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ABSTRACT 

Credible estimates of the health effects associated with changes in air pollution exposure are of 
considerable importance for research and policy agendas, especially for developing countries. This 
paper estimates the impact of the sharp reduction in particulate air pollution driven by the Global 
Financial Crisis of 2008 on district-level infant mortality in India. Utilizing plausibly exogenous 
geographic variation in the crisis-induced changes in air quality and novel data from household 
surveys and satellite-based sources, I find that the infant mortality rate fell by 24% more in the 
most affected districts, implying 1338 fewer infant deaths than would have occurred in the absence 
of the crisis. Analysis of the mechanisms indicates that the PM2.5 reductions affected infant 
mortality mainly through respiratory diseases and two biological mechanisms: in utero and post-
birth PM2.5 exposure. Back-of-the-envelope calculations suggest that the estimated decline in 
infant mortality translates into a three-year after crisis total of 312.5 million U.S. dollars. The 
resulting health benefits could be used as a benchmark for assessing the effectiveness of the 
policies designed to improve air quality in India.  
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1   INTRODUCTION  

Air pollution is a grave concern in the developing world, where it kills millions, leads to enormous 
costs, and constrains economic development (IHME, 2013a; Lim et al., 2013).1 Despite this, many 
developing countries avoid committing themselves to the reduction of air pollution because of the 
natural fear that the economic costs of pollution abatement may outweigh the health benefits (Tanaka, 
2015). Thus, measuring the benefits resulting from improvements in air quality has important policy 
implications. Such measures would allow the evaluation of potential regulations and ensure that their 
costs are justified. However, empirical studies estimating health benefits associated with reductions 
in air pollution in developing countries are still scarce (Arceo, Hanna, & Oliva, 2015; Tanaka, 2015; 
Heft-Neal et al., 2018). 

This paper addresses this literature gap by quantifying the impact of air pollution reductions on infant 
mortality in India.2 Specifically, it takes advantage of the economic slowdown caused by the Global 
Financial Crisis of 2008 and exploits the episode of synchronous decline in industrial production, 
reduction in air pollution, and improvement in infant mortality.3 The specific questions this paper 
addresses are whether the crisis-induced reductions in air pollution caused a decline in infant 
mortality, and what the transmission channels are through which reductions in air pollution affect 
infants’ health. I also examine the benefits of the decline in infant mortality resulting from the 
improvement in air quality. 

India provides a compelling setting for this study for several reasons. First, two decades of 
industrialization and rapid economic growth led to severe air pollution in India. Of the 20 most 
polluted cities in the world, 13 are located in India, including the capital city Delhi, which is ranked 
as the most polluted (Greenstone et al., 2015; WHO, 2014d). India has the world’s highest proportion 
of deaths caused by respiratory diseases (WHO, 2014e). The Global Burden of Disease ranks air 
pollution as the second leading health risk factor in India (IHME, 2013b). Second, despite the severity 
of the Global Financial Crisis, India escaped a full-scale recession and suffered instead from the 
delayed second-order effects that led to a temporary economic downturn. According to the Index of 
Industrial Production (IIP), the output of the integrated industrial sector in India hit a record low of -

                                                
1     Of the 7 million annual deaths linked to air pollution, 5.9 million occurred in low and middle-income countries of South-East Asia 

and the Western Pacific (WHO, 2014a). Newborns and infants are particularly vulnerable to air pollution exposure. Around 6.3 
million children under the age of five died in 2013, of which 70% and 41% were infants and newborns. About half of under-five 
deaths were concentrated in just five countries of Africa and South-East Asia, including India with a share of 21% (WHO, 2011, 
2014b). The prime cause of these deaths is respiratory diseases attributable to air pollution (WHO, 2014c). The costs of premature 
mortality caused by the exposure to particulate matter and ozone in 2013 translated into $5.11 trillion and $225 billions of global 
losses in total welfare and forgone labor income. Developing countries, mostly in Africa, East and South Asia, incurred the record 
high losses equivalent to up to 9% of the country’s GDP (WB, 2016). India’s annual GDP growth was 6.6% in 2013 (WB, n.d.) 
implying that the pollution-related losses could have offset the whole year of the country’s economic development. If no abatement 
policies are implemented, the number of premature deaths due to exposure to just such air pollutant as particulate matter (PM) will 
likely more than double, mostly because of an increasing number of deaths in China and India (OECD, 2012). 

2     Infant mortality is defined as the death of children under one year old. 
3     I exploit the economic slowdown caused by the Global Financial Crisis of 2008 rather than environmental regulations as a natural 

experiment. This is because environmental regulations in developing countries, even if they are designed similarly to those in the 
developed ones, often involve implementation problems that complicate the estimation of the effect of interest (Arceo et al., 2015; 
Duflo, Greenstone, Pande, & Ryan, 2013, 2018). 
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7.20% in March 2009, from about 20% of its pre-crisis level (MOSPI, n.d.). Also, the average 
contraction of trade was around 20% during the period from October 2008 to September 2009 (EAC, 
2009; Kumar & Alex, 2009). Third, the contribution of the global financial turmoil to the reductions 
in air pollution in the U.S. and Europe is well documented (Davis et al., 2010; Castellanos & Boersma, 
2012; Vrekoussis et al., 2013), but it is still understudied in the case of India. Taken together, the 
substantial drop in IIP and the dominant share of the manufacturing and energy sectors in the index 
(78% and 8%, MOSPI, n.d.) imply that the economic slowdown affected areas in India differentially, 
based on the pre-crisis industrial structure and industry-specific pollution intensities. As I 
demonstrate below, this led to substantial reductions in air pollution in some areas, but not in others. 
Indian districts with larger shares of the manufacturing, mining, construction, or energy sectors 
experienced a more substantial decline in air pollution than districts without these pollution-intensive 
sectors. Altogether, such a setting allows me to study the relationship between air pollution reductions 
and infant mortality at greater pollution concentration levels and to do so using a credible quasi-
experimental approach. 

To implement the analysis, I combine state-of-the-art satellite-based estimates for annual 
concentrations of fine particulate matter (PM2.5)4 with survey-based household information on nearly 
2 million births and 150 thousand deaths and their determinants for 284 districts across 9 states during 
2007-2011. I use a quasi-experimental difference-in-differences approach in an attempt to isolate the 
role of the reductions in PM2.5 pollution from other confounding factors that affect infant mortality. 
This approach exploits both the timing of the crisis and its differential effect across districts, 
depending on their pre-crisis industrial specialization. However, using the crisis as a source of 
treatment variation exposes this approach to two conceptual challenges: unknown timing of the crisis-
induced effects on air pollution and sorting the districts into treated and control groups. I overcome 
these challenges by exploiting such methodological innovations as a time-series econometric test for 
structural trend break and a spatial Hot Spot Analysis. Based on the results of these analyses, my 
preferred specification compares pre- vs. post- 2010 levels and trends in infant mortality rates 
between treated and control districts. The key identifying assumptions are that, conditional on district-
specific trends, any pre- versus post-2010 changes in infant mortality rates caused by factors besides 
air pollution are the same for the treated and control districts, and that air pollution is the only factor 
differentially affecting the treated districts beginning in 2010.  

Answering the first question, I find that the crisis-induced reductions in PM2.5 pollution led to a 
statistically significant decline in district-level infant mortality rates. Regression coefficients indicate 
that the infant mortality rate in the treated districts fell by about 24% more than in the control districts 

                                                
4     The United States Environmental Protection Agency [U.S. EPA] defines particulate matter (PM) as “a complex mixture of extremely 

small particles and liquid droplets that get into the air” (U.S. EPA., n.d.a). Particulate air pollution can be categorized in a number 
of ways, including size and sources of emissions. Size is an important indicator of the particles’ penetrating ability, which highlights 
the most probable region of the respiratory tract where inhaled particulates could be deposited. By this criterion, particulate air 
pollution can be broken down into total suspended particles with an aerodynamic diameter of less than 100 μm, coarse or inhalable 
(less than 10 μm in diameter), fine or respirable (smaller than 2.5 μm) and ultra fine (less than 0.1 μm). Particulate matter can be 
originated from anthropogenic (human-made) or natural sources. The former sources include industrial activity, transport exhaust, 
power generation, household heating, cooking and fuel combustion, while the latter add sea salt, dust, volcanic and fire ash (Van 
Donkelaar et al, 2010; Van Donkelaar et al., 2016).  
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between pre- and post-crisis periods. The estimates are robust to a variety of specifications and 
falsification tests. Addressing the second question, I examine the impact of the changes in PM2.5 
concentrations on the mortality of infants at different ages and from various diseases. My findings 
suggest that the PM2.5 reductions affected infant mortality mainly through respiratory diseases and 
two biological mechanisms: in utero and post-birth PM2.5 exposure. Finally, I use the quantified 
relationship to measure health benefits and monetary gains from the crisis-induced episode of PM2.5 
pollution reduction. My calculations suggest that 1338 infant lives were saved, implying a 
contribution of 11% to the overall decline in infant mortality during the post-crisis period and leading 
to monetary benefits of $312.5 million.  

The research design used in this paper allows me to overcome or substantially mitigate some of the 
frequent empirical challenges of the endogeneity of air pollution exposure. First, the temporary nature 
of the economic crisis in India allows me to address one of the major causes of endogeneity – 
residential sorting.5 In my research design, it is unlikely that households migrate in search of new 
employment or because of their preferences for better air quality in the short crisis time frame. The 
limited geographical mobility of infants and pregnant women also helps to alleviate this threat to 
identification. Second, since the reduction in air pollution concentrations was caused simultaneously 
by global and nationwide phenomena, unobserved behavioral changes within the treatment group that 
could also affect health and invalidate research design are unlikely in this paper’s settings. In addition, 
the control group of districts accounts for any common responses to the crisis. Finally, it is also 
critical to control for other changes accompanying the crisis, including changes in per capita income 
and meteorological confounders. I address these challenging issues in the study. 

The paper builds on economic and epidemiological literature that uses quasi-experimental designs to 
quantify the causal relationship between various health outcomes and reductions in air pollution. 
Prominent epidemiological studies by Pope (1989), Pope, Schwartz, and Ransom (1992), Ransom 
and Pope (1995), Parker, Mendola, and Woodruff (2008) exploit closure and reopening of a steel mill 
in the Utah Valley to show that improvements in air quality are associated with the decline in 
respiratory morbidity, mortality, and preterm births. Related studies from economic literature by 
Lavaine and Neidell (2013), Currie et al. (2013), and Hanna and Oliva (2015) also estimate the health 
effects from the variations induced by operational distortions of specific polluters, oil refineries or 
toxic plants, in both developed and developing countries. However, these studies rarely exploit 
recession as a source of exogenous variation, with the remarkable exception represented by Chay and 
Greenstone (2003b), who link changes in infant mortality to the reduction in total suspended particles 
(TSP) across U.S. counties caused by the U.S. 1981-1982 recession. 6 They show that a 1% reduction 
in TSP resulted in a 0.35-0.45% decline in infant deaths at the county level. Other quasi-experimental 

                                                
5      Residential sorting is the optimizing behavior of individuals choosing residential locations based on attributes, including air quality, 

that can lead to the non-random assignment of air pollution (Graff Zivin & Neidell, 2013; Currie et al., 2014). 
6    Sanders (2012) investigates the relationship between early-life exposure to air pollution and long-term outcomes (Currie et al. 

2014). Similar to Chay and Greenstone (2003b), the author uses the U.S. 1981-1982 recession and the related decline in 
manufacturing employment as a source of variation to estimate the impact of the reduction in fetal TSP exposure on educational 
outcomes in Texas. Sanders (2012) finds that a one standard deviation decline in TSPs around the time of students’ birth increases 
high school test performance by 6% of standard deviation. 
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studies focus on regulation-induced changes in air quality. This strand of literature benefits from the 
contribution by Chay and Greenstone (2003a) and Sanders, Barreca, and Neidell, (2020) for the U.S. 
and Luechinger (2014) for Germany. Until recently, much of what we knew from the literature came 
from the developed countries. However, as these countries are generally wealthier, have much lower 
mortality rates and air pollution concentrations, the transferability of estimates from developed to 
developing countries remained unvalidated in most cases. Currently, a growing literature provides 
causal evidence on the effects of environmental policies on infant mortality in developing countries: 
Greenstone and  Hanna (2014) for India, Ebenstein et al. (2015) and Tanaka (2015) for China, and 
Cesur, Tekin, and Ulker (2016) for Turkey. My paper builds on the successful design of the previous 
studies and contributes to overcoming the scarcity of studies that link infant mortality and reductions 
in air pollution in developing countries, using a different quasi-experimental setting. Additionally, 
the paper estimates the health benefits of reducing air pollution, which could be used as a benchmark 
to assess potential policies designed to improve air quality. 

2   DATA  

To implement the analysis, I constructed a panel of district-by-year data on infant mortality, 
mortality-related controls, fine particulate matter, and confounding factors for 2007-2011. Raw data 
are from a variety of survey-based and satellite-based sources. 

Mortality data  
Data on infant births and deaths came from the Annual Health Survey (AHS) of India. The AHS is 
the first population-representative longitudinal demographic survey in India designed to collect 
health-related information at the district level, with the infant mortality rate taken as the decisive 
indicator for the sample size. The survey structure corresponds to the typical structure of demographic 
and health surveys (DHS) conducted in many low- and middle-income countries. 

The AHS is a sub-national survey that covers 284 districts across 9 states from 2007 to 2011 (Figure 
1).  These districts are a particularly relevant study area. They represent nearly 50% of the overall 
population and account for 60% of all births and 70% of all infant deaths in the country. The AHS 
was conducted during 2010-2013 in three consecutive rounds and four schedules, specifically House-
listing, Household, Woman, and Mortality. Each round recorded health-related information at the 
individual and household levels for 12 months before the survey was taken. A representative sample 
of 20694 Primary Sample Units, selected based on a uni-stage (two-stage in cases of larger rural 
villages) stratified simple random sample without replacement, covered around 20.6 million 
individuals and 4.3 million households (Census of India, n.d.). I downloaded the AHS data from the 
Health Management Information System, a digital initiative of the Ministry of Health & Family 
Welfare, Government of India (HMIS, n.d.). 

Overall, my sample includes 1,883,456 individual births and 148,398 deaths. The outcome of interest 
for this study is the infant mortality rate (IMR), which is conventionally expressed as the number of 
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infant deaths per 1000 live births. I derived information on the number of deaths within one year of 
life from the Mortality schedule and further aggregated the number at the district-by-year level. As 
the numerator for infant mortality rate I used the total number of infant deaths due to all causes, within 
one day, within 28 days, between one and eleven months, and between eleven months and one year. 
I collected data on the total district-by-year number of live births for the denominator from the 
Woman schedule reporting the outcomes of pregnancies. I further disaggregated the total number of 
deaths using information on different symptoms of death pertaining to the deceased infants. I also use 
a perinatal or a stillbirth mortality rate as the outcome variable. This measure of mortality is computed 
as the number of stillbirths or fetal deaths per 1000 total live births and stillbirths combined. The 
average annual infant mortality rate for all causes is 87.4 per 1000 live births. 

Mortality-related controls 
The Mortality and Woman AHS schedules are the primary sources of the mortality-related controls. 
From the former schedule, I derived three groups of control variables: characteristics of the deceased 
infants, characteristics and habits of the infants’ Heads of the households (HH)7, and deceased infants’ 
household characteristics. These variables include a percentage of male infants, share of infant deaths 
in rural areas and average birth order; the share of the male HHs, percentage of the HHs affiliated 
with social groups, including scheduled castes and scheduled tribes, HHs’ educational qualification, 
religion and occupation, as well as the percentage of HHs smoking and drinking alcohol; the 
percentage of houses with filtered water, different sources of lightning, type of cooking fuel used, 
whether households cook inside the house and use open defecation as a toilet facility. The purpose of 
these controls is to capture the effects of either changes in indoor air pollution or potential sources of 
deadly infectious diseases, for example, malaria. 

Some of the district-specific attributes and indicators of the utilization of medical services by mothers 
and infants were extracted from the Woman schedule. The controls from this survey are the average 
number of births and population, average age of mothers and percentage of those married. Indicators 
of the utilization of medical services by mothers and infants include percentage of mothers who did 
not receive any ante natal care during pregnancy, percentage of deliveries at the government medical 
facilities, share of newborns who did not receive any checkups after birth and percentage of babies 
who received any vaccination. These variables highlight the importance of the medical services in 
saving infant lives. 

Pollution data  
Satellite-derived data for the construction of the main variable of interest, the annual district-level 
average PM2.5 concentrations, were obtained from the Atmospheric Composition Analysis Group 
(ACAG) at Dalhousie University. The data represent global gridded datasets of annual bias-corrected 
average surface PM2.5 concentrations at 0.01º x 0.01º spatial resolution (1 x 1 km at the equator) 

                                                
7     I use characteristics and habits of the deceased infants’ Heads of the households as a proxy for parental characteristics. 
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estimated by combining Aerosol Optical Depth8 retrievals from multiple satellite sources (MODIS, 
MISR, SeaWIFS) with simulations in the GEOS-Chem chemical transport model, subsequently 
calibrated against ground-based monitor data using geographically weighted regressions (Van 
Donkelaar et al., 2016; ACAG, 2016). AOD-based PM2.5 estimates are widely considered as a good 
proxy of air pollution over India (Dey et al., 2012). I downloaded ArcGIS-compatible files with dust 
and sea-salt removed estimates, which allowed me to focus on anthropogenic, human-made 
particulate air pollution. PM2.5 concentrations were calculated by taking averages of annual mean 
concentrations at all grid points within districts’ administrative boundaries overlying the ACAG 
gridded PM2.5 data using the ArcGIS platform. I downloaded shapefiles with districts’ boundaries for 
such computations from the Global administrative areas [GADM] (2015) spatial database.9 The 
average annual PM2.5 concentration in my sample during the study period is 54.4 μg/m3.  

Economic data 
Controlling for cross-districts differences in income changes during the crisis is important to mitigate 
potential confounding bias. However, official district-level data on income per capita do not exist. I 
thus constructed a proxy for this confounder using satellite-derived nighttime lights imagery. 
Evidence suggests that nighttime lights expressed  in  the form  of  a natural logarithm adequately 
explain GDP at the district-level for India (Chaturvedi, Ghosh, & Bhandari, 2011; Bhandari & 
Roychowdhury, 2011). I obtained nighttime lights satellite images from the repository at the National 
Geophysical Data Center (NGDC) of the National Oceanic and Atmospheric Administration 
(NOAA). These images were captured by the Operational Linescan System sensor onboard the 
Defense Meteorological Satellite Program satellites. The values of the pixels from the stable lights 
data show brightness in Digital Numbers and are cleaned from ephemeral lights from fires, gas flares 
and other similar events (NGDC, n.d.). Using ArcGIS, I first sum all lit pixels within the GADM 
districts’ boundaries for each year as suggested by Lowe (2014). Then, relating the sums obtained to 
the district-level population and taking log-transformation, I derived a measure of the natural 
logarithm of the district-level GDP per capita. 

District-level population data were retrieved from the world’s gridded population count dataset for 
2000, 2005, 2010 and 2015, obtained from the Center for International Earth Sciences Information 
Network (CIESIN) at Columbia University. The population count grids are consistent with national 
Censuses and population registers and contain estimates of the number of persons per grid cell 
(CIESIN, 2016). To construct a district-by-year population, I summed the number of persons in the 
cells within the overlaid GADM districts’ boundaries. For missing years, the population was imputed 
by linear interpolation. I also use the CIESIN’s population data to weight regressions and compute 
population-weighted dimensions of the variables. 

 

                                                
8    Aerosol Optical Depth measures the amount of sunlight absorbed, reflected, and scattered by the particles suspended in the air. 

Satellite observations of AOD make it possible to estimate surface PM2.5 concentrations at granular spatial resolution and with 
comprehensive geographical and temporal coverage.  

9     I adjusted districts’ borders in the GADM shapefiles so that they correspond to the districts’ administrative boundaries as they were 
in 2001. As a reference, I used maps of the AHS districts downloaded from the Census of India website (Census of India, n.d.) 
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Weather data 
As atmospheric conditions influence both air pollution and health, meteorological covariates are also 
potential confounders in my study. Addressing this concern, I control for temperature, precipitation, 
wind direction and speed. I use gridded datasets of average monthly temperature and precipitation 
from the Climatic Research Unit (CRU) at the University of East Anglia (Harris at al., 2014; CRU, 
2017). The raw monthly means gridded data for u-wind (west-east), v-wind (south-north) vectors and 
wind speed were obtained from the NOAA’s NCEP/NCAR Reanalysis 1 (Kalnay et al.,1996). By 
analogy to air pollution, I processed raw data in the ArcGIS to construct annual average air 
temperature, precipitation, wind directions and speed at the district level. 

Descriptive statistics and data insights 
Table 1 presents descriptive statistics for the districts from Figure 1. The table shows that the 
reduction in district-level PM2.5 pollution during 2009-2011 is visibly larger than the changes in the 
majority of other variables during the same period. 

Figure 2 illustrates the evolution of the district-level annual mean concentration of PM2.5 in the study 
area for 1998-2015. Two observations deserve closer attention. First, air quality has been 
deteriorating continuously during the last two decades. The PM2.5 level increased from an average of 
43 μg/m3 in 1999 to more than 60 μg/m3 in 2015, a change of almost 40%. The worsening of air 
quality during this period could obviously be associated with rapid economic growth during the pre-
crisis wave of globalization, accompanied by industrialization and urbanization, as well as a fast-
growing population and deterioration of the natural environment (CPCB, 2014). Second, the figure 
documents two episodes of abrupt reduction in PM2.5 concentrations, 2005-2006 and 2009-2012, 
followed by the comparably sharp reversals of the trends. The timing of the first episode is somewhat 
unfortunate for this study as it is close in time to the period of interest. In the next section, I conduct 
a formal test to ensure that my findings are not related to this period. 

Improvement in air quality during the 2009-2012 episode is the focus of my study. The PM2.5 curve 
does show a change in its trend around the alleged outbreak of the Global Financial Crisis. After 
reaching its record high maximum in 2008 at 58 μg/m3, fine particulate air pollution fell by almost 9 
μg/m3, slightly above 15%, making improvement in air quality during this episode the largest for the 
entire 1998-2015 interval. This downward trend in PM2.5  pollution was offset by the steep reversal 
during 2013-2015, when average PM2.5 concentrations reached a record high of 60.25 μg/m3, 
representing an increase of about 23%. This period coincides with the accelerating recovery of the 
Indian economy and its transit from volatile to stable real GDP growth (IMF, 2016).  

Figure 3 compares kernel density estimates of the annual mean PM2.5 distributions across the districts 
for 2008, 2012 and 2015, representing pre-crisis, crisis and post-crisis year-end points. Panel A 
demonstrates that the entire distribution shifted substantially to the left in 2012 compared to 2008. In 
contrast, Panel B documents a shift of the distribution to the right again in 2015. Panel A of Table 2 
provides summary statistics for these changes. It demonstrates that the 2009-2012 improvement 
episode was remarkable in several aspects. While the mean PM2.5 level declined by more than 15%, 
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the tenth percentile of the distribution as well as observed minimums remained unchanged. However, 
the drop in the ninetieth percentile was particularly noteworthy with a decrease of about 14 μg/m3, 
more than 17%. The shift in observed maximums by almost 44 μg/m3, representing 36%, is especially 
striking. During the post-crisis period, the sharp reversal of the improvement trend led to a substantial 
deterioration in air quality that was comparable to the pre-crisis period.  

Taken together, Figure 3 and Panel A of Table 2 support the initial hypothesis that districts with high 
pre-crisis levels of air pollution likely experienced more substantial improvement in air quality than 
districts with initially low pollution concentrations. Figure 4 provides an overview of the spatio-
temporal distributions of annual mean PM2.5 concentrations across the study area for 2008, 2012 and 
2015, which visually support this conclusion. Panel B of Table 2 relates changes in PM2.5 
concentrations from Figure 4 to population exposure, providing suggestive evidence that 
improvements in infant mortality could be more pronounced in districts with high pre-crisis levels of 
air pollution.  

Figure 5 illustrates the evolution of the district-level annual means of PM2.5 air pollution and the 
infant mortality rate during 2007-2011. The infant mortality rate followed a similar pattern to that of 
air pollution. The IMR increased to achieve its highest rate by 2009. Then, during the following two 
years, 2010-2011, the infant mortality rate decreased sharply from about 112 to 65 deaths per 1000 
live births, an unprecedented 42%, and supposedly continued this path till the end of the time frame 
of the crisis in 2012. Further, Table 1 indicates that while the number of infant deaths from all causes 
declined substantially after 2009, the number of births remained almost unchanged. This implies that 
the decline in the IMR was likely driven by the substantial reduction in the number of deaths during 
the period, which I relate to the crisis-induced decline in air pollution. As analysis of different death 
categories suggests, the dynamics observed in the total number of deaths was caused mainly by the 
reduction in early neonatal and postneonatal mortality. 

Both data series presented in Figure 5 provide visual evidence of structural breaks, marked by the 
dashed lines, and reversals in upward trends, beginning after 2008 and 2009, respectively for air 
pollution and mortality. Albeit with a time lag, both breaks correspond well to the time frame of the 
crisis, cautiously suggesting the presence of a direct relationship within the crisis-pollution-mortality 
nexus.  

3   EMPIRICAL STRATEGY 

This section introduces the empirical strategy that I use to answer the first research question. 
Specifically, in an attempt to isolate the causal relationship between the crisis-induced reductions in 
PM2.5 and the infant mortality rate, I use a quasi-experimental difference-in-differences (DID) 
technique.   
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Standard model 
The standard DID model in a two-way fixed effect regression framework is as follows: 

 (1) 

where  denotes a natural logarithm of the infant mortality rate10 in district d and year t. 
 is an indicator variable for whether district d belongs to the treatment group;  is an 

indicator variable for the years after a specific year , indicating a post-crisis time period. I delve 
into the more precise definition of the latter two variables further below.  is a set of district-level 
meteorological covariates; is a set of observable time- and/or district-varying controls for a set of 
covariates in the mortality-pollution nexus.  are district fixed effects that capture time-invariant 
heterogeneity between treated and control districts;  are year fixed effects controlling for the year-
specific common shocks for both types of districts;  are idiosyncratic error term, robust and 
clustered at the district level to account for serial correlation between districts over time (Bertrand, 
Duflo, & Mullainathan, 2004; Wooldridge, 2003). To account for differences in the size of the 
districts, equation (1) is weighted by the district-level population. 

The coefficient of interest, , captures the difference between the districts from the treatment and 
control groups in changes in  before and after the crisis-induced decline in PM2.5 

pollution. If the crisis-induced reductions in air pollution contributed to a more substantial decline in 
infant mortality in the districts from the treatment group than those from the control group,  will be 
negative. The interpretation of the coefficient would be that the crisis-induced reductions in PM2.5 

pollution are associated with a  percent lower infant mortality rate in the treated 
districts than in the control districts between pre- and post-crisis periods. 

Using the crisis as a natural experiment exposes this empirical strategy to two conceptual challenges: 
unknown timing of the crisis-induced effects on air pollution (variable ), and sorting of the 
districts into the treatment and control groups (variable ).  

Timing of the crisis-induced effects 
To address the first challenge, I associate the timing of the crisis-induced effects on air pollution with 
the break in the upward trend of PM2.5 concentrations that occurred in a particular year. Then, this 
year can be considered as the year of critical changes in air pollution caused by the crisis and can be 
used to divide the whole period of interest into pre- and post- crisis intervals. Even though Figure 2 
provides visual support that PM2.5 pollution does indeed show a trend break around 200811, the timing 
of the effects of the crisis on air pollution requires more credible justification.  

Therefore, I perform a time-series econometric test for a structural trend break, specifically supremum 

                                                
10   The  reason for  modeling  infant  mortality rate in a log-form is as follows. I  hypothesize  that  the crisis-induced changes in air 

pollution could have had proportional effects on infant mortality. Specifically, districts with initially higher mortality rates could 
experience a larger decline in the level of mortality, due to changes in air pollution concentrations, than the districts with an initially 
lower rate. Using proportional changes also facilitates between-districts comparisons. 

11   I assume that this year can be considered as the first year when the crisis could potentially affect air pollution. 



10

Wald and likelihood-ratio (LR) tests designed for cases when the breakpoints are unknown (Andrews, 
1993, 2003; Hansen, 1997). The idea is to determine a statistically significant trend break in the 
aggregated average PM2.5 pollution time series and check whether it corresponds to the initial point 
of the global financial crisis around 2008. Finding a statistically significant break in proximity to the 
alleged starting point of the crisis would suggest that the crisis might have had an impact on the level 
of particulate air pollution. Exploiting supremum tests for the purpose of finding structural breaks in 
time series was shown to be a reliable in contexts similar to that of this study and was adopted by 
economists in a number of papers (Piehl et al., 2003; Jayachandran, Lleras-Muney, & Smith, 2010; 
Greenstone & Hanna, 2014).12 

I test for the structural break in PM2.5 pollution time series in the year of the possible breakpoint, τ, 
using a model similar to Jayachandran et al. (2010): 

 (2) 

where  is the first difference in the PM2.5 pollution time series13;  is an indicator 
variable equal to zero for the years before τ and equal to one for those after τ;  - robust standard 
errors.  

Formally, sup Wald and LR tests are applied sequentially to test for constancy in the coefficients 
from the regression of model (2) with τ taking on each year within the interval of possible trend 
breaks, a test window, and calculate the W- and F-statistic associated with the null hypothesis of no 
trend break, = 0, for each tested year. The test window is shorter than the whole time series. For 
the test not to be misleading, it should have enough data points before and after the test window to 
estimate regressions before and after the breakpoint (Andrews, 1993; Piehl et al., 2003; Jayachandran 
et al., 2010; Greenstone & Hanna, 2014). I test for the single possible break in an eight-year test 
window, including a range of years in the 2004-2011 interval. Given quite a short time series, this is 
the maximal length of test window I could allow; it corresponds to a symmetric trimming of the 
pollution time series by 25%14. The test then selects the maximal among the resulting test statistics 
to define the best possible breakpoint, , and returns the associated p-value to gauge the significance 
of the detected break. Since the test statistics do not converge to any known distribution, the reported 
p-values are calculated by the method introduced in Hansen (1997). 

                                                
12   Several reasons make application of this technique in our research attractive.  Firstly, both tests are robust to heteroscedasticity and 

overcome limitations inherent in the traditional Chow test that assumes homoscedasticity. Secondly, as Piehl et al. (2003) 
summarize, the intuition of sup Wald and LR tests is appropriate in the program evaluation context, the purpose similar to our aims 
in that the effect of the crisis can be treated in a way similar to the effect of a policy intervention. Finally, formal testing improves 
earlier attempts undertaken by Chay and Greenstone (1999, 2003b), Sanders (2012), Tanaka (2015) to overcome the same 
difficulties in the similar settings. 

13   The reason for using the first difference of the dependent variable is that by doing so I achieve stationarity of air pollution time 
series. To be valid, supremum tests require data to be stationary (Andrews, 1993; Piehl et al., 2003), a condition that my time series 
does not satisfy. Both Augmented Dickey-Fuller and Phillips-Perron tests fail to reject the null hypothesis of nonstationarity; 
however, they do reject the null in the case of the first-differenced series.  

14   For comparison, a common approach suggested by Andrews (1993) is to trim 15% from both ends. However, it is common to select 
a trimming percentage up to 49%. 
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Figure 6 and Table 3 present the results of the tests for structural break on an unknown year.15 Both 
supremum tests identify structural breaks within the 2009-2012 air quality improvement episode, thus 
associating them with the respective reversal of the upward trend in PM2.5. Sup Wald reports 2010 as 
a year of statistically significant break, while sup LR selects 2009 as a break year, although 
insignificant16. Panel A of Table 3 shows that whenever 2010 is included in the test window, the 
maximal W-statistics are concentrated at this year, and the null hypothesis can be rejected at the 1 
percent level. When tested by the sup LR, the same applies to 2009 except that neither of the F-
statistics is significant. As another specification test, in addition to different lengths of test window 
and trimming percentages, I test for possible trend breaks in the parameters after estimation of the 
log form of the model (2). The results are robust to different ranges of possible break years, trimming, 
or log-level model specifications. Panel B of Table 3 shows that neither of the years within the 2005-
2006 interval, or the years of the largest pre-crisis drop in PM2.5, are trend break years. This finding 
relaxes my previous concern about the possible confounding role of these years in my results. Thus, 
I consider 2010 in further analysis as the time of the effects of the crisis and on air pollution, , and 
the most important year when the crisis could affect air pollution in the sample districts. 

Selection of the treatment and control groups 
Addressing the second challenge, I designate districts with large improvements in air quality during 
the 2009-2012 improvement episode, those most impacted by the crisis, to the group of the treated 
districts, while districts with small or no changes, unaffected or least affected, are designated to the 
control group. I use several approaches that, nevertheless, lead to a very similar result.17  

Panel B of Figure 7 demonstrates a geographical distribution of the district-wise changes in average 
PM2.5 during 2009-2012. For comparison, Panel A illustrates the spatial variation in the pre-crisis 
levels of PM2.5 pollution. The following observations are noteworthy. First, the two maps correlate 
very well visually. Thus, the levels of average PM2.5 before the crisis could potentially be a good 
predictor for the effects of the crisis-induced reduction in air pollution. Second, in contrast to my 
expectations, some of the districts experienced worsening of air quality. Independent of the sign of 
the changes, these districts should be taken into account similarly to those with reductions in air 
pollution. Third, the variation in the magnitude of the crisis-induced changes in the PM2.5 levels varied 
substantially across districts with a reduction or increase in air pollution. These changes are 
significantly larger in the former group and vary from zero to a substantial 45 μg/m3 or almost 10 
μg/m3 on average. In the latter group, the maximum and average values of the increase in the level of 
fine particulate pollution are slightly above 8 μg/m3 and 4 μg/m3, respectively. Finally, it may well 

                                                
15   I also perform a Chow-type test for structural trend break on a known year (Chow, 1960). Using the same model and data, I construct 

a heteroscedasticity robust Wald statistic to test the null hypothesis of no trend break for each year within the same test window, 
separately. Thus, I pretend I know that each year from 2004 to 2011 might be a breakpoint. The test works similarly to supremum 
tests except that it is not conducted sequentially and the limiting distribution of the test-statistic is known. Conducted together, both 
tests complement each other.  

16    It is worth noting that the statistical insignificance of the latter breakpoint could potentially be caused by the relatively low statistical 
power of the test due to short pollution time series. 

17    Chay and Greenstone (1999, 2003b) divided U.S. counties into three groups with large, medium and small changes. These groups 
include quartiles of the counties with the largest reduction (upper quartile, >75%), smallest reduction (lower quartiles, <25%) and 
all other counties (combined second and third quartiles, between 25% and 75%). 
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be that the districts are spatially clustered depending on the magnitude of the changes. This is 
especially relevant to the districts with a larger reduction or increase in air pollution.  

In view of the latter observation, I experiment with a Getis-Ord Hot Spot Analysis (Getis & Ord, 
1992; Ord & Getis, 1995), applying this technique to PM2.5 pollution data to sort districts into 
treatment and control groups. The Getis-Ord Hot Spot Analysis (HSA) is in essence a test for spatial 
dependence18, designed to assess the extent of clustering between units based on their attributes, and 
to draw inference about its statistical significance.  

Putting HSA in context, it is highly probable that the highly-polluted districts are surrounded by other 
similarly polluted districts. Moreover, air pollution in the latter could originate either from the 
districts’ own sources or transported from outside. Such a scenario is quite possible given the ability 
of air pollution to travel across regions. In this case, even districts without pollution-intensive 
industries would likely demonstrate some degree of spatial association with heavily-polluted 
neighbors. More importantly, such districts could also experience the effects of the crisis related to a 
decrease or increase in pollution levels in nearby districts. In contrast, districts without polluting 
sectors, or districts located farther from the neighbors that have such sectors, might not exhibit any 
spatial association based on pollution-related attributes, and might not experience any impact of the 
crisis on air quality. Apart from the identification of spatial clusters in crisis-induced changes in air 
pollution, the HSA also provides a means to assess whether such a pattern of spatial dependence is 
statistically significant. Applying HSA, I am interested in identifying spatial clusters of districts with 
unusually large and statistically significant changes in PM2.5 concentrations during the 2009-2012 
improvement episode, relative to the pre-crisis 2008 PM2.5 pollution levels. Therefore, HSA output 
allows me to assign districts within statistically significant clusters into the treatment group, while 
districts outside such clusters are assigned into the control group.  

Technically, HSA boils down to the testing of the null hypothesis of “no spatial dependence”. The 
null implies that the assignment of the input attribute values to the particular districts does not depend 
on spatial location; the value of the attribute itself is all that matters. The alternative hypothesis 
focuses instead on the cases where districts with large and small attribute values are systematically 
surrounded by other districts with respectively large and small values. Rejection of the null hypothesis 
would imply the presence of statistically significant spatial clusters of similar attribute values 
(Anselin, 1992). Statistically significant spatial clusters of high values are referred to as hot spots, 
while cluster of low values are referred to as cold spots. I implement HSA using ArcGIS’s Getis-Ord 

 tool.  

Panels C and D of Figure 8 provide visual representation of the HSA’s results. Panel C shows the 
spatial distribution of the HSA input values – crisis-induced changes in mean PM2.5 concentrations 
during 2008-2012 normalized by the pre-crisis 2008 concentrations. Panel D shows the resulting HSA 
output with hot- and cold-spot districts depicted in red and blue colors. There is a striking 
correspondence between the hot spots and the districts that experienced a statistically significant 

                                                
18   In spatial statistics, the notion of spatial dependence, reflecting the tighter relationship between near rather than distant units, means 

that the similar values of some attribute or characteristic for one unit will likely also occur in neighboring units, leading to the 
formation of spatial clusters (Anselin, 1992).  
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increase in air pollution, and also between the cold spots and the districts that experienced a 
statistically significant reduction in air pollution. The remaining districts, depicted in beige, are those 
in which relative changes in particulate air pollution are not statistically significant, implying that 
changes could likely occur by random chance or that these districts would experience such changes 
in the absence of the crisis. For the rest of the paper, I consider districts in hot and cold spots as treated 
districts with worsened and improved air quality, while those depicted in beige as control districts. 

Identifying assumptions 
The key identification assumption for equation (1) can be formulated in terms of the idiosyncratic 
error term, for t = 1, 2, …, T: 

) = 0 

(3) 

In the DID context, this assumption is known as a parallel or common trends assumption, implying 
that, irrespective of the levels, comparison groups should have equally-sloped trajectories in the 
pretreatment outcomes of interest. Then, the unobserved average trend in the outcome variable of the 
treatment group in the absence of treatment should be equal to the observed trend of the control group. 
Further, the treatment is assumed to be the only process that induces deviations from the common 
trends between the comparison groups19. This assumption implies that districts from the control group 
provide valid counterfactual changes in infant mortality for the districts from the treatment groups in 
the absence of crisis-induced changes in air pollution.  

One possible reason for violation of the assumption in equation (3) is the presence of time-varying 
unobservables as an additional source of heterogeneity, causing districts’ individual trajectories in 
infant mortality to diverge from the parallel trends. As the baseline model in equation (1) controls 
only for time-constant unobservables, it would likely fail to produce unbiased estimates of the effect 
of interest. To overcome this concern, I extend the baseline specification to allow for heterogeneous 
trends by including district-specific slopes in equation (1):  

 (4) 

where  is a time-varying unobserved heterogeneity that allows the possibility for each district to 
have differential trends through the distinct values of . Technically, the latter term represents time-
invariant, either observed or unobserved, effects interacted with time to produce district-specific 
trajectories of outcomes.  is a continuous year variable centered on 2010 and normalized so that it 
equals zero in this year.  

Based on the results of the trend break and Hot Spot analyses, the DID model in equation (4) compares 
pre- versus post-2010 levels and trends in infant mortality rates between the treated and control 
districts. The key identifying assumption is that, conditional on district-specific trends, any pre- 
                                                
19   This latter assumption is often referred to as a common shocks assumption (Dimick & Ryan, 2014; Kreif et al., 2015). 
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versus post-2010 changes in infant mortality rates caused by factors besides air pollution are the same 
for the affected and control districts, and that air pollution is the only factor differentially affecting 
the treated districts, beginning in 2010.  

Taking into account the fact that the impact of the crisis could accelerate and decelerate over time, I 
further extend equation (4) to the following specification: 

 

 
(5) 

where  allows for the effects of the crisis to evolve over time. Equation (5) is a 
trend-break model allowing a change in the slope after 2010. The statistical question of interest is 
whether  and  are jointly statistically significant after the trend-adjustment. The following 
concern should be taken into account while interpreting the estimation results. On the one hand, 
equation (5) introduces a dynamic structure that is consistent with the visual evidence from Figure 9, 
showing that the decline in infant mortality in the treated districts does not look like a one-time drop. 
On the other hand, the short length of our panel data set, especially the number of the post-crisis 
years, might mean that there could be limited statistical power to estimate a model with changes in 
slope. Therefore, the model in equation (4) might be more preferable. 

I estimate models in equations (4) and (5) using an estimation method based on within transformation 
of data known as detrending. I prefer this approach because it is more efficient than others, especially 
in cases with relatively short and unbalanced panel datasets similar to mine (Brüderl & Ludwig, 
2015). The idea of detrending is to subtract time-varying estimates of the individual-specific trends 
from the original variables. Applying this estimation approach essentially boils down to the following 
four-step procedure. First, for each district I estimate the regression of the form 

 to obtain predicted values of the outcome variable . Time-varying 
predicted values, , represent expected district-specific trends. Second, I subtract values 
predicted in step (1) from the original values of outcome to obtain the detrended dependent variables 

. After this step, the only variation left in the dependent 
variable is the variation around the district-specific trend. Third, I apply steps (1) and (2) to detrend 
all explanatory variables  for any variable . Detrending all variables of the model 
means that the estimation of the causal effect of interest is based solely on within around-trend 
variation. Finally, I run regressions on the detrended variables. 

To further validate the DID identifying assumption of the model in equation (4), I formally address 
two violations common in the literature (Tanaka, 2015). First, the existence of a systematic difference 
in the pre-crisis trends in infant mortality rates. Second, the orthogonality of the impact of the crisis 
on other factors affecting the dependent variable in the post-crisis period.  

To address the first concern, I examine the pre-crisis trends graphically. Figure 8 depicts the evolution 
of the average infant mortality rates across comparison groups, adjusted for the district-specific linear 
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trends and some basic characteristics of the deceased infants. The figure provides graphical evidence 
that trends in infant mortality rates are almost parallel in the pre-crisis period between control and 
treated districts with reduction in air pollution. However, adjustment for the district-specific trends 
fails to improve the presentation for the treated districts with an increase in air pollution. The parallel 
trends assumption is apparently violated in the case of these districts. Visual examination also 
provides evidence of the trend break for the treatment group right after the onset of the crisis. 

To address the second concern, I follow Altonji, Elder, and Taber (2005) and examine whether the 
impact of the crisis has any association with changes in observable characteristics. I first successively 
regress my empirical model with every observable characteristic as the dependent variable. Then, I 
check whether the coefficients on the interaction term, , are statistically significant. Although this 
is not a formal test for exclusion restrictions, the absence of statistically significant association with 
observable characteristics would suggest that there should not be a correlation with unobservable 
variables either (Altonji et al., 2005). Table 4 presents results for both types of treated districts. 
Although some of the point estimates are statistically significant, the vast majority show no evidence 
of the systematic difference in trends between districts from the treated and control groups. This is 
especially true for the group of districts with improvement in air quality, for which most of the 
coefficients are small or close to zero. It is noteworthy that, the impact of the crisis-induced reductions 
in PM2.5 pollution is not associated with important determinants of infant mortality, including 
mother’s age, household amenities and proxied parental characteristics. Although significant, the 
coefficients on the meteorological confounders are quite small.  

Overall, the results provide suggestive evidence that the changes in PM2.5 pollution attributable to the 
global financial crisis is orthogonal to other factors affecting the dependent variable in the post-crisis 
period. Therefore, the selected empirical strategy is unlikely to be biased due to changes in 
unobservable covariates. Additional falsification tests and robustness checks will further support this 
conclusion. 

4 RESULTS 

I first present baseline estimates of the impact of the crisis-induced changes in PM2.5 on the infant 
mortality rate at the district level. I then perform sensitivity analysis to ensure that the proposed 
empirical strategy provides unbiased estimates. Finally, I perform a number of falsification tests and 
robustness checks to support the validity of the main findings. 

Baseline results 
Table 5 presents baseline results of the regression analysis by reporting the key estimates resulting 
from fitting equations (4) and (5). The dependent variable is the infant mortality rate for all causes of 
deaths. For both types of treated districts, columns (1) report the estimate of coefficient  after the 
estimation of equation (4), which tests for the effects of the crisis-induced changes in PM2.5 on the 
infant mortality rate after adjustment for district fixed effects, year fixed effects and differential 
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trends. The second columns report the results from the equation (5) allowing for both level and slope 
changes during the post-crisis period. All regressions are run on the variables detrended as described 
in previous section. 

The coefficients in both columns for the treated districts with reduction in PM2.5 pollution suggest 
that these districts experienced a statistically significant decline in all-cause infant mortality after 
2010. Moreover, column (2) provides evidence of a negative and statistically significant change in 
the slope of the infant mortality rate after 2010. Therefore, regression analysis confirms the visual 
impression that reduction in air pollution that occurred during the post-crisis period was strongly 
associated with a decline in infant mortality. In contrast, the regression coefficients for the treated 
districts with increase in PM2.5 pollution captured by the variable Treated ⋅ Post are positive, small 
and insignificant. Thus, there is little evidence of the impact of the crisis-induced increase in air 
pollution on infant mortality. However, similarly to the districts with a decline in air pollution, the 
infant mortality rate in districts with worsened air quality demonstrates a negative and statistically 
significant change in slope after 2010. For both types of districts and across both specifications, the 
coefficients on Treated ⋅ Post are insensitive to the inclusion of the variable allowing change in the 
slope, Treated ⋅ Post ⋅ t.20  

I use the resulting coefficients to assess the magnitude of the crisis-induced changes in PM2.5 pollution 
on infant mortality. For that purpose, I focus on treated districts with improved air quality, which 
demonstrate a significant decline in infant mortality rates. The coefficient in column (1) indicates that 

the infant mortality rate in this group of treated districts fell by about 23% ( ) more 
than in the group of control districts between the pre- and post-crisis period. The estimated decline is 
associated with 4.9 fewer infant deaths per 1000 live births.21 Coefficients in column (2) from the 
model that allows for changes in the level and slope show an even larger effect of about 28%. I 
computed the total effect from equation (5) as , where the factor of 0.5 is equal to the 
average value of the continuous year variable  for two post 2010 years ((0+1)/2;  is set to be equal 
to zero in 2010). A 28% decline translates into a total of 6.09 fewer infant deaths per 1000 live births.  

Sensitivity analysis 
Table 5 provides estimates of the baseline effect of interest without control variables. To address the 
concern that changes in the dependent variable may be explained by changes in the observable time-
varying characteristics that potentially correlated with the impact of PM2.5 pollution changes 
attributable to the effect of the crisis, I perform a sensitivity analysis. Table 6 reports results for both 
types of districts. Every pair of columns represents estimates from fitting equations (4) and (5). 

                                                
20  These findings are consistent with my expectations and much evidence from the rigorous analysis of the graphs and data in the 

preceding sections.   
21   My baseline results are quite similar to those reported in Tanaka (2015) who estimated the impact of the 1998 “Two Control Zones” 

environmental regulation on infant mortality in China, i.e. in similar pollution-mortality settings. The author found that a TZP 
status is associated with 3.3 fewer infant deaths per 1000 live births and a 20% reduction in infant mortality in the post-reform 
period. 
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First, I included confounders to the baseline specification, namely a natural logarithm of the district-
level GDP per capita and meteorological covariates. In all specifications, the coefficient on GDP per 
capita is close to zero, not statistically significant and does not fluctuate much across specifications, 
apparently not affecting the point estimates on either Treated ⋅ Post and Treated ⋅ Post ⋅ t. This relaxes 
the concern about the income channel through which the crisis could also have affected infant 
mortality. 

Columns (3) and (4) control for the average district-level temperature, precipitation, wind directions 
and speed. Inclusion of these factors makes the estimates larger but preserves their sign and 
significance. The wind-related controls dominate with the larger and significant coefficients. The 
coefficient on the west-east wind is the most important in terms of the magnitude. In contrast to 
previous specifications, the Treated ⋅ Post ⋅ t coefficient drops to almost zero and becomes 
insignificant.   

Columns (5) and (6) control for characteristics of the deceased infants. None of the coefficients on 
these variables are statistically significant. The inclusion of these controls does not have any effect 
on the coefficients of interest. Columns (7) and (8) control for characteristics and habits of the Heads 
of households. The coefficients of the main interest remained virtually unchanged. I also observe 
small, negative and statistically significant coefficients on the share of the Heads belonging to the 
Sikh and Buddhist religions, as well as the share of the Heads who are alcohol drinkers. The picture 
is very much the same with the next specification, columns (9) and (10), including the deceased 
infants’ household characteristics, although the coefficients of interest become slightly smaller. 
However, the resulting coefficients on these control variables are close to zero and insignificant. 

Columns (11) and (12) report coefficients from the regressions controlling for the district-specific 
indicators of the utilization of the medical services by mothers and infants. The main effect remains 
robust and statistically significant. As in the previous specification, the coefficient on Treated ⋅ Post 
⋅ t remains small and insignificant. This makes equation (4), with a combination of  and  
vectors as specified in column (11), my preferable specification.  

The coefficient in column (11) indicates that the infant mortality rate in the group of treated districts 
with improved air quality fell by about 24% more than in the group of the control districts between 
pre- and post-crisis periods. The estimated decline is associated with a total of 5.226 fewer infant 
deaths per 1000 live births. Combining changes in particulate air pollution with the estimated changes 
in infant mortality, I obtain an implied elasticity equal to 0.35.22 The elasticity is within the range of 
elasticities reported in economic studies of the effects of air pollution on infant mortality in developed 
and developing countries. Chay and Greenstone (2003b) calculated elasticities for the effects of TSP 
equal to 0.35-0.5 in the U.S., while Arceo et al. (2015) find elasticity of 0.415 for exposure to PM10 
in Mexico. The marginal effects of SO2 found in Tanaka (2015) translates into an implied elasticity 
of 0.9 in China; Knittel, Miller, and Sanders (2016) provide evidence of a 1.827 elasticity for the 
impact of automobile air pollution on infant health in the U.S.; Currie and Schmieder (2009) report 
elasticity for chronic effects of toxic chemicals in a range of 1.82-6.49 in the U.S. On the lower end 
                                                
22   In the context of the paper, implied elasticity is a ratio of percentage changes in the infant mortality rate to the same period 

percentage changes in air pollution. 
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of the elasticities reported in economic studies are the estimates for the effects of SO2, in the range 
of 0.07-0.13 in Germany from Luechinger (2014), and of 0.04-0.09 for acute effects of CO in the 
U.S., from Currie and Neidell (2005).  

Finally, sensitivity analysis also supports the previous conclusion concerning the effects of the crisis-
induced changes in PM2.5 pollution on the infant mortality rate in the group of districts with worsened 
air quality. The main coefficient of interest remained close to zero and insignificant despite 
differences in specifications. In contrast to the analysis of the treated group of districts with improved 
air quality, the slope coefficients from the regressions fitting equation (5) become close to zero and 
insignificant only after controlling for district characteristics and utilization of medical services. 
Coefficients on the west-east wind and its speed are large, comparable in magnitude, and highly 
statistically significant, but have different signs. Therefore, the sensitivity analysis fails to capture 
any sign of the effects that documented an increase in PM2.5 pollution attributable to the crisis could 
have on infant mortality in these districts, which is in line with the baseline results. 

Experimentation with different specifications in this section provides evidence that the magnitude, 
sign and statistical significance of the coefficient of interest are insensitive to the inclusion of the 
control variables. This supports the credibility of my research design and estimates. Although there 
is always room for non-causal explanations between the variables of interest in non-experimental 
studies, the results of the sensitivity analysis do not directly contradict the causal nature of the 
relationship between the crisis-induced changes in air pollution and district-level infant mortality.  

Falsification tests and robustness checks  
Conditional on the results of Altonji et al. (2005) test and sensitivity analysis, equation (4) is likely 
to produce valid estimates of the crisis-induced reduction in PM2.5 pollution on infant mortality in the 
Indian districts. Nevertheless, I provide further support for this conclusion by conducting a number 
of falsification tests and robustness checks.  

For the first falsification test, I replace the dependent variable with another outcome variable that is 
not affected by the crisis-induced changes in air pollution. One of the most plausible candidates is 
infant mortality due to external causes of deaths, which include deaths caused by accidents and 
homicides that are not associated with air pollution. However, AHS contains disaggregated 
information only on internal causes of deaths. Nevertheless, I could select an internal disease that is 
potentially not associated with particulate air pollution for the test. The most promising candidate for 
this role is diarrheal diseases. To the best of my knowledge, there is no evidence of obvious causal 
links between exposure to air pollution and infant mortality due to diarrhea/dysentery. Another reason 
to think that the choice of this disease for the falsification test is appropriate is the evidence that 
diarrheal diseases are the concurrent cause of death to respiratory infections and have a comparable 
share of infant fatalities in my study area (Bassani et al., 2010).   

Therefore, I use the infant mortality rate due to diarrhea/dysentery as the alternative dependent 
variable to evaluate the internal validity of the previous estimates. As Table 7 indicates, regressions 
return statistically insignificant coefficients. The result also provides evidence that the crisis-driven 
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reduction in air pollution had no additional effect on infant mortality through other diseases. 
Therefore, my specifications are likely unbiased.  

As another falsification test, I re-estimate the model using observations only from the pre-crisis period 
where the effects of the crisis-induced reduction in air pollution could not exist. For this purpose, I 
assign 2008 as a placebo trend break point and thus consider 2007 as the pre-crisis period, and 2008 
as the post-crisis period. Specifically, the variable  became equal to 1 for the year 2008, not 
after the formally identified . Thus, I use a classic two-periods model. The results are in Table 8. 
The table reports point estimates after fitting equation (4) with different combinations of  and  
vectors for the districts from both treated groups with improved (Group 1) and worsened (Group 2) 
air quality. Since estimated coefficients using a pre-crisis sample and placebo trend break point are 
statistically insignificant and close to zero, my specifications can be considered as likely unbiased. 

Further, I apply the model equation (4) to the alternative control group. For this purpose, I limit this 
group to the districts selected, based on the common support propensity score that restricts the sample 
to the districts that have similar observable characteristics to the districts from the treatment group of 
districts with improved air quality. I first computed the common support propensity score of being in 
the treatment group using available characteristics of the districts with significant crisis-induced air 
pollution reductions. Then, I constructed an alternative control group, including only those districts 
from the initially identified control group that are matched based on the propensity score. Finally, I 
re-estimated the model with this alternative control group. Table 9 reports the results of this 
falsification test. Since the sign, magnitude and the order of statistical significance of the estimated 
coefficient on the main effect of interest are not substantially different from that in the main analysis, 
I again concluded that my model is likely unbiased. 

Performing robustness checks, I address concern that there may still be unobserved factors affecting 
infant mortality due to the differential response of air pollution concentrations within the similar 
geographic regions. To control for this issue, I include in the preferable specification additional 
National Sample Survey (NSS) region*year fixed effects. NSS regions do not represent 
administrative units but rather collections of districts grouped based on similar agro-climatic 
conditions. Thus, this specification identifies the effect of interest using variation in crisis-induced 
changes in PM2.5 pollution within the NSS regions with similar characteristics. Thus, any potentially 
possible changes caused by any differences are purged at the level of NSS regions. This exercise does 
not affect either the sign or magnitude of the estimated effect.  

Further, I use a number of other specifications to re-estimate the most preferable model in the 
analysis. First, I use different weighting schemes to check how sensitive the model is to these changes. 
The results show that the point estimate of the main effect of interest did not change in response to 
not weighting at all, and reacted by a not substantial reduction in the magnitude on the weighting by 
the number of births. Second, I cluster standard errors at the state and NSS regions levels, as well as 
at the state*year and region*year levels. The estimated effect of interest remained robust to these 
alternative specifications. Third, I run a regression with one dependent variable expressed in level 
rather than in the log-form to see that the coefficient on Treated ⋅ Post had the same sign and 
significance level. Table 9 summarizes results. 
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Complementing the robustness checks above, the Appendix provides two additional tests. The first 
is based on the model in equation (4) and focuses on alternative options for sorting sample districts 
into treatment and control groups. Table A1.1 compares the resulting estimates. Each column of the 
table corresponds to one of the eight options, which are intuitively illustrated by the graphs in Figure 
A1. The sign, magnitude and order of statistical significance of the estimated coefficients on Treated 
⋅ Post remain similar between each other and to the coefficient estimated using my preferable 
specification.  

The second additional test checks whether the main finding would remain robust to different 
estimation strategies, namely the detrending used in this paper, conditioning on the explanatory 
variables and district-specific trends, and a method combining matching on pre-crisis explanatory 
variables and trends with subsequent difference-in-differences. The results are presented in Table 
A1.2, which indicates that all specifications return estimated coefficients of interest that are not 
substantially different from each other, thus confirming the credibility of the main analysis. 

Overall, conditional on the results of the falsification tests and robustness checks, I conclude that the 
main findings of the paper justify the causal impact of the crisis-induced reduction in air pollution on 
the infant mortality rate in the sample of the selected Indian districts. 

5 PATHOPHYSIOLOGICAL MECHANISM 

Addressing the second research question, I examine the impact of the changes in PM2.5 concentrations 
on the mortality of infants at different ages and from various diseases. The analysis based on the 
specifications in columns (11) and (12) from Table 6 focus solely on the treated group of the districts 
with improved air quality.  

Table 10 presents the estimated effects of the reductions in PM2.5 pollution on the infant mortality 
rate within 1 day, 28 days, between 28 days and 11 months, within 11 months and between 11 and 
12 months of life. The second category is also known as the neonatal infant mortality rate, which in 
turn is broken down into early and late neonatal mortality rates corresponding to the deaths occurring 
within 0-7 and 8-27 days from births, respectively. The third category is usually referred to as a 
postneonatal mortality rate. Separate analysis of these categories is performed purposefully. The large 
and statistically significant estimate in the neonatal period would likely suggest that particulate air 
pollution affects infant mortality through the adverse effects on fetal development, via in utero 
exposure to PM2.5. Newborns whose mothers were exposed to high PM2.5 concentrations during 
pregnancy have a higher probability of dying in the neonatal than the postneonatal period. In contrast, 
a large and statistically significant effect in the postneonatal period would highlight the importance 
of post-birth PM2.5 exposure in the biological mechanism through which air pollution affects infants 
directly. However, the exact biological channels are not yet well-studied (Chay & Greenstone, 2003b; 
Tanaka, 2015). 

The estimates reveal that both biological mechanisms are important in explaining the overall effect 
found above. However, the response of infant mortality during the postneonatal period (column (5)) 
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is substantially larger than in the neonatal period (column (4)). The coefficients suggest that the 
neonatal IMR fell by 21% more in the districts with improved air quality, with a corresponding 
elasticity of 0.31, which is lower than the implied elasticity for infant mortality of 0.35. In contrast, 
postneonatal mortality shows a decline of almost 32% with the implied elasticity of 0.45, which is 
significantly larger than the elasticity for both overall infant and neonatal mortality. I estimate that 
the contribution of the reduction in PM2.5 to the overall decline in neonatal mortality and postneonatal 
mortality is equal to 9% and 15%, respectively. Therefore, the effect of particulate air pollution on 
infant mortality is not larger in the neonatal period and is more likely disproportionally associated 
with the probability of dying during the postneonatal period.  

Several aspects of the biological mechanism are worth noting. First, there is no effect on infant deaths 
within one day of birth. Although negative, the point estimates are small and statistically insignificant. 
Second, disaggregation of the overall neonatal mortality into early and late neonatal periods, 
presented in columns (2)-(3), reveals the important regularity of the biological mechanism. The 
response of neonatal mortality to the reduction in particulate air pollution is completely driven by the 
decline in infant mortality during the early neonatal period. Therefore, I cannot rule out the channel 
of in utero PM2.5 exposure. Third, point estimates on the deaths of infants aged between eleven and 
twelve months (column (7)) are large and negative, but insignificant, additionally highlighting the 
importance of the postneonatal mortality and post-birth PM2.5 exposure as the channel through which 
air pollution affects infant mortality. Finally, as presented in column (6), the estimated effects of the 
reduction in PM2.5  concentrations on infant deaths within eleven months are identical to those I found 
for the all-cause infant mortality and thus support my main findings.  

These findings are in contrast to conclusions made in Chay and Greenstone (1999, 2003b) and Tanaka 
(2015) about the disproportionate effect of air pollution on infant mortality during the neonatal period. 
For the U.S., Chay and Greenstone (2003b) attributed 80% of the effect of the reduction in TSPs on 
infant mortality to the decline in neonatal mortality, of which 60-70% is driven by fewer infant deaths 
within one day of birth. For China, Tanaka (2015) found that 26% and 63% of the effect of the TCZ 
regulation on infant mortality occurred within one day of births and during the neonatal period. On 
the other hand, my estimates are in line with the statistics for the districts in the study area according 
to which the decline in the number of infant deaths during the post-crisis period was due to a decline 
in the early neonatal and postneonatal periods, with respective shares of 42% and 41%.  

I next examine the effect of the crisis-induced changes in PM2.5 pollution on infant mortality 
disaggregated by various diseases. Table 7 presents the results from the regressions with IMR due to 
fifteen causes of deaths as the dependent variable. Although the AHS does not provide exact codes 
for different symptoms, I used the tenth International Classification for Diseases (ICD-10) to identify 
all of them except the category “Other” as internal causes of deaths. Internal causes of deaths are 
defined as health-related, non-accidental causes in contrast to non-health related external causes such 
as accidence, injury, homicides, poisoning and other similar causes. Since the exact pathology of 
diseases caused by particulate air pollution is not well-known, some of the internal diseases could 
potentially be associated with air pollution. Particularly, chronic exposure of infants to high PM2.5  
concentrations is expected to result in deaths due to respiratory infections. In contrast, there could 
well be internal diseases without any association with particulate air pollution.  
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Table 7 provides evidence of a large, negative and statistically significant impact of the crisis-induced 
reduction in PM2.5 pollution on mortality from respiratory infections (column (1)). The effect is 
associated with 24% fewer infant deaths in the districts with improved air quality, translated into 
implied elasticity of 0.34. The calculations suggest that the crisis-induced reduction in particulate air 
pollution is associated with 15% of the overall improvement in infant mortality due to respiratory 
infections. The magnitude of the estimated effect is comparable to the impact on the all-cause infant 
mortality. Additionally, this finding supports the conclusion about the dominance of the post-birth  
PM2.5 exposure channel and more frequent incidence of infants’ deaths during the postneonatal 
period. In the case of the states from the study area, the prevalence of pneumonia or respiratory 
infections as the causes of children deaths directly attributable to air pollution is indeed much higher 
in the postneonatal period than in the neonatal period (Bassani et al., 2010). Moreover, my findings 
are consistent with evidence that respiratory diseases less probably cause infant death during the 
neonatal period since newborns spend the most of their time indoors, but are the major cause of death 
for infants in the postneonatal period (Woodruff, Grillo, & Schoendorf, 1997; Bobak & Leon, 1999; 
Woodruff, Parker, & Schoendorf, 2006). Thus, disproportional association of the infants’ deaths due 
to respiratory infections in the postneonatal period is justified. 

It is notable that for the majority of other cases representing quite a broad range of diseases, the 
estimated effect of the crisis-induced reduction in particulate air pollution is small and not statistically 
significant. The exceptions are convulsions and two types of fever, with jaundice and convulsions. 
Although large and statistically significant, the coefficients on these diseases are sensitive to the 
inclusion of additional variables, particularly the second variable of interest that allows changes in 
the slopes. While there are no obvious causal links between air pollution and infant mortality due to 
these diseases, Clay, Lewis, and Severnini (2015), using the 1918 influenza pandemic in the U.S. as 
a natural experiment, provide rare evidence that air pollution could adversely affect the susceptibility 
of infants to infectious disease. This is consistent with my findings for fever.  

Overall, my findings suggest that the crisis-induced reductions in PM2.5 pollution affect infant 
mortality through two biological mechanisms, particularly the adverse impact on fetal development 
and infants’ early-life exposure. However, the estimates indicate that the former mechanism is not 
the primary channel as infants’ deaths are more likely to occur during the postneonatal period. 
Moreover, the results indicate that the effects of PM2.5 pollution on infant mortality are specific for 
respiratory infections and might be related to some of the infectious diseases. Nevertheless, the results 
should be interpreted with caution since the model designed for all-cause infant mortality could not 
capture effectively all underlying factors affecting some of the diseases, as an indicator of model fit 
suggests. 

6 POLICY PERSPECTIVE: HEALTH BENEFITS 

Finally, I use the quantified relationship to measure health benefits from the crisis-induced episode 
of air quality improvement. Moving the analysis to a policy perspective, this section demonstrates 
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how the resulting estimates can be applied to measure the effectiveness of the potential policies 
designed to improve air quality.  

For this purpose, I first use estimated coefficients to assess the contribution of the crisis-induced 
reduction in PM2.5 pollution to the overall improvement in infant mortality. Then I calculate the 
number of infant lives saved by the improvement in air quality. Further, using available life-years 
and life-expectancy metrics, I convert the number of infant lives saved into the number of infant life 
years saved. Finally, I use available estimates of the value of a statistical life to monetize potential 
gains from the crisis-induced improvement in air quality. 

The average decline in district-level infant mortality in the group with the reduction in PM2.5 
concentrations fell by about 59 infant deaths per 1000 live births during the post-crisis period. In 
terms of marginal effects, my computations imply that a decline in PM2.5 by 1 μg/m3 results in about 
1.09 fewer infant deaths per 1000 live births. Dividing the product of the implied marginal effects 
with respective average reduction in PM2.5 levels of 5.75 μg/m3, I find that an 11% overall decline in 
the infant mortality rate during the period of interest occurred due to improvement in air quality. 
Interestingly, had all districts in the study area experienced the same reduction in air pollution as the 
treated districts, the contribution would be of the same magnitude. For comparison, Jayachandran et 
al. (2010) show that the introduction of sulfa drugs, a groundbreaking medical innovation in 1930s 
in the U.S., resulted in a 17-32% decline in pneumonia mortality, 24-36% decline in maternal 
mortality, and 52-65% decline in scarlet fever mortality during 1937-1943. Among more recent 
economic studies, Luechinger (2014) finds that 25-44% of the infant mortality decrease in Germany 
in 1985-2003 was associated with the reduction in SO2 concentrations. Therefore, although with a 
little lower magnitude, the contribution of improvement in air quality to the overall decline in infant 
mortality rates in the sample of Indian districts during the period of interest is comparable. 

Knowing that the average district-level decline in PM2.5 concentrations during the period of interest 
is 5.75 μg/m3, and that the number of live births in the treated districts with reduction in PM2.5 
pollution is 214,173 out of 759,425 for the whole sample in the post-crisis period, I apply implied 
marginal effects to calculate the number of saved infant lives. The calculation suggests that the crisis-
induced reduction in air pollution resulted in 1338 infant lives saved in the treated districts. This 
number is lower but still comparable with that in Chay and Greenstone (2003b), where the authors 
claim 2500 fewer infants died during the U.S. economic recession in 1980-1982. Assuming that there 
could be an environmental regulation that would have the equivalent impact for all sample districts, 
the number of infant lives saved by such an improvement in air quality could reach 3589.  

Having calculated the number of infant lives saved, I convert it into the number of infant life years 
saved. For that purpose, I use official life tables published on the web page of the Ministry of Home 
Affairs’ Office of the Registrar General and Census Commissioner of India. A life table states the 
probabilities of survival and life expectancies of the hypothetical group or cohort at different ages 
(Census of India, 2016). Particularly, a Sample Registration System’s life table for the 2009-2013 
period shows that the average life expectancy for individuals within one year of life is 67.5 years. 
Multiplying the number of infant lives saved by this life expectancy, I obtain a gain in life years saved 
of 90,319.1 for the treated districts and 242,282.02 for the whole sample of districts.  
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Finally, however impressive the estimated benefits from the improvement in air quality are, they 
would be pointless without an opportunity to compare them with the costs of environmental 
regulation. Therefore, all gains need to be monetized. For that purpose, estimates of the value of a 
statistical life are usually used.23 As there is no standard concept for the value of a human life in 
economics, the authors typically use different measures varying from $1.7 million ($2000) in 
Ashenfelter and Greenstone (2004) to $6.7 million ($2000) in Viscusi and Aldy (2003) and the U.S. 
EPA (n.d.b) estimate of $7.4 million ($2006). I use the value of a statistical life estimated specifically 
for India by Madheswaran (2007), who finds it equals to 15 million INR or $233,619. 

I monetize the estimated number of infants lives saved of 1338 for the treated districts and 3589 for 
the whole sample during 2010-2011 to obtain monetary values of health benefits in the range of $313 
million and $839 million, respectively. Knowing that the average number of the households surveyed 
in the treated districts and in the whole sample is 1,081,727 and 4,280,315, an annual average per-
household monetized benefit from the estimated reduction in PM2.5 pollution is in the range of $289 
for the treated districts, and $196 for the whole sample. For comparison, Luechinger (2014) reports 
that annual monetized benefit from the environmental regulation aimed at the reduction of SO2 
concentrations in West Germany in the year 1989/1990 varies from $50 to $343 per household. 

It is worth mentioning that the overall health benefits of the crisis-induced reduction in air pollution 
could be underestimated in this study. My research design does not account for the effects of the 
decline in the concentrations of other air pollutants, as well as the crisis-driven impact on morbidity 
or labor productivity of the older cohorts of the Indian population. Nevertheless, the resulting 
monetary values of health benefits can be used as a benchmark against which the costs of the current 
or potential policies aimed at improving air quality can be compared. Thus, my estimates could be of 
considerable interest for policymakers aimed at finding the optimal balance between the costs and 
benefits of air pollution regulation in the specific context of early-life health in developing countries. 

7   CONCLUSION 

This study has attempted to isolate the causal relationship between the reductions in PM2.5 pollution 
presumably caused by the Global Financial Crisis of 2008 and decline in infant mortality in India 
using a quasi-experimental difference-in-differences research design. 

Combining state-of-the-art satellite-based estimates with household survey-based information for 284 
districts across 9 states during 2007-2011, I find that the infant mortality rate fell by 24% more in the 
most affected districts, implying 1338 fewer infants deaths than would have occurred in the absence 
of the crisis. The analysis of the pathophysiological mechanism indicates that the effect of interest is 
strongest in the postneonatal period, specific for respiratory infections and might be related to 
infectious diseases. The findings also highlight the importance of two biological mechanisms: in utero 
                                                
23   In a statistical sense, the value of a statistical life is the cost of reducing the average number of deaths by one. Conducting a cost-

benefit analysis of environmental policies in practice, the U.S. EPA, for example, estimates how much people are willing to pay 
for a marginal reduction in the risk of dying from the pollution-related adverse health conditions and refers to such estimates as the 
values of a statistical life (U.S. EPA, n.d.b). 
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and post-birth PM2.5 exposure. The estimates are within the range reported in other economic studies 
and appear to be robust to a variety of specifications and falsification tests, prompting the belief that 
the relationship between crisis-induced reduction in particulate air pollution and decline in infant 
mortality is causal in nature. 

Moving the analysis further into the policy perspective, I demonstrate how the resulting estimates of 
the health effects attributable to the crisis-induced reduction in PM2.5 pollution could be applied to 
measure the effectiveness of the current and potential policies aimed at controlling air quality in India. 
For that purpose, I measured actual gains from improving air quality in the Indian districts during the 
crisis time-frame. The resulting gains comprise a number of infant lives saved, the corresponding 
increase in life expectancy at birth and monetary values of the improvements obtained.  

Back-of-the-envelope calculations suggest that the estimated decline in infant mortality translates 
into a three-year after crisis total of $312.5 million. The resulting health benefits attributable to the 
crisis-induced reduction in air pollution can be used as a benchmark to assess the effectiveness of 
potential policies designed to improve air quality in the selected Indian districts.  

Therefore, this study addresses more precisely the needs of policymakers aimed at finding the optimal 
balance between the costs and benefits of air pollution reduction in the specific context of developing 
countries. 
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FIGURES 
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Figure 1. Study area 

 
Notes: The figure demonstrates the 284 districts (as per Census 2001) across 9 states in India covered by the Annual 
Health Survey. These districts are a particularly relevant study area. They represent nearly 50% of the overall 
population and account for 60% of all births and 70% of all infant deaths in the country. 

 
 

 

Figure 2. PM2.5 concentrations in study area, 1998-2005 
 

Notes: The figure shows the evolution of the district-level annual mean PM2.5 levels in the study area for 1998-
2015. Two observations emerge. First, air quality has been continuously deteriorating during the last two decades. 
Second, the figure documents two episodes of abrupt reduction in PM2.5 concentrations, 2005-2006 and 2009-2012, 
followed by comparably sharp reversals of the trends. Air quality improvement during the 2009-2012 episode is 
the focus of my study. 
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Figure 3. Kernel density graphs of air quality  

Notes: The figure compares kernel density estimates of the annual mean PM2.5 distributions across the districts in 
the study area for 2008, 2012 and 2015, representing pre-crisis, crisis and post-crisis cut-off points. Panel A 
demonstrates that the entire distribution shifted substantially to the left in 2012 compared to 2008. In contrast, Panel 
B documents the shift of the distribution to the right again in 2015. 

 

 
 

Figure 4. Spatio-temporal distribution of district-level annual mean PM2.5 
 

Notes: The figure depicts spatio-temporal distribution of district-level annual mean PM2.5  concentrations in the 
study area for 2008, 2012 and 2015, representing pre-crisis, crisis and post-crisis cut-off points. The districts are 
classified into six categories using air quality thresholds adopted by the WHO, EU and Indian environmental 
agencies (similar to Chowdhury & Dey, 2016). I define “Low”, “Moderate”, “High”, “Very High”, “Severe” and 
“Extreme” categories in a way that their upper limits correspond to one of the standards. The limits for the first two 
categories are set to meet the WHO interim targets 3 (IT-3) and 2 (I-2), equal to 15 and 25 μg/m3 respectively. The 
latter threshold also corresponds to the European Environmental Agency target value for European countries. The 
upper limit of 35 μg/m3 in the lower “High” category is the WHO IT-1, while the limit in the upper “High” category 
is equivalent to the Indian National Ambient Air Quality Standard of 40 μg/m3, the least stringent of the standards. 
The limits of the remaining categories are designed to highlight extremely high levels of air pollution in India. The 
“Very High” category corresponds to the PM2.5 concentration equivalent to the double of the least demanding WHO 
IT-1, “Severe” pollution exceeds twice the Indian Standard and is nine times the WHO air quality guideline value 
of 10 μg/m3, which is excluded from our classification. The last “Extreme” category comprises the remaining 
concentrations of fine particulate pollution exceeding 90 μg/m3. More details about air quality standards and 
guidelines are in Panel B of Table 1, WHO (2006a), EEA (2014) and CPCB (2009).  
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Figure 5. Trends in mean PM2.5 concentrations and Infant mortality rates, study area, 2007-2011 

Notes: The figure shows the evolution of the district-level annual means of PM2.5 air pollution and the infant 
mortality rate during 2007-2011. The infant mortality rate followed a similar pattern to that followed by air 
pollution. Both data series provide visual evidence of structural breaks marked by the dashed lines and reversals in 
upward trends started after 2008 and 2009, respectively for air pollution and mortality. Although with a time lag, 
both breaks correspond well to the crisis’ time frame, cautiously suggesting the presence of a direct relationship 
within the crisis-pollution-mortality nexus. 

 
 
 

  
Figure 6. W- and F-statistics from sup Wald and sup LR tests for trend break (Stata output) 

Notes: The figure presents the results of the time-series econometric test for structural trend break, specifically 
supremum Wald and likelihood-ratio (LR) tests designed for the cases when the breakpoints are unknown 
(Andrews, 1993, 2003; Hansen, 1997). Both supremum tests identify structural breaks within the 2009-2012 air 
quality improvement episode, thus associating them with the respective reversal of the upward trend in PM2.5.  
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Figure 7. Spatial relationship between pre-crisis PM2.5 and crisis-induced changes 
 
Notes: Panel A illustrates spatial variation in the pre-crisis levels of PM2.5 pollution. Panel B demonstrates a 
geographical distribution of the district-wise changes in average PM2.5 during 2009-2012. Panels C and D provide 
visual representation of the Hot Spot Analysis results. Panel C shows spatial distribution of the HSA input values 
– crisis-induced changes in mean PM2.5 concentrations during 2008-2012 normalized by the pre-crisis 2008 
concentrations. Panel D shows the resulting HSA output with hot spot and cold spot districts depicted in red and 
blue. There is a striking correspondence between the hot spots and the districts that experienced statistically 
significant increase in air pollution, and the cold spots and the districts that experienced statistically significant 
reduction in air pollution. The remaining districts, depicted in beige, are the ones in which relative changes in 
particulate air pollution are not statistically significant, implying that they could likely happen by random chance 
or that these districts would experience such changes in the absence of the crisis. I consider districts belonging to 
the hot and cold spots as treated districts with worsened and improved air quality, respectively, while districts 
depicted in beige are control districts. 
 

  
Figure 8. Visual examination of the parallel trend assumption 

 

Notes: The figure depicts the evolution of the trends in infant mortality rates across comparison groups adjusted 
for the district-specific linear trends and some basic characteristics of the deceased infants. The dashed vertical line 
indicates the time of the effects of the crisis on air pollution started between years 2009-2010. The thin black line 
represents the difference in infant mortality rates between treatment and control groups of districts, allowing a 
rough comparison of the relative pre- and post-crisis trends.  
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TABLES 
 

Table 1. Descriptive statistics  

 
 

Notes: The table presents descriptive statistics for the districts from Figure 1. The table shows that the reduction in 
district-level PM2.5 pollution during 2009-2011 is visibly larger compared to the changes in the majority of other 
variables during the same period. 
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Table 2. Summary statistics of changes in PM2.5 and population at the crisis’ cut-off points 

 
 

Notes: The table accompanies Figure 3 by providing summary statistics corresponding to changes in PM2.5 and 
population exposure to PM2.5  pollution across districts for 2008, 2012 and 2015, representing pre-crisis, crisis and 
post-crisis cut-off points. Panel A documents changes in PM2.5 concentrations, while Panel B relates these changes 
to population exposure. Categorization of districts due to PM2.5 concentrations corresponds to those explained in 
the notes to Figure 4. Taken together, Figure 3 and Panel A of Table 2 support the hypothesis that districts with 
high pre-crisis levels of air pollution likely experienced a more significant improvement in air quality than districts 
with initially low pollution concentrations. Figure 4 and Panel B Table 2 provide suggestive evidence that 
improvements in infant mortality could be more pronounced in districts with high pre-crisis levels of air pollution.  
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Table 3. Structural trend break analysis 

 
 

Notes: The table shows the results of the time-series econometric test for structural trend break, supremum Wald 
and likelihood-ratio (LR) tests, designed for cases when the breakpoints are unknown (Andrews, 1993, 2003; 
Hansen, 1997). Both supremum tests identify structural breaks within the 2009-2012 air quality improvement 
episode, thus associating them with the respective reversal of the upward trend in PM2.5. Panel A shows that 
whenever the year 2010 is included in the test window, the maximal W-statistics are concentrated at this year, and 
the null hypothesis of no trend break can be rejected at the 1 percent level. When tested by the sup LR, the same is 
relevant for the year 2009 except that neither of the F-statistics is significant. Panel B uses analogous tests for 
structural trend break but designed for cases when it is pretended that the year of trend break is known. It shows 
that neither of the years within the 2005-2006 interval, the years of the largest pre-crisis drop in PM2.5, are trend 
break years. This relaxes a concern about the possible confounding role of these years in the results.  

  



 39

Table 4. Results of the test suggested by Altonji, Elder, and Taber (2005) 
 

Panel A. Districts with improved air quality 
 

 
 
Notes: The table further validates the DID identifying assumption of the model in equation (4). The test suggested 
by Altonji, Elder, and Taber (2005) examines whether the impact of the crisis has any association with changes in 
observable characteristics. Although this is not a formal test for exclusion restrictions, the absence of a statistically 
significant association with observable characteristics would suggest that there should not be a correlation with 
unobservable variables either (Altonji et al., 2005). I first successively regress my empirical model with every 
observable characteristic as a dependent variable. Then, I check whether the coefficients on the interaction term, 

, are statistically significant. Table 4 presents results for both types of treated districts in Panel A and Panel B, 
respectively. Heteroskedasticity-robust standard errors clustered at the district level are shown in parentheses. 
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Panel B. Districts with worsened air quality 
 

 
 

Table 5. Effects of the changes in particulate air pollution on infant mortality 

 
Notes: The table presents baseline results of the regression analysis by reporting the key estimates from fitting 
equations (4) and (5). The dependent variable is the infant mortality rate for all causes of deaths. For both types of 
treated districts, columns (1) report the estimate of coefficient  after the estimation of equation (4), which tests 
for the effects of the crisis-induced changes in PM2.5 on the infant mortality rate after adjustment for district fixed 
effects, year fixed effects and differential trends. The second columns report the results from equation (5) allowing 
for both level and slope changes during the post-crisis period. All regressions are run on the variables detrended as 
described in section 3 of the paper. Standard errors clustered at the district level are shown in parentheses. 
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Table 6. Sensitivity analysis 

 

 
Notes: The table addresses concern that changes in the dependent variable may be explained by changes in the 
observable time-varying characteristics that potentially correlated with the impact of PM2.5 pollution changes 
attributable to the effect of the crisis. For that purpose, I perform a sensitivity analysis. The table reports results for 
both types of districts. Every pair of columns represents estimates from fitting equations (4) and (5). All regressions 
include district FE, year FE, district-specific trends. Heteroskedasticity-robust standard errors clustered at the 
district level are shown in parentheses. 
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Table 7. Falsification test / Pathophysiological mechanism: Causes of deaths 

 

Notes: The table shows the results from one of the falsification test and the results from examination of the channels 
through which air pollution affects infant mortality. For the falsification test, I replace the dependent variable in 
equation (4) with another outcome variable that is not affected by the crisis-induced changes in air pollution. 
Specifically, I use the infant mortality rate due to diarrhea/dysentery as the alternative dependent variable to 
evaluate the internal validity of the previous estimates. As expected, regressions return statistically insignificant 
coefficients. For examination of the channels, the table reports the effect of the crisis-induced changes in PM2.5 
pollution on infant mortality disaggregated by various diseases. The results indicate that the effects of PM2.5 
pollution on infant mortality are specific for respiratory infections and might be related to some of the infectious 
diseases. The analysis is based on the specifications in columns (11) and (12) from Table 6 and focuses on the 
treated group of the districts with improved air quality. Each column presents results from the regressions with 
IMR due to fifteen causes of deaths as the dependent variable. All regressions include district FE, year FE, district-
specific trends; Controls: income per capita, meteorology characteristics of the deceased infants, head of household, 
household, medical services utilization, other. Heteroskedasticity-robust standard errors clustered at the district 
level are shown in parentheses 
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Table 8. Falsification tests: Pre-crisis data sample, placebo = 2008 
 

 
Notes: The table shows the results of another falsification test. I re-estimate the model using observations only from 
the pre-crisis period when the effects of the crisis-induced reduction in air pollution could not exist. I assign 2008 
as a placebo trend break point and thus consider 2007 as the pre-crisis period, and 2008 as the post-crisis period. 
The table reports point estimates after fitting equation (4) with different combinations of  and  vectors for 
the districts from both treated groups with improved (Group 1) and worsened (Group 2) air quality. As expected, 
the regressions return statistically insignificant coefficients. Heteroskedasticity-robust standard errors clustered at 
the district level are shown in parentheses. 

 
Table 9. Additional falsification and robustness checks 

 

 
 

Notes: The table provides results of the additional falsification and robustness checks of my main finding. See the 
text for explanations. 
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Table 10. Pathophysiological mechanism: Timing of infants’ deaths 

 

 
 

Notes: The table shows the results from examination of the channels through which air pollution affects infant 
mortality. It presents the estimated effects of the reductions in PM2.5 pollution on the infant mortality rate within 1 
day, 28 days, between 28 days and 11 months, within 11 months and between 11 and 12 months of life. The second 
category is also known as the neonatal infant mortality rate, which in turn is broken down into early and late 
neonatal mortality rates corresponding to the deaths occurring within 0-7 and 8-27 days from birth, respectively. 
The third category is usually referred to as a postneonatal mortality rate. Separate analysis of these categories is 
performed purposefully. The large and statistically significant estimate in the neonatal period would likely suggest 
that particulate air pollution affects infant mortality through the adverse effects on fetal development, via in utero 
exposure to PM2.5. Newborns whose mothers where exposed to high PM2.5 concentrations during pregnancy have 
a higher probability of dying in the neonatal than the postneonatal period. In contrast, a large and statistically 
significant effect in the postneonatal period would highlight the importance of post-birth PM2.5 exposure in the 
biological mechanism through which air pollution affects infants directly. The analysis is based on the 
specifications in columns (11) and (12) from Table 6 and focuses on the treated group of the districts with improved 
air quality. All regressions include district FE, year FE, district-specific trends; Controls: income per capita, 
meteorology characteristics of the deceased infants, head of household, household, medical services utilization, 
other. Heteroskedasticity-robust standard errors clustered at the district level are shown in parentheses 
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APPENDIX 
 

A1. Additional robustness checks 
 

Table A1.1. Alternative sorting of districts into treatment and control groups (T&C) 
 

 
Notes: The table compares resulting estimates based on the model in equation (4) from the robustness checks that 
focus on alternative options for sorting districts into treatment and control groups. Each column of the table 
corresponds to one of the eight regressions, which are intuitively illustrated by the graphs in Figure A1 below. The 
sign, magnitude and order of statistical significance of the coefficients on Treated ⋅ Post remain similar between 
each other and to the coefficient estimated using my preferable specification. T&C refers to the treated and control 
districts. Heteroskedasticity-robust standard errors clustered at the district level are shown in parentheses. 

 

 
Figure A1. Location of the treated and control districts: Illustrations to columns of the Table A1.1 

 

Panel A. The location of the treated and control districts as in Column (1) of Table A1.1: Hot Spot Analysis (HSA) 

 
Panel B. The location of the treated and control districts as in Column (2) of Table A1.1: 2008-2012 simple changes 

in PM2.5 concentrations as in Chay and Greenstone (2003b) 
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Figure A1 (continued). Location of the treated and control districts 
 

Panel C. The location of the treated and control districts as in Column (3) of Table A1.1: as in Chay and Greenstone 
(2003b) but alternatively based on 2008-2012 % changes in PM2.5 

 
Panel D. The location of the treated and control districts 
as in Column (4) of Table A1.1: HSA, balanced panel 

Panel E. The location of the treated and control districts 
as in Column (5) of Table A1.1: HSA, adjacent districts 

  
Panel F. The location of the treated and control districts 
as in Column (6) of Table A1.1: HSA, after drop of 10% 

of the most affected districts based on PM2.5 change 

Panel G. The location of the treated and control districts 
as in Column (7) of Table A1.1: HSA, after drop of 10% 
of the most affected districts based on % change in PM2.5 

  
Panel H. The location of the treated and control districts as in Column (8) of Table A1.1: HSA, after drop of the 

adjacent districts 

 
 
Notes: The figure illustrates a column-wise location of the treated and control districts for the Table A1.1.    
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Table A1.2. Alternative estimation strategies 
 

 
 

Notes: The table compares resulting estimates based on the model in equation (4) from another set of robustness 
checks that focus on alternative estimation strategies. The test checks whether the main finding would remain robust 
to different estimation strategies, namely detrending, conditioning on the explanatory variables and district-specific 
trends, and the method combining matching on pre-crisis explanatory variables and trends with subsequent 
difference-in-differences. Column (1) shows the coefficient on Treated ⋅ Post estimated using my preferable 
specification based on detrending. Column (2) shows the same coefficient estimated using my preferable 
specification but based on the conditioning on explanatory variables and district-specific trends. Columns (3) and 
(4) show the results from the regressions that combine matching on pre-crisis explanatory variables and district-
specific trends with specifications in columns (2) and (1), respectively. Matching is performed as a 1-to-1, nearest-
neighbor, without replacement and with common support. In other words, the results in columns (3) and (4) are the 
estimated coefficients on Treated ⋅ Post obtained from the regressions like in columns (2) and (1) but on matched 
sample. The results indicate that all specifications return estimated coefficients of interest that are not substantially 
different from each other, thus confirming the credibility of the main analysis. Heteroskedasticity-robust standard 
errors clustered at the district level are shown in parentheses. 



Abstrakt 
 
 
Věrohodné odhady dopadů změn ve znečištění ovzduší na zdraví jsou důležité pro výzkum a 
formování enviromentálních politik, obzvláště pak v rozvojových zemích.  Tento článek odhaduje 
vliv náhlé redukce znečištění ovzduší na kojeneckou mortalitu, která byla způsobena Velkou recesí 
v roce 2008. Změny jsou pozorovány v Indii na úrovni správních oblastí. S využitím možné 
exogenní geografické variace ve změnách kvality ovzduší způsobených krizí, nového datového 
souboru dotazníkového šetření mezi domácnostmi a satelitních dat zjišťuji, že kojenecká úmrtnost 
poklesla v nejvíce zasažených oblastech o 24 %. To představuje o 1338 méně úmrtí oproti situaci, 
že by krize nenastala. Analýza mechanismu naznačuje, že redukce PM2.5 ovlivňuje kojeneckou 
úmrtnost zejména skrz respirační choroby a dva odlišné biologické mechanismy: vystavení se 
PM2.5 před a po narození.  Hrubé výpočty naznačují, že odhadovaný pokles v kojenecké úmrtnosti 
představuje v prvních třech letech po krizi zisk přibližně 312.5 milionů amerických dolarů. 
Výsledné zdravotní zlepšení by mohlo být použito jako benchmark pro vyhodnocování efektivity 
politik určených ke zlepšení kvality ovzduší v Indii. 
 
Klíčová slova: znečištění vzduchu, kojenecká úmrtnost, krize, Indie 
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