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Abstract

A new and easily applicable method for estimating risk neutral distributions (RND)
implied by American futures options is proposed. It amounts to inverting the Barone-
Adesi and Whaley method (1987) (BAW method) to get the BAW implied volatility smile.
Extensive empirical tests show that the BAW smile is equivalent to the volatility smile
implied by corresponding European options. Therefore, the procedure leads to a legitimate
RND estimation method. Further, the investigation of the currency options traded on the
Chicago Mercantile Exchange and OTC markets in parallel provides us with insights on the
structure and interaction of the two markets. Unequally distributed liquidity in the OTC
market seems to lead to price distortions and an ensuing interesting ‘ghost-like’ shape of
the RND density implied by CME options. Finally, using the empirical results, we propose
a parsimonious generalisation of the existing methods for estimating volatility smiles from
OTC options. A single free parameter signi…cantly improves the …t.
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1 Introduction and summary
Risk neutral distributions1 summarise much of the available information associated with market prices
and therefore they are attractive for market, academic and central bank economists. As Bliss and
Panigirtzoglou (2000) note, RNDs estimated from liquid assets may be used by market participants for
pricing exotic derivatives. Further, from the point of view of the central bank, option markets provide
information in addition to that provided by spot and futures markets, and implied risk neutral distri-
butions represent a convenient tool for interpreting this additional information. Clews, Panigirtzoglou
and Proudman (2000) describe the methods used at the Bank of England for estimating distributions
implied by interest rate futures, which enter as a regular input at its Monetary Policy Committee brief-
ings. At other central banks, RNDs are estimated from currency options and used for monitoring the
foreign exchange market, for example, at the Bank of Canada or the Czech National Bank.

Next, due to the forward-looking nature of option prices, accurate estimates of implied distributions
might arguably enhance VaR modelling. There is an increasing amount of literature pointing to the
shortcomings of risk modelling based on the assumption that market price data follow a stochastic
process which only depends on past observations. (e.g. Daníelsson (2000), Ahn et. al. (1999), Artzner et.
al. (1999)). On the other hand, empirical evidence suggests that option-based measures of uncertainty
are a better predictor of future volatility of the underlying asset than statistical time-series models.
Christensen and Prabhala (1998) o¤er such evidence for S&P index options; Jorion (1995) for currency
options for major currency pairs; and Bouc and Cincibuch (2001) for Czech koruna options. The
question whether options also carry useful information about the fat-tailedness of the distribution of
future assets’ returns and about other deviations from lognormality is an important one from the risk
management point of view. And indeed, the …rst step to answering such a question is to have a reliable
estimate of the risk neutral distribution implied by the option prices.

The results presented in this article are threefold. First, we discuss a new method for estimating risk
neutral distributions (RND) implied by American futures options. In contrast to other methods that
utilise lower and upper bounds for the prices of American options, this method amounts to inverting
the Barone-Adesi and Whaley method (1987) (BAW method)2 to get the BAW implied volatility from
the option prices and then approximating the BAW volatility smile with the weighted smoothing spline.
Using the full history of yen3 futures options traded on the Chicago Mercantile Exchange (CME) and
comparing them with relevant option prices from the interbank over-the-counter (OTC) market4, we
found good support for the hypothesis that the BAW volatility implied by a American futures option
does not di¤er signi…cantly from the Black-Scholes volatility implied by the price of the European
option with the same exercise price and maturity. Further and more importantly, we found that BAW
volatilities derived from a pair of put and call CME options with the same exercise price are very
close to each other. Indeed, the model independent and arbitrage based put-call parity stipulates that
Black-Scholes volatilities implied by European puts and calls with the same exercise price are equal.
Therefore, we argue that the BAW inversion leads to an appropriate ‘European’ volatility smile and
that the approach is a legitimate RND estimation method. The method is numerically stable and easy
to apply, and it circumvents convergence problems often encountered with parametric methods.

Second, by investigating the CME and OTC markets in parallel, we gained insight on the structure
and interaction of the two markets. Intensive arbitrage seems to take place more for certain exercise
prices than for others, which may be explained by the varying OTC liquidity over the price space. It
leads to price distortions and an ensuing interesting ‘ghost-like’ shape of the RND density implied by
CME options.

Third, using these empirical results, we show how it is possible to improve RND estimation from a
low number of OTC option prices. In the literature, two quadratic extrapolation methods have been
suggested, but they either break the non-arbitrage constraints imposed on the volatility function or
they do not …t well the observed CME data. To overcome this problem, we suggest a parsimonious
generalisation of these methods, which signi…cantly improves the …t.

An improved way of estimating foreign exchange RNDs from the OTC market is useful, because
data from this market have several convenient features from the practical point of view. In general, the
OTC FX market is quite deep, and contrary to exchange traded options, it exists for most currencies.
In addition, OTC quotes are usually available for …xed maturities. However, it is often the case that
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only a limited number of benchmark exercise prices are readily accessible5 from the OTC market and
therefore some extrapolation has to be made. In essence, we enhance this extrapolation by information
from CME prices.

In the next section the equivalence between estimating the volatility smile and risk neutral distri-
bution is established, and the methods of estimating RNDs are classi…ed according to their generality.
The third and fourth sections present the method for estimating RNDs from American futures options,
and the …fth describes data and estimation results. In the sixth section, interaction between the OTC
market and CME is discussed. Methodology improvements for estimating RNDs from OTC data are
proposed in the seventh section. The eighth section provides conclusions.

2 Classi…cation of methods for estimating RNDs from Euro-
pean options

Under the assumption of no arbitrage and frictionless markets, the price of a traded security can be
expressed as an expected discounted security payo¤; the expectation is taken with respect to an appro-
priate risk-neutral density f (Cox, Ingersoll and Ross (1976), Ross (1976)). For European call option
price c with strike X and maturity T , this result is formalised as

c (S;X; r; T ) = e¡rT
Z 1

0
max (ST ¡ X; 0) f(ST )dST ; (1)

where r and S denote the appropriate domestic interest rate and the current spot price and ST the
random spot price at the option’s maturity T . Formula (1) may be then understood as a de…nition of
risk neutral density. Breeden and Litzenberger (1978) showed that if the risk neutral distribution is
continuous, its discounted density is equal to the second derivative of the European call option price
with respect to the strike price:

f (X) = erT @2

@X2 c (S;X; r; T ) : (2)

Although it is well established that the assumptions of the benchmark Black-Scholes model (1973)
are too restrictive and do not hold in the real world6, their formula is still used in practice. The volatility
parameter is the only unobservable variable in the Black-Scholes formula (This standard relationship
appears in Appendix A.2 as Equation (26)), and therefore this formula can be used as a mapping that
converts volatilities into prices and vice versa. Deviations of the real data from the benchmark model
are re‡ected by the fact that the quoted so-called implied volatility, is not constant across strike prices
and maturities7. Estimating RNDs from option prices can be seen as a relaxation of the distributional
assumption of the Black-Scholes model. Indeed, under this model, the RND is lognormal and the
volatility smile degenerates to a horizontal line.

Equations (1) and (2) and Black-Scholes pricing formula (26) establish the equivalence between risk
neutral distributions with the mean equal to the forward rate and volatility smiles. If an RND density
f is given, then prices of call options may by derived using (1) and consequently the implied volatility
smile can be calculated from them with the inverted Black-Scholes formula (29). Conversely, the Black-
Scholes formula (26) transforms a volatility smile to the call price function and the RND density is
obtained from it with the Breeden and Litzenberger equation (2).

Equation (1) or (2) underlies any method of constructing RNDs from European option prices. Bahra
(1997) and Chang and Melick (1999) sort the methods from the operational point of view. While Bahra
(1997) recognises four types of techniques, Chang and Melick (1999) dichotomise the methods according
to the extent to which they are based either on Equation (1) or (2). Another, and in our view, natural
approach is to classify the methods according to their generality.

In the …rst and most restrictive category, we put those methods which assume a speci…c stochastic
process driving the security price. A prominent example of this approach is obviously the Black-Scholes
model (1973). More recently, Malz (1996) …tted a lognormal-jump di¤usion process to FX options.

Secondly, a more general approach is to assume only a speci…c functional form of the terminal dis-
tribution. As Melick and Thomas (1997) note, it is more general, because a single terminal distribution
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might result from di¤erent stochastic processes. Melick and Thomas (1997), Bahra (1997) and Gem-
mill and Safeklos (1999) assume that the density of the terminal distribution is a linear combination
of lognormal densities. Shimko (1993) does not directly assume a functional form for the distribution,
but equivalently imposes a functional form of the volatility smile, assuming that implied volatility is
a quadratic function of strike prices. And similarly, Malz (1997) assumes that implied volatility is a
quadratic function, but he uses another measure of moneyness, an option’s delta. He argues that this
approach is superior to …tting functions in strike price space, because it avoids the violation of spe-
ci…c no-arbitrage conditions for the volatility function. In addition, as Bliss and Panigirtzoglou (2000)
note, due to its character the delta space gives more weight to exercise prices close to the at-the-money
(ATM) value. Thus, the delta space allows for a better approximation of these central options, which
presumably have more informational value. This method is suitable for OTC options, for which only
a small number of data points are often available. The shortage of observations makes virtually all
other methods of little use, because for example three points are not enough to …t a mixture of two
lognormals.

Finally, there are approaches that make no assumptions about the global nature of the density
function, which are sometimes called non-parametric methods. Their advantages are discussed by Jack-
werth and Rubinstein (1996), who construct a smooth density function, constrained by Equation (1), by
minimising the norm that measures the density function’s second derivative. Buchen and Kelly (1996)
take an interesting step by deriving a functional form (dependent on the number of observed option
prices) of the distribution that maximises entropy given an observed set of option prices. Bliss and
Panigirtzoglou (2000) combine the Malz approach(1997) of using delta smiles with the Campa, Chang
and Rieder (1997) method of smoothing spline interpolation, another nonparametric method.

Not surprisingly, comparative studies have shown that this last approach is more ‡exible than less
general methods. Cooper (1999) compares the mixture-of-lognormals method with the volatility-smile-
smoothing- method by running Monte-Carlo tests and …nds that the latter outperforms the former.
Also, Bliss and Panigirtzoglou (2000), using short sterling and FTSE 100 index contracts, …nd that the
volatility smile method performs better than the double-lognormal one in terms of robustness.

Because of its ‡exibility and relative ease of implementation, we chose this last approach as a base
method for our research. Deriving RNDs from prices of American futures options, we …rst control for
the early exercise premium and for the mismatch in maturities between options and underlying futures.
By doing so, we can construct approximate European equivalents to American futures options. Then,
we apply the Bliss and Panigirtzoglou (2000) approach to these implied volatility approximations. In
order to take into consideration possible price distortions due to low trading activity, we amend their
method by weighting individual observations by a gently increasing function of their trading volume.

3 Estimating RND at maturity from American futures options
There are several approaches for estimating RND from European options, but not many researchers
have dealt with American options. Melick and Thomas (1997) assumed that the terminal RND is a
linear combination of three lognormal distributions and derived upper and lower bounds for American
option prices in terms of this mixture distribution. They weighted these bounds di¤erently for out-of-
the-money (OTM) and in-the-money (ITM) strikes, and in the end, they …t a combination of the bounds
to observed option prices to estimate ten parameters of the distribution. Flamouris and Giamouridis
(2002) also used similar bounds for American futures options but assumed a di¤erent functional form
of the terminal distribution. Instead of a linear combination of lognormals, the RND was estimated as
the sum of a lognormal density and a combination of the third and fourth order terms of the Edgeworth
series expansion around the lognormal distribution. As a single weight of the bounds was kept for all
strikes, only four parameters remained for estimation.

Two problems might be associated with these methods. Notwithstanding the prominence of the
lognormal distribution, which is in their centre, both methods are based on an ad-hoc speci…cation and
it might limit their ability to capture interesting economic phenomena. Second, because of the rather
complicated functional forms involved, both methods lead to complex optimisation techniques.

A di¤erent approach that is proposed here to estimate RNDs from American futures options does
not impose a priori any functional form of the distribution and is easy to implement using fast and
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stable numerical procedures. In essence, we attempt to reduce the American futures option problem to
the European one and look for the implied volatility. For this purpose, we employ an inverse procedure
to the analytical approximation for the prices of American futures options8 derived by Barone-Adesi
and Whaley (1987) (BAW). We empirically test the appropriateness of this approach.

Barone-Adesi and Whaley (1987) report extensive comparisons of American option prices calculated
via their approximation with results obtained by precise methods like …nite di¤erence or compound
option methods. The BAW method performs very well for various maturities, implied volatilities and
levels of option moneyness. The largest reported mispricing amounts to three tenths of a percent of
the dollar option price, which is negligible both in the context of volatility of option prices and market
bid-ask spreads. The method is widely used in practice because of the ease of its implementation and
its speed, which is also the greatest advantage from the point of view of this article. There are hundreds
of thousands of strike price-option price pairs in the dataset and therefore speed, stability and good
convergence of the numerical procedures are crucial9. In comparison with the …nite di¤erence method,
Barone-Adesi and Whaley (1987) report that the method is about 2000 times faster. Also, Broadie
and Detemple (1996), who conducted a large scale evaluation of many recent methods for computing
American option prices, report method performance of this order.

Whaley (1986) employed the BAW method to investigate the validity of the underlying model.
Similarly Melick and Thomas (1997) used the method on a single lognormal benchmark model to
evaluate the mixture lognormal method. It is worth emphasising that we use the BAW in a di¤erent
way, analogous to how the market uses the Black-Scholes formula in the European option context; i.e., as
a mere mapping between option prices and volatility. However, since standard assumptions underlying
the Black-Scholes (and also BAW) model are not valid in reality, it remains to be seen whether the
method of inverting the BAW method is able to get rid of the actual early exercise premium. In other
words, our proposed method for estimating RNDs hinges on the hypothesis that the BAW volatility10

implied by the price of an American option equals the Black-Scholes volatility implied by the price of
the corresponding European option with the same maturity and traded at the same time.

The intuition behind of why such a hypothesis might be reasonable stems from widespread quoting of
options in volatility terms. It might well be the case that, in general, market participants suppose that
violations of benchmark model assumptions are completely re‡ected in a (European) volatility smile
and its term structure. Thus, they price American options by transforming this smile or term structure
via BAW or a similar method. Indeed, this behavioural assumption is supported by the fact that the
Chicago Mercantile Exchange, which is one signi…cant market trading in American futures options, uses
the BAW method as a standard pricing model11.

We validate the legitimacy of the hypothesis by two empirical tests. Firstly, we test whether BAW
volatility implied by an American futures option does not di¤er signi…cantly from the Black-Scholes
volatility implied by the price of the European option with the same exercise price and maturity.
Secondly, we check whether the BAW volatilities derived from a pair of put and call CME options with
the same exercise price do not di¤er. Indeed, the model independent and arbitrage based put-call parity
stipulates that the Black-Scholes volatilities implied by European puts and calls with the same exercise
price are equal.

4 Adjustment for di¤erent option and underlying futures ma-
turity dates

Having corrected for the early exercise premium using the inversion of the BAW method, we have to
make yet another adjustment due to possible maturity mismatches that might occur between currency
options and their underlying futures.

For example, CME currency futures mature four times a year in a so-called March quarterly cycle
(i.e., March, June, September and December). Currency futures options mature every month and the
underlying futures contract of an option is the nearest futures contract in the March quarterly cycle
whose termination of trading follows the option’s last day of trading by more than two business days.
Therefore, an option maturing in January, for example, is written on the future maturing in March. Even
for an option maturing in March, there is some maturity mismatch of about two weeks, because options
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generally mature on the second Friday immediately preceding the third Wednesday of their contract
month, but futures mature on the second business day immediately preceding the third Wednesday of
their contract month12.

Let t denote the time of the trade, ¿ the maturity date of the option and T the maturity date of its
underlying futures. The price of a European option written on such a future with strike price X can be
denoted as ct

¡
FT ;X; ¿

¢
: We aim to transform it to the option on a future that matures also at ¿: Note

also that ct (F ¿ ;X; ¿) = ct (S;X; ¿), where ct (S;X; ¿) denotes a European option on a spot rate with
maturity date ¿ : This transformation is allowed by a well known homogeneity property of European
options (see the Appendix A.3). Denoting domestic and foreign interest rates by r and r¤ and taking
into account the option’s homogeneity and that FT = F ¿e(r¡r¤)(T¡¿), we may write

ct
¡
FT ;X; ¿

¢
= e(r¡r¤)(T¡¿)ct

¡
F ¿ ; ¹X; ¿

¢
= e(r¡r¤)(T¡¿)ct

¡
S; ¹X; ¿

¢
; (3)

where

¹X = Xe¡(r¡r¤)(T¡¿): (4)

Equations (3) and (4) show that, in order to transform option prices, it is enough to discount both
the strike price and option price by a factor of e¡(r¡r¤)(T¡¿).

5 Application: Currency options from the Chicago Mercantile
Exchange

The method described above is applicable for American futures options in general, but it is designed
primarily for the Chicago Mercantile Exchange - one of the largest organised markets for various futures
and futures options. As was noted above, there are two ways for checking the empirical relevance of the
proposed technique for eliminating the early exercise premium. The …rst one is to evaluate its results
using the prices of actual European options. Therefore, we constructed BAW volatilities implied by
CME prices of currency options and made comparisons with suitable volatilities derived from OTC
currency option market quotes. If our hypothesis is right and the early exercise premium is priced so
that market volatilities of the European options are input into the BAW (or into a similar model), then
arbitrage between the two markets would take place and BAW and European volatilities would be close
to each other up to the di¤erence related to the transaction costs. The second check of the hypothesis
involves the put-call parity, which holds for European, but not for American options. As a consequence
of the parity relationship, if the early exercise premium is accounted for correctly (or in the same way
as the market accounts for it), BAW volatilities implied by CME put and call options with a common
strike would be equal.

For CME traded options, we have a full contract history of close-of-business data for dollar-yen
currency futures and dollar-yen currency futures options. The total option turnover over the period
1992-2000 was about 12 million contracts, which represents approximately 1000 billion dollars in a
notional amount. We calculated BAW volatility from daily settlement prices for all actual trades.
Further, we adjusted strike prices for the di¤erence in maturities between CME options and their
underlying futures13. Next, we transformed price-BAW volatility space into delta-BAW volatility space.
Then, following Bliss and Panigirtzoglou (2000), we approximated the CME delta volatility smile by a
weighted smoothing14 spline. The weights were calculated using logarithms of the trading volume15.

For the OTC market, we worked with time series of dollar-yen option quotes since 1992 provided by
two large market makers. The data consist of time series of at-the-money-forward (ATMF) volatilities,
25-delta risk reversals and 25-delta strangles for one-month options together with appropriate forward
rates. From the OTC quotes, we backed out implied volatilities for three exercise prices (for a technical
description see Appendix A.2).

The statistical results of comparing OTC volatilities derived from OTC contracts and BAW-implied
volatilities for 25-delta, ATMF and 75-delta strikes for maximum maturity mismatch 6 calendar days
are summarised in Table I. Although the statistical hypothesis that the OTC volatilities and BAW
volatilities are equal may be comfortably rejected at any reasonable level of statistical signi…cance,
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the di¤erences are quite small on average. This result could be expected if arbitrage between the two
markets takes place. With a very high degree of con…dence, the mean di¤erence is only one or two
tenths of a percentage point, which is a value of little economic signi…cance.

Figure 1 demonstrates the distribution of the di¤erence for ATMF volatility over time. While the
di¤erence is quite low for most of the observations16, from time to time the di¤erence is greater. The
most distinct are observations from October 1998 when the di¤erence was more than 10 percentage
points. They might be naturally explained by aberrant market conditions of that period and ensuing
low liquidity hindering e¤ective arbitrage. When this exceptional period is excluded from the sample,
means and standard deviations of the di¤erences become smaller. The resulting standard deviation
of the di¤erence of about 0.5% is consistent with the bid/ask spreads usually observed in the option
market17. Yet, for some remaining observations the di¤erence is still larger than 1 percentage point.
One reason for which it might happen is that the arbitrage between the markets is complicated by
the fact that the maturity of the CME contracts perfectly matches the maturity of benchmark OTC
contracts only several times a year. In the analysis, however, we took into account contracts with only
an approximate maturity match. We set the maximum maturity mismatch between CME contracts
and the benchmark one-month OTC contract arbitrarily to 6 days (less than one week). Indeed, the
liquidity of contracts with broken maturity dates is signi…cantly lower, and consequently, wider bid/ask
spreads make arbitrage less powerful.

Another reason for a wider di¤erence between volatilities, which is sometimes observed, might stem
from the time discrepancy of price quotes. While the OTC volatilities were attributed to actual trades
that took place during the trading day in London, the CME data represent settlement prices that are
determined after the close of business in Chicago. The volatility might jump in the meantime if some
signi…cant information hits the market.

As was discussed above, another check of the proposed method for analysing American currency
futures options involves put-call parity. It turns out that the parity is satisfactorily ful…lled in most of
the cases when the best …t could be found, not surprisingly, for most liquid strikes. A typical example
of this result is shown in Figure 2, where crosses represent BAW volatility implied by CME calls and
squares show BAW volatility of CME puts. Call and put BAW volatilities are close to each other for
common strikes.

Statistically, the dataset contains 25,775 strike prices for which both put and call options were traded
and prices were available. In the majority of cases, the distance between call and put BAW volatilities
with a common strike was quite small. Table II shows the distribution of these distances. Summary
statistics of this sample (with the 10 biggest outliers disregarded as errors) are presented in Table III.

6 Interaction between markets: A ghost’s smile ?
Figures 2 and 3 illustrate interactions between the OTC and CME markets. Figure 2 shows delta space
CME and OTC volatility smiles as of August 4, 199818 when the maturity date of options made them
directly comparable with one-month OTC contracts. The CME smile represents a trading volume of
1247 call contracts and 2972 put contracts19. However, the volume was not evenly distributed over the
exercise prices, with the bulk of the trades taking place for exercise prices around 25, 50 and 75 delta.
The solid line is a weighted smoothing spline interpolating BAW volatilities derived from settlement
prices of OTM options. The three shadowed circles represent OTC market quotes and the dashed line
is the Malz (1997) quadratic volatility smile. Transformation of the smiles into risk neutral densities is
shown in Figure 3, where the thick solid line represents the CME distribution and the dashed line is the
OTC Malz density.

As was discussed above, a small di¤erence between OTC quotes for 25-delta calls, ATMF options
and 25-delta puts and the respective CME options suggests that arbitrage was taking place between
the markets. On the other hand, it is obvious that the Malz approximation does not …t the farther-out
CME strikes well. Re‡ecting the more pronounced smile, the CME distribution is more concentrated
around the mean and has heavier tails than the Malz density20.

The CME density in Figure 3 exhibits three modes, which give it a somewhat ‘ghostly shape’. We
might discuss whether these spikes are consequences of some real economic phenomenon or whether
they are just artefacts stemming from the numerical method. Since these three spikes occur very often
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among the daily observations and since they persistently arise for any reasonable value of smoothing
parameter of the natural spline, we argue that they are not a ‡uke. We think that the proximity of
the modes to the position of the benchmark OTC strikes suggests that they are induced by arbitrage
interaction between the OTC and CME markets. In the OTC FX option market, some strike prices
(and maturities) play the role of benchmarks. The most important strikes are ATMF and 25-delta call
and 25-delta put. Indeed, most of the banks operating on the OTC market are ready to price an option
of any strike and maturity. However, liquidity for a nonstandardised strike and broken maturity, for
example, 5-week 11-delta call option, is relatively low. Therefore, the bank which would sell such an
option has to price it using its internal model. These models are calibrated using the volatilities of the
benchmark contracts. In contrast, benchmark volatilities are discovered by supply and demand. Thus,
higher liquidity associated with OTC benchmark strikes makes the arbitrage possible. The gravity of
the deeper OTC market is detectable even in Figure 2, where some bending of the CME smile can be
seen. In another sense, however, the nature of the spikes is also ghostly, because they do not re‡ect the
shape of market expectations. They are rather a consequence of market imperfections.

Another natural question which Figure 2 evokes is whether the steep volatility smile for deltas farther
out and the ensuing fatness of the distribution tails re‡ect the genuine shape of the RND or if it is a
result of some other market imperfections. Indeed, the sudden change in the …rst derivative and the
steepness of the delta smile is an artefact due to the nonlinear transformation from price space to delta
space, because it puts more weight on strikes around the ATMF position and ‘shrinks’ the OTM regions
of price space. Nevertheless, it does not a¤ect the relative value ATMF and OTM options; and indeed,
the function looks more natural in the dollar space.

Let us consider the hypothesis that relatively high prices of OTM options are caused by risk or
liquidity premiums. In general, the price of an option might be very volatile. Therefore, risk-averse
speculative buyers should require some additional compensation for risk and thus should be prepared
to pay lower rather than higher prices. Conversely, speculative sellers of options might demand a higher
price to compensate for the higher risk of their liabilities. Indeed, market participants also trade options
to hedge their risks, but again there are presumably hedgers in both directions. Therefore, unless some
asymmetry in hedging needs or market power exists between sellers and buyers, it is not clear how
risk considerations might explain the volatility smile. Similarly, low liquidity of OTM options increases
uncertainty about the future option price, but without a signi…cantly di¤erent position between buyers
and sellers this should a¤ect only bid/ask spreads, not average realised prices.

Since we cannot think of any reasonable asymmetric factors that would a¤ect demand and supply
of currency products, we hypothesise that the pronounced volatility smile actually re‡ects the market
perception of the heavy-tailed underlying risk-neutral distribution.

7 Improving the method for the estimation of OTC RNDs
Contrary to exchange traded options, the OTC market exists for most currencies and it is quite a deep
market. In addition, OTC quotes are usually available for …xed maturities. However, it is often the case
that only a limited number of benchmark exercise prices are readily accessible from the OTC market, and
therefore, some extrapolation has to be made. In the literature, two quadratic extrapolation methods
have been suggested, but they either break the non-arbitrage constraints imposed on the volatility
function or they do not …t observed CME data well. Here we propose some improvement.

Both methods use quadratic functions. The …rst one, which was proposed by Shimko (1993), …ts
volatilities in the dollar space, and the second one, suggested by Malz (1997), uses Black-Scholes delta
instead as a measure of the options’ moneyness. Malz (1997) noted that for far OTM strikes the quadratic
function in the dollar space breaks non-arbitrage constraints for the volatility function. However, as the
above discussed comparison of CME and OTC smiles shows, the quadratic extrapolation in the delta
smile underestimates volatilities of the OTM exchange traded options. Figure 4 shows the typical result
that Shimko’s (1993) function tends to …t data better, but somewhat overestimates far OTM volatilities.

Malz’s underestimation of the smile is a consequence of the delta space’s nature, which attributes
too low weights to OTM strikes. Therefore, we seek a di¤erent moneyness space that would allow for a
better …t of the quadratic function. Since the transformation between dollar and delta spaces is governed
by the cumulative distribution function of the standard normal distribution, it is natural to generalise
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it by using normal distribution with variance as an additional free parameter. In Appendix A.2, the
OTC quoting convention is summarised and the delta function is de…ned by Formula (30). Therefore,
if the cumulative distribution function of the normal distribution with mean m and standard deviation
G is denoted as N (:;m;G), the generalised delta function might be de…ned as

¢G
c (X;¾;S; T; r; r¤; G) ´ e¡r¤T N (d1 (X) ; 0; G) : (5)

The parameter G determines how much weight is attributed to far OTM strikes, and other symbols
have the usual meaning. It can be determined using exchange traded options, or it might be estimated
from the shape of the actual distribution of returns from the spot exchange rate.

Figure 4 illustrates how this approach improves the …t for G = 6, and Figure 5 summarises how the
…t of the quadratic smile in the generalised delta space depends on the parameter G: In order to get this
relationship, for a given G we summed distances of BAW volatilities from the G-quadratic smile which
extrapolates 25-1-delta, ATMF and 75-1-delta CME BAW volatilities for a given range of maturities.
From Figure 5, it is obvious that the …t monotonically improves with G, but for higher values of G the
improvement is only marginal. However, the use of a generalised delta with G values of 4 or 5 makes
the …t much better than is the case in Malz’s original smile based on G = 1: When the same data are
used as for Figure 3, but the OTC volatilities are extrapolated in generalised delta space, then all the
statistics characterising CME and OTC densities are close to each other, including kurtosis.

Indeed, this generalised delta approach is not necessarily constrained to the CDF of the normal
distribution. Another distribution might be alternatively used. It is easy to show that the generalised
delta space approach ensures non-arbitrage constraints on the volatility function.

8 Conclusion
Three main results are presented in this article. First, good empirical evidence was found for the
hypothesis that volatility smiles calculated from CME American currency futures prices by inversion
of the Barone-Adesi and Whaley pricing model (1987) do not di¤er signi…cantly from Black-Scholes
volatilities implied by appropriate European currency options. Moreover, it was found that BAW
volatilities derived from a pair of put and call CME options with the same exercise price are very close to
each other. It follows that the inverted BAW procedure is able to get rid of the early exercise premium
of American options. Therefore, standard procedures for estimating risk neutral distributions from
European options might be easily adapted for CME American futures options. The natural smoothing
spline method was then applied to estimate the European smile from the implied volatilities. All in all,
the proposed approach is easy to apply and circumvents having to use American option price bounds
as well as potential convergence problems stemming from nonlinear parameterisations used elsewhere in
the literature. It is worth emphasising that the BAW model was chosen for the sake of computational
ease, but inversion of other pricing procedures based on the constant volatility geometric Brownian
process are likely to give similar results.

Second, by means of investigating the CME and OTC markets in parallel, we gained insight on
the structure and interaction of the two markets. More intensive interaction seems to take place for
benchmark exercise prices than for the others, which may be explained by the varying OTC liquidity
over the price space. It seems to lead to some price distortions and an interesting ‘ghost-like’ shape of
the RND density implied by CME options.

Third, using these empirical results, we attempt to improve the RND estimation from a low number of
OTC option prices. Often only data for a limited number of benchmark OTC exercise prices are readily
accessible, and therefore, some extrapolation is necessary. In the literature, two quadratic extrapolation
methods have been suggested, but they either break the non-arbitrage constraints imposed on the
volatility function or they do not …t the observed CME data well. To overcome this problem, we suggest
a parsimonious generalisation of these methods which signi…cantly improves the …t. Indeed, we enhance
OTC smile extrapolation by information from CME prices.
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A Mathematical Appendix

A.1 Barone-Adesi and Whaley approximation for American futures options
and its inversion

Let F denote the futures price and T represent maturity, ¾ volatility and X the strike price of an
American option on futures. Let c represent Black’s price of the European call option. Barone-Adesi
and Whaley(1987) gave the following approximation for the price of the American futures call option,
which we denote by CBAW :

CBAW = cB(F; T ;X) + A2 (F ¤)
·

F
F ¤

¸q2

, for F < F ¤ (6)

CBAW = F ¡ X, for F ¸ F ¤; (7)
cB(F; T ;X) = e¡rT £

FN
¡
dB
1 (F )

¢
¡ XN

¡
dB
2 (F )

¢¤
; (8)

A2(F ¤) =
·
F ¤

q2

¸©
1 ¡ e¡rT N

¡
dB
1 (F ¤)

¢ª
; (9)

dB
1 (F ) =

ln
¡ F

X

¢
+ 1

2¾2T
¾
p

T
; dB

2 (F ) = dB
1 (F ) ¡ ¾

p
T ; (10)

q2 =
1
2

h
1 +

p
1 + 4k

i
and (11)

k =
2r

¾2 [1 ¡ e¡rT ]
: (12)

The critical value F ¤, above which American futures should be exercised immediately, is de…ned as
a solution of

F ¤ ¡ X = cB(F ¤; T ;X) + A2(F ¤): (13)

Formulae (6) - (13) were derived under the assumptions of the validity of the standard Black-Scholes
model specifying that the futures follow a geometric Brownian motion stochastic process. Nevertheless,
they also de…ne a procedure that maps given ¾; F;X; T and r to a single number CBAW , i.e., the BAW
American futures call option price. Let us summarise this procedure by the function

CBAW = ¤c (¾;F;X; T; r) : (14)

To de…ne the BAW implied volatility, we construct an inverse function to ¤c: The function ¤¡1
c (p;F;X; T; r)

is de…ned as
¾ = ¤¡1

c (¤c (¾;F;X; T; r) ;F;X; T; r) (15)

for admissible values of the variables ¾; F;X; T; r. Then the BAW implied volatility for an American
call quote C is de…ned as

¾BAW
c = ¤¡1

c (C;F;X; T; r) : (16)

The approximation for the American futures put option, which we denote by PBAW ; is similar:

PBAW = pB(F; T ;X) + A1 (F ¤¤)
·

F
F ¤

¸q1

, for F < F ¤¤ (17)

PBAW = X ¡ F , for F ¸ F ¤¤; (18)
pB(F; T ;X) = e¡rT £

XN
¡
¡dB

2 (F )
¢

¡ FN
¡
¡dB

1 (F )
¢¤

; (19)

A1(F ¤¤) = ¡
·
F¤¤

q1

¸©
1 ¡ e¡rT N

¡
¡dB

1 (F ¤¤)
¢ª

and (20)

q1 =
1
2

h
1 ¡

p
1 + 4k

i
: (21)

The critical value F ¤¤, above which American futures options should be exercised immediately, is
de…ned as a solution of

X ¡ F ¤¤ = pB(F ¤¤; T ;X) + A1(F ¤¤): (22)
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Let us summarise formulae (17) - (22) by a function ¤p:

PBAW = ¤p (¾;F;X; T; r) : (23)

Similarly to the case of call options, to get the BAW volatility ¾BAW
p implied by an American futures

put option P we invert the method and construct the function ¤¡1
p (p;F;X; T; r) de…ned as

¾ = ¤¡1
p (¤p (¾;F;X; T; r) ;F;X;T; r) (24)

for admissible values of ¾; F;X; T and r: BAW implied volatility for the put is then de…ned as

¾BAW
p = ¤¡1

p (P ;F;X; T; r) : (25)

The functions ¤¡1
c and ¤¡1

p seem to be rather intricate, especially because each iterative step involves
other iterative procedure evaluations. Nevertheless, this nested numerical method turns out to be very
straightforward and fast. Since the shape of the option price behaves similarly as a function of the
volatility parameter in both the American and European cases, the implied volatility function may be
implemented by the same methods, i.e., the Newton method. As a …rst step it is suitable to use the
European implied volatility as the initial value. Then, in each iterative step, the implementation of
the functions ¤c or ¤p has to be called twice, because it is convenient to use numerical rather than
analytical derivatives. Each call involves an iterative procedure to …nd the critical early exercise point,
but with a suitable choice of initial values in this procedure as suggested by Barone-Adesi and Whaley
(1987), it takes 4 iterations at most. Thus, only rarely is the total number of iterative steps in the
implementation of ¤¡1

c or ¤¡1
p larger than 10.

A.2 OTC market conventions
This section details OTC market conventions for quoting currency options (see also Malz (1997)).

The price of a European currency option is determined by market forces and is mainly a¤ected by
the spot price of the underlying security S; the strike price X; the option’s maturity T , the domestic
and foreign interest rates r and r¤, and by the level of future uncertainty. To model the uncertainty, the
Black-Scholes model introduces a volatility parameter ¾: Although this model does not re‡ect reality
completely, it is used for its very convenient properties as a tool for quoting prices. Thus, market
participants in the OTC market quote prices in volatility terms. Deviations from the benchmark model
are re‡ected in the fact that the quoted volatility is not constant across strike prices and maturities.
Furthermore, to concentrate on the most option-like parts of the option price and abstract from erratic
changes in the currency spot rate, the OTC market developed a convention for measuring the moneyness
of options by the option’s delta rather than by the variables S and X: And …nally, prices of combinations
like risk reversals and strangles are quoted, rather than prices of plain vanilla calls or puts.

Transformation from option-strike space to volatility-delta space

Let c ´ c (X;S; T; r; r¤) and p ´ p (X;S; T; r; r¤) denote prices of European call and put options with
strike price X; respectively, and let other parameters in the brackets be de…ned as usual. To describe
the transformation from price-strike space to volatility-delta space, it is convenient to de…ne a European
call implied volatility function, ¾impl(c;X;S; T; r; r¤). The function ¾impl ´ ¾impl(c;X; :::) is implicitly
de…ned as a solution to the Black-Scholes formula:

c = Se¡r¤T N
¡
d1

¡
¾impl¢¢ ¡ Xe¡rT N

¡
d2

¡
¾impl¢¢ ; (26)

where

d1
¡
¾impl¢ =

ln
¡ S

X

¢
+

£
r ¡ r¤ + 1

2¾impl2
¤
T

¾impl
p

T
and (27)

d2
¡
¾impl¢ = d1

¡
¾impl¢ ¡ ¾impl

p
T : (28)
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Given S; T; r and r¤, the function ¾impl transforms the market price of a call option with strike price
X to the corresponding implied volatility. Formally, let us write the mapping from price-strike space
(c;X) to volatility-delta space (¾; ±) as

¾ = ¾impl(c;X;S; T; r; r¤) (29)

± = ¢c (X;¾;S; T; r; r¤) ´ e¡r¤T N (d1 (X)) ; where (30)

d1 (X) =
ln

¡ S
X

¢
+

£
r ¡ r¤ + 1

2¾2
¤
T

¾
p

T
: (31)

The function ¢c (X;¾;S; T; r; r¤) de…ned in equation(30) is the well-known formula for the Black-
Scholes delta of a European call.

A similar mapping is de…ned for put options. Note that the delta of a European put can be written
in terms of the delta for a call ¢p (X;¾;S; T; r; r¤) = ¢c (X;¾;S; T; r; r¤) ¡ e¡r¤T . Also, due to put-call
parity, a put and a call with the same strike price X imply the same volatility. The mapping from (p;X)
to (¾; ±) is then given by

¾ = ¾impl(p + Se¡r¤T ¡ Xe¡rT ;X;S; T; r; r¤) (32)
± = ¢p (X;¾;S; T; r; r¤) + e¡r¤T : (33)

Thus both transformations from (c;X) to (¾; ±) and from (p;X) to (¾; ±) map the interval (0;1) £
(0;1) to the interval (0;1) £

¡
0; e¡r¤T

¢
:

Transformation from volatility-delta space to option-strike space.

To describe the inverse transformation from volatility-delta space to call-strike space, it is convenient
to de…ne the function Ximpl ´ Ximpl(¾; ±c;S; T; r; r¤), which generates the appropriate (implied) strike
price of a call option from the values of ¾ and ±c: It is de…ned as a solution of

±c = ¢c
¡
Ximpl; ¾;S; T; r; r¤¢ : (34)

Thus, the mapping from volatility-delta space to price-strike space, (¾; ±c) ! (c;X) ; is given by

c = Se¡r¤T N (d1 (¾)) ¡ Xe¡rT N (d2 (¾)) (35)
X = Ximpl(¾; ±c;S;T; r; r¤): (36)

While the Newton method is very suitable for the numerical implementation of the function ¾impl, one
has to be more cautious when numerically calculating the function Ximpl: Note that the second derivative
@2

@x2 ¢c (x; ¾;S; T; r; r¤) changes sign once for x 2 (0;1) with in‡exion point X¤ = Se[r¡r¤¡ 1
2¾2]T .

However, it is still possible to use this numerical approach. The function ¢c (X; :::) is concave for
X · X¤ and convex for X ¸ X¤ Using this property, the Newton method might be amended. Then it
is likely to be faster than a more general numerical method.

The following market conventions are used. A call option with delta ±c is referred to as 100±c, i.e.,
a 25-delta call is a call option with ±c = 0:25: Similarly, a put option with delta ±p is referred to as
¡100±p, i.e., a 25-delta put is a put option with ±p = ¡0:25: Moreover, since for short maturity options
the term e¡r¤T , which facilitates transformation between the delta of a put and the delta of a call, is
close to one, a call counterpart to the 25-delta put is often referred to as a 75-delta call instead of a
100

¡
e¡r¤T ¡ 0:25

¢
delta-call. Another abbreviation is used for an ATMF call. Denote the market quotes

of ATMF volatility as (¾atmf ; ±atmf ). Sometimes, people refer to it as a 50-delta call, i.e.(¾atmf ; 0:5).
In fact, it is easy to show that, given a market quote of volatility ¾atmf ; the delta of a call option
with X = F = Se(r¡r¤)T is ±atmf = ¢c (F; ¾atmf ;S; T; r; r¤) = e¡r¤T N

³
1
2¾atmf

p
T

´
: For example

¢c (F; ¾atmf ;S; 0:5; 6%; 4%) =0.52.
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Actually, the market convention of mapping the (¾; ±c) space to the (c;X) space seems to be some-
what odd. Note that for a given call delta (e.g. ±c = 0:25), a change in quoted volatility also represents
a change in the implied strike, as the function Ximpl(¾; ±c;S; T; r; r¤) indicates. Therefore, it is theo-
retically possible to have two (or many) volatility-delta pairs that are transformed to one strike only.
However, it apparently does not pose a problem for the market. The reason is that prices are not quoted
close to each other and also that ‘perverse’ quotes would break no-arbitrage conditions for the volatility
function.

Usually quoted contracts

In the OTC market, currency options are usually quoted in terms of ATMF implied volatilities,
risk reversals and strangles. Both risk reversals and strangles are combinations of call and put options,
which are equally OTM. Their moneyness is measured by their delta. While a buyer of a risk reversal
acquires a long position in an OTM call option and a short position in an OTM put option, a buyer
of a strangle buys both of them, i.e., gets long positions in OTM calls and puts. The price of a risk
reversal is quoted in volatility terms as a di¤erence between implied volatilities of an appropriate call
and put. Similarly, strangle prices are quoted as an average volatility premium paid for the strangle
components above the ATMF implied volatility. Let ¾atmf , rr (:) and str (:) denote market quotes of
ATMF implied volatility, risk reversal and strangle. The parameter in the brackets refers to the delta of
the call of the constituents. Malz (1997) shows how to back out pairs (¾; ±c) from these market quotes.
For convenience, denote these pairs as a function ¾ (±c). Then the following relationships hold:

rr (±c) = ¾ (±c) ¡ ¾
³
e¡r¤T ¡ ±c

´
(37)

str (±c) =
1
2

h
¾ (±c) + ¾

³
e¡r¤T ¡ ±c

´i
¡ ¾atmf : (38)

So, for example, a 25-delta risk reversal rr (0:25) is the di¤erence between the implied volatility of
a call option with a delta of 0.25 and the implied volatility of a put option with a delta of -0.25. A call
option that has the same volatility as the 25-delta put is the one with a delta of (e¡r¤T ¡ 0:25): Note
that sometimes the strangle is quoted without subtraction of ¾atmf in equation (38).

Equations (37) and (38) are easy to invert, and one obtains

¾ (±c) = rr (±c) +
1
2
rr (±c) + ¾atmf (39)

¾
³
e¡r¤T ¡ ±c

´
= str (±c) +

1
2
rr (±c) + ¾atmf : (40)

Thus, equations (39) and (40) show how to get from a market quote of ¾atmf , rr (±c) and str (±c)
to ¾ (±c) and ¾

¡
e¡r¤T ¡ ±c

¢
:

A.3 Homogeneity of European call options
Proposition 1 Let ct (F;X;T; r) denote the price of a European call option at time t with underlying
security F , strike price X and maturity T . Let r represent the risk free rate. Let k > 0. Then
ct (kF; kX; T; r) = kct (F;X;T; r) :

Proof. Further, let f denote the RND of F at maturity of the option, and similarly, let g denote
the RND of kF at maturity of the option. Note that g (kF ) = 1

kf (F ) : Then

ct (kF; kX) = e¡rT
Z 1

0
max (kFT ¡ kX; 0) g(kFT )d(kFT ) =

= e¡rT k
Z 1

0
max (FT ¡ X; 0)

1
k

f(FT )kdFT =

= e¡rT k
Z 1

0
max (FT ¡ X; 0) f(FT )dFT =

= kct (F;X)
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B Footnotes
1 It is a well established result that the price of a derivative asset which depends only on

prices of traded securities may be expressed as its expected payo¤ discounted by the risk-free
rate, where the expectation is taken over by the risk neutral distribution (1996). However,
in general, true and risk neutral distributions may be quite distinct; the only necessary
restriction is that the distributions share a common support. Grundy (1991) examines the
relationship between option prices and the true distribution of the underlying asset and
…nds that imposing simple restrictions on the true distribution leads to useful bounds of its
non-central moments. Rubinstein (1994) shows that for standard utility functions the true
distribution tends to be slightly shifted with respect to the risk neutral one, but its shape
remains very similar.

2 The BAW method is a good approximative analytical solution to the pricing problem for
American futures options if the underlying futures follow a geometric Brownian motion with
a constant volatility. We use this approach because of its computational speed and because
it is widely used in practice. Indeed any other numerical pricing method could have been
used.

3 We used the dollar-yen exchange rate because it has a long enough history and it is one of
the most liquid CME currency pairs with the greatest number of active strike prices.

4 There are major structural di¤erences between the two markets, which complicate the analy-
sis. While OTC options are typically European ones having the spot exchange rate as the
underlying variable, the CME contracts are American options on currency futures. More-
over, unlike OTC options which are in essence of …xed maturity, exchange traded options
are of a …xed maturity date. Further, for a given CME currency-option contract, the un-
derlying futures may have a signi…cantly di¤erent maturity date. The markets di¤er also in
liquidity. It is estimated that the OTC market is much deeper than the on-exchange one:
Exchange-traded contracts are estimated to represent less than 3% of daily turnover in the
foreign exchange market (Bank of International Settlements (2000)). On the other hand, the
exchange market is more transparent. While exchanges provide information about prices,
volumes and open interest in traded contracts, the OTC market is more opaque as trades
are concluded on a bilateral basis.

5 If demanded, most of the banks that trade options would provide a price for an option with
any strike. Such a price, however, would be most likely derived from the current market
conditions characterised by the prices of a handful of standardised contracts.

6 The Black-Scholes model stipulates no arbitrage in perfect and frictionless markets, a con-
stant short-term riskless rate and furthermore that the price of the underlying security
follows geometric Brownian motion with drift and a constant volatility parameter. However,
non-constant Black-Scholes volatility implied by option prices is observed in most of the
markets.

7 The relation between strike price and implied volatility is called the volatility smile, and the
relation between maturity and implied volatility is sometimes denoted as the term structure
of volatility.

8 We express the price of an American option as a sum of the price of a European option and
some early exercise premium. This method uses the fact that the premium has to satisfy
the same pricing equation as option prices with appropriate boundary conditions. Under the
assumptions of the benchmark Black-Scholes model, and when one term in the equation is
neglected, it is possible to derive an analytical solution for the early exercise premium. The
neglected term tends to be very small, especially for options with very short and very long
maturities.
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9 In fact, for each option the American option pricing method has to be invoked several times,
because similar to the Black-Scholes model, searching for unknown volatility from the option
price is in itself an iterative procedure. However, since the option price and volatility are in
a well-behaved and close-to-linear relation, convergence is very fast. In the Appendix A.1,
we summarise the BAW method and our approach to calculating its inversion.

10 The BAW method might be theoretically replaced by any method for pricing American fu-
tures options under the assumption of the geometric Brownian motion with constant volatil-
ity. Using the inverted BAW method for calculating the implied volatility is only a matter
of computational ease and speed. Suitable methods might be selected using the results of
Broadie and Detemple (1996).

11 In Chicago, there are two markets where American futures options are traded, RTH (Regular
Trading Hours) and the GLOBEX2 electronic trading system, which ensures that in selected
contracts trading continues virtually 24 hours a day. While during regular trading hours
prices are quoted in dollars, on the GLOBEX2, volatility quotes are possible. The BAW
method is used for transforming volatility quotes into dollar prices.

12 See CME Rulebook. It is available at www.cme.com.

13 Regarding interest rates, we used appropriate LIBOR deposit rates for the dollar and yen.
As is typical in the literature, we assume that the short-term interest rates are non-stochastic
and therefore, using the results of Cox, Ingersoll and Ross (1981), we treat futures contracts
as if they were forward contracts. We believe that especially for currency futures options this
assumption is quite innocuous. There is evidence in the literature that the di¤erence between
futures and forwards is rather small. Whaley (1986) for example uses this assumption even
for options on long-term interest rate products.

14 If fyig is a set of observations (implied volatilities), a smoothing cubic spline s minimizes

¸
X

i

wi (yi ¡ si)
2 + (1 ¡ ¸)

Z ³
s

00´2
dx

for a smoothing parameter ¸:

15 We want to attribute more weight to highly traded contracts, but in a less than proportional
manner. We therefore choose a natural logarithm because this is a function that grows slower
than any root function.

16 The concentration of the full sample around the mean and its heavy tails are illustrated by
the high level of kurtosis shown in Table I. It also indicates that the di¤erences are not
normally distributed and that the actual con…dence intervals for the means are arguably
even tighter.

17 The arbitrage between markets is possible if the midprices di¤er for more than the sum of
bid/ask spreads of the two markets. The bid/ask spread for the benchmark OTC currency
option contracts for the developed market is about 0.2%.

18 It was also the last opportunity to compare exchange traded options with OTC options
before the 1998 dollar/yen currency turmoil.

19 The face value of one underlying futures contract is 12.5 million yen, i.e., the face value of
all options traded on that day was more than 350 million dollars.

20 It is indicated by the higher kurtosis of the CME distribution as shown in Figure 3. Other
statistics, i.e., mean, modus, volatility, skewness and the Pearson statistic, are of similar
value for both distributions. The means of the distributions do not di¤er signi…cantly from
the theoretical value of the forward price. The OTC quoted ATMF volatility was 15.65%

15



that day. The volatilities calculated from the CME distribution (de…ned as
p

variance
forward¤

p
T

)
were fairly near this value, but the volatility of the OTC distribution was somewhat lower.
The distributions on this day were both very symmetric. The asymmetry of the distribution,
as measured by skewness or the Pearson statistic, is close to zero.
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Mean Its 99% c.i. Std. deviation Kurtosis
Full sample, 882 obs.
25-delta 0.08% (0.01%,0.14%) 0.72% 93.50
50-delta 0.15% (0.10%,0.21%) 0.60% 107.18
75-delta 0.25% (0.19%,0.31%) 0.70% 102.96
Ex IV 1998, 852 obs.
25-delta 0.06% (0.01%,0.11%) 0.53% 7.46
50-delta 0.13% (0.09%,0.17%) 0.44% 8.27
75-delta 0.21% (0.17%,0.26%) 0.51% 5.84
Maximum maturity mismatch: 6 days

Table I: Di¤erence between BAW-implied and OTC volatilities

Distance less than 0.5% 0.5% to 1% 1% to 5% more than 5%
Number of observations 25458 296 112 9

Table II: Distances between BAW volatilities implied by calls and puts with common strikes

Mean Its 99% c.i. Std. deviation Kurtosis
Plain distances
Call-put -1.03e-003% (-3.72e-003%,1.66e-003%) 1.68e-001% 154.81

OTM-ITM 2.89e-002% (2.62e-002%,3.15e-002%) 1.65e-001% 162.19
Distances weighted by the trading volume
Call-put 2.47e-007% (1.11e-007%,3.83e-007%) 8.52e-006% 1739.33

OTM-ITM 4.40e-007% (3.04e-007%,5.76e-007%) 8.51e-006% 1745.79

Table III: BAW volatility: Put-call parity property
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Figure 1: Di¤erence between OTC and CME implied volatility (ATMF, BAW adjusted)
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