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Abstract

We examine the pricing of a horizon specific uncertainty network risk, extracted
from option implied variances on exchange rates, in the cross-section of currency re-
turns. Buying currencies that are receivers and selling currencies that are transmitters
of short-term shocks exhibits a high Sharpe ratio and yields a significant alpha when
controlling for standard dollar, carry trade, volatility, variance risk premium and mo-
mentum strategies. This profitability stems primarily from the causal nature of shock
propagation and not from contemporaneous dynamics. Shock propagation at longer
horizons is priced less, indicating a downward-sloping term structure of uncertainty
network risk in currency markets.
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1 Introduction

Countries are connected through a variety of channels including economic activity,
trade and financial links. Although international connections have been central for under-
standing market and fundamental macroeconomic risks, the literature has largely ignored
the world’s largest financial market - the foreign exchange market. In this paper, we ex-
plore the properties of a variety of network risk measures in the cross-section of currencies.
We document that an uncertainty network strategy, which buys currencies receiving short-
term shocks and sells those transmitting short-term shocks, generates a high Sharpe ratio
and yields a significant alpha when controlling for popular foreign exchange benchmarks.
We also find that the long-short portfolios based on currency connectedness at longer
horizons is less profitable, indicating a downward-sloping term structure of uncertainty

network risk in currency markets.!

We begin by approximating foreign exchange uncertainty through the risk-neutral ex-
pectation of the currency variance. The highly liquid and large foreign exchange volatility
market provides an excellent opportunity to synthesize such expectations.? The data for
over-the-counter currency options are available on a daily frequency for a large cross-
section of countries. A wide variety of strikes and maturities available on the market allow
us to precisely compute the implied variances on exchange rates. Further, the forward-
looking nature of currency derivatives, which reflect the expectations of agents about fu-
ture financial and real macroeconomic risks, is distinct from the backward-looking infor-

mation extracted from historical price and macroeconomic data.*

We continue our empirical investigation by estimating a dynamic horizon specific net-
work among implied variances on exchange rates, following the methodology of Barunik
and Ellington (2020). The network structure of this paper has several key attributes. First,
the connections between two nodes (currencies in our case) are directed; that is, the influ-

ence of a currency A on a currency B is not necessarily equal to the impact of the currency B

!We use the terms network and connectedness interchangeably.

2We follow the model-free approach of Britten-Jones and Neuberger (2000) and Bakshi, Kapadia, and
Madan (2003) to compute spot implied variances on exchange rates from currency option prices.

3As of June 2019, daily average turnover was $294 billion and notional amounts outstanding was $12.7
trillion (BIS, 2019a,b).

4Gee, for example, Gabaix and Maggiori (2015), Zviadadze (2017), and Colacito, Croce, Gavazzoni, and
Ready (2018) for the nature of risks traded in currency markets.
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Figure 1. Total and causal short-term currency networks: September 30, 2008

The left (right) figure depicts network connections among currency implied variances based on total (causal)
connectedness. Total connectedness measures overall dependencies between currency variances, including
contemporaneous and causal effects. Causal connectedness is obtained by removing contemporaneous cor-
relations from total connectedness. Arrows denote the direction of connections and the strength of lines
denotes the strength of connections. Grey (black) vertices denote currencies receiving (transmitting) more
shocks than transmitting (receiving) them. The size of vertices indicates the net-amount of shocks. To en-
hance readability of plots, the links are drawn if their intensities are greater than a predetermined threshold.

on the currency A. Thus, our currency connectedness measures of this paper identify novel
links that are not captured by correlation-based measures. Second, we are able to distin-
guish between short- and long-term connections among idiosyncratic currency variances
and hence we shed light on how connectedness from shocks with different persistence
is being priced in currency markets. Third, the international dependencies are naturally
driven by contemporaneous fluctuations in global markets and causal influences between
countries. In our empirical analysis, we are able to isolate causal connectedness among cur-
rency variances by removing contemporaneous correlations. Finally, the network structure
is changing dynamically over time, unlike the somewhat persistent relationships between
countries based on interest rates. Hence, sorting currencies according to the network risk

measures is not equivalent, for example, to the currency carry trade.

For twenty countries studied in our paper, Figure 1 depicts total and causal short-term
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Figure 2. Causal short- and long-term currency networks: August 31, 2011

The left (right) figure depicts short-term (long-term) network connections among currency implied variances
based on causal connectedness. Causal connectedness is obtained by removing contemporaneous correla-
tions from total connectedness. Arrows denote the direction of connections and the strength of lines denotes
the strength of connections. Grey (black) vertices denote currencies receiving (transmitting) more shocks
than transmitting (receiving) them. The size of vertices indicates the net-amount of shocks. To enhance
readability of plots, the links are drawn if their intensities are greater than a predetermined threshold.

connections, whereas Figure 2 demonstrates causal links for short- and long-term cases.”

The plots show connectedness snapshots during two major recessions (the global financial
crisis and the European sovereign debt crisis) and illustrate several interesting features.
First, total and causal connections might convey significantly different information about
shock propagation in the global currency network. Second, the contribution of short-term
and long-horizon connectedness is changing dynamically over time. For example, shortly
after the bankruptcy of Lehman Brothers, the market crashes were strongly driven by
short-term shocks, whereas fears of contagion in Europe reflect mainly long-term risks. A

natural question arises whether this information might be valuable for traders.

We find that the uncertainty network does predict currency returns. We build monthly
quintile portfolios sorted by the amount of transmitted (received) shocks by each cur-

rency to (from) others and also by the difference between transmitted and received shocks.

5In the empirical investigation, we define short-term as a 1-day to 1-week horizon, medium-term as a
1-week to 1-month horizon, and long-term as horizons greater than 1-month.
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For portfolio sorting, we use horizon-specific total and causal network measures. For
instance, for the short-term net-directional (total or causal) network, the first (fifth) portfo-
lio contains the currencies transmitting (receiving) more short-term shocks than receiving
(transmitting) them. We document that buying currencies of short-term net-receivers and
selling currencies of short-term net-transmitters yields a high Sharpe ratio over the 1996-
2013 period (0.65 and 0.80 for total and causal connections). Regressing the excess returns
of short-term net-directional portfolios on the dollar, carry trade, volatility, variance risk
premium, and momentum strategies yields economically and statistically significant al-
phas, particularly for a causal connectedness case (6.31% per annum with a t-stat of 3.48).
To better understand the sources of this profitability, we sort the currencies into quintiles
based on only transmitted or received shocks. The results show that this is the network

risk related to transmitting shocks to others, which is strongly priced.

Relative to common currency portfolios, the predictability stemming from causal net-
work risk is primarily driven by changes in exchange rates and not by interest rate differen-
tials. The causal network strategies are also weakly correlated with currency benchmarks,
providing excellent diversification gains. The allocation analysis demonstrates that the
strategy using causal short-term net-directional connections buys or sells different curren-
cies compared to benchmarks at least 40% of the time. In contrast, the excess returns of
total connectedness portfolios are driven strongly by interest differentials and hence are
more correlated with other strategies. The results indicate a distinctive source of causal

network returns.

We next focus on the term structure of network risk premia. The profits of net-
directional portfolios decrease with the horizon of currency connectedness, suggesting
that their expected returns are related to transitory shocks. This result is consistent with
the downward-sloping term structure of unconditional forward risk premia in equity mar-
kets (Dew-Becker, Giglio, Le, and Rodriguez, 2017). Interestingly, we find that causal
to-directional portfolios behave in a strikingly different way. For instance, both average
returns and Sharpe ratios of investment strategies focusing only on the amount of trans-

mitted shocks slightly increase with the horizon.

In yet another exercise, we examine whether the excess returns of network-sorted port-



folios reflect the compensation for risk. For the sake of a convenient presentation, we
consider separately the cross-section of currency returns sorted on the short-term net-
directional measure extracted from total and causal connectedness. Following Lustig,
Roussanov, and Verdelhan (2011), we perform a principal component decomposition of
test assets. The results show that the former cross-section can be summarized by the
first two principal components, whereas the latter one requires three components. Mo-
tivated by these results, we then formally test a battery of two- and three-factor linear
models. None of the pricing kernels including the benchmark currency factors can explain
currency returns sorted on total or causal connectedness. In contrast, the corresponding
network factor appears to be strongly priced. Finally, for the causal network cross-section,
an extended pricing kernel with the dollar, carry trade and network risk factors provides

the best-performing three-factor model.

Our empirical evidence is robust to a rich set of robustness checks. First, the magnitude
and significance of risk-adjusted and benchmark-adjusted returns of network portfolios
increase monotonically when we move to weekly and daily frequencies. Second, the ex-
cess returns remain significant after adjusting them for transaction costs using the bid-ask
data for exchange rates. Third, the network portfolios generate comparable performance

statistics across the first and second half of the total sample.

This paper contributes to the large strand of the literature documenting predictabil-
ity in currency returns.® The volatility-related strategies exploit global foreign exchange
volatility (Menkhoff, Sarno, Schmeling, and Schrimpf, 2012a) and currency variance risk
premium (Della Corte, Ramadorai, and Sarno, 2016). These strategies can be explained
by the models of Gabaix and Maggiori (2015) and Colacito, Croce, Gavazzoni, and Ready
(2018). We contribute to this literature by showing how connectedness risk from implied
variances on exchange rates is priced in the cross-section of currency excess returns. We
demonstrate that network returns stemming from the causal nature of shock propagation

are virtually unrelated to the existing strategies.

®The literature documents the strategies, among many others, based on the carry trade (Lustig and
Verdelhan, 2007; Lustig, Roussanov, and Verdelhan, 2011; Menkhoff, Sarno, Schmeling, and Schrimpf, 2012a),
momenum (Menkhoff, Sarno, Schmeling, and Schrimpf, 2012b; Asness, Moskowitz, and Pedersen, 2013;
Dahlquist and Hasseltoft, 2020), business cycles (Colacito, Riddiough, and Sarno, 2020), and global imbal-
ances (Corte, Riddiough, and Sarno, 2016).



In related work, Mueller, Stathopoulos, and Vedolin (2017) propose a strategy based
on the sensitivity of currencies to the cross-sectional dispersion of conditional foreign ex-
change correlation. They construct the conditional correlation from spot exchange rates
as well as using the currency options for the risk-neutral counterpart. They find some in-
teresting results about the compensation for exposure to high or low dispersion states. In
contrast, we focus on dependencies in currency implied variances instead of correlations
of spot exchange rates. Furthermore, the connectedness measures of our paper are direc-
tional, unlike correlation-based proxies used by Mueller, Stathopoulos, and Vedolin (2017).
Further, we are able to disentangle causal from contemporaneous effects in connections

between currency variances, which is impossible for correlations in their paper.

Our paper is also related to Richmond (2019) who presents a general equilibrium model
explaining the currency carry trade premia by the country’s position in the global trade
network. Unlike his network risk based on trade linkages, we study the market-based
network from currency implied variances. Further, the currency excess returns sorted on
network risk measures of our paper are weakly correlated to the standard carry trade.
Hence, the predictive information of the uncertainty network extracted from currency op-

tion prices is distinctive from trade links.

Finally, our paper is related to the literature focusing on currency options. Jurek (2014),
Farhi, Fraiberger, Gabaix, Ranciere, and Verdelhan (2015) and Chernov, Graveline, and
Zviadadze (2018) investigate crash risk in currency markets. Although we use currency
options to synthesize implied variances on exchange rates, our paper differs in that its
main focus is on the properties of network-sorted portfolios. Della Corte, Kozhan, and
Neuberger (2020) document a global risk factor in the cross-section of implied volatility
returns. The key differentiator of our study from their paper is that we study the network

risk premia in the cross-section of spot currency excess returns.
2 Foreign Exchange Uncertainty Network Risk

This section describes the numerical procedure used to measure currency uncertainty
network risk. We begin by approximating foreign exchange uncertainty through the risk-
neutral expectation of the currency variance that can be synthesized from the quoted cur-

rency options. We then provide a general discussion of the econometric methodology used
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to estimate a dynamic horizon specific uncertainty network from the currency option im-
plied variances.” We finally discuss a variety of currency uncertainty network risk proxies

used in the core analysis.

2.1 Currency Uncertainty: Inferring Investor’s Expectations from Option Prices

A natural way to measure uncertainty about future exchange rate fluctuations is through
the expectation of the currency variance. To study a network of such expectations in the
cross-section of exchange rates, we obtain spot implied variances from OTC currency op-
tions by applying a model-free approach of Britten-Jones and Neuberger (2000) and Bakshi,
Kapadia, and Madan (2003). Formalizing the discussion, we use prices of European call
and put options expiring at time t + T to compute the implied variance for an exchange

rate k versus the US dollar between two dates f and t + 7 :

2 T Cktt+1,K) Fk(t’t“)pk(t t+1,K)
k s ’ ’ ’
Warf =z / o dK + / g dK (1)
Fk(tt+7) 0

where CX(t,t + 7,K) and P¥(t,t + 7, K) denote the prices of call and put contracts at time
t with a strike price K and maturity T, B¥(t,t + T) is the price of a country’s bond at time
t with maturity 7, F¥(t,t + 7) is the forward exchange rate of the currency k at time t
with maturity 7. To compute the model-free implied variances, we discretize the integral
in Equation (1) by adopting call and put option prices interpolated around the T maturity,

and by considering a range of strike prices for the currency k.

2.2 Dynamic Uncertainty Network Risk

Having constructed proxies of forward-looking currency uncertainty, our objective is
to define the network for shocks of a specific persistence propagating across the curren-
cies. The knowledge of how a shock to a currency j transmits to a currency k defines
a directed link at a given period of time. These disaggregate connections between cur-
rency pairs then characterize two major types of network risk: a receiver or a transmitter
of shocks. Aggregating the information from all pairs provides a system-wide measure
of the forward-looking connectedness among foreign exchanges of countries. In contrast

to the network literature in finance (Elliott, Golub, and Jackson, 2014; Glasserman and

7Appendix A provides a detailed description of the estimation procedure used to obtain a dynamic
horizon specific uncertainty network risk.



Young, 2016; Herskovic, 2018), we construct a highly dynamic network encompassing the

information for a range of horizons into the future.

A dynamic network can be characterized well through variance decompositions from a
time varying parameter vector autoregression (TVP-VAR) approximation model (Diebold
and Yilmaz, 2014). Variance decompositions provide useful information about how much
of the future variance of a variable j is due to shocks in a variable k. The time-varying
variance decomposition matrix defines the dynamic network adjacency matrix and is in-
timately related to network node degrees, mean degrees, and connectedness measures.
Further, a frequency domain view on such a network structure allows us to decompose the

network to short-, medium- or long-term network risk (Diebold and Yilmaz, 2014).8

Algebraically, the adjacency matrix captures all information about the network, and
any sensible measure must be related to it. Network centrality is a typical metric used by
the wide network literature, which provides the user with information about the relative
importance or influence of nodes. For our purposes, we want to measure node degrees that
capture the number of links to other nodes. The distribution shape of the node degrees is a
network-wide property that closely relates to network behavior. As for the connectedness
of the network, the location of the degree distribution is key, and hence, the mean of the

degree distribution emerges as a benchmark measure of overall network connectedness.

The dynamic horizon specific networks we work with are more sophisticated than clas-
sical network structures. In a typical network, the adjacency matrix contains zero and one
entries, depending respectively on the node being linked or not. In the above notion, one
interprets variance decompositions as weighted links showing the strength of the connec-
tions. In addition, the links are directed, meaning that the j to k link is not necessarily
the same as the k to j link, and hence, the adjacency matrix is not symmetric. These
measures are the key to our analysis as directional connectedness risk stems directly from

asymmetries within the network.

We construct a dynamic uncertainty network through the TVP-VAR model estimated

from currency implied variances following the methodology of Barunik and Ellington

8A natural way to characterize horizon specific dynamics (i.e. short- and long-term) of the dynamic
network risk is to consider the spectral representation of the approximating model as recently proposed by
Barunik and Ellington (2020).



(2020). We consider a locally stationary TVP-VAR of a lag order p describing the dynamics
as:
CIV,7 = ®(t/T)CIV,_ 11 +... + ®,(t/T)CIV,_, 7+ €1, (2)

-
where CIV,1r = (CIVE}%,. . .,CIVS}”) is a doubly indexed N-variate time series of cur-

rency variances, €; 7 = Z’l/z(t/T)qt’T, ;7 ~ NID(0,Iy) and @(¢/T) = (®1(t/T),..., ®,(t/T))"
are the time varying autoregressive coefficients. Note that ¢ refers to a discrete time index
1 <t < Tand T is an additional index indicating the sharpness of the local approximation
of the time series by a stationary process. Rescaling time such that the continuous parame-
ter u ~ t/T is a local approximation of the weakly stationary time-series (Dahlhaus, 1996),

we approximate CIV; 7 in a neighborhood of 1y = ty/T by a stationary process:

CIV:(ug) = @1 (1g) CIV;_1 (o) + . ... + @ (0) CIV(ug) + €. ©)

The TVP-VAR process has a time varying Vector Moving Average VMA (o) representa-
tion (Dahlhaus, Polonik, et al., 2009; Barunik and Ellington, 2020):

CIVi,r = ) Yir(h)ery 4)

h=—oc0
where parameter vector ¥; v(h) ~ ¥(t/T,h) is a time varying impulse response function
characterized by a bounded stochastic process.” Information contained in ¥; 1(h) permits
the measurement of the contribution of shocks in the system. Hence, its transformations
over time will determine the network risk. Since a shock to a variable in the model does
not necessarily appear alone, an identification scheme is crucial in identifying the network.
We adapt the extension of the generalized identification scheme of Pesaran and Shin (1998)

to locally stationary process as proposed by Barunik and Ellington (2020).

We transform local impulse responses in the system to local impulse transfer functions
using Fourier transformations. This allows us to measure the horizon specific dynamics of
the network based on heterogeneous persistence of shocks in the system. A dynamic rep-
resentation of the variance decomposition of shocks from asset j to asset k then establishes

a dynamic horizon specific adjacency matrix, which is central to our uncertainty network

9Since ¥; r(h) contains an infinite number of lags, we approximate the moving average coefficients at
h=1,...,H horizons.
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risk measures.

Specifically, the element of such a matrix, which captures how shocks from a currency

j are propagated to a currency k at a given point of time u = ty/T and a given horizon

d; € H={S, M, L}, is formally defined as:

Gl Y ([‘T’(u,w)fl(u)]ﬁ)z

wEdl‘

ko _
) [‘I’(u,w)

weH

™
=
)
4|
=
e
L

where ¥(u,w) = D ¥ (u,h)e ™" is an impulse transfer function estimated from
Fourier frequencies w of impulse responses that cover a specific horizon d; frequencies.!’
It is important to note that [B(u,d)} » is a natural disaggregation of traditional variance
decompositions to a time-varying ar]{d h-horizon adjacency matrix. This is because the
portion of the local error variance of the j-th variable at horizon /1 due to shocks in the k-th
variable is scaled by the total variance of the j-th variable. As the rows of the dynamic

adjacency matrix do not necessarily sum to one, we normalize the element in each by the

~ N
corresponding row sum: [B(u,d)] L= [G(u,d)} 'k/ )3 [B(u,d)] " Equation (5) defines
Jr Is k=1 Js

a dynamic horizon specific network risk completely. Naturally, our adjacency matrix is
filled with weighted links showing strengths of the connections. The links are directional,
meaning that the j to k link is not necessarily the same as the k to j link. In sum, the

adjacency matrix is asymmetric, horizon specific and evolves dynamically.

To obtain the time-varying coefficient estimates @ (), ..., &>p(u) and the time-varying
covariance matrix f‘.(u) at a given point of time u = ty/T, we estimate the approximating
model in Equation (3) using Quasi-Bayesian Local-Likelihood (QBLL) methods (Petrova,
2019). Specifically, we use a kernel weighting function, which gives larger weights to
those observations surrounding the period whose coefficient and covariance matrices are
of interest. Using conjugate priors, the (quasi) posterior distribution of the parameters
of the model are available analytically. This alleviates the need to use a Markov Chain
Monte Carlo (MCMC) simulation algorithm and permits the use of parallel computing.

We provide a detailed discussion of the estimation algorithm in Appendix A.

10Note that i = /—1.
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Finally, the variance decompositions of the forecast errors from the VMA(c0) represen-
tation require a truncation of the infinite horizon with a H horizon approximation. As
H — oo the error disappears (Liitkepohl, 2005). We note here that H serves as an approx-
imating factor and has no interpretation in the time-domain. We obtain horizon specific
measures using Fourier transforms and set our truncation horizon H=100; the results are

qualitatively similar for H € {50, 100,200}.

2.3 Total and Causal Effects: Removing Contemporaneous Correlations

An important feature we focus on is a direct causal interpretation of our network risk
measures. Rambachan and Shephard (2019) provide a general discussion about causal
interpretation of impulse response analysis in the time series literature. In particular,
they argue that if an observable time series is shown to be a potential outcome time series,
then generalized impulse response functions have a direct causal interpretation. Potential

outcome series describe the output for a particular path of treatments at time ¢.

In the context of our study, paths of treatments are shocks. The assumptions required
for a potential outcome series are natural and intuitive for a time series of currencies: i)
they depend only on past and current shocks; ii) series are outcomes of shocks; and iii)
assignments of shocks depend only on past outcomes and shocks. The dynamic adjacency
matrix we use above to characterize the currency network risk is a transformation of gener-
alized impulse response functions. Therefore, the adjacency matrix and all measures that
stem from manipulations of its elements possess a causal interpretation; thus establishing

the notion of causal dynamic network measures.

In computing our measures, we also diagonalize the covariance matrix because our ob-
jective is to focus on the causal affects of network connections. The ¥ (u,d) matrix embeds
the causal nature of network linkages, and the covariance matrix X(u) contains contem-
poraneous covariances within the off-diagonal elements. By diagonalizing the covariance
matrix, we remove the contemporaneous effects and focus solely on causation. Hence,
the measures introduced in the next section will be applied to total and causal linkages

depending on whether we include or exclude contemporaneous correlations.
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2.4 Uncertainty Network Risk Measures

To evaluate the uncertainty network risk from the estimated model, we use several defi-
nitions that focus on aggregate characteristics as well as disaggregate connections between
currencies. We focus on measures revealing when an individual currency is a transmitter

or a receiver of shocks.

First, horizon-specific from-directional network risk, which measures how much of each
currency’s j variance is due to shocks of other currencies j # k in the cross-section, is

defined as:
N

Fiolwd) =Y [5(u,d)]jk deH={SML}. ©6)
k=1 ’

k#j
Second, horizon-specific to-directional network risk, which measures the contribution of

each currency’s j variance to variances of other currencies in the cross-section, is given by:

N
Ta(u,d) = Y [E(u,d)}kj det=1{SML}. )
ER
One can interpret these measures as dynamic to-degrees and from-degrees that associate
with the nodes of the weighted directed network captured by a variance decomposition
matrix. These two measures show how other currencies contribute to the risk of a currency
j, and how a currency j contributes to the riskiness of others, respectively, in a time-varying
fashion at a horizon d. One can simply add these measures across all horizons to obtain
total time-varying measures:

FswT) = ¥ Fedwd) A ToawT)= Y Towlwd ©
de{S,M,L} de{S,M,L}

Third, combining two notions of receivers and transmitters of shocks presented above, we

define a horizon specific net-directional network risk:

Nl d) = Tisa(ut,d) — Fio(u,d) deH={S,MLT}. )

In conclusion, we aim to study the properties of to-, from- and net-directional network
portfolios sorted by the corresponding network risk proxies defined by Equations (6)-(9).

Furthermore, each portfolio group is constructed using total and causal network linkages

13



as discussed in Section 2.3.

3 Data and Currency Portfolios
3.1 Currency Options Data

We start our empirical investigation by collecting daily OTC option implied volatili-
ties on exchange rates versus the US dollar from JP Morgan and Bloomberg. Following
Della Corte, Ramadorai, and Sarno (2016) and Della Corte, Kozhan, and Neuberger (2020),
we consider a sample of the following 20 developed and emerging market countries: Aus-
tralia, Brazil, Canada, the Czech Republic, Denmark, Euro Area, Hungary, Japan, Mexico,
New Zealand, Norway, Poland, Singapore, South Africa, South Korea, Sweden, Switzer-
land, Taiwan, Turkey, and the United Kingdom. The data cover the sample period from
January 1996 to December 2013. The cross-section of currencies begins with 10 countries
and gradually increases over time, with implied volatilities on all exchange rates being

available from 2004 until the end of the sample in 2013.!!

We synthesize spot implied variances using a model free approach of Britten-Jones
and Neuberger (2000), which requires currency option prices for a range of strike prices.
Quotes for OTC currency options are expressed in terms of Garman and Kohlhagen (1983)
implied volatilities for selected combinations of plain-vanilla options (at-the-money, 10 and
25 delta put and call options). We recover strike prices from deltas and option prices from
implied volatilities by employing interest rates from Bloomberg and spot and forward
exchange rates from Barclays and Reuters via Datastream. Using this recovery procedure,
we obtain plain vanilla European calls and puts for exchange rates versus the US dollar for

a range of maturities: 1 month, 3 months, 6 months, 12 months, and 24 months.

Since our investment strategy is carried out at the monthly frequency, it is natural to
assume that traders prefer to employ the 1-month spot implied variances on exchange
rates for detecting uncertainty network risk instead of using data for longer maturities.
We therefore work with the spot 1-month variances on currencies in our empirical anal-
ysis. Further, we construct currency connectedness measures using the variances at the
daily frequency to increase the number of observations in our estimation procedure and

ultimately to better capture the dynamic nature of uncertainty network risk. We then fil-

We greatly appreciate the help of Roman Kozhan with the currency option data.
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ter end-of-month estimates of how currencies are connected to each other to construct the

long-short network portfolios.

3.2 Exchange Rate Data

We retrieve daily bid, mid, and ask spot and forward exchange rates versus the US
dollar from Barclays and Reuters via Datastream. We further obtain daily nominal interest
rates for domestic (the US in our case) and foreign countries from Bloomberg. The core
empirical analysis is conducted at the monthly frequency and hence we sample end-of-
month observations of all time series. We match exchange and interest rate data with
currency option data for the cross-section of 20 countries and the sample period from

January 1996 to December 2013 as described above.

3.3 Currency Excess Returns

We denote the spot and forward exchange rate of foreign currency k at time t as S¥
and FF. Exchange rates are expressed in units of foreign currency per US dollar. Thus,
an increase in Sf indicates a depreciation of the foreign currency. Following Menkhoff,
Sarno, Schmeling, and Schrimpf (2012a), we define one-period ahead excess return to a US

investor for holding foreign currency k at time t as

kK _ .k ; k gk k

in which if and i; represent the risk-less rates of the foreign country k and the US, AsF 1
is the log change in the spot exchange rate, ff and sk 1 denote the log spot and forward
rates. Under covered interest rate parity (CIP), the interest rate differential if — i; is equal to
forward discount ff — sk. Thus, the approximation in Equation (10) states that the excess
currency return equals the difference between the current forward rate and future spot
rate. The early literature documented that CIP held even for very short horizons (Akram,
Rime, and Sarno, 2008), while recent evidence has shown CIP deviations in the post global
tinancial crisis period (Du, Tepper, and Verdelhan, 2018; Andersen, Duffie, and Song, 2019).
We demonstrate that the profitability of uncertainty network strategies studied in our pa-
per stems primarily from spot exchange rate predictability. Therefore, our key results do

not depend on the validity of the CIP condition.
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3.4 Uncertainty Network Portfolios

The measures of network connectedness among exchange rate implied variances cap-
ture multiple risks that could be important for investors forming currency portfolios. First,
unlike the previous literature focusing on the correlation risk in currency returns, the
network risk proxies of our paper can identify the causal nature of network linkages by
removing the contemporaneous effects. Thus, we are able to detect novel risks originating
from the causal propagation of shocks in the cross-section of exchange rates. Second, us-
ing individual connections between exchange rates, we can quantify the aggregate amount
of shocks that a particular currency transmits to or receives from others. Similarly, we
can compute the net-directional connectedness measure by taking the difference between
shocks that are transmitted and received. Third, a large strand of the literature studies the
role of shocks with different persistence. For instance, long-term fluctuations in expected
growth and volatility of cash-flows (Bansal and Yaron, 2004) have played a central role for
understanding equity, bond, and currency returns. Our econometric methodology allows
us to disentangle the effect of a horizon specific network risk. We can therefore shed light
on the term structure of forward-looking uncertainty connectedness in the cross-section of
currencies. In sum, we construct a battery of portfolios based on a variety of network con-
nectedness measures to quantitatively evaluate which network risks are priced in currency

markets.

Specifically, at the end of each time period ¢ (the last day of the month in the core anal-
ysis), we sort currencies into five portfolios using one of the network measures constructed
and described in Section 2.4. The first quintile portfolio P; comprises 20% of all currencies
with the highest values of a particular network characteristic, whereas the fifth quintile
portfolio Ps contains 20% of all currencies with the lowest values. Each P; is an equally
weighted portfolio of the corresponding currencies. We next form a long-short strategy

that buys Ps and sells P;.

We report the results for five quintile portfolios and a long-short strategy sorted by
(i) short- (S), medium- (M), and long-term (L) as well as total (7) net-directional con-
nectedness constructed from total (contemporaneous and causal) and only causal (exclud-

ing contemporaneous) linkages. The corresponding zero-cost strategies are denoted by

N(H) where H € {S, M, L, T}. We additionally dissect the sources of profitability of
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net-directional network strategies by solely looking at the risk of being a transmitter or a
receiver of shocks. In particular, we construct the portfolios based on (ii) to-directional and
(iii) from-directional connectedness measures. Similarly to the portfolios in (i), we report
the results for all horizons considered, but for the sake of a convenient illustration we fo-

cus on the case with causal linkages.'> The respective to-directional and from-directional

long-short portfolios are denoted by 7 (#) and F(#) where H € {S, M, L, T }.

3.5 Dollar and Carry Trade Strategies

We compare the performance of network-sorted portfolios to standard investment strate-
gies from the existing literature. Following Lustig, Roussanov, and Verdelhan (2011), we
build a portfolio that is the average of all currencies available in a particular time period.
The resulting returns are equivalent to borrowing money in the US and investing in global
money markets outside the US. This zero-cost strategy is commonly called the dollar risk
factor or the dollar portfolio (dol). Further, we sort all currencies available at time ¢ into
tive quintile portfolios on the basis of their interest rate differential (or forward premia)
relative to the US. The first quintile portfolio P; comprises 20% of all currencies with the
highest interest rates, whereas the fifth quintile portfolio Ps contains 20% of all currencies
with the lowest interest rates. The difference between P; and Ps is called the carry trade
strategy (car), which is equivalent to borrowing money in low interest rate countries and

investing in high interest rate countries.

3.6 Volatility Portfolios

We create a tradable strategy taking into account past realized volatility of currencies in
the spirit of Menkhoff, Sarno, Schmeling, and Schrimpf (2012a). At the end of each month
t, we compute the square root of the sum of squared daily log exchange rate returns during
the current month. We sort all currencies available at time ¢ into five quintile portfolios on
the basis of their monthly realized volatility. The first quintile portfolio P; comprises 20%
of all currencies with the highest volatility, whereas the fifth quintile portfolio Ps contains
20% of all currencies with the lowest volatility. The difference between P; and Ps is called
the volatility strategy (vol), which is equivalent to selling low volatility risk countries and

buying high volatility risk countries.

12The results of quintile and zero-cost portfolios sorted on to- and from-directional connections with total
linkages are available upon request.
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3.7 Variance Risk Premium Portfolios

We construct an investment strategy reflecting the costs of insuring currency variance
risk that was recently proposed by Della Corte, Ramadorai, and Sarno (2016). At the end
of each month ¢, we compute the volatility risk premium (vrp) for each currency, that
is, the difference between expected realized volatility and implied volatility over the next
month.!> We sort all currencies available at time ¢ into five quintile portfolios on the basis of
their monthly vrp. The first quintile portfolio P; comprises 20% of all currencies with the
highest vrp, whereas the fifth quintile portfolio Ps5 contains 20% of all currencies with the
lowest vrp. The difference between P; and Ps is called the volatility risk premia strategy;,
which is equivalent to selling high-insurance-cost currencies and buying low-insurance-

cost currencies.

3.8 Momentum Portfolios

We form a tradable strategy linked to the past performance of currencies as initially
proposed by Menkhoff, Sarno, Schmeling, and Schrimpf (2012b). Recently, Dahlquist and
Hasseltoft (2020) further connect currency returns to past trends in fundamentals including
economic activity and inflation. At the end of each month t, we compute the average of
currency excess returns over the last six months.'* We sort all currencies available at time
t into five quintile portfolios on the basis of their trend. The first quintile portfolio P;
comprises 20% of all currencies with the highest average returns, whereas the fifth quintile
portfolio Ps contains 20% of all currencies with the lowest average returns. The difference
between P; and Ps is called the momentum strategy (mom), which is equivalent to selling
past losers (or worst performing currencies) and buying past winners (or best performing

currencies).
4 Uncertainty Network Risk and Currency Returns

4.1 Net-directional Connectmonotonicityedness

Table 1 reports summary statistics of the excess returns of the five quintile portfolios

(Pi:i=1,...,5) and the long-short investment strategy buying Ps and selling P;. Fur-

13Della Corte, Ramadorai, and Sarno (2016) work with the one-year volatility risk premium. We decide
to switch to the monthly horizon to ensure that the volatility risk premium strategy employs one-month
implied volatilities on exchange rates consistent with network connectedness portfolios.

140ur results remain quantitatively similar for other lags over which the past performance is evaluated.
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ther, Panels A and B present the results for a horizon specific net-directional connectedness
extracted from total and causal connections. Several observations from Table 1 are note-

worthy:.

First, the average returns of N (S) portfolios are 5.53% and 6.43% per annum for total
and causal linkages, which are statistically different from zero at the 5% and 1% levels,
respectively. The “fx (%)” and “ir (%)” rows further indicate that this predictability of
the cross-sectional network strategy based on total connections is partially driven by pre-
dicting the interest rate differential. This result is expected in light of the prior literature
(Menkhoff, Sarno, Schmeling, and Schrimpf, 2012a) documenting a link between global
foreign exchange volatility, which is strongly reflected in contemporaneous covariances of
network connectedness, and the carry trade strategy, which is entirely driven by the for-
ward premium across countries. In contrast, the spread between P5 and P; portfolios,
which are constructed from the causal nature of network linkages, is largely driven by
predicting the spot exchange rates. For instance, Panel B shows that the spread in the
exchange rate component of the excess returns of A/(S) is almost twice-as-large compared
to that reported in Panel A (4.33% versus 2.28% per annum), whereas the spread in the
interest rate differential substantially shrinks (from 3.24% to 2.10% per annum). Also, the

monotonicity in the forward premium does not hold as we move from P; to Ps portfolios.

Second, the risk-adjusted performance of long-short portfolios deteriorates with the
horizon of net-directional network risk. Using total network connectedness, the annualized
Sharpe ratio of our network strategies gradually declines from 0.65 to 0.50 and 0.32 when
using medium- and long- instead of short-term connections. The causal network zero-cost
portfolios experience a steeper decline in the annualized Sharpe ratio, from 0.80 to 0.47
and 0.39 when moving from short- to medium- and long-term horizons. Interestingly,
the NV (7)) portfolio based on causal linkages exhibits the annualized Sharpe ratio of 0.66
and the average return of 4.90% per annum, which is statistically different from zero at
the 1% level. Overall, the performance of horizon specific network portfolios indicates
the downward-sloping term structure of uncertainty network risk in the cross-section of
exchange rates. This finding extends the results of the existing literature on the price of

uncertainty risk in equity markets (Dew-Becker, Giglio, Le, and Rodriguez, 2017).
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Table 1. Net-directional Network Portfolios

This table presents descriptive statistics for quintile (P; : i = 1,...,5) and long-short portfolios (N (-)) sorted
by short- (S), medium- (M), and long-term (L) as well as total (7) net-directional connectedness extracted
from total (Panel A) and causal (Panel B) linkages. The portfolio P;(Ps) comprises currencies with the
highest (lowest) network characteristic. The long-short portfolio buys Ps5 and sells P;. The mean, standard
deviation, and Sharpe ratio are annualized, but the t-statistic of mean, skewness, kurtosis and the first-order
autocorrelation are based on monthly returns. We also report the annualized mean of the exchange rate

(fx = —As¥) and interest rate (ir = i* — i) components of excess returns. The t-statistics are based on Newey
and West (1987) standard errors with Andrews (1991) optimal lag selection. The sample is from January 1996
to December 2013.
Panel A: Total linkages
P1 P> Ps Pa Ps N(S) P1 P2 P3 Pa Ps N(M)
mean (%) —0.69 0.35 1.65 1.44 4.84 5.53 —0.78 1.67 2.09 1.35 3.38 4.16
t-stat —0.26 0.13 0.70 0.65 2.27 2.46 —0.30 0.63 0.87 0.68 1.34 1.83
fx (%) —-1.03 —-045 -—-037 —-1.30 1.26 2.28 —0.97 0.94 046 —-144 —-0.72 0.24
ir (%) 0.34 0.81 2.03 2.75 3.58 3.24 0.18 0.73 1.63 2.79 4.10 3.92
net 0.13 0.08 0.01 —-0.06 —0.14 -0.27 0.07 0.05 0.00 —-0.04 -0.08 —0.15
Sharpe —0.06 0.03 0.18 0.16 0.61 0.65 —0.08 0.16 0.22 0.16 0.39 0.50
std (%) 10.70  10.48 9.36 8.80 791 8.52 10.35 10.30 9.34 8.70 8.76 8.29
skew -0.15 -091 -048 -029 -0.13 -0.39 -022 -079 -013 —-034 —-134 —-040
kurt 3.95 6.43 5.48 4.69 417 4.26 3.61 5.86 4.68 4.01 8.84 4.58
acl 006 008 005 —004 013 010 002 005 006 —-006 02 020
Py P2 Ps Py Ps  N(L) Py P2 P3 Py Ps  N(T)
mean (%) 0.05 0.41 2.54 1.94 2.81 2.76 —0.40 0.61 2.12 0.99 3.94 4.34
t-stat 0.02 0.15 1.01 0.85 1.33 1.20 —0.15 0.23 0.88 0.43 1.84 191
fx (%) —0.16 —0.31 072 —-0.79 -1.15 -0.99 —0.63 —0.03 028 —1.66 —0.10 0.53
ir (%) 0.22 0.72 1.82 2.73 3.96 3.74 0.23 0.64 1.84 2.65 4.04 3.81
net 0.05 0.03 0.00 -0.02 —-0.05 -0.10 0.25 0.15 0.00 —-0.13 -026 —0.52
Sharpe 0.01 0.04 0.26 0.22 0.33 0.32 —0.04 0.06 0.23 0.11 0.50 0.51
std (%) 10.51 9.83 9.86 8.72 8.42 8.70 10.68  10.06 9.16 9.40 7.81 8.43
skew —046 —-066 —0.15 -059 —-0.65 0.01 —-041 —-048 —-0.66 —045 —-054 —-0.29
kurt 4.77 5.15 4.87 6.21 4.82 5.12 4.95 4.23 5.67 4.46 4.01 413
acl 0.04 0.13 0.03 0.03 0.08 0.09 0.04 0.07 0.04 0.02 0.16 0.12
Panel B: Causal linkages
P1 P2 Ps3 Pa Ps N(S) P1 P2 P3 Pa Ps N (M)
mean (%) —0.12 0.76 112 —-0.18 6.31 6.43 —0.46 3.17 1.20 1.26 2.95 3.42
t-stat —0.05 0.28 047 —0.07 3.11 3.81 —0.20 1.36 0.52 0.53 1.22 2.10
fx (%) —2.14 —0.09 0.27 —1.68 2.20 4.33 —2.49 218 —-0.27 —-0.58 —0.10 2.39
ir (%) 2.01 0.84 0.84 1.50 411 2.10 2.03 0.99 1.47 1.84 3.05 1.02
net 0.03 0.00 —-0.01 -0.01 -0.02 -0.05 0.03 -0.01 -0.01 -0.02 -—-0.03 —0.06
Sharpe —0.01 0.08 0.12 —-0.02 0.82 0.80 —0.05 0.36 0.13 0.13 0.32 0.47
std (%) 9.88 9.91 9.36 9.55 7.73 8.08 9.40 8.91 9.21 9.33 9.34 7.21
skew -0.72 —-090 -0.59 -0.22 —-0.50 0.95 -0.87 —-0.07 -0.54 -047 -0.63 0.07
kurt 5.32 5.62 5.63 4.72 4.07 6.86 5.79 3.68 443 4.99 5.61 3.46
acl 004 008 006 007 008 -0.15 001 005 002 006 010 —0.04
P1 P2 P Py Ps  N(L) P1 P2 P Py Ps N(T)
mean (%) —0.20 3.36 1.33 0.96 2.53 2.73 —0.26 211 1.04 0.33 4.64 4.90
t-stat —0.09 1.36 0.55 0.41 1.05 1.83 —0.11 0.88 0.41 0.13 2.14 3.03
fx (%) —2.20 198 —-0.19 —-0.69 —-0.40 1.81 —2.27 126 —-029 -—-1.33 1.12 3.39
ir (%) 2.00 1.38 1.52 1.65 2.92 0.93 2.01 0.84 1.33 1.65 3.52 1.51
net 0.03 0.00 —-0.01 -0.02 —-0.03 -0.06 0.10 —-0.02 -0.04 -0.05 —-0.08 —0.18
Sharpe —0.02 0.36 0.14 0.11 0.26 0.39 —0.03 0.23 0.11 0.03 0.52 0.66
std (%) 9.16 9.36 9.50 8.88 9.64 7.07 9.47 9.08 9.67 9.44 8.89 7.44
skew —-0.77 —0.28 —-043 —-0.68 —0.50 0.01 -0.69 —-0.27 -068 —-036 —-0.76 —0.32
kurt 5.56 3.51 4.07 5.30 5.27 347 5.17 3.77 5.27 4.66 5.89 4.94
acl 0.00 0.05 0.04 0.09 0.05 -0.05 —0.02 0.03 0.04 0.16 005 —0.03
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Table 2. To- and From-directional Network Portfolios: Causal Linkages

This table presents descriptive statistics for quintile (P; : i = 1,...,5) and long-short portfolios
(T () and F(-)) sorted by short- (S), medium- (M), and long-term (L) as well as total (7") to-directional
(Panel A) and from-directional (Panel B) connectedness extracted from causal linkages. The portfolio P;(Ps5)
comprises currencies with the highest (lowest) network characteristic. The long-short portfolio buys Ps5 and
sells P;. The mean, standard deviation, and Sharpe ratio are annualized, but the t-statistic of mean, skewness,
kurtosis and the first-order autocorrelation are based on monthly returns. We also report the average net-
work characteristic (net), the annualized mean of the exchange rate (fx = —As¥) and interest rate (ir = i — i)
components of excess returns. The t-statistics are based on Newey and West (1987) standard errors with
Andrews (1991) optimal lag selection. The sample is from January 1996 to December 2013.

Panel A: To-directional network portfolios

P1 P> Ps Py Ps T(S) Py Py Ps Py Ps T(M)

mean (%) 0.04 0.00 —0.04 1.47 6.14 6.10 —0.61 0.92 0.16 1.54 591 6.52
t-stat 0.02 0.00 —0.02 0.66 3.13 3.66 —0.26 0.34 0.06 0.70 2.88 3.67
fx (%) —-192 —-078 —-0.89 —0.22 2.10 4.01 —252 —0.08 —-0.63 —0.06 1.85 4.37

ir (%) 1.96 0.79 0.85 1.68 4.05 2.09 1.91 0.99 0.79 1.60 4.06 2.15
net 1.13 1.05 1.04 1.03 1.01 -0.12 1.37 1.18 1.13 1.09 1.05 —0.31
Sharpe 0.00 0.00 0.00 0.16 0.82 0.74 —0.06 0.09 0.02 0.18 0.77 0.80
std (%) 9.79 10.11 10.32 8.88 7.47 8.27 996 10.24 9.71 8.76 7.64 8.13
skew —0.53 —-0.83 -—-0.80 —-047 —-0.46 0.36 —-0.61 -0.80 -071 -—-0.20 -—0.40 0.24
kurt 4.45 6.26 5.75 494 4.15 5.30 4.40 5.78 5.78 4.09 4.01 4.00
acl —0.08 0.12 0.07 0.07 0.05 -0.15 —0.05 0.09 0.02 0.08 0.09 —0.11
P1 P> Ps3 Py Ps  T(L) P1 P> P3 Py Ps T(T)

mean (%) —0.48 0.64 0.38 1.25 6.13 6.61 —0.36 0.38 1.01 1.15 5.63 5.99
t-stat —0.20 0.25 0.15 0.55 2.96 3.99 —0.15 0.14 0.39 0.55 2.74 3.49
fx (%) —-237 —-0.18 —0.61 —0.25 1.97 4.35 —-2.32 —-0.59 0.20 —0.38 1.57 3.89

ir (%) 1.89 0.82 0.99 1.50 4.16 2.26 1.96 0.97 0.81 1.53 4.06 2.10

net 1.60 1.32 1.25 1.18 1.11 -0.49 1.27 1.12 1.09 1.06 1.03 —0.24
Sharpe —0.05 0.06 0.04 0.14 0.80 0.83 —0.04 0.04 0.10 0.13 0.73 0.74
std (%) 9.65 10.27 9.83 9.06 7.69 7.99 10.02 9.98 9.94 8.66 7.66 8.05
skew —048 —-053 —-056 —-064 —041 0.26 —-074 —-0.63 —-093 -—-0.26 —0.39 0.33
kurt 3.99 4.24 5.62 5.12 4.03 4.09 5.08 5.10 6.47 4.33 4.01 4.29
acl —0.02 0.04 0.01 0.10 0.07 -0.19 —0.05 0.10 0.05 0.04 0.09 —-0.13

Panel B: From-directional network portfolios

P1 P> P3 Py Ps  F(S) P1 Py Ps Py Ps  F(M)

mean (%) 0.85 1.97 1.85 1.49 1.51 0.67 0.57 1.47 1.86 241 1.98 141
t-stat 0.33 0.75 0.77 0.71 0.72 0.43 0.21 0.56 0.86 1.13 0.92 0.85
fx (%) —1.51 0.25 029 —-026 —0.62 0.89 —1.19 0.22 0.19 0.44 —0.86 0.33

ir (%) 2.36 1.72 1.56 1.75 2.14 -0.22 1.76 1.25 1.67 1.97 2.84 1.08

net 1.07 1.06 1.05 1.05 1.05 -0.02 1.39 1.29 1.24 1.19 1.13 —0.26
Sharpe 0.08 0.21 0.19 0.17 0.18 0.09 0.05 0.15 0.21 0.27 0.25 0.19
std (%) 10.76 9.54 9.51 8.68 8.30 7.26 10.68 9.85 9.04 8.88 7.96 7.58
skew —050 —-0.87 —0.46 0.02 —-0.64 0.02 -059 -0.73 —-028 —-0.69 —-0.11 —0.03
kurt 4.23 5.24 5.73 3.30 4.78 3.63 4.99 5.23 4.12 5.07 3.31 3.90
acl ~001 020 002 —004 006 -0.11 004 009 006 001 007 —003
P1 P2 P Py Ps  F(L) P1 Py P Py Ps F(T)

mean (%) 1.48 1.19 0.98 2.46 2.07 0.59 —0.37 2.93 242 1.11 2.15 2.52
t-stat 0.58 0.46 0.40 1.11 0.98 0.36 —0.14 1.15 1.14 0.49 1.00 1.59
fx (%) —029 —-0.04 —0.62 041 -0.77 -0.48 —2.28 1.58 069 —-092 —-0.36 1.92

ir (%) 1.77 1.22 1.60 2.05 2.84 1.07 1.91 1.35 1.74 2.04 2.51 0.60
net 2.05 1.74 1.57 1.41 1.23 -0.83 1.24 1.19 1.16 1.13 1.09 —0.15
Sharpe 0.15 0.12 0.11 0.27 0.25 0.08 —0.04 0.29 0.28 0.12 0.27 0.34
std (%) 10.11 9.97 9.25 9.11 8.36 7.22 1054 10.24 8.67 9.09 8.02 7.40
skew —0.38 —-0.58 —0.87 0.03 —0.30 0.01 —044 -092 -030 -056 —-020 —-0.31
kurt 4.37 5.19 6.00 4.24 4.42 3.20 4.54 6.21 4.79 4.53 3.20 4.26
acl 0.04 0.07 0.09 0.03 0.02 -0.06 0.02 0.04 0.04 0.03 0.08 —0.04
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Third, the excess returns of the best-performing network portfolio based on causal
short-term linkages exhibit a low standard deviation, a positive skew and a sizeable kur-
tosis. The volatility statistic implies that the improved Sharpe ratio originates not only
from higher returns but also from their moderate time-variation. According to the skew-
ness and kurtosis statistics, the portfolio is the only specification that tends to experience
gains rather than losses, with more outliers in the right tail of the distribution. Indeed,
analyzing the strategy’s best and worst months, the portfolio experiences the three highest
monthly returns of 7.98% in September 2002, 8.49% in August 1998, and 13.07% in October
2008, and the three lowest monthly returns of -4.61% in July 2002, -4.66% in August 2002,
and -4.85% in January 1998. In contrast, the excess returns of the network portfolio based
on total short-term linkages has a negative skewness, reflecting smaller maximal growth
rates (6.10% in February 1997, 6.23% in October 1998, and 7.17% in May 2005) and deeper
crashes (-6.18% in June 2002, -6.20% in December 2000, and -10.02% in December 2008).

4.2 To- and From-directional Connectedness

Table 2 presents the performance statistics of the excess returns sorted on to-directional
(Panel A) and from-directional (Panel B) connectedness extracted from causal linkages.

The table shows the results for horizon-specific network risk measures.

For the to-directional case, the spread between the excess returns of P5 and P; port-
folios is increasing in the horizon and is statistically significant at the 1% level for all
cases. Also, one can generally observe a monotonic pattern in the average excess returns
of quintile portfolios, particularly for the cases of longer-term and total-horizon network
risks. Consequently, the long-short currency portfolios based on the amount of transmitted
shocks have the annualized Sharpe ratios ranging from 0.74 to 0.83 for the short- and long-
term horizon connectedness. All zero-cost investment strategies display a positive skew of
their excess returns. Interestingly, this performance primarily stems from the exchange rate
predictability, while the interest rate differential contributes less. For the from-directional
case, the results indicate no clear patterns in the performance statistics of currency net-
work strategies, taking into account the information about the received shocks. Although
the average excess returns of quintile and long-short portfolios tend to be positive, they
remain insignificant at all conventional confidence levels. This ultimately leads to much

smaller Sharpe ratios compared to those from other strategies.
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Overall, the results presented in Table 2 suggest that the impact of a particular currency
on exchange rates of other countries is the key to understanding the profitability of net-
directional network portfolios. Specifically, we document that the currencies transmitting
more shocks to others (in the net or total amount) tend to appreciate, leading to lower
currency risk premia. Unlike the carry trade strategy, we demonstrate that the stronger
transmitters of causal shocks do not necessarily have the lowest interest rates. By connect-
ing currency returns to uncertainty network risk extracted from currency option data, we
shed light on the novel risk that drives international asset prices above and beyond the
existing risks capturing macroeconomic country-specific conditions and trade connections,

among others.

4.3 Relationship with Benchmark Strategies and Diversification Gains

We now study the relationship between the network long-short portfolios and existing
benchmarks. We begin by reporting in Table 3 the summary statistics of the standard dollar,
carry trade, volatility, variance risk premium, and momentum strategies, as well as an
equally weighted average of all currency benchmarks. The carry and momentum strategies
exhibit the highest Sharpe ratios of 0.69 and 0.38, with the former having a statistically
significant mean excess return. However, both have a negative skewness, indicating the
possibility of large losses. The last column shows limited diversification gains from equally
comb