E132)

For the matrix to be stable, we use the following conditions (see Audzei and Slo-
bodyan 2022, Appendix B, for details):

det(D) < 1, (E133)
det(D) > tr(D)− 1, (E134)
det(D) > −tr(D)− 1. (E135)

The condition in (E133) is satisfied as (βπ
π )

2γyβ < 1.
To prove that the (E134) is satisfied, we combine (E131) and (E132) and rewrite

them as:
ωγπ + β(βπ

π )
2 + γy < (βπ

π )
2γyβ + 1. (E136)

For γπ ≤ 0, given that βπ
π < 1, β < 1, and γy < 1, it is straightforward to show

that β(βπ
π )

2 + γy < 1 + β(βπ
π )

2γy.
Values of γπ > 0 are not economically meaningful: further, during our simulations

there was no stable solution with γπ > 0 for our parametrization. In Figure 8, we plot
the solutions for γπ as a function of monetary policy response to inflation and relative
volatility of mark-up shocks to show that the solution for γπ is always below zero.

The condition (E135) is satisfied as long as (βπ
π )

2γyβ > 0 and γπ < 0.
Thus, the matrix D is stable and the unique RPE solution exists.

Mapping and Variance-Covariance Matrix.

To calculate observed average inflation, rewrite Mπ ALM as[
I −

(
b̄π c̄π
b̄y c̄y

)][
π̄
ȳ

]
=

[
āπ
āy

]
, (E137)
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Figure 8: γπ for different values of r – relative variance of inflationary shocks. The figure is drawn
for r in the range [0.1:0.1:0.5] left axis and [0.6:0.1:1] right axis.

⇒
[
π̄
ȳ

]
=

[
āy c̄π+āπ(1−c̄y)

1−(b̄π+c̄y)+(b̄π c̄y−b̄y c̄π)
āy−āy b̄π+āπ b̄y

1−(b̄π+c̄y)+(b̄π c̄y−b̄y c̄π)

]
. (E138)

To calculate the variances-covariance matrix of the ALM, re-write:

Σ =

[
σ2
π σπy

σπy σ2
y

]
=

[
b̄π c̄π
b̄y c̄y

] [
σ2
π σπy

σπy σ2
y

] [
b̄π b̄y
c̄π c̄y

]
+

+

[
η̄uπ η̄gπ
η̄uy η̄gy

] [
σ2
u 0
0 σ2

g

] [
η̄uπ η̄uy
η̄gπ η̄gy

]
=,

=

[
(b̄π)

2σ2
π + 2b̄π c̄πσπy + (c̄π)

2σ2
y b̄π b̄yσ

2
π + (c̄π b̄y + b̄π c̄y)σπy + c̄π c̄yσ

2
y

b̄π b̄yσ
2
π + (c̄π b̄y + b̄π c̄y)σπy + c̄π c̄yσ

2
y (c̄y)

2σ2
y + (b̄y)

2σ2
π + 2b̄y c̄yσπy

]
+

+

[
(η̄uπ)

2σ2
u + (η̄gπ)

2σ2
g η̄gπη̄

g
yσ

2
g + η̄uπ η̄

u
yσ

2
u

η̄gπη̄
g
yσ

2
g + η̄uπ η̄

u
yσ

2
u (η̄gy)

2σ2
g + (η̄uy )

2σ2
u

]
.

(E139)

The elements of the variance-covariance matrix are the solution for the following equa-
tions:

σ2
π = (b̄π)

2σ2
π + 2b̄π c̄πσπy + (c̄π)

2σ2
y + (η̄uπ)

2σ2
u + (η̄gπ)

2σ2
g , (E140)

σπy = b̄π b̄yσ
2
π + (c̄π b̄y + b̄π c̄y)σπy + c̄π c̄yσ

2
y + η̄gπη̄

g
yσ

2
g + η̄uπ η̄

u
yσ

2
u, (E141)

σ2
y = (c̄y)

2σ2
y + (b̄y)

2σ2
π + 2b̄y c̄yσπy + (η̄gy)

2σ2
g + (η̄uy )

2σ2
u. (E142)
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Figure 9: E-Stability. Note: The figure is drawn for r in the range [0.1 : 0.1 : 1]. The darker colours
correspond to smaller r - lower relative standard deviations of inflationary shocks.

E-Stability From (E126) and (E127), the T-map for the RPE Mπ is:

βπ
π → b̄π + c̄π

σπy

σ2
π
, (E143)

απ
π → (1− βπ

π )π̄. (E144)

For Mπ to be E-stable, eigenvalues of the following matrix should be negative:

Eig

(1− βπ
π )

∂(π̄)
∂απ

π
− 1 ∂((1−βπ

π )π̄)
∂βπ

π

0
∂

[
b̄π+c̄π

σπy

σ2
π

]
∂βπ

π
− 1

 =

[
(1− βπ

π )
∂(π̄)
∂απ

π
− 1

∂

[
b̄π+c̄π

σπy

σ2
π

]
∂βπ

π
− 1

]
< 0. (E145)

In the text we have assumed that π̄ = 0; in this case the first eigenvalue is negative.
We plot the second eigenvalue for the parameter range r = σu/σg ∈ (0 : 1] for ϕπ > 1.
As both eigenvalues are negative for the considered parameter range, we conclude that
Mπ is E-Stable.

Better forecasting performance.
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For better forecasting performance of Mπ relative to My we consider the mean
squared forecast errors criterion, given that agents have previously selected Mπ and
test alternative models given Mπ ALM in (E108). It is convenient to denote the
composite of shocks as µt ≡ η̄gπgt+ η̄

u
πut. We start with the mean forecast error of Mπ.

The forecast error of Mπ is the difference between the forecast and actual inflation:

: eπt = (βπ
π − b̄π)πt−1 − c̄πyt−1 + µt

= (b̄π + c̄π
σπy
σ2
π

− b̄π)πt−1 − c̄πyt−1 − µt

= c̄π
σπy
σ2
π

πt−1 − c̄πyt−1 + µt, (E146)

: MSFEπ = Et(e
π
t )

2 = Et[c̄π
σπy
σ2
π

(πt−1)− c̄π(yt−1) + µt]
2

: = Et[c̄
2
π(
σπy
σ2
π

)2(πt−1)
2 − 2c̄πRc̄π(πt−1)(yt−1) + c̄2π(yt−1)

2 + µ2]

: = c̄2πσ
2
y(1−

σ2
πy

σ2
πσ

2
y

) + σ2
µ. (E147)

Similarly, the forecast error of My is:

: eyt =
(
cyy − c̄π

)
yt−1 − b̄ππt−1 + µt =

: = b̄πσπyyt−1 − b̄ππt−1 + µt =

: MSFEy = E[b̄π[
σπy
σ2
y

(yt−1)− (πt−1)]
2 + µ2] (E148)

: = b̄2πσ
2
π[1−

σ2
πy

σ2
yσ

2
π

] + σ2
µ. (E149)

We are looking for the conditions under which MSFEπ < MSFEy. Then, the crite-
rion is simply:

c̄2πσ
2
y < b̄2πσ

2
π. (E150)

F Attention Weights Derivation for a New Keyne-
sian Model

The selection of attention weights mimics the selection from the Fisher equation,
except for the set of variables. Thus, the minimization problem is modified:
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V = E
[(
c̄πyt−1 + b̄ππt−1 − γmyyt−1 − βmππt−1

)2]
+ κ (|my|+ |mπ|) ,(F151)

where the optimal attention vector mπ,my results in nine possible models with a func-
tional form identical to the Fisher equation model. However, because both variables π
and y are now endogenous, it will be impossible to analytically evaluate the boundaries
between different forecasting rules being optimal.

G Theoretical Foundations of Sliding Dynamics
The discussion in this section follows Jeffrey (2019), Ch. 2, and the concepts from
Filippov (1988).

Suppose there is a vector ODE with a discontinuous flow,
·
x = f(x, λ), (G152)

so that at the boundary defined by D = {x : σ (x) = 0} there is a discontinuity of the
function f. The surface D is called discontinuity surface. The switching multiplier λ
could be selected so that λ = sign (σ) . Denote

f+(x) : = f(x; +1), σ (x) > 0,

f−(x) : = f(x;−1), σ (x) < 0.

Then the time derivative of the flow above (below) the surface can be written as

d

dt
=
dx

dt

d

dx
= f± d

dx
.

The normal vector to D is defined as dσ
dx
. Then, f · dσ

dx
= dx

dt
dσ
dx

= dσ
dt

=
·
σ, so the

projection of the vector f onto the normal vector to D gives the time derivative of σ.
The Lemma 2.1 of Jeffrey (2019) then states that if f(x, λ) is continuous in λ and

the components of f±(x) normal to the boundary are in opposition to each other, there
exists an intermediate value of λ, denoted λ$, −1 ≤ λ$ ≤ 1, such that f

(
x;λ$

)
· dσ
dx

= 0.

One can then further define solutions of the ODE (G152) that exist on the discontinuity
surface, the sliding flow, so that

·
x = f $ (x) = f

(
x;λ$

)
for σ (x) = 0,

f
(
x;λ$

)
· dσ
dx

= 0.
(G153)
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This flow’s projection onto the normal to the boundary equals zero; thus σ (x) = 0 is
preserved over time. However, there can be a non-zero projection to the subspace that
is tangent to the boundary D at the point where it is reached by the original flow.
This projection tangential to D gives rise to the sliding dynamics along the boundary.

If the components of f±(x) normal to the boundary are pointing in the same
direction, then a simple crossing of the boundary will happen, and no sliding along
the boundary D will be observed. We check the opposing condition by computing
the scalar product of the flows f+ and f−, with a negative value signifying oppositely
directed projections and thus the presence of sliding.

The easiest way to generate a function that is smooth in λ is to postulate that

·
x = f(x, λ) =

1

2
(1 + λ) f+(x) +

1

2
(1− λ) f−(x),

λ = +1, σ (x) > 0,

λ = −1, σ (x) < 0.

(G154)

Then, one can define λs so that the projection of 1
2
(1 + λs) f+(x)+ 1

2
(1− λs) f−(x) on

the normal to the boundary D is zero. The resulting flow then produces trajectories
that slide along the boundary.

The construction above suggests the following simple algorithm for evaluating the
trajectories of the approximating ODE that could involve sliding dynamics.

1. Trace the trajectory of the ODE solution until time T, stopping at min(τ, T ),
where τ is the first time the boundary V(0,0)=V(0,1) is reached.

2. If τ < T , numerically compute the normal to the boundary V(0,0)=V(0,1) at
the point at which it is achieved.

3. Check whether the scalar product of the projections of the flow f±(x) onto the
normal to the boundary is positive or negative.

4. If the product is positive, this is a simple crossing. Continue with Step 1, stop-
ping at min(τ ∗, T ), where τ ∗ is the next time the boundary V(0,0)=V(0,1) is
reached. Otherwise, switch to simulating the sliding ODE constructed as in
(G153-G154) above, also until min(τ ∗, T ).

5. If τ ∗ < T , repeat Step 3, otherwise end.

The algorithm described above could be thought of as a simplified version of Pi-
iroinen and Kuznetsov (2008).
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Abstrakt 

Tento článek se zabývá konvergenčními vlastnostmi, včetně lokální a globální silné E-stability, rovnováhy 

racionálních očekávání (REE) při nehladké dynamice učení a úlohou měnové politiky při tvorbě očekávání 

agentů. V novokeynesiánském modelu uvažujeme dva typy informačních omezení, které působí společně 

– řídká racionalita při adaptivním učení. Studujeme dynamiku učícího se algoritmu pro kladné náklady 

pozornosti, inicializovaného z rovnováhy s chybně specifikovanými přesvědčeními. Zjišťujeme, že pro 

jakákoli počáteční přesvědčení prognostické pravidlo agentů konverguje buď k REE s minimální stavovou 

proměnnou (MSV), nebo pro velké náklady pozornosti k pravidlu se zakotvenými inflačními očekáváními. 

Při přísnější měnové politice je konvergence rychlejší. Chybně specifikované prognostické pravidlo, které 

používá proměnnou, jež se v REE MSV nevyskytuje, v tomto učebním algoritmu neobstojí. Ke studiu 

dynamiky našeho algoritmu učení používáme teorii nehladkých diferenciálních rovnic. 
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