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Abstract

We propose a new estimator for causal effects in applications where the exogenous
variation comes from aggregate time-series shocks. We address the critical identification
challenge in such applications – unobserved confounding, which renders conventional es-
timators invalid. Our estimator uses a new data-based aggregation scheme and remains
consistent in the presence of unobserved aggregate shocks. We illustrate the advantages
of our algorithm using data from Nakamura and Steinsson (2014). We also establish the
statistical properties of our estimator in a practically relevant regime, where both cross-
sectional and time-series dimensions are large, and show how to use our method to conduct
inference.
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1 Introduction

Changes in aggregate variables are commonly used to evaluate economic policies. The most

popular design of this type is an “event study”, where a one-time aggregate shock, e.g., a new

law, affects some units but not others, and we observe both groups over time. To quantify the

effect of this shock, practitioners use either difference in differences or, more recently, synthetic

control methodology (e.g., Ashenfelter and Card, 1985; Card and Krueger, 1994; Abadie and

Gardeazabal, 2003; Bertrand et al., 2004; Abadie et al., 2010). Often, when both outcome

and treatment variables vary at the unit level, this approach is used as a first stage, and the

aggregate change effectively plays the role of an instrument. In the absence of a single aggregate

shock, researchers employ more general time-series variation to establish causal links between

unit-specific policy and outcome variables. In a typical application, outcomes and treatments

are observed at some geographical level over time (e.g., Duflo and Pande, 2007; Dube and

Vargas, 2013; Nakamura and Steinsson, 2014; Nunn and Qian, 2014; Guren et al., 2020; Dippel

et al., 2020; Barron et al., 2021). To address a potential endogeneity problem, researchers use

aggregate time-series shocks as instruments. A standard econometric tool employed to analyze

such data is a two-stage least-squares (TSLS) regression with unit and time fixed effects.1

Specifically, let Yit be the outcome variable, Wit the endogenous regressor, and assume that

we observe a balanced panel with n units and T periods. To establish a causal link between Yit

and Wit, the following equation is estimated by the TSLS:

Yit = αi + µt + τWit + εit, (1.1)

using DiZt as an instrument. Here, Zt is an aggregate shock, Di is a measure of “exposure” of

unit i to this aggregate shock, and τ is the parameter of interest. For example, in Nunn and

Qian (2014), Wit is the amount of food aid that country i received, Yit is a measure of local

conflict, Zt is the amount of wheat produced in the United States in the previous year, and Di

is a share of periods when country i received food aid.

This paper proposes a new estimator for the causal effects in applications with aggregate in-

struments. We prove that our estimator remains consistent when the TSLS method fails, and we

derive its asymptotic distribution that justifies conventional inference methods. We investigate

1See Arellano (2003) for a textbook treatment of the TSLS with panel data.
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the performance of our estimator in an empirical example based on Nakamura and Steinsson

(2014). Using simulations, we also demonstrate that our method dominates the conventional

TSLS approach in statistical models that approximate actual data.

To explain our algorithm, we first consider the logic behind the TSLS regression (1.1). Sup-

pose we believe that Zt is a bona fide instrument that satisfies conventional assumptions of

Imbens and Angrist (1994). In that case, we can establish a causal link between Yit and Wit

by constructing an instrumental variables (IV) estimator separately for each unit i. Applied

researchers, however, often suspect that Zt is correlated with other unobserved aggregate vari-

ables that affect the outcomes. For example, in Nakamura and Steinsson (2014), the authors are

interested in the effect of local military procurement spending in the United States on regional

output growth and use national military spending as an instrument. In this case, other fiscal

and monetary policies can be potential confounders.

In the presence of confounding, each unit-level IV estimator suffers from the omitted variable

bias and is invalid. This problem can be addressed by first aggregating the data across units

and then using it to construct a single IV estimator. Suppose we only have two units i = 1, 2,

and we know that the first unit is strongly affected by Zt, D1 = 1, while the second one is not

affected at all, D2 = 0. Then by looking at differences across units, we eliminate the unobserved

aggregate shock as long as it affects both units in the same way. It is precisely what the TSLS

estimation of (1.1) amounts to for the case with two units, and arguably not much else can be

done in this setting.

The situation changes once we have access to multiple units. In this case, the TSLS estimator

first averages units with high and low values of Di and then subtracts the averages. This

particular aggregation scheme is valid and statistically efficient as long as we believe that the

unobserved confounder affects all units in the same way. While natural for the case of two units,

this assumption becomes restrictive and questionable once we have multiple units. This problem

is especially salient if we expect significant heterogeneity across observations, e.g., when units

represent geographical areas. Applied researchers recognize this threat and view it as the main

danger to the validity of the TSLS identification strategy (e.g., Guren et al., 2020; Chodorow-

Reich et al., 2021).

In our analysis, we start with a considerably weaker restriction than needed for the TSLS.

Namely, we assume that there exists a way to combine units so that a potential confounder does

not affect the resulting aggregate data, at least approximately. As the number of units grows,
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the number of possible combinations increases, and this assumption becomes more natural. We

also assume that confounding has a factor structure, which guarantees we can employ the data

to find the appropriate aggregation scheme. In particular, we use part of the sample to learn

weights ωrobi , which we then use to aggregate the rest of the data and to construct the IV

estimator. Using separate samples for learning and estimation is a standard practice in machine

learning which prevents overfitting (e.g., Chernozhukov et al., 2018). To produce ωrobi , we use

insights from the synthetic control literature (Abadie and Gardeazabal, 2003; Abadie et al.,

2010). We first project out the effect of the aggregate instrument and use residuals to construct

a combination of units with high values of Di that resembles a combination of units with low

values of Di.

We analyze the properties of our method in a high-dimensional regime where n is similar in

size to T . This choice is motivated by the applications where n and T are often comparable. We

prove that our algorithm delivers consistent and
√
T -convergent estimators even in the presence

of confounding aggregate shocks. We also show how to use our method to conduct valid inference

as long as there is enough variation in the baseline outcomes. We demonstrate the benefits of

our approach using the data from Nakamura and Steinsson (2014). First, we reevaluate their

study using our method and find fiscal multipliers larger in magnitude than the original ones.

We then construct a simulation that mimics their dataset. We use this simulation to show that

our estimator remains competitive in simple designs, can outperform the TSLS even when the

latter is consistent, and is a clear winner in more realistic situations with unobserved aggregate

shocks.

Our estimator addresses the major shortcoming of the conventional TSLS estimation of

(1.1): its invalidity in the presence of unobserved aggregate confounders correlated with the

instrument. In practice, there are other reasons why equation (1.1) can be problematic, e.g.,

nonlinearity or dynamic treatment effects. In these cases, the TSLS might be the wrong tool

to start with, and by extension, the same holds for our method. As a result, researchers should

use our estimator in applications where the TSLS is reasonable a priori, but they are worried

about potential aggregate confounders.

Our method builds on insights from different strands of literature. We use data on past

outcomes and treatments to construct the unit weights ωrobi , which connects our method to the

recent literature on synthetic control and related algorithms (Abadie and Gardeazabal, 2003;

Abadie et al., 2010; Hsiao et al., 2012; Doudchenko and Imbens, 2016; Firpo and Possebom,

4



2018; Ben-Michael et al., 2021; Arkhangelsky et al., 2021). Our proposal allows researchers to

apply these ideas to much broader contexts with endogenous unit-level variables. In contrast to

most of the literature on synthetic control methods, our statistical analysis uses design-based

assumptions, which is natural in the context of instrumental variables.

Our setup is related to the literature on invalid instruments (e.g., Andrews, 1999; Lewbel,

2012; Kolesár et al., 2015; Windmeijer et al., 2019). In contrast to this literature, we do not need

to assume that a sufficient number of instruments, or their known combination, such as average,

is valid. Instead, we focus on situations with unobserved aggregate confounders, which allows

us to impose a factor structure on the omitted variable bias. This brings our model close to the

literature on interactive fixed effects (e.g., Bai, 2009; Moon and Weidner, 2015). Our solution

and analysis, however, are different. First, we do not estimate the underlying factors but look

for the appropriate aggregation scheme. Second, we establish the properties of our estimator in

the finite population framework (e.g., Abadie et al., 2020), with the aggregate variation being

the only source of randomness. Our analysis is especially relevant for applications where units

represent different geographic locations, and thus the standard probability arguments based on

random sampling from a superpopulation of units are less appropriate.

Our model is also related to the recent econometric literature on shift-share designs (Jaeger

et al., 2018; Borusyak et al., 2022; Adao et al., 2019; Goldsmith-Pinkham et al., 2020). Similar

to this literature, we consider situations where an instrument has a particular product structure.

However, our goal is quite different: we propose and analyze a new estimator, while the literature

has focused on the properties of the standard IV estimator under alternative assumptions.

Crucially, we relax the exogeneity assumption made in the shift-share literature and allow for

unobserved aggregate shocks that affect different units differently. In the paper, we focus on

a particular case of the shift-share design, where there is a single aggregate shock, and later

discuss a possible extension to the more general designs.

The paper proceeds as follows: in Section 2, we discuss the mechanics of TSLS regression (1.1)

in more detail, present our algorithm, apply it to Nakamura and Steinsson (2014), and discuss

informally when we expect it to be valid. In Section 3, we introduce the causal model along

with statistical restrictions and demonstrate the formal properties of our algorithm. Section 4

discusses possible extensions of our algorithm, heterogeneous treatment effects, and connections

to the literature on shift-share designs. Section 5 demonstrates the properties of our estimator

in simulations, and Section 6 concludes.
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We use E[·] and V[·] to denote expectation and variance operators, respectively. We use ‖ ·‖2

to denote the l2-norm, and ‖ · ‖op to denote the operator norm. We use tr (A) to denote the

trace of a square matrix A. For two sequences ak and bk we write ak . bk if ak
bk

is bounded. We

use Op(1), op(1) for sequences of random variables that are bounded in probability and converge

to zero in probability, respectively. We use O(1) and o(1) for sequences that are bounded and

converge to zero, respectively.

2 Empirical Example

In this section, we introduce our estimator in the context of an empirical example. We start

by outlining the framework from Nakamura and Steinsson (2014) and replicating their base-

line results. We also illustrate the mechanics of the two-stage least squares estimator in their

context. Next, we propose an estimator, which is robust to unobserved aggregate confounders

with heterogeneous exposures, and compare the results from our estimator to Nakamura and

Steinsson (2014). Our estimates are larger in magnitude though still within the range reported

by Nakamura and Steinsson (2014) in various specifications. We tie our method to a particular

econometric model, which nests the TSLS one in Section 3, where we establish its theoretical

properties. We demonstrate the performance of our method in simulations in Section 5.

2.1 Original Analysis

In Nakamura and Steinsson (2014) the authors investigate the relationship between government

spending and state GDP growth. They use state data on total military procurement for 1966

through 2006 and combine it with U.S. Bureau of Economic Analysis state GDP and state

employment datasets. The authors complement these data with the oil prices data from the St.

Louis Federal Reserve’s FRED database and state-level inflation series constructed by Del Negro

(1998) and their inflation calculations for after 1995.

By estimating the growth-spending relationship Nakamura and Steinsson (2014) want to

capture the open economy fiscal multiplier. They compare different U.S. states and study their

reaction to aggregate military spending fluctuations in a panel setting. They argue that this

strategy allows them to control for common shocks (such as monetary policy). It also allows

them to account for the potential endogeneity of local procurement spending.
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To illustrate their approach, we introduce some notation. For a generic observation – a state

i, and a generic period t, denote per capita output growth in state i from year t− 2 to t by Yit.

Similarly, denote two-year growth in per capita military procurement spending in state i and

year t, normalized by output, in year t−2, by Wit. Finally, let Zt be the change in total national

procurement from year t−2 to t. This leads to a dataset with n = 51 states and T = 39 periods.

The main object of interest – the fiscal multiplier – is estimated using the TSLS regression

(1.1)

Yit = αi + µt + τWit + εit, (2.1)

with DiZt as the instrument. The authors construct Di by estimating n individual first-stage

OLS regressions

Wit = α
(w)
i + πiZt + u

(w)
it , (2.2)

and setting Di := π̂OLSi . As expected, for 49 states, Di is positive, with Mississippi and North

Dakota being the exception. In the analysis below, we drop these states and the state of Alaska,

where the output growth is exceptionally responsive to the changes in national procurement.

This leaves us with n = 48 states.2

The TSLS estimator for τ is equal to

τ̂TSLS =

∑
i≤n
∑

t≤T Yit(Zt −
1
T

∑
l≤T Zl)(Di − 1

n

∑
j≤nDj)∑

i≤n
∑

t≤T Yit(Zt −
1
T

∑
l≤T Zl)(Di − 1

n

∑
j≤nDj)

,

and can be interpreted in two different ways. First, it is a combination of the state-level coeffi-

cients:

τ̂TSLS =

∑
i≤n δ̂

OLS
i (Di − 1

n

∑
j≤nDj)∑

i≤n π̂
OLS
i (Di − 1

n

∑
j≤nDj)

, (2.3)

where δ̂OLSi is an OLS estimator for the reduced form

Yit = α
(y)
i + δiZt + u

(y)
it . (2.4)

2Results for the whole sample are similar in magnitude but are estimated less precisely. We report the full
sample results in Appendix A.
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Panel A of Figure 1 plots {(π̂OLSi , δ̂OLSi )}i≤n, where the size of each point is proportional to∣∣∣Di − 1
n

∑
j≤nDj

∣∣∣, and the colors reflect the sign. Representation (2.3) shows that τ̂TSLS is

equal to the slope of the line that connects the centers of mass of points with negative and

positive weights (blue triangles). We see that the coefficients vary a lot, but the association is

positive, which results in τ̂TSLS = 1.23.

Alternatively, τ̂TSLS is numerically equal to an IV estimator for the aggregate model

Yt = α + τWt + εt, (2.5)

where Yt := 1
n

∑
i≤n Yit(Di− 1

n

∑
j≤nDj) and Wt := 1

n

∑
i≤n Yit(Di− 1

n

∑
j≤nDj), and we use Zt

as an instrument. Panel A of Figure 2 shows the time-series interpretation of τ̂TSLS, plotting

the aggregate data Yt and Wt vis-a-vis the OLS fit based on Zt. Using the residuals from these

regressions, we produce the conventional robust standard error estimate for τ̂TSLS, resulting in

ˆs.e.(τ̂TSLS) = 0.51. This estimator is equivalent to clustering at a yearly level in the TSLS

regression (2.1). The estimates and standard errors are different from the baseline specification

in Nakamura and Steinsson (2014) (1.43 and 0.36, respectively) because we drop the three states

and cluster at a different level (year instead of state).

2.2 New Estimator

Representation (2.3) shows that τ̂TSLS is a weighted combination of the unit-level coefficients

{(π̂OLSi , δ̂OLSi )}i≤n with weights proportional to Di− 1
n

∑
j≤nDj. These weights sum up to zero,

meaning that the TSLS estimator subtracts the weighted average of the units with relatively

large exposures from those with relatively small ones. This is reflected in Panel A of Figure 1,

where we use different colors for states with positive and negative weights.

This particular aggregation scheme is a consequence of the two-way model:

Yit = α
(y)
i + µ

(y)
t + τWit + εit. (2.6)

By averaging over the cross-sectional dimension with the weights that sum up to zero, we

eliminate the time fixed effects. In applications, these effects capture unobserved aggregate

shocks potentially correlated with Zt. For example, in Nakamura and Steinsson (2014) time

fixed effects are meant to capture other policy variables that are likely correlated with national
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Figure 1: Reduced-form and first-stage coefficients for Nakamura and Steinsson (2014) data

Panel A: Nakamura and Steinsson weights
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Panel B: Robust weights
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Notes: This figure shows the state-level reduced-form and first-stage coefficients for Nakamura and Steinsson
(2014) data. Circle sizes reflect the absolute value of weights; negative weights are printed in black, and positive
– in red. Blue triangles are centers of mass for negative and positive weights. Panel A presents the results using
the whole period of 1968 to 2006 for n = 48 states. Panel B shows the results from our estimation algorithm.
Under our data splitting procedure, Panel B reports the results for 1978-2006, as we use the first 1/3 of the data
for weight estimation.

procurement.

This strategy is appropriate only if potential unobserved shocks affect all cross-sectional units

in the same way (or, at least, in a way that is unrelated to Di). Thus the main threat to the

validity of the TSLS estimator is the presence of aggregate confounders Ht with heterogeneous

coefficients:

Yit = α
(y)
i + µ

(y)
t + τWit + θiHt + εit. (2.7)

As long as θi is correlated with Di and Ht is correlated with Zt the TSLS estimator suffers

from the omitted variable bias (OVB) and is invalid. Applied researchers recognize this threat

(e.g., see discussions in Guren et al., 2020; Chodorow-Reich et al., 2021) and address it by

including additional aggregate and unit-specific control variables. Of course, in practice, we

cannot guarantee that these controls are sufficient to account for all confounders.
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Figure 2: Aggregate time-series data for Nakamura and Steinsson (2014) data

Panel A: Aggregation over n = 48 states with original weights
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Panel B: Aggregation over n = 48 states with robust weights
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Notes: Solid lines represent aggregate data for different weights; dashed lines represent OLS predictions of the
aggregate data with the instrument. The mean absolute value of weights is scaled to 1.

Our estimator complements this strategy by using a more flexible weighting scheme.3 To

3Below we discuss the basic version of our estimator that does not involve additional controls. We show how
to use controls to improve our estimator in Section 4.1.
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understand why weighting can help with unobserved confounders, suppose Di is binary and split

all units into two groups accordingly.4 If the average value of θi varies between these groups,

then the TSLS strategy is invalid. If, however, there is an overlap in distributions of θi in

the two groups, then we can correct these differences by reweighting. We cannot follow this

strategy directly because θi is unknown. We can, however, use the observed data to implement

it indirectly by searching for weights with certain balancing properties. This is the main idea

behind the algorithm we present next.

First, we compute the state-level coefficients using data from the second part of the sample.

Formally, for each unit i, we estimate equations

Yit = α
(y)
i + δiZt + u

(y)
it ,

Wit = α
(w)
i + πiZt + u

(w)
it ,

(2.8)

by OLS using data for periods t = T0 +1, . . . , T . We use
{(
π̂
OLS,(T0:T ]
i , δ̂

OLS,(T0:T ]
i

)}
i≤n

to denote

the corresponding OLS estimates. T0 is a user-specified parameter, with a default value T0 = T
3
.

To estimate the effect, we aggregate the coefficients using weights ωrobi ,

τ̂rob =

∑
i≤n δ̂

OLS,(T0:T ]
i ωrobi∑

i≤n π̂
OLS,(T0:T ]
i ωrobi

, (2.9)

which we define below. Similarly to τ̂TSLS, this estimator is numerically equal to the time-series

IV estimator for the equation

Y rob
t = α + τW rob

t + εt, (2.10)

where Y rob
t := 1

n

∑
i≤n Yitω

rob
i and W rob

t := 1
n

∑
i≤n Yitω

rob
i , we use Zt as an instrument, and

estimate (2.10) using data for t = T0+1, . . . , T . Using weights ωrobi as opposed to Di− 1
n

∑
j≤nDj

is the main conceptual difference between our estimator and the TSLS. Analogously to τ̂TSLS,

one can compute τ̂rob by estimating the equation

Yit = αi + µt + τWit + εit (2.11)

4We thank an anonymous referee for suggesting this example.
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by the TSLS for periods t = T0 + 1, . . . , T , using ωrobi Zt as an instrument.

We construct the weights ωrobi using the first T0 periods. As discussed before, we want to

make units with high values of Di look similar on average to those with low values of Di. To this

end, we residualize the data for each unit with respect to Zt and look for such a combination.

We achieve this goal by solving a quadratic optimization problem:

(ωrob, η̂
(w)
0 , η̂(w)

z , η̂
(y)
0 , η̂(y)

z ) = arg min
{w,η(w)

0 ,η
(w)
z ,η

(y)
0 ,η

(y)
z }

{
ζ2‖w‖2

2

nT0

+

1
T0

∑
t≤T0

(
1
n

∑
i≤nwiYit − η

(y)
0 − η

(y)
z Zt

)2

σ̂2
y,T0

+

1
T0

∑
t≤T0

(
1
n

∑
i≤nwiWit − η(w)

0 − η(w)
z Zt

)2

σ̂2
w,T0

}
subject to:

1

n

∑
i≤n

wiDi = 1,
1

n

∑
i≤n

wi = 0,

(2.12)

where ζ2 is a user-specified regularization parameter, and

σ̂2
y,T0

:= min
{αi,γi,µt}i,t

{∑
i≤n,t≤T0(Yit − αi − µt − γiZt)

2

nT0

}
,

σ̂2
w,T0

:= min
{αi,γi,µt}i,t

{∑
i≤n,t≤T0(Wit − αi − µt − γiZt)2

nT0

}
.

(2.13)

As a default value, we use

ζ =
log(T0) max{‖ε̂(y)‖op, ‖ε̂(w)‖op}√

nT0

, (2.14)

where ε̂(y) and ε̂(w) are n × T0 matrices of residuals from regressions in (2.13). The estimation

procedure is summarized in Algorithm 1.

To gain intuition behind the optimization problem (2.12) it is useful to consider several

edge cases. First, if ζ is equal to infinity, then ωrobi ∝ (Di − 1
n

∑
j≤nDj), i.e., we get the same

aggregate variables as before. The resulting estimator is similar but not numerically equal to

τ̂TSLS because we only use periods t > T0 to estimate the coefficients.

To understand what happens when ζ 6= ∞ suppose Di is binary, Di ∈ {0, 1}. As discussed

before, the original aggregation scheme constructs a difference between average exposed (Di = 1)
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Algorithm 1: Estimation algorithm

Data: {Yit,Wit}it, {Di}i≤n, {Zt}t≤T , T0, ζ

Result: Estimates (π̂rob, δ̂rob, τ̂rob)
1 Construct the unit weights {ωrobi }i≤n by solving optimization problem (2.12);
2 for t← T0 + 1 to T do
3 Construct Y rob

t = 1
n

∑
i≤n Yitω

rob
i , and W rob

t = 1
n

∑
i≤nWitω

rob
i .

4 end
5 Using the data for t > T0, estimate two regressions by OLS:

Y rob
t = η

(y)
0 + δZt + ε

(y)
t , W rob

t = η
(w)
0 + πZt + ε

(w)
t ,

and report δ̂rob, π̂rob, τ̂rob := δ̂rob
π̂rob

;

and not exposed (Di = 0) units. Aggregation with weights ωrobi has a similar flavor but corre-

sponds to taking a weighted average in both groups. This follows from examining the constraint

in (2.12). Among all possible weighted averages, we select the one that makes aggregate vari-

ables Y rob
t and W rob

t as predictable as possible. Motivation for this is evident from looking at

the first-stage and the reduced-form equations that correspond to (2.7):

Yit = α
(y)
i + µ

(y)
t + δDiZt + θ

(y)
i Ht + u

(y)
it ,

Wit = α
(w)
i + µ

(w)
t + πDiZt + θ

(w)
i Ht + u

(w)
it .

Unobserved confounders make the prediction of Yit and Wit by Zt harder, so the weights that

eliminate such factors should also make the prediction easier. Terms u
(y)
it and u

(w)
it create a

statistical challenge – it is possible that instead of eliminating the confounder, the weights

produce a combination of errors that compensates Ht. To prevent such overfitting, we include

the regularization term in (2.12), which forces the weights to be as uniform as possible. Using

this we can show that ωrob are close to determinstic weights ω? which minimize

∑
t≤T0

E

(
1

n

∑
i≤n

wiYit − η(y)
0 − η(y)

z Zt

)2

+
∑
t≤T0

E

(
1

n

∑
i≤n

wiWit − η(w)
0 − η(w)

z Zt

)2

, (2.15)

subject to the same constraints. As long as 1
n

∑
i≤n ω

?
i θ

(w)
i and 1

n

∑
i≤n ω

?
i θ

(y)
i are small, we can

expect 1
n

∑
i≤n ω

rob
i θ

(w)
i , and 1

n

∑
i≤n ω

rob
i θ

(y)
i to be neglible as well. In Section 3 we present a

large class of statistical models where this is indeed the case.
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2.3 Applying Robust Estimator

To implement our estimator for Nakamura and Steinsson (2014), we use the original exposures

Di, set T0 = 10 (which corresponds to years 1968-1977), and use the default value for ζ. We

then construct ωrobi and estimate τ̂rob using Algorithm 1.

Panel B of Figure 1 plots the cross-sectional representation of our estimator. As before, the

points represent the state-level first-stage and reduced-form coefficients but are now estimated

using data from 1978 to 2006. The circle size reflects the absolute value of ωrobi , and the

colors reflect the sign. Our estimator τ̂rob = 1.72 equals the slope of the line connecting two

centers of mass (blue triangles) for negative and positive weights. Compared to coefficients from

Panel A of Figure 1, the first-stage coefficients computed for 1981-2006 exhibit less variability.

By construction, in Panel A, the states with extreme first-stage coefficients have the largest

weights (in absolute value), which is no longer the case in Panel B. Aggregating these state-level

coefficients, we get a larger multiplier than before, though still within the range Nakamura and

Steinsson (2014) report for alternative specifications.

There are two differences between Panel A and B of Figure 1. The first is the period we

use to construct the state-level coefficients; the second is the weighting scheme. If we only

change the period but apply the same weights as before, then we get a multiplier of 1.71, with a

standard error of 1.20. The similarity between point estimates is not surprising, given visually

minor differences between the weights, which we plot in Figure 3. The differences are mostly in

the tails, with the original weights being extreme for several states. As a result, the standard

error of the alternative estimator is 54% higher.

We can see this in Panel B of Figure 2, which demonstrates the time-series representation of

our estimator. We plot the aggregate data Y rob
t and W rob

t vis-a-vis two separate OLS predictions

for years 1968− 1977 (in blue), and 1978− 2006 (in red). By changing the aggregation scheme,

we reduce the variability: there is an 11% reduction in the standard deviation for Wt, and 24% –

for Yt. Despite this decrease in variability, aggregate instrument Zt remains relevant. Focusing

only on periods 1979− 2006, the R2 for Wt increases from 54% to 74%, and for Yt – from 11%

to 20%.

The higher, compared to the original estimate from Nakamura and Steinsson (2014), standard

error of our estimator, ˆs.e.(τ̂rob) = 0.78, is explained by a shorter time span, and relatively higher

variability in Zt in the initial periods. We calculate this error by clustering at a yearly level in
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Figure 3: Scatterplot—Nakamura and Steinsson weights and robust weights
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Notes: Scatter plot of original and robust weights for Nakamura and Steinsson (2014) data; n = 48, state
abbreviations are used as labels. The variance of weights is scaled to 1.

the TSLS regression

Yit = αi + µt + τWit + εit,

where we use ωrobi Zt as the instrument, and years 1978− 2006.

2.4 Discussion

τ̂TSLS and τ̂rob rely on aggregation of the unit-level coefficients. We encourage users to produce

analogs of Figure 1 to investigate the importance of alternative aggregation schemes. In appli-

cations where the unit-level coefficients exhibit strong association, the aggregation does not play

a major role, resulting in similar estimates. If, however, there is significant variation, then the

weighting scheme becomes important. In the rest of the paper, we demonstrate the advantages

15



of our scheme with theory and simulations. At the same time, as with any method, our approach

has its limitations and should be used carefully. Below we discuss the main ones, thus defining

practical use cases for our estimator.

Our algorithm is data-intensive, particularly in the time dimension. Our formal results

require the total number of periods to be large and the number of units n to be at least of a similar

order. Both of these assumptions can be restrictive in practice: in applied macroeconomics, we

might observe relatively long time series for only a few units (e.g., monthly data for the states);

in applied microeconomics, the number of observed periods is sometimes relatively small.

The second limitation is the flip side of the first one: for our weights to improve over the

TSLS ones, the environment should be sufficiently stable over time. To construct ωrob we use

the residuals after projecting out Zt, which behave well when the effect of Zt does not change

over time. We return to this point in Section 4.2, where we discuss heterogeneous effects in more

detail. For our weights to be useful for the second part of the data, any potential confounder

like Ht in (2.7) should have a similar effect in both data parts. This assumption might be too

strong in environments where structural shocks are likely. This limitation can potentially be

relaxed by using the whole sample to construct the weights. However, our theoretical results,

particularly inference, rely on sample splitting. We also believe that sample splitting is a good

general practice that protects from potential abuse.5

Finally, our method is designed for applications in which the TSLS regression (1.1) is a

priori reasonable, but the users are worried about potential unobserved confounders. There are

multiple reasons why (1.1) might fail, other than omitted variables. For example, the underlying

model can be nonlinear or the dynamic effects of the past treatments can be sizable. In these

cases, the TSLS regression, and by extension, our improvement upon it, might be the wrong

tool, and researchers should use other methods. We discuss this issue in more detail in Section

3 when we introduce a formal model.

Given these limitations, we recommend that applied researchers use our technique in situ-

ations where the number of observed periods is relatively large, structural shocks are unlikely,

and the main potential problem is the presence of unobserved aggregate confounders rather than

nonlinearity or dynamics. As we show with our formal results and simulations, our method either

dominates the TSLS or performs similarly under this set of assumptions.

5See Spiess (2018) for a formalization of this argument.
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3 Theoretical analysis

We formulate three theoretical results in this section.6 The first theorem shows that our es-

timator remains consistent when the TSLS fails. The second postulates that our estimator is

asymptotically unbiased and normal under mild technical assumptions. The third theorem jus-

tifies conventional inference in situations with sufficient heterogeneity in the baseline outcomes.

3.1 Setup

We observe n units (i is a generic unit) over T periods (t is a generic period). For each unit, we

observe an outcome variable Yit, an endogenous policy variable (treatment) Wit, an aggregate

shock Zt, and a measure of exposure of unit i to this shock Di. We aim to estimate a causal

relationship between Yit and Wit. To formalize causality, we start with a model of potential

outcomes (Neyman, 1923; Rubin, 1977). In addition to wt (potential value of Wit) and zt

(potential value of Zt), we also introduce ht – an unobserved aggregate shock that causally

affects both the outcome and the treatment variable. We define wt := (. . . , w1, . . . , wt), z
t :=

(. . . , z1, . . . , zt), and ht := (. . . , h1, . . . , ht), and make our first assumption.

Assumption 3.1. (Potential outcomes)

Potential outcomes follow a static linear model:

Yit(w
t, ht) = α

(y)
it + τwt + θ

(y)
i ht,

Wit(h
t, zt) = α

(w)
it + πizt + θ

(w)
i ht.

(3.1)

As a result, the realized outcomes satisfy

Yit = α
(y)
it + τWit + θ

(y)
i Ht,

Wit = α
(w)
it + πiZt + θ

(w)
i Ht.

(3.2)

The critical part of this assumption and our setup overall is the unobserved aggregate vari-

able Ht. The danger such unobservables present for identification is well-recognized in applied

work (e.g., Chodorow-Reich et al., 2021). The typical restriction made in the literature is to

assume that θ
(w)
i , θ

(y)
i do not vary over i in a systematic way. We do not make this assumption

6All proofs are collected in Appendix B.
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and instead allow for such heterogeneity. Following most empirical applications, we focus on

contemporaneous treatment effects and assume that only current quantities affect the outcomes.

Finally, to simplify the exposition, we assume away heterogeneity in treatment effects. We relax

this in Section 4 where we discuss when the output of our algorithm can be interpreted as a

weighted average of individual treatment effects.

Our next assumption describes the relation between the aggregate variables and the potential

outcomes.

Assumption 3.2. (Exogeneity)

Aggregate shocks are independent of potential outcomes:

{Zt, Ht}t≤T ⊥⊥ {α(w)
it , α

(y)
it , θ

(y)
i , θ

(w)
i , πi}i≤n,t≤T . (3.3)

Assumption 3.2 is natural in applications where Zt and Ht can be plausibly considered

exogenous, i.e., determined outside the relevant model for the unit-level outcomes. For example,

suppose (Yit,Wit) are determined jointly in the local equilibrium:

Yit = α
(y)
it + τWit + θ

(y)
i Ht,

Wit = α
(w)
it + γYit + πiZt.

(3.4)

This structure arises, for example, in Guren et al. (2020) where Yit is the retail employment in

location i, period t, and Wit is the house price. The aggregate variables correspond to exogenous

demand and supply shifters. Substituting Yit in the expression for Wit we get the model (3.1).

This example demonstrates the difference between Zt and Ht. The former acts as a shifter for

Wit and is excluded from the structural equation for Yit. Despite this exclusion restriction, Zt

might be an invalid instrument due to its potential correlation with Ht.

The presence of the unobserved shock Ht makes the causal model described by Assumption

3.1 and 3.2 somewhat nonstandard. To see this, define Yit(w) := Yit(w,Ht) and Wit(z) :=

Wit(z,Ht) – potential outcomes at realized values of ht. For each i, {Yit(w),Wit(z)}t≤T is a

version of the conventional IV model of Imbens and Angrist (1994). In particular, Assumption

3.1 guarantees that the instrument Zt satisfies the exclusion restriction for each unit. Assumption

3.2, however, does not guarantee that Zt is independent of (Yit(w),Wit(z)). The two assumptions
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together quantify the extent of this dependence at the unit level:

E
[
Yit(w)(Zt − E[Zt])|α(w)

it , α
(y)
it , πi, θ

(w)
i , θ

(y)
i

]
= θ

(y)
i E[Ht(Zt − E[Zt])],

E
[
Wit(z)(Zt − E[Zt])|α(w)

it , α
(y)
it , πi, θ

(w)
i , θ

(y)
i

]
= θ

(w)
i E[Ht(Zt − E[Zt])].

(3.5)

We thus relax the independence assumption of Imbens and Angrist (1994) (Condition 1, (i) in

the paper) but impose a product structure on the correlation. This structure is motivated by

applications where it is plausible to view Zt as exogenous (in the sense of Assumption 3.2), but

other aggregate shocks might also affect the outcomes. In other words, the first stage and the

reduced form can suffer from the omitted variable bias, where the confounder varies over time

but not over units.

In practice, we cannot guarantee that Ht is one-dimensional, and thus a model with multiple

unobserved shocks might be more appropriate. Conceptually, this extension is straightforward

since we can interpret (θ
(y)
i , θ

(w)
i ) and Ht as p-dimensional vectors. For p large enough the RHS

of (3.5) can approximate arbitrary covariance between Yit(w), Wit(z) and Zt. The dimension of

Ht does not directly enter Algorithm 1 but makes its analysis more involved. To simplify the

exposition, we focus on the one-dimensional case, which transmits theoretical insights in the

simplest form. In Appendix B.2, we establish our main bound assuming Ht is a vector, and

later specialize it to the scalar case.

Our next assumption restricts the joint distribution of aggregate variables {(Zt, Ht)}t≤T .

Since they serve as a source of quasi-experimental variation in our setup, we call it a design

model.

Assumption 3.3. (Design model)

The aggregate variables (Zt, Ht) follow a time-heterogeneous linear process. In particular, they

satisfy

Zt = ηz + ε
(z)
t , Ht = ηh + ε

(h)
t . (3.6)

For k ∈ {z, h} define ε(k) := (ε
(k)
T , . . . , ε

(k)
1 )>; there exist T -dimensional vectors ν(z), ν(h), two

upper-triangular matrices Λ(z),Λ(h), and ρag ∈ (−1, 1) such that

ε(z) = Λ(z)ν(z), ε(h) = Λ(h)(ρagν
(z) +

√
(1− ρ2

ag)ν
(h)). (3.7)
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Vectors ν(z), ν(h) are independent, have independent components with the uniformly bounded

sub-gaussian norm, and E
[
(ν

(z)
t )2

]
= E

[
(ν

(h)
t )2

]
= 1. For k ∈ {z, h} and j ≤ T we have

0 < σmin ≤ (Λ(k))jj ≤ σmax <∞,
∣∣(Λ(k))jl

∣∣ ≤ ρmax

(l − j)2
, for l > j. (3.8)

The first part of this assumption restricts the means of Zt and Ht, which are assumed to be

constant over time. This is without loss of generality for Ht, because its mean can be treated

as a part of α
(w)
it and α

(y)
it , but it is restrictive for Zt. This assumption can be relaxed by

considering a parametric model for the mean, e.g., allowing for seasonality or secular trends.

Fundamentally, our approach relies on the fact that researchers know how to detrend Zt and

exploit random fluctuations ε
(z)
t , which is particularly easy if the mean is constant. This idea is

closely connected to Borusyak and Hull (2020), where the authors show that such de-meaning

is crucial for design-based methods.

The second part restricts the distribution of ε(z) and ε(h). These errors are generated by

the underlying independent structural shocks ν(z) and ν(h). Since ρag is less than one, there

is variation in ε
(h)
t that is not entirely explained by ε

(z)
t (and vice versa). Restrictions on the

elements of matrices Λ(z),Λ(h) exclude persistent cases (e.g., random walks) but allow for other

forms of non-stationarity.

The next two assumptions restrict heterogeneity in potential outcomes. We start with ex-

posures πi, connecting them to observed Di.

Assumption 3.4. (Strong Instruments)

There exist numbers (η0, ηπ) with ηπ 6= 0, such that for every i we have πi = η0 + ηπDi.

This assumption guarantees that DiZt is a relevant predictor for Wit, making it a “strong”

instrument. The linearity is motivated by the empirical practice where researchers often assume

that exposures πi are known up to linear transformation (e.g., Dube and Vargas, 2013; Nunn and

Qian, 2014). Fundamentally, our theoretical results rely on Di being strongly correlated with πi

after adjusting for other unit-specific coefficients. As a result, one can extend Assumption 3.4

by explicitly including θ
(w)
i , θ

(y)
i or functions of {α(w)

it , α
(y)
it }t≤T in the expression for πi.

To state our next assumption, we introduce additional notation. For any Ta > 1 define
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population analogs of σ̂k,T0 from (2.13):

σ2
y,Ta := min

{αi,γi,µt}i,t

{∑
i≤n,t≤Ta EH,Z [(Yit − αi − µt − γiZt)2]

nTa

}
,

σ2
w,Ta := min

{αi,γi,µt}i,t

{∑
i≤n,t≤Ta EH,Z [(Wit − αi − µt − γiZt)2]

nTa

}
.

(3.9)

For any Tb > Ta ≥ 1, t ∈ [Ta, Tb], weights ωi such that
∑

i≤n ωi = 0, and k ∈ {y, w} define:

α
(k)
t,Ta|Tb(ω) :=

1

n
√
Tb − Ta + 1

∑
i≤n

ωi

(
α

(k)
it −

1

Tb − Ta + 1

∑
Ta≤l<Tb

α
(k)
il

)
. (3.10)

As mentioned in Section 2, our results rely on the fact that the weights ωrob are close to

deteriminstic oracle weights ω? that optimize the expected version of (2.12):

1

T0σ2
y,T0

∑
t≤T0

E

(
1

n

∑
i≤n

wiYit − η(y)
0 − η(y)

z Zt

)2

+

1

T0σ2
y,T0

∑
t≤T0

E

(
1

n

∑
i≤n

wiWit − η(w)
0 − η(w)

z Zt

)2

, (3.11)

subject to appropriate constraints. Using Assumptions 3.1-3.4 we can compute these expecta-

tions, and after concentrating
{
η

(k)
0 , η

(k)
z

}
k∈{y,w}

we get

∑
t≤T0

(
α

(w)
t,1|T0(ω)

)2

+ κ2(T0)
(

1
n

∑
i≤n ωiθ

(w)
i

)2

σ2
w,T0

+

∑
t≤T0

(
α

(y)
t,1|T0(ω) + τα

(w)
t,1|T0(ω)

)2

+ κ2(T0)
(

1
n

∑
i≤n ωi(θ

(y)
i + τθ

(w)
i )
)2

σ2
y,T0

, (3.12)

where κ2(T0) is strictly positive.

Our final assumption guarantees that the oracle problem (3.12) has a well-behaved solution

and allows us to exploit the cross-sectional dimension of the problem to achieve identification.

Assumption 3.5. (Overlap)
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For any Ta > 1 there exist {ω?i,Ta}i≤n such that

∑
k∈{y,w}


∑

t≤Ta

(
α

(k)
t,1|Ta(ω?Ta)

)2

+
(

1
n

∑
i≤n ω

?
Ta
θ

(k)
i

)2

σ2
k,Ta

 .
log(n)

n
,

1

n

∑
i≤n

ω?i,TaDi = 1,
1

n

∑
i≤n

ω?i,Ta = 0,
1

n

∑
i≤n

(
ω?i,Ta

)2
. 1.

(3.13)

Assumption 3.5 guarantees the presence of variation in Di that is not captured by other

unit-specific coefficients. It is similar to overlap assumptions commonly imposed in settings

with unconfoundedness (e.g., Imbens and Rubin, 2015). Under Assumption 3.5, the more units

we observe, the better we can “balance out” unobserved confounders using weights ω?Ta . We can

eliminate them in the limit where n converges to infinity. As a result, Assumption 3.5 guarantees

that τ can be identified within the class of estimators we consider.

To justify Assumption 3.5 we now consider an example that encompasses many models used

in current empirical practice.

Proposition 1. Suppose that for k ∈ {y, w}

α
(k)
it = α

(k)
i + µ

(k)
t + L

(k)
it + ε

(k)
it ,

(ε
(k)
iT , . . . ε

(k)
i1 )> =

(
Σ(k)

) 1
2 ε̃

(k)
i ,

E[ε
(k)
i ] = 0T×1, V[ε

(k)
i ] = IT ,

(3.14)

where ‖Σ(k)‖op . 1, T -dimensional vectors ε
(k)
i are independent over i, with independent uni-

formly bounded sub-gaussian components, and for any t ∈ {1, . . . , T}
∑

i≤n

(
L
(k)
it

)2
n

. 1. In

addition, suppose

Di = α
(d)
i + ε

(d)
i , E[ε

(d)
i ] = 0, V[ε

(d)
i ] = σ2

d, (3.15)

where
∑

i≤n(α
(d)
i )2

n
. 1 and ε

(d)
i are independent over i, independent of ε

(w)
i , ε

(y)
i , and have uniformly

bounded sub-gaussian norm. Finally, suppose for k ∈ {y, w}
∑

i≤n(θ
(k)
i )2

n
. 1 and Assumption 3.3

holds. Then Assumption 3.5 holds for ω?i,T0 ∝ (ε
(d)
i − 1

n

∑
j≤n ε

(d)
j ) with probability approaching

one as n approaches infinity.
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This example covers many familiar cases. First, if α
(d)
i = α(d), then Di is as good as randomly

assigned – situation that rarely holds in applications, but serves as a natural benchmark. If

L
(k)
it ≡ 0, then we recover a conventional two-way model that is commonly used in applications.

In practice, we rarely expect the two-way model to hold exactly, and L
(k)
it can be viewed as

an approximation error. If L
(k)
it has product structure, then we recover the interactive fixed

effects model (e.g., Bai, 2009). However, this structure is not necessary, and L
(k)
it can vary in an

arbitrary way, as long as it remains appropriately bounded. The key part of the setup that allows

us to construct ω?i,T0 is the presence of ε
(d)
i – exogenous variation in Di that is unrelated to any

other local-level parameters. Informally, to justify Assumption 3.5 in applications, researchers

need to argue that there is some underlying randomness in Di. We view this as a natural

identification requirement.

3.2 Statistical Properties

We now turn to the statistical properties of our estimator. We use a design-based framework

and all probability statements in the section except those in Proposition 2 refer to the joint

distribution of {(Zt, Ht)}t≤T . We focus on a particular asymptotic regime characterized by the

next assumption.

Assumption 3.6. (Asymptotic regime)

Both n and T increase to infinity and T
n
→ γrat <∞, for k ∈ {y, w} we have

1

n

∑
i≤n

(
θ

(k)
i −

1

n

∑
j≤n

θ
(k)
j

)2

→ σ2
θ(k) > 0,

1

n

∑
i≤n

(
Di −

1

n

∑
j≤n

Dj

)2

→ σ2
D > 0,

1
n

∑
i≤n

(
Di − 1

n

∑
j≤nDj

)
θ

(k)
i

σDσθ(k)
→ ρ(k)

cs ,
1

n

∑
i≤n

(
α

(k)
it

)2

→
(
α

(k)
t

)2

,

0 < α2
min ≤

(
α

(k)
t

)2

≤ α2
max <∞.

(3.16)

With the first part of this assumption, we restrict the analysis to environments where n is

comparable to or larger than T , which we expect to hold in many applications. The second part

implies that the variability in Di and θ
(k)
i is present in the limit. For binary Di, this assumption

is reasonable if the size of the treated or control group is not too small. The variability in θ
(k)
i

implies that Ht is a “strong” factor. While common in theoretical literature on interactive fixed
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effects (e.g., Bai, 2009; Moon and Weidner, 2015), this assumption can be restrictive in some

applications, where researchers expect little variability in θ
(k)
i . A version of our results holds

in environments where σ2
θ(k)

= 0 (see the discussion in Appendix B.3). The restriction on the

correlation is innocuous, as it always holds along a subsequence, and we make it to simplify the

exposition. Finally, the restriction on α
(k)
it guarantees that Yit and Wit have finite variances.

Assumption 3.6 describes the limit behavior of unit-specific quantities. For the aggregate

variables we define similar objects for fixed Tb > Ta ≥ 1 and k ∈ {z, h}:

σk,Ta|Tb :=

√√√√√ 1

Tb − Ta + 1

∑
Ta≤t<Tb

E

(ε(k)
t −

∑
Ta≤l<Tb ε

(k)
l

Tb − Ta + 1

)2
,

ρTa|Tb :=

1
Tb−Ta+1

∑
Ta≤t<Tb E

[(
ε

(z)
t −

∑
Ta≤l<Tb

ε
(z)
l

Tb−Ta+1

)
ε

(h)
t

]
σh,Ta|Tbσz,Ta|Tb

.

(3.17)

As indicated by the indices, these quantities depend on Ta, Tb. Assumption 3.3 guarantees that

|ρTa|Tb| ≤ 1, and σk,Ta|Tb are uniformly bounded from above and below.

Our first result compares probability limits of τ̂TSLSL and τ̂rob.

Theorem 1. (Consistency)

Suppose Assumption 3.1-3.6 hold, ζ2 = log(T0), and T0
T
→ γT ∈ (0, 1), then

τ̂rob = τ + op(1).

If, in addition,
∣∣∣ρ(w)
cs σθ(w)ρ1|Tσh,1|T + ηπσDσz,1|T

∣∣∣ > cmin > 0, then

τ̂TSLS = τ +
ρ

(y)
cs σθ(y)ρ1|Tσh,1|T

ρ
(w)
cs σθ(w)ρ1|Tσh,1|T + ηπσDσz,1|T

+ op(1).

This result demonstrates that τ̂rob remains consistent in the regime where τ̂TSLS generally

fails. It also formalizes a part of the discussion in Section 2.4. In our model, the only threat to

the validity of the TSLS is the presence of omitted variables. As long as either ρ
(y)
cs or ρ1|T is

equal to zero the TSLS estimator is consistent.

Theorem 1 provides a first justification for using our estimator, but it does not describe

its distributional properties in large samples. Under current assumptions, we can only provide
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relatively weak guarantees on the asymptotic behavior of τ̂rob. In particular, Assumptions 3.5,

3.6 imply that there exist weights such that

∣∣∣∣∣ 1n∑
i≤n

ω?i,T0θ
(k)
i

∣∣∣∣∣ .
√

log(T0)

T0

,

however, this property is too weak to achieve asymptotic unbiasedness. To make progress, we

impose additional assumptions on θ
(y)
i , θ

(w)
i .

Assumption 3.7. (Sufficient heterogeneity)

For any Ta > 1 and k ∈ {y, w} there exists {ω?k,i,Ta}i≤n such that

∑
l∈{y,w}

 1
Ta

∑
t≤Ta

(
α

(k)
t,1|T0(ω̌

(k)
Ta

)
)2

σ2
l,Ta

+

(
1
n

∑
i≤n ω

?
k,i,Ta

θ
(−k)
i

)2

σ2
−k,Ta

.
log(n)

n
,

1

n

∑
i≤n

ω?k,i,Taθ
(k)
i =

√√√√ 1

n

∑
i≤n

(
θ

(k)
i −

1

n

∑
j≤n

θ
(k)
j

)2

,
1

n

∑
i≤n

ω?k,i,Ta = 0,
1

n

∑
i≤n

(
ω?k,i,Ta

)2
. 1.

(3.18)

This Assumption is formally similar to Assumption 3.5 and requires existence of variation

in θ
(k)
i that is not captured by α

(w)
it , α

(y)
it and θ

−(k)
i . To justify it, we return to the example from

Proposition 1.

Proposition 2. Suppose conditions of Proposition 1 hold. In addition, suppose for k ∈ {y, w}
we have

θ
(k)
i = α

(k)
i + ε

(k)
i , E[ε

(k)
i ] = 0, V[ε

(k)
i ] = σ2

θ(k) , (3.19)

where ε
(k)
i are independent over i, and k, and have uniformly bounded sub-gaussian norm. Then

Assumption 3.7 holds with probability one as n approaches infinity.

To understand why Assumption 3.7 can improve the performance of τ̂rob it is useful to consider

environments where it fails. In particular, if θ
(k)
i is nearly spanned by {α(y)

it , α
(w)
it }t≤T0 and θ

(−k)
i ,

but the remaining variation is strongly associated with πi, then it is very hard to eliminate it

by aggregation which results in a slow rate of convergence. This problem is mitigated when

25



there is enough variability in θ
(k)
i , which is not explained by other variables. Our next result

demonstrates these gains by characterizing the asymptotic behavior of τ̂rob. To state it we define

for arbitrary periods Tb > Ta > 0 a matrix Λ
(z)
Ta|Tb such that

(ε
(z)
Tb
, . . . , ε

(z)
Ta

)> = Λ
(z)
Ta|Tbν

(z). (3.20)

Theorem 2. (Asymptotic behavior)

Suppose Assumption 3.1-3.7 hold, ζ2 = log(T0), and T0
T
→ γT ∈ (0, 1). Then there exists

deterministic weights {ωdeti,T0
}i≤n such that 1√

n
‖ωrobi − ωdeti,T0

‖2 = op(1), and

√
T1 (τ̂rob − τ) =

σn,T
ηπσ2

z,T0+1|T
ξn + op(1), E[ξn] = 0, V[ξn] = 1, (3.21)

where σn,T :=
∥∥∥α(y)

T0+1|T (ωdetT0
)Λ

(z)
T0+1|T

∥∥∥
2
. If, in addition,

‖α(y)
T0+1|T (ωdet

T0
)‖∞

‖α(y)
T0+1|T (ωdet

T0
)‖2

= o(1), then ξn converges

in distribution to N (0, 1).

This result implies that our estimator is asymptotically unbiased and normal as long as σn,T

remains bounded. This condition can be restrictive, e.g., if α
(y)
it ∼ N

(
α

(y)
i + λ

(y)
t , σ2

α(y)

)
, then

σn,T = Op

(
1√
n

)
and higher order terms in (3.21) become important. This lack of uniformity is

similar to one considered in Menzel (2021). In practice, we do not expect the two-way model to

hold exactly and rather view it as an approximation. In this situation, the first term in (3.21)

becomes dominant, and we can use Theorem 2 for inference.

Theorem 2 describes the asymptotic behavior of our estimator in the presence of unobserved

shocks. If there are no such confounders in the structural equation, i.e., θ
(y)
i ≡ 0, then our estima-

tor and the standard TSLS estimator are asymptotically normal under mild technical conditions.

In this regime, σn,T can be smaller or larger than its TSLS counterpart
∥∥∥α(y)

1|T (ωTSLS)Λ
(z)
1|T

∥∥∥
2

de-

pending on the underlying complexity of the potential outcomes and differences in the sample

sizes.

We conduct inference in several steps summarized in Algorithm 2. First, we estimate the

variance. We assume that a researcher has access to a consistent estimator for Λ
(z)
T0+1|T which

we denote Λ̂
(z)
T0+1|T . For t > T0 we construct scaled residuals from the aggregate regression

α̂
(y)
t,T0|T (ωrob) :=

Y rob
t − τ̂robW rob

t√
T1

, (3.22)
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Algorithm 2: Inference

Data: {Y rob
t ,W rob

t , Zt}t≤T , τ̂rob, π̂rob, Λ̂(z)
T0+1|T , α, T0

Result: 1− α confidence interval
1 for t← T0 + 1 to T do

2 Construct α̂
(y)
t,T0|T (ωrob) =

Y rob
t −τ̂robW rob

t√
T−T0

3 end

4 Compute σ̂rob =
‖α̂(y)

T0|T
(ω)Λ̂

(z)
T0+1|T ‖2

|π̂rob| 1
T1

∑
T0<t<T

(
Zt−

∑
T0<l≤T Zl

T−T0

)2 ;

5 Report the confidence interval: τ ∈ τ̂rob ± σ̂rob√
T1
z1−α/2.

and estimate the asymptotic standard error of τ̂rob:

σ̂rob :=
‖α̂(y)

T0+1|T (ωrob)Λ̂
(z)
T0+1|T‖2

|π̂rob| 1
T1

∑
T0<t<T

(
Zt −

∑
T0<l≤T Zl

T1

)2 . (3.23)

With this quantity, we construct a standard asymptotic confidence interval of level 1− α:

τ ∈ τ̂rob ±
σ̂rob√
T1

z1−α/2, (3.24)

where zα is α-quantile of the standard normal distribution. Our next result characterizes the

asymptotic properties of this interval.

Theorem 3. (Inference)

Suppose conditions on Theorem 2 hold, and σ2
n,t & 1. In addition, suppose ‖Λ̂(z)

T0+1|T−Λ
(z)
T0+1|T‖op =

op(1). Then the confidence interval (3.24) has asymptotic coverage 1− α.

As discussed above, we expect this theorem to be useful in practice whenever the two-way

model for α
(k)
it is only approximately correct. This result focuses on the conventional interval

(3.24), which is valid if the first stage is strong, i.e., ηπ is large enough. A version of Theorem

2 holds for the first-stage and reduced-form coefficients and can be used to conduct robust

inference (see Andrews et al., 2019 for a recent survey on robust inference).

To construct σ̂rob, we combine aggregate residuals with the estimator for the parameters of

the design model. If Λ(z) is diagonal, i.e., the variation in Zt is independent over time, then

σ̂rob corresponds to “clustering at time level”. We used this approach to produce the standard

errors for the application in Section 2. With general Λ(z), we need to consider dependence over
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time and σ̂rob does that using Λ̂
(z)
T0+1|T . Alternative inference procedures that bypass estimation

of Λ̂
(z)
T0+1|T can also be used, as in Ibragimov and Müller (2010).

4 Extensions

This section discusses three possible extensions of our model and the respective adjustments to

the algorithm. We first show how to incorporate covariates in our setting. Secondly, we examine

the case of heterogeneous treatment effects as a natural extension. We conclude Section 4 by

connecting our estimator to the literature on shift-share designs.

4.1 Additional information

A typical regression equation estimated in applications has a more complicated structure than

(1.1):

Yit = αi + µt(Xi) + θ̃>i H̃t + τWit + εit. (4.1)

Here Xi are observed unit-level attributes, e.g., region indicators, and H̃t is a vector of observed

aggregate variables we expect to be correlated with Zt. Equation (4.1) is estimated by the

TSLS using DiZt as an instrument for Wit and treating αi and θi as fixed parameters. Inclusion

of µt(Xi) instead of µt and θ̃>i H̃t in the equation mitigates the OVB concerns but does not

eliminate them.

Our estimator also allows for unit-level covariates and observed aggregate variables.7 In

particular, we suggest estimating equation (4.1) by TSLS using ωrobi Zt as instrument for Wit

and data from periods T0 + 1, . . . T . The weights ωrobi then solve an adjusted optimization

7To incorporate time-varying covariates Xit we can define Xi := (Xi1, . . . , XiT ). Alternatively, and more in
line with current empirical practice, we can instead residualize Yit and Wit with respect to Xit.
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problem:

ωrob = arg min
{w,η(w)

0 ,η
(w)
z ,η

(y)
0 ,η

(y)
z }

{
ζ2‖w‖2

2

nT0

+

1
T0

∑
t≤T0

(
1
n

∑
i≤nwiYit − η

(y)
0 − (η

(y)
z )>(Zt, H̃t)

)2

σ̂2
y,T0

+

1
T0

∑
t≤T0

(
1
n

∑
i≤nwiWit − η(w)

0 − (η
(w)
z )>(Zt, H̃t)

)2

σ̂2
w,T0

}
subject to:

1

n

∑
i≤n

wiDi = 1,
1

n

∑
i≤n

wi = 0,
1

n

∑
i≤n

wiXi = 0.

(4.2)

The additional constraint guarantees that aggregation eliminates the linear projection of θ
(w)
i

and θ
(y)
i on Xi. As a typical example, consider a situation where data can be grouped into

clusters, and researchers wish to include cluster-specific time fixed effects. This can be achieved

using Xi corresponding to cluster indicators. Under the natural extension of Assumptions 3.2-3.6

Theorems 1 and 2 continue to hold for the weights that solve (4.2).

In some applications, the unit-level variables Yit,Wit have different statistical properties, e.g.,

they are measured using a different number of observations. In such situations, researchers com-

monly use weighted versions of the TSLS. To achieve the same with our algorithm, researchers

can estimate (4.1) using weighted TSLS with ωrobi Zt as an instrument for Wit. To construct

the weights ωrobi we solve the optimization problem (4.2) but instead of the standard euclidean

norm ‖w‖2
2 we use a weighted one:

‖ω‖2
2,A = ω>Aω, (4.3)

where A is a diagonal matrix, and (A)i = a2
i > 0.

4.2 Heterogeneous Treatment Effects

In applications, it is rarely possible to argue that the treatment effects are constant, and thus

Assumption 3.1 can be too restrictive. To address this, we consider a model with heterogeneous

effects:

Yit = α
(y)
it + τiWit + θ

(y)
i Ht, Wit = α

(w)
it + πiZt + θ

(w)
i Ht. (4.4)
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We also define the reduced form that corresponds to the structural equation above:

Yit = α̃
(y)
it + τiπiZt + θ̃

(y)
i Ht, (4.5)

where α̃
(y)
it := α

(y)
it + τiα

(w)
it , and θ̃

(y)
i := θ

(y)
i + τiθ

(w)
i . For any estimator τ̂(ω) that averages units

with arbitrary weights ω and constructs the IV ratio from the aggregate regressions, we have

τ̂(ω) =
1
n

∑
i≤n ωiτiπi + error

1
n

∑
i≤n ωiπi + error

=
1
n

∑
i≤n ωiτiπi

1
n

∑
i≤n ωiπi

(1 + error) + error. (4.6)

Our goal in this section is to understand when τ(ω) :=
1
n

∑
i≤n ωiτiπi

1
n

∑
i≤n ωiπi

has a causal interpretation.

We thus ignore the errors in (4.6). Their properties depend on the choice of weights ω and can

be established in the same way as before.

First, we consider a situation where πi = ηπDi, for binary Di ∈ {0, 1}. For ωTSLS, we get

τ
(
ωTSLS

)
=

∑
i≤n τiDi∑
i≤nDi

, (4.7)

which is an average treatment effect for the exposed group. Using ωrob we get

τ(ωrob) =
1

n

∑
i≤n

τiω
rob
i Di, (4.8)

where 1
n

∑
i≤n ω

rob
i Di = 1. Without additional restrictions, we cannot interpret τrob as a convex

combination of treatment effects because the weights ωrobi can be negative for exposed units.

Negative weights lead to extrapolation, which can help with the OVB, but at the cost of inter-

pretability.

This problem is easy to address by adding a non-negativity constraint

ωi

(
Di −

1

n

∑
j≤n

Dj

)
≥ 0 (4.9)

to the optimization program (2.12). The resulting τ(ωrob) is a convex combination of treatment

effects by construction. The optimization problem remains convex and can be solved efficiently

even for large datasets. Inequality constraint (4.9) also acts like a powerful regularizer, improving
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the statistical properties of the algorithm. To reap these benefits, we need to assume that “good”

balancing weights that satisfy (4.9) exist, e.g., by adding this restriction to Assumption 3.5.

Overall, in applications with binary Di, we recommend imposing (4.9) unless the user strongly

believes that extrapolation is necessary.

Many applications do not have a control group with Di taking arbitrary values, so non-

negativity constraints are harder to motivate. However, with additional assumptions, one can

still interpret τ(ωrob). In particular, suppose

Di = α
(d)
i + ε

(d)
i , (4.10)

where ε
(d)
i has the same properties as in Proposition 1. If Assumption 3.4 holds, we have

τ(ωrob) =
1

n

∑
i≤n

τiω
rob
i Di +

η0

ηπ

(
1

n

∑
i≤n

τiω
rob
i

)
=

1

n

∑
i≤n

τi
(εdi )

2

σ2
d

+ op(1)+

Op


∥∥∥ωrob − ε(d)

σ2
d

∥∥∥
2√

n

 . (4.11)

As long as ωrob converges to ε(d)

σ2
d

, the estimand τ(ωrob) converges to the average treatment

effect. We discuss models where this convergence holds in Appendix C. In this case, our method

improves over the TSLS in two ways: it removes the OVB and helps interpretability.

The heterogeneity we consider in this section is restricted in an important way – we do not

allow τi and πi to vary over time. Such variation makes it impossible to project Zt out when

constructing the weights ωrob. This problem can be bypassed if the researcher knows that in the

initial T0 periods πit ≡ 0 for all units. In particular, in applications where πit = (η0 + ηtDi)1t>T0

we expect Algorithm 1 to perform well with both cross-sectional and time-series heterogeneity

in treatment effects, as long as ηt > 0.

4.3 Shift-share Designs

This section discusses the relationship between our model and models from the shift-share, or

“Bartik” instruments, literature (Adao et al., 2019; Borusyak et al., 2022; Goldsmith-Pinkham

et al., 2020). We start by considering an extension of our original framework. Assume that
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instead of a single aggregate shock, we have |S| of them. In a typical application, these will

correspond to industry-level shocks. The following equations are now satisfied for all i and t:

Yit = α
(y)
it + τWit +

∑
s∈S

θ
(y)
is Hts,

Wit = α
(w)
it +

∑
s∈S

πitsγisZts +
∑
s∈S

θ
(w)
is Hts,

(4.12)

where s is a generic industry, and we observe {γis}i,s, {Wit, Yit}it, {Zts}t,s, and
∑

i≤n γis = 1. It

is straightforward to see that our model is a special case of this with |S| = 1.

The model typically considered in the shift-share literature is a special case of (4.12) with

T = 1, and two additional assumptions: (a) Zts = ψ>tsµt+εts, where ψts are known, and E[εts] = 0,

and εts are uncorrelated over s; and (b) for every t, {Hts}s∈S is uncorrelated with {εts}s∈S.

Identification is achieved by exploiting variation over industries (see Borusyak et al., 2022). In

applications, T is usually not equal to 1, and the model in differences is often considered. At

the same time, the identification argument does not exploit the time dimension and focuses on

the variation over industries.

Models of the type (4.12) can be promising because they allow for a combination of two

identification arguments: one based on the variation over time and one based on the variation

over s. In applications, both |S| and T can be modest (especially if we want shocks to be

independent over s), and thus it is natural to use both sources of variation. Below we describe

one possible extension, leaving its formal analysis to future research.

Suppose πits = 0 for t ≤ T0, and unobserved shocksHts are low-dimensional, e.g., Hts = λsH̃t,

where H̃t is one-dimensional. Define θ̃
(k)
i :=

∑
s∈S λsθ

(k)
is and Γi := (γi1, . . . , γiS). We can

then use the first T0 periods and the analog of (2.12) to learn the weights ωrob that guarantee

1
n

∑
i≤n ω

rob
i θ̃

(k)
i (Γi− 1

n

∑
j≤n Γj) ≈ 0 for k ∈ {y, w}. To achieve this we construct |S|-dimensional

objects Yit := Yit(Γi − 1
n

∑
j≤n Γj), Wit := Wit(Γi − 1

n

∑
j≤n Γj), and solve the optimization

problem:

min
ω

 1

T0

∑
t≤T0

∥∥∥∥∥ 1

n

∑
i≤n

ωiYit

∥∥∥∥∥
2

2

+
∑
t≤T0

∥∥∥∥∥ 1

n

∑
i≤n

ωiWit

∥∥∥∥∥
2

2

+
ζ2‖ω‖2

2

nT0


subject to:

∑
i≤n

ωi

(
Γi −

1

n

∑
j≤n

Γj

)
= 0,

1

n

∑
i≤n

ωitr

((
Γi −

1

n

∑
j≤n

Γj

)
Γi

)
= 1.

(4.13)
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Table 1: Root-Mean-Square Error and Bias in Four Simulation Designs

(1) (2) (3) (4)
Basic GFE Agg. Sh. GFE+Agg. Sh.

Estimator RMSE Bias RMSE Bias RMSE Bias RMSE Bias
π̂rob 0.01 0.00 0.04 0.00 0.05 0.04 0.17 0.13
π̂TSLS 0.01 0.00 0.05 -0.00 0.28 0.24 0.24 0.21

δ̂rob 0.06 0.00 0.31 -0.03 0.11 0.07 0.41 0.26

δ̂TSLS 0.05 0.00 0.39 -0.02 0.79 0.69 0.75 0.57
τ̂rob 0.06 0.00 0.38 -0.02 0.07 0.02 0.34 0.08
τ̂TSLS 0.05 0.00 0.49 -0.01 0.36 0.31 0.55 0.31

Notes: The table reports root-mean-square error and bias for four simulation designs, with 1000 replications for
each design. True parameter value τ is set to 1.43 to capture Nakamura and Steinsson (2014) original estimate.
Column (1)–first design: no generalized FE, no unobserved shock. Column (2)–second design: generalized fixed
effects, no unobserved shock. Column (3)–third design: no generalized fixed effects, unobserved shock. Column
(4)–fourth design: generalized fixed effects, unobserved shock.

We then use the rest of the periods to construct a weighted version of the TSLS estimator.

Define Z̃it :=
∑

s∈S

(
γis − 1

n

∑
j≤n γjs

)(
Zts − 1

T−T0

∑
l>T0

Zls

)
and consider

τ̂rob :=

∑
i≤n,t>T0 ω

rob
i YitZ̃it∑

i≤n,t>T0 ω
rob
i WitZ̃it

. (4.14)

By construction, τ̂rob is a weighted average (over time) of the weighted cross-sectional shift-

share estimators considered in Borusyak et al. (2022), and we expect it to inherit their good

properties. At the same time, we expect the weights ωrob to eliminate the unobserved confounder

H̃t as long as T0 is substantially large.

5 Simulations

In this section, we illustrate the performance of our estimator in simulations. To make these

simulations more realistic, we base them on Nakamura and Steinsson (2014) dataset we described

in Section 2. In our experiments, we try to capture the spirit of this empirical exercise and

investigate how different features of the data-generating process affect the performance of the
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algorithms. Formally, our simulations are based on the following model:

Yit = β
(y)
i + µ

(y)
t + L

(y)
it + τWit + θ

(y)
i Ht + ε

(y)
it ,

Wit = β
(w)
i + µ

(w)
t + L

(w)
it + πiZt + θ

(w)
i Ht + ε

(w)
it .

(5.1)

Here parameters {β(y)
i , β

(w)
i , µ

(y)
t , µ

(w)
t , L

(y)
it , L

(w)
it , τ, πi, θ

(w)
i , θ

(y)
i }i≤n,t≤T are fixed, while ε

(y)
it , ε

(w)
it

and {Zt, Ht}t≤T are random.

In Appendix D we describe how exactly we use the data to construct {L(y)
it , L

(w)
it , πi}i≤n,t≤T ,

and the models for {Zt}t≤T and {ε(y)
it , ε

(w)
it }i≤n,t≤T . Heuristically we extract the components

L
(y)
it , L

(w)
it using the SVD decompositions of observed data, while for πi we use the estimated

π̂OLSi from Section 2, which we scale to make instrument relatively strong.8 We make these

adjustments to focus on the properties of our estimator in the regime covered by Theorems 2

and 3. The data are not directly informative about Ht and {θ(w)
i , θ

(y)
i }i≤n and we need to make

ad hoc choices. We construct Ht as a linear combination of Zt and an independent random

process with the same distribution as Zt. We set θ
(w)
i to be equal to a linear combination of π̂i

and an independent standard normal variable and do the same for θ
(y)
i .

We compare the performance of our estimator (as described by Algorithm 1) with the stan-

dard TSLS algorithm from Section 2. In both cases, we use the data to construct Di by

estimating the next equation by OLS, using data for t ≤ T
3
:

Wit = αi + πiZt + εit, (5.2)

and set Di = π̂OLSi . We consider four different designs. In the first design we drop L
(w)
it , L

(y)
it ,

and Ht from the model (5.1). In this case, the TSLS algorithm should perform better than

ours because it uses the optimal weights. With the second design, we start to increase the

complexity and add L
(w)
it , L

(y)
it back to the model. One can think of this design as a DGP for the

data from Nakamura and Steinsson (2014) under which the TSLS approach is justified. Here we

should expect both algorithms to perform well in terms of bias but potentially differ in terms of

variance. In the third design we drop L
(w)
it , L

(y)
it but add Ht. Finally, in the fourth case we have

both L
(w)
it , L

(y)
it , and Ht.

In Table 1, we report results over 1000 for simulations for the case of τ = 1.43 that corre-

8The median F statistic for τ̂TSLS for the fourth design is equal to 78.
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Figure 4: Distribution of Errors, τ̂ − τ

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

No unobserved shocks

estimate

D
en

si
ty

Robust
TSLS

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Unobserved shocks

estimate

D
en

si
ty

Robust
TSLS

Notes: The figure reports the densities for TSLS (dashed line) and our robust estimator (solid line) for τ̂−τ . The
left figure corresponds to the design in Column (2) of Table 1–with generalized fixed effects and no unobserved
aggregate shocks. The right figure corresponds to Column (4) of Table 1–with both generalized fixed effects and
unobserved aggregate shocks.

sponds to the original point estimate obtained in Nakamura and Steinsson (2014). The results

confirm the intuition discussed above: in the simplest case, our estimator is less precise than

τ̂TSLS, although the difference is small. We see sizable gains in RMSE for the second design.

In the third case, our estimator eliminates most of the bias, while the TSLS error is dominated

by it. Finally, in the most general design, our estimator is nearly unbiased and dominates the

TSLS in terms of RMSE. In Figure 4 we plot the densities of τ̂ − τ over the simulations for the

second and the fourth design. These plots demonstrate the gains in variance and bias and show

the estimator’s overall behavior. Once again, we see that even when TSLS is approximately

unbiased, there are gains from using our approach that come from increased precision.

We also investigate the performance of our inference approach as described in Algorithm 2.

In Table 2 we report coverage rates for nominal 95% confidence intervals for τ̂rob and τ̂TSLS. We

construct Λ̂
(z)
T0+1|T by fitting an ARIMA model to the data {Zt}t≤T using the automatic model

selection package in R. We see that the coverage is below nominal for all designs and estimators.

This is not surprising, given that the sample size is relatively small, and in the third and fourth

designs, both estimators are biased. In relative terms, the coverage for τ̂rob is closer to the

nominal one.
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Table 2: Coverage Rates for 95% Confidence Intervals

(1) (2) (3) (4) (5)
Basic GFE Agg. Sh. GFE+Agg. Sh. Agg. Sh.×2

τ̂rob 0.91 0.86 0.80 0.84 0.95
τ̂TSLS 0.90 0.85 0.33 0.81 0.08

Notes: The table reports coverage rates for 95% confidence intervals based on Algorithm 2. Each simulation
has 1000 replications, and the true parameter value τ is set to 1.43. Column (1)–first design: no generalized
FE, no unobserved shock. Column (2)–second design: generalized fixed effects, no unobserved shock. Column
(3)–third design: no generalized fixed effects, unobserved shock. Column (4)–fourth design: generalized fixed
effects, unobserved shock. The last column (5) is the same as the second one, but with n = 100, T = 80.

To analyze the asymptotic performance of Algorithm 2, we focus on the third design and

increase the sample size. We do this by sampling (Di, θ
(w)
i , θ

(y)
i ) with replacement from the

empirical distribution for n = 100 units. We simulate (Zt, Ht) for T = 80 periods using the

same model we had before. We report the results in the last column of Table 2. The coverage

for the TSLS drops to 8%, which is not surprising, given that the TSLS is not consistent for

this design. The coverage for our estimator is equal to the nominal one.

6 Conclusion

Aggregate shocks provide a natural source of exogenous variation for unit-level outcomes. As

a result, they are frequently used to evaluate the effects of local policies. We argue that this

exercise has two conceptual steps: aggregation of unit-level data into a time series and analysis

of the aggregated data. We propose a new algorithm for constructing unit weights that are used

to produce aggregate outcomes. Using a flexible statistical model, we show that our weights

eliminate potential unobserved aggregate shocks, leading to a consistent and asymptotically

normal estimator. Using data-driven simulations, we demonstrate the superiority of our proposal

over the conventional TSLS estimator in various relevant regimes.
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A Additional Analysis

In this section, we repeat the analysis described in Section 2 but now for the full original sample. The results

are largely similar, and we only comment on the differences. In Figure 5, we plot the reduced-form and the

first-stage coefficients for various periods. Compared with Figure 1 reported in the main text, we see that

states with negative first-stage coefficients receive a large weight in the original exercise, pushing the slope of

the line down, which results in a larger coefficient (the same as reported in Nakamura and Steinsson (2014)).

We also see that a single state – Alaska – has an extreme reduced-form coefficient – three times large than the

second largest.

Figure 5: Reduced-form and first-stage coefficients for Nakamura and Steinsson (2014) data

Panel A: Nakamura and Steinsson weights
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Panel B: Robust weights
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Notes: This figure shows the state-level reduced-form and first-stage coefficients for Nakamura and Steinsson
(2014) data. Circle sizes reflect the absolute value of weights; negative weights are printed in black, and positive
– in red. Blue triangles are centers of mass for negative and positive weights. Panel A presents the results using
the whole period of 1968 to 2006 for n = 51 states. Panel B shows the results from our estimation algorithm.
Under our data splitting procedure, Panel B reports the results for 1978-2006, as we use the first 1/3 of the data
for weight estimation.

If we compare τ̂rob with the estimator that uses the second part of the data but with original weights, they are

now different – 2.14 and 1.83, respectively. Still, there is a significant difference in estimated standard errors –

45%, in favor of the robust estimator. It confirms the intuition from the time-series plots 6, where the
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Figure 6: Aggregate time-series data for Nakamura and Steinsson (2014) data
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Panel B: Aggregation over n = 51 states with robust weights
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Notes: Solid lines represent aggregate data for different weights; dashed lines represent OLS predictions of the
aggregate data with the instrument. The mean absolute value of weights is scaled to 1.

aggregate data is much better predicted by Zt if we use robust weights vs. the original ones. The increase in

estimated R2 is 57% for the endogenous variable and more than 100% for the outcome variable. Figure 7

suggests that these gains come from compressing the distribution of the weights.
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Figure 7: Scatterplot—Nakamura and Steinsson weights and robust weights
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Notes: Scatter plot of original and robust weights for Nakamura and Steinsson (2014) data; n = 51, state
abbreviations are used as labels. The variance of weights is scaled to 1.

B Proofs

In Sections B.1 - B.3 we prove the results stated in the main text. In Section B.1 we prove Theorems 1 - 3

taking the results about the robust weights ωrobi as given. In Section B.2, we consider an abstract quadratic

optimization problem and derive properties of its solution. We then establish a connection between abstract

stochastic and determinstic optimization problems. In Section B.3, we specialize this connection to the

probabilistic models from the main text and prove the results about the robust weights.

We use ‖ · ‖2 to denote the euclidean norm, ‖ · ‖∞ to denote the sup-norm, ‖ · ‖HS to denote the

Hilbert-Schmidt norm, and ‖ · ‖op – the operator norm. For a random vector X we use ‖X‖ψ2 to denote its

sub-gaussian norm. We use tr (A) to denote the trace of a square matrix A. For a given set of variables

{Xi}ni=1 we use PnXi to denote their average. For any T ≥ Tb > Ta ≥ 1 we define two projection matrices:

Πf,r
Ta|Tb =

1

Tb − Ta + 1
1Tb−Ta+11

>
Tb−Ta+1,

(
Πf,r
Ta|Tb

)⊥
= ITb−Ta+1 −Πf,r

Ta|Tb
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Also, for any T > Ta > 1 and k ∈ {z, h} we define Λ
(k),1|Ta
Ta+1|T and Λ

(k),Ta+1|T
Ta+1|T as submatrices of Λ

(k)
Ta+1|T that

correspond to shocks from periods [1, Ta] and (Ta, T ], respectively. We also define the matrix that project out

the time fixed effects:

Π⊥l,f = In −
1

n
1>n 1n.

B.1 Part I

B.1.1 Technical lemmas

Lemma B.1. Let Πp be an orthogonal projector on p-dimensional subspace or RT and consider a T × n matrix

A such that
‖A‖op
‖A‖HS = o

(
1√
p

)
. Then we have

‖(IT −Π)A‖HS
‖A‖HS

= 1 + o(1).

Proof. The result follows from a chain of inequalities:∣∣∣∣‖(IT −Π)A‖HS
‖A‖HS

− 1

∣∣∣∣ ≤ ‖ΠA‖HS‖A‖HS
≤ ‖Π‖HS‖A‖op

‖A‖HS
=
√
p× o

(
1
√
p

)
= o(1).

Lemma B.2. Suppose ν(z) and ν(h) are independent, isotropic mean-zero vectors with independent coordinates

and subgaussian norms bounded by 1. Then for any x < 1 and an absolute constant c we have with probability

at least 1− 4 exp
(
−cx2 ‖B‖2HS

‖B‖2op

)
∣∣∣(ν(z))ABν(z) − tr (AB)

∣∣∣ ≤ x‖A‖op‖B‖2HS‖B‖op
,∣∣∣(ν(z))ABν(h)

∣∣∣ ≤ x‖A‖op‖B‖2HS‖B‖op
.

Proof. Proof follows directly from Hanson-Wright inequality and its proof (e.g., Theorem 6.2.1 in Vershynin

(2018)).

B.1.2 Theorems in the main text

Proof of Theorem 1:

Proof. We start with the TSLS estimator which under Assumptions 3.1, 3.4 can be represented as

τ̂TSLS−τ =

1√
T
α

(y)
1|T (ωTSLS)ε(z) + 1

T ρ̂(θ(y), D)σ̂(θ(y))/σ̂(D)(ε(h))>(Πf,r
1|T )⊥ε(z)

1√
T
α

(w)
1|T (ωTSLS)ε(z) + 1

T ρ̂(θ(w), D)σ̂(θ(w))/σ̂(D)(ε(h))>(Πf,r
1|T )⊥ε(z) + 1

T ηπ(ε(z))>(Πf,r
1|T )⊥ε(z)

. (2.1)
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We have for k ∈ {y, w}

α
(k)
1|T (ωTSLS)ε(z) = α

(k)
1|T (ωTSLS)Λ(z)ν(z) ⇒ ‖α(k)

1|T (ωTSLS)ε(z)‖ψ2
. ‖α(k)

1|T (ωTSLS)Λ(z)‖2 ≤

‖α(k)‖op√
Tn

‖ωTSLS‖2√
n

‖Λ(z)‖op . 1, (2.2)

where the first implication follows from Assumptions 3.2, 3.3, and the last inequality follows from Assumption

3.6. We next apply Lemma B.2 for x = 1√
T

, and use Assumption 3.3 and Lemma B.1 to get

1

T
(ε(h))>(Πf,r

1|T )⊥ε(z) = ρ1|Tσh,1|Tσz,1|T +Op

(
1√
T

)
,

1

T
(ε(z))>(Πf,r

1|T )⊥ε(z) = σ2
z,1|T +Op

(
1√
T

)
.

(2.3)

Using these bounds we get

τ̂TSLS−τ =
ρ̂

(y)
cs σ̂θ(y)ρ1|Tσh,1|T +Op

(
1√
T

)
ρ̂

(w)
cs σ̂θ(w)ρ1|Tσh,1|T + ηπσ̂Dσz,1|T +Op

(
1√
T

) =
ρ

(y)
cs σθ(y)ρ1|Tσh,1|T + o(1) +Op

(
1√
T

)
ρ

(w)
cs σθ(w)ρ1|Tσh,1|T + ηπσDσz,1|T + o(1) +Op

(
1√
T

)
and the result for the TSLS follows.

Under Assumptions 3.1, 3.4 we have

τ̂rob − τ =

1√
T1
α

(y)
T0+1|T (ωrob)ε

(z)
T0+1|T + 1

T1
Pnωrobi θ

(y)
i (ε

(h)
T0+1|T )>(Πf,r

T0+1|T )⊥ε
(z)
T0+1|T

α
(w)

T0+1|T (ωrob)ε
(z)

T0+1|T√
T1

+
Pnωrobi θ

(w)
i (ε

(h)

T0+1|T )>(Πf,r
T0+1|T )⊥ε

(z)

T0+1|T
T1

+
ηπ(ε

(z)

T0+1|T )>(Πf,r
T0+1|T )⊥ε

(z)

T0+1|T
T1

(2.4)

Similar to the result above we have:

1

T1
(ε(h))>(Πf,r

T0+1|T )⊥ε(z) = ρT0+1|Tσh,T0+1|Tσz,T0+1|T +Op

(
1√
T1

)
,

1

T1
(ε(z))>(Πf,r

T0+1|T )⊥ε(z) = σ2
z,T0+1|T +Op

(
1√
T1

)
,

(2.5)

and by (2.50) we have

Pnωrobi θ
(w)
i = op(1), Pnωrobi θ

(y)
i = op(1),

‖ωrob‖2√
n

= Op(1).

By definition ε
(z)
T0+1|T = Λ

(z),T0+1|T
T0+1|T ν

(z)
T0+1|T + Λ

(z),1|T0

T0+1|T ν
(z)
1|T0

, and by concentration for anisotropic vectors we have

‖Λ(z),1|T0

T0+1|T ν
(z)
1|T0
‖2 = ‖Λ(z),1|T0

T0+1|T ‖HS +Op

(
‖Λ(z),1|T0

T0+1|T ‖op
)
≤ Op(‖Λ(z),1|T0

T0+1|T ‖HS). (2.6)
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Since the weights ωrobi are independent of ν
(z)
T0+1|T by construction, we have for k ∈ {y, w}

‖α(k)
T0+1|T (ωrob)ε

(z)
T0+1|T ‖2 ≤ ‖α

(k)
T0+1|T (ωrob)Λ

(z),T0+1|T
T0+1|T ν

(z)
T0+1|T ‖2 + ‖α(k)

T0+1|T (ωrob)Λ
(z),1|T0

T0+1|T ν
(z)
1|T0
‖2 =

Op

(
‖α(k)‖op√

nT1

‖ωrob‖2√
n

(
‖Λ(z),T0+1|T

T0+1|T ‖op + ‖Λ(z),1|T0

T0+1|T ‖HS
))

= Op(1). (2.7)

The result for τ̂ rob then follows by combining all the bounds.

Proof of Theorem 2

Proof. By (2.51) we have:

Pnωrobi θ
(w)
i = op

(
1√
T0

)
, Pnωrobi θ

(y)
i = op

(
1√
T0

)
,

1√
n
‖ωrob − ωdetT0

‖2 = op(1). (2.8)

Using the expansion from the previous theorem we can conclude that the dominant part of the error is coming

from α
(y)
T0+1|T (ωrob)ε

(z)
T0+1|T . We can split this term into two parts:

α
(y)
T0+1|T (ωrob)ε

(z)
T0+1|T = α

(y)
T0+1|T (ωrob − ωdetT0

)ε
(z)
T0+1|T + α

(y)
T0+1|T (ωdetT0

)ε
(z)
T0+1|T . (2.9)

By a straightforward extension of the argument in the previous proof we can conclude that the first term is op(1).

Using this we get the following expression:

√
T1 (τ̂rob − τ) =

∥∥∥α(y)
T0+1|T (ωdetT0

)Λ
(z)
T0+1|T

∥∥∥
2

ηπσ2
z,T0+1|T

ξn + op(1). (2.10)

where ξn is a sub-gaussian centered random variable with unit variance. To justify normality we use the bound:

∥∥∥α(y)
T0+1|T (ωdetT0

)Λ
(z)
T0+1|T

∥∥∥
∞∥∥∥α(y)

T0+1|Tω
det
T0

)Λ
(z)
T0+1|T

∥∥∥
2

≤

∥∥∥∥(Λ
(z)
T0+1|T

)>∥∥∥∥
∞

σmin

∥∥∥α(y)
T0+1|T (ωdetT0

)
∥∥∥
∞∥∥∥α(y)

T0+1|T (ωdetT0
)
∥∥∥

2

= o(1), (2.11)

where we used the bound

∥∥∥α(y)
T0+1|T (ωdetT0

)Λ
(z)
T0+1|T

∥∥∥2

2
=
∥∥∥α(y)

T0+1|T (ωdetT0
)Λ

(z),T0+1|T
T0+1|T

∥∥∥2

2
+∥∥∥α(y)

T0+1|T (ωdetT0
)Λ

(z),1|T0

T0+1|T

∥∥∥2

2
≥ σ2

min‖α
(y)
T0+1|T (ωdetT0

)‖22. (2.12)

Using Lindeberg’s CLT we can conclude that ξn converges in distribution to a standard normal distribution.

Proof of Theorem 3
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Proof. The hypothesis of the theorem guarantees that
√
T1(τ̂rob − τ) is asymptotically normal. We thus only

need to guarantee that σ̂rob is consistent for the asymptotic standard error. Following the steps of the proof of

Theorem 1 it is straightforward to show that π̂rob is consistent for ηπ. We also have

1

T1

∑
T0<t<T

(
Zt −

∑
T0<l≤T Zl

T1

)2

=
1

T1

(
Λ

(z)
T0+1|T ν

(z)
)> (

Πf,r
T0+1|T

)⊥
Λ

(z)
T0+1|T ν

(z) =

σ2
z,T0+1|T + op(1), (2.13)

where the last inequality follows from Lemma B.2 for x = o(1), Lemma B.1, Assumption 3.3, and definition of

σ2
z,T0+1|T . Finally, we have the following:

∣∣∣∥∥∥α̂(y)
T0+1|T (ωdetT0

)Λ̂
(z)
T0+1|T

∥∥∥
2
−
∥∥∥α(y)

T0+1|T (ωdetT0
)Λ

(z)
T0+1|T

∥∥∥
2

∣∣∣ ≤ ∥∥∥α(y)
T0+1|T (ωdetT0

)− α̂(y)
T0+1|T (ωdetT0

)
∥∥∥

2

∥∥∥Λ
(z)
T0+1|T

∥∥∥
op(∥∥∥α(y)

T0+1|T (ωdetT0
)
∥∥∥

2
+
∥∥∥α(y)

T0+1|T (ωdetT0
)− α̂(y)

T0+1|T (ωdetT0
)
∥∥∥

2

)
‖Λ̂(z)

T0+1|T − Λ
(z)
T0+1|T ‖op =

Op

(∥∥∥α(y)
T0+1|T (ωdetT0

)− α̂(y)
T0+1|T (ωdetT0

)
∥∥∥

2

)
+

op

(∥∥∥α(y)
T0+1|T (ωdetT0

)
∥∥∥

2
+
∥∥∥α(y)

T0+1|T (ωdetT0
)− α̂(y)

T0+1|T (ωdetT0
)
∥∥∥

2

)
(2.14)

The result holds as long as
∥∥∥α(y)

T0+1|T (ωdetT0
)
∥∥∥

2
= Op(1) and

∥∥∥α(y)
T0+1|T (ωdetT0

)− α̂(y)
T0+1|T (ωdetT0

)
∥∥∥

2
= op(1). The

second part follows from consistency of τ̂rob and (2.50) that guarantees Pnωrobi θ
(y)
i = op(1). The first part follows

from the consistency of ωrobi and Assumption 3.6.

Proof of Proposition 1:

Proof. Consider ωi = ε
(d)
i − Pnε(d)

i , it does not satisfy the scale constraint, but as we will see, later it does not

matter. By concentration for sub-gaussian vectors, we have with probability approaching 1:

 1

n

∑
i≤n

ωiθ
(k)
i

2

=
1

n
|(ε(d))>Π⊥l,fΘ(k)|2 .

log(n)

n

‖Π⊥l,fΘ(k)‖22
n

.
log(n)

n
. (2.15)

Define L̃
(k)
1|Ta :=

Π⊥l,fL
(k)

1|Ta

(
Πf,r

1|Ta

)⊥
√
nTa

and Ẽ
(k)
1|Ta :=

Π⊥l,fE
(k)

1|Ta

(
Πf,r

1|Ta

)⊥
√
nTa

; we have

∑
t≤Ta

(
α

(k)
t,1|Ta(ω)

)2

=
1

n

∥∥∥ω>L̃(k)
1|Ta + ω>Ẽ

(k)
1|Ta

∥∥∥2

2
≤ 1

n

(∥∥∥(ε(d))>L̃
(k)
1|Ta

∥∥∥
2

+
∥∥∥(ε(d))>Ẽ

(k)
1|Ta

∥∥∥
2

)2

(2.16)

By concentration of anisotropic sub-gaussian vectors, we have with probability approaching one

∣∣∣∥∥∥(ε(d))>L̃
(k)
1|Ta

∥∥∥
2
−
∥∥∥L̃(k)

1|Ta

∥∥∥
HS

∣∣∣ .√log(n)
∥∥∥L̃(k)

1|Ta

∥∥∥
op

.
√

log(n) (2.17)
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By assumption we also have
∥∥∥L̃(k)

1|Ta

∥∥∥
HS

. 1. Similarly, we have conditionally on E(k) with probability approach-

ing one:

∣∣∣∥∥∥(ε(d))>Ẽ
(k)
1|Ta

∥∥∥
2
−
∥∥∥Ẽ(k)

1|Ta

∥∥∥
HS

∣∣∣ .√log(n)
∥∥∥Ẽ(k)

1|Ta

∥∥∥
op

(2.18)

By concentration of subgaussian random matrices, we have with probability approaching one

∥∥∥Ẽ(k)
1|Ta

∥∥∥
op

.

√
n√
nTa

+

√
Ta√
nTa

. 1, (2.19)

and by Hanson-Wright, inequality

∥∥∥Ẽ(k)
1|Ta

∥∥∥2

HS
=

tr
(

Σ̃
(k)
1|Ta

)
Ta

+ op(1). (2.20)

It follows that with probability approaching one, we have

∑
t≤Ta

(
α

(k)
t,1|Ta(ω)

)2

.
log(n)

n
. (2.21)

Finally, for the denominator, we have

σ2
k,Ta ≥

∥∥∥L̃(k)
1|Ta + Ẽ

(k)
1|Ta

∥∥∥2

HS
= ‖L̃(k)

1|Ta‖HS + ‖Ẽ(k)
1|Ta‖

2
HS + 2tr

((
Ẽ

(k)
1|Ta

)>
L̃

(k)
1|Ta

)
≥

tr
(

Σ̃
(k)
1|Ta

)
Ta

+ op(1). (2.22)

Combining all the bounds and using the fact that 1
n

∑
i≤nDiωi = σ2

d + op(1) we get the result.

Proof of Proposition 2:

Proof. The proof follows the same steps for Proposition 2 and is omitted.

B.2 Part II

B.2.1 Balancing bounds for quadratic problems

For arbitrary matrices {Lk}Kk=1 and vector c consider

x0 := arg min
x

{
K∑
k=1

‖Lkx‖22 + ζ2‖x‖22

}
,

subject to: c>x = 1,

(2.23)
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and let V 2(ζ2) be the optimal value of this program. Our goal is to upper bound ‖Lkx0‖2, which can be

interpreted as a measure of imbalance. A trivial bound is ‖Lkx0‖2 ≤ V (ζ2), and our goal is to establish a

better bound under additional conditions on matrices Lk.

Consider a related program

{βk,0}Kk=1 := arg min
{βk}Kk=1


∥∥∥∥∥c−

K∑
k=1

L>k βk

∥∥∥∥∥
2

2

+ ζ2
K∑
k=1

‖βk‖22

 , (2.24)

next lemma describes the balancing properties of x0 in terms of {β0,k}Kk=1 and V 2(ζ2).

Lemma B.3. Suppose ‖c‖2 6= 0, then for any k we have

‖Lkx0‖2 = V 2(ζ2)‖βk,0‖2. (2.25)

Proof. Using duality (constraint qualification holds because ‖c‖ 6= 0) we have

V 2(ζ2) := min
x:c>x=1

{
K∑
k=1

‖Lkx‖22 + ζ2‖x‖22

}
=

min
x,{tk}Kk=1

max
λk≥0,µ

{
K∑
k=1

λk(‖Lkx‖2 − tk) +

K∑
k=1

t2k + ζ2‖x‖22 + µ(1− c>x)

}
=

min
x,{tk}Kk=1

max
‖βk‖2≤1,λk≥0,µ

{
K∑
k=1

λk(β>k Lkx− tk) +

K∑
k=1

t2k + ζ2‖x‖22 + µ(1− c>x)

}
=

= max
‖βk‖2≤1,λk≥0,µ

min
x,{tk}Kk=1

{
K∑
k=1

λk(β>k Lkx− tk) +

K∑
k=1

t2k + ζ2‖x‖22 + µ(1− c>x)

}
=

max
βk,µ

− µ2

4ζ2

∥∥∥∥∥c> −
K∑
k=1

β>k Lk

∥∥∥∥∥
2

2

− µ2

4

(
K∑
k=1

‖βk‖22

)
+ µ

 =

max
βk

 ζ2∥∥∥c−∑K
k=1 L

>
k βk

∥∥∥2

2
+ ζ2

(∑K
k=1 ‖βk‖22

) .


We can express x0 in terms of the solution to the dual problem:

x0 =

(
c−

∑K
k=1 L

>
k βk,0

)
∥∥∥c−∑K

k=1 L
>
k βk,0

∥∥∥2

2
+ ζ2

(∑K
k=1 ‖βk,0‖22

) .
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Using the first-order conditions for the dual problem, we have the following for any k:

(
c−

K∑
k=1

L>k βk,0

)>
L>k = ζ2β>k,0 ⇒ ‖Lkx0‖2 = V 2(ζ2)‖βk,0‖2,

where for the implication, we used the relationship between x0 and β0.

By construction, program (2.24) is invariant to the left rotation of Lk (the l2 norm of coefficients does not

change). By virtue of the SVD decomposition, we can, without loss of generality, assume that each Lk is a

product of two matrices,

L>k = UkDk,

where each Dk is a diagonal matrix of size pk = rank(Lk), with positive values on the diagonal, and

U>k Uk = Ipk . For a given k let sk ∈ Rpk be a unit vector and define U(sk) := UkDksk, σ(sk) := ‖U(sk)‖2,

u(sk) := 1
σ(sk)U(sk). Fix k and observe that (2.24) is equivalent to the following one:

({β0,l}l 6=k, s0,k, λ0,k) = arg min
{βl}l 6=k,sk,λk

∥∥∥∥∥∥c−
∑
l 6=k

L>l βl − u(sk)σ(sk)λk

∥∥∥∥∥∥
2

2

+ ζ2

∑
l 6=k

‖βl‖22 + λ2
k

 ,

where β0,k = λs0,k and ‖β0,k‖2 = |λ0,k|. For fixed k, sk and ζ2 define

V 2(sk, ζ
2) := min

x:u(sk)>x=1

∑
l 6=k

‖Lkx‖22 + ζ2‖x‖22

 ,

and let x?(u(s0,k)) be the solution to this problem. Next lemma connects ‖β0,k‖2 to V 2(s0,k, ζ
2), ζ2, and

σ(s0,k).

Lemma B.4. Suppose ‖c‖2 6= 0, then the following bound is satisfied for all k such that pk > 0:

‖β0,k‖2 ≤ ‖c‖2 × ‖x?(u(s0,k))‖2 ×
σ(s0,k)

V 2(s0,k, ζ2) + σ2(s0,k)
. (2.26)

Proof. Fix k with pk > 0 and stack matrices {Ll}l 6=k into a large matrix L>−k, and define p−k :=
∑
l 6=k pk. Using

inversion for block matrices we get the expression for λ0,k:

λ0,k =
c>Ũ(s0,k)

U>(s0,k)Ũ(s0,k) + ζ2
,

Ũ(s0,k) = U(s0,k)− L>−k(L−kL
>
−k + ζ2Ip−k)−1L−kU(s0,k).
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Define ũ(s0,k) := 1
σ(s0,k) Ũ(s0,k). We have

(
Ũ(s0,k)

)>
U(s0,k) = σ2(s0,k)

‖ũ(s0,k)‖22 + ζ2
∑
l 6=k

‖γ0,l(s0,k)‖22

 > 0,

where {γ0,l(s0,k)}l 6=k is the solution for the optimization problem:

{γ0,l(s0,k)}l 6=k = arg max
{γl}l6=k

{
ζ2

‖u(s0,k)−
∑
l 6=k L

>
l γl‖22 + ζ2

∑
l 6=k ‖γl‖22

}

By the same argument as in Lemma B.3, we have equality between two problems:

max
{γl}l 6=k

{
ζ2

‖u(s0,k)−
∑
l 6=k L

>
l γl‖22 + ζ2

∑
l 6=k ‖γl‖22

}
= min
x:u(s0,k)>x=1

∑
l 6=k

‖Lkx‖22 + ζ2‖x‖22

 .

Using Lemma B.3 we get ‖ũ(s0,k)‖2 =
ζ2‖x?(u(s0,k))‖2
V 2(s0,k,ζ2) . Combining this result with definition of λ0,k we get the

bound

|λ0,k| ≤
‖c‖2σ(s0,k)‖ũ(s0,k)‖2
ζ2 + σ2(s0,k) ζ2

V 2(s0,k,ζ2)

≤ ‖c‖2 × ‖x?(u(s0,k))‖2 ×
σ(s0,k)

V 2(s0,k, ζ2) + σ2(s0,k)
,

where we used the CS inequality. Since |λ0,k| = ‖βk‖2 we get the result.

Next corollary combines the bounds from Lemmas B.3, B.4.

Corollary B.1. Suppose ‖c‖2 6= 0, V 2(s0,k, ζ
2) . ζ2, V 2(ζ2) . V 2(s0,k, ζ

2), and ‖c‖2 . 1. Then the following

holds for all k such that pk > 0:

‖Lkx0‖2 . min

{
ζ2

σ(s0,k)
, σ(s0,k)

}
. (2.27)

Proof. Combining the bounds (2.25), (2.26) we have the following for all k:

‖Lkx0‖2 ≤ V 2(ζ2)‖βk,0‖2 .
V 2(s0,k, ζ

2)σ(s0,k)

V 2(s0,k, ζ2) + σ2(s0,k)
. min

{
ζ2

σ(s0,k)
, σ(s0,k)

}
.
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B.2.2 Oracle bound

This section establishes a connection between a random and a deterministic optimization problem. Consider a

T × n matrix L with a special structure:

L = HΘ + L̃, E[H] = 0,

where a k × n matrix Θ and T × n matrix L̃ are deterministic. Let Z be a random T × p matrix, define a

random variable

µ2 =
minΦ EH,Z‖L− ZΦ‖2HS

minΦ ‖L− ZΦ‖2HS
,

where Φ is a p× n matrix. Let A ⊆ Rn be a convex set, define solutions to two programs

x1 := arg min
x∈A,ψ∈Rp

{
µ2‖Lx− Zψ‖22 + ζ2‖x‖22

}
,

x0 := arg min
x∈A,ψ∈Rp

{
EH,Z

[
‖Lx− Zψ‖22

]
+ ζ2‖x‖22

}
,

(2.28)

and define δ := x1 − x0.

Define projection matrices Π := Z
(
Z>Z

)−1
Z> and Π⊥ := IT −Π. By construction, we have:

min
ψ∈Rp

‖Lx− Zψ‖22 = ‖Π⊥Lx‖22,

and can re-express x1 differently:

x1 := arg min
x∈A

{
µ2‖Π⊥Lx‖22 + ζ2‖x‖22

}
.

Using the definition of L we expand the expectation:

EH,Z
[
‖Lx− Zψ‖22

]
= ‖L̃x‖22 + EH,Z

[
‖HΘx− Zψ‖22

]
.

The minimum value of the second part can be expressed differently:

min
ψ∈Rp

EH,Z
[
‖HΘx− Zψ‖22

]
= x>Θ>EH,Z [(H − ZΨ?)>(H − ZΨ?)]Θx,

where Ψ? =
(
EH,Z [Z>Z]

)−1 EH,Z [Z>H]. Similarly for Ψ̂ =
(
Z>Z

)−1 (
Z>H

)
we can express the empirical

value:

min
ψ∈Rp

‖HΘx− Zψ‖22 = x>Θ>(H − ZΨ̂)>(H − ZΨ̂)Θx.
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Define two matrices

K := E[(H − ZΨ?)>(H − ZΨ?)], K̂ := (H − ZΨ̂)>(H − ZΨ̂). (2.29)

and suppose that a symmetric matrix K is invertible. Define a relative distance between K̂ and K:

E := K−
1
2 (K − K̂)K−

1
2 = Ik −K−

1
2 K̂K−

1
2 ,

and several quantities that govern the behavior of the bound later:

ξ2
1 :=

‖ΠL̃δ‖22
‖δ‖22

, ξ2 :=
|x>0 L̃>ΠL̃δ|
‖L̃δ‖2‖L̃x0‖2

, ξ3 :=
|x>0 Θ>HΠ⊥L̃δ|
‖K 1

2 Θx0‖2‖L̃δ‖2
,

ξ4 :=
|x>0 L̃>Π⊥H>Θδ|
‖K 1

2 Θδ‖2‖L̃x0‖2
, ξ5 :=

|x>0 Θ>H>Π⊥HΘδ|
‖K 1

2 Θx0‖2‖K
1
2 Θδ‖2

.

Define a set A1 on which three inequalities hold:

‖E‖op ≤
1

2
, ‖Π⊥Lδ‖22 ≥

1

2

(
‖Π⊥HΘδ‖22 + ‖Π⊥L̃δ‖22

)
, |µ2 − 1| ≤ 1

4
.

In addition, define a set A2 on which another inequality holds:

ζ2 ≥ ξ2
1 .

Next lemma provides a connection between two programs (2.28).

Lemma B.5. Suppose matrix K is invertible, then on A1 ∩A2 we have the following bounds:

‖K 1
2 Θδ‖2 . (‖Ê‖op + ξ3 + |µ2 − 1|ξ5)‖K 1

2 Θx0‖2 + (ξ4 + ξ2 + |µ2 − 1|)‖L̃x0‖2,

‖L̃δ‖2 . (‖Ê‖op + ξ3 + |µ2 − 1|ξ5)‖K 1
2 Θx0‖2 + (ξ4 + ξ2 + |µ2 − 1|)‖L̃x0‖2,

‖δ‖2 .
(‖Ê‖op + ξ3 + |µ2 − 1|ξ5)‖K 1

2 Θx0‖2 + (ξ4 + ξ2 + |µ2 − 1|)‖L̃x0‖2
ζ

.

(2.30)

Proof. Using first order conditions for (2.28) we have two inequalities:

µ2x>1 L
>Π⊥Lδ + ζ2x>1 δ ≤ 0, x>0 Kδ + x>0 L̃

>L̃δ + ζ2x>0 δ ≥ 0.

Combining these inequalities, we get:

µ2‖Π⊥Lδ‖22 + ζ2‖δ‖22 + x>0 Θ>(K̂ −K)Θ>δ − x>0 L̃>ΠL̃δ + µ2x>0 Θ>HΠ⊥L̃δ + µ2x>0 L̃
>Π⊥HΘδ+

(µ2 − 1)x>0 L̃
>Π⊥L̃δ + (µ2 − 1)x>0 Θ>H>Π⊥HΘδ ≤ 0.
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By CS we have

∣∣∣(µ2 − 1)x>0 L̃
>Π⊥L̃δ

∣∣∣ ≤ |µ2 − 1|‖L̃x0‖2‖L̃δ‖2,∣∣(µ2 − 1)x>0 Θ>H>Π⊥HΘδ
∣∣ ≤ ξ5|µ2 − 1|‖K 1

2 Θx0‖2‖K
1
2 Θδ‖2.

By definition using the fact that K is invertible:

‖Π⊥HΘδ‖22 = (Θδ)
>
KΘδ + (Θδ)

>
K

1
2 ÊK

1
2 Θδ ≥ ‖K 1

2 Θδ‖22(1− ‖Ê‖op),

x>0 Θ>(K̂ −K)Θ>δ ≥ −‖K 1
2 Θx0‖2‖Ê‖op‖K

1
2 Θ>δ‖2.

By the properties of the projection matrix and definition of ξ2
1 :

‖Π⊥L̃δ‖22 = ‖L̃δ‖22 − ‖ΠL̃δ‖22 = ‖L̃δ‖22 − ξ2
1‖δ‖22.

Combining these results, definitions of ξ2, ξ3, ξ4 we have the following on A1 ∩A2:

0 ≥ 3

16
‖K 1

2 Θδ‖22 +
3

8
‖L̃δ‖22 +

3

8
ζ2‖δ‖22 −

(
‖K 1

2 Θx0‖2
(
‖Ê‖op + |µ2 − 1|ξ5

)
+ ξ4‖L̃x0‖2

)
‖K 1

2 Θ>δ‖2−(
‖K 1

2 Θx0‖2ξ3 + (ξ2 + |µ2 − 1|)‖L̃x0‖2
)
‖L̃δ‖2.

This expression has the following form (for appropriate x1, x2, x3, a1, a2):

0 ≥ x2
1 + x2

2 + x2
3 − 2a1x1 − 2a2x2 = (x1 − a1)2 + (x2 − a2)2 + x2

3 − a2
1 − a2

2 ⇒
x1 ≤ a1 +

√
a2

1 + a2
2

x2 ≤ a2 +
√
a2

1 + a2
2

x3 ≤
√
a2

1 + a2
2.

⇒


x1 . a1 + a2

x2 . a1 + a2

x3 . a1 + a2.

Substituting x1, x2, x3 and a1, a2 we get the result.

B.3 Part III

Lemma B.5 and Corollary B.1 allow us to connect the empirical problem to a deterministic program for which

we have a general bound. These results do not restrict the dimension of H as long as their assumptions are

satisfied. In particular, we need to guarantee that the hypothesis of Lemma B.5 holds with high probability

and establish high-probability bounds on ξ1, . . . , ξ5. These guarantees can be established under different

assumptions on H, and below we prove them for the one-dimensional and sub-gaussian case. As long as the

dimension of H remains bounded one can establish similar rates at the cost of more elaborate notation.
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B.3.1 One-dimensional subgaussian noise

In this section, we analyze the bounds from the previous section under additional assumptions on H and Z.

Assumption B.1. Suppose L = HΘ + L̃, where

H = Λhνdh, Z = Λzνdz,

and dh = (1, 0), dz = (ρ,
√

1− ρ2), ν is a T × 2 matrix, and Λh, Λz are T × T matrices.

Our goal is to lower bound the probabilities of sets A1, A2 and bound ξ2
1 , ξ2, ξ3, ξ4, ξ5 under the tail

assumptions on ν, restrictions on Λh,Λz, and ρ. All asymptotic statements in this section are with respect to T

going to infinity.

Assumption B.2. Random variables νtk = (ν)(t,k) are i.i.d. across t and k, and ‖νt,k‖ψ2 . E[ν2
t,k] > 0.

Assumption B.3. |ρ| < cρ < 1, ‖Λz‖op ∼ ‖Λh‖op, ‖Λh‖HS ∼ ‖Λz‖HS, ‖Λh‖op = o (‖Λh‖HS).

Next lemma established properties of K define in (2.29).

Lemma B.6. Suppose Assumptions B.1, B.2, B.3 hold, then K =

(
1− ρ2 (tr(Λ>h Λz))

2

‖Λz‖2HS‖Λh‖2HS

)
E[ν2

tk]‖Λh‖2HS > 0.

Proof. Result follows from definition of K:

K = E[‖H‖22]− E[H>Z]2

(E[‖Z‖22])
2E[‖Z‖22] = E[‖H‖22]

(
1− E[H>Z]2

E[‖Z‖22]E[‖H‖22]

)
,

and Assumptions B.1, B.2, B.3.

Lemma B.7. Suppose that Assumptions B.1, B.2, B.3 hold, and E[ν2
tk] = 1. Suppose max{x1, x3} . ‖Λh‖HS

‖Λh‖op ,

x2 . ‖Λz‖HS
‖Λz‖op . Then with probability at least 1− c exp(−cx2

1)− c exp(−cx2
2)− c exp(−cx2

3) we have

|‖H‖22 − ‖Λh‖2HS |
‖Λh‖2HS

≤ x1
‖Λh‖op
‖Λh‖HS

,
|‖Z‖22 − ‖Λz‖2HS |
‖Λz‖2HS

≤ x2
‖Λz‖op
‖Λz‖HS

,

|Z>H − ρtr
(
Λ>z Λh

)
|

‖Λh‖2HS
≤ x3(|ρ|+

√
1− ρ2)

‖Λh‖op
‖Λh‖HS

.

(2.31)

Proof. We focus only on the first inequality, the second follows in the same way. By Hanson-Wright inequality

the inequality holds with probability at least

1− 2 exp

(
−cmin

{
x1
‖Λh‖op
‖Λh‖HS

, x2
1

(
‖Λh‖op
‖Λh‖HS

)2
}
‖Λh‖2HS
‖Λh‖2op

)
= 1− 2 exp(−cx2

1),
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where the second equality follows from Assumptions on x1. To analyze the last quantity we split it into two

using Assumption B.1:

|Z>H − ρtr
(
Λ>z Λh

)
| = |ρ||dhν>Λ>z Λhνdh − tr

(
Λ>z Λh

)
|+
√

1− ρ2|ν>(1)Λ
>
z Λhν(2)|

For the first quantity we can use Hanson-Wright inequality as before, utilizing Assumption B.3. For the second

one we can use the argument from Vershynin (2018) Theorem 6.2.1 to make the same conclusion.

Define the empirical regression coefficient ψ̂ = H>Z
‖Z‖22

, and its population counterpart ψ =
ρtr(Λ>z Λh)
‖Λz‖2HS

. Next

corollary quantifies the error of ψ̂.

Corollary B.2. Suppose Assumptions B.1, B.2, B.3 hold, then for any x . ‖Λz‖HS
‖Λz‖op

|ψ̂ − ψ| ≤ x ‖Λz‖op
‖Λz‖HS

(2.32)

holds with probability at least 1− c exp(−cx2). In particular, ψ̂ is consistent.

Proof. By construction ψ̂ is scale invariant with respect to ν so we can assume E[ν2
tk] = 1. The result then

follows from applying Lemma B.7 together with the following expansion:

ψ̂ − ψ =
Z>H

‖Z‖22
− ψ =

1

‖Λz‖2HS

Z>H − ρtr
(
Λ>z Λh

)
+

ρtr(Λ>z Λh)(‖Z‖22−‖Λz‖
2
HS)

‖Λz‖2HS

1 +
‖Z‖22−‖Λz‖2HS
‖Λz‖2HS

.

Lemma B.8. Suppose Assumptions B.1, B.2, B.3 hold, and E[ν2
tk] = 1. Then for x1, x2 > 0 and a unit vector

u inequalities

|H>u| ≤ x1‖Λh‖op, |Z>u| ≤ x2‖Λz‖op (2.33)

hold with probability at least 1− 2 exp(−cx2
1)− 2 exp(−cx2

1).

Proof. We show the first inequality, the second follows in the same way. By concentration for independent

sub-gaussian random variables we have that the inequality holds at least with probability

1− 2 exp

(
−c

x2
1‖Λh‖2op
‖Λhu‖22

)
. (2.34)

Since ‖Λhu‖22 ≤ ‖Λh‖2op the result follows.

Lemma B.9. Suppose Assumptions B.1, B.2, B.3 hold, then E[{A1}]→ 1.
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Proof. E is scale invariant, so we can assume that E[ν2
tk] = 1. Let κ :=

√
(1− ρ2)

|tr(Λ>z Λh))|
‖Λz‖HS ,‖Λj‖HS < 1, by

definition

E =
K̂ −K
K

=

(
‖H‖22 − ‖Λh‖2HS

)
− ψ2

(
‖Z‖22 − ‖Λz‖2HS

)
+ (ψ2 − ψ̂2)‖Z‖22

κ2‖Λh‖2HS
.

As a result, if the following inequalities hold, then |E| ≤ 3
8 :

|‖H‖22 − ‖Λh‖2HS | ≤
1

8
κ2‖Λh‖2HS ,

|‖Z‖22 − ‖Λz‖2HS | ≤ min

{
1

8 max{ψ2, 1}
κ2‖Λh‖2HS ,

1

2
‖Λz‖2HS

}
, |ψ2 − ψ̂2| ≤ κ2‖Λh‖2HS

12‖Λz‖2HS
.

By Lemma B.7 and Corollary B.2 these inequalities hold with probability approaching one.

For the second part of set A1 we have

‖Π⊥Lδ‖22 −
1

2

(
‖Π⊥HΘδ‖22 + ‖Π⊥L̃δ‖22

)
=

1

2
‖Π⊥HΘδ‖2 +

1

2
‖Π⊥L̃δ‖2 + 2δ>Θ>H>Π⊥L̃δ =

1

2
δ>
(

Θ>H>Π⊥HΘ + L̃>Π⊥L̃+ 4Θ>H>Π⊥L̃
)
δ.

To guarantee that this expression is nonnegative, we need the underlying matrix to be positive semi-definite:

Θ>H>Π⊥HΘ + L̃>Π⊥L̃+ 4Θ>H>Π⊥L̃ ≥ 0.

By construction it is enough to check this inequality on u := Θ>

‖Θ‖2 :

‖Θ‖22H>Π⊥H + 4‖Θ‖2H>Π⊥L̃u+ uL̃>Π⊥L̃u ≥ 0.

This inequality is satisfied as long as

|H>Π⊥L̃u|
‖Π⊥H‖2‖Π⊥L̃u‖2

≤ 1

2
,

which is validated by the following inequalities:

‖Π⊥H‖2 ≥
1

2
K

1
2 , ‖Π⊥L̃u‖2 ≥

1

2
‖L̃u‖2, |H>L̃u| ≤ K 1

2 ‖L̃u‖2, |Z>L̃u| ≤ K
1
2 ‖L̃u‖2

max{1, |ψ|}
,

|ψ̂ − ψ| ≤ 1.

We have the following expansion:

‖Π⊥H‖22 = ‖H‖22 − ψ̂‖Z‖22, ‖Π⊥L̃u‖22 = ‖L̃u‖22 −
(Z>L̃u)2

‖Z‖22
.

B-17



and thus the result follows from Lemmas B.7 and B.8.

For the final part of set A1 we expand µ2:

µ2 =
‖L̃‖2HS +K‖Θ‖22

‖L̃‖2HS + ‖Θ‖22K̂ + 2Θ>L̃(H − ψ̂Z̃)
⇒

µ2 − 1 =
(K − K̂)‖Θ‖22 − 2Θ>k L̃(H̃ − ψ̂Z̃)

‖L̃‖2HS + ‖Θ‖22K̂ + ‖Θ‖22(K̂ −K) + 2Θ̃>L̃(H̃ − ψ̂Z̃)
=

e

1 + e
.

Suppose that |e| ≤ x
2 , where x ≤ 1

2 , then it follows |µ2 − 1| ≤ x. If next inequalities hold, then |e| < x:

|K̂ −K|
K

= |E| ≤ x

2
,
|Θ>L̃(H̃ − ψ̂Z̃)|
‖L̃‖2HS + ‖Θ‖22K

≤ x

2
.

From Lemma B.7 it follows that |E| ≤ x
‖Λh‖op
‖Λh‖HS with probability at least 1 − c exp(−x2) for x . |Λh‖HS

‖Λh‖op . By

Lemma B.8 and Corollary B.2 next inequality holds with probability at least 1− c exp(−cx2).

|Θ>L̃(H − ψ̂Z)| ≤ x
√

E[ν2
tk]‖L̃‖op‖Θ‖2‖Λh‖op ⇒

|Θ>L̃(H − ψ̂Z|
‖L̃‖2HS + ‖Θ‖22Kb

≤ x ‖L̃‖op‖Λh‖op
‖L̃‖HS‖Λh‖HS

.

Using appropriate x we get the result.

Corollary B.3. Suppose condititions of Lemma B.9 hold, then with probability approaching one we have

|ξ3| ≤
√

3

2
, |ξ5| ≤

3

2
(2.35)

Proof. Using the results of the previous lemma we have with probability approaching one:

‖HΠ⊥‖22
K

=
K + K̂ −K

K
= 1 + E ≤ 3

2
⇒ |ξ3| =

|x>0 Θ>HΠ⊥L̃δ|
‖K 1

2 Θx0‖2‖L̃δ‖2
≤ ‖HΠ⊥‖2

K
1
2

.

For ξ5 we have

|x>0 Θ>H>Π⊥HΘδ|
‖K 1

2 Θx0‖2‖K
1
2 Θδ‖2

=
‖HΠ⊥‖22

K
,

and thus the same conclusion holds.

Corollary B.4. Let aT be an arbitrary sequence such that aT → ∞ and aT . |Λh‖HS
‖Λh‖op . Suppose Assumptions

B.1 - B.3 hold, then with probability approaching 1 we have

|µ2 − 1| ≤ aT
‖Λh‖op
‖Λh‖HS

. (2.36)

Proof. Expansion from Lemma B.9 we have |µ2− 1| ≤ x ‖Λh‖op‖Λh‖HS with probability at least 1− c exp(−cx2). Using
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x = aT we get the result.

Lemma B.10. Suppose Assumptions B.1, B.2, B.3 hold, and ζ2 ≥ ‖L̃>Λz‖2HS
‖Λz‖2HS

(2 + aT )2, where aT > 0 is an

arbitrary sequence such that aT
‖L̃>Λz‖op

→∞. Then with probability approaching 1, we have

ξ2
1 ≤ ζ2. (2.37)

Proof. By definition of Π we have

‖ΠL̃δ‖22
‖δ‖22

≤ ‖L̃>ΠL̃‖op =

(
‖L̃>Λzνz‖2
‖Λzνz‖2

)2

,

where νz := νdz. This quantity is scale invariant, so we can normalize E[ν2
tk] = 1. We decompose numerator and

denominator

‖L̃>Λzνz‖2
‖Λzνz‖2

− ‖L̃
>Λz‖HS
‖Λz‖HS

=
‖L̃>Λz‖HS + e1

‖Λz‖HS + e2
− ‖L̃

>Λz‖HS
‖Λz‖HS

=
‖L̃>Λz‖HS
‖Λz‖HS

(x+ 1),

as long as

|e1| ≤
x

2
, |e2| ≤

‖Λz‖HS
2

.

By concentration for anisotropic vectors these inequalities hold with probability at least

1− 2 exp

(
− cx2

4‖L̃>Λz‖2op

)
− 2 exp

(
−c‖Λz‖

2
HS

‖Λz‖2op

)
,

and with the same probability:

ξ2
1 ≤
‖L̃>Λz‖2HS
‖Λz‖2HS

(2 + x)2.

The result follows by using x = aT and Assumption B.3.

Lemma B.11. Suppose Assumptions B.1, B.2, B.3 hold and let aT > 0 be arbitrary sequence that converges to

infinity. Then with probability approaching one

ξ2 ≤ aT
‖Λz‖op
‖Λz‖HS

. (2.38)

Proof. By construction ξ2 is scale invariant, so we can assume that E[ν2
tk] = 1. By CS inequality:

|x>0 L̃>ΠL̃δ|
‖L̃δ‖2‖L̃x0‖2

=
|x>0 L̃>Z||Z>L̃δ|
‖Z‖22‖L̃δ‖2‖L̃x0‖2

≤ |x>0 L̃>Z|
‖Z‖2‖L̃x0‖2

≤ x‖Λz‖op
‖Λz‖HS
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as long as

|‖Z‖2 − ‖Λz‖HS | ≤
1

2
‖Λz‖HS ,

|x>0 L̃>Z|
‖L̃x0‖2

≤ x‖Λz‖op
2

.

Using concentration properties of anisotropic sub-gaussian vectors we conclude that the inequalities hold with

probability at least

1− 2 exp(−cx2)− 2 exp(−c‖Λz‖2HS/‖Λz‖2op).

The result follows by using x = aT and Assumption B.3.

Lemma B.12. Suppose Assumptions B.1, B.2, B.3 hold, and aT > 0 is an arbitrary diverging sequence. Then

with probability approaching one

ξ4 ≤ aT
‖Λz‖op
‖Λh‖HS

. (2.39)

Proof. ξ4 is scale invariant, so we can assume E[ν2
tk] = 1. By definition of the projection matrix we have By

definition we have

|x>0 L̃>Π⊥H| ≤ |x>0 L̃>H|+ |ψ̂ − ψ||x>0 L̃>Z|+ |ψ||x>0 L̃>Z|,

and thus ξ4 ≤ cx provided the following inequalities hold:

|x>0 L̃>Z|
‖L̃x0‖2

≤ x

3
min

{
1,

1

|ψ|

}
‖Λh‖HS ,

|x>0 L̃>H|
‖L̃x0‖2

≤ x

3
min

{
1,

1

|ψ|

}
‖Λh‖HS , |ψ̂ − ψ| ≤ 1. (2.40)

By Corollary B.2 the last inequality hols with probability approaching one, and from Lemma B.8 that for

x = z
max{‖Λz‖op,‖Λz‖op}

‖Λh‖HS the first two inequalities hold with probability at least 1− c exp(−cz2).

We collect all these statements together in the next theorem.

Theorem B.1. Let {a1T , a2T } be arbitrary sequence such that a1T
‖L̃>Λz‖op

→ ∞, and a2T → ∞, and a2T .
√
T ;

suppose Assumptions B.1, B.2, B.3 hold,

‖Λz‖op
‖Λz‖HS

.
1√
T
,
‖Λh‖op
‖Λh‖HS

.
1√
T
, ‖L̃‖HS . 1, ζ2 =

a2
1T

T
.

Then with probability approaching one we have:

max{‖K 1
2 Θδ‖2, ‖L̃δ‖2} . ‖K

1
2 Θx0‖2 +

a2T√
T
‖L̃x0‖2

‖δ‖2 .

√
T

a1T

(
‖K 1

2 Θx0‖2 +
a2T√
T
‖L̃x0‖2

) (2.41)
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Proof. The result follows by combining Lemma B.5, results in this section, and using inequality

|AB|HS ≤ min{‖A‖op‖B‖HS , ‖A‖HS‖B‖op}.

B.3.2 Analysis of the estimator

Define Y1:T0 ,W1:T0 , Z1:T0 – the part of the data that corresponds to periods 1, . . . , T0. Our estimator has the

following form:

ωrob = arg min
ω,ψ0,ψ1

{∥∥Y >1:T0
ω 1
n − ψ0,y − ψ1,yZ1:T0

∥∥2

2

T0σ̂2
y

+

∥∥W>1:T0
ω 1
n − ψ0,w − ψ1,wZ1:T0

∥∥2

2

T0σ̂2
w

+ ζ2
n,T

‖ω‖22
n

}

subject to:
1

n
D>ω = 1,

1

n
1>ω = 0.

(2.42)

Define

D̃ :=
1√
n

Π⊥l,fD,

Ỹ1:T0
:=

1√
nT0σy,T0

Π⊥l,fY1:T0

(
Πf,r

1|T0

)⊥
, W̃1:T0

:=
1√

nT0σw,T0

Π⊥l,fW1:T0

(
Πf,r

1|T0

)⊥
,

H̃t =
Ht − µh√

T0

, Z̃t =
Zt − µh√

T0

.

Define

ω̃rob = arg min
ω,ψ1

{
µ2
y

∥∥∥Ỹ >1:T0
ω − ψ1,yZ̃1:T0

∥∥∥2

2
+ µ2

w

∥∥∥W̃>1:T0
ω − ψ1,wZ̃1:T0

∥∥∥2

2
+ ζ2

n,T ‖ω‖22
}

subject to: D̃>ω = 1,

where µ2
k :=

σ2
k

σ̂2
k

for k ∈ {y, w}. By construction ω̃rob = 1√
n
ωrob. We define the deterministic weights

ω̃detT0
= arg min

ω,ψ1

{
E
[∥∥∥Ỹ >1:T0

ω − ψ1,yZ̃1:T0

∥∥∥2

2
+
∥∥∥W̃>1:T0

ω − ψ1,wZ̃1:T0

∥∥∥2

2

]
+ ζ2

n,T ‖ω‖22
}

subject to: D̃>ω = 1,

(2.43)

and set δ̃ := ω̃rob − ω̃detT0
.

Under Assumption 3.1 we have

Y1:T0 = Ly,b + ΘyH1:T0 + ∆Z1:T0 , W1:T0 = Lw,b + ΘwH1:T0 + ΠZ1:T0 .

where (Ly,1:T0)it = α
(y)
it + τα

(w)
it , (Lw,1:T0)it = α

(w)
it , (Θy)i = θ

(y)
i + τθ

(w)
i , (Θw)i = θ

(w)
i , (∆)i = τπi, and
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(Π)i = πi. Without loss of generality we can drop Z1:T0
from these expressions (since we later project them our

later), and get the expression for Ỹ1:T0 , W̃1:T0

Ỹ1:T0
= L̃y,1:T0

+ Θ̃yH̃
>
b

(
Πf,r

1|T0

)⊥
, W̃1:T0

= L̃w,1:T0
+ Θ̃yH̃

>
1:T0

(
Πf,r

1|T0

)⊥
,

where for k ∈ {y, w} Θ̃k = Π⊥l,fΘk, and L̃k,1:T0
= 1√

nT0
Π⊥l,fLk,1:T0

(
Πf,r

1|T0

)⊥
. By Assumption 3.3 we have

(
Πf,r

1|T0

)⊥
H̃1:T0 =

(
Πf,r

1|T0

)⊥
Λh,b

νdh√
T0

= Λ̃h,bν̃dh,(
Πf,r

1|T0

)⊥
Z̃1:T0

=
(

Πf,r
1|T0

)⊥
Λz,b

νdz√
T0

= Λ̃z,bν̃dz.

By Assumption 3.3 we have that Assumptions B.1-B.3 hold for
(

Πf,r
1|T0

)⊥
H̃1:T0

and
(

Πf,r
1|T0

)⊥
Z̃1:T0

. Define the

size of the residual variation in H̃1:T0
:

K̃1:T0
:= min

ψ
E
[
‖H̃1:T0

− ψZ̃1:T0
‖22
]
.

By Lemma B.6 we have 0 < K̃1:T0 . 1. Invoking Theorem B.1 we can conclude

max
k∈y,w

{‖K̃
1
2

1:T0
Θ̃k δ̃‖2, ‖L̃k,1:T0

δ̃‖2} . max
k∈y,w

{
‖K̃

1
2

1:T0
Θ̃kω̃

det
T0
‖2 +

log(T0)√
T0

‖L̃k,1:T0 ω̃
det
T0
‖2
}

‖δ̃‖2 .

√
T0

log(T0)
max
k∈y,w

{
‖K̃

1
2

1:T0
Θ̃kω̃

det
T0
‖2 +

log(T0)√
T0

‖L̃k,bω̃detT0
‖2
} (2.44)

as long as ζ2 = log(T0)

We can express the problem for ω̃detT0
differently:

ω̃detT0
= arg min

ω

 ∑
k∈y,w

[∥∥∥L̃>k,1:T0
ω
∥∥∥2

2
+K1:T0

(
Θ̃kω

)2
]

+ ζ2
n,T ‖ω‖22


subject to: D̃>ω = 1,

(2.45)

Let VT0(ζ2
n,T ) be the value of this program. Assumption 3.5 guarantees that VT0(ζ2

n,T ) . log(n)
n + ζ2

n,T , which

under Assumption 3.6 and ζ2 = log(T0) implies

VT0
(ζ2
n,T ) . ζ2

n,T .

It immediately follows that for k ∈ {y, w} K
1
2

1:T0

∣∣∣Θ̃kω̃
det
T0

∣∣∣ .√ log(T0)
T0

and
∥∥∥L̃>k,1:T0

ω̃detT0

∥∥∥
2
.
√

log(T0)
T0

. Using
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(2.44) we can conclude

max
k∈{y,w}

∣∣Pnωrobi θki
∣∣ = Op

√ log(T0)

T0

 . (2.46)

We define for k ∈ {y, w}

V 2
k,T0

(ζ2
n,T ) := min

x:Θ̃>k x=‖Θ̃k‖2

{
‖L̃y,1:T0x‖22 + ‖L̃w,1:T0x‖22 +K1:T0(Θ̃−kx)2 + ζ2

n,T ‖x‖22
}
.

Assumptions 3.7 implies

V 2
k,T0

(ζ2
n,T ) .

log(n)

n
+ ζ2

n,T . (2.47)

Using Assumption 3.6 we conclude V 2
k,T0

(ζ2
n,T ) . log(T0)

T0
. We can thus invoke Corollary B.1 and conclude

K
1
2

1:T0

∣∣∣Θ̃kω̃
det
T0

∣∣∣ . min

{
log(T0)

T0‖Θ̃k‖2
, ‖Θ̃k‖2

}
. (2.48)

Under Assumption 3.6 ‖Θ̃k‖2 ∼ 1 and we can conclude using (2.44)

max
k∈{y,w}

∣∣Pnωrobi θki
∣∣ = Op

(
log(T0)

T0

)
,

‖δ̃‖2 = Op

√ log(T0)

T0

 .

(2.49)

We collect these statements in the following theorem.

Theorem B.2. Suppose conditions of Theorem 1 hold; then we have

max
k∈{y,w}

∣∣Pnωrobi θki
∣∣ = Op

√ log(T0)

T0

 ,
‖ωrob‖2√

n
. 1. (2.50)

If, in addition, conditions of Theorem 2 hold, then we have

max
k∈{y,w}

∣∣Pnωrobi θki
∣∣ = Op

(
log(T0)

T0

)
,

∥∥ω̃rob − ω̃detT0

∥∥
2

= Op

√ log(T0)

T0

 .

(2.51)

It is easy to see that similar result holds in the regime where ‖Θ̃k‖2 → 0. The worst rate is achieved if

‖Θ̃k‖2 ∼
√

log(T0)
T0

, and in this case, there is no improvement in rate from using our estimator compared to the
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standard TSLS. If ‖Θ̃k‖2 .
√

log(T0)
T0

, then our estimator performs similarly to the TSLS in terms of rate,

othewise it dominates it.

C Heterogeneous treatment effects

In this section we sketch the argument for the convergence of ωrobi to limit weights described in Section 4.2. It

relies on the bounds established in Hirshberg (2021), and a formal proof can be completed by verifying the

conditions of Theorem 1 in that paper.

To describe the analysis under heterogeneous treatment effects we impose additional structure on Di and α
(k)
it

for k ∈ {y, w}:

α
(k)
it = (γ

(k)
i )>ψt + ε

(k)
it ,

Di = β0 + β>(γ
(w)
i , γ

(y)
i , θ

(w)
i , θ

(y)
i ) + ε

(d)
i ,

(3.1)

where (ε
(y)
it , ε

(w)
it ) and ε

(d)
i satisfy conditions of Proposition 1.

Using the dual for the oracle problem (2.45) we get that ω̃detT0
is proportional to the residual

ω̃detT0
∝

D̃ − ∑
k∈{y,w}

L̃k,1:T0
ã

(k)
1 −K

1
2

1:T0
Θ̃kã

(k)
2

 (3.2)

where (ã
(y)
1 , ã

(y)
2 , ã

(w)
1 , ã

(w)
2 ) solve the optimization problem:

min
{a(k)1 ,a

(k)
2 }k∈{y,w}

∥∥∥∥∥∥D̃ −
∑

k∈{y,w}

L̃k,1:T0a
(k)
1 −K

1
2

1:T0
Θ̃ka

(k)
2

∥∥∥∥∥∥
2

2

+ ζ2
n,T

 ∑
k∈{y,w}

‖a(k)
1 ‖22 + (a

(k)
2 )2

 . (3.3)

Next, consider the expected version of this problem:

min
{a(k)1 ,a

(k)
2 }k∈{y,w}

E


∥∥∥∥∥∥D̃ −

∑
k∈{y,w}

L̃k,1:T0a
(k)
1 −K

1
2

1:T0
Θ̃ka

(k)
2

∥∥∥∥∥∥
2

2

+ ζ2
n,T

 ∑
k∈{y,w}

‖a(k)
1 ‖22 + (a

(k)
2 )2

 , (3.4)

where the expectation is now with respect to the errors in (ε
(y)
it , ε

(w)
it ) and ε

(d)
i , and define

ω̃?T0
∝

D̃ − ∑
k∈{y,w}

L̃k,1:T0
ǎ

(k)
1 −K

1
2

1:T0
Θ̃kǎ

(k)
2

 . (3.5)

For ζ2 = log(T0) results in Hirshberg (2021) guarantee ‖ω̃?T0
− ω̃detT0

‖2 = op(1). Finally, as long as ζ2
n,T converges
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to zero, the solution to (3.4) itself converges to the solution of the unpenalized regression problem:

min
{a(k)1 ,a

(k)
2 }k∈{y,w}

E


∥∥∥∥∥∥D̃ −

∑
k∈{y,w}

L̃k,1:T0
a

(k)
1 −K

1
2

1:T0
Θ̃ka

(k)
2

∥∥∥∥∥∥
2

2

 .

and thus residuals are equal (up to proportionality) to εi(d). As a result,

∥∥∥∥∥ωrob− ε(d)iσ2d
∥∥∥∥∥
2

n = op(1).

D Simulation details

Our simulations are based on the following model:

Yit = β
(y)
i + µ

(y)
t + L

(y)
it + τWit + θ

(y)
i Ht + ε

(y)
it ,

Wit = β
(w)
i + µ

(w)
t + L

(w)
it + πiZt + θ

(w)
i Ht + ε

(w)
it .

(4.1)

Here parameters {β(y)
i , β

(w)
i , µ

(y)
t , µ

(w)
t , L

(y)
it , L

(w)
it , τ, πi, θ

(w)
i , θ

(y)
i }i,t are fixed, while ε

(y)
it , ε

(w)
it and {Zt, Ht}t≤T

are random.

We set the treatment effect equal to the original estimate τ = 1.43; we estimate unit-level regressions by OLS:

Ỹit = α
(y)
i + δiZt + ε

(y)
it ,

W̃it = α
(w)
i + πiZt + ε

(w)
it ,

(4.2)

and use estimated π̂i scaled by
‖L(w)

it ‖F
‖π̂iZt‖F = 2.7 in (5.1).

For k ∈ {y, w} let E(k) be the n× T matrix of residuals from (4.2): (E(k))it := ε̂
(k)
it . We construct L

(k)
it by

solving

L(k) := arg min
M,rank(M)=13

∑
it

(
E

(k)
it −Mit

)2

(4.3)

which implies that L(k) simply sets all but 13 largest singular values of E(k) to zero. We use the residuals

E(k) − L(k) to construct the covariance matrix:

Σ :=
1

nT

∑
it


(
E

(y)
it − L

(y)
it

)2 (
E

(y)
it − L

(y)
it

)(
E

(w)
it − L

(w)
it

)
(
E

(y)
it − L

(y)
it

)(
E

(w)
it − L

(w)
it

) (
E

(w)
it − L

(w)
it

)2

 , (4.4)

and generate (ε
(y)
it , ε

(w)
it ) from N (0,Σ).

We estimate the model for Zt by fitting an ARIMA model to the data {Zt}t≤T using the automatic model
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selection package in R, which delivers a MA(2) model with coefficients (1.15, 0.53). We set Ht to

Ht = 0.5Zt +
√

1− 0.25Z̃t, (4.5)

where Z̃t has the same distribution as Zt and is independent of it. Exposures θ
(w)
i and θ

(y)
i are defined as

θ
(w)
i = 0.2πi +

√
1− 0.22ξ

(w)
i ,

θ
(y)
i = 3

(
0.3πi +

√
1− 0.32ξ

(y)
i

)
,

(4.6)

where ξ
(w)
i , ξ

(y)
i are independent realizations of standard normal random variables.
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