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Abstract

We characterize formation of market beliefs in the oil market by providing a complete
characterization of the market reaction to oil inventory surprises. We utilize the unique
sequential nature of inventory announcements to identify inventory shocks. We estimate an
AR-ARCH-MEM model of the joint dynamics of returns, return volatilities and trading
volumes around the announcements using high frequency data on oil futures contracts. Our
model (i) handles illiquidity of long maturity contracts by accounting for trading inactivity, (ii)
captures time varying trading intensity, and (iii) allows for structural changes in the dynamics
and responses to news over time. We show (i) uniform formation of expectations across oil
futures contracts with different maturities, (ii) a strong negative relation between inventories
surprises and re-turns, (iii) no effect on the term premium, which suggests that inventory shocks
are always considered to be permanent, and (iv) di_erentiation in the reaction of volume by
maturity. We demonstrate how our results can be used to test theories of oil price determination
and contribute to the debate on the recent oil glut.
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1 Introduction

The oil market is undergoing a major transformation driven by the shale boom. Oil traders need
to learn a great deal about the productivity of the new technology, not to mention to understand
its effect on the market. While ex post one can observe an increase in oil production, it is much
harder to track changes in the market perception of supply and demand conditions. Unfortunately,
there is little extant analysis of how market beliefs are formed and evolve over time. In this paper,
we aim to fill the gap by offering a way to characterize the expectation formation process in the
oil market.

The key element is oil inventories. Oil inventories reflect the supply and demand balance in
the oil market, and thus are informative about the scarcity of the commodity not only today, but
also in the future. Our contribution is a complete characterization of the oil market reaction to oil
inventories announcements. Revisions of market expectations regarding oil scarcity can be partially
gauged from the reaction of the oil futures returns to inventory news, while the adjustments of
the term structure of futures prices are informative about the perceived persistence of shocks.
Finally, as idiosyncratic trading behavior reflects revisions of individual beliefs in response to news,
we can investigate the intensity of oil trading around an announcement in order to characterize
disagreement, among traders.

In this paper we offer a novel procedure to identify inventory shocks by utilizing the unique
sequential nature of oil stock announcements. First, weekly estimates of crude oil inventories
in the U.S. are provided by the U.S. Energy Information Administration (ETA) within the U.S.
Department of Energy. The report is released at a pre-specified time each week and is closely
followed by the media. What is less well known is that there is another reporting agency that
collects and disseminates exactly the same information privately to its subscribers at a cost. That
agency is an association of oil producers known as the American Petroleum Institute (APT), and the
report comes out one day before the EIA report. Historically, the API and ETA estimates tend to be
similar to each other. So, even though the purchase of API information may be prohibitively costly
for unsophisticated traders whose main interests lie outside the energy market, for professionals it
represents an opportunity to learn the fundamentals before the rest of the market does.

The existence of two sequential announcements has two implications. On the negative side, it
creates an identification issue, as neglecting the API information can lead to incorrect identification
of inventory surprises and potentially distorts estimates of a market impact.! To overcome this
issue, we assume a simple form of market expectation formation that the market’s expected value
of the EIA estimate of an inventory change is a weighted sum of the API estimate and the median
forecast of the survey of professional analysts conducted by Bloomberg two days before the ETA
announcement. We estimate the weight placed on the API signal along with other parameters
of the model. On the positive side, the sequential news structure offers a unique opportunity to
identify changes in the market value of early fundamental information. In particular, our results
show that, since 2014, the overall market awareness and usage of API information has significantly
increased, despite unchanged cost of subscription and unchanged precision of the API estimates.

Using the identified market inventory surprises, we can estimate the market impact of news.
We develop a model of the joint high-frequency dynamics of futures returns, return volatilities

'Tn the academic literature, there are only a handful of papers that utilize API information to shape market
expectations. One exception is Armstrong et al. (2017), which defines an inventory surprise as a difference between
ETA and API reported values, but which neglects information in initial surveys. Another example is Ye and Karali
(2016), which defines inventory shocks sequentially: an ’API shock’ as the difference between the API announced
change and the forecast, and an ’EIA shock’ as the difference between EIA and API.



and trading volumes around the EIA announcements. The model is estimated using ultra high
frequency (5-second time intervals) data on short and long maturity oil futures contracts on the
WTT oil traded at the NYMEX. We use dynamic models because of the ultra high frequency nature
of the data and because our interest lies not only in identification of an instantaneous impact of
inventory surprises, but also in their dynamic impact on the market.

We specify dynamic conditional densities for volumes and returns (and return volatility). To
shed light on the idiosyncratic trading behavior, we model time varying trading intensity using
the multiplicative error model (MEM) of Engle (2002). To investigate the effects of oil inventories
on returns, we use the AR-ARCH framework. In particular, we utilize a gaussian autoregressive
conditional heteroskedasticity model, where the conditional variance follows exponential GARCH
dynamics (Nelson, 1991). Even though the gaussian EGARCH model (partially) captures heavy
tail behavior and may serve as a quasi-likelihood model for consistent estimation of the mean and
volatility equations, we also pay special attention to the tails — as a robustness check, we utilize the
Student’s t distribution to capture the shape of the conditional density in the tails more accurately.
One additional issue that needs to be addressed is illiquidity of futures contracts, especially those
with expiration dates far in the future. We handle illiquidity by explicitly accounting for trading
inactivity following the approach developed in Hautsch et al. (2013). Namely, we assign a discrete
probability mass to the event of no trading, and we allow this probability to be time varying.

We abbreviate our model as an ARIF-ARCHI-MEMI model, in which the additional letter ‘I’
signifies the presence of indicators for announcements. The inventory shocks identified according
to our procedure appear in the model via these indicators. A typical procedure would be to assume
a linear response function;? however we find such specification too restrictive. Hence, we deviate
from the literature and project the universe of our surprises into a number of indicator functions,
and then allow the response coefficients to differ in an unrestricted way. We distinguish ‘large
positive’ surprises, ‘uninformative announcements’ , and ‘large negative’ surprises, i.e. we split
inventory shocks into three groups.

To estimate the model parameters, we utilize the composite likelihood approach, i.e. we con-
struct a product of the specified conditional densities. The maximum composite likelihood estimate
of the model is the value of parameters that maximizes the composite conditional log-likelihood.
It should be noted that the weight placed on the API signal is estimated along with the other
parameters of the model, separately for each contract.

Our first main result is that contract maturity is irrelevant for identification of inventory sur-
prises. We find that the estimated weight that the market puts on the APT signal is the same for
contracts with different maturities. We interpret this as evidence of uniformity of rules guiding the
expectation formation process. In principle, one could worry about market segmentation, i.e. that
each separate market attracts its own unique clientele looking for exposure at just one particular
horizon. Different compositions of traders may form expectations in different ways, either due to
differences in sophistication levels, or because of different access to the API information. However,
our results suggest that one need not worry about segmentation at least as far as the average
market expectations are concerned.

Our results indicate a strong negative relation between inventory shocks and returns. In par-
ticular, an unexpected decline of inventories by at least 0.5% caused the oil price to increase by
1.2 in 2016. That is to be expected, given that inventories reflect scarcity of oil in the market.

Our second main finding is the absence of any effect of inventories on the term premium.
The entire futures curve shifts up or down when an announcement comes in. The term structure

2See Andersen et al. (2003).



adjustments depend on the perceived persistence of shocks. That is, the effects of temporary shocks
should vanish with maturity. Our results show that expectations of future oil prices are revised
uniformly, and by the same amount irrespective of maturity, which implies that the traders view
inventory changes as mostly reflecting permanent or long lasting shocks that hit the market.?

To interpret our results, we turn to a canonical competitive storage theory, first developed in
Deaton and Laroque (1992). As long as the non-negativity constraint does not bind, inventories
serve to smooth out temporary demand and supply shocks. Oil flows in or out of storage until
current and expected future prices are equalized (up to interest and storage costs). In other words,
in equilibrium, speculative activity by owners of storage facilities transforms temporary demand
and supply shocks into small but permanent ones. Our finding of a parallel shift of the term
structure curve confirms that prediction.

However, the equalization of prices crucially depends on speculation activity to move oil across
periods. When the spare capacity is near exhaustion, or when inventories have been depleted, spec-
ulation activity becomes limited. In this case, some temporary shocks can no longer be smoothed
out, and the spot oil price strongly adjusts to clear the inelastic market. Hence, the theory predicts
(i) stronger and asymmetric market reactions at times of extremely high or low inventories, and
(ii) term structure adjustments at the shorter end of the curve. Our results indicate intensification
of reaction when inventories are high, but asymmetry goes in the wrong direction: negative shocks
induce larger price adjustments. More importantly, we find no term structure adjustments over
the entire period.

The lack of any effect on the term spread when inventories are high is surprising and contradicts
the conventional wisdom. Indeed, all recent episodes of high inventories in the oil market have been
accompanied by a widening term premiums, especially at the shorter end of the term structure
curve. Two examples are traditionally used as anecdotal evidence. In 2008, a negative demand
shock created an abundance of oil and depressed spot, oil prices. The term structure curve became
upward sloping and especially steep at the short end. Similarly, in 2014, the market was hit by
a positive supply shock due to rising shale oil production and by a negative demand shock due
to slowdown of the Chinese economy. The market again experienced large term premiums, but
over a much longer period of time. In both cases, a steep term structure curve was attributed to
the presence of an excess supply of oil in the market. However, we find that when inventory news
announcements came in, traders did not revise expectations accordingly.

Explicit modeling of trading intensity allows us to analyze idiosyncratic trading behavior of
market participants around inventory announcements. We observe a significant immediate reac-
tion of volumes to all announcements, including uninformative ones, in line with previous findings
in the literature.* One explanation of why trading volumes can be decoupled from movements in
returns is disagreement among traders — that is, agents disagree about the interpretation of public
information or have heterogeneous priors. When news comes in, agents revise their beliefs in differ-
ent ways. As a result, trading may occur as agents adjust their positions according to individual
changes in their beliefs. Under this interpretation, our results not only reveal the presence of
disagreement and its variation with contract maturity, but also indicate that disagreement varies
over time, independently for each contract. Thus, even though the average market expectations are
formed uniformly across contracts (as our previous results have shown), the dispersion of belief or

3The risk premium may also adjust in response to inventory news, but it is extremely unlikely that it would
move in the opposite way to expectations revisions, by the exact amount needed to keep the term premium constant,
for all maturities over our sample of 7 years.

4Kandel and Pearson (1995) find a significant volume reaction to earning announcements even when announce-
ment returns are zero. See also Banerjee and Kremer (2010).



revision of beliefs in response to news are different across contracts, even the two most liquid ones.
We argue that one reason for the lack of uniformity in higher moments is each contract’s unique
exposure to financial innovation. New financial instruments such as exchange traded funds have
become proliferate over the last decade. The flow of investment in these funds varies over time and
reaches significant amounts. However, ETFs offer exposure to contracts with specific maturities;
hence these funds are active only in specific markets. Thus, by attracting a unique composition
of traders and users of specific strategies and accommodating their investment needs, the funds
create market segmentation, the degree of which seems to vary over time.

Overall, we find that modeling trading probability is crucial to understand and measure the
propagation of inventory surprises for long distant futures contracts. Not accounting for time-
variability of trading activity significantly underestimates the total effect of the shocks. Moreover,
our results indicate a significant change in the trading pattern in 2015. We show that, even
though surprising announcements trigger a larger immediate trading response than uninformative
news, the overall cumulative response of the trading volume happens to be lower for surprising
announcements. People trade less when surprised.

Finally, we demonstrate how our results can be used to test theories of oil price determination.
We focus on the recent oil glut in the US. By 2014, the US oil production had exploded, reaching
almost 9 mIn barrels per day, and was expected to grow even further. In July of 2014, the price of
oil started to decline and gained momentum in November when OPEC refused to cut production.
By the beginning of 2015, oil inventories had reached unprecedented levels and were interpreted
as a sign of immense oversupply. Considerable attention has been paid to understanding exactly
how the belief in oversupply was unfolding. Arezki and Blanchard (2015) argue for a structural
shift in market expectations after the OPEC meeting in November of 2014. Before the meeting,
the market had maintained the belief that the total oil production could still be capped, despite
growing shale oil supplies. That is, OPEC producers were believed to be willing to adjust, or
basically cut, their production and give way to shale oil producers, only in order to maintain high
prices. After the meeting it became clear that OPEC producers would not sacrifice their market
share. Hence, not only did global expectations regarding the future path of the oil supply have to
be reconsidered, but the possibility of having an excess supply of oil in the nearest future became
substantial.

Do we see any structural shifts in market expectations or changes in market responses to
inventory news around the OPEC meeting? To parsimoniously allow for time variability of market
response parameters, we utilize threshold autoregression (TAR) modeling. Before proceeding to
estimation, however, we need to resolve one issue. Both daily intensity of trading (say a fraction of
5-second intervals with zero trading volume) and daily volatility of returns indicate a distinct shift
in the trading pattern occurring around the end of 2014. Hence, by trying to identify a structural
change in the market response parameters we may wrongly pick up background changes in the
overall trading pattern. To overcome this issue, we allow for two independent transitions: one for
changes in the trading patterns, and the other for changes in the market response to news.

Not surprisingly, our results show an apparent break in the trading patterns which occurred
around the first week of December of 2014. We believe it can be attributed to the explosion of
money flowing into ETFs. However, our results do not indicate any clear shift in the market
reaction to news. If anything, the break occurred in mid-February of 2015, i.e. after inventories
reached extremely high levels. Hence, beliefs in oversupply tend to lag behind the actual inventory
build up. In sum, our results do not confirm the theory of a structural shift in expectations after
the OPEC meeting in November of 2014.

The remainder of this article is organized as follows. In the following section, we describe



the relation of our research questions and findings to the previous literature. In Section 3 we
provide institutional background information. We discuss formation of expectations in Section 4.
The econometric framework is described in Section 5. The description of the data and estimation
procedure is given in Section 6. Our main findings are presented in Section 7. Application of our
results to the recent oil boom is discussed in Section 8. Section 9 concludes.

2 Relation to previous literature

Our paper is related to the literature on formation of beliefs, which typically relies on survey data,
for example, see Coibion and Gorodnichenko (2015), Andrade and Le Bihan (2013), Gennaioli et al.
(2016), Greenwood and Shleifer (2014), Mankiw et al. (2013). Our approach is complementary
to these studies. We propose to use high frequency transaction data including trading volumes
around major oil announcements to characterize the expectation formation process in the oil
market. A similar approach is taken in Bollerslev et al. (2018), in which high frequency data
are used to estimate the volume-volatility elasticity around macroeconomic news announcements.
The relationship between trading intensity and volatility can be related to disagreement among
market participants; see Kandel and Pearson (1995) and Banerjee and Kremer (2010). However,
we use dynamic models because our interest lies not only in identification of any instantaneous
impact of inventory surprises, but also in their dynamic impact, as this provides more information
about formation of beliefs.

Our paper is also related to the literature on the role of inventories in shaping the behavior
of commodity prices. We contribute to it in two ways. As a minor extension, we notice the
existence of an upper limit of inventories, while the literature has been exclusively focused on
the non-negativity constraint. The oil storage capacity is limited, and generally believed to have
been close to exhaustion recently at least twice: in 2009 and again in 2015. More importantly, we
offer a direct way to test the classic inventory theory. Existing empirical evidence is mostly based
on indirect evidence and is somewhat mixed. Hamilton (2009) analyzes the time series behavior
of oil prices and tests whether oil price changes are permanent and unpredictable, and finds no
evidence against random walk behavior. However, the power of such tests in a small sample
can be limited. Deaton and Laroque (1996) investigate agricultural commodities and find that,
contrary to the model predictions, autocorrelation of prices in the data is as pronounced at high
prices as it is at low prices. Moreover, autocorrelation is too high to be accounted for by a simple
competitive storage model. Another strand of empirical literature uses futures prices to extract
expectations of oil prices in the future. Using a large cross-section of commodity futures, Gorton
et al. (2013) show that high levels of inventories are associated with an upward sloping futures
curve. However, the presence of a time-varying risk premium potentially depending on the level of
inventories complicates the interpretation of results. The risk premium can be estimated, but the
estimates are extremely sensitive to model assumptions,® as the results of Baumeister and Kilian
(2017) suggest. The errors introduced by estimation of the risk premium mask the predictions of
the storage model.

Our paper complements these studies. We directly estimate the term structure response to
exogenous supply or demand shocks identified by inventory news. Although we do make an as-
sumption about the risk premium, we only require it to be constant in a narrow window around

5 A number of papers study the determination of the risk premium in a general equilibrium model with inventories
subject to non-negativity constraints; see an illustrative model in Gorton et al. (2013) and an estimated structural
model in Baker (2016). As with any structural approach it is subject to the joint hypothesis problem.



the inventory announcement, which we believe is a less restrictive assumption. Our results are
consistent with the model predictions in normal times, but at times of high inventories we find
that traders do not revise their expectations according to the predictions of a standard competitive
storage theory.

The effect of oil announcements on returns and return volatility has been examined in the
earlier literature. Our study differs in a number of important ways: (i) identification of inventory
surprises, (ii) focus of study, (iii) modeling approach, including usage of high frequency data and
trading volume data, and (iv) a longer and more recent coverage period.

First, we offer a novel procedure to identify market surprises. Most studies define a market
surprise as the difference between the reported EIA estimate and the median survey forecast. Given
general public interest in oil inventories, various surveys are available that directly ask about agents’
expectations of EIA announced changes, including the surveys conducted by Reuters and utilized
in Bu (2014), Bloomberg, used by Halova Wolfe and Rosenman (2014), Halova et al. (2014), Miao
et al. (2018), and Platt’s. By assumption, the weight placed on an API signal equals zero. There are
only a handful of papers that utilize API information to shape market expectations. One exception
is Armstrong et al. (2017), which defines an inventory surprise as the difference between EIA and
API reported values, but neglects information in initial surveys, thus assuming the API weight to
be unity. Another exception is Ye and Karali (2016), which defines inventory shocks sequentially:
an "API shock’ as the difference between the API announced change and the forecast, and an "ETA
shock’ as the difference between EIA and API. Both shocks are included in their regression model,
assuming that the market may react differently to two consecutive positive surprises than to two
alternating signals. This approach can be viewed as a reduced way to account for misspecified
beliefs. In our paper, we directly model formation of market expectation, and allow the API
weight to be unrestricted. We estimate it along with other parameters of the model, separately
for each contract and each time period.

Second, our goal is to provide a complete characterization of the market impact of news. Most
studies look only at the impact on returns and use only the nearby futures contract. Bu (2014)
and Halova Wolfe and Rosenman (2014) also investigate the effect of news on return volatility.
However, there are almost no studies of the effects of announcements on the term structure of
futures prices.® One exception is Miao et al. (2018). Six continuous contracts are analyzed in
this paper, and the results indicate slow weakening of the magnitude of the price response with
maturity, a 1% increase in inventories decreases the price of the first month contract by 0.552%,
the price of the second contract by 0.541%, and for the sixth contract — by 0.343%. In contrast,
we do not find that the longer maturity contracts display smaller responses. The difference in
the results can be attributed to our different identification of inventory surprises, usage of high
frequency data instead of daily returns, and coverage of a more recent time period. To the best of
our knowledge, our study is the first to analyze the impact of inventory shocks on trading intensity.

Third, in contrast to other studies on news impact (see Andersen et al. (2003)), we use ultra
high frequency (5-seconds) data, which calls for different econometric tools, those that are used
to deal with ultra-high frequency financial data. In particular, we analyze trading volumes, which
are characterized by non-negativity, high volatility and the presence of zeros due to non-trading.
Also, we analyze return volatility along with returns themselves, and hence employ models from
the GARCH literature (also used by Bu (2014)). The literature on the impact of inventory shocks
most frequently uses daily returns, see Bu (2014) and Miao et al. (2018). Halova et al. (2014)

6 Although, there is a literature that documents reaction of the term structure of interest rates to various news
announcements, see, for example, Gurkaynak et al. (2005) and Faust et al. (2007).



calculates continuously compounded returns in an intraday event window surrounding the EIA
announcement.” One exception is Ye and Karali (2016) who work with 5-minute returns and use
the methodology developed in Andersen et al. (2003).

Finally, our sample covers 7 years, from 2010 to 2016.% To the best of our knowledge, our study
is the only one that covers the shale oil boom, the proliferation of ETFSs, as well as one of the most
dramatic oil price collapses in recent history.

Our paper also contributes to the debate on the recent oil glut in the US. It remains an open
question whether oversupply of oil was the main determinant of the decline in the oil price in
2014; see, for example, Baumeister and Kilian (2016), Baumeister and Hamilton (2017), Baffes
et al. (2015), Fantazzini (2016). What is even more controversial is exactly how beliefs regarding
oversupply were developing in 2014. Arezki and Blanchard (2015) argue in favor of a structural
shift in market expectations, following OPEC’s announcement in November 2014 of their intention
to maintain the production level despite growing shale oil supplies. Baumeister and Kilian (2016)
use a four-variable vector autoregressive forecasting model for the real price of oil to show that
more than half of the decline in the price of oil was predictable in real time as of June 2014.
However, this does not necessarily imply that the market incorporated that information into its
beliefs. Our approach allows us to characterize the time evolution of market expectations.

3 Institutional background

Weekly estimates of crude oil inventories in the U.S. are provided by the U.S. Energy Information
Administration (EIA), a statistical and analytical agency within the U.S. Department of Energy.
Any company which carries or stores more than 1000 barrels of oil may be selected into the ETA
weekly sample based on a procedure that assures coverage of 90 percent of the market. Typically
the sample includes gathering and pipeline companies, and storers of crude oil. The selected firms
are required to report the end-of-week amount of oil in their storage facilities. On the following
Wednesday, a summary report is released in the form of an ETA publication, the Weekly Petroleum
Status Report. The report becomes available to the public at 10:30am Eastern time and is closely
followed by the media.

However, what is less known is that there is an alternative reporting agency that collects
and disseminates information about oil stocks on a weekly basis privately to its subscribers. An
association of oil producers known as the American Petroleum Institute (API) surveys energy
firms using exactly the same weekly survey forms that the EIA uses. While reporting to the EIA is
mandatory, reporting to the API is voluntary, but despite this, the association claims its coverage
is close to 90% of the industry. The API releases the data in the Weekly Statistical Bulletin on
Tuesdays at 4:30 pm Eastern time, the day before the official EIA announcement. In contrast
to the publicly observable EIA report, access to the API requires a costly subscription available
only through Thompson Reuters. Thus, for less sophisticated traders and traders whose main
interests are outside the energy market, the purchase of API information may be prohibitively
costly. However, for more specialized traders, API reports represent, quite valuable information,
as historically, API and ETA estimates tend to be close to each other. Discrepancies are believed
to occur due to different procedures utilized to estimate the remaining 10% of the market.

THalova et al. (2014) also address the issue of measurement error in inventories changes.

8For comparison, Bu (2014) covers 2006 to 2011; Ye and Karali (2016) — mid-2012 to 2013; Halova Wolfe and
Rosenman (2014) — mid-2003 to 2010; Halova et al. (2014) — mid-2003 to mid-2012; Miao et al. (2018) — mid-2003
to 2011.
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Figure 1: Market reaction to oil inventory announcements.

To get a feeling for whether the market follows oil inventories announcements, we use a simple
procedure to estimate the market response to each announcement. We split each trading day into
5 minute intervals. Then we take, say, an interval from 9:00 to 9:05 am and use intraday data
on the oil futures contract nearest to expiration to calculate an absolute return over this interval
separately for each trading day. Finally, we take the average across trading days over the entire
sample from 2010 to 2016. Figure 1 shows the results. The red line stands for non-report days
which are Monday, Thursday, and Friday. We observe a typical daily pattern of trading, namely,
some spikes when the open outcry on the oil market begins at 9 am and closes at 2:30 pm Eastern
time. The blue lines correspond to report days: the top panel represents Wednesdays when an
ETA report is released, while the bottom panel stands for Tuesdays and API reports. We see that
for most part the blue and red line coincide, but at times of report releases (10:30 and 4:30), we
observe considerable spikes in absolute returns, meaning that the market reacts quite strongly on
average to inventory news. Moreover, we see that the market reaction to API reports (bottom
panel) is comparable in magnitude to the market reaction to an EIA release. A slightly muted
reaction to API reports can be partially attributed to its restricted access, or alternatively, to the
late time of a release, as API reports come out after trading hours. This allows us to conclude
that the market generally cares about API releases, and thus neglecting this announcement might
be a significant factor in identification of surprises and may introduce a significant distortion in
the estimates of market impact.

Finally, to get a sense of a magnitude of the effect, Figure 3 displays scatter plots of cumulative
returns for the front month contract over a period of 1 minute around the announcements against
our identified EIA surprises (whose identification will be discussed later). We break down the sam-
ple into three time periods, from 2010 to 2011, from 2012 to the end of June of 2014, and finally
from July 2014 to the end of 2016. A negative relation can be clearly seen. Positive inventory
surprises tend to depress oil prices, whereas negative surprises push prices up.Figure 3 also suggests
that the strength of these effects evolves over time: the effects became much stronger in later years.
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Figure 2: Cumulative returns on the front month contract over 1 minute around EIA announce-
ments (30 seconds) against our identified EIA surprises. Left panel: 2010 2011; middle panel:
2012-mid-2014; right panel: mid-2014-2016.

4 Formation of expectations and identification of market sur-
prises

We use EIA announcements to identify inventory surprises and study how they affect the market.
This requires identification of inventory surprises and specification of response functions. In both
aspects our approach differs from those in the literature.

For identification of inventory surprises, we need to estimate the expected value of a change in
oil inventories. Ideally, we would like to observe this market expectation as close to the moment
of the news announcement as possible. One way could be to estimate a simple time series model
of weekly inventory changes, and use it to make the forecast.? However, it has become common in
the literature to use surveys of professional forecasters to proxy for market expectations.'® Given
general public interest in oil inventories, various surveys are available that directly ask about
agents’ expectations of EIA announced changes, including the surveys conducted by Reuters, '
Bloomberg,'? and Platt’s. The summary statistics, such as median forecasts, are typically released
on Mondays. The pairwise correlations between the three median forecasts are well above 0.97,
which suggests that the information content of these three surveys is the same. Thus, we decided
to make use only of the Bloomberg median forecast, as the most commonly used in the literature.
But, in contrast to other studies, we will also use the numbers released by the American Petroleum
Institute.

Before we proceed, let us have a look at the data. The left panel of Figure 3 shows yearly
pairwise correlations of EIA announced inventories with the API, as well as BBG median forecasts.
The precision of the Bloomberg survey forecast fluctuates quite a lot over time, but no apparent
trend is visible. In contrast, the precision of the API signal seems to be improving over time; the
correlation increases from 0.6 in 2010 to over 0.8 in 2016. Thus, we should expect that the market
would rely more on APT information over time.

Expectations formation process Formally, denote by AlnvP' the change of inventories (nor-

malized by the total oil inventories for the prior week) to be released by the EIA. We will assume

9See Roesch and Schmidbauer (2011).

10See Andersen et al. (2003).

1See Bu (2014).

2See Halova Wolfe and Rosenman (2014), Halova et al. (2014), Miao et al. (2018).
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Figure 3: Left panel: correlation of EIA and API estimates of inventories changes (solid line); of
ETA estimates and Bloomberg median forecast (dashed line).

Right panel: Optimal weight to be placed on the API signal, w in each year, under the assump-
tion of independent measurement errors in API and BBG, normally distributed signals, and a
representative agent with access to API information.

that the market forms expectations based on realized values of two observable signals: an oil stocks
number released by the API, which we denote as AInv**?, where the time subscript is dropped for
simplicity, and the median forecast of the survey of professional analysts conducted by Bloomberg,
which we denote as AInv?2Y, where conditioning is on the information set of professional forecast-
ers.'® For simplicity, for the most part we maintain the assumption of linearity; in other words, we
assume that the market puts weight w on the API signal and weight (1 — w) on the BBG signal,
where w € [0,1]. So the market expectation of the oil stocks change is given by

E[AInvEA ATnvPEY AlnvA!] =0 ATnvA T + (1 — w) AlnvPPC,

To provide intuition, we compute optimal w for a simple case. Namely, we abstract from the
complexities of aggregation of individual beliefs, and solve the optimal signal extraction problem
of a single agent with access to API information, under an assumption of independent measure-
ment errors in the APT and BBG signals, normally distributed inventory changes and signals (see
appendixA). In this case, linearity is known to be optimal, and the optimal weight depends on
the signal to noise ratios in the BBG and API signals. We can use the data to calculate these
signal-to-noise ratios and find the optimal weight w. The right panel of Figure 3 shows the results,
namely the optimal ws calculated separately for each year under the assumptions made above. Not
surprisingly, the better quality API information is reflected in higher weight place upon it over
time. The optimal weight w monotonically increases from 0.4 in 2010 to about 0.7 over the last
three years.

In general, the weight placed on API information by the market as a whole could also depend on
the overall access of investors to API reports. Of course, if markets are efficient, it is enough for just
one trader to observe and trade on private information for it to be fully revealed in prices. Hence,
every market participant in principle should be able to extract that information from observable

13Here we are working with expectations, however in the empirical work we will use the median, rather than the
average forecast.
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movements in the prices. In reality, information percolation may be slow, especially given that
APT reports come long after main trading hours end. The only problem with this explanation
is the fact that the highlights of the API report, at least in terms of total crude oil stocks, tend
to be published by major independent news providers, and thus can be freely accessed 5 minutes
after the release of the API report. An alternative explanation may be related to heterogeneity in
sophistication. Some traders, especially those who do not specialize in oil trading, may be unaware
of the existence of this additional private source of information. Thus, we can expect the estimated
weight placed on API to be lower than that displayed in Figure 3.

Identification of market inventory surprises Given w, the market surprise is defined as
follows:

r = Alnv?4 — B[AInvE 4 ATnvPBY AlnvAH).

In other words, surprises represent unezpected by the market changes in inventories. A positive
value of x implies that the market underestimated the change in inventories.

Response function Finally, we need to specify the response function. For example, how should
the returns react to a market surprise of 7 A usual approach would be to follow Andersen et al.
(2003) and assume a linear response function. However, such specification may be too restrictive.
Thus, we decided to deviate from the literature and project the universe of our surprises into a
number of indicator functions, and then allow the response coefficients to differ in an unrestricted
way. We distinguish large positive and negative surprises; in other words, we split all surprises
into three bins according to the following rule: the market surprise of z is called

‘a positive suprise’, if x > T
‘an uninformative announcement’, if —z <z <z

‘a negative suprise’, if v < —Z

where the threshold Z is to be estimated.

Uniformity of expectation formation process Our data contain a number of futures con-
tracts of different expiry dates. In principle, each single futures contract represents a separate
market with its own distinct expectation formation process. That is, one could worry about mar-
ket segmentation, when each separate market attracts its own unique clientele looking for exposure
at just one particular horizon. And if, for example, shorter contracts in general attract less sophis-
ticated traders or traders without access to API reports, we should see smaller weights placed on
API reports for contracts with shorter maturities.

Ideally we would like to estimate {w,Z} separately for each contract (and each year if there
are concerns about stationarity). Unfortunately, we do not have sufficient numbers of inventory
surprises per year to estimate all these parameters with reasonable precision. Thus, we proceed as
follows. For the benchmark case, we assume uniform formation of expectations at the two most
liquid markets — that is, we assume that {w,z} are the same for the two futures contracts with
the closest expiration dates, while all other parameters may differ.'* To check if our procedure is
consistent with the data, we also estimate {w, Z} separately for each contract and then perform a

HEstimation of these other parameters draws abundant information mostly from the dynamics of the variables
modeled in no-surprise periods.
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F,F, F F
% of intervals with zero volumes 22 55 82 91

Table 1: Trading activity with maturity measure as a fraction of 5-second intervals with no trading
volumes.

likelihood ratio test. If the null hypothesis is not rejected, we will argue that the evidence is in
favor of uniformity of the expectation formation process.

5 Econometric framework

In this section we develop an econometric model and outline our estimation procedure. In what
follows we describe our model of joint high frequency dynamics of returns, return volatility and
trading volumes around announcements. We abbreviate our joint model as ARI-ARCHI-MEMI,
in which the additional letter ‘I’ signifies the presence of announcement indicators. We will show
how market inventory surprises identified according to our procedure outlined above appear in our
model.

Trading volume To describe the evolution of trading volumes, we use the multiplicative error
model (MEM) of Engle (2002); see also Engle and Russell (1998). Denote by V; the trading volume
over 5-second interval ¢. Then,

‘/:‘, - ¢t€t7

where v, = FE; 1V, stands for the conditional mean of V; based on information available up to
period ¢ — 1. One may assume that &, ~ i.i.d. D(1), where D(1) is a specific distribution with
non-negative support and mean unity.

However, we need a model flexible enough to be applied to both short and long maturity oil
futures contracts. The problem with long maturity contracts is their illiquidity, hence we observe
substantial periods with no recorded transactions. To illustrate the severity of this issue, Table 1
shows the fraction of 5-second intervals with zero trading volume over the entire sample, separately
for each contract. We see that, while for the futures contract nearest to expiration we have only
about 20% of intervals with no trading, this number increases to more than 90% for the four-month
contract. Clearly, trading activity decreases dramatically with maturity.

Thus, we aim to build a model that can handle illiquidity of long maturity contracts by explicitly
accounting for trading inactivity. We follow the approach developed in Hautsch et al. (2013).
Namely, we assign a discrete probability mass to the event of no trading, and we allow this
probability to be time varying. Formally, we assume that with probability m;, the shock ¢, is
drawn from a continuous distribution with a strictly positive support distribution and density f,
say, whereas with the opposite probability 1—m;, we have ¢, = 0, which corresponds to the absence
of any trading in period t. For most of the analysis we will use the generalized gamma distribution *®

15Gee Lancaster(1990). The generalized gamma distribution has 3 parameters, a, m and Ao and

aXd™tm =L exp(—(Aot)?)
I'(m)

ft) =
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normalized so that Ee, = 1; thus we need E [g;]e; > 0] = m; '. After normalization, the density is

a(”tﬁ)am*f?m_l exp(—(mes)?)

.f(gt) = F(m) )

where £ = I'(m+a™ ') /T (m).
The conditional mean ¢, is modeled as follows:

q q° p
e=w+ Y Vi + Y ol oy + D Btk + )y AL
k=1 k=1 k=1

type

In addition to standard lagged volumes and lagged conditional means, we also add indicators of
the absence of trading in previous periods. The coefficients of primary interest are ¢/¥?¢ that stand
for the response of trading volume to inventory surprises.

Returns and volatility To investigate the effects of oil inventories on returns, we use the AR-
ARCH framework augmented for trading inactivity. That is, with probability 1 — m;, no trading
occurs, and thus the return is equal to zero: r, = 0. With the opposite probability m;, trading
occurs, and the return r; is drawn from the gaussian distribution with the conditional mean with
the following dynamics:

qr q?
pe =p + Z PrTt—k + Z PRy, =0y + Z o s 17,
k=1 k=1 type

and the conditional variance with the following EGARCH (Nelson (1991)) dynamics:

Po 40,1 do,2
o} =w+dmop, s+ Z T Inoyy + Z OTe—k + Z Velne—x| + Z eI,
k=1 k=1 k=1 type

where 7, = r;/0; are standardized returns. The EGARCH equation has a number of advantages
among ARCH models with leverage (see Rodriguez and Ruiz (2012)), one of which is positiveness of
conditional variances by construction. We include in the right hand side the daily level of volatility,
a%(t)’s, for day D(t) to account for slow moving changes in the volatility. We will calculate U%(t),s
as filtered realized volatility for day D(t); see Figure 17.'6:17

A few things are worth discussing. First, the reaction of the conditional mean of returns to
news is normalized by filtered realized volatility. The purpose is to simplify the comparison of
the results over time. Without normalization we would not be able to interpret intensification of
returns reaction as being linked to higher importance of inventory news. This is misleading, as
the market could have become more sensitive to all kinds of news, not just to inventories. To
disentangle fluctuations in overall market sensitivity to news from fluctuations in market response
to inventory news, we suggest normalization by the level of volatility. That seems natural, given

16For each announcement day, we calculate realized variances using a range of sampling frequencies from 5 sec to
10 minutes, and then take an average. Volatility signature plots for most days are flat in that region of frequencies.

I"We use the Hodrick—Prescott filter with a smoothing parameter of 1600. Alternative smoothing techniques
yield similar results.
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that volatility increases when prices respond more strongly to each news arrival.!® Intuitively,
J%ws picks up the common component, whereas the coefficients c¥P¢ reflect a ‘cleaned’” market
response to inventories news, beyond and above the common component. '

Second, even though the gaussian (G)ARCH model (partially) captures heavy tail behavior
and may serve as a quasi-likelihood model for consistent estimation of the volatility equation, we
also pay attention to conditional tails and utilize Student’s ¢ distribution to capture the shape of
the conditional density in the tails more accurately. That is, when trading occurs, the return r; is
drawn from Student’s ¢ distribution with the shape parameter, degrees of freedom, defined by v,
with the conditional mean and the conditional variance defined as before. The results are similar
and are presented in appendix B.

Time varying probability Following Hautsch et al. (2013), we assume that the probability of
inactivity may also vary over time. We define

Tt

ht:hl s
1—7Tt

and propose the following specification for the time varying probability of inactivity:

Ph qh
hy = wp + »xpe) + Z Cehe—r + Z Selgv,_>01 + Callpi=s+y,
k=1 k=1

where, again, »p; is the daily component assumed to pick up any changes in average probability
of trading over time.

Composite likelihood Thus far, we have specified conditional densities for volumes and returns
(and return volatility). Even though this is not a complete model for the joint volumes returns
distributional dynamics, it is sufficient for the purposes of estimation of the parameters of our
interest. Thus, we utilize the composite likelihood approach (Varin et al., 2011), i.e. we take the
product of the specified conditional densities. The composite log-likelihood function for our model
is given, up to a parameter-free constant term, by

T T
L= {Lysonm + Iy—oy n(1 = m)} + Y Tgsoy (L + Li*), (1)
t=1 t=1
where
! A%
Ly =Ina+ (am —1)InV, — Wtég —am (Inyy —In(mf)) —In I'(m),
t
and
1 _ 2
et = gz o)
2 20}

180f course, alternatively, volatility can increase simply due to more more frequent news arrivals, which is exactly
the logic behind (G)ARCH approach to volatility modeling. Thus, we can overestimate an increase in market
sensitivity to news.

19We use filtered realized volatility, because the realized variance itself is extremely volatile. Although it is
reasonable to attribute changes in volatility regimes to changes in market responsiveness to news, it would be hard
to argue that high frequency fluctuations in RV also reflect changes in responsiveness.
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in the benchmark case, and

+1 +1 — )\ 1
L:etzlnF<—V2 )—anu—Q—lnF(%)—y In <1+M>——1n0t27

2 (v —2)o? 2

when we account for fat tails.
The maximum composite likelihood estimate of the model is the value of the parameters that
maximizes the conditional composite log-likelihood.

Testing uniformity of formation expectation process FEquation 1 specifies the composite
log-likelihood function for a single futures contract. The market inventory surprises appear in this
function via indicators for the announcements. Identification of these surprises depends on w and
Z , parameters of the expectation formation process, in a general case unique to the market for
this specific futures contract.

As outlined above, we would like to perform a test of whether {w,z} indeed differ significantly
across the markets. We use a simple LR test, where the joint log-likelihood function is defined as
a sum of composite log-likelihood functions for the first and second month contracts as specified
in 1.

Impulse responses Explicit modeling of trading volumes allows us to analyze the evolution of
trading intensity in response to news. To characterize exactly how people trade, we calculate two
types of volume impulse responses.

1. Our first measure is the difference between expected volumes following an uninformative
announcement versus following no announcement at all:

IRFO = E [‘/;*+h|lo* = 1, ht*—l] - E [W*+h|lt = It: = Ito* - 0, ht*—l]'

(.

WV WV
uninformative no announcement

where t = t* denotes the time of the announcement, and hs_; denotes the history up to
the time right before the announcement. Thus, ITRFY measures extra trading due to the
announcement itself.

2. Our second measure is the difference between expected volumes following the arrival of an
inventory surprise relative to the arrival of an uninformative announcement:

IRFy = E [Vesnl i = 1 he 1] = B [Vl = 1, b

TV TV
SUTprising uninformative

Thus, I RF," measures extra trading due to the arrival of a positive inventory surprise.

We have chosen to define the IRFs in the way we do for two reasons. First, our model is not linear.
Non-linearity implies that history matters, and does not allow us to shut down all other shocks
which occur after the announcement to prevent distortion of propagation properties. As a result,
traditional impulse response functions cannot be used in our case. Second, we cannot calculate
the generalized IRFs, for example, E [Viyp|Lr =1, hy_1] — E [Visp|hee—1] 2 In our setting, an
announcement always occurs at t = t*, that is, I} = I, = I = 1; what is uncertain is the type

20See Koop et al. (1996).
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of surprise. But, as we do not model inventory shocks, we cannot assign probabilities to these
events. Therefore, our measures are somewhere in between traditional and generalized measures.
Moreover, when we calculate I RF}, we must rely on our model to reasonably capture the dynamics
of the system that would prevail in the absence of any inventory announcement, which makes it a
sort, of counterfactual exercise.

Time variation in market responses

In general, market responses to news may vary over time. One way to capture time variation
would be to split the sample by calendar year and estimate the model separately for each year.
That approach is attractive for its simplicity, and for most part of this paper that is exactly what
we do. However, following this approach, we will not be able to pin down the exact moment of
a change, nor can we assess the speed of adjustment. This requires us to model the transition
dynamics directly.

To parsimoniously model the evolution of some parameters of our model, we utilize a threshold
autoregression model (TAR). We denote the time variable by d, which in our case represents a
particular announcement week. The parameter z(d) varies over time according to

£(d) =X —+ (171 - l’o)G(d, d*, 5),

where time variability is driven by a non decreasing transition function G(d, d*,d) that lies between
zero and one. When G goes from zero to one, z(d) changes from zq to x; reflecting the transition.
The arguments of the transition function, apart from the time index, are the threshold d* and a
vector of parameters d, that control the timing and speed of adjustment respectively.

The simplest possible transition function is the indicator function: G(d,d*) = Iz>4+. This
specification assumes a structural break in week d*. In principle, we could allow all parameters to
jump simultaneously and search for the optimal timing of the break. This approach, however, is
problematic, as the oil market may be subject to other structural changes at the same time. One
potential source of a ‘background’ change could be a dramatic growth of exchange traded funds
tracking oil futures prices. An investment flow to ETFs could alter the composition of trading
strategies utilized. Thus, as our dynamic model is direct reflection of oil traders’ behavior, any
changes in the strategies inevitably lead to changes in model parameters. As a result, a simplistic
approach might pick up the wrong transition.?!

To disentangle changes in parameters related to proliferation of new trading strategies, from
the changes in market perception of inventory news, we could allow some parameters to follow a
more complicated dynamics:

{L'(d) = 29 + ([L’l — xO)G[(d, d;,(h) + ([)32 — xl)GH(d, d}({, 5H),

where Gy(d,dy,d;) and Gy (d,d};,dy) define two separate transition dynamics: [-transition cor-
responds to market perception of inventory news and H -transition corresponds to shifts in the
composition of trading strategies. The identification comes from differential exposure of the
model parameters to the sources of time variation, and potentially from different speeds at which
the changes occur. In our notation the coefficients that govern market reaction to inventory
news, {c¥pe ctvpe cvrel would follow I-transition only. Similarly, all parameters in the probabil-
ity equation, {wp,(x, &k}, all parameters in the conditional mean equation for trading volumes,

21See appendix D for more details.
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{w, ay, af, Br}, and all coefficients in the conditional mean equation for returns, {u, px, pi} and
coefficients in the conditional variance equation, {w, dx, vk, Tk, ¢}, will all follow H-transition only.

We will perform two exercises. The first employs the indicator transition functions, G(d, dj) =
Iig>ary and Gy(d,dy;) = Ijg>a;,y and we search over all possible combinations of (d,d};) in the
time range we are interested in. In the second exercise, we keep the same Gp(d, dj;), but replace
Gy(d,d}) with

1
Gi(d, dj, 0) = mﬂ{dm;} + mﬂ{dzd;}-
This specification allows for different speeds of adjustments before and after the threshold. After
having fixed the threshold at dj, we estimate 6 = (Jy, d2).

6 Data and estimation

Data In this paper, we utilize changes in weekly U.S. ending stocks excluding SPR and including
lease stocks of crude oil as published by the Energy Information Administration.?? For identifi-
cation of market surprises we use the estimates of inventory changes published by the American
Petroleum Institute, as well as the median consensus forecast from the Bloomberg survey of ana-
lysts.

The high frequency data on WTT oil futures traded at NYMEX (CME group) was obtained
from TickData. Our sample covers the period from 2010 to 20162 and after cleaning contains 337
announcement days. We focus on one hour around EIA announcements, that is, from 10 to 11
am. We believe that the one hour long interval is long enough to obtain a reasonable estimate of
the parameters of our dynamic model. The sampling is done at a 5-second frequency, which yields
720 data points for each announcement day.

Dealing with futures contracts Before we proceed to estimation, we need to deal with a
number of issues specific to the futures market. One such feature is expiration. At any moment
in time, NYMEX offers a set of contracts that differ by delivery month. The expiry dates range
from one month up to nine years in the future, thus constituting more than 100 contracts at any
given moment. Trading in the current delivery month ceases on the third business day prior to
the twenty-fifth calendar day of the month preceding the delivery month (for example, the last
trading day of a February-2018 contract is January 22).?* Fixed expiration dates mean that the
maturity of a contract varies over time, as does the open interest and trading volume. Hence,
we should be concerned about stationarity; after all, our dynamic properties of futures prices and
volumes reflect the composition of trading strategies utilized at the moment. We follow a standard
approach in the literature and rely on a rolling procedure to create continuous futures contracts.
In particular, we replace the expiring contract with the next one on the 5th day of each month.
Thus, the maturity of what we call the first month contract in our sample ranges from 5 weeks
to 2 weeks, when the soon-to-expire contract is replaced with the next one, and a new maturity

22The EIA terminated publication of this series in September 2016. For the last few months, we use the weekly
U.S. Ending Stocks excluding SPR and add the most recent available data on lease stocks. Lease stocks have been
relatively stable with a range of 30.6 mln barrels to 33.1 mln barrels from January 2014 through June 2016.

23We only have data on API releases from 2010.

24Gee contract specifications at the CME website.
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cycle commences. As long as oil traders follow the same procedure and shift their trading from
one market to another at about the same time, stationarity concerns are alleviated.

The estimation of market responses for long-maturity futures contracts requires modification of
our approach. Even though our model is specifically designed to handle a certain level of illiquidity,
once we move beyond the first three futures contracts, liquidity drops considerably and precludes
any meaningful analysis. Fortunately, we find that certain contracts maintain reasonable liquidity
throughout the year: December and June contracts (CLZ and CLM). Disproportional interest in
these contracts perhaps reflects the convenience that mid year and end of the year expiry brings to
reporting of hedging procedures. Alternatively, it may simply reflect certain market coordination
over time. But if we plan to utilize contracts with fixed maturity dates, rather than continuous
contracts, we must reconsider the stationarity issue. If we stick with a particular contract, then
necessarily its maturity would vary substantially. For example, if we analyze the trading of a
contract that expires in December of 2016, its maturity would range from 23 months in January
of 2015 to just 12 months in December of 2015. It is highly unlikely that a two-year contract is
traded in exactly the same way as a one-year contract, and thus we do not have stationarity.

One way to mitigate this concern would be to restrict the sample to only a few months, e.g.,
to consider only three months from January to March of 2015, and thus limit the variation in
maturity to 23-21 months. However, we would have to significantly sacrifice the sample size. To
compensate, we combine the same quarters of different years into one sample. That is, we combine
2010, 2011, and 2012; then 2013 and 2014; and finally 2015 and 2016. This choice of sample
partition is driven by our previous estimation results that show similarity of estimated coefficients
across these years. Thus, we restrict changes in parameters over time, but in return we partially
account for changes in parameters across maturities. Most importantly, this procedure allows us to
make predictions for the longer end of the term structure curve by using contracts with sufficient
liquidity.

Normalization The second issue is normalization of trading volumes. Our model is not rich
enough to account for potential day-to-day changes in the composition of traders, or strategies
utilized, or intensity of trading. For example, trading may be slow in August, or on the days before
major holidays. Alternatively, oil traders’ awareness of commodities (as of asset class) may increase
over time, and thus market characteristics might not be constant. Thus, we decided to normalize
trading volumes to eliminate any differences between trading days. For each announcement day
we calculate the total volume accumulated from 8 am until 6 pm, i.e. over 10 trading hours. Then
we calculate the mean daily volume, and for each day we can now find the volume ratio as volume
traded within this day to the mean daily traded volume. Finally, high frequency trading volumes
are normalized by this ratio. Formally, denote by v; 4 the trading volume observed over a 5-second
interval t in day d. Total volume traded this day is given by v, = th\il vt 4, where N = 7200
is number of data points. The mean daily volume equals 7y = D! 25:1 vq, where D = 337 is
number of days, and thus, the volume ratio equals R; = v;/74. Finally, normalized volumes are
given by 0y 4 = v;4/R4. The total volumes traded over one hour around the announcement can
still differ from day to day (we normalized total daily volumes), but these differences can now be
attributed to the direct effect of the news.

Estimation We utilize numerical methods to solve for the optimal parameter values. As a part
of our optimization routine, we utilize a simple grid to search over possible values of w and z. For
most parts of the paper, we split the sample by a calendar year and focus on the two most liquid
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Figure 4: Estimated weight w of the API signal. The solid blue line corresponds to w estimated
jointly for the first two most liquid contracts. The black dotted line displays the value of w which
represents a solution to the signal extraction problem.

futures contracts with the nearest expiration dates. We consider other contracts and alternative
partitions of the sample when we study the inventory effects on the term structure of futures prices.

7 Results

Before characterizing the market response to inventory news, we analyze the expectation formation
process in the oil futures market.

7.1 Irrelevance of maturity in expectation formation process

Figure 4 displays the estimated value of w, the weight that the market places on API reports for
the first month futures contract. We can see that the weight increases from 0.3 in 2010 to 0.8 in
2016, suggesting an increase in the importance of API information. To some extent that can be
attributed to a better accuracy of API reports in recent years. To illustrate the improvement, the
dashed black line depicts wipeory, the optimal weight calculated based on the observed quality of
API reports and BBG signals. The upward trend can clearly be seen. However, the lines do not
always coincide, the market used to significantly underweight API signals in the early years, and
only from 2014 do we see convergence. To some extent, w can also be interpreted as a fraction
of people willing to pay for API reports. Given that the cost of subscription has not changed
significantly, we can conclude that it was the value of being informed that increased in 2014.

The second observation that we make is that the estimated values of w happen to be the same for
the first two most liquid futures contracts for all years except 2016.2° Moreover, when we repeated
the exercise for the United States Oil Fund, the exchange traded fund that tracks oil futures
prices, and then for two oil producing companies, Exxon Mobil and Chevron, we obtained the same
estimates. This is an important result, as it reassures us that we identify the market surprises
correctly. Moreover, we can interpret our findings as evidence of the uniformity of rules traders

25In 2016, the estimated value of w for the first futures contract is 0.80, and for the second — 0.95. The LR test
performed using composite likelihood functions rejects the null hypothesis with a p-value of 0.0007.
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Figure 5: Return reaction to inventory surprises. The solid line shows estimated return coefficients
on inventory surprises for the front month contract: ¢! in black corresponds to positive surprises,
¢, in green corresponds to negative surprises, and ¢ in blue — to uninformative announcements.

Dashed lines represent 95% confidence intervals.

follow when forming expectations. As discussed, one could worry about market segmentation,
namely that each separate market attracts its own unique clientele looking for exposure at just
one particular horizon. Different compositions of traders may form expectations in different ways,
either due to differences in their sophistication levels, or because of differential access to API
information. However, our results suggest that this is actually not the case, at least for the most
liquid futures contracts.

Finally, the estimated value of the threshold z that defines the split of market surprises into
categories was equal to 0.5% and we did not find any significant variation across years or contracts.

7.2 Market response to oil inventories

In this section we characterize the oil market response to inventory news. We present and discuss
the estimated values of {civpe, clvpe, clvee) clveey, . that reflect, respectively, trading volumes,
returns, and return volatility reaction to unexpected oil inventories changes.

Negative relation between inventories and returns

Our results indicate a strong negative link between oil inventory surprises and returns. To illus-
trate this link, Figure 5 displays the return coefficients on inventory surprises for the front month
contract, {c, <%, ¢}, and the 95% confidence intervals. As expected, we observe a clear negative
relationship. The coefficients corresponding to large inventory surprises are all statistically signifi-
cantly different from zero. As for the magnitude of the effects, we find that an unexpected decline
of inventories by 0.5% or more in 2016 would cause the oil price to immediately increase by about
1.2%.2% The effect is lower for other years, but is still quantitatively large.

A theory of competitive storage in its modern form was developed in Deaton and Laroque
(1992). As long as the non-negativity constraint does not bind, inventories serve to smooth out

26To calculate the average effect, we need to multiply cf#P¢ by the average level of filtered realized volatility.
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Figure 6: Absolute values of return responses to inventory news. Each panel corresponds to one
of the three contracts with the nearest expiration dates.

temporary demand and supply shocks. Oil flows in or out of storage until current and expected
future prices are equalized (up to interest and storage costs). Facing a positive supply or a negative
demand shock, owners of inventories move oil out of the abundant market and store it for the future,
equalizing current and expected oil prices. As a result, the current spot price needs only to decrease
slightly to clear the inelastic market. Thus, a negative link between inventory surprises and returns
is to be expected.

Time variation and asymmetry in market responses

Figure 5 also indicates much stronger market reaction to inventory news since 2014. In absolute
terms, the difference in magnitudes is striking: the returns reaction is 2.5 times larger in 2016 than
in 2014. The normalization of returns reaction by volatility allows as to attribute this increase to
the greater importance of inventory information, and not just higher overall market sensitivity to
news.2’.

From a theoretical perspective, the intensification of market reaction may seem natural. Early
in 2015, oil inventories reached unprecedented levels; see Figure 13. The positive supply and
negative demand shocks were so large that the market became oversupplied and oil producers
simply could not market the entire supply of crude and much of it had to be stored. When
the space in storage facilities ran out, speculative activity became problematic. Oil speculators
could not respond to any additional temporary positive supply or negative demand shocks by
taking extra oil off the market and putting it in storage. Thus, the smoothing mechanism that
could prevent spot prices from decreasing too much became limited, if not entirely shut down.
Therefore, at times of high inventories, we should expect to see intensified market reaction to
unexpected positive inventory surprises, which is exactly what we find.

The problem, however, is that the market reaction to negative inventory surprises increased

2TTo illustrate that fluctuations in market sensitivity to news may be substantial, Figure 17 shows realized variance
estimated using high-frequency returns on the front-month futures contracts. We can see a distinct change in the
volatility regime at the end of 2014, when volatility increased dramatically and remained high for a long period
of time. So, to proceed, we normalize the return reaction by the filtered and smoothed version of the estimated
realized variance.
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Figure 7: Return reactions to inventory surprises for the first three futures contracts.

even more than the market reaction to positive inventory surprise! For the sake of visibility,
Figure 6 plots the absolute values of estimated coefficients that govern returns reaction to news.
Until 2014, there is no systematic difference between market responses to negative and positive
news. However, in the last two years, the market reacts much more strongly to negative inventory
surprises. That is problematic, because a negative supply or a positive demand shock could still
be counteracted by speculators releasing some of the oil into the spot market, which should have
limited the oil price responses. The standard inventory theory fails to explain the joint time
variation and asymmetry pattern.?

Alternatively, the market perception of inventories surprises may have changed in 2015. The
oil futures market experienced a significant change in the composition of oil traders. At the end
of 2014, investment in oil exchange traded funds increased dramatically. ETFs offer a simple al-
ternative to trading oil futures, and thus tend to bring less sophisticated traders into the market.
It is only natural to assume that traders differ in knowledge and experience, and thus may form
beliefs in different ways. As the composition of traders changed, so may have the overall market
perception of inventories. Indeed, news of oil inventories have been continuously hitting the wires,
and all major news outlets regularly publish highlights of the EIA reports. Given that real time
information about the oil market is scarce, rookie oil traders could have overestimated the impor-
tance of inventory news, and failed to understand the implications of a binding constraint. As a
result, we observe stronger and asymmetric market reactions to inventory surprises.

Effects of inventories of the term structure curve

In this section we present one of the main results of the paper. We investigate whether inventory
announcements alter the futures term structure curve.?? The term structure adjustments depend
on the perceived persistence of shocks. If the shock is perceived as temporary, its effect should

28The evidence of asymmetry in the literature is mixed. Miao et al. (2018) find no evidence of an asymmetric
impact of inventories on futures prices. Similarly, Ye and Karali (2016) document that the impact of positive and
negative crude oil inventory shocks are not statistically different from each other. In contrast, Bu (2014) finds
that negative shocks cause stronger movements of the market, whereas Halova et al. (2014) investigates cumulative
returns and argues that positive inventory surprises tend to be followed by larger price moves.

29The comparison of market impact across maturities is possible as identified inventory surprises are the same.
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is calculated at the beginning of the period, and is measured in months.

vanish with maturity, and thus we should not see any movements of long term futures prices. As
estimation of our model for long term contracts requires a slight modification of our approach, we
present the results separately for the short and long end of the term structure curve.

We start with the short end. Figure 7 displays the estimated coefficients ¢¥P¢ for the first three
futures contracts by maturity. The estimates for the first and second month futures contracts
coincide, implying that the prices of both contracts adjust by exactly the same amount in response
to inventory news. Hence, the term premium remains constant at the short end of the curve. The
dotted line corresponding to the third month futures contract slightly diverges at times, but clearly
follows the same adjustments.

The estimates for the longest possible contract that expires the next year in December and for
the subsample that covers 2015 and 2016 are plotted at Figure 8. Each lines contains just two
points, representing the shortest and the longest parts of the term structure curve as estimated
separately for each quarter. All lines bend towards zero at the longer end, implying that the price
of the next year’s December contract is less reactive to news relative to the price of the front month
contract. However, the difference is small; for many quarters the curve is flat or almost flat. The
only sample in which we observe strong weakening of the market response to news with maturity
is the sample of the first quarters of 2015 and 2016. The results for alternative partitions of the
sample, as well as for other long term contracts, including the current year December contract,
and the next year June contract, are similar and presented in Appendix C.

In sum, our results indicate an absence of any effect of inventory news on the term premium
on the short end of the curve and only a weak effect for contracts with longer maturities. In other
words, the entire term structure curve moves in parallel in response to inventory news. Under a
reasonable assumption of constant risk premium over the event window, the shift in futures prices
can be attributed to uniform revision of traders expectations of future oil prices.?’ We interpret

30The risk premium may also adjust in response to inventory news, but it is extremely unlikely that it would
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this as follows: the traders view most inventory changes as reflecting permanent or at least long
lasting shocks that hit the market.

Our results provide evidence in support of Hamilton’s (2009) conjecture that, in the presence
of inventories, all oil price movements have to be permanent and unpredictable. If oil prices are
expected to rise, owners of storage facilities have an incentive to purchase oil, put it in storage,
and sell it later at a profit. Such speculative transactions simultaneously push up spot oil prices,
and tend to decrease futures prices, as more oil is brought to the market in the future. Hence,
inventories serve to smooth out demand and supply shocks over time. As a result, every shock that
hits the market ends up moving the entire futures curve either up or down, with no adjustments
of the term structure. Our results are consistent with the theory.

However, the equalization of prices crucially depends on speculation activity to move oil across
periods. When spare capacity is near exhaustion, or when inventories have been depleted, spec-
ulation activity becomes limited. In this case, temporary shocks in the direction of the binding
constraint can no longer be smoothed out, and the spot oil price strongly adjusts to clear the
inelastic market. The above narrative suggests that when inventories are binding, we should see
term structure adjustments. In particular, we would expect to see the effects of positive inventory
news on the term structure since 2015. However, our results do not indicate this. Even at times
of binding inventories, the futures prices move uniformly in response to news.

The lack of any effect on the term spread when inventories are high is surprising and contradicts
the conventional wisdom. Indeed, all recent episodes of high inventories in the oil market have
been accompanied by a widening term premium, especially at the shorter end of the term structure
curve. Two examples are traditionally used as anecdotal evidence. In 2008, a negative demand
shock created an abundance of oil and depressed spot, oil prices. The term structure curve became
upward sloping and especially steep at the short end. Similarly, in 2014, the market was hit by a
positive supply shock due to rising shale oil production and by a negative demand shock due to
the slowdown of the Chinese economy. The market again experienced large term premiums, but
over a much longer period of time. In both cases, a steep term structure curve was attributed to
the presence of an excess supply of oil in the market. However, we find that when inventory news
announcements came, traders did not revise expectations accordingly. We believe that our results
justify the search for alternative mechanisms of the term premium determination.3!

7.3 Volume response

Explicit modeling of trading intensity allows us to analyze idiosyncratic trading behavior of market
participants around inventory announcements. In contrast to other papers, we not only analyze
the instantaneous impact of inventory news, but also characterize trading patterns following the
event.

In our model, on impact, trading volume can spike due to jumps in both the conditional mean
of volumes, 1);, and the probability of trading, ;. The magnitude of these jumps is defined by the
coefficients, {c¥P¢, ¢, }. The propagation, however, will depend not only on the dynamic properties
of volumes and probability of trading, but also on the response of the conditional variance to news,
driven by {c#P¢}, and it subsequent evolution.

move in the opposite way to expectations revisions, by the exact amount needed to keep the term premium constant
for all maturities over our sample of 7 years.
31Gee Selezneva (2015) for an example of such a mechanism.
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Figure 9: Volume impulse response functions, estimates for 2010, front-month futures contract.
Top: Volume response to uninformative announcement.

Middle: Extra trading volumes following a positive (negative) inventory shock relative to uninfor-
mative announcements.

Bottom: Extra cumulative trading volumes following a positive (negative) inventory shock relative
to uninformative announcement.
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Figure 10: Trading volume and volatility of returns reactions to inventory surprises by a type of
surprise. First month futures contract appears on the left, and second month futures contract

appears on the right.

Trading patterns in the oil market

To give a general idea of how people trade in the oil

market, Figure 9 draws the volume impulse response functions for the front month contract for
2010. The top picture shows extra trading upon the arrival of the inventory report, IRFy. We
observe a strong immediate reaction followed by a gradual decay afterwards. Quantitatively, our
results indicate that it takes about 15 minutes for an uninformative ’announcement shock’ to be

fully traded away.

The next two figures show additional trading volumes due to arrival of an inventory surprise,
either positive, on the left, [RF,", or negative, on the right, IRF, . Clearly, the pictures suggest
the existence of two completely different trading regimes.

The average market reaction to positive news in 2010 reflects what can be called a typical
pattern. The arrival of an inventory surprise immediately intensifies trading even further (on top

of what is predicted by IRFY).

The extra trading activity remains uniformly positive, and on

average becomes negligible 10 minutes after the event. When we integrate the trading intensity
over time, as in the bottom left figure, we see that people trade more when they are surprised by
a positive inventory shock. That result is intuitively appealing.

In contrast, the average market reaction to negative news in 2010 is puzzling. Even though,
on impact, an inventory shock intensifies trading activity, after less than a minute it drops dra-
matically, and even becomes negative. Moreover, the cumulative trading volume ends up lower
following an inventory surprise. People trade less when they are surprised by a negative inventory

shock.

Do people trade differently across years?

found?

How typical are the trading patterns that we

As for immediate responses to inventory news, our results draw a robust picture. We always
document (i) intensification of trading activity irrespective of announcement type, and (ii) higher
trading following surprises. The point estimates of {c/¥P¢ ¢'%P¢} for the two most liquid contracts are
presented in Figure 10. There is a strong reaction of volumes to uninformative announcements,
depicted by the blue lines on the top two pictures.
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Figure 11: Extra trading volume due to the arrival of new information: the difference between
cumulative (log) trading volumes following a large inventory shock and following an uninformative
event, by year, %.

inventory change and prices do not adjust, we still see intensification of trading activity. Instances
of excessive trading volumes not accompanied by movements in prices have been documented in
the literature before, thus our results reconfirm previous findings.*? However, when the market is
surprised, we see even more active trading: green and black lines representing market responses to
negative and positive surprises are uniformly above the blue line corresponding to uninformative
events. A similar pattern is observed for the reaction of conditional variance and probability of
trading to news.*® Finally, in contrast to returns responses, the volume responses are symmetric:
large negative and large positive surprises cause lead to similar trading intensity.

However, we find considerable variation in dynamic trading patterns over years. Figure 11
summarizes the results. We decided not to display [RFhi for each year; instead we show two
consecutive snapshots of extra cumulative volumes triggered by the arrival of inventory surprise,
taken 30 seconds and again 30 minutes after the report. Black (green) lines correspond to positive
(negative) shocks. When we consider the short-term reactions, for all years and for both contracts,
the lines are above zero, which reflects the previous finding that news arrivals intensify trading on
impact. In contrast, the second row shows the differences across years; in particular, the year 2015
stands out, as surprising inventory shocks triggered lower overall trading. The figure is designed
to illustrate the importance of distinguishing immediate trading reactions from dynamic trading.

From the modeling perspective, it is the effect of inventory news on conditional variance of
returns that triggers the differences across years. When uninformative events cause larger jumps in
conditional variance, we observe more intensive trading over a longer period of time, as conditional
variance is persistent. Overall, we find that modeling trading probability is crucial to understand
and measure the propagation of inventory surprises. Not accounting for time-variability of trading

32Gee Kandel and Pearson (1995) and Banerjee and Kremer (2010)

33For the first futures contract the probability of trading is already close to unity around EIA news reports. Qur
estimates of {c¢,} for the second futures contract imply that the probability of tradings jumps all the way to unity.
For instance, in early years, the probability of trading happens to be on average about 0.6 before the event, but
jumps to 1 immediately after the announcement. Similarly, in 2016, the probability of activity increases from 0.9
to 1. The results are available upon request.
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activity significantly underestimates the total effect of the shocks.

Interpretation of results: implications for disagreement and learning Our results for
the dynamic behavior of trading volumes can be summarized as follows: (i) on impact, trading
activity intensifies irrespective of announcement type, but it is (ii) higher following surprises. In
addition, we document that typically (iii) trading activity is uniformly larger over the first half
hour after the arrival of an inventory surprise. However, sometimes, as in 2015, we observe the
reverse, namely that (iv) the trading activity quickly drops and cumulative trading ends up being
lower.

One explanation for why trading volumes can be decoupled from movements in returns is dis-
agreement among traders that is, agents disagree about the interpretation of public information
or have heterogeneous priors. When news comes, agents revise their beliefs individually, poten-
tially even in opposite directions. As a result, agents can trade and adjust their asset positions
according to their individual changes in beliefs.

Banerjee and Kremer (2010) develop a dynamic model of trade by assuming that investors
differ in their interpretation of public signals. When a public signal arrives, it initially causes a
large disagreement and leads to idiosyncratic trade. The more investors disagree, the larger would
be the immediate volume response. But as investors’ beliefs converge, volume gradually decays to
normal levels.

The framework developed by Banerjee and Kremer (2010) takes the degree of disagreement as
exogenous, and thus puts no restrictions on its initial value, nor on its evolution after the event.
Given this flexibility, most of the empirical facts that we document, including reactions to unin-
formative news and gradual dissipation of trading activity following an event (or autocorrelation
of volumes), can be easily generated by their model. However, the remaining two facts are harder
to replicate and require some extra very strong assumptions on the degree of disagreement. First,
to account for stronger trading in response to large inventory surprises, once has to assume that
oil traders have more extreme interpretations following large inventory shocks. Second, to gen-
erate the atypical trading behavior that we observe in 2015, one has to assume occasional faster
convergence of beliefs following an inventory surprise.

The question remains whether a more microfounded model can generate such specific behavior
of disagreement endogenously. Naturally, disagreement among traders should be driven by their
information acquisition and information processing behavior. Some of the identified properties of
disagreement, such as stronger reactions to inventory surprises, may arise from the state-contingent
information acquisition. The realization of a large inventory shock forces agents to allocate more
attention to process the news, and thus potentially simultaneously triggers larger initial trading
and faster belief convergence.

Applied theory literature has recently made considerable efforts to study dynamic information
acquisition. For example, Banerjee and Breon-Drish (2017) consider information acquisition as
a real option. In their model, the information acquisition decision is a cutoff rule; the agent
chooses to acquire information only when public uncertainty reaches a threshold. When uncertainty
about the asset payoff is sufficiently high, the expected profits from being informed are sufficiently
large. In our case, the arrival of an inventory surprise can increase the uncertainty enough to
trigger information processing, which in turns intensifies trading and simultaneously speeds up the
convergence of beliefs.
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Figure 12: Volume responses to uninformative announcements by contract maturity.

Trading intensity by contract maturity Finally, we compare the trading patterns of contracts
with different maturities. Figure 12 plots the volume response to uninformative announcements
for the first four futures contracts. Volume reaction clearly varies over time. We also see that
the first futures contract stands out from the rest. While the volume response of the first futures
contract monotonically increases over time, speeding up in 2014, the second month contract shows
more variation and a clear downward trend from 2012 to 2014. The same pattern is observed for
the third and forth month contracts. Differential volume reaction suggests some form of market
segmentation. That is, even though average market expectations are formed uniformly across
contracts (as our previous results have shown), revisions of individual beliefs in response to news
are unique for each maturity and evolve uniquely over time. If markets attract different clientele we
might expect differences in information acquisition and processing, and thus differential immediate
volume reactions, as well as differential speeds of volume decaying after the public signal.

We argue that one reason for the lack of uniformity in higher moments is each contract’s
unique exposure to financial innovation. New financial instruments, such as exchange traded
funds, proliferated in the last decade. The flow of investment in these funds varies over time
and reaches significant amounts. However, E'TFs offer exposure only to a limited set of contracts,
usually the most liquid ones. For example, one of the largest ETFs is the United States Oil Fund,
which invests in the first futures contract, and rolls over the entire portfolio about two weeks before
the expiration. Thus, by attracting a unique composition of traders and users of specific strategies
and accommodating their investment needs, the funds facilitate market segmentation. Moreover,
as investment flows to such an instrument fluctuate quite substantially over time, the degree of
market segmentation may vary over time as well.

8 Understanding the recent glut of oil

In this section we illustrate how our methodology can be applied to test existing oil pricing theories.
In particular, we investigate the development of oversupply fears in the US.
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Figure 13: Left panel: Weekly U.S. ending stocks of crude oil excluding SPR (mln barrels, solid
line). Weekly Cushing, Oklahoma ending stocks of crude oil excluding SPR (mln barrels, dashed
line).

Right panel: Monthly OECD commercial crude oil and other liquids inventory (mln barrels).

Structural shift in oversupply beliefs in 2014

First, let us briefly describe the chronology of events. By 2014, US oil production exploded,
reaching almost 9 mln barrels per day, and it was expected to grow even further. In addition,
struggling economies in China and Europe raised doubts that it would be possible to maintain
the same pace of demand growth as before, despite the fact that the oil prices remained high.
However, in July of 2014, the price of oil started to decline. By November the oil price had fallen
by 30%, and the term structure of oil prices became upward sloping. On November 27, 2014,
OPEC announced their decision to maintain production levels, and soon afterwards the price of
oil crashed even further. By the beginning of 2015, oil inventories reached unprecedented levels
and were interpreted as a sign of an immense oil oversupply (see figure 13).

An oversupply of oil soon became considered as the main drive of the extreme movements of
oil prices. But how exactly did oversupply fears develop? Arezki and Blanchard (2015) argue in
favor of a structural shift in market expectations after the OPEC meeting in November of 2014.
The growing oil production and potentially weakening demand had been observed long before
the meeting and had been reflected in falling oil prices. But even though overall oil production
was expected to grow, the market maintained the belief that OPEC producers would adjust, by
cutting production to give way to shale oil producers. A glutted market on which producers would
not be able to market their crude oil was assumed to be an impossibility. However, after the
meeting in November, it became clear that OPEC producers were not willing to sacrifice their
share of production. Hence, not only did the global expectations of the future path of the oil
supply have to be reconsidered, but the possibility of temporary oversupply in the nearest future
became substantial. Early in 2015, this oversupply actually occurred. However, the assumption
was that any oversupply would be short-lived, which was reflected in the upward sloping forward
curve. Basically any oversupply story follows more or less the same pattern.
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Testing the theory

In this section we use our methodology to test oil price theories. The crucial element of Arezki
and Blanchard’s (2015) narrative is a structural shift in market expectations after the OPEC
meeting. The market began viewing oversupply as an actual possibility. Since the OPEC decision,
the market had been constantly watching for signs of oversupply. Any unexpected barrel of oil
in storage could signal the beginning of a period of excess supply. But if traders become more
willing to attribute surprising increases in inventories to increased amounts of excess or unsold oil,
market ezpectations must be revised more strongly in response to inventory shocks. Similarly, as
inventories were rising, the speculative possibilities for smoothing shocks became limited. Thus, the
market response to inventory surprises, especially to positive surprises, should have been sharply
intensified after the OPEC meeting, reflecting a structural shift in expectations.

We search for a structural break in market reactions to news over the time period from Septem-
ber 2014 to the end of March 2015. For each combination of thresholds (dj, d};) in the given range,
we estimate our model and compare the values of the objective function. The overall sample cov-
ers 2013 to 2016.>* Thus, we have approximately two years before and after the break period to
perform a meaningful estimation, but not a long enough period to raise the issues of stationarity.

Our results clearly indicate that the break in the trading pattern, dj;, occurred around the first
week of December 2014. The time of the change is consistent with observed changes in volatility
and intensity of trading as measured by the fraction of intervals with no trading, see Figures 17
and 18. We believe that the break in trading patterns can be attributed to immense monetary
inflows to exchange traded funds, such as the United States Oil Fund, that track short-term crude
oil futures contracts.

In contrast, the break in market response to news occurred much later. To illustrate this,
Figure 14 shows the value of the composite log likelihood function for each value of the threshold
dj. The maximum is achieved for the values of the threshold corresponding to the week of February

3 For robustness, we repeat the exercise for a shorter sample, from 2014 to 2015; the results are similar and are
available upon request.
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Figure 15: Evolution of returns responses to inventory news.

25, 2015.

To allow for more flexibility, as well as to determine more precisely the speed of adjustment, we
utilized the smoothed specification of the transition function as specified in section 5. Figure 15
depicts the estimated evolution of returns reactions to inventory surprises. The returns reactions
to news remained unchanged until the end of 2014. We find neither evidence of a structural shift
in expectations around the OPEC meeting on November, 27 of 2014, nor gradual development of
oversupply fears throughout 2014. Baumeister and Kilian (2016) use a VAR forecasting model for
the real price of oil to show that more than half of the decline in the price of oil was predictable
in real time as of June 2014. Of course, this does not necessarily imply that the market indeed
incorporated that information to update beliefs, however, it suggests that evolution of oversupply
beliefs could have been gradual. In contrast, our results indicate that oversupply fears developed
abruptly in the middle of February of 2015, and importantly, after inventories reached extremely
high levels.?”

Alternative theory

When combined, our results challenge the conventional narrative of the evolution of oversupply
beliefs in 2014. We have found an absence of the effects of inventories on the term structure in
2015, when the storage capacity was believed to be close to exhaustion. We found market responses
to be asymmetric, but the asymmetry goes in the wrong direction relative to the predictions of
standard inventory theory. Finally, we have revealed a market reluctance to believe in oversupply
in 2014. What type of narrative would be consistent with our evidence?

One potential mechanism, which is typically overlooked, is the dramatic inflows of investment
in ETFs tracking oil prices. By attracting a certain clientele with specific trading preferences, ETFs
alter the dynamics of the system. Our results clearly pick that up. However, the effect of ETFs is
not limited to alteration of trading patterns. In addition, when such funds become large enough,
a significant effect of their operations on the term premium can be expected.®® Thus, widening of

35We obtain similar results when we estimate even more flexible specification. The results are available upon

request.
36See Mou, 2012, Hamilton and Wu, 2014 and Selezneva, 2015
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the term structure curve from December of 2014 could have a financial nature, not directly related
to oversupply. But as long as the distant futures prices are significantly higher that the spot price,
physical arbitrage becomes profitable. The owners of storage facilities may purchase oil, put it in
storage and sell in the future at a profit. By performing this speculative transaction, the traders
build up oil inventories. Finally, large amounts of stored oil are wrongly are wrongly considered
to be the basis of an immense oversupply.

The narrative above is a potential story. We do not go as far as to claim to develop a convincing
explanation of the evolution of market beliefs in 2014, nor do we try to argue that oversupply was
not present in 2014. Rather, we believe that more research is needed to improve our understanding
of the oil market conditions in the US in those years, as well as to assess the vulnerability of the
market to financial innovations.

9 Conclusion

The characterization of market beliefs is an important tool in understanding price formations.
We provide a framework that integrates ultra high frequency data into characterization of market
beliefs. Our approach can be used to distinguish between competing theories of price formation,
as any consistent theory that aims to explain the behavior of prices inevitably assumes a certain
evolution of market beliefs, which can then be tested against our empirical evidence.

Recently there has been substantial interest in dynamic information acquisition theory. How-
ever, empirical verification has been limited. The models are predominantly tested either using
survey data or in an experimental setting. At the same time, the finance literature has long been
developing the disagreement theory of trading volumes. We believe that there is a strong link be-
tween these two strands of the literature that is yet to be fully explored. Naturally, disagreement
among traders is driven by information acquisition and the processing decisions of the traders,
eventually reflected in trading volumes. Thus, high frequency modeling of trading volumes has the
potential to bring new insights as well as to allow development of new empirical facts to challenge
and shape the development of information theories. Our paper is a step in this direction.

Our study only examines the oil futures market. However, with very little adjustment, our
methodology can be applied to other commodity markets, and we expect to see similar results.
Using a large cross-section of commodity futures, Gorton et al. (2013) show that high levels of
inventories are associated with an upward sloping futures curve. Our methodology and data allow
us to directly test the mechanism potentially underlying this relationship. We believe that our
results justify the search for an alternative mechanism of the term premium determination.®’

We apply our methodology to understand the unfolding of beliefs in an oversupply of oil in
2014 and early 2015. However, our approach can also be used to understand the perceived market
conditions in 2011, when a WTI-Brent spread occurred. Over many years, two oil benchmarks
have reflected existing supply-demand conditions in the oil market. One, West Texas Intermediate
(WTTI) crude oil has long served as a primary global benchmark, a reference price for oil traders.
However, in 2011, the ability of WTT to serve as a global benchmark was called into question,
when W'TT prices significantly diverged from another benchmark, Brent, representing the European
market. Historically, the two benchmarks traded in line. However, in September of 2011 the WTI-
Brent spread reached more than $25 a barrel. The anomaly was soon resolved, and the spread
became a major manifestation of structural shifts in the oil market. The shale boom in North
Dakota and the rapid growth of Canadian oil production flooded Cushing, Oklahoma. The lack

37See Selezneva (2015) for an example of such a mechanism.
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of pipeline capacity to move oil south from Cushing to the Gulf Coast created a glut of oil in the
Midwest and put significant downward pressure on the price of WTI. The oil glut explanation is
generally accepted in the academic literature (e.g. Kilian (2016), Borenstein and Kellogg (2014),
Kaminski (2014), Fattouh (2011), McRae (2015), Buyuksahin et al. (2013), Liu et al. (2015)) as
well as by government agencies,® global providers of commodities information,??+4? exchanges,*!42
and by the media?® and energy analysts.** Our approach can be used to understand the evolution
of market beliefs in times of extraordinary events. We leave that for future research.
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A Optimality of linear market expectation function

What defines w? To see the intuition behind it, we abstract from the complexities of market trading
and heterogeneity of traders. Denote by z = AInv®'4 the change in inventories to be released by
the ETA. Assume that a representative professional forecaster sequentially observes two signals and
optimally weights them. Let z%5% be the initial signal received by the agent. Once he processes it,
he delivers his expectation to Bloomberg to be published; we denote it as Alnv?PY = E[z]255¢].
Finally, let 24”7 be the API estimate of the inventories, observed by the agent before the public
announcement. Finally, assume that everything is distributed normally, and all disturbances and
x are independent:

x ~ N(0,02),
,BBG _ rT+mn, ne~ N(O)gg)’
APl =g+ €~ N(0,07).
The optimal signal extraction problem with normally distributed disturbances implies

1
E[(L’|ZBBG} —_ . " 0_2/022’BBG
nlYax

Similarly,

where

o 1-1/(1+0%/0?)
T 1= 1/(1+02/02) + 0%/o?

W

The intuition is straightforward. If the API estimate happens to be very precise, that is, if
the noise-to-signal ratio in the API signal, a?/aﬁ, is close to zero, while the survey contains the
error, 0727/02 > 0, then the weight placed on API is close to one, w &~ 1. Agents disregard imprecise
information from the survey. Alternatively, if the initial information received by professional
forecasters is very precise, o7 /02 is close to zero, while the API estimate is noisy, ¢ /02 > 0, then
w = 0, and the APIT signal is disregarded. In sum, higher weight w placed on the API signal reflects
better quality API estimates relative to information available to professional forecasters.

Using our previous notation from the main text, the formula above can be rewritten as

E[AInvF4 AlnvPBY AInvAPT) = wAInvA P! + (1 — w) AlnvPBC,

As we see, the linear specification for market expectation function turns out to be optimal under
the assumed information structure.

B Capturing fat tails

In this section we pay attention to conditional tails and utilize the Student’s ¢ distribution to
capture the shape of the conditional density in the tails more accurately. That is, when trading
occurs, the return r; is drawn from the Student’s ¢ distribution with the shape parameter, degrees
of freedom, defined by v, with the conditional mean and the conditional variance defined as before.
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Figure 16: Capturing fat tails.

Left panel: Estimated weight w of API signal. The solid blue line corresponds to the nearest to
expiration contract, the dashed blue line corresponds to the second month contract. The black
dotted line displays the value w which represents a solution to the simple signal extraction problem.
Right panel: Normalized return reaction to inventory surprises for the first two contracts: solid
line — F1, dashed line — F2.

The shape parameter, v, is estimated to be equal to 5.22 on average for the first month contract,
4.88 for the second, 3.61 for the third, and 2.82 for the fourth. Thus our results indicate fairly fat
tails which are more pronounced for the long maturity contracts.

The estimated values of w are presented in Figure 16 separately for the first two contracts.
In general the values are similar, however with fat tails, the estimates of w fluctuate more. For
example, the highest value is equal to 0.9 in 2016. In 2011, we see a drop to 0.1, however the
total composite function is almost entirely flat for this year for values of omega from 0.05 to 0.4.
Finally, we cannot reject the hypothesis of uniform formation of expectations across contracts for
any year except 2014. For this year, the LR test rejects the null hypothesis at 0.01% confidence
level.

The market response results are generally similar. Figure 16 compares the normalized return
reaction to news for the first two most liquid futures contracts. A strong negative relation is
present (standard errors are not presented in the picture), and the lack of any effect on the term
premium. The only thing that is new here is that we find negative prices movements in response
to uninformative announcements, however, the estimates are not significantly different from zero.

However, Figure 16 also shows that when fat tails are accounted for, our results do not indicate
asymmetry of returns responses. We also find that, if API information is not taken into consider-
ation when modeling market expectations by fixing w at zero, the asymmetry is also not revealed.
Thus, these two assumptions seem to be critical to asymmetry results, which could explain why
the evidence on asymmetry in the literature is mixed.

C Term structure effects of inventory news

Term structure effects of inventory news in 2015 and 2016 In this section we consider
the subsample of 2015 and 2016, and split both calendar years into quarters. For each quarter of
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2015, we analyze trading activity on the markets for the current December contract (CLZ 15), the
next year June contract (CLM 16), and the next year December contract (CLZ 16). Similarly, for
each quarter of 2016, we use the current December contract (CLZ 16), the next year June contract
(CLM 17), and the next year December contract (CLZ 17). We then combine the first quarters
of 2015 and 2016 into one sample and call it ‘Q1’, the second quarters into another sample called
‘Q2” and so on.

The maturity of these contracts differ by quarter. The table below gives further information
about maturities ranges. For example, it shows that when we consider the first quarters, we are
dealing with contracts that have maturity ranging from 11 months to 9 months (the current De-
cember contracts), from 17 months to 15 months (the next year June contracts), and from 23
months to months (the current December contracts):

Maturity at the beginning of the period in months
Fy  Current December Next June Next December

Ql 1 11 17 23
Q2 1 8 14 20
Q3 1 5 11 17
Q5 1 2 8 14

Our identification of market responses to inventory surprises requires the presence of a suffi-
cient number of larger inventory surprises, which can be tricky given our short sample size in this
exercise. The following table shows the number of large inventory surprises of each type per quarter:

T I
Qr 7 1
Q2 2 5
Q3 4 4
Q5 4 4

The returns reaction to inventory surprises are presented in the following table:

F1 Current December* Next June®™ Next December

Panel A: Returns reaction to large positive inventory surprises (1)
QL —0.25 (0.04) —0.24 (0.03) —0.18 (0.07)
Q2 —0.42 (0.09) —0.20 (0.22) - —0.42 (0.13)
Q3  —0.31(0.03)  —0.27(0.03)  —0.23(0.07) —0.20 (0.07)
Q4 —0.35 (0.07) - —0.45 (0.07)  —0.37 (0.17)

Panel B: Returns reaction to large negative inventory surprises (/)
QL™ 0.39 (0.01) 0.35 (0.01) 0.19 (0.03)
Q2 0.43 (0.07) 0.47 (0.10) - 0.35 (0.09)
Q3 0.27(0.11) 0.23 (0.09) 0.11 (0.21)  0.15 (0.11)
Q4 0.59 (0.08) - 0.52 (0.14)  0.56 (0.11)

Standard errors in parenthesis. *In ‘Q4’ we don’t consider current year December contract due to its approaching
expiration. **In ‘Q1’ and ‘Q2’ the trading of the next year June contract is still very limited. ***Only one negative

surprise was recorded over this time.
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As we have seen, some of the quarters have very limited numbers of inventory surprises, so we
repeat the calculations for the enlarged samples, in which we combine quarters:

F1 Current December* Next June®™ Next December
Panel A: Returns reaction to large positive inventory surprises (17)
QL-Q2 —0.32 (0.03)  —0.26 (0.06)  —0.34 (0.08)  —0.27 (0.06)
Q3-Q4  —0.33 (0.03) - —0.44 (0.13)  —0.30 (0.11)
Panel B: Returns reaction to large negative inventory surprises (1)
QL-Q2  0.30 (0.05) 0.37 (0.08) 0.23 (0.19)  0.26 (0.06)
Q3-Q4  0.43 (0.08) - 0.40 (0.12)  0.38 (0.09)

Standard errors in parenthesis. *In ‘Q3—‘Q4’ we do not consider the current year December contract due to its

approaching expiration. **In ‘Q1’ ‘Q2’ the trading of the next year June contract is still very limited.

Term structure effects of inventory news in 2013-2014 The number of large inventory
surprises of each type per quarter:

I+ I
Ql 4 5
Q2 4 4
Q3 6 6

The returns reaction to inventory surprises are presented in the following table:

F1 Current December*
Panel A: Returns reaction to large positive inventory surprises (/)
Q1 —0.08 (0.03) —0.06 (0.04)
Q2 —0.12 (0.03) —0.14 (0.02)
Q3 —0.07 (0.03) —0.05 (0.03)
Panel B: Returns reaction to large negative inventory surprises (1)
Q1 0.12 (0.05) 0.12 (0.06)
Q2 0.08 (0.02) 0.05 (0.02)
Q3 0.15 (0.03) 0.14 (0.03)

Standard errors in parenthesis. *In ‘Q4’ we do not consider the current year December contract due to its approach-

ing expiration.

Term structure effects of inventory news in 2010-2012 Number of large inventory sur-
prises of each type per quarter:

It I
Ql 13 3
Q2 9 4
Q3 9 11

41



The returns reaction to inventory surprises are presented in the following table:

F1 Current December*
Panel A: Returns reaction to large positive inventory surprises (1)
Q1 —0.21 (0.02) —0.16 (0.03)
Q2 —0.20 (0.04) —0.18 (0.03)
Q3 —0.23 (0.04) —0.22 (0.05)
Panel B: Returns reaction to large negative inventory surprises (1)
Q1 0.25 (0.03) 0.00 (0.01)
Q2 0.18 (0.06) 0.12 (0.06)
Q3 0.25 (0.03) 0.22 (0.00)

Standard errors in parenthesis. *In ‘Q4’ we don’t consider current, year December contract due to its approaching

expiration.

D Time variations in trading patterns

Two observations raise concerns about non stationarity, namely, time variation in oil price intensity
of trading. First, Figure 17 shows realized variance estimated using high-frequency returns on the
front-month futures contract. We can see a distinct change in the volatility regime that occurred
at the end of 2014, when volatility increased dramatically and remained high for a long period
of time. An increase in volatility from 2014 has been well documented; what is less known is
the contemporaneous change in trading intensity in the futures market. To demonstrate this, we
calculate the fraction of 5-second intervals with zero traded volumes and present the results for
the first two futures contracts in Figure 18. The figure shows a dramatic drop in trading intensity
in the last few years. If we take the second-month futures contract, the empirical probability of
no-trading over 5-second intervals decreased from 0.6 in 2014, to 0.45 in 2015, and to 0.4 in 2016.
The results suggest the presence of significant changes in the way oil futures are traded since 2014.
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Figure 17: Realized variance, annualized. The blue line - daily realized variance of returns on the
first futures contract. The red line represents a smoothed filtered series (HP filter with standard
smoothing parameter).
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Figure 18: Time variation in probability of trading: fraction of 5-sec intervals with zero traded
volumes.
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Abstrakt

Charakterizujeme utvareni trznich o¢ekavani na ropném trhu kompletnim popisem reakci trhu
na neo¢ekavané zmény zasob ropy. Vyuzivame jedine¢nou sekvenéni povahu zprav o stavu
zasob k identifikaci $ok. Odhadujeme AR-ARCH-ARCHMEM model sdruzené dynamiky
vynost, volatility vynosi a objemu obchodi vdobé vydani zprav S pouzitim
vysokofrekvencnich dat futures kontrakti na ropu. Nas model (i) popisuje nizkou likviditu
kontrakti s dlouhou dobou do splatnosti s pouzitim nizké obchodni aktivity, (ii) zachycuje
kolisani intenzity obchodovani v Case, a (iii) umoziuje strukturalni zmény v dynamice reakci
na nové informace v priabéhu casu. Ukazujeme (i) jednotnou tvorbu ocekavani napfic¢
kontrakty s riznou splatnosti, (ii) silny negativni vztah mezi neo¢ekavanymi zménami zasob
ropy a vynosy, (iii) zadny vliv na vynosovou strukturu, coz naznacuje, zZe ropné Soky jsou
vzdy povazovany za trvalé, a (iv) rozdilnou reakci obchodovanych objemt pro rizné doby do
splatnosti. Demonstrujeme, jakym zpusobem mohou byt nase vysledky pouzity k testovani
teorii o tvorbé ceny ropy, a prispivame k debaté o nedavném nadbytku ropy.
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