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Abstract

A critical aspect of trading Exchange-Traded Funds (ETFs) is the arbitrage trading strategy taken by
authorized participants (APs) to keep ETF prices in line with their net asset values (NAVs). ETF arbitrage
trading is a strategy that exploits the discrepancies between an ETF price and the value of the ETF’s under-
lying assets. In this study, I quantitatively examine the effect of ETF arbitrage on the underlying assets of
an ETF. I develop a dynamic state-space model that jointly estimates the price dynamics of an ETF and its
underlying assets by explicitly incorporating the ETF arbitrage. The model is estimated individually for the
Dow Jones Industrial Average ETF (DIA) and the VanEck Vectors Semiconductor ETF (SMH). The empirical
results show that ETF liquidity shocks propagate to the underlying assets via the ETF arbitrage mechanism.
These ETF liquidity shocks add a permanent layer of transitory volatility to the underlying asset prices. I find
that a unit of liquidity shock to DIA brings a range of 0.1% to 0.93% of extra volatility to the underlying assets
of DIA. Similarly, a unit of liquidity shock to SMH adds a range of 0.33% to 0.95% of additional volatility
to the underlying assets. In addition, I show that it takes APs longer to correct deviations between the ETF
price and its NAV. It takes approximately 4 and 10 minutes for APs to perform the ETF arbitrage for DIA
and SMH, respectively. Finally, the findings suggest that an ETF arbitrage transaction speeds up the price
discovery process in the ETF markets. There are approximately 74% and 67% variations in the premiums of
DIA and SMH due to price discovery, respectively.
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1. Introduction

Over the last two decades, Exchange Traded Funds (ETFs) have grown in the global
financial markets. There are significant benefits to investing in ETFs over traditional
index funds such as open-end mutual and hedge funds. The benefits for ETF investors
include increased and continuous access to intraday liquidity, low trading costs, lower
tax burden, and access to a broader set of markets (Ben-David et al., 2017, 2018).
Generally, an ETF operates with an arbitrage mechanism designed to keep its market
value in line with its net asset value (NAV) when a deviation between the ETF price
and its NAV occurs. ETF arbitrage trading is a strategy that exploits the discrepancies
between an ETF price and the value of the ETF’s underlying assets.

However, one may wonder whether the ETF arbitrage mechanism has consequences
for the underlying assets in the ETFs’ portfolios. The liquidity of an ETF attracts high-
frequency demand, which is likely to affect the prices of the underlying assets since the
ETF arbitrage mechanism links the ETF and its underlying assets (Agarwal et al., 2018;
Dannhauser, 2017; Evans et al., 2018). If there is a demand shock to an ETF, the
underlying assets may be exposed to a new layer of demand shock, making them more
volatile.

In this paper, I quantitatively examine the effect of ETF arbitrage transactions on
the underlying assets of an ETF. In particular, I measure the intensity of ETF liquidity
shocks on the prices of underlying assets of an ETF. I seek to determine how much
excess volatility propagates to the underlying assets when there is a liquidity shock to
the ETF market. In addition, I investigate whether the ETF arbitrage mechanism is a
medium through which ETF liquidity shocks propagate to the underlying asset markets.
I also examine the contribution of the ETF arbitrage mechanism in the price discovery
process of an ETF, i.e., whether ETF arbitrage trading speeds up or slows down the
price discovery process in the ETF market.

I develop a dynamic state-space model that jointly estimates the price dynamics of
an ETF and the underlying assets of the ETF. The model is based on three main
structures: ETF market structure, underlying asset market structures, and ETF arbitrage
component linking the ETF to each underlying asset. The model defines the ETF
arbitrage mechanism as the difference between the ETF price and its net asset value
(NAV)1. The ETF arbitrage transaction is an essential component of the model performed
by authorized participants (APs) to keep the ETF price in line with its NAV. For instance,
if there is a high demand for ETF shares, this increases the price of the ETF and deviates
upwards from its NAV. To correct such deviations, an AP creates more ETF shares by
trading the ‘basket’ of the underlying assets with the ETF firm to obtain more of the
ETF shares. The AP introduces the new ETF shares on the exchange market. The new
shares increase the supply of the ETF, which puts pressure on the ETF price to decrease
until it falls in line with the NAV. The underlying assets are likely to inherit the demand
shock from the ETF through the trading strategy by the AP.

To capture information about liquidity, the model incorporates bid and ask quotes for
1 Intuitively, the market value of an ETF and its NAV is based on the unobserved

efficient value of the fund. However, the ETF NAV is the value of each share portion
of its underlying assets and cash at the end of the trading day. The NAV of an
ETF depends on each of the efficient values of its underlying assets. Therefore, a
deviation between an ETF price and its NAV equals the difference between the ETF
price and the weighted sum of efficient values of the underlying assets.
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the ETF and each underlying asset. I then decompose the ask and bid quotes for the
ETF and the underlying asset markets into efficient prices and transitory components.
The efficient prices are assumed to follow a random walk. The transitory components
are assumed to have autocorrelation with themselves and each other. The model allows
for permanent and transitory shocks from the ETF and the underlying asset markets. In
this way, one can measure the impact and intensity of different shocks in the ETF market
on the underlying assets and vice versa. The permanent (informational) and transitory
conditional volatility follow EGARCH models.

The purpose of jointly modeling the dynamics of an ETF and its underlying assets
and linking them via ETF arbitrage is 1) to be able to determine the channel that
propagates shocks from the ETF market to the underlying assets. Hence, one can
measure any additional volatility brought to the underlying asset prices via the channel;
2) to determine the speed APs may take to perform the ETF arbitrage transaction when
there is a deviation between an ETF price and its NAV; 3) to decompose the ETF
arbitrage component into transitory and price discovery components. In this way, one
can measure how ETF arbitrage transactions contribute to the price discovery process
in the ETF market.

Therefore, the main contribution of the dynamic model is that it can measure the
intensity of any liquidity shock to an ETF via the ETF arbitrage mechanism on the
underlying assets. In addition, the model can determine whether the ETF arbitrage
trading speeds up or slows down the price discovery process in an ETF market.

The model implementation uses tick data for the Dow Jones Industrial Average ETF
(DIA) and VanEck Vectors Semiconductor ETF (SMH) listed on NYSE. DIA and SMH
have 30 and 25 underlying assets in their respective portfolios. The datasets span the
first quarter of 2018 with milliseconds sample frequency.

The empirical results show that liquidity shocks to both DIA and SMH propagate
to their respective underlying assets. This result is obtained from the variance of the
deviations between the ETF price and its NAV. These deviations contemporaneously
correlate with their underlying assets’ returns, where a fraction of the volatility of liquidity
shocks to DIA and SMH ETFs find their way into the underlying assets’ returns. This
finding shows that the ETF arbitrage (deviations between the ETF price and its NAV)
is the channel that propagates the liquidity shocks to the underlying assets of DIA and
SMH.

I find that if there is a liquidity shock to DIA or SMH, the prices of their underlying
assets become more volatile in the next period. Thus, if there is one unit of liquidity
shock to DIA ETF, then the ETF arbitrage mechanism propagates a range of 0.1% to
0.93% of additional volatility to DIA’s underlying assets in the next period. Similarly,
a unit of liquidity shock to SMH adds a range of 0.33% to 0.94% of extra volatility to
SMH’s underlying assets in the next period. I find that the underlying assets with higher
weights in their respective ETF portfolios receive more volatility than the less weighted
assets.

Furthermore, the results show that APs may take longer to correct deviations between
an ETF price and its NAV. In the case of the Dow Jones Industrial Average ETF (DIA)
and VanEck Vectors Semiconductor ETF (SMH), the average time an AP may correct
any parity between the prices of the ETFs and their NAVs is approximately 4 and 10
minutes, respectively.

Finally, the findings of this study suggest that an ETF arbitrage transaction speeds
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up the price discovery process in an ETF market. The estimates of the price discovery
components for DIA and SMH ETFs are 74% and 67%, respectively. Intuitively, these
estimates make sense because approximately 74% and 67% of the variations in the
premiums (ETF arbitrage) of DIA and SMH are due to price discovery.

An important question is whether ETFs are beneficial or harmful to the financial
markets. One cannot take a stand or provide a straightforward answer to this question.
However, based on the findings of this study, one could point out periods in which
ETFs may be harmful or beneficial. During standard times like the sampled period this
study considers, a high liquidity shock to ETFs motivates investors to place large short-
term directional bets on the ‘basket’ of the underlying assets. The high liquidity shock
increases the underlying assets’ volatility and co-movement. That can be problematic
in times of financial crisis, particularly for ETFs with illiquid underlying assets and trade
OTC. During periods of market stress, ETFs’ prices may deviate from their underlying
asset values, which may destabilize financial institutions that depend on ETF shares for
managing their liquidity. However, the deviation between the prices of ETFs and the
values of their underlying assets may decrease any repercussions of market stress on the
underlying assets. Hence, if financial institutions are frequenctly exposed to the risk
associated with the underlying assets, the deviation between the prices of ETFs and the
values of their underlying assets may decrease instead of increase systematic risk.

This study relates to recent analyses of the effect of trading ETFs on their underlying
assets. Ben-David et al. (2018) argue that the ETF arbitrage transaction mechanism
is a channel through which liquidity shocks from the ETF markets propagate to the
underlying assets2. The authors further argue that the ETF liquidity shocks might add
extra non-fundamental volatility to underlying asset prices. My study investigates the
arguments by Agarwal et al. (2018), where I quantitatively show that ETF liquidity
shocks propagate to the underlying assets through the ETF arbitrage mechanism. In
addition, my model helps to quantify the intensity of any liquidity shocks from an ETF
market on the underlying assets. Thus, one can measure the extra non-fundamental
volatility that the ETF liquidity shocks, via the ETF arbitrage, add to the prices of the
underlying assets.

Contrary to Ben-David et al. (2018), Box et al. (2019), who analyze the ask and bid
quotes on the 1-minute frequency of ETFs, find that an ETF arbitrage transaction is
not responsible for the propagation of liquidity shocks to the underlying assets. They
argue that parity between ETF prices and their NAVs are restored via the adjustments in
the ask and bid quotes of the underlying assets. However, the model considered by Box
et al. (2019) does not capture the ETF arbitrage mechanism and the price dynamics of
the underlying assets of an ETF. Perhaps this may have contribute to their findings of
2 Agarwal et al. (2018) show that ETFs create demand pressure on the prices of their

underlying assets. The authors argue that the noise or shocks from the high de-
mand for ETF shares may affect the prices of the underlying assets. Furthermore,
related studies focus on ETF discounts and premiums. These studies include En-
gle and Sarkar (2006), Hilliard (2014), Lin and Chou (2006), and Charteris et al.
(2014). A related strand of literature focuses on the co-movement relationship be-
tween ETFs and their underlying assets. The general conclusion from this literature
is that there are co-movements between ETFs and their underlying assets, see e.g.
Da and Shive (2013), Madhavan and Sobczyk (2016), Israeli et al. (2017), Nam
(2017), Dannhauser (2017), Agarwal et al. (2018), Evans et al. (2018), and Broman
and Shum (2018).
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no-arbitrage pressures on the underlying asset prices.
The remainder of this paper is structured as follows: Section 2 presents an overview of

ETF trading and pricing3. Section 3 develops a dynamic state-space model that combines
an ETF, price dynamics of the underlying assets, and the ETF arbitrage transaction
mechanism. This section also describes the data and provides descriptive statistics.
Section 4 presents the empirical results and Section 5 concludes.

2. Background of ETF Trading

2.1 Creation/Redemption Process

ETFs are investment firms whose shares are traded continuously during intraday trad-
ing hours. They track specified indices and are traded like stocks on organized exchanges.
To some extent, ETFs behave like closed-end mutual funds, i.e., ETF prices can deviate
from their NAVs. Retailers and institutional investors mostly trade ETF shares. In con-
trast to closed-end mutual funds, new ETF shares can be created, and existing shares
can be redeemed. As documented in the literature, the price of an ETF can deviate
from its NAV, for example, refer to Pontiff (1996). Contracts have been signed between
institutions acting as authorized participants (APs) and ETF firms to trade ETF shares
and, for that matter, to perform the ETF arbitrage. The primary role of an AP is to
create or redeem ETF shares when the need arises.

Creation process: When an ETF price deviates upwards from its NAV (ETF trading
at a premium), there is a high demand for the EFT shares, which increases the price of
the shares. To keep the ETF price in line with its NAV, an AP creates more shares of the
ETF by assembling additional underlying assets with proper weighting and, in exchange,
obtains shares of the new ETF from the ETF firm. The AP then introduces the new
ETF shares on the exchange market to increase the supply of the ETF shares. In this
way, pressure is exerted on the ETF price to move downwards, simultaneously leading
to an increase in the NAV.

Redemption process: Similarly, if an ETF price deviates downwards from its NAV
(ETF trading at a discount), APs redeem the ETF shares from the exchange market
since the price of the shares is lower than the expected price. The APs then exchange
these redeemed shares for the ‘basket’ of the underlying assets from the ETF firm.
APs can then sell the assets in the underlying asset markets. The later process of ETF
redemption pressures the ETF price upwards, which may exert potential negative pressure
on the NAV.

2.2 Trading Channels

This study argues that the deviation between an ETF price and its NAV echoes a
mixture of essential information and noise. Based on the creation/redemption process,
the model in this study depends on two main trading channels, namely, ETF arbitrage
and informational trading channels.

ETF Arbitrage Trading : The creation and redemption procedures described above
constitute the ETF arbitrage trading strategy which takes place continuously throughout
the trading hours. For instance, when there is a high demand for the shares of SPY
3 For a detailed treatment of the growing literature on ETF trading and pricing, see

Ben-David et al. (2017).
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ETF, the price of SPY will increase and move above the NAV of SPY. An authorized
participant (AP) acts to correct the deviation between the price of SPY and its NAV.
Since SPY is trading at a premium, the AP will sell the SPY shares received during the
creation process on the open market at a higher price. Afterwards, the AP will go into
the underlying asset markets to buy their shares at lower prices. This process will help
the AP to capture the spread between the cost of the underlying assets he bought for
the ETF firm and the selling price of SPY shares 4.

Informational Trading : Informational trading is when investors initiate trading upon
available information. Suppose there is an announcement of economic changes by a
government, or there is a high demand for SPY ETF. After receiving or observing the
news of the shock or changes in the SPY, traders of the underlying assets start to trade
their assets in the direction of the initial shock, but not simultaneously. The traders’
actions may cause the underlying assets to affect each other due to their interactions.
For example, traders of Apple stock (AAPL) observing the news of a shock coming to
the financial market will start to trade their assets in the direction of the shock. We
soon observe an immediate adjustment to quotes in other stocks without actual trading
in response to changes in AAPL.

3. Model

In this study, I develop a dynamic state-space model that combines the best ask/bid
quotes of an ETF, the best ask/bid quotes of the ETF’s underlying assets, and the ETF
arbitrage transaction mechanism. The model also features transitory and informational
volatility effects and it assumes that the price of an ETF and the prices of the underlying
assets can be decomposed into permanent and transitory components5. The model
builds on the microstructure price decomposition that separates quoted prices into long-
run (efficient) value and transitory non-informative components. Furthermore, the model
explicitly incorporates the ETF arbitrage mechanism based on the quoted prices of an
ETF and the underlying assets.

Notation: I denote the long-run value of an ETF as vt and mi
t as the long-run value

of an underlying asset i. The price of an ETF and the price of an underlying asset i are
denoted by pft and pit, respectively. Denote aft and bft as the ask and bid quotes of an
ETF and ait and bit as the ask and bid quotes for underlying asset i.

Now, suppose there is an ETF that invests in n risky assets, then the price of the
ETF in seconds t may relate to the lagged prices of the n risky assets and vice versa.
In addition, the price of the ith asset may relate to the lagged price of the other n
underlying assets. Hence, the ETF and ith asset’s transitory components in seconds
4 Nonetheless, APs can utilize arbitrage trading strategies to realize profits. Although

APs can engage in the underlying asset markets, they mainly focus on the ETF
market. They buy the less expensive assets and short-sell the expensive ones between
the ETF and the ‘basket’ of underlying assets. APs can realize profits by holding the
positions until prices converge, at which point they close their positions. In a strict
sense, the uncertainty involved in this profit making does not qualify these trades as
an arbitrage (Ben-David et al., 2018).

5 The model I develop resembles the models developed by Madhavan and Sobczyk
(2016), Pascual and Veredas (2010), and Menkveld et al. (2007)
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t may relate to the lagged transitory components of the other n assets and the ETF
during the previous seconds or minute.

3.1 Model Description

3.1.1 Price Dynamics of the Underlying Assets of an ETF

For each underlying asset i, the following equations define its price dynamics: The
long-run value of an asset i follows a random walk with drift;

mi
t = µmi +mi

t−1 + εmi,t. (1)

The long-run values of the underlying assets characterize informational arrivals in both
the underlying markets and the ETF market. Next, I model the deviations between an
underlying asset i price and its long-run value as:

pit−mi
t = νi,p(p

i
t−1−mi

t−1) + λi,a(a
i
t−1− pit−1) + λi,b(p

i
t−1− bit−1)+

δi(p
f
t−1− vt−1) + εpi,t (2)

where pit is the mid-quote at time t representing the price of asset i. The price of an
underlying asset i is a function of an underlying arbitrage component (pft−1−mi

t−1),
transitory components of the same underlying asset (ait−1 − pit−1, pit−1 − bit−1),
and the ETF arbitrage component (pft−1 − vt−1). The transitory components for an
underlying asset i are also modeled as follows:

ait− pit = βi + νi,a(p
i
t−1−mi

t−1) +

n∑∑∑
i=1

φijaa(a
i
t−1− pit−1) +

n∑∑∑
i=1

φijab(p
i
t−1− bit−1)

+ θiaaf (a
f
t−1− p

f
t−1) + θiabf (p

f
t−1− b

f
t−1) + εai,t (3)

pit− bit = −βi + νi,b(p
i
t−1−mi

t−1) +

n∑∑∑
i=1

φiba(a
i
t−1− pit−1) +

n∑∑∑
i=1

φijbb(p
i
t−1− bit−1)

+ θij
baf

(aft−1− p
f
t−1) + θibbf (p

f
t−1− b

f
t−1) + εbi,t (4)

where βi coefficient captures the average distance between the two quotes of each
underlying asset i; it must always be positive. Equations (1), (2), (3), and (4) are the
price dynamics of an underlying asset i.

3.1.2 Price Dynamics of an ETF

The unobserved long-run value (NAV) of an ETF is measured as the weighted sum of
all the efficient values (mi

t) of the underlying assets, i.e,

vt =

n∑∑∑
i=1

wim
i
t (5)
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where wi is the weight for underlying asset i. The ETF arbitrage trading mechanism is
defined as the difference between the ETF price and its long-run value (NAV).

pft − vt =

n∑∑∑
i=1

ηi(p
i
t−1−mi

t−1) + νf(p
f
t−1− vt−1) + λf,a(a

f
t−1− p

f
t−1)+

+ λf,b(p
f
t−1− b

f
t−1) + εpf ,t (6)

where pft is the mid-quote representing the price of an ETF at time t. The ETF arbitrage
component is a function of the lagged underlying arbitrage components (pit−1−mi

t−1),
lagged ETF arbitrage component (pft−1− vt−1), and lagged transitory components of
the ETF (aft−1− p

f
t−1, pft−1− b

f
t−1).

The transitory components of an ETF are modeled as:

aft − p
f
t = βf +

n∑∑∑
i=1

ψiafa(a
i
t−1− pit−1) +

n∑∑∑
i=1

ψiafb(p
i
t−1− bit−1) + νf,a(p

f
t−1− vt−1)

+ψafaf (a
f
t−1− p

f
t−1) +ψafbf (p

f
t−1− b

f
t−1) + εaf ,t (7)

pft − b
f
t = −βf +

n∑∑∑
i=1

ψibfa(a
i
t−1− pit−1) +

n∑∑∑
i=1

ψibfb(p
i
t−1− bit−1) + νf,b(p

f
t−1− vt−1)

+ψbfaf (a
f
t−1− p

f
t−1) +ψbfbf (p

f
t−1− b

f
t−1) + εbf ,t (8)

where βf is a positive coefficient that captures the average distance between the two
quotes of the ETF and (εaf ,t, εbf ,t) are ETF supply and demand liquidity shocks, respec-
tively. Therefore, equations (6), (7), and (8) determine the price dynamics of an ETF.
The ETF connects with the underlying assets through the ETF arbitrage and transitory
components.

3.1.3 Dynamic State-Space Model

Combining equations (1), (2), (3), and (4) for n underlying assets and equations
(6), (7), and (8) for an ETF, I obtain the dynamic state-space model. I expect βi’s
and βf to be close to half of the average bid-ask spreads of each underlying asset i
and the ETF, respectively. The parameter δi measures the effect of the ETF arbitrage
mechanism on the price of an underlying asset i. Similarly, θ parameters measure the
ETF transitory effect on the transitory components of asset i, νf captures the speed
of the ETF arbitrage mechanism, and λf s capture the transitory effects on the ETF
price. Finally, φ parameters capture the informational trading effects resulting from a
fundamental or a random shock to the underlying asset markets6. I define ETF demand
and supply (‘liquidity’) shocks as εaf ,t and εbf ,t 7.
6 The parameter νi,p measures the speed of the underlying asset i’s arbitrage com-

ponent (pit −mi
t) and λis measure the transitory effect on the price of the same

underlying asset i. ηi measures the effect of underlying asset i arbitrage transactions
on the price of an ETF, and ψs capture the transitory effect on the ETF transitory
components

7 Similarly, underlying asset i ‘liquidity’ shocks are εai,t and εbi,t, and fundamental
shock to underlying asset i markets is denoted by εmi,t. Finally, εpi,t and εpf ,t are
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In matrix form, the dynamic state-space model is given as follows (see Appendix A1
for the full model):

Xt = A+BXt−1 + ε̄t (9)

where Xt−1 is (4n + 3) × T vector of lagged variables of equations (1), (2), (3),
and (4) for each underlying asset and equations (6), (7), and (8) for the ETF, A is
(4n+3)×1 vector of constants, B is (4n+3)×(4n+3) matrix of coefficients, and
ε̄t is (4n+ 3)× 1 vector of noises with ε̄t ∼N(0, Σt). The number of observations
for each lagged variable is T , i.e., t = 1,2, . . . , T seconds. The vector of innovations
of the dynamic state-space model (9) is assumed to be jointly normally distributed
with ε̄t ∼ N

(
0(4n+3)×1,Σt(4n+3)×(4n+3)

)
. In the framework of the dynamic state-

space model, normality will allow one to estimate the unobserved factors (mi
t, vt), for

i = 1,2, . . . , n, using an augmented Kalman filter. The model parameters are then
estimated using the error prediction decomposition of the augmented Kalman filter via
maximum likelihood estimation.

3.2 Model Interpretation

3.2.1 ETF Arbitrage Trading Effects

The high-frequency ETF arbitrage component is defined as the difference between
the ETF price and NAV of the ETF. This subsection explains how the ETF arbitrage
transaction works in the dynamic state-space model. Suppose there is positive ‘liquidity’
shock to the ETF market, i.e., εaf ,t, as a result of more investors demanding ETF shares.
This leads to an increase in aft −p

f
t and then causes the ETF price pft to deviate from

its NAV vt. An authorized participant (AP), through the creation/redemption process,
trades between the ETF shares and the portfolio of the underlying assets to correct the
pricing error. The AP buys the ‘basket’ of the underlying assets and then sells the ETF
shares to return the ETF price in line with its NAV. In doing so, the underlying assets
may be affected and inherit the demand shock from the ETF market differently. First,
there may be a cross-market transient effect in which the increase in aft −p

f
t may affect

ait−pit and pit− bit the next period if θi
bfa

and θi
bfb

are not zero. Secondly, there may
be a direct ETF arbitrage effect on the price of an underlying asset i via the arbitrage
trading strategy taken by the AP if δi is not zero in the next period. Hence, the ETF
liquidity shock may propagate to the underlying asset markets via ETF arbitrage trading.

3.2.2 Informational Trading Effects

After receiving or observing the news of a fundamental or a random shock, traders
of the underlying assets start to trade their assets in the direction of the shock, but
not simultaneously. This trading strategy by the underlying asset traders may cause the
underlying assets to affect each other. For instance, trading the underlying assets in the
direction of a random shock from the ETF market means that more liquidity is injected
into the underlying market, which may cause ait − pit to increase for some assets, if
not all. Then the increase in ait − pit may affect pit − bit the next period if φiba, φijba,
and φjiba are different from zero, for i = 1,2, . . . , n and j = 2, . . . , n. The above

some random shocks which are neither transitory nor fundamental shocks that may
come to the underlying asset i and ETF markets, respectively.
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process is the informational trading effect (second channel) on the underlying markets
due to a random shock from the ETF. Conversely, suppose traders start trading one of
the underlying assets frequently, say asset 1, then there is a positive liquidity shock to
a1
t − p1

t that increases it. Traders of the other underlying assets j = 2,3, . . . , n will
start trading in the same direction as the initial shock to asset 1, leading to asset 1
affecting other underlying assets and other underlying assets affecting each other. Thus,
a shock to a1

t − p1
t may affect pjt − b

j
t the next period if φ1

ba and φj1ba’s are different
from zero. Similarly, other assets may affect each other, i.e., a shock to ajt − p

j
t may

affect pjt − b
j
t the next period if φ2j

ba, φ3j
ba, . . ., φnjba are not zero, for j = 2,3, . . . , n.

This informational trading effect results from a shock to one underlying asset.

3.2.3 Propagation of ETF Liquidity Shocks to Underlying Assets

In this subsection, I show how ETF liquidity shocks propagate to the underlying assets
of an ETF in the dynamic model. I do this through the premium/discount of the ETF and
variance of the returns of the underlying assets. In the dynamic model, the definition of
the ETF arbitrage transaction component coincides with the definition of ETF premium
given by

πt = pft − vt

∆πt =

n∑∑∑
i=1

ηi∆(pit−1−mi
t−1) + νf∆(pft−1− vt−1) + λf,a∆(aft−1− p

f
t−1)+

λf,b∆(pft−1− b
f
t−1) + ∆εpf ,t (10)

Returns of an ETF NAV and its variance are as follows:

vt− vt−1 =

n∑∑∑
i=1

wi(m
i
t−mi

t−1)

var(vt− vt−1) =

n∑∑∑
i=1

w2
iσ

2
mi,t (11)

Equation (11) is obtained since (vt−vt−1) and (mi
t−mi

t−1) are stationary processes.
The variance of the ETF NAV returns is the weighted sum of the fundamental variances
of the underlying assets. The ETF returns can be shown as follows (see Appendix B2
for the derivation):

pft − p
f
t−1 = ∆vt +

n∑∑∑
i=1

ηi∆(pit−1−mi
t−1) + νf∆p

f
t−1 + νf∆vt−1+

λf,a∆(aft−1− p
f
t−1) + λf,b∆(pft−1− b

f
t−1) + εpf ,t (12)
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Variance of the ETF returns is given by

var(∆pft ) = D1

[
n∑∑∑
i=1

(1 + ν2
f + η2

i δ
2
i )w

2
iσ

2
∆mi,t + λ2

f,aσ
2
∆af ,t + λ2

f,bσ
2
∆bf ,t + σ2

∆pf ,t

+

n∑∑∑
i=1

(1 + ν2
i,p)η

2
iσ

2
∆pi,t + λ2

i,a

n∑∑∑
i=1

η2
iσ

2
∆ai,t + λ2

i,a

n∑∑∑
i=1

η2
iσ

2
∆bi,t

]
(13)

where D1 = 1
(1−ν2

f−δ
2
i

∑∑∑n
i=1 η

2
i )

. Similarly, the variance of the returns for underlying
asset i is given by

var(∆pit) = D2

[(
1 + ν2

i,p +
δ2
i

1− ν2
f

n∑∑∑
i=1

η2
i

)
σ2

∆mi,t + λ2
i,aσ

2
∆ai,t + λ2

i,bσ
2
∆bi,t+

σ2
∆pi,t +

1 + ν2
f

1− ν2
f

σ2
∆pf ,t +

λ2
f,aδ

2
i

1− ν2
f

σ2
∆af ,t +

λ2
f,bδ

2
i

1− ν2
f

σ2
∆bf ,t

]
. (14)

where D1 = 1

(1−ν2
i,p−

δ2
i

1−ν2
f

∑∑∑n
i=1 η

2
i )

.

In equation (10), the deviations between ETF price and its NAV are contemporaneously
correlated with the ETF returns, and its NAV returns volatility. Similarly, the deviations
between the ETF price and its NAV are contemporaneously correlated with the underlying
assets returns and their respective NAV returns. This can be seen from equation (14)
where a fraction of the volatility of ETF liquidity, i.e., σ2

∆af ,t
and σ2

∆bf ,t
finds its way

into the underlying assets returns. This means that from the dynamic state-space model,
the ETF arbitrage mechanism is a channel through which liquidity shocks may propagate
from the ETF market to the underlying assets.

8I also find that an ETF may exhibit staleness in its NAV. The first term of the equation
(13) is the variance of the ETF total returns, and the second and third terms are the
variances of the ETF liquidity shocks to the ETF price. In addition, the fourth term is
the variance from the random shock to the ETF price, and the last three terms represent
the variances of the underlying asset’s liquidity shocks to the ETF price. Comparing
equations (11) and (13), the variance of the ETF price will always be greater than the
variance of the ETF NAV. This means there is staleness in the ETF NAV, and the higher
the degree of staleness in the NAV, the larger the variance of liquidity shocks. This
confirms the argument by Madhavan and Sobczyk (2016), Evans et al. (2018), and
Israeli et al. (2017), that the larger the variance of demand or supply shock to a stock,
the higher the degree of stalenes in the NAV of the stock.

3.3 Measures for Analyzing Results

3.3.1 Measure for Excess Volatility

To determine whether ETF demand and supply (liquidity) shocks affect the underlying
asset prices, I measure the intensity of shocks through the variances of returns of the
underlying assets. The last two terms in equation (14) are the excess volatility brought
8 Variance of the ETF fundamental returns is the weighted-sum of all the variances in

the fundamental returns of the underlying assets.
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to the price of underlying asset i when there is a liquidity shock to an ETF market. This
excess volatility is permanent and transitory (non-fundamental). Similarly, the last two
terms in equation (13) are the permanent transitory volatility brought to the ETF price
if there is a liquidity shock to underlying asset i.

3.3.2 Measure for Speed of ETF Arbitrage

The prolonged periods of ETF pricing error are measured by the parameter νf . The
parameter νf measures the speed at which AP acts to correct the ETF pricing errors, i.e.,
the deviations between the ETF price and its NAV. Since the ETF arbitrage component
is a stationary process, the expected h seconds ahead of the premium from period t
is given by E [∆πt+h] = νhf∆πt. Assuming half-life for the pricing error, the time
horizon h needed to halve the deviation between the ETF price and its NAV is obtained
through 0.5 = νhf . Therefore, the time horizon an AP acts to keep the ETF price in
line with its NAV is given by

h =
log (0.5)

log(|νf |)
(15)

The intuition is that the closer the value of the arbitrage parameter νf to 1, the slower
the correction of the ETF pricing error by an AP. In the case of νf = 0, equation (15)
implies automatic or immediate correction of the ETF pricing error.

3.3.3 Measure for Price Discovery

The relevance of price discovery is one of the critical aspects of trading ETFs. ETF
investors are concerned about buying at significant premiums or selling at enormous
discounts. I examine whether ETF arbitrage transactions contribute to price discovery
in the ETF market using equation (6), i.e., the ETF premium at any time t. The price
discovery component (PDC) of the premium is the portion of the total variance of the
premium that is not attributable to transitory noise shocks (Madhavan and Sobczyk,
2016). From equation (6), the measure for price discovery for the ETF arbitrage trans-
action is given by;

PDC = 1−
∑n
i=1 η

n
i σ

2
pi,t

(1− ν2
f)σ

2
π,t

(16)

where σπ is the standard deviation of the premium π = pft − vt, and
0 ≤ PCD ≤ 1. Intuitively, the higher the price discovery component (PDC), the
more contribution to price discovery by the ETF arbitrage transaction. Thus, the closer
the arbitrage parameter νf to 1, the more the ETF arbitrage transaction contributes to
price formation in the ETF market.

4. Data

I use tick data provided by TAQ for two ETFs: SPDR Dow Jones Industrial Average
ETF (DIA) and VanEck Vectors Semiconductor ETF (SMH) listed on the NYSE. DIA
and SMH have 30 and 25 underlying assets, respectively. DIA is an exchange-traded
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fund incorporated in the U.S. that tracks the Dow Jones Industrial Average Index. The
ETF holds the 30 large-cap U.S. stocks that represent the Index. This ETF is registered
as a Unit Investment Trust and pays a monthly dividend representing dividends paid by
the underlying stocks. The ETF’s holdings are price-weighted9. Similarly, SMH is an
exchange-traded fund incorporated in the U.S. that tracks the performance results of
the MVIS US-listed Semi-conductor 25 Index. The fund invests in the largest and most
liquid companies listed in the U.S. that are active in the semiconductor sector10.

The datasets span from January to March 2018 and are recorded on second-by-second
frequency. The data contain the National Best Bid and Offer (NBBO) from NSYE for
an ETF and each of the underlying assets of the ETF. The NBBO measures the best
prices prevailing across all markets to focus on market price discovery.

DIA and SMH ETFs were selected based on the asset under management (AUM),
market capitalization, and data availability. I implement the model for an ETF with
higher AUM and market cap and an ETF with less AUM and market cap. DIA and
SMH have AUM of $252.87B and $0.907B, respectively, and the average market cap for
DIA is $ 21.32B, and SMH is $1.07B during the first quarter of 2018. Tables (5) and
(6) in the Appendix report the descriptive statistics for DIA and SMH ETFs and their
underlying assets, respectively. Comparing both ETFs, mid-quotes prices are higher in
DIA than in SMH. I also report market capitalization for each of the underlying assets
for both ETFs. Typically, assets with large market capitalization have higher prices.

I provide statistics on time-weighted bid-ask spreads in dollars and as a percentage
of the prevailing quoted mid-points using the TAQ NBBO data sampled at seconds
frequency. Spreads increase in dollar units and percentage terms from large to small as-
sets. Spreads are likely to play an essential role in demand or supply liquidity decisions.
However, spreads calculated based on displayed liquidity may overestimate the effective
spreads received due to non-displayed orders. Furthermore, I compute the average mid-
points for both ETFs and their underlying assets on second-by-second frequency over
the three months. I present the average daily trading volume over the three months
of the datasets. The average per day trading volume is higher for DIA ($251.18 mil-
lion) compared to the trading volume for SMH at $1.26 million over the three months
considered.

Similarly, I report the average daily trading volumes over the three months for each
underlying asset for both DIA and SMH ETFs. For the underlying assets of DIA, Mi-
crosoft Corporation (MSFT) had the highest average trading volume at $52.83 million,
and Travelers Companies Inc (TRV) recorded the lowest trading volume at $1.51 million.
On the other hand, for the underlying assets of SMH, Advanced Micro Devices (AMD)
recorded the highest average trading volume at $64.48 million, and ASML Holding NV
(ASML) had the lowest trading volume at $1.35 million.

5. Empirical Results

The main empirical results focus on the following variables of interest; ETF arbitrage
trading effect, informational trading effect, speed of ETF arbitrage, and price discov-
ery in the ETF market. Tables (7) and (11) in Appendix C2 report selected estimated
parameters of interest from the dynamic state-space model for DIA and SMH ETFs,
9 https://www.bloomberg.com/quote/DIA:US
10 https://www.bloomberg.com/quote/SMH:US
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respectively11. Thus, column 4 in both tables (7) and (11) present the estimated pa-
rameters that capture the effect of ETF arbitrage on the respective underlying assets12.
Column 5 reports the estimated parameters that measure the speed of ETF arbitrage and
the underlying arbitrage transactions. Finally, columns 10 to 13 in tables (7) and (11)
report the estimated parameters for cross-market transitory effects, i.e., ETF transitory
effect on the underlying asset. Table (8) estimates the informational trading effect of
the underlying assets on DIA ETF. Likewise, tables (9) and (10) report the estimates
of the informational trading effect of two randomly selected underlying assets of DIA
ETF (BA and AAPL) on all the underlying assets. Due to space limitations, see the
Online Appendix for the estimates of the informational trading effect for the rest of the
underlying assets of DIA ETF, SMH ETF, and all the underlying assets of SMH ETF.
The estimated parameters are statistically significant at the 5% level for all or almost all
ETFs and their underlying assets.

5.1 ETF Arbitrage Trading Effects

I find that the estimates for δi measuring the direct effect of ETF arbitrage trading
on the price of underlying asset i for both ETFs were not zero in the next period. As
shown in equation (14) from section 3, the dynamic model in this study demonstrates
how the ETF arbitrage mechanism serves as a channel through which shocks from the
ETF market propagate to the prices of the underlying assets and vice versa. Column 4
of tables (7) and (11) in Appendix C2 provide evidence that any ’liquidity’ shock to DIA
and SMH ETFs propagates to their respective underlying assets via the ETF arbitrage
mechanism since the estimates of δ for the underlying assets of both ETFs are not
zero. Hence, there are ETF arbitrage trading effects that are introduced directly into
the underlying asset markets via the arbitrage trading component13. This confirms the
argument by Ben-David et al. (2018) that any liquidity shocks to an ETF propagate to
the underlying assets through the ETF arbitrage mechanism, and these shocks affect
the underlying assets in the short term. In addition, I find that both DIA and SMH
ETFs have a transitory effect on their respective underlying assets, i.e., θ parameters
for the underlying assets of DIA and SMH were not zero in the next period. The
estimates in columns 10 to 13 of tables (7) and (11) are significantly not zero. This
implies cross-market transitory effects on the underlying assets due to ETF arbitrage
trading. Thus, liquidity shock to an ETF market affects the transitory components of
the underlying assets through the ETF arbitrage mechanism. Hence, this confirms that
an ETF arbitrage transaction is one of the channels responsible for the propagation of
shocks from the ETF markets to the underlying asset markets.

Finally, I find that liquidity shock from an ETF market brings extra transitory volatility
to each of the underlying asset prices of both ETFs. These new layers of volatility stay
permanently in the prices of the underlying assets. However, the underlying assets do
not receive an equal layer of the additional layer of transitory volatility. Thus, assets with
higher weights in the portfolio of the underlying assets get a more significant portion
11 For the full estimated parameters of the dynamic state-space model for both ETFs

and their corresponding underlying assets, see the Online Appendix (https://github.
com/BoaduSebbe/onlineAppendix.git ).

12 Similarly, column 3 presents the estimated parameters that capture the effect of
underlying asset arbitrage on the respective ETFs.

13 Similarly, since
∑∑∑n

i=1 ηi is not zero in the next period, there is an underlying arbitrage
trading effect that is introduced in the respective ETF markets, see Online Appendix.

13
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of the excess transitory volatility from the ETF liquidity shocks. The first columns of
tables (2) and (13) provide the estimated excess transitory volatility brought to the
underlying assets when there is a liquidity shock to DIA and SMH ETFs and vice versa.
For underlying assets of DIA ETF, BA is highly affected with extra transitory volatility of
0.925, and VZ is less affected with extra transitory volatility of 0.101 when one unit of
liquidity shock propagates to the underlying assets from DIA. Similarly, for the underlying
assets of SMH ETF, TSM is highly affected with extra transitory volatility of 0.954, and
NVDA is less affected with extra transitory volatility of 0.237 when one unit of SMH
liquidity shock propagates to the underlying assets.

One can also observe the above finding in the estimated mean impulse responses
for the prices of the underlying assets of DIA and SMH ETFs in tables (1) and (12).
Columns 2 to 4 of tables (1) and (12) report the estimates of IRFs of the underlying asset
prices from the dynamic state-space model. The estimates in tables (1) and (12) can be
interpreted as the average price impact of liquidity and fundamental shocks emanating
from the respective ETFs to their underlying assets. For the underlying assets of both
ETFs, a unit of ETF liquidity shock adds permanent non-fundamental volatility to the
prices of these assets. This also confirms the argument by Ben-David et al. (2018) that
a shock that propagates from the ETF markets to the underlying asset markets adds
extra transitory volatility to the underlying assets’ prices. I further provide graphs of
the impulse responses, i.e., figures (1) and (2), for four randomly selected 14 underlying
assets of both ETFs to gain a better insight into the effect of ETF liquidity shocks. One
can see that ETF liquidity shocks to the underlying asset prices do not die out entirely,
resulting from the excess volatility brought to the underlying markets through the ETF
arbitrage mechanism.

5.2 Informational Trading Effect

Through the activities of investors of the underlying assets, I find informational trading
effects on the underlying assets resulting from random or fundamental shocks. Tables (8)
to (10) in the Appendix and table (1) to (28) on the Online Appendix report estimated
informational trading effect parameters for the underlying assets of DIA. Similarly, tables
(29) to (54) in the Online Appendix provide estimates for the informational trading
effect on the underlying assets of SMH ETF. For both ETFs, the estimates for the
parameters φijaa, φijab, φ

ij
ba, and φijbb, i, j = 1,2, . . . n are not zero in the next period.

These non-zero estimates of the informational trading effect show that the investors
of the underlying assets, upon receiving or observing the news of a fundamental or
random shock, start to trade their assets in the same direction of the initial shock, but
not simultaneously, thus causing the underlying assets to affect each other. In effect,
this means that fundamental or random shocks (which may include demand and supply
shocks to the ETF) propagate to the underlying assets through the adjustment in the
ask and bid quotes of the underlying assets of the ETF. This finding partially confirms
that of Box et al. (2019), but they conclude that any shock to an ETF market has no
arbitrage pressures on the underlying asset; rather, the shock propagates through the
adjustment in the ask and bid quotes of the assets.

In contrast to Box et al. (2019), I find that ETF liquidity shocks propagate to the
underlying assets of an ETF via the ETF arbitrage mechanism and also through the
14 For all graphs of impulse responses for prices of the rest of the underlying assets, see

the Online Appendix.
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adjustment in the ask and bid quotes of the assets (transitory components of the assets).
This suggests that there are ETF arbitrage pressures on the underlying assets of both
ETFs. Although the channel that propagates a more significant portion of shocks to the
underlying assets is not the focus of this paper, I believe the ETF arbitrage mechanism
propagates a larger portion of the shock to the underlying assets. This is because, on
average, the estimated parameters for the ETF arbitrage trading effect (δs) are higher
in magnitude than those of the informational trading effect (φs).
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Table 1: DIA’s Underlying Asset Price Impulse Response Function

Price
of Stock

Ask Quote
of DIA

Bid Quote
of DIA

Price
of DIA

AAPL 0.045∗∗ −0.229∗∗ −0.026∗∗

CVX 0.025∗ −0.310∗ 0.044∗

AXP 0.066∗∗ −0.024∗∗ 0.017∗∗

BA 0.052∗∗ −0.049∗∗ −0.029∗∗

CSCO 0.023∗∗ −0.105∗∗ −0.022∗∗

CAT −0.027∗∗ 0.024∗∗ 0.021∗∗

DIS 0.017∗∗ −0.017∗∗ 0.098∗∗

IBM 0.010∗ −0.019∗ 0.039∗

DOW −0.020∗∗ 0.015∗∗ −0.014∗∗

GS 0.029∗∗ −0.028∗∗ 0.085∗∗

KO 0.010∗∗ −0.026∗∗ −0.052∗∗

PFE 0.020∗∗ −0.016∗∗ 0.039∗∗

MFST 0.019∗∗ −0.026∗∗ 0.029∗∗

NKE 0.023∗∗ −0.022∗∗ −0.030∗∗

PG 0.039∗∗ −0.018∗∗ 0.026∗∗

HD 0.024∗∗ −0.020∗∗ 0.012∗∗

JPM 0.022∗∗ −0.034∗∗ 0.033∗∗

INTC 0.011∗∗ −0.017∗∗ 0.020∗∗

JNJ 0.049∗∗ 0.012∗∗ 0.010∗∗

MMM 0.014∗∗ −0.014∗∗ 0.015∗∗

MCD 0.030∗∗ −0.014∗∗ 0.011∗∗

MRK 0.023∗∗ −0.021∗∗ 0.023∗∗

WBA 0.019∗∗ −0.025∗∗ 0.039∗∗

UTX 0.075∗∗ −0.032∗∗ 0.017∗∗

TRV 0.035∗∗ −0.022∗∗ 0.026∗∗

XOM 0.015∗∗ −0.028∗∗ 0.031∗∗

WMT 0.018∗∗ −0.026∗∗ 0.036∗∗

UNH 0.023∗ −0.022∗ 0.031∗

V 0.021∗∗ −0.025∗∗ −0.050∗∗

VZ −0.007∗∗ 0.010∗∗ 0.017∗∗

The table reports underlying asset day-ahead average impulse response functions (IRFs) from the dynamic

state-space model developed in section 3 for the underlying assets of DIA ETF. The sample period is from

January 2 to March 30, 2018, and the sampling frequency is 1-second. Columns 2 to 4 represent the variables

being shocked by a unit, and rows correspond to the variables (underlying assets) affected by the unit shock

from columns 2 to 4. The underlying assets’ prices at one-second frequency are the mid-points of the best

NBBs and best NBOs for the respective underlying assets. Observations include all the best NBBs and NBOs

between 9:30 and 16:30 EST. The IRFs are estimated for one trading day ahead (representing 9 hours or

equivalently 32,400 seconds). For the estimates of the IRFs, a *(**) next to the estimates indicates that the

estimated IRF differs from zero and is statistically significant at the 1% (5%) level using clustered standard

errors by an asset and by day.
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5.3 Speed of ETF Arbitrage

Using equation (??), the corresponding estimated time in seconds for an AP to correct
parity between the ETF prices and their NAVs are 231 (approximately 4 minutes) for
DIA and 577 (approximately 10 minutes) for SMH. These time estimates are obtained
through the parameter that measures the speed of ETF arbitrage (νf ). The intuition
is that the closer the value of νf to 1, the slower it takes an AP to act to correct the
pricing error between an ETF price and its NAV. In the case of νf , being zero implies
an immediate correction of the pricing error. As reported in column 5 of tables (7) and
(11), ν̂f is 0.99699 for DIA and 0.99883 for SMH. In general, APs take a longer time to
correct parities between the two ETF prices and their respective NAVs since ν̂f for both
ETFs are closer to 1. Nonetheless, APs are likely to take less time to correct pricing
errors for DIA than SMH assuming half-life for the unobserved parity between the ETF
prices and their NAVs.

5.4 Contribution to Price Discovery

Using equation (16), the estimated PDC for DIA and SMH ETFs are 0.737 and
0.669, respectively. Intuitively, these estimates make sense since approximately 74%,
and 67% of the variations in the premiums of DIA and SMH are due to price discovery,
respectively. This result suggests that ETF premiums or discounts reflect staleness in
ETF NAVs and transitory liquidity shocks in both ETF markets. This means that the
ETF arbitrage transaction speeds up the price discovery process. Since transitory liquidity
shocks contribute to the price discovery processes of both DIA and SMH ETFs, it implies
that the volatility of the prices of DIA and SMH vary with the state of their respective
bid/ask quotes.

Finally, for the estimates of correlation coefficients in the covariance matrix Σt, see
tables in the Online Appendix D. I find estimates that are consistent with the empirical
findings of Pascual and Veredas (2010) and Hansen and Lunde (2006b). The negative
correlations between εj and εk, j ∈ {mi}, k ∈ {ai, bi, af , bf} imply that if there is
an arrival of new information, then the best ask and bid quotes in both ETFs and their
underlying assets adjust asymmetrically. The transitory component of the ask quotes
increase (decrease), and the transitory component of the bid quotes decrease (increase)
when there is a negative (positive) shock to the efficient prices of the ETFs and their
underlying assets. This is the sign of adjustment of the best ask and bid quotes in the
same direction as the efficient values. In addition, the arrival of a negative (positive)
shock leading to the adjustment in the quoted prices is explained by traders that do not
continuously monitor the market (Pascual and Veredas, 2009, 2010). Due to limited
space, the estimated auxiliary parameters âj,k and b̂j,k of the GARCH (1,1) processes
of the elements in the correlation matrix Rt are not reported, but are available upon
request from the author.
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Table 2: Estimated Extra Volatility and Speed of Arbitrage: DIA

Extra
V olatility

Speed of
Arbitrage (h)

DIA 230.7

AAPL 0.579
(0.199)

58.81

CVX 0.542
(0.106)

53.24

AXP 0.547
(0.067)

45.68

BA 0.925
(0.047)

21.67

CSCO 0.688
(0.036)

34.03

CAT 0.542
(0.043)

49.04

DIS 0.583
(0.055)

25.95

IBM 0.781
(0.065)

27.76

DOW 0.620
(0.041)

25.46

GS 0.110
(0.034)

51.85

KO 0.289
(0.013)

52.20

PFE 0.155
(0.020)

37.96

MSFT 0.386
(0.023)

52.04

NKE 0.412
(0.132)

52.31

PG 0.127
(0.094)

51.08

HD 0.496
(0.135)

50.47

JPM 0.267
(0.032)

38.97

INTC 0.155
(0.017)

41.08

JHJ 0.139
(0.012)

31.99

MMM 0.456
(0.070)

50.66

MCD 0.317
(0.015)

52.32

MRK 0.249
(0.094)

51.83

WBA 0.297
(0.117)

51.81

UTX 0.305
(0.068)

51.03

TRV 0.744
(0.007)

52.04

XOM 0.611
(0.147)

50.88

WMT 0.601
(0.013)

50.85

UNH 0.108
0.035

52.32

V 0.419
(0.013)

34.62

VZ 0.101
(0.042)

51.84

The table provides estimates for excess transitory volatility brought to the underlying assets of DIA and the

speed of arbitrage trading. The first column presents the extra volatility that is brought to the underlying

asset when one unit of demand and supply (liquidity) shocks the ETF. Parenthesized values in the first column

are the respective additional transitory volatility brought to the price of the DIA ETF when there is a unit of

liquidity shock to the respective underlying assets. On the other hand, column two shows the estimated time

in seconds for the speed of arbitrage trading, assuming a half-life for the pricing error.
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Figure 1: Price Impulse Responses for Selected Underlying Assets of DIA

(a) (b)

(c) (d)
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6. Conclusion

In this study, I quantitatively examine the effects of ETF arbitrage trading on the underlying
holdings of an ETF. In particular, the study focuses on answering the following questions: Do
ETF liquidity demand shocks propagate to the underlying assets, and if so, through which
channel(s)? If ETF liquidity shocks propagate to the underlying assets, do these shocks add
any extra volatility to the prices of the underlying assets? At what speed can deviations
between an ETF price and its NAV be corrected by an authorized participant (AP)? Finally,
does the ETF arbitrage mechanism speed up or slow down price discovery in the ETF market?
I develop a dynamic state-space model combining the price dynamics of an ETF, its underlying
assets, and an ETF arbitrage mechanism to answer the empirical questions.

I apply high-frequency datasets spanning from January to March 2018 to estimate the
model individually for Dow Jones Industrial Average ETF (DIA) investing in the 30 stocks
of the DOW Jones index and VanEck Vectors Semiconductor ETF (SMH) with a portfolio
of 25 stocks of MVIS semi-conductor index. The contribution of the study is to provide
quantitative evidence to investigate the argument put forward by Ben-David et al. (2018)
that liquidity demand shocks to an ETF propagate to the underlying assets through the
ETF arbitrage mechanism. My results show that ETF liquidity (demand and supply) shocks
propagate to the underlying assets via the ETF arbitrage transaction mechanism. First, I find
that investors of the underlying assets, upon receiving news of a shock to the ETF or any of
the underlying stocks, start to trade their assets in the same direction of the initial shock, but
not simultaneously. This leads to the underlying assets affecting each other and indirectly
inheriting the liquidity shocks from the ETF market or the shock from another underlying
asset. Hence, some shocks, including ETF liquidity shocks, propagate to the underlying
assets via the adjustment in the ask and bid quotes of the underlying assets. This is the
informational trading effect. Secondly, I find that the ETF liquidity shocks that propagate
to the underlying assets add permanent non-fundamental volatility to all the prices of the
underlying assets and vice versa. However, the shocks do not equally affect the underlying
assets of the ETFs. Assets with higher weights are highly affected as compared to less-
weighted assets.

Furthermore, the estimates of the speed of ETF arbitrage transactions suggest that APs
correct deviations between the DIA ETF and its NAV using approximately 4 minutes. Sim-
ilarly, APs correct deviations between the SMH ETF and its NAV using 10 minutes. This
means that, on average, APs act slower to correct any parity between the ETFs and their
NAVs. However, APs act relatively slower in keeping the SMH price in line with its NAVs
than correcting parity between the DIA price and its NAV. Finally, I show that observed
premiums/discounts can be decomposed into transitory liquidity and price discovery com-
ponents. The estimates of the price discovery components for the two ETFs suggest that
premiums/discounts reflect staleness in the ETFs’ NAVs against the transitory liquidity pres-
sures in the ETF markets. These findings show that an ETF arbitrage transaction speeds up
the price discovery process in the ETF market. Hence, the ETF arbitrage contributes price
discovery in the ETF market.

More attention needs to be paid to how underlying asset prices are formed when new
information arrives in the ETF markets. Thus, searching for factors that contribute to price
discovery among the underlying assets of an ETF will be of great interest for future research.
In most cases, researchers investigate price discovery between only two related asset markets
or exchanges. It would be interesting to investigate price discovery among many assets
simultaneously to see if other factors might contribute to asset price formation among these
assets.
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Microstructure models have shown that the risk of information asymmetries partially
determines the size of the bid-ask spreads. Hence, the transitory components of the
ask and bid quotes in the ETF and all the underlying assets markets may be corre-
lated with the innovations to the long-run values (vt, mi

t) in the presence of adverse
selection. I analyze the daily cross-correlations between SPDR Dow Jones Industrial
Average ETF (DIA) and its 30 underlying assets and the daily cross-correlations among
the 30 underlying assets of DIA. A similar daily cross-correlations analysis is performed
on SMH ETF and its 25 underlying assets (see Online Appendix A1 and A2 for these
cross-correlations). I find results consistent with the results documented in the realized
volatility literature, i.e., the cross-correlations vary with time, hence, the reason for as-
suming time varying Σt, see e.g., Bandi and Russell (2008),Hansen and Lunde (2006a),
and Hansen and Lunde (2006b).

I do not restrict the correlation between the innovations to the long-run efficient
prices (εmi,t) and the innovations to the transitory components in both the ETF and
the underlying assets markets (εai,t , εbi,t ) and (εaf ,t , εbf ,t). Nonetheless, I restrict the
contemporaneous correlation between the innovations to the transitory components in
the ETF and underlying asset markets. Assuming that there is demand or supply shock
on one side of a market, then the shock is expected to cause a lagged rather than a
contemporaneous effect on the other side of the same market as captured by the dynamic
model. Next, I restrict the contemporaneous correlations between the innovations to
the quoted prices of the underlying assets and the innovations to the prices of other
underlying assets. Thus, there is no correlation between εai,t , εbi,t and εpj ,t for j 6= i.
However, I allow for the correlation between εai,t , εbi,t and εpj ,t for j = i, and also
allow for the correlation between εaf ,t, εbf ,t and εpf ,t. Furthermore, I restrict the
contemporaneous cross-correlations between the innovations to the underlying asset i’s
quotes (εai,t , εbi,t) and innovations to the ETF quotes (εaf ,t , εbf ,t). The covariance
matrix is given by Σt.

With the covariance matrix Σt, the dynamic model specification becomes an n-
variate volatility model. I follow Engle (2002) in modeling the covariance terms of Σt

using Dynamic Conditional Correlation (DCC) processes. The DCC represents a good
compromise in terms of the number of parameters, flexibility, and capturing the true
features of the data. I only need to estimate a few extra parameters of the model
conditional variances. The diagonal entries of Σt are made up of informational volatility
(σ2
mi,t

) and transitory volatility
(
σ2
j,t, j ∈

{
ai, bi, pi, pf , af , bf

})
.

Informational volatility σ2
mi,t

for an underlying asset i is allowed to have both deter-
ministic and dynamic components, which are assumed to follow the EGARCH process
below;

σ2
mi,t = exp

(
τ i0 + τ i1(σ2

mi,t−1) + τ i2

(
εmi,t−1

σmi,t−1

)
+ τ i3

∣∣∣∣ εmi,t−1

σmi,t−1

∣∣∣∣)
where

ε
mi,t−1

σ
mi,t−1

is a standardized shock to the underlying asset i. The processes for σ2
mi,t

include intercepts τ i0; persistence parameters τ i1; sign or leverage parameters τ i2 capture
the asymmetric effects of good and bad news of prior shocks in respective markets;
and magnitude parameters τ i3 measure the effects of the size of these same shocks in
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respective markets.
Furthermore, I assume that the conditional variances of the arbitrage and transitory

components σ2
j,t, j ∈

{
ai, bi, pi, pf , af , bf

}
are functions of past shocks, leading to

the following EGARCH(0, 1) model:

σ2
j,t = exp

(
κ0
j + κj

∣∣∣∣ εj,t−1

σj,t−1

∣∣∣∣) , j ∈
{
ai, bi, pi, pf , af , bf ; i = 1,2, . . . n

}
where κj measures the effect of prior shocks through the absolute value of the stan-
dardized shocks in respective markets, which are transitory in nature.

Appendix A3: Estimation Procedure

In this Appendix section, I describe the estimation procedure of the dynamic state-
space model. Following Newey and McFadden (1994) and Engle (2002), the dynamic
model parameters are estimated using a two-step approach using the Augmented Kalman
filter technique. The dynamic state space model is represented by

Xt = A+BXt−1 + εt, ε̄t ∼N(0, Σt)

Since I assume that the variances of the vector of innovations, εt, follow dynamic con-
ditional correlation (DCC), then

Σt = DtRtD
T
t zt

where Dt = diag
{√

σ2
j,t

}
for j ∈

{
mi, pi, ai, bi, pf , af , bf ; i = 1,2, ...n

}
, Rt

is a conditional correlation matrix of the standard disturbances εj,t, and zt is a vector
of iid errors such that E[zt] = 0 and E[ztz

T
t ] = I4n+3. The covariance matrix Σt

should be symmetric and positive definite, and to ensure that both Dt and Rt must be
symmetric and positive definite. By construction, Dt is symmetric and positive definite
since Dt is a diagonal matrix and the diagonal entries are the square root of variances.
Rt is structured to have its major diagonal entries 1 and off-diagonal elements as the
respective correlation coefficients. The off-diagonal elements of Rt are given by

ρj,k,t =
qj,k,t

√
qj,j,tqk,k,t

, j, k ∈
{
mi, pi, ai, bi, pf , af , bf , i = 1,2, . . . n

}
where the auxiliary variables qj,k,t follow GARCH (1,1) process as follows:

qj,k,t = Γj,k(1− aj,k − bj,k) + aj,k
(
εj,k,tε

T
j,k,t

)
+ bj,kqj,k,t−1 (17)

with Γj,k being unconditional correlation between εj,t and εk,t. To ensure that Rt is
positive definite, parameters aj,k and bj,k must satisfy aj,k, bj,k > 0 and aj,k+bj,k ≤
1. By construction, both Dt and Rt are symmetric and positive definite, hence Σt

is symmetric and positive definite. Under the normality assumption, I estimate the
model parameters and the correlation coefficients by augmented Kalman filter following
a two-step estimation approach. I denote parameters in matrix Dt by ∆ and additional
parameters in the correlation matrix Rt by Q. The log-likelihood for the estimator is
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expressed as :

yt|It−1 ∼N(04n+3,Σt)

l = −1

2

T∑∑∑
t=1

(
n log(2π) + log |Σt|+ ytΣ

−1
t yt

)
= −1

2

T∑
t=1

(
n log(2π) + 2 log |Dt|+ yTt D

−1
t D−1

t yt− eTt et

+ log |Rt|+ eTt Rtet
)

Due to the large size of the covariance matrix Σt, I follow the two-step approach of
Newey and McFadden (1994). I denote parameters in matrix Dt by ∆ and additional
parameters in the correlation matrix Rt by Q. The log-likelihood function is expressed
as the sum of the volatility part and correlation part:

l(∆,Q) = lv(∆) + lc(∆,Q)

where lv(∆) is the log-likelihood for the volatility part and lc(∆,Q) is the log-likelihood
for the correlation part. The volatility part is given by

lv(∆) = −1

2

T∑∑∑
t=1

(n log(2π) + log(|Dt|2) + yTt D
−2
t yt), (18)

and correlation part expressed as

lc(∆,Q) = −1

2

T∑∑∑
t=1

(log(|Rt|) + eTt R
−1
t et− eTt et) (19)

where et = D−1
t yt, and yt = [Xt− (A+BXt−1)].

The first stage in the two-step approach is to maximize the log-likelihood of the volatil-
ity term ∆̂ = argmax{lv(∆)} and in the second stage the correlation parameters Q
are estimated by taking ∆̂ as given and then maximizing the log-likelihood of the corre-
lation term:Q̂ = argmax

{
lv(∆̂,Q)

}
. The consistency of the correlation parameters

Q is ensured by the consistency of the volatility term parameters ∆. The maximum of the
second stage is a function of the first stage parameter estimates. Hence, if the estimated
model parameters are consistent, then the correlation parameters will be consistent as
long as the log-likelihood of the correlation term is continuous in the neighborhood of
the true parameters. The dynamic state-space model has 2(n + 1)(2n + 7) + 3n
parameters excluding the auxiliary parameters of the GARCH (1,1) processes of the off-
diagonal elements of Rt matrix and also exclude conditional correlation coefficients of
Rt.
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I formulate the DCC process for the framework of this study as follows:

yt|It−1 ∼N(0n,DT
t RtDt), yt = [Xt− (A+BXt−1)] and

It−1 ∈ {Xt−1,Dt−1,Rt−1, yt−1, ...}

Dt = diag
{√

σ2
j,t

}
, j ∈

{
mi, pi, ai, bi, v, pf , af , bf ; i = 1,2, . . . n

}
et = D−1

t yt

Rt = diag {Qt}−1Qtdiag {Qt}−1

where the entries ofQt matrix are the auxiliary variables qj,k,t expressed in equation (17).
Under the normality assumption of the first equation above, I obtain a log-likelihood
function. The second matrix equation assumes that each asset follows a univariate
EGARCH process.

Appendix B1: Derivation of the Variance of ETF NAV Returns (11)

From equation (5), the ETF NAV returns is given by

vt− vt−1 =

n∑∑∑
i=1

wi(m
i
t−mi

t−1)

=

n∑∑∑
i=1

wi(∆m
i
t−1 + ∆εmi,t)

The variance of ETF NAV returns is

var(vt− vt−1) =

n∑∑∑
i=1

w2
iσ

2
∆mi,t

Appendix B2: Derivation of the Variance of ETF Returns (13)

Starting from equation (6), the price of an ETF is modeled as

pft = vt +

n∑∑∑
i=1

ηi(p
i
t−1−mi

t−1) + νf(p
f
t−1− vt−1) + λf,a(a

f
t−1− p

f
t−1)+

λf,b(p
f
t−1− b

f
t−1) + εpf ,t (20)

Shifting forward by one period, I obtain the ETF return as

∆pft = ∆vt +

n∑∑∑
i=1

ηi∆(pit−1−mi
t−1) + νf∆p

f
t−1− νf∆vt−1+

λf,a∆(aft−1− p
f
t−1) + ∆λf,b(p

f
t−1− b

f
t−1) + ∆εpf ,t
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The variance of ETF returns is

var(∆pft ) = var(∆vt) +

n∑∑∑
i=1

ηivar(∆(pit−1−mi
t−1)) + νfvar(∆(pft−1− vt−1))

+ λf,avar(∆(aft−1− p
f
t−1)) + ∆var(λf,b(p

f
t−1− b

f
t−1)) + var(∆εpf ,t)

var(∆pft ) =

n∑∑∑
i=1

w2
iσ

2
∆mi,t +

n∑∑∑
i=1

η2
i var(∆(pit−1−mi

t−1)) + ν2
fvar(∆p

f
t−1)+

ν2
f +

n∑∑∑
i=1

w2
iσ

2
∆mi,t + λ2

f,aσ
2
∆af ,t + λ2

f,bσ
2
∆bf ,t + σ2

∆pf ,t (21)

But;

∆(pit−1−mi
t−1) = ∆(pit−2−mi

t−2)+λi,a(a
i
t−2−pit−2)+λi,b(p

i
t−2−bit−2)+∆εpi,t

Taking the variance of the last equation above and substituting it into equation (21), I
obtain equation (13). A similar derivation can be done for the variance of the returns of
underlying asset i using equation (14).

Appendix C1: Descriptive Statistics

Table 3: Weights for the Underlying Assets of DIA

AAPL CVX AXP BA CSCO CAT DIS IBM DOW GS
Weights 0.064 0.0297 0.0295 0.0896 0.011 0.035 0.0359 0.0327 0.0132 0.0535

HD KO JPM INTC JNJ MMM MCD NKE MRK MSFT
Weights 0.0577 0.0128 0.0314 0.0141 0.0319 0.0417 0.0473 0.0223 0.0206 0.0361

WBA UTX PG PFE TRV XOM WMT UNH V VZ
Weights 0.0151 0.0361 0.0294 0.0089 0.0327 0.0167 0.0294 0.0624 0.0438 0.0145

Source: etf.com
The table reports the average weights of the Underlying assets of DIA from January 2,

2018, to March 31, 2018.

Table 4: Weights for the Underlying Assets of SMH

TSM INTC NVDA AMD ASML TXN QCOM MU AVGO
Weights 0.1268 0.1169 0.0624 0.0524 0.0483 0.048 0.048 0.0474 0.067

NXPI LRCX AMAT ADI KLAC XLNX STM MCHP CDNS
Weights 0.0600 0.0477 0.0432 0.0417 0.0286 0.0274 0.0261 0.0232 0.0238

SWKS MXIM TER MRVL QRVO ON OLED
Weights 0.0200 0.0175 0.0125 0.0124 0.0112 0.0104 0.009

Source: etf.com
The table reports the average weight of the Underlying assets of SMH from January 2,

2018, to March 31, 2018.
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Table 5: Descriptive Statistics for DIA and its Underlying Assets

Symbol Source AUM
($B)

Market
Cap
($B)

mid−quote
($)

Bid−Ask
spread
($)

Relative
Bid−Ask
spread
(bps)

Trading
V olume
($M)

Observations

DIA TAQ 252.87 21.32 258.71 1.300 0.005 251.18 1521000
AAPL TAQ 367.8 860.03 174.45 0.289 0.0016 39.6 1521000

AXP TAQ 179.96 70.63 99.33 0.447 0.0045 4.39 1521000

BA TAQ 113.55 196.10 310.70 0.276 0.0014 5.00 1521000

CVX TAQ 256.44 217.83 130.12 0.450 0.0035 6.50 1521000

CSCO TAQ 131.51 208.38 41.47 0.733 0.0172 38.09 1521000

CAT TAQ 78.99 88.12 72.18 0.904 0.0134 4.87 1521000

DIS TAQ 97.94 155.70 111.37 1.03 0.0093 8.24 1521000

IBM TAQ 125.29 140.84 167.60 0.084 0.0001 3.76 1521000

DOW TAQ 130.01 31.21 27.25 0.454 0.0175 17.40 1521000

GS TAQ 973.54 95.17 261.71 0.573 0.0022 3.12 1521000

HD TAQ 44.53 206.53 196.84 0.489 0.0025 5.23 1521000

KO TAQ 93.28 184.30 47.46 1.004 0.0213 12.40 1521000

JPM TAQ 2609.79 374.42 112.95 0.943 0.0083 17.68 1521000

INTC TAQ 128.6 210.99 46.99 1.065 0.0235 46.32 1521000

JNJ TAQ 156.63 343.34 146.30 0.936 0.0063 7.23 1521000

MMM TAQ 38.58 130.33 246.48 0.423 0.0017 2.85 1521000

MCD TAQ 33.72 122.79 171.97 2.44 0.0141 4.04 1521000

NKE TAQ 22.55 82.25 62.76 0.780 0.0127 9.55 1521000

MRK TAQ 86.64 158.38 56.40 1.380 0.0244 12.14 1521000

MSFT TAQ 245.5 241.68 85.97 0.830 0.0972 52.83 1521000

WBA TAQ 70.82 68.32 73.19 2.810 0.0038 7.92 1521000

UTX TAQ 55.43 100.66 126.36 2.840 0.0022 6.62 1521000

PG TAQ 124.37 229.80 92.14 0.890 0.0097 11.77 1521000

PFE TAQ 164.61 214.36 36.31 0.180 0.0049 24.88 1521000

TRV TAQ 103.68 37.06 129.81 1.95 0.0142 1.51 1521000

XOM TAQ 348.83 315.89 84.02 1.010 0.0125 15.97 1521000

WMT TAQ 204.52 258.98 105.79 2.42 0.0229 9.14 1521000

UNH TAQ 155.57 227.18 219.01 9.98 0.0456 3.99 1521000

V TAQ 69.04 224.78 173.17 0.410 0.0237 10.02 1521000

VZ TAQ 264.52 197.59 58.42 1.63 0.0271 16.25 1521000

Table (5) provides descriptive statistics for DIA ETF and its 30 underlying assets. I calculate the
average of the following second-by-second statistics for the SMH ETF and each of its underlying

assets. Bid–Ask spread is the average difference between the bid and ask quotes. The relative bid-ask
spread is the average ratio of the quoted bid-ask spread divided by the quote midpoint, weighted by

time; Volume is measured as the number of shares in dollars transacted. Market capitalization is
measured at the end of March 2018.
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Table 6: Descriptive Statistics for SMH and its Underlying Assets

Symbol Source AUM
($B)

Market
Cap
($B)

mid−quote
($)

Bid−Ask
spread
($)

Relative
Bid−Ask
spread
(bps)

Trading
V olume
($M)

Observations

SMH TAQ 0.907 1.07 101.24 2.42 0.024 1.26 1521000
TSM TAQ 70.08 707.75 43.30 3.413 0.0048 7.17 1521000

INTC TAQ 128.6 210.99 46.99 1.065 0.0231 46.32 1521000

NVDA TAQ 11.24 149.18 12.42 0.465 0.0371 24.26 1521000

AMD TAQ 3.76 11.7 190.37 1.352 0.0071 64.48 1521000

ASML TAQ 22.92 54.76 111.85 1.719 0.0155 1.35 1521000

TXN TAQ 24.13 103.58 66.28 1.614 0.0247 5.43 1521000

QCOM TAQ 64.13 74.92 17.79 2.360 0.1331 11.43 1521000

MU TAQ 41.26 70.26 264.96 1.927 0.0734 65.62 1521000

AVGO TAQ 54.54 110.06 118.98 1.923 0.0168 5.03 1521000

NXPI TAQ 21.53 40.51 203.22 1.435 0.0071 5.73 1521000

LRCX TAQ 10.77 31.23 62.123 1.309 0.0218 3.71 1521000

AMAT TAQ 17.63 49.8 93.10 2.019 0.0229 15.32 1521000

ADI TAQ 20.44 17.31 110.55 1.212 0.0114 3.60 1521000

KLAC TAQ 5.61 16.77 70.97 1.541 0.0220 1.54 1521000

XLNX TAQ 5.06 16.41 23.181 0.121 0.0052 2.63 1521000

STM TAQ 10.07 11.15 22.86 1.765 0.0772 3.00 1521000

MCHP TAQ 8.26 22.52 44.21 1.770 0.0401 3.11 1521000

CDNS TAQ 2.49 10.37 96.86 2.078 0.0216 2.73 1521000

SWKS TAQ 4.75 15.80 53.78 1.140 0.0217 1.95 1521000

MXIM TAQ 3.68 17.40 45.87 1.503 0.0334 2.93 1521000

TER TAQ 4.65 8.68 22.04 0.130 0.0059 1.90 1521000

MRVL TAQ 9.98 10.77 67.33 0.119 0.0016 8.13 1521000

QRVO TAQ 5.85 8.46 36.86 1.004 0.0272 1.73 1521000

ON TAQ 1.01 9.59 21.65 1.182 0.0008 7.26 1521000

OLED TAQ 1.06 7.58 175.74 1.087 0.0062 1.44 1521000

Table (6) provides descriptive statistics for SMH ETF and its 25 underlying assets. I calculate the
average of the following second-by-second statistics for the SMH ETF and each of its underlying

assets. Bid–Ask spread is the average difference between the bid and ask quotes. The relative bid-ask
spread is the average ratio of the quoted bid-ask spread divided by the quote midpoint, weighted by

time; Volume is measured as the number of shares in dollars transacted. Market capitalization is
measured at the end of March 2018.
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Appendix C2: Estimated Parameters for DIA ETF and its Underlying
Assets.

Table 7: Estimated dynamic state-space model for DIA and its 30 underlying assets

ETF βf νf νfa νfb λf1 λf2 ψaf ψaf bf ψbfaf ψbf

DIA 0.066
(0.07)

0.997
(0.09)

0.922
(0.08)

0.998
(0.05)

0.186
(0.07)

−0.037
(0.09)

0.870
(0.27)

0.080
(0.07)

0.088
(0.09)

0.702
(0.24)

STOCK µm β η δ νp νa νb λa λb θaaf θabf θbaf θbbf

AAPL 2.587
(0.17)

0.023
(0.11)

−0.162
(0.10)

0.409
(0.04)

0.859
(0.19)

0.877
(0.03)

0.778
(0.01)

0.149
(0.51)

−0.171
(0.31)

0.157
(0.17)

0.147
(0.09)

0.127
(0.05)

0.172
(0.04)

CVX 4.695
(0.08)

0.136
(0.09)

0.407
(0.08)

0.579
(0.06)

0.930
(0.01)

0.958
(0.39)

0.889
(0.06)

0.189
(0.06)

−0.111
(0.06)

0.077
(0.09)

0.079
(0.05)

0.211
(0.03)

0.220
(0.10)

AXP 3.593
(0.12)

0.137
(0.08)

−0.072
(0.18)

0.368
(0.07)

0.929
(0.07)

0.977
(0.13)

0.878
(0.09)

0.139
(0.32)

−0.100
(0.05)

0.085
(0.05)

0.079
(0.09)

0.079
(0.20)

0.082
(0.08)

BA 2.489
(0.23)

0.254
(0.29)

0.417
(0.05)

0.409
(0.08)

0.979
(0.05)

0.980
(0.06)

0.909
(0.04)

0.149
(0.10)

−0.171
(0.17)

0.077
(0.03)

0.077
(0.06)

0.077
(0.05)

0.077
(0.31)

CSCO −1.594
(0.19)

0.042
(0.08)

0.337
(0.15)

0.479
(0.06)

0.979
(0.07)

0.977
(0.08)

0.975
(0.02)

0.194
(0.06)

−0.171
(0.48)

0.077
(0.09)

0.077
(0.10)

0.077
(0.32)

0.077
(0.21)

CAT 5.999
(0.18)

0.174
(0.05)

0.257
(0.08)

0.629
(0.04)

0.979
(0.07)

0.978
(0.05)

0.978
(0.02)

0.194
(0.08)

−0.171
(0.07)

0.144
(0.21)

0.130
(0.23)

0.088
(0.22)

0.152
(0.10)

DIS 5.519
(0.08)

0.086
(0.10)

0.367
(0.05)

0.379
(0.03)

0.964
(0.35)

0.978
(0.05)

0.978
(0.07)

0.143
(0.06)

−0.126
(0.05)

0.078
(0.18)

0.551
(0.09)

0.079
(0.08)

0.077
(0.06)

IBM 5.697
(0.11)

0.090
(0.10)

0.377
(0.19)

0.479
(0.04)

0.938
(0.05)

0.979
(0.07)

0.977
(0.02)

0.134
(0.11)

−0.127
(0.32)

0.077
(0.10)

0.076
(0.15)

0.130
(0.11)

0.148
(0.10)

DOW 2.739
(0.09)

0.113
(0.34)

0.297
(0.06)

0.424
(0.35)

0.993
(0.22)

0.977
(0.08)

0.977
(0.01)

0.129
(0.30)

−0.033
(0.03)

0.077
(0.20)

0.077
(0.08)

0.077
(0.01)

0.077
(0.06)

GS 8.639
(0.08)

0.042
(0.04)

0.527
(0.39)

0.479
(0.04)

0.930
(0.04)

0.977
(0.32)

0.978
(0.01)

0.134
(0.25)

−0.087
(0.21)

0.077
(0.09)

0.077
(0.05)

0.077
(0.03)

0.077
(0.09)

HD −10.579
(0.08)

0.143
(0.03)

0.527
(0.23)

0.439
(0.06)

0.949
(0.07)

0.957
(0.08)

0.979
(0.01)

−0.050
(0.04)

0.129
(0.05)

0.078
(0.08)

0.077
(0.03)

0.081
(0.09)

0.078
(0.05)

KO 2.660
(0.10)

0.028
(0.03)

−0.172
(0.06)

0.389
(0.03)

0.955
(0.01)

0.977
(0.09)

0.977
(0.03)

0.129
(0.11)

−0.092
(0.04)

0.081
(0.13)

0.078
(0.10)

0.078
(0.17)

0.077
(0.10)

JPM 5.639
(0.09)

0.052
(0.09)

0.417
(0.19)

0.599
(0.03)

0.965
(0.02)

0.977
(0.08)

0.977
(0.12)

0.129
(0.13)

−0.181
(0.05)

0.387
(0.06)

0.317
(0.12)

0.077
(0.07)

0.077
(0.27)

INTC 2.630
(0.12)

0.022
(0.50)

−0.182
(0.19)

0.549
(0.03)

0.925
(0.06)

0.977
(0.045)

0.979
(0.034)

0.129
(0.057)

−0.008
(0.076)

0.078
(0.07)

0.077
(0.21)

0.149
(0.03)

0.176
(0.03)

JNJ 5.979
(0.09)

0.100
(0.05)

0.929
(0.06)

0.499
(0.05)

0.989
(0.02)

0.977
(0.12)

0.977
(0.33)

0.129
(0.09)

−0.421
(0.09)

0.387
(0.09)

0.274
(0.06)

0.076
(0.03)

0.264
(0.04)

MMM 6.759
(0.34)

0.674
(0.04)

0.297
(0.07)

0.395
(0.05)

0.989
(0.05)

0.977
(0.08)

0.977
(0.04)

−0.091
(0.06)

0.129
(0.07)

0.208
(0.07)

0.204
(0.07)

0.201
(0.08)

0.193
(0.30)

MCD 7.829
(0.12)

0.151
(0.05)

0.407
(0.09)

0.359
(0.04)

0.997
(0.05)

0.978
(0.06)

0.986
(0.07)

−0.216
(0.04)

0.121
(0.02)

0.166
(0.05)

0.174
(0.31)

0.071
(0.07)

0.176
(0.10)

NKE 3.779
(0.09)

0.133
(0.05)

0.357
(0.04)

0.539
(0.32)

0.966
(0.12)

0.981
(0.23)

0.982
(0.03)

−0.191
(0.31)

0.141
(0.21)

0.178
(0.02)

0.177
(0.20)

0.167
(0.04)

0.247
(0.21)

MRK 3.819
(0.08)

0.062
(0.04)

0.177
(0.21)

0.484
(0.22)

0.995
(0.25)

0.977
(0.39)

0.977
(0.38)

−0.252
(0.04)

0.131
(0.03)

0.157
(0.22)

0.177
(0.10)

0.166
(0.26)

0.174
(0.10)

MSFT 5.829
(0.08)

0.039
(0.20)

0.307
(0.34)

0.429
(0.26)

0.983
(0.28)

0.981
(0.09)

0.978
(0.32)

−0.121
(0.04)

0.141
(0.03)

0.287
(0.16)

0.237
(0.05)

0.076
(0.23)

0.137
(0.09)

WBA 2.798
(0.12)

0.162
(0.06)

0.287
(0.02)

0.489
(0.12)

0.939
(0.23)

0.977
(0.03)

0.974
(0.23)

−0.081
(0.04)

0.133
(0.34)

0.074
(0.12)

0.077
(0.09)

0.076
(0.11)

0.137
(0.06)

UTX 5.919
(0.06)

0.360
(0.05)

0.407
(0.03)

0.689
(0.32)

0.998
(0.24)

0.979
(0.06)

0.981
(0.24)

−0.181
(0.05)

0.135
(0.06)

0.074
(0.10)

0.077
(0.08)

0.176
(0.09)

0.177
(0.08)

PG 4.789
(0.05)

0.052
(0.03)

0.187
(0.13)

0.458
(0.12)

0.986
(0.04)

0.984
(0.05)

0.979
(0.04)

0.191
(0.03)

−0.301
(0.09)

0.184
(0.05)

0.263
(0.05)

0.278
(0.04)

0.188
(0.10)

PFE 1.859
(0.08)

0.021
(0.08)

0.227
(0.18)

0.679
(0.16)

0.986
(0.10)

0.981
(0.16)

0.987
(0.37)

−0.104
(0.24)

0.141
(0.05)

0.276
(0.07)

0.177
(0.07)

0.367
(0.09)

0.312
(0.08)

TRV 5.684
(0.05)

0.989
(0.01)

0.427
(0.06)

0.563
(0.21)

0.956
(0.04)

0.983
(0.23)

0.978
(0.35)

−0.172
(0.03)

0.136
(0.07)

0.387
(0.08)

0.337
(0.21)

0.176
(0.07)

0.207
(0.30)

XOM 2.659
(0.11)

0.103
(0.05)

0.437
(0.03)

0.449
(0.03)

0.988
(0.23)

0.979
(0.33)

0.989
(0.32)

−0.131
(0.03)

0.144
(0.31)

0.247
(0.07)

0.230
(0.20)

0.186
(0.10)

0.247
(0.09)

WMT 4.685
(0.03)

0.089
(0.03)

0.337
(0.23)

0.729
(0.05)

0.985
(0.07)

0.979
(0.04)

0.984
(0.14)

−0.281
(0.23)

0.204
(0.12)

0.189
(0.05)

0.271
(0.06)

0.085
(0.07)

0.109
(0.06)

UNH 9.525
(0.04)

0.134
(0.09)

0.517
(0.04)

0.359
(0.22)

0.996
(0.11)

0.983
(0.03)

0.980
(0.12)

−0.121
(0.34)

0.141
(0.13)

0.085
(0.10)

0.122
(0.05)

0.187
(0.28)

0.273
(0.04)

V 7.642
(0.22)

0.109
(0.09)

0.297
(0.05)

0.479
(0.21)

0.998
(0.05)

0.982
(0.28)

0.984
(0.21)

0.194
(0.23)

−0.171
(0.05)

0.295
(0.20)

0.376
(0.09)

0.085
(0.08)

0.122
(0.04)

VZ 2.437
(0.09)

0.051
(0.04)

0.187
(0.23)

0.565
(0.04)

0.995
(0.04)

0.982
(0.14)

0.073
(0.06)

0.164
(0.04)

−0.171
(0.03)

0.099
(0.09)

0.080
(0.10)

0.187
(0.10)

0.273
(0.10)
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Appendix C3: Estimated Parameters for SMH and its Underlying Assets.

Table 11: Estimated dynamic state-space model for SMH and its 25 underlying assets

ETF βf νf νfa νfb λf1 λf2 ψaf ψaf bf ψbfaf ψbf

SMH 1.044
(0.03)

0.998
(0.04)

0.994
(0.06)

0.999
(0.05)

0.179
(0.02)

−0.161
(0.04)

0.883
(0.21)

0.090
(0.16)

0.094
(0.11)

0.790
(0.26)

STOCK µm β η δ νp νa νb λa λb θaaf θabf θbaf θbbf

TSM −5.679
(0.09)

0.413
(0.08)

0.619
(0.02)

0.529
(0.12)

0.987
(0.05)

0.983
(0.23)

0.989
(0.32)

0.130
(0.04)

−0.211
(0.29)

0.080
(0.24)

0.084
(0.02)

0.083
(0.20)

0.086
(0.03)

INTC 3.716
(0.02)

0.033
(0.05)

0.677
(0.21)

0.474
(0.07)

0.989
(0.06)

0.958
(0.07)

0.989
(0.07)

0.217
(0.29)

−0.183
(0.01)

0.091
(0.04)

0.085
(0.04)

0.285
(0.06)

0.288
(0.06)

NVDA 2.801
(0.01)

1.883
(0.09)

0.907
(0.23)

0.474
(0.03)

0.996
(0.16)

0.984
(0.06)

0.981
(0.19)

0.131
(0.05)

−0.513
(0.32)

0.297
(0.07)

0.296
(0.02)

0.196
(0.09)

0.396
(0.03)

AMD 7.773
(0.12)

0.465
(0.22)

0.759
(0.28)

0.409
(0.08)

0.992
(0.18)

0.988
(0.08)

0.996
(0.05)

0.134
(0.09)

−0.511
(0.09)

0.280
(0.09)

0.176
(0.06)

0.221
(0.05)

0.273
(0.03)

ASML 3.917
(0.08)

0.770
(0.05)

0.561
(0.01)

0.429
(0.03)

0.997
(0.23)

0.987
(0.04)

0.984
(0.05)

−0.241
(0.05)

0.194
(0.05)

0.216
(0.07)

0.240
(0.04)

0.209
(0.03)

0.232
(0.06)

TXN −3.859
(0.03)

1.719
(0.27)

0.629
(0.06)

0.429
(0.19)

0.996
(0.05)

0.982
(0.22)

0.983
(0.05)

−0.211
(0.04)

0.194
(0.29)

0.110
(0.05)

0.196
(0.08)

0.202
(0.08)

0.104
(0.07)

QCOM 9.649
(0.20)

1.614
(0.01)

0.753
(0.04)

0.509
(0.09)

0.998
(0.07)

0.978
(0.03)

0.998
(0.11)

0.164
(0.03)

−0.218
(0.09)

0.194
(0.03)

0.104
(0.05)

0.181
(0.09)

0.102
(0.07)

MU 2.833
(0.04)

2.360
(0.02)

0.743
(0.11)

0.594
(0.05)

0.991
(0.03)

0.992
(0.03)

0.984
(0.01)

0.134
(0.12)

−0.084
(0.29)

0.394
(0.05)

0.104
(0.04)

0.281
(0.08)

0.102
(0.04)

AVGO 2.349
(0.08)

1.928
(0.33)

0.801
(0.11)

0.314
(0.01)

0.998
(0.22)

0.928
(0.17)

0.971
(0.09)

0.132
(0.20)

−0.425
(0.17)

0.345
(0.06)

0.291
(0.05)

0.273
(0.08)

0.199
(0.03)

NXPI 9.621
(0.22)

1.924
(0.29)

0.868
(0.05)

0.609
(0.03)

0.997
(0.21)

0.977
(0.01)

0.978
(0.04)

0.138
(0.19)

−0.411
(0.09)

0.101
(0.06)

0.860
(0.08)

0.114
(0.10)

0.123
(0.04)

LRCX −4.124
(0.27)

0.307
(0.05)

0.640
(0.08)

0.579
(0.03)

0.995
(0.30)

0.984
(0.10)

0.982
(0.28)

0.137
(0.05)

−0.292
(0.15)

0.112
(0.21)

0.105
(0.04)

0.095
(0.28)

0.296
(0.05)

AMAT 5.462
(0.11)

0.853
(0.30)

0.923
(0.20)

0.614
(0.29)

0.996
(0.09)

0.984
(0.22)

0.975
(0.23)

0.130
(0.21)

−0.4133
(0.23)

0.105
(0.08)

0.465
(0.08)

0.394
(0.09)

0.104
(0.06)

ADI 5.854
(0.21)

0.853
(0.04)

0.816
(0.05)

0.552
(0.03)

0.989
(0.23)

0.984
(0.11)

0.984
(0.05)

0.164
(0.13)

−0.607
(0.16)

0.181
(0.02)

0.102
(0.08)

0.172
(0.09)

0.104
(0.09)

KLAC 1.844
(0.04)

0.812
(0.04)

0.824
(0.05)

0.379
(0.05)

0.996
(0.21)

0.983
(0.25)

0.984
(0.06)

0.156
(0.09)

−0.213
(0.03)

0.296
(0.16)

0.296
(0.09)

0.294
(0.18)

0.296
(0.23)

XLNX 6.579
(0.07)

0.741
(0.29)

0.549
(0.02)

0.509
(0.09)

0.992
(0.04)

0.984
(0.17)

0.983
(0.11)

−0.906
(0.04)

0.164
(0.30)

0.102
(0.19)

0.104
(0.20)

0.156
(0.26)

0.112
(0.16)

STM 1.774
(0.04)

0.850
(0.14)

0.623
(0.03)

0.494
(0.23)

0.990
(0.05)

0.989
(0.05)

0.984
(0.23)

−0.767
(0.09)

0.611
(0.12)

0.197
(0.10)

0.195
(0.22)

0.197
(0.09)

0.345
(0.23)

MCHP 4.451
(0.01)

0.765
(0.14)

0.558
(0.20)

0.628
(0.34)

0.994
(0.30)

0.985
(0.04)

0.984
(0.03)

0.131
(0.21)

−0.105
(0.12)

0.197
(0.08)

0.395
(0.10)

0.197
(0.08)

0.245
(0.20)

CDNS 8.018
(0.21)

0.770
(0.04)

0.308
(0.08)

0.574
(0.05)

0.993
(0.03)

0.984
(0.08)

0.985
(0.05)

0.132
(0.21)

−0.092
(0.35)

0.117
(0.10)

0.197
(0.32)

0.171
(0.06)

0.185
(0.09)

SWKS 5.640
(0.04)

0.578
(0.06)

0.506
(0.22)

0.618
(0.11)

0.995
(0.24)

0.987
(0.09)

0.988
(0.04)

0.132
(0.33)

−0.225
(0.09)

0.296
(0.10)

0.197
(0.10)

0.197
(0.06)

0.495
(0.07)

MXIM 5.691
(0.02)

0.420
(0.05)

0.313
(0.06)

0.361
(0.05)

0.997
(0.09)

0.988
(0.09)

0.984
(0.29)

−0.108
(0.19)

0.146
(0.07)

0.166
(0.07)

0.101
(0.05)

0.380
(0.09)

0.310
(0.07)

TER 3.911
(0.07)

0.503
(0.04)

0.150
(0.04)

0.388
(0.32)

0.992
(0.23)

0.984
(0.05)

0.995
(0.04)

0.164
(0.03)

−0.376
(0.05)

0.294
(0.03)

0.104
(0.08)

0.102
(0.10)

0.104
(0.06)

MRVL 5.710
(0.03)

0.630
(0.07)

0.921
(0.02)

0.597
(0.10)

0.999
(0.03)

0.983
(0.06)

0.984
(0.05)

0.153
(0.04)

−0.018
(0.09)

0.074
(0.11)

0.194
(0.09)

0.193
(0.28)

0.102
(0.09)

QRVO 7.515
(0.06)

0.782
(0.16)

0.567
(0.06)

0.689
(0.06)

0.992
(0.05)

0.989
(0.09)

0.995
(0.08)

0.432
(0.13)

−0.425
(0.29)

0.193
(0.05)

0.102
(0.24)

0.294
(0.07)

0.294
(0.08)

ON 6.939
(0.05)

0.837
(0.07)

0.643
(0.03)

0.484
(0.04)

0.990
(0.03)

0.984
(0.20)

0.874
(0.02)

0.181
(0.08)

0.128
(0.12)

0.396
(0.08)

0.397
(0.106)

0.297
(0.03)

0.195
(0.05)

OLED 3.528
(0.09)

2.010
(0.05)

0.781
(0.03)

0.434
(0.04)

0.993
(0.09)

0.984
(0.29)

0.991
(0.03)

0.131
(0.04)

−0.092
(0.22)

0.149
(0.08)

0.167
(0.07)

0.106
(0.02)

0.161
(0.03)

Tables (7) and (11) reports selected estimated parameters for both DIA and SMH ETFs. Due to space limitations,
not all the estimated parameters are reported here. The rest are reported in Appendix C2. βf corresponds to half
bid-ask spreads for respective ETFs, and βs correspond to half bid-ask spreads for respective underlying assets of

the ETFs.
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Table 12: SMH’s Underlying Asset Price Impulse Response Function

Price
of Stock

Ask Quote
of SMH

Bid Quote
of SMH

Price
of SMH

TSM 0.041∗∗ −0.098∗∗ 0.029∗∗

INTC 0.052∗∗ −0.101∗∗ −0.042∗∗

NVDA 0.026∗∗ −0.099∗∗ 0.043∗∗

AMD 0.032∗∗ −0.100∗∗ 0.049∗∗

ASML −0.056∗∗ 0.102∗∗ −0.052∗∗

TXN 0.063∗ −0.088∗ 0.029∗

QCOM 0.039∗∗ −0.069∗∗ 0.031∗∗

MU 0.072∗∗ −0.069∗∗ −0.051∗∗

AVGO 0.036∗∗ −0.073∗∗ 0.041∗∗

NXPI 0.037∗∗ −0.040∗∗ 0.039∗∗

LRCX 0.045∗∗ −0.071∗∗ 0.021∗∗

AMAT −0.052∗∗ 0.059∗∗ 0.029∗∗

ADI 0.063∗ −0.098∗ 0.033∗

KLAC −0.039∗∗ 0.088∗∗ −0.045∗∗

XLNX 0.032∗∗ −0.090∗∗ 0.034∗∗

STM 0.025∗∗ −0.078∗∗ 0.032∗∗

MCHP 0.042∗∗ −0.035∗∗ 0.025∗∗

CDNS −0.032∗∗ 0.038∗∗ −0.035∗∗

SWKS 0.052∗∗ −0.037∗∗ −0.045∗∗

MXIM 0.047∗ −0.073∗ 0.042∗

TER −0.039∗∗ 0.051∗∗ −0.029∗∗

MRVL 0.033∗∗ −0.066∗∗ 0.036∗∗

QRVO 0.071∗∗ −0.053∗∗ 0.029∗∗

ON −0.056∗ 0.053∗ 0.042∗

OLED 0.034∗∗ −0.072∗∗ 0.051∗∗

The table reports the underlying asset day-ahead average impulse response functions (IRFs) from the dynamic

econometric state-space model developed in section 3 for the underlying assets of SMH ETF. The sample

period is from January 2 to March 30, 2018, and the sampling frequency is 1-second. Columns 2 to 4

represent the variables being shocked by a unit, and rows correspond to the variables (underlying assets)

affected by the unit shock from columns 2 to 4. The underlying asset prices at a one-second frequency are the

mid-points of the underlying asset’s best NBBs and best NBOs. Observations include all the best NBBs and

NBOs between 9:30 and 16:30 EST. The IRFs are estimated for one trading day ahead (representing 9 hours

or equivalently 32,400 seconds). For the estimates of the IRFs, a *(**) next to the estimates indicates that

the estimated IRF differs from zero and is statistically significant at the 1% (5%) level using clustered

standard errors by an asset and by day.
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Table 13: Estimated Extra Volatility and Speed of Arbitrage: SMH

Extra
V olatility

Speed of
Arbitrage (h)

SMH 577.3

TSM 0.945
(0.046)

40,81

INTC 0.798
(0.031)

34.39

NVDA 0.432
(0.039)

48.98

AMD 0.552
(0.076)

25.19

ASML 0.472
(0.073)

39.07

TXN 0.325
(0.040)

33.43

QCOM 0.463
(0.064)

30.29

MU 0.584
(0.025)

40.01

AVGO 0.689
(0.057)

29.30

NXPI 0.453
(0.030)

35.42

LRCX 0.543
(0.058)

34.32

AMAT 0.654
(0.068)

39.58

ADI 0.543
(0.013)

48.01

KLAC 0.338
(0.049)

32.04

XLNX 0.751
(0.029)

42.32

STM 0.630
(0.042)

49.32

MCHP 0.535
(0.048)

18.32

CDNS 0.399
(0.071)

43.62

SWKS 0.469
(0.066)

38.34

MXIM 0.685
(0.050)

34.87

TER 0.453
(0.058)

41.14

MRVL 0.409
(0.053)

33.63

QRVO 0.556
(0.038)

35.92

ON 0.563
(0.072)

25.98

OLED 0.328
(0.040)

21.09

The table provides estimated excess transitory volatility brought to the 25 underlying assets of SMH and the

speed of arbitrage trading. The first column presents the extra volatilities brought to the underlying asset

when there is a liquidity shock to the SMH ETF. Parenthesized values in the first column are the respective

additional transitory volatility brought to the price of SMH ETF when there is a liquidity shock to the

respective underlying assets. On the other hand, column two shows the estimated time in seconds for the

speed of arbitrage trading, assuming a half-life for the pricing error.
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Figure 2: Price Impulse Responses for Selected Underlying Assets of SMH

(a) (b)

(c) (d)
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Abstrakt 

 

Důležitým aspektem obchodování s burzovně obchodovanými fondy (ETF z anglického Exchange-

traded funds) je arbitrážní obchodní strategie prováděná autorizovanými účastníky trhu s cílem udržet 

ceny ETF v souladu s čistou hodnotou podkladových aktiv (NAV z anglického net asset value). ETF 

arbitráž je strategie, která využívá odchýlení ceny ETF od ceny podkladových aktiv. V této studii 

zkoumám vliv ETF arbitráže na podkladová aktiva ETF. Vytvářím dynamický state-space model, který 

sdruženě odhaduje dynamiku ceny ETF a jeho podkladových aktiv explicitním zahrnutím ETF 

arbitráže. Model odhaduji zvlášť pro Dow Jones Industrial Average ETF (DIA) a VanEck Vectors 

Semiconductor ETF (SMH). Empirické výsledky ukazují, že šoky ETF likvidity se šíří mezi 

podkladovými aktivy skrze mechanismus ETF arbitráže. Tyto šoky likvidity přidávají trvalou 

tranzitorní volatilitu k cenám podkladových aktiv. Zjišťuji, že jednotkový šok likvidity DIA vede 

k dodatečné volatilitě 0.1% až 0.93% cen podkladových aktiv DIA. Podobně jednotkový šok SMH 

přidá 0.33% až 0.95% dodatečné volatility k cenám podkladových aktiv SMH. Dále ukazuji, že korekce 

odchylky ceny ETF a NAV autorizovanými účastníky není okamžitá. V případě DIA trvá 

autorizovaným účastníkům přibližně 4 minuty provést ETF arbitráž, pro SMH je to přibližně 10 minut. 

Výsledky také naznačují, že ETF arbitráž urychluje proces objevování ceny na ETF trzích. Přibližně 74 

% variace DIA a 67 % variace SMH je dána procesem objevování ceny.  

Klíčová slova: burzovně obchodované fondy, ETF, podkladová aktiva, mechanismus ETF arbitráže, 

šoky likvidity, čistá cena aktiv, NAV, proces objevování ceny  
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