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Alena Skolkova†

Abstract

Model averaging is an increasingly popular alternative to model selection. Ridge regres-
sion serves a similar purpose as model averaging, i.e. the minimization of mean squared
error through shrinkage, though in different ways. In this paper, we propose the ridge-
regularized modifications of Mallows model averaging (Hansen, 2007, Econometrica, 75) and
heteroskedasticity-robust Mallows model averaging (Liu & Okui, 2013, The Econometrics
Journal, 16) to leverage the capabilities of averaging and ridge regularization simultaneously.
Via a simulation study, we examine the finite-sample improvements obtained by replacing
least-squares with a ridge regression. Ridge-based model averaging is especially useful when
one deals with sets of moderately to highly correlated predictors because the underlying ridge
regression accommodates correlated predictors without blowing up estimation variance. A toy
theoretical example shows that the relative reduction of mean squared error is increasing with
the strength of the correlation. We also demonstrate the superiority of the ridge-regularized
modifications via empirical examples focused on wages and economic growth.
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1 Introduction

Model uncertainty is a challenge that is frequently encountered in applied econometrics. The
two most common approaches to addressing model uncertainty are model selection and model
averaging. While model selection has been the predominant method for decades, the sensitivity
of results to the choice of model selection criteria has contributed to the increasing popularity of
model averaging techniques.1The central question of model averaging is how to assign weights to
candidate models optimally. Many different solutions coexist in the literature.2

Although model averaging was initially developed within the Bayesian paradigm, the literature on
frequentist model averaging (FMA) is currently growing rapidly. Within FMA, early contributions
were made by Buckland et al. (1997) who suggested that the weight for each model be a function
of its value of the Akaike information criterion (hereafter AIC; Akaike, 1970) or the Schwarz-Bayes
information criteria (BIC; Schwarz, 1978). Yang (2001) introduced a way to combine candidate
models with weights found via sample splitting, thus making weighting schemes more flexible.
Hansen (2007, 2008) adopted the Mallows criterion (Mallows, 1973) to model averaging under error
homoskedasticity (Mallows model averaging, or MMA), thereby providing a way to find optimal
weights without efficiency losses caused by sample splitting. Later, Liu & Okui (2013) introduced
a heteroskedastiticty-robust Mallows criterion for model averaging (hereafter HR-MMA).

In this paper, we propose ridge-regularized versions of the MMA and HR-MMA estimators that
provide better finite-sample prediction performance in terms of the mean squared error (MSE):
the ridge model averaging (RMA) estimator and the heteroskedasticity-robust ridge model aver-
aging (HR-RMA) estimator, respectively. The ridge regression, introduced by Hoerl and Kennard
(1970), is a generalization of the OLS regression that aims to reduce the MSE by penalizing large
coefficients. A penalization parameter governs the amount of shrinkage (and thus the coefficient
biasness) that, in general, makes it possible to trade off a small bias for a significant reduction in
variance of estimates, thereby lowering the mean squared error. The gain from ridge regularization
tends to be larger in the case of high correlation among predictors.

Building on the idea of least squares averaging by Hansen (2007), we replace ordinary least-
squares estimation with a ridge regression to minimize the consequences of correlation among
predictors. Our proposed estimators differ from the MA-Ridge estimator by Zhao et al (2020),
which averages across varying regularization parameter values for a single model specification (i.e.
across estimators instead of models), and obtains the optimal weights through minimization of the
jackknife criterion. Another possible benchmark for our estimator is the jackknife model averaging

1See also Breiman (1996) where subset selection is shown to be unstable, thus resulting in poor prediction
accuracy.

2Moral-Benito (2015) and Steel (2017) provide comprehensive reviews of model averaging in economics.
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(JMA) estimator by Hansen and Racine (2012), which is a regularization-free baseline of the MA-
Ridge estimator by Zhao et al (2020). However, the jackknife model averaging by Hansen and
Racine (2012) is based on OLS regressions, and thus is not suited for the cases when the number
of predictors approaches or exceeds the sample size.

In a Monte Carlo study we compare the finite sample performance of the RMA and HR-RMA
estimators with that of the MMA and HR-MMA estimators, as well as several other estimators
including weighted BIC (WBIC), Bates-Granger (by Bates and Granger, 1969), and JMA. Our
simulation design is close to that adopted in Hansen (2007, 2008), while we also examine sep-
arately the cases of medium and high correlation among predictors. Although the ridge model
averaging estimator does not uniformly MSE-dominate all alternative estimators for all considered
specifications, it typically has the best performance over considerable intervals of population R2.

The reduction in MSE achieved by the RMA can be viewed through the lens of optimal weights.
Basically, the set of alternative models includes those with parsimonious specifications (with few
regressors), and sophisticated models (with many regressors), as well as moderately parametrized
models. The optimal weights found via RMA tend to be higher for more sophisticated models,
while the weights obtained via different procedures are predominantly distributed between low and
moderately parametrized specifications. This is because the ridge model averaging estimator can
use more information from highly parametrized models without inflating the estimation variance,
whereas this property is not shared by estimators based on simple least squares estimators.

We demonstrate how the proposed estimator works in two empirical examples. We employ the
cross-section earning data used by Hansen and Racine (2012) and the Barro and Lee (1994) data
on cross-country determinants of long-term economic growth. In both examples, there are many
possible predictors to be used relative to the sample size. In both examples, ridge-regularized
modifications of the MMA and HR-MMA estimators tend to perform better than the baselines,
especially in small samples.

This paper proceeds as follows: Section 2 introduces a general model averaging estimator, and a
ridge-regularized model averaging estimator. Section 3 presents a two-model example that demon-
strates the reduction in MSE achieved via the use of ridge regularization. Section 4 shows the
results of a Monte Carlo study that examines the relative performance of several competing esti-
mators in finite samples. Section 5 presents empirical examples. Section 6 concludes.
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2 Model Averaging

The setup and notation are taken from Hansen (2007). Consider {(yi, xi)}, i = 1, ..., n. Let
µi = µ (xi) = E (yi |xi ) be the conditional mean so that

yi = µi + ei, (1)

where E (ei |xi ) = 0. For further use of matrix notation define y = (y1, ..., yn)′, µ = (µ1, ..., µn)′,
e = (e1, ..., en)′. The conditional variance σ2 (xi) = E (e2i |xi ) may depend on xi.

Consider a set of competitive linear estimators
{
µ̂1, ..., µ̂M

}
for the conditional mean µ.3 Every

estimator from this set can be written as µ̂m = Pmy, where operator Pm does not depend on y.
Then the model selection problem is about picking a single estimator from the set

{
µ̂1, ..., µ̂M

}
.

When the selection is guided by the mean-squared error (MSE) criterion, the traditional bias-
variance trade-off arises, and thus in principle the model of any complexity may attain a balance.

Compared to model selection, model averaging involves averaging across
{
µ̂1, ..., µ̂M

}
to attain

further reduction of the MSE. Consider w =
(
w1, ..., wM

)′, a vector of non-negative weights such
that

∑M
m=1w

m = 1. Then for any admissible w, the averaging estimator for µ takes the form

µ̂ (w) ≡
M∑
m=1

wmµ̂m = µ̂w = P (w)y, (2)

where µ̂ =
(
µ̂1, ..., µ̂M

)
is the n×M matrix of first-step estimates, and

P (w) ≡
M∑
m=1

wmPm. (3)

For least-squares estimators, Pm = PLS
m ≡ Xm (Xm′Xm)−1Xm′, where xmi is the i’th row of Xm,

xmi is 1× km for m = 1, 2, ...,M . In the case of ridge estimators,

PR
m ≡ Xm (Xm′Xm + λmIkm)

−1
Xm′

for a tuning parameter λm ∈ (0,∞). A particular model corresponds to a choice of predictors xmi
together with the optimal value of λm.

The averaging residual is
3The number of competitive estimators M may grow with n but we omit the subscript from Mn for the sake of

simpler notation.
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ê (w) = y − µ̂ (w) =
M∑
m=1

wmêm = êw,

where êm = y − µ̂m and ê =
(
ê1, ..., êM

)
. The Mallows model averaging (MMA) criterion of

Hansen (2007) for weight selection is a penalized sum of squared residuals. The weighted average
of least-squares residuals is complemented by a penalty term that increases in both error variance,
and average model complexity that is conveyed by the trace of the matrix P (w):

Cn (w) = w′ê′êw + 2σ̂2tr (P (w))

ŵMMA = arg min
w∈H

Cn (w) ,

where H =
{
w ∈ [0, 1]M :

∑
wMm=1 = 1

}
, σ̂2 is a consistent estimate of the error variance.4

Define the in-sample mean-squared error

Ln (w) = (µt − µ̂ (w))′ (µt − µ̂ (w)) .

Lemma 3 from Hansen (2007) shows unbiasedness (up to a constant) of Cn (w) for in-sample
mean-squared error, Ln (w), for iid observations. Specifically, he shows that

E [Cn (w)] = E [Ln (w)] + nσ2,

so that the weights found through minimization of Cn (w) also minimize Ln (w), in expectation. In
addition, Theorem 1 from Hansen (2007) shows the asymptotic optimality of Mallows’ criterion for
model selection with independent data if the weights are restricted to a discrete set, in the sense that
Ln (ŵ) / infw∈Hn(N) Ln (w)→p 1, where Hn (N) restricts the weights wm to the set

{
0, 1

N
, 2
N
, ..., 1

}
.

Notably, the asymptotic optimality of the Mallows’ criterion relies on homoskedasticity of the error
term.5

To address the case of the heteroskedastic error term, Liu and Okui (2013) introduced a modifica-
tion of the Mallows’ criterion that is heteroskedasticity-robust, the so called HRCp criterion:

HRCp (w) ≡ ‖y −P (w)y‖2 + 2tr [ΩP (w)] ,

where Ω is an n× n diagonal matrix with σ2
i being the ith diagonal element. The feasible HRCp

4Hansen (2007) suggests employing σ̂2 from the “largest” approximating model.
5Wan et al. (2010) provide an alternative proof of the asymptotic optimality that extends the result to a

non-discrete weight set.
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criterion

ĤRCp (w) ≡ ‖y −P (w)y‖2 + 2
n∑
i=1

ê2i pii (w) ,

where êi is the residual from a preliminary estimation6 and pii (w) is the ith diagonal element
of P (w). The weights obtained through minimization of the HRCp criterion are shown to be
asymptotically optimal (see Theorem 2.1 from Liu and Okui, 2013). The same property is shared
by its feasible version (under more assumptions, see their Theorem 2.2).7 For the sake of consistent
notation within this paper, the weights obtained via minimization of the ĤRCp criterion will be
denoted as ŵHR−MMA.

Ridge Model Averaging

We define the ridge-regularized MMA estimator (hereafter RMA) as

ŵRMA = arg min
w∈H

[
w′ê′RêRw + 2σ̂2tr

(
PR (w)

)]
,

where PR (w) =
∑M

m=1w
mPR

m and êR =
(
ê1R, ..., ê

M
R

)
is a matrix of stacked residuals from ridge

regressions for each specification. Thus, ridge regularization affects both terms of the criterion
simultaneously. Correspondingly, the heteroskedasticity-robust ridge model averaging (HR-RMA)
estimator is defined by

ŵHR−RMA = arg min
w∈H

[
w′ê′RêRw + 2

n∑
i=1

ê2iRp
R
ii (w)

]
,

where pRii (w) is the ith diagonal element of PR (w). For both the RMA and HR-RMA estimators,
PR (w) is a function of optimal shrinkage values for all models being averaged, i.e. PR (w) =

PR (w, λopt). For each separate model m, we estimate λoptm via leave-one-out cross-validation that
results in asymptotically optimal λ̂optm (Li, 1987).

Having in mind the results on asymptotic optimality of the Mallows criterion for model averaging
by Hansen (2007), and its heteroskedasticity-robust counterpart by Liu and Okui (2013) in the
class of linear estimators, we investigate the finite-sample benefits of the proposed regularized
modifications from the same class, RMA and HR-RMA, relative to the baselines of MMA and
HR-MMA. For most applications, the right hand side variables tend to be correlated with each

6The authors discuss various possibilities for obtaining êi. For instance, in the case of nested models, they
recommend using the residuals from the largest model, and this paper follows their recommendation.

7Anatolyev (2021) proposes using individual variance estimates that are robust to regressor numerosity.
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other,8 so the Mallows criterion with underlying ridge regularization of a design matrix is expected
to deliver better finite sample properties of the estimates. In the next section, we provide a toy
example demonstrating the relative performance of the RMA estimator.

3 Theory: A Two-Model Example

In this subsection we consider a toy theoretical example that illustrates the mechanics of the MMA
and RMA estimators under homoskedasticity of the error term. First, we derive the MSE for the
averaged least-squares and ridge estimates. Then, we derive the optimal shrinkage parameters for
two models estimated via the ridge regression, and plug them into the MSE for the averaged ridge
estimate. That allows us to find the optimal weights for both estimators.

Let the true unknown model be

Y = X1β1 +X2β2 + e, E [e|X1, X2] = 0, E
[
e2|X1, X2

]
= σ2.

Two alternative approximations are Y = X1β1 + e1 and Y = X2β2 + e2, i.e. each approximating
model includes only a part of the regressors from the true model. The column dimensions of X1

and X2 are assumed to be equal, rank (X1) = rank (X2) = p.

Two options are considered: (1) averaging the LS estimates or (2) averaging the ridge estimates
for both approximations. Two OLS estimates are given by

β̂ols1 = (X ′1X1)
−1
X ′1Y and β̂ols2 = (X ′2X2)

−1
X ′2Y,

and the average least-squares estimate is

β̃ = wols

(
β̂ols1

0

)
+
(
1− wols

)( 0

β̂ols2

)
=

(
wolsβ̂ols1(

1− wols
)
β̂ols2

)
where wols is the optimal OLS weight to be determined later.9 Similarly, two ridge estimates are
given by

β̂r1 (λ1) = (X ′1X1 + λ1Ip)
−1
X ′1Y and β̂r2 (λ2) = (X ′2X2 + λ2Ip)

−1
X ′2Y

and the average ridge estimate is

β̃ (λ1, λ2) = wr

(
β̂r1 (λ1)

0

)
+ (1− wr)

(
0

β̂r2 (λ2)

)
=

(
wrWλ1 β̂

ols
1

(1− wr)Wλ2 β̂
ols
2

)
8For example, in a high-dimensional dataset, there might be large sample correlations even when the variables

are independent, see Fan & Lv (2008).
9We assume here that whenever the regressor is missing from the approximating model, the corresponding

coefficient is set to 0, as is usually done within the FMA.

7



where Wλ1 = (X ′1X1 + λ1I)−1X ′1X1, Wλ2 = (X ′2X2 + λ2I)−1X ′2X2 and wr is the optimal ridge
weight.

From now on let us assume, for the sake of illustration, that X1 and X2 are orthonormal, i.e.
X ′1X1 = X ′2X2 = Ip, and also X ′1X2 = ρIp, where ρ mirrors the degree of correlation among the
predictors. Then the mean squared error of the average least-squares estimate is

MSEols
(
wols

)
= pσ2

[(
wols

)2
+
(
1− wols

)2]
+ βT1

[((
wols

)2 − 2wols + 1
)

+
(
1− wols

)2
ρ2
]
β1

+ βT1 ρ
[
2wols

(
wols − 1

)
− 2wols

(
1− wols

)]
β2

+ β′2

[(
wols

)2
ρ2 +

((
1− wols

)2 − 2
(
1− wols

)
+ 1
)]
β2,

where p is the common column rank of X1 and X2, while the mean squared error of the average
ridge estimate is

MSEr (λ1, λ2, w
r) = pσ2

[
(wr)2

(1 + λ1)
2 +

(1− wr)2

(1 + λ2)
2

]
+

+ βT1

[
(wr)2 − 2wr (1 + λ1) + (1 + λ1)

2

(1 + λ1)
2 +

(1− wr)2

(1 + λ2)
2 ρ

2

]
β1

+ βT1 ρ

[
2wr (wr − 1− λ1)

(1 + λ1)
2 − 2 (wr + λ2) (1− wr)

(1 + λ2)
2

]
β2

+ β′2

[
(wr)2

(1 + λ1)
2ρ

2 +

(
(1− wr)2

(1 + λ2)
2 −

2 (1− wr)
1 + λ2

+ 1

)]
β2.

Derivations are provided in Appendix E, Part 1. For both MSEols
(
wols

)
and MSEr (λ1, λ2, w

r),
the first term of the sum corresponds to the variance, while the other three terms represent the
squared bias.

Before finding the optimal weights for the ridge averaging estimator, the optimal values of λ1 and
λ2 should be plugged in separately for each ridge regression. Under the assumption that we made
earlier,

λoptj =
pσ2 + ρβ′1β2
β′jβj + ρβ′1β2

, j = 1, 2.

Derivations are provided in Appendix E, Part 2.

Finally, one can use MSEr
(
λopt1 , λopt2 , wr

)
to find the optimal weights, 0 ≤ wr,opt ≤ 1, similar to

8



the optimal weights for the least-squares averaging estimator, 0 ≤ wols,opt ≤ 1. Since the resulting
expressions are complicated10, let us look at the comparative statics.

Figure 1: Difference in MSE given the optimal weights: in absolute terms (left) and normalized
over the MSE of the RMA estimator (right). Baseline case: p = 3, σ2 = 2, β′1β1 = β′2β2 = 1.

As a baseline case, consider p = 3, σ2 = 2, β′1β1 = 1, β′2β2 = 1, β′1β2 =
√
β′1β1 · β′2β2 − 0.1 =

0.948. The correlation among the predictors varies between 0 and 1. Figure 1 shows the resulting
difference between MSEols

(
ŵols

)
and MSEr

(
λ̂opt1 , λ̂opt2 , ŵr

)
for ρ ∈ [0, 1], in absolute terms (left)

and relative to MSEr
(
λ̂opt1 , λ̂opt2 , ŵr

)
(right). Despite the difference itself not being monotonic (in

this case, U-shaped), the relative difference is monotonically increasing with the correlation among
the predictors. In other words, higher correlation implies larger reduction in the MSE due to ridge
regularization, in relative terms.

Figure 2: Difference in MSE given the optimal weights: in absolute terms (left) and normalized
over the MSE of the RMA estimator (right). β′1β1 = 0.2

Figures 2, 3, and 4 demonstrate similar outcomes for alternative parameter combinations. In
particular, Figure 2 shows the differences in MSE for β′1β1 = 0.2, keeping the other parameters the
same. In general, the pattern is similar to that for β′1β1 = β′2β2 = 1, although the magnitude of
MSEols

(
ŵols

)
−MSEr

(
λ̂opt1 , λ̂opt2 , ŵr

)
is higher in the case of unequal model coefficients. Figure

3 presents the results for the baseline case with the variance of the error term changed to σ2 = 1

and σ2 = 5, respectively. Overall, the magnitude of the reduction in the MSE is increasing with
10Available upon request.
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the error variance. Finally, Figure 4 shows the results for the baseline case with the number of
predictors changed to p = 10. An increase in the number of predictors also leads to a higher
magnitude of the reduction in the MSE due to ridge regularization.

Figure 3: Difference in MSE given the optimal weights: in absolute terms (left) and normalized
over the MSE of the RMA estimator (right). σ2 = 1 (top) and σ2 = 5 (bottom)

Figure 4: Difference in MSE given the optimal weights: in absolute terms (left) and normalized
over the MSE of the RMA estimator (right). p = 10

In the next section we compare the finite-sample performance of the canonical Mallows model
averaging with that also taking advantage of ridge regularization.
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4 Finite-Sample Comparison

We now examine the finite-sample performance of the proposed RMA and HR-RMA estimators
relative to their closest competitors, the MMA and JMA estimators (Hansen, 2007; Hansen and
Racine, 2012), and the HR-MMA estimator (Liu and Okui, 2013), in terms of MSE. Apart from
the correlation pattern among predictors, our simulation design combines the features of those
from Hansen (2007) and Hansen and Racine (2012). The infinite-order regression model is

yi = θ0 +
∞∑
k=1

θkxki + ei,

where xki are identically distributedN (0, 1). All the regressors are equicorrelated with a correlation
coefficient 0.5 in case [M](moderate correlation) and 0.75 in case [H](high correlation).11 The error
term ei is conditionally distributed as N (0, σ2 (x2i)), where σ2 (x2i) = x42i. The parameters are set
by the rule

θk = cγk

γk =
kαβk∑K

j=1 j
2αβ2j

to model various specifications of θk. We consider several combinations of α and β. First, for
α = 0.5, the considered values of β are [.6, .7, .8, .9]. Then we fix β at β = 0.7, and consider
[.25, .5, 1] as values for α. The population R2 varies on a grid from 0.1 to 0.9, so the parameter
c is set by the rule c =

√
R2/ (1−R2). We examine three sample sizes, n = 25, 50, 100 with the

maximum model lengths p = 9, 11, 15, respectively. In the experiment we also include the weighted
BIC criterion (WBIC)12 and the equal weighting (EW) scheme.13

We compare the competing methods based on the mean squared error

MSE =
1

n
(µ− µ̂)′ (µ− µ̂)

that is averaged across 5000 simulation draws.
11Except for an intercept, x1.
12The least squares model average estimator with the weights wm = exp

(
− 1

2BICm

)
/
∑M

j=1 exp
(
− 1

2BICm

)
, where

BICm = n ln σ̂2
m + ln (n)m.

13The least squares model average estimator with the weights wm = 1/M . EW is uniformly dominated so we do
not show it on our graphs for the sake of their better readability.
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Figure 5: n = 25. Case [M] of moderate correlation among predictors.

Figures 5, 6 and 7 present the results for the sample sizes of 25, 50, and 100, respectively, under
moderate correlation among the regressors.14 Each panel of graphs displays average MSE across
different values of R2, varied from 0.1 to 0.9. Overall, the ridge-based model averaging estimators
nearly uniformly outperform their alternatives for all sample sizes. In addition, heteroskedasticity
robust RMA has a lower MSE than non-robust RMA unless the true R2 is very low (below about
0.2). The reduction in MSE from using HR-RMA instead of HR-MMA varies between 10% and 53%
for n = 25, between 6% and 44% for n = 50 and between 1% and 44% for n = 100. Appendix H
presents the results for n = 100 in the case [H] of high correlation among the predictors. Although
higher correlation does not change the results qualitatively, the improvement achieved by the ridge-
based RMA estimators relative to other estimators tends to be more uniformly pronounced under
stronger correlation of the regressors.

14The shape of coefficients γk is shown in Appendix C.
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Figure 6: n = 50. Case [M] of moderate correlation among predictors

13



Figure 7: n = 100. Case [M] of moderate correlation among predictors

In Appendix W we show the distributions of the optimal weighs over the set of competing models
for n = 100 with moderately correlated predictors. One can easily see that the weights obtained
for the ridge-based estimators tend to favor the larger models, while the optimal weights found
via JMA/MMA favor small or moderate model lengths for low and high values of R2, respectively.
The reason is the ability of RMA and HR-RMA to accommodate larger models without inflating
the variance, while this property is not shared by estimators based on ordinary least-squares
regressions.

In the next section we examine the relative performance of the ridge-based averaging estimators
via two real-data examples.
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5 Empirical Examples

5.1 Wage Prediction

Similarly to Hansen and Racine (2012), we employ Wooldridge’s (2003, pg. 226) ‘wage1’ cross-
sectional dataset, a random sample (526 observations) from the US Current Population Survey
for the year 1976.15 There is uncertainty about the best model for the log of average hourly
earnings, so a set of thirty models ranging from the unconditional mean (k = 1) through a full
model that includes k = 30 variables is considered. Explanatory variables include non-dummy
variables educ, exper, tenure and dummy variables female, married, nonwhite, numdep, smsa,
northcen, south, west, construc, ndurman, trcommpu, trade, services, profserv, profoss, clerocc,
servocc, and interaction terms nonwhite×educ, nonwhite×exper, nonwhite×tenure, female×educ,
female×exper, female×tenure, married×educ, married×exper, married×tenure.

Then, as in Hansen and Racine (2012), the sample is randomly split into a training portion n1

and an evaluation portion of size n2 = n − n1. We compare the same methods mentioned in
the previous section: MMA, HR-MMA, JMA, WBIC, RMA and HR-RMA. For each model we
compute its average square prediction error (ASPE) using the evaluation set of observations. The
procedure is repeated for 100 splits, then the median ASPE over 100 random splits is reported. The
size of the training portion is varied, n1 = 50, 75, 100, 200, 300, 400, 500. All numbers in the Table
1 are normalized by the corresponding ASPE of HR-MMA, so the entries lower than 1 indicate
superior performance relative to the HR-MMA estimator.

Table 1: Out-of-sample predictive efficiency. Entries less than one indicate superior performance
relative to the HR-MMA estimator.

n1 MMA JMA WBIC RMA HR-RMA
50 0.7131 0.6935 0.8066 0.6047 0.6272
75 0.9338 0.9012 1.1341 0.8473 0.8731
100 0.9540 0.9389 1.1850 0.9034 0.9214
200 0.9966 0.9952 1.0266 0.9857 0.9903
300 1.0014 1.0018 1.0081 0.9970 0.9929
400 1.0020 1.0044 1.0073 0.9939 0.9946
500 0.9987 1.0052 1.0453 1.0074 1.0072

Table 1 shows that both ridge-based model averaging estimators (RMA and HR-RMA columns)
deliver improvement in predictive efficiency comparable to that achieved by the MMA, HR-MMA
and JMA methods in finite samples. The benefits of RMA and HR-RMA are especially pronounced
for smaller sample sizes, though they tend to persist for larger samples as well. Moreover, for
smaller samples (n1 = 50, 75, 100) random splits result relatively often in the singular design

15See http://fmwww.bc.edu/ec-p/data/wooldridge/WAGE1.des for a full description of the data.
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matrix, thus increasing the motivation for regularization from a practitioner’s perspective. HR-
RMA tends to have marginally lower out-of-sample predictive efficiency relative to RMA, thus
demonstrating a price to pay for robustness to heteroskedasticity.

Figure 8: Correlation heatmap and correlation histogram for the wage predictors, in-sample portion
of the data n1 = 500. The absolute values of correlations are employed.

This example illustrates the scope of the benefit achieved by the use of ridge-regularized model
averaging estimators under relatively low correlations among the predictors. Figure 8 presents a
heatmap and histogram for pairwise correlations16 among the variables for n1 = 500. Notably,
the variables are mostly low to moderately correlated, though the correlations are high enough
for the ridge regularization to be beneficial. The next subsection presents another example, with
moderately to highly correlated predictors, where the relative benefits from using the ridge-based
model averaging estimators are even larger.

5.2 Growth Determinants

Next, we work with the dataset collected by Barro and Lee (1994) on cross-country determinants
of long-term economic growth. Overall, the dataset includes 60 potential predictors of the average
growth rate of GDP between 1960 and 1985 for 90 countries. We use this dataset to predict the
growth rate via averaging across different combinations of predictors in the model. The intercept
and the logarithm of the initial GDP are always included,17 and only nested models are considered.

We employ three different schemes for sample-splitting to compare the performance of all estima-
tors:

16Absolute values of pairwise correlations are used for the sake of visibility.
17Similarly to Belloni et al (2011a) and Giannone at al. (2021) who employ the same dataset for the purpose of

prediction.
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(Leave-one-out) use all but one country for model estimation to make the predictions for the
remaining country, do this for each country,

(Out-of-sample-5) randomly select 85 (out of 90) countries for model estimation to make the
predictions for the remaining 5 countries, make 500 draws, then average the results across them,

(Out-of-sample-10) randomly select 80 countries for model estimation to make the predictions
for the remaining 10 countries, make 500 draws, then average the results across them.
For each scheme, we compute the average squared prediction error across 1/5/10 countries, respec-
tively. We compare the same methods as before, and all presented statistics are again normalized
with respect to the HR-MMA. Table 2 shows that all methods outperform the HR-MMA estimator.
Both the RMA and HR-RMA tend to deliver smaller prediction error than the MMA, while the
performance of the RMA is similar to that of the JMA. Remarkably, the oldest method, WBIC,
does especially well in this example.

Table 2: Average squared prediction error in long-run growth regression (all numbers are normal-
ized over those for HR-MMA)

MMA JMA WBIC RMA HR-RMA
Leave-one-out 0.7489 0.4193 0.3324 0.4851 0.7815
Out-of-sample-5 0.6347 0.4422 0.3718 0.4770 0.6109
Out-of-sample-10 0.5861 0.4043 0.3312 0.4369 0.5294

Figure 10 presents the correlation heatmap and histogram, similarly the previous empirical ex-
ample. Unlike in the previous example, here the predictors are moderately to highly correlated.
Correspondingly, in this example we observe bigger improvement attained by the RMA and HR-
RMA methods relative to that in the previous example, where the predictors are low to moderately
correlated (say, for the sample sizes n1 = 75 and n1 = 100 in the wage prediction example, which
are close to the sample sizes employed in the example of the current subsection).

Figure 9: Correlation heatmap and correlation histogram for the growth predictors. The absolute
values of correlations are employed.
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6 Conclusion

This paper promotes the use of ridge-regularized model averaging estimation. Although the pro-
posed RMA and HR-RMA estimators do not dominate the alternatives uniformly over the param-
eter space, in most cases they outperform others over a considerable interval of the population
R2. The improvement achieved by ridge regularization may be partially attributed to changes
of the weight distribution: the optimal weights found via RMA/HR-RMA tend to be higher for
more sophisticated models, while the weights obtained via other procedures are predominantly
distributed among low and moderately parametrized specifications.

Two empirical examples demonstrate the benefits of the ridge-regularized model averaging estima-
tors. Specifically, the RMA tends to deliver better predictions than the MMA, while the HR-RMA
outperforms the HR-MMA, especially in small samples. Notably, in both examples the RMA per-
forms better or comparably to the JMA, which may be more computationally intensive. Although
in this paper we utilize a rather demanding cross-validation procedure to select the optimal degree
of regularization, there are alternative ways to set up the shrinkage parameter (see, for example,
Hansen and Kozbur, 2014). While other data-driven approaches may result in the shrinkage pa-
rameter deviating from the optimal value, their use may still be beneficial, as shown by Hansen
and Kozbur, in particular.
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Appendix C

Figure 10: Simulation study: regression coefficients (all graphs are truncated along the horizonal
axis)
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Appendix E

Part 1
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The average of ridge estimates:
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So, the desired MSE is (4) + (5) + (6) + (7).

Part 2

For the first model estimated via ridge:
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Under X ′1X1 = I,
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Appendix H

Figure 11: n = 100. Case [H] of moderate correlation among predictors
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Appendix W

Figure 12: Optimal weights, α = 0.5, β = [0.6, 0.7] (left to right), R2 = [0.1, 0.5, 0.9] (top to
bottom). The case [M] of moderate correlation among predictors.
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Figure 13: Optimal weights, α = 0.5, β = [0.8, 0.9] (left to right), R2 = [0.1, 0.5, 0.9] (top to
bottom). The case [M] of moderate correlation among predictors.
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Figure 14: Optimal weights, α = [0.25, 1] (left to right), β = 0.7, R2 = [0.1, 0.5, 0.9] (top to
bottom). The case [M] of moderate correlation among predictors.
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Abstrakt 

 

Průměrování modelů je stále oblíbenější alternativou k výběru modelu. Hřebenová regrese slouží k 

podobnému účelu jako průměrování modelů, tj. minimalizaci střední kvadratické chyby prostřednictvím 

smrštění, i když jinými způsoby. V tomto článku navrhujeme regularizační modifikace Mallowsova 

průměrování modelu (Hansen, 2007, Econometrica, 75) a vůči heteroskedasticitě robustního Mallowsova 

průměrování modelu (Liu & Okui, 2013, The Econometrics Journal, 16), abychom současně využili 

schopnosti průměrování a ridge regularizace. Prostřednictvím simulační studie dokumentujeme vylepšení 

na konečném vzorku dat, což je důsledkem nahrazení nejmenších čtverců hřebenovou regresí. Průměrování 

na základě hřebenového modelu je zvláště užitečné, když se zabýváme množstvími středně až vysoce 

korelovaných prediktorů, protože základní hřebenové regrese se korelovaným prediktorům přizpůsobí, aniž 

by došlo k nafouknutí rozptylu odhadů. Jednoduchý teoretický příklad ukazuje, že relativní snížení střední 

kvadratické chyby roste se silou korelace. Na empirických příkladech, zaměřených na mzdy a ekonomický 

růst, demonstrujeme také přednost hřebenově regularizovaných modifikací. 
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