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Indeterminacy and Stability in a Modified 
Romer Model: A General Case 

 
Sergey Slobodyan* 

 
CERGE—EI† 

 
Abstract 

 
This paper studies the dynamical properties of an extension of the well—known Romer model of 
endogenous growth introduced by Benhabib, Perli, and Xie (1994). This model differs from the 
Romer model by introducing complementarity of intermediate capital goods. It allows an 
indeterminate steady state for relatively mild degrees of the complementarity. We derive 
necessary and sufficient conditions for the steady state to be interior and strictly positive, which 
extend those discussed in Benhabib, Perli, and Xie (1994). We show that Hopf bifurcation to the 
absolutely stable steady state is impossible and that the steady state is determinate if the model 
parameter values belong to a certain set. For the set of parameter values that allows 
indeterminacy, we demonstrate the possibility of Hopf bifurcation using both analytical and 
numerical approaches. The indeterminate steady state can undergo Hopf bifurcation for a wide 
range of parameter values. 
 

Abstrakt 
 

Tato studie zkoumá dynamické vlastnosti rozšíření známého Romerova modelu endogenního 
růstu poprvé použitého Benhabibem (1994). Tento model se od Romerova liší zavedením 
komplementarity meziproduktů kapitálových statků. To dovoluje i pro relativně malé stupně 
komplementarity neurčitost stacionárního stavu ekonomiky. My odvozujeme nutné a postačující 
podmínky proto, aby stacionární stav byl vnitřním a striktně pozitivním řešením, což rozšiřuje 
podmínky diskutované Behabibem (1994). Ukazujeme, že Hopfova bifurkace k absolutně 
stabilnímu stacionárnímu stavu je nemožná a stacionární stav je determinován pokud parametry 
modelu náleží do určité množiny. Použitím analytických i numerických přístupů ukazujeme pro 
množinu hodnot parametrů, které povolují neurčitost, možnost existence Hopfovy bifurkace. 
Nedeterminovaný stacionární stav může podstoupit Hopfovu bifurkaci pro širokou škálu hodnot 
parametrů. 
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1 Introduction

This paper considers the dynamic properties of a model of endogenous technological

change with complementary intermediate capital goods, introduced by Benhabib,

Perli, and Xie (1994), henceforth BPX. The BPX model extends the well—known

Romer model, (Romer 1990). Uniqueness of the equilibrium trajectory in the Romer

model was studied in several papers. Arnold (2000a, 2000b) show that if the simpli-

fied Romer model (no unskilled labor) has an interior steady state, then this steady

state is locally determinate in both decentralized and centrally planned versions of

the model. Necessary and sufficient conditions for the non—existence of complex

roots implying oscillatory convergence to the steady state were derived.

BPX introduce complementarity of different intermediate capital goods into the

Romer model. They prove that strong enough complementarities might imply an

indeterminate steady state, but they do not derive the necessary and sufficient con-

ditions for this; only numeric results are obtained. Asada, Semmler, and Novak

(1998) study the stability properties of a social planner version of the Romer model

and several modifications of it, including the one introduced by BPX. They also

study numerically the eigenvalue structure of the original decentralized BPX model,

and find Hopf bifurcation points and stable periodic solutions. Finally, Slobodyan

(2002) extends BPX by tightening parameter restrictions necessary to obtain an in-

terior steady state, and studies the stability of the steady state in a simplified BPX

model without unskilled labor.

This paper extends previously obtained results on dynamic properties of the

steady state in a decentralized BPX model, in particular those of Slobodyan (2002).

In Section 2, we present the BXP model as a 3D system of ODE that is slightly

simpler to analyze than the one in BPX. We derive further restrictions on parameter

values necessary to obtain an interior steady state solution, which are not derived

by BPX. This analysis is a streamlined version of that given in Slobodyan (2002).

In Section 3, we show that Hopf bifurcation leading from a determinate steady

state to a completely stable one does not exist, but that an indeterminate steady

state can become absolutely unstable (explosive) through Hopf bifurcation. We

derive (analytically and numerically) parameter values of the bifurcation point in

the latter case. Such a bifurcation can lead to the appearance of a stable limit cycle
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or explosive behavior.

2 BPX Model, Interior Solution

In this Section, we follow BPX in briefly describing the model and deriving the sys-

tem of ODEs. The economy consists of competitive research and final sectors and a

continuum of intermediate good monopolies. The inputs are capital K, knowledge

A, and unskilled (L) and skilled (H) labor. η units of the final good produce one unit

of an intermediate good. Total capital in the economy is given by K = η
R A
0
x(i)di,

where A is the level of knowledge currently available. Final good production tech-

nology is given by

Y = hαLβ(

Z A

0

x(i)
γ
ξ di)ξ,

where γ = 1 − α − β and ξ ≥ 1 is the degree of complementarity. In the original
Romer model ξ equals onr. h is skilled labor employed in the final sector.

In a symmetric equilibrium, where x(i) = x, capital evolves as

·
K = Y − C = η−γKγAξ−γhαLβ − C. (1)

The final sector firms’ demand for intermediate capital goods generates an inverse

demand function, p(j) = γhαLβ
³R A

0
x(i)

γ
ξ di
´ξ−1

x(j)
γ
ξ
−1. Solving profit maximiza-

tion problem of monopolies producing intermediate capital goods results in

r =
γ2η−γ

ξ
Kγ−1Aξ−γhαLβ, (2)

where r is the interest rate. Comparison with the expression for p(j) gives interme-

diate firms’ profits,

π = p(j)x(j)− rηx(j) =
η(ξ − γ)

γ
rx(j). (3)

The production function in the research sector is given by

·
A = δ(H − h)A. (4)

With free entry into the research sector, the price for a new “design” equals the

NPV of profits derived from it, PA(t) =
R∞
0

π(τ) exp
¡
−
R τ
t
r(s)ds)

¢
dτ, which after

differentiating produces
·
PA = rPA − π. (5)
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Equality of skilled labor wage in the research and final sector implies

PA =
αη−γ

δ
KγAξ−γ−1hα−1Lβ. (6)

The maximization problem of the infinitely living representative household with

period utility function U(C) = C1−σ

1−σ gives the last equation of the model,

·
C

C
=

r − ρ

σ
. (7)

Substituting (2) into (1), introducing the new variable q = C
K
, and then plugging

K = ηAx, (6), and (3) into (5), we get

·
q

q
=

r − ρ

σ
− ξ

γ2
r + q, (8)

·
K

K
=

ξ

γ2
r − q, (9)

·
PA

PA
= r − δγ(ξ − γ)

αξ
h = r − δ

Λ
h, (10)

where Λ is given by αξ
γ(ξ−γ) . Taking logs in (6) and (2), differentiating with respect to

time, equating the former with (10) and substituting (9) into the latter, and solving

the resulting equations for
·
r
r
and

·
h
h
, we get the following system of ODE:

(1− α)

·
r

r
= (ξ − 1 + β)δ(H − h)− β(

ξ

γ2
r − q)− α(r − δ

Λ
h), (11a)

(1− α)

·
h

h
= (ξ − 1− γ)δ(H − h) + γ(

ξ

γ2
r − q)− (r − δ

Λ
h), (11b)

·
q

q
=

r − ρ

σ
− ξ

γ2
r + q. (11c)

This system is equivalent to the system of (14)-(16) in BXP, but is easier to

analyze because only simple polynomials are present on the right hand side. The

only difference from BXP is our variable r ∼ yγ−1hα.1 As long as y 6= 0, h 6= 0,

(y, h, q)→(r, h, q) is a smooth change of variables, which locally preserves topological
1A does not influence steady state or stability of (11). One thus could drop (4) from further

consideration, as is also done in BXP. Steady state in r, h, and q, combined with constant growth
rate of A, corresponds to a Balanced Growth Path in original variables of the model, C, K, A,
and h. Note that r

hα is proportional to KA
ξ−γ
γ−1 and is thus a pre—determined constant. Therefore,

there are only 2 non—predetermined variables: q and h.
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properties of the flow defined by (14)-(16) in BXP around the hyperbolic fixed point.

Therefore, local stability properties of (11) are equivalent to that of (14)-(16) in BXP

as long as the fixed point is hyperbolic.2

The unique non—zero solution of (11) is given by a triple (h∗, r∗, q∗), where

h∗ =
Λ

δ

δH[σ(ξ − γ)− (ξ − 1)] + ρ(1− γ)

Λ[σ(ξ − γ)− (ξ − 1)] + (1− γ)
, (12a)

r∗ =
1

1− 1
σ

∙
δ

Λ
h∗ − δ(H − h∗)− ρ

σ

¸
, σ 6= 1 (12b)

q∗ =

µ
ξ

γ2
− 1

σ

¶
r∗ +

ρ

σ
. (12c)

There are several necessary conditions that need to be satisfied.3 First, the vari-

ables (r, h, q) are by construction positive, therefore the steady state values should

be positive. Second, h∗ should be less than the total amount of the skilled labor,

H. Third, the household’s utility should be finite along the BGP. And fourth, the

transversality condition should hold at the steady state. Derivations given in Ap-

pendix A allow us to put bounds on the “good” sets in the parameter space. They

are tighter than those derived in BPX.

Claim 1 The model parameters belonging to the set Θ1 or Θ2 is a necessary and

sufficient condition for the system (11) to have an interior BGP solution along which

a household’s utility integral converges and the transversality condition holds, where

Θ1 =

⎧⎨⎩ δH [σ(ξ − γ)− (ξ − 1)] + ρ(1− γ) < 0
ρ > δ

Λ
H

(1− σ) (ξ − γ)δH − ρ(1− γ)(1 + Λ) > 0

⎫⎬⎭ ,

Θ2 =

⎧⎨⎩ δH [σ(ξ − γ)− (ξ − 1)] + ρ(1− γ) > 0
ρ < δ

Λ
H

(1− σ) (ξ − γ)δH − ρ(1− γ)(1 + Λ) < 0

⎫⎬⎭ .

2To be more precise, the flows defined by (14)—(16) in BXP and by (11) here are topologically
conjugate in the sense of Katok and Hasselblatt (1995, Definitions 2.2.1 and 2.3.1): two flows
ϕ and ψ are topologically conjugate if there exists a homeomorphism f such that ϕ = f ◦ ψ ◦
f−1. f maps orbits of ϕ into orbits of ψ. As long as y 6= 0, h 6= 0, the change of variables
(y, h, q)→(r, h, q) mapping orbits of (14)—(16) in BXP into orbits of (11) is a homeomorphism.
By the Hartman—Grobman theorem, nonlinear flow is locally topologically conjugate to its linear
part in a neighborhood of a hyperbolic fixed point; see, for example, Katok and Hasselblatt (1995,
Theorem 6.3.1). Topological conjugacy is transitive. Therefore, both considered flows are locally
conjugate to the linear part of one of them in a neighborhood of a hyperbolic fixed point. In
particular, indeterminacy of the fixed point with respect to one flow implies indeterminacy with
respect to the other, as long as the fixed point is hyperbolic.

3The logic of the analysis follows that in Arnold (2000b).
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The sets Θ1 and Θ2 have a very simple graphical representation. The three

equations defining them are straight lines in
¡

ρ
δH

, σ
¢
coordinates:

σ =
ξ − 1
ξ − γ

− 1− γ

ξ − γ
· ρ

δH
, (13a)

ρ

δH
=

1

Λ
, (13b)

σ = 1− 1− γ

ξ − γ
(1 + Λ) · ρ

δH
. (13c)

The set Θ1(Θ2) lies below (above) line (13a), to the right (left) of the (13b), and

below (above) line (13c). All three lines intersect in one point, O = ( 1
Λ
,
ξ−1−1−γ

Λ

ξ−γ ),

which is located on the σ axis when ξ − 1− 1−γ
Λ
= 0. This quadratic in ξ equation

has a unique solution ξ∗(α, γ) for ξ > 1. When ξ< ξ∗(α, γ), the point O lies below

the σ axis, and Θ1 does not contain economically meaningful points with σ > 0.

The maximal value of σ in Θ1 is given by

σmax =
ξ − 1− 1−γ

Λ

ξ − γ
,

a function of ξ, α, and γ. The cases ξ ≷ ξ∗(α, γ) are presented in Figure 1: (13c) is

dashed, and line (13a) solid.

One should note that in the set Θ1 the steady state exhibits some counterin-

tuitive properties. All growth rates in the model are proportional to δ (H − h∗) =
(δH−Λρ)(1−γ)
ΛΨ+(1−γ) . In Θ1, ΛΨ + (1 − γ) < 0, and the model is characterized by an in-

verse scale effect: growth rates fall as the total amount of skilled labor H increases.

Growth rates also fall when ρ decreases (agents become more patient).

3 Stability of the Steady State

Complete characterization of the model’s dynamics is difficult. We concentrate

on Hopf bifurcation – passing of the imaginary axis by two complex conjugate

eigenvalues with non—zero speed. The importance of the possibility (or impossibility)

of the Hopf bifurcation is clear from the following consideration. Start from a saddle

path stable steady state (2 positive, 1 negative eigenvalue). A Hopf bifurcation then

means that all the eigenvalues become negative and the steady state is absolutely

stable (indeterminate). Any choice of controls selects a trajectory converging to the

steady state. On the other hand, if the steady state initially was indeterminate (1
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Figure 1: Sets in the parameter space that guarantee interior steady state and finite
utility

positive, 2 negative eigenvalues), a Hopf bifurcation creates an absolutely unstable

steady state.4 We show that in the BXP model the first situation is impossible,

while the second could happen for low enough β.5

Linearize (11) near (r∗, h∗, q∗) to get the steady state Jacobian:

J∗ =

⎡⎢⎣ − r∗

1−α

³
α+ β ξ

γ2

´
δ

1−αr
∗ ¡α

Λ
− (ξ − 1 + β)

¢
β
1−αr

∗

1
1−αh

∗( ξ
γ
− 1) δ

1−αh
∗( 1

Λ
− (ξ − 1− γ)) − γ

1−αh
∗

q∗( 1
σ
− ξ

γ2
) 0 q∗

⎤⎥⎦ . (14)

In the discussion below we need expressions for det(J∗) and Tr(J∗). The determi-

nant of the steady state Jacobian was calculated in BXP. Rewriting it using this

paper’s variables, we get

det(J∗) = − r∗q∗δh∗

(1− α)σΛ
{Λ [σ (ξ − γ)− (ξ − 1)] + 1− γ} . (15)

4This might imply either divergent behavior or the existence of a stable limit cycle, in which
case the Balanced Growth Path becomes an indeterminate Balanced Growth Cycle. Numerical
results in Asada, Semmler, and Novak (1998) indicate that a stable (indeterminate) limit cycle
tends to appear.

5Slobodyan (2002) considered the case β = 0, in which case Hopf bifurcation creating an
unstable steady state is always possible.
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The expression in figure brackets is positive (negative) if the model parameters are

in Θ2 (Θ1) (see Appendix A) and therefore det(J∗) < (>)0 in Θ2(Θ1). Calculations

in Appendix B demonstrate that trace(J∗) > 0 in both Θ1 and Θ2.

By the Routh—Hurwitz theorem, the number of positive eigenvalues of a 3 × 3
matrix A equals the number of sign changes inµ

−1, Tr(A), −BA+
det(A)

Tr(A)
, det(A)

¶
,

where BA is the sum of 2nd order minors. See Gantmacher (1960) for the proof.

We consider two special cases: the model parameters belong to Θ2, and specific

lines in set Θ1.

3.1 Set Θ2

In this case Tr(J∗) > 0, det(J∗) < 0, and the sequence of signs becomes (−,+, ?,−).
The only possibility is thus 2 positive eigenvalues and 1 negative. The interior steady

state is determinate, or saddle path stable, in the whole Θ2.

Claim 2 If the model parameters belong to set Θ2, then the unique interior steady

state is determinate. No Hopf bifurcations are possible.

Because the stable manifold is one—dimensional, we can be sure that for initial

conditions in a small neighborhood of (r∗, h∗, q∗) convergence to the steady state

of (11) is monotonic. No oscillatory convergence is possible. Using the inverse

transformation of variables (r, h, q)→(y, h, q)=((rh−α)
1

γ−1 , h, q), one could uniquely

determine the values of initial conditions that put the system (14)—(16) in BXP onto

the stable manifold.

3.2 Boundaries of Set Θ1

When set Θ1 is not empty, its boundaries are given by straight lines (13b), (13c),

and (σ = 0). For low enough β, there is a Hopf bifurcation point on (13b) which

splits this boundary into 2 parts: 1 positive eigenvalue below it, and 3 above it

and below the point O, where the steady state is not unique. There might exist a

bifurcation point on (13c), depending on parameter values. One thus expects a line
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of Hopf bifurcation points, such as the line of stars in Figure 1. This line is likely

converge to O, which is indeed the behavior confirmed numerically.6

In Θ1, det(J
∗) > 0, and the sign sequence is (−,+, ?,+). Therefore, −BA+ det

Tr
=

0 is equivalent to the Hopf bifurcation. When ρ
δH

= 1
Λ
, (12) gives (r∗, h∗, q∗) =³

ρ,H, ξ
γ2
ρ
´
. The trace equals ρ

³
1 + ξ

γ
+ Λ

1−α

´
> 0, see (25). From (26), we get

BA =
ρ2ξ

(1− α) γ
×
½
1 + Λ− α− 1

γ
(α+

1− α− γ

σ
)

¾
.

Condition BA = det
Tr
then implies

σHopf =

1−α−γ
γ

+ Λ(ξ−1)−1+γ
(1−α)(1+ξ/γ)+Λ

1 + Λ− α− α
γ
+ Λ(ξ−γ)

(1−α)(1+ξ/γ)+Λ

. (16)

The unique solution is positive if Θ1 is not empty.7 It is easy to show that for β = 0

the solution belongs to Θ1. As β increases from zero to some βcrit, σHopf approaches

from below and then exceeds σmax; thus, there are no Hopf bifurcations in Θ1 for

β ≥ βcrit.
8 Equation σHopf = σmax is a complicated quadratic equation in βcrit.

The boundary (13c) might contain Hopf bifurcation points. Calculations in Ap-

pendix C show that in this case BA is given by

ρ

1− σ

δ(H − h∗)(ξ − γ)

(1− α) γ

"
1 + Λ−

α+ β
σ

1− γ

µ
ξ

γ
− γ

¶#
.

Therefore, if the term in square brackets is negative, there is no solution and no

bifurcation point on (13c) in Θ1. If this term is positive, there might exist a solution

that belongs to Θ1. For β = 0, one could show that the condition (ξ− γ)γ(1+ γ) <

ξ(ξ − 1) rules out bifurcation points on (13c) in Θ1.9

Claim 3 If the model parameters are in Θ1, the positive steady state is either inde-

terminate or absolutely unstable. The latter case is possible for sufficiently low β.
6It is easy to show that there are no bifurcation points at the “external” boundary (13a) or in

the neighborhood of (σ = 0), therefore the bifurcation point line that starts at (13b) is likely to end
up at O. Note that only at (13a) is our change of variables (y, h, q)→(r, h, q) not a homeorphism
in the neighborhood of a fixed point.

7σmax > 0 implies Λ(ξ − 1)− (1− γ) > 0, and 1 + Λ− α− α
γ = 1− α+ α γ

ξ−γ > 0.
8σHopf >σmax does not imply presense of a Hopf bifurcation in Θ2, because in this set the

condition BA = det
trace is not equivalent to the Hopf bifurcation, as shown in Claim 2.

9If β = 0, the condition which guarantees that the set Θ1 is not empty, σmax > 0 can be written
as (ξ − γ)γ < ξ(ξ − 1). Therefore, presence or absence of a bifurcation point on (13c) depends on
the values of ξ and γ, see Slobodyan (2002). For β > 0, the area of (ξ, γ) space compatible with
Hopf bifurcation point on (13c) shrinks and eventually disappears.
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γ ξ ρ/δ δ,% ρ,% σ h∗,% gA,% gC ,%
0.6 2.7 1.752 2.279 3.993 0.319 99.81 0.004 0.023
0.6 2.7 1.763 2.233 3.936 0.329 98.35 0.037 0.193
0.6 2.7 1.790 2.042 3.656 0.385 91.67 0.170 0.894
0.6 2.7 1.785 1.960 3.499 0.419 88.37 0.228 1.196
0.6 2.7 1.763 1.617 3.313 0.460 84.88 0.284 1.492

Table 1: Hopf bifurcation boundary r∗ = 4%, SK = 25%, parameters in Θ1, β = α/2

Transformation of the indeterminate steady state into the absolutely unstable one

occurs through Hopf bifurcation. Hopf bifurcation points exist in the neighborhood of

a point of Θ1 where
ρ
δH
= 1

Λ
and σ is given by (16). Boundary (13c) might contain

bifurcation points if β = 0 and (ξ − γ)γ(1 + γ) > ξ(ξ − 1).

The above Claim should be understood to make no statement regarding point O,

where multiple steady states exist, and the simple analysis used in this paper cannot

be applied. Note that our analytically constructed example of a Hopf bifurcation

corresponds to h∗ = H and zero growth rates of A, consumption, and capital.

3.3 Hopf Bifurcation Boundary, Numerical Analysis

A numerical search was conducted in the space (σ, ξ, γ, ρ
δH

, δ) of the model parame-

ters. Following BXP, we set scaling parameter H equal to 1, imposed restriction

β = α/2, fixed the steady state interest rate r∗ at 4% and the capital share at

25%.10 To generate numerical results, we selected γ=0.6(0.549), which corresponds

to ξ=2.7(2.0). The problem of finding the Hopf bifurcation boundary is thus reduced

to solving a system of two nonlinear equations11 in three variables: δ, ρ/δ, and σ. A

one—dimensional curve of solutions is plotted as a dotted line in Figure 1. Some of

the resulting parameter vectors plus steady state values of h∗ (share of skilled labor

in manufacturing) and growth rates for knowledge and consumption, gA and gC , are

presented in Table 1.

Note the following features of our results. First, no Hopf bifurcation exists when

ξ = 2 (β = 0.15 exceeds βcrit). For ξ = 2.7, the locus of Hopf bifurcation points in

( ρ
δH

, σ) space contains two branches, one starting on (13b), another projecting from

10Share of capital SK equals γ2/ξ
1−γ+γ2/ξ . Fixing it imposes a functional dependence between ξ

and γ.
11r∗ = 0.04 and BA = det(J∗)

trace(J∗) .
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O, as suggested previously. The two branches merge, creating a compact region

where the steady state is absolutely unstable, but this region is very small. Second,

the upper branch has reasonable growth rates, with consumption growing at 1.2 to

1.5 percent and 10÷ 15% of human capital allocated to production of a final good

(note that all unskilled labor is used to produce the final good). Third, for relatively

high values of σ close to σmax we observe both indeterminate and explosive steady

state.

4 Conclusion

This paper contains two contributions. First, we provided necessary and sufficient

conditions on the model parameters (sets Θ1 and Θ2) under which the extended

Romer model, described by BPX, has an interior positive steady state with finite

lifetime utility of the representative consumer. The steady state in Θ1 demonstrates

an inverse scale effect: growth rate of the economy falls as its size increases. Growth

rate also falls as agents become more patient.

Second, we studied stability of the steady state in the BPX model. The steady

state is determinate in Θ2. We calculated σmax, the maximum value of σ which is

compatible with Θ1 and the indeterminate steady state. The indeterminate steady

state in Θ1 can become absolutely unstable through Hopf bifurcation if unskilled

labor is not too important (β is low). We analytically derived coordinates of the Hopf

bifurcation point in one special case12 and characterized the form of the bifurcation

boundary, which separates the “indeterminate” subset of Θ1 from the “absolutely

unstable” one. Finally, we numerically constructed the Hopf bifurcation boundary.

Both indeterminacy and absolute instability require rather high values of in-

tertemporal elasticity of substitution of consumption. The other parameter values

and implied growth rates necessary to generate either of these stability regimes are

reasonable.
12This special case is not intended to be realistic: as all human capital is spent in R&D, there

is no growth.
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A Sets Θ1 and Θ2.

Consider constraints h∗ > 0 and H − h∗ > 0. Denote Ψ = [σ(ξ − γ)− (ξ − 1)].
Given that h∗ = Λ

δ
δHΨ+ρ(1−γ)
ΛΨ+(1−γ) , δ (H − h∗) = (δH−Λρ)(1−γ)

ΛΨ+(1−γ) , and Λ is a positive number,

one of the two cases must be true:

δHΨ+ ρ(1− γ) < 0, δHΨ+ ρ(1− γ) > 0,
Θ1 : ΛΨ+ (1− γ) < 0, or Θ2 : ΛΨ+ (1− γ) > 0,

ρ > δ
Λ
H. ρ < δ

Λ
H.

(17)

If Ψ > 0, then δH − Λρ > 0 satisfies both h∗ > 0 and H − h∗ > 0. Positive Ψ

is thus observed only in Θ2. Consider now negative Ψ. In the Θ1 case, 1st and 3rd

lines of (17) imply the 2nd: 0 > δHΨ + ρ(1 − γ) > δH
Λ
[ΛΨ+ (1− γ)]. Similarly,
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in Θ2, ΛΨ + (1 − γ) > 0 is satisfied automatically given 1st and 3rd lines are true:

0 < δHΨ+ ρ(1− γ) < ρ [ΛΨ+ (1− γ)] . Dropping 2nd lines of (17) gives the sets of

model parameters Θ1 and Θ2 (equivalent to those derived by BPX) which guarantee

that h∗ > 0 and H − h∗ > 0:

Θ1 =

½
δH [σ(ξ − γ)− (ξ − 1)] + ρ(1− γ) < 0 and ρ >

δ

Λ
H

¾
,

Θ2 =

½
δH [σ(ξ − γ)− (ξ − 1)] + ρ(1− γ) > 0 and ρ <

δ

Λ
H

¾
.

Consider now r∗. Along the BGP, r, h, and q are constant, and A grows with

rate δ(H − h∗). Interest rate r is proportional to Kγ−1Aξ−γ, therefore the capital

growth rate is given by δ(H − h∗) ξ−γ
1−γ . Constancy of q =

C
K
means that C grows

with the same rate as K, g∗C = δ(H − h∗) ξ−γ
1−γ . (7) then implies r

∗ = ρ+ σg∗C > 0 as

long as g∗C ≥ 0, which is satisfied in sets Θ1 and Θ2 together with their boundaries.

The next step is to ensure that the household utility remains finite. The utility is

given by U =
∞R
0

C1−σ

1−σ exp(−ρt)dt. Given g∗C = δ(H − h∗) ξ−γ
1−γ , the following condition

ensures convergence:

(1− σ) δ(H − h∗)
ξ − γ

1− γ
− ρ < 0. (18)

When the model parameters are in {Θ1,Θ2} and σ ≥ 1, (18) is trivially satisfied.
However, it provides an additional constraint on the model parameters when σ < 1:

after substitution of (12a) into (18) and simplifying, we obtain

(1− σ) (ξ − γ)δH − ρ(1− γ)(1 + Λ)

ΛΨ+ (1− γ)
< 0. (19)

Finiteness of the utility integral also implies that lim
t→∞

C−σK exp(−ρt) = 0 (the

transversality condition holds), as both C and K grow at the same rate, and TVC

is thus equivalent to (1− σ) δ(H − h∗) ξ−γ
1−γ − ρ < 0 which is exactly (18).

Finally, we have to check the positivity of q∗ =
¡
ξ/γ2 − 1

σ

¢
r∗+ ρ

σ
. If ξ/γ2− 1

σ
> 0,

r∗ > 0 implies q∗ is positive. If ξ/γ2− 1
σ
< 0 (this is possible if σ < 1), use (23) and

(18) to get

q∗ =
ξρ

γ2
−
ξ/γ2 − 1

σ

1− 1
σ

(1− σ) δ(H −h∗)
ξ − γ

1− γ
>
1− σ

σ
δ(H −h∗)

ξ − γ

1− γ
· ξ/γ

2 − 1
1
σ
− 1 > 0.

(20)
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B Calculation of trace

Trace of (11) is given by

−α+ βξ/γ2

1− α
r∗ +

δ

1− α
h∗(1/Λ− (ξ − 1− γ)) + q∗. (21)

Rewrite (12a) and (12b) as

δ

Λ
h∗ = δ(H − h∗)

[σ(ξ − γ)− (ξ − 1)]
1− γ

+ ρ, (22)

r∗ =
1

1− 1
σ

∙
ρ

µ
1− 1

σ

¶
+ δ(H − h∗)

µ
Ψ

1− γ
− 1
¶¸

. (23)

Plug (22), (23) and (20) into the expression for trace and collect the terms at ρ and

δ(H − h∗) to get

ρ

∙
ξ/γ

1− α
− Λ (ξ − 1− γ)− 1

1− α
− α

1− α

¸
+ δ(H − h∗)×(

(1/Λ− (ξ − 1− γ)) ΨΛ
(1−α)(1−γ) −

ξ/γ2−1/σ
1−1/σ (1− σ) ξ−γ

1−γ−
− α+βξ/γ2

(1−α)(1−γ)
1

1−1/σ (Ψ− (1− γ))

)
. (24)

Recalling that Λ = αξ
γ(ξ−γ) , the coefficient multiplying ρ can be simplified to ξ/γ +

Λ/ (1− α) + 1. Replacing Ψ with σ(ξ − γ)− (ξ − 1), the sum of the last two terms
in the figure brackets above is given by −σ ξ−γ

1−γ

³
1
σ
+ α−ξ/γ

1−α

´
. Summing with the first

term, one gets

1

(1− α) (1− γ)
×
½
Ψ

µ
Λ+ 1− αξ

γ

¶
− σ(ξ − γ)

∙
1− α

σ
+ α− ξ

γ

¸¾
=

1

(1− α) (1− γ)
×
(

Ψ
h
Λ+ (1− α)

³
1 + ξ

γ

´i
+ (ξ − 1) ( ξ

γ
− α)−

(ξ − γ) (1− α)

)
.

Expression for trace(J∗) thus becomes

ρ

µ
ξ

γ
+

Λ

1− α
+ 1

¶
+

δ(H − h∗)

(1− α) (1− γ)

⎧⎨⎩ Ψ
h
Λ+ (1− α)

³
1 + ξ

γ

´i
+

(ξ − 1)
³
ξ
γ
− α

´
− (ξ − γ) (1− α)

⎫⎬⎭ .

(25)

Note that the first term is strictly positive for ρ > 0, and δ(H−h∗)
(1−α)(1−γ) ≥ 0. Consider

the expression in figure brackets for σ ≥ 1. At σ = 1, it is positive:

(1− α)

∙
(1− γ)(1 +

ξ

γ
)− (ξ − γ)

¸
+ (1− γ)Λ+ (ξ − 1)( ξ

γ
− α) >

(1− α)

µ
1 + ξ

µ
1

γ
− 1
¶¶

> 0.
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It increases in σ: its derivative w.r.t. σ equals (ξ − γ) [Λ+ (1− α) (1 + ξ/γ)] > 0.

The whole trace(J∗) is thus positive.

Consider now the case σ < 1. In this case (18) is not moot for the interior steady

state, and ρ > (1− σ) δ(H − h∗) ξ−γ
1−γ . Substitute this inequality into (25) and after

simplification obtain

trace(J∗) >
δ(H − h∗)

(1− α) (1− γ)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1− σ)(ξ − γ)

h³
1 + ξ

γ

´
(1− α) + Λ

i
+

Ψ
h
Λ+ (1− α)

³
1 + ξ

γ

´i
+

(ξ − 1)
³
ξ
γ
− α

´
− (ξ − γ) (1− α)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

δ(H − h∗)

(1− α) (1− γ)

(
(ξ − γ)

³
Λ+ ξ

γ
− α ξ

γ

´
+

(ξ − 1)(−1− Λ+ α ξ
γ

)

=
δ(H − h∗)

γ(1− γ)

½∙
ξ − γ + α(1− γ)

µ
1

ξ − γ
− 1
¶¸

ξ

γ
− (ξ − 1)

¾
.

The expression in square brackets in the last line is always positive: it is greater

than ξ−1+α(1−γ)/ (ξ − γ) . Therefore, the expression in figure brackets is greater

than
h
ξ − γ + α(1− γ)

³
1

ξ−γ − 1
´i
− (ξ − 1) = (1− γ)

h
1 + α

³
1

ξ−γ − 1
´i

> 0. As a

result, trace(J∗) > 0 when σ < 1, and thus everywhere in the interior steady state,

whenever the parameters are in set Θ1 or Θ2.

C Calculation of BA

The sum of 2nd order minors of (14) can be written as

BA =

(
−δh∗

Λ
r∗

(1−α)2
ξ
γ
1−α
γ
[1− γ(1− α)− Λ(ξ − 1)]+

+ q∗

1−α
©
δh∗

Λ
[1− Λ(ξ − 1− γ)]− r∗(α+ β

σ
)
ª )

(26)

At line (13a), (18) holds with equality. (12) then gives δh∗

Λ
= δ(H −h∗), r∗ = ρ

1−σ =

δ(H − h∗) ξ−γ
1−γ , and q∗ = ξ/γ2−1

1−σ ρ. The second line becomes

q∗

1− α
δ(H − h∗)

½
1− Λ(ξ − 1− γ)− ξ − γ

1− γ
(α+

β

σ
)

¾
.
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Combining the first and the second line, one gets

BA = −δ(H − h∗)

1− α

ρ

1− σ

ξ

γ2
[1− γ(1− α)− Λ(ξ − 1)] +

+
ξ/γ2 − 1
1− σ

ρ

1− α
δ(H − h∗)

∙
1− Λ(ξ − 1− γ)− ξ − γ

1− γ
(α+

β

σ
)

¸
=

δ(H − h∗)

1− α

ρ

1− σ

(
Λ(ξ − γ)− (1 + Λ) + ξ−γ

1−γ (α+
β
σ
)+

+ ξ
γ2

h
(γΛ+ γ(1− α)− ξ−γ

1−γ (α+
β
σ
))
i ) =

=
δ(H − h∗)

(1− α) γ

ρ

1− σ

½
(1 + Λ)(ξ − γ)− ξ − γ

1− γ

µ
α+

β

σ

¶µ
ξ

γ
− γ

¶¾
.
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