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Abstract 

People are by nature social beings. Most of us have a complex social network that connects 

us with other people in numerous aspects of our lives: neighbours, co-workers or peers in schools, 

and friends. Moreover, it is widely believed that people’s behaviour is to some extent affected by 

others in their social networks, which is known as peer effects. Therefore, a precise understanding 

of the behaviour of an individual necessarily includes understanding her interactions with others 

within her social network.  

The first part of this thesis, literature review, summarizes contemporary research on peer 

effects, shows which aspects of human behaviour may be affected by social interactions, and 

highlights the importance of peer effects research. In the second part, the estimation of the linear-

in-means peer effects model, we provide a detailed description of the model, derivations of its 

alternative formulations, and show the identification conditions. The main contribution of the 

second part is that we provide a step-by-step analysis of the linear-in-means peer effects model 

and detailed proofs of theorems in one place.  

The third part provides an empirical analysis of peer effects in education in the Czech 

Republic. In particular, we examine how the test scores of pupils are affected by their classmates. 

We observe that pupils’ test scores are negatively affected by the test scores of their peers and 

positively affected by the abilities of their peers. The results are statistically significant; however, 

they are also excessively high compared with previous research. Therefore, we conduct bootstrap 

simulation and find that the estimators of standard errors are probably underestimated. Moreover, 

we conduct a placebo check randomly allocating pupils among classes and show that widely used 

peer effects estimators are slightly biased in both directions, which could explain high and 

significant peer effects estimators. Therefore, we conclude that corrected peer effects estimators 

are likely unsignificant in our setting, which is mainly caused by the small data sample. Finally, 

we briefly propose possible extensions of the linear-in-means peer effects model, which may give 

a more realistic description of peer effects in real world.   
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Abstrakt 

Lidé jsou ve své přirozenosti společenské bytosti. Většina z nás má složitou sociální síť, 

která nás propojuje s druhými v mnoha aspektech našich životů: sousedé, spolupracovníci nebo 

spolužáci a přátelé. Navíc je jasné, že chování jedince je do jisté míry ovlivněno druhými v jeho 

sociální síti, a toto ovlivňování obvykle označujeme jako peer efekty. Proto přesné poznání 

chování jedince nezbytně zahrnuje poznání interakcí s druhými v rámci sociální sítě.  

První část naší práce, rešerše literatury, shrnuje současný výzkum peer efektů, ukazuje, 

které aspekty lidského chování mohou být ovlivněny sociálními interakcemi a zdůrazňuje tak 

význam výzkumu peer efektů. Ve druhé části, estimaci lineárního-v-průměrech modelu, přinášíme 

detailní popis modelu, odvození jeho alternativních formulací a podmínky identifikace. Hlavním 

přínosem druhé části je, že přinášíme analýzu modelu krok za krokem a detailní důkazy 

matematických vět na jednom místě.  

Třetí část podává empirickou analýzu peer efektů ve vzdělávání v České republice. 

Konkrétně zkoumáme, jak je testové skóre žáků ovlivněno jejich spolužáky a pozorujeme, že je 

negativně ovlivněno testovým skórem a pozitivně ovlivněno schopnostmi jejich spolužáků. 

Výsledky jsou statisticky signifikantní, ale také jsou příliš velké ve srovnání s předchozím 

výzkumem. Proto provádíme bootstrap simulace and zjišťujeme, že odhad standardní odchylky je 

pravděpodobně podhodnocen. Dále také provádíme placebo kontrolu tak, že náhodně umisťujeme 

žáky po třídách a ukazujeme, že obvykle používané estimátory peer efektů jsou vychýlené v obou 

směrech, což by mohlo vysvětlit vysoké a statisticky signifikantní estimátory peer efektů. Proto se 

domníváme, že korigované estimátory peer efektů již pravděpodobně signifikantní nejsou, což je 

způsobeno zejména malým vzorkem dat. Nakonec ve stručnosti navrhujeme možná rozšíření 

lineárního-v-průměrech modelu peer efektů, což může přinést realističtější popis peer efektů.  
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Motivation 

Human capital has significant socio-economic impacts and it is useful to examine factors 

that can positively influence it and bring future benefits. Psacharopoulos (1985) estimated returns 

to investments in education and emphasized the role of suitable public policies. However, the 

preparation of good public policies should be supported by research analysing data from specific 

countries, because school systems are diverse and the same policies may have different impacts in 

different countries. The aim of my thesis is to analyse Czech panel data and reveal factors that can 

play significant roles in educational outcomes of pupils.  

 

 

Contribution 
There are several longitudinal studies that have observed educational outcomes of pupils, 

their socio-economic status, family background, the environment where they live and the schools 

they attend. Goodman and Washbrook (2011) conducted a large analysis of four longitudinal 

studies in England and correlated educational outcomes of pupils with these factors. His analysis 

suggest which factors could play key roles in the development of human capital and how it can be 

affected by public policies. Crawford et al. (2017) focussed on role of school quality and estimates 

how important could it be in the development of human capital. However, neither study provides 

Economics of sklil formation 
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the causal effects of the factors considered on the educational outcomes of pupils, although their 

results propose promising areas for further research and public policies.  

To the best of my knowledge, there is no study examining longitudinal data about Czech 

pupils. However, from 2012 to 2018 Czech Longitudinal Study in Education (CLOSE) was 

conducted and it contains information about educational outcomes of pupils, their family 

background, environment where they live, schools which they attend and teachers. The aim of my 

thesis is to conduct the first and unique observational analysis of longitudinal patterns specific to 

individual study paths of individual pupils in the Czech Republic. My research should identify 

correlations between educational outcomes of pupils and other factors included in the data from 

CLOSE. Additionally, my results could provide useful support for policy makers in the Czech 

Republic and suggest promising further research of causal effects on educational outcomes of 

pupils, which could have international significance.  

 

 

Methodology 
I will explore the content of data from CLOSE using provided questionnaires. Then I will 

track individual study paths of individual pupils and correlate educational outcomes of pupils with 

factors described in the data from CLOSE. I will want to propose public policies based on my 

results. Finally, I will compare data from CLOSE with data used in related research and discuss 

opportunities of further research.  

 

Outline 
Introduction 

Literature review 

Description of data from CLOSE 

How was data from CLOSE already analysed  

How could be data from CLOSE analysed 

Conclusion 

 

 

 



xiii 

Bibliography 
Crawford, C., Macmillan, L., Vignoles, A., 2017. When and why do initially high-achieving poor 

children fall behind? Oxf. Rev. Educ. 43, 88–108. 

https://doi.org/10.1080/03054985.2016.1240672 

Goodman, A., Washbrook, E., 2011. Children’s educational attainment and the aspirations, 

attitudes and behaviours of parents and children through childhood in the UK 18. 

Psacharopoulos, G., 1985. Returns to Education: A Further International Update and Implications. 

J. Hum. Resour. 20, 583. https://doi.org/10.2307/145686 

 
 
 
 
 
 
 
 
 
 
.  .  .  .  .  .  .  .  .  .  .  .  .  .      .  .  .  .  .  .  .  .  .  .  .  .  .  . 
 Author         Supervisor 

 

 

 

 

 

 

 



1 
 

Introduction 

Classical economic theories assume that an individual chooses her actions taking the state 

of the world as given, and thus that the actions of an individual do not affect the actions of other 

individuals. This assumption is relatively reasonable in environments where a large number of 

individuals interact together and their interactions are evenly distributed, for example a stock 

exchange where a transaction can be undertaken by individuals from different parts of the world. 

However, it is also possible that a large number of individuals is partitioned into smaller groups 

and individuals may affect each other within these groups. Peer effects describe almost any 

externality in which the action of an individual directly affects the actions of individuals in her 

group.  

Peer effects are evident in different environments, e.g., investments decisions, the labour 

market, and health, among others. In the case of investing, individuals may be affected by the 

decisions of their neighbours. Specifically, the neighbour of individual 𝑖𝑖 may affect which stocks 

individual 𝑖𝑖 will buy. Alternatively, individual 𝑖𝑖 may not currently be purchasing stocks and having 

a neighbour who is investing may encourage individual 𝑖𝑖 to start investing in stocks too. As regards 

peer effects in the labour market, having a co-worker who is highly motivated and chooses high 

effort in work may increase another individual’s effort, especially in a team task. With regard to 

peer effects on health, being surrounded by individuals who are vaccinated against an infectious 

illness may lower the probability that a non-vaccinated individual will be infected. To provide 

another example, having peers who are overweight may reduce the effort that an individual puts 

into reducing her own weight.   

In addition to the above, peer effects are also found in the context of education, which is 

particularly relevant for our thesis. Educational outcomes are usually measured by math, reading, 

and language tests. The analysis of peer effects in education examines how the educational 

outcomes of a pupil 𝑖𝑖 are affected by characteristics of her peers and Manski (1993) classify three 

types of peer effects. First, endogenous peer effects describe how the outcome of individual 𝑖𝑖 is 

affected by the outcomes of her peers. Second, exogenous peer effects describe how the outcome 

of individual 𝑖𝑖 is affected by the background characteristics of her peers. Third, correlated effects 
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describe the situation in which individuals are sorted into groups according to unobservable 

characteristics that directly affect the examined outcome. As a consequence, the outcome of an 

individual 𝑖𝑖 is correlated with the outcomes of their peers. As a consequence, correlated effects 

have to be taken into account for the unbiassed estimation of endogenous and exogenous peer 

effects.   

Regarding the main goals of our work and potential contributions, we start with a literature 

review discussing several papers examining peer effects. Our examples are focused mainly on peer 

effects in education and on the behaviour of youth since we examine peer effects in education in 

our analysis. However, as there is nothing particularly special about peer effects in education, our 

methodology applies to all types of peer effects. In this section, we motivate our peer effects 

research on examples from previous studies.  

The theoretical part of our work is devoted to the analysis of the linear-in-means peer 

effects model and we summarise previous research in detail. First, we motivate the definitions 

using intuition by providing a simplified example and extend it in several logically connected 

steps. Specifically, in the case of the network matrix, we start with the matrices of ones and 

generalise them into the matrix describing an arbitrary social network. Second, we provide step-

by-step derivations of different functional forms of the peer effects model. In separated 

propositions, we summarise important properties of the objects used in our derivations. Third, we 

provide all proofs in one place since scientists refer sometimes to previous papers and do not repeat 

all necessary proofs. An example is the proof of proposition 2.1; since we were unable to find a 

rigorous proof in the original papers, we provide our own proof.  

In the empirical part of our work, we provide a unique analysis of the Czech Longitudinal 

Study in Education (CLOSE). We estimate peer effects in test scores among pupils attending junior 

secondary grammar schools preparing pupils for academic track. We focus on this subset of pupils 

since we can observe their test scores at the beginning of their studies at junior secondary grammar 

schools and four years later. Therefore, we observe test scores not affected by their peers, which 

can be used as the explanatory variable summarising pupils’ background characteristics. The test 

score after four years is analysed as the outcome variable that is affected by peer effects. Both test 

scores enable us to estimate our peer effects model and we find negative and statistically significant 

endogenous peer effects in Math, Reading and English. Moreover, we find positive and statistically 
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significant exogenous peer effects in Math, Reading and English. However, our estimates are noisy 

and unrealistically high. Therefore, we compute bootstrap errors which suggest that the observed 

significant results may be caused by the underestimated standard errors of the estimators. 

Moreover, we conduct a placebo check suggesting our peer effects estimators are slightly biased 

and taking this bias into account makes our estimators insignificant. We hypothesise that the 

underestimation of standard errors of estimators and the bias of estimators can be explained by the 

small sample size and relatively low class-size variation.  

Finally, we describe extensions of the linear-in-means peer effects model. We provide a 

summary of the recent research and discuss developed methods. The linear-in-means peer effects 

model can be naturally extended in two dimensions. First, previous research suggests that peer 

effects may be non-linear, and hence it is promising to extend the linear-in-means peer effects 

model to some non-linear models. Second, peer effects may include particular heterogeneities. 

This means that the effect of peers on an individual 𝑖𝑖 may depend on her characteristics. 

Specifically, high-achieving individuals may affect differently their high- or low-achieving peers. 

A different extension of the linear-in-means peer effects model considers endogenous network 

formation. The assumption is that individual pupils are not affected by all their peers, but they are 

mostly affected by their close friends. The assumption of endogenous network formation seems to 

be reasonable; nevertheless, the description of peer effects is much more involved in this model. 

Importantly, the described extensions may provide a realistic description of the real-world 

environments based on recent research.  
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1 Literature Review 

1.1 Examples of Peer Effects in Different Environments 

We start our literature review describing peer effects research in different environments. 

The following examples show how the topic is relevant since it covers various areas of humans’ 

lives. Considering economic decisions, Duflo and Saez (2002) examine peer effects in retirement 

savings decisions. They use data from employees of a large university about the participation in 

Tax Deferred Account plan sponsored by the same university. They examine if an individual 

participation decision may be affected by the decisions of other employees in the same department. 

Their estimation suggests that peers from the same department may affect the participation 

decision of an individual. Banerjee et al. (2013) examine the diffusion of information about 

microfinance loans. A microfinance institution first conducted an informal meeting with the 

community leaders including teachers and shopkeepers. Subsequently, Banerjee et al. (2013) 

examine how a relationship with an informed individual increases the probability of taking out a 

loan. They find positive and significant peer effects, e.g., community leaders spread the 

information about loans and increased the probability that others would take a loan. The effect is 

significant for both community leaders who took out a loan and those who did not. Community 

leaders who took out loan had seven times higher power in influencing their peers. However; the 

number of non-takers was higher; hence they account for one third of the net peer effect.  

Considering labour market decisions, Nicoletti et al. (2018) examine peer effects with a 

decision regarding mothers’ labour supply. The peer group is presented by peers from individuals’ 

families and neighbours. Using Norwegian administrative data, they find positive and statistically 

significant peer effects in the individuals’ working supply. Specifically, having a peer who 

increases her labour supply for one hour increases an individual’s labour supply by about half an 

hour. However, regarding labour market participation, Nicoletti et al. (2018) do not find 

statistically significant peer effects. This means that having a peer who increases her labour supply 

for one hour does not affect an individual’s decision whether to work or not.  
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Regarding health outcomes, Miguel and Kremer (2004) examine a deworming policy 

intervention when pupils receive deworming drugs in schools. The researchers argue that a simple 

analysis of the treatment effect may underestimate the positive effects of policy interventions. 

They explain that the distribution of deworming drugs also reduces the spread of worms in 

locations that were not treated. They evaluate the treatment effects and consequently peer effects 

on absenteeism of pupils in schools. They find that untreated schools in the neighborhood of treated 

schools experience a significant reduction in absenteeism. Trogdon et al. (2008) examines peer 

effects in obesity among adolescents. They define peer groups according self-reported friendships. 

Therefore, they have to account for endogenous network formation and avoid plausible selection 

bias. The results suggest that having friends with high BMI increases an individual’s BMI. 

Moreover, this peer effect is higher among girls and is also higher for individuals with the highest 

BMI.  

1.1.1 Peer Effects in Smoking 

Research on peer effects in smoking shows that smoking can be significantly affected by 

peer pressure. Having actively smoking peers increases the probability of individuals to start 

smoking. Moreover, the latest research reveals a certain heterogeneity. In particular, mentally 

unstable individuals may be more vulnerable to peer pressure (Hsieh and Kippersluis 2018).  

Eisenberg et al. (2014) examine peer effects in risky behaviour among college roommates. 

College roommates are randomly allocated into rooms; hence the estimation of a standard peer 

effects model leads to unbiassed estimates. They find an insignificant effect of roommates’ 

smoking on individual behaviour. However, the analysis of heterogeneities suggests that there are 

positive peer effects among men and negative among women. The authors cannot explain observed 

differences and stress that the statistical power of these results is rather small. In our opinion, the 

peer effects among roommates are specific since they measure peer effects on the subset of friends’ 

network. Indeed, college students may have more friends who are not their roommates. 

Nakajima (2007) examines peer effects in smoking behaviour among teenagers in the 

United States. He defines peer groups at the level of schools and assumes that all pupils interact 

within and not between schools. This assumption is reasonable since the author cannot observe the 

friendship network among teens. Parents can select a school for their children; hence the selection 
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bias can be expected. Nakajima (2007) introduces and estimates a random utility model that can 

account for the selection bias. He finds that peer effects are positive and statistically significant, 

i.e., having peers who are smokers significantly increases individuals’ probability of starting 

smoking. Examining heterogeneity Nakajima (2007) shows that peers effects occur within and 

between gender. A similar result applies to race.  

Card and Giuliano (2013) examine risky behaviour among adolescents from the United 

States. They use Add Health data that contains information about up to five friends. The best friend 

is listed as the first, hence the researchers have detailed knowledge about friends’ networks. 

However, the friends are likely similar in observable and unobservable characteristics. This 

tendency is usually called “homophily”. As homophily is one of the causes of selection bias, Card 

and Giuliano (2013) construct bivariate ordered choice models for the behaviour of friends that 

include both social interaction effects and unobserved heterogeneity across pairs. They assume 

that risky behaviour brings individuals some utility based on their observed characteristics and 

behaviour of friends. Card and Giuliano (2013) estimate their model and measure peer effects in 

sexual behaviour, smoking cigarettes and marijuana, and truancy. The results are qualitatively 

comparable for different specifications of the model and suggest that there are significant peer 

effects in all cases of risky behaviour.  

Hsieh and Kippersluis (2018) also use US Add Health data to examine peer effects in 

smoking initiation among adolescents. They observe friendship networks and extend the Selection 

Corrected Spatial Autoregressive (SC-SAR) model to account for the selection bias coming from 

endogenous friendship formation. Using SAR models, the researchers assume that friendship 

networks among adolescents can be observed. The central object of SAR models is a spatial weight 

matrix whose 𝑖𝑖, 𝑗𝑗 element is one if adolescents are friends. We will use the analogical network 

matrix in our model. However, as the SAR model likely leads to a selection bias, the authors 

introduce multivariate unobservable characteristics of individuals that can account for selection 

bias. The multivariate unobservable characteristics were first used in the SC-SAR model by Hsieh 

and Lee (2016). Hsieh and Kippersluis (2018) estimate their SC-SAR model using the Bayesian 

approach and show that peer effects play an important role in smoking initiation. Moreover, they 

examine the role of individuals’ personality on the strength of peer effects and find that 

emotionally unstable individuals are more vulnerable to peer pressure. Consequently, the positive 

and statistically significant peer effects are driven mainly by emotionally unstable individuals.  
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1.1.2 Peer Effects in Sexual Behaviour 

Ali and Dwyer (2011) estimate peer effects in sexual behaviour among adolescents in the 

United States and investigate whether having friends who already initiated intercourse or had more 

sexual partners affects individuals’ sexual behaviour. They use data from a nationally 

representative sample of adolescents that contains friendship networks and attended school classes. 

Peer effects are estimated in both groups, friendship networks and school classes. Ali and Dwyer 

(2011) estimate the linear-in-means peer effects model and apply two strategies to avoid selection 

bias. First, they include school-level fixed effects to account for common shocks, teachers’ 

qualities and selection bias. Second, they use parental characteristics as instrumental variables. 

Parental characteristics including sexual behaviour, number of sexual partners, and stability of 

marriage may directly affect an individual adolescent; however, parental characteristics are 

unlikely to affect peers’ sexual behaviour. Hence, parental characteristics provide a valid and 

relevant instrument for the measurement of peer effects. The results show that a 10% increase in 

the fraction of friends who initiates sex increases individuals’ probability of sex initiation by 5%. 

The analogical result applies to the number of sexual partners. However, the peer effects analysis 

among classmates provides insignificant estimates. The results suggest that peer effects may be 

more relevant in a friendship network than among classmates.  

Card and Giuliano (2013) also examine peer effects estimation in sexual behaviour only. 

They find that individuals’ sexual behaviour is significantly affected by their peers. Specifically, 

having a best friend who has intercourse increases the probability that an individual will also have 

intercourse by approximately 5%. To stress the overall significance of peer effects, Card and 

Giuliano (2013) estimate that 10% of inexperienced adolescents initiate their sexual behaviour 

based on the choice of their best friend.  

1.2 Peer Effects in Education 

We begin our review of peer effects in education by summarising Sacerdote’s (2011) work 

entitled “Peer Effects in Education: How Might They Work, How Big Are They and How Much Do 

We Know Thus Far?”. In this paper, Sacerdote (2011) provides a comprehensive introduction to 
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peer effects in education, which contains a theoretical analysis, results and ideas that are highly 

relevant to our study of peer effects in education.  

Sacerdote (2011) provides a general definition of peer effects, stating that it refers to almost 

any externality in which peers’ backgrounds, current behaviour and outcomes affect the outcomes 

of an individual. Sacerdote (2011) uses almost any externality, since he excludes market-based 

effects. Specifically, if the inflow of rich people into a town increases the price of private 

schooling, this is not considered a peer effect in education. Second, Sacerdote (2011) excludes the 

effect of class size because it is expected that a reduction in class size will improve pupils’ 

education through a more individual teaching approach, and thus we do not want to include this 

case into our peer effects analysis.  

Elaborating on our definition, we provide some specific examples. The educational 

outcomes in primary and secondary education are usually the test scores in reading, math, and 

learning skills. The educational outcomes in post-secondary education are usually SAT 

(Scholastic Aptitude Test) scores and GPA (grade point average) in exams. Background 

characteristics are usually SES (Socio-Economic Status) of family, race, parents’ education and 

behaviour, and the stability of family among others. Considering current behaviour, researchers 

usually focus on behavioural disorders such as disrupting during lessons, smoking, teenage 

pregnancy, bullying, and truancy, among others. We also introduce an example describing the 

potential mechanisms of peer effects, even though it is challenging to rigorously estimate them. 

Consider high-achieving primary-school students from high SES families with strong parental 

support for education. First, high-achieving students may motivate their peers and also teach them 

in their free time. Second, they can motivate their teachers to provide more enthusiastic teaching 

and cover more advanced topics. Third, the educated parents of high-achieving students may 

increase the aspirations for further education of their peers and update their beliefs about the 

returns to education. Fourth, high test scores of premiant students may motivate their peers to 

increase their effort in the preparation for exams. This example illustrates how peer effects can 

work through current behaviour, the effect on teachers’ performance, background characteristics, 

and educational outcomes. 

Regarding the empirical results of Sacerdote (2011), we start with the interpretation of 

estimated coefficients in the linear-in-means peer effect model. Test scores are usually normalised 
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to have zero mean and unit variance. The peer effects estimator describes how an individual’s test 

score would change if the average test score of her peers increased for one (which is a standard 

deviation of overall test scores). Sacerdote (2011) summarizes peer effects estimates from different 

studies and we will select the studies estimating peer effects in reading and math, since they are 

relevant for our own estimates.  

Hoxby (2000) analyses peer effects among students in all Texas elementary schools in 

grades 3–6. Her estimation strategy relies on the exogenous variation in the gender composition 

of classes. Girls have about half of the standard deviation higher score than boys, and hence the 

variation in gender composition also affects the class average test score. The peer effects estimates 

are 0.3 to 0.5 in reading and 1.7 to 6.8 in math. Using students’ fixed effects to control for positive 

selection, Betts and Zau (2004) examine students from San Diego Unified School District and 

arrive at estimates of peer effects of 1.4 in reading and 1.9 in math. They also find some evidence 

of nonlinearities suggesting that an average student is harmed more by low- than high-achieving 

students. Burke and Sass (2008) include both students’ and teachers’ fixed effects in their analysis 

of peer effects, estimating peer effects from 0.014 to 0.068 in reading and 0.04 in math. Lefgren 

(2004) estimates peer effects in the tracking1 environment of Chicago Public Schools and arrives 

at estimates of peer effects of 0.027 in reading and 0.032 in math. Finally, Vigdor and Nechyba 

(2007) estimate peer effects in North Carolina. Their estimation strategy relies on random 

assignment of pupils into classes and they control for school and teacher fixed effects. Without 

teachers’ fixed effects, the peer effects estimates are from 0.05 to 0.07 in reading and from 0.06 to 

0.08 in math. However; after including students’ fixed effects, the peer effects estimates are -0.10 

in reading and -0.12 in math.  

The results of the estimation of peer effects show that they are relatively small. Importantly, 

Vigdor and Nechyba (2007) suggest that peer effects may be driven by the selection of teachers 

into classes. Moreover, some of the summarized studies suggest that peer effects may be non-

linear and heterogeneous.  

 
 
1 Tracking refers to sorting of students according to their achievements to high- and low-achieving classes. 
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1.2.1 Peer Effects in Education with Selective Assignment  

In our work, we examine peer effects in education in a selective environment; hence, we 

summarize related papers in detail. Two chosen papers illustrate, how peer effects can be estimated 

in the real-world environment with a selection of pupils into classes according to some unobserved 

variables. Neidell and Waldfogel (2010) propose an efficient method that relies on particular 

assumptions regarding peers’ groups. On the other hand, Boucher et al. (2014) provide a reliable 

method for the unbiased estimation of peer effects; however, the proposed method requires a 

relatively rich data set with small peer groups or high variance of the size of peer groups. 

Neidell and Waldfogel (2010) examine how pupils who attended preschool education can 

affect their peers who did not attend. The authors note that these effects are usually called spillover 

effects; however, they are a special case of the broad definition of peer effects provided by 

Sacerdote (2011). Specifically, Neidell and Waldfogel (2010) investigate whether having peers 

who attended preschool education can affect individuals’ math and reading test scores and non-

cognitive outcomes. The analysed data contains information about preschool enrolments and 

several background variables including race, socioeconomic status, and parental education among 

others. Furthermore, the characteristics of teachers and classes are also included. The main 

outcome variables are math and reading test scores in the first grade and non-cognitive abilities. 

Non-cognitive abilities are difficult to measure and the authors use teachers’ evaluations of each 

child in their class and also parental assessments of children’s non-cognitive abilities. Finally, a 

key variable for the identification of peer effects is the fall-K score, which was measured at the 

beginning of preschool education, and hence it is unaffected by peer effects.  

Neidell and Waldfogel (2010) argue that the inclusion of school fixed effects or fall-K 

score can lead to unbiassed estimators of peer effects. They start with the estimation without school 

fixed effects and fall-K score and gradually include other explanatory variables in four steps. Their 

peer effects estimators are 3.30, 1.21, 0.99, and 0.92 with standard deviations of approximately 

0.3. The 3.30 coefficient means that moving from a class with no peers attending preschool 

education to a class with all peers attending preschool education would increase individuals’ math 

score by 3.3 points (the standard deviation of math score is 10). The peer effects estimators steadily 

decrease while including more explanatory variables, which points to omitted variables bias. 

However, after the inclusion of the fall-K score as an explanatory variable, the peer effects 
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estimators for other explanatory variables gradually included are 0.55, 0.61, 0.70, and 0.66 with 

standard deviations of approximately 0.2. We see that the decreasing pattern in peer effects 

estimators is no longer present. A qualitatively similar pattern is observed while including schools’ 

fixed effects and not including fall-K scores and also while including both schools’ fixed effects 

and fall-K scores. Neidell and Waldfogel (2010) argue that both schools’ fixed effects and fall-K 

scores separately or together can reliably reduce selection bias of peer effects estimates, and 

consequently estimated peer effects represent a causal relationship. 

The peer effects estimators in reading show a similar pattern as the estimators in math. 

After including schools’ fixed effects or fall-K scores or both, the peer effects estimates stabilize 

and they are also the same in magnitude. Regarding peer effects in non-cognitive abilities, Neidell 

and Waldfogel (2010) do not find a significant result in any behavioural category. The estimation 

provided by Neidell and Waldfogel (2010) is surprisingly simple and efficient. Selection bias is a 

serious concern in peer effects estimation in a natural environment, since educational outcomes 

may be explained by unobservable variables - for example, inborn ability encoded in genetic code. 

Consequently, including more explanatory variables usually does not eliminate selection bias. Our 

intuition for the success of Neidell and Waldfogel (2010) is the following. Regarding the effect of 

fall-K scores on peer effects estimators, these scores are also affected by unobservable variables 

and provide information about unobserved variables especially relevant for further test scores 

(particularly since fall-K scores also examines math and reading abilities). Regarding schools’ 

fixed effects, the allocation of pupils into classes within schools is probably as good as random, 

hence schools’ fixed effects can solve the problem of selection of pupils into schools comparing 

randomly allocated students. We use this intuition and argumentation in our work too even though 

Neidell and Waldfogel (2010) estimate the peer effects in a different environment (spillover effects 

of preschool education vs. typical peer effects in test scores).  

Boucher et al. (2014) examine peer effects in test scores among 4th- and 5th-grade grammar 

school students in the province of Québec (Canada). Hence, the context and data from their study 

are closely related to our research on peer effects. They implement the econometrical method 

proposed by Lee (2007) and we discuss it in detail in the section on Measurement of Peer Effects. 

For now, we provide a description of the method used and the identification in words. Boucher et 

al. (2014) analyse test scores from French, Science, Mathematics and History and examines how 

the test scores of peers may affect an individual’s test scores. The data include most of the pupils 
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in the province of Québec and the selection is likely to be present. Boucher et al. (2014) define 

peer groups at school levels, and thus they assume that all pupils can interact within one school. 

In contrast to Neidell and Waldfogel (2010), Boucher et al. (2014) include school fixed effects and 

define the peer group at the school level. More generally, Boucher et al. (2014) estimate the peer 

effects model with fixed effects of groups. The identification of this model is counterintuitive since 

the school fixed effect is the mean test score of pupils in a school and peer effects work through 

the average effect of peers’ test scores. The trick is in the exact definition of peer groups: a 

particular individual is excluded from her peer group. This means that school fixed effects are 

exactly the mean scores of schools and peer effects work through the mean score of schools with 

one pupil excluded. The identification of this model is rigorously proved and the only potential 

problem comes from the variance of the estimators. The difference between the mean of school 

and the mean of school with one pupil excluded may be relatively small. Especially in the case of 

schools with a large number of pupils, the peer effects estimators may be noisy and Boucher et al. 

(2014) analyse this problem using Monte-Carlo simulations.  

Moving to the empirical results, Boucher et al. (2014) estimate their model using the 

pseudo conditional maximum likelihood (CML) and instrumental variable (IV) approach. The 

CML approach provides less noisy estimates in comparison with the IV approach. However, the 

results are qualitatively identical. The peer effects estimators for French, Science, Mathematics 

and History are 0.33, -0.23, 0.82, and 0.65. Depending on the definition of standard errors, the 

estimates are significantly positive for Mathematics and History or Mathematics only. The peer 

effects estimator for Mathematics is highest, which is consistent with the overview provided by 

Sacerdote (2011). To conclude, Boucher et al. (2014) provide a useful econometric method for the 

estimation of peer effects in the linear-in-means model, which provides estimators comparable 

with the previous research, and hence it is likely to work in real-world settings. However, the 

method requires a relatively large sample size with a high variance of group sizes.  
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2 Estimation of the Linear-in-Means Peer Effects Model  

2.1 Definition of the Linear-in-Means Peer Effects Model 

The linear-in-means peer effects model is the simplest model describing peer effects. We 

estimate this model in our work and follow the notation of Bramoullé et al. (2009) since they 

significantly contributed to our understanding of the identification of the peer effects model. 

Scalars are denoted with lower case letters, vectors with bold lower-case letters, and matrices with 

bold capital letters. Let us denote 𝑃𝑃𝑖𝑖 the set of peers of an individual 𝑖𝑖 and 𝑛𝑛𝑖𝑖 the number of peers 

of an individual 𝑖𝑖. A crucial assumption for the identification is that an individual 𝑖𝑖 is excluded 

from her peer group, e.g., 𝑖𝑖 ∉ 𝑃𝑃𝑖𝑖. Let us denote 𝑦𝑦𝑖𝑖 the outcome of an individual 𝑖𝑖, which can be, 

for example, a math test score. Educational research usually assumes that outcome 𝑦𝑦𝑖𝑖 can be 

explained by background characteristics 𝒙𝒙𝒊𝒊 of an individual 𝑖𝑖. To model peer effects, we will 

assume that outcome 𝑦𝑦𝑖𝑖 can also be explained by the average outcomes and background 

characteristics of an individual’s peers. Formulating the peer effects model in mathematical 

notation gives. 

 𝑦𝑦𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽
1
𝑛𝑛𝑖𝑖
� 𝑦𝑦𝑗𝑗
𝑗𝑗∈𝑃𝑃𝑖𝑖

+ 𝒙𝒙𝒊𝒊𝜸𝜸 +
1
𝑛𝑛𝑖𝑖
� 𝒙𝒙𝒋𝒋
𝑗𝑗∈𝑃𝑃𝑖𝑖

𝜹𝜹 + 𝜀𝜀𝑖𝑖 (1) 

where 𝒙𝒙𝒊𝒊 is 1 × 𝑘𝑘 row vector of the background characteristics of an individual 𝑖𝑖. 

Parameters 𝛼𝛼 and 𝜸𝜸 describe how background characteristics can explain educational outcomes. 

Parameter 𝛽𝛽 describes how the outcome of an individual 𝑖𝑖 is affected by the outcomes of her peers 

and it is usually called the endogeneous peer effect. Parameter 𝜸𝜸 describes how the outcome of an 

individual 𝑖𝑖 is affected by the background characteristics of her peers and is usually called 

exogenous peer effect. This terminology was established by Manski (1993) and is consistently used 

in the peer effects literature. Finally, 𝜀𝜀𝑖𝑖 is an error term with the identification condition 𝔼𝔼[𝜀𝜀𝑖𝑖|𝒙𝒙𝑖𝑖] =

0. Later we argue that the identification condition implies that pupils cannot be sorted into groups 

according to some unobservable variable. The violation of this implication will lead to a selection 

bias.  
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In empirical practice, we usually work with several background characteristics. However; 

for simplicity and better intuition in some proofs, we work with the simpler version of the peer 

effects model 

 𝑦𝑦𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽
1
𝑛𝑛𝑖𝑖
� 𝑦𝑦𝑗𝑗
𝑗𝑗∈𝑃𝑃𝑖𝑖

+ 𝛾𝛾𝑥𝑥𝑖𝑖 + 𝛿𝛿
1
𝑛𝑛𝑖𝑖
� 𝑥𝑥𝑗𝑗
𝑗𝑗∈𝑃𝑃𝑖𝑖

+ 𝜀𝜀𝑖𝑖 (2) 

assuming a unique background characteristic.  

Now, we express our peer effects model in matrix notation, which will be useful for the 

analysis of the identification and also in the computational part. Let us denote 𝑱𝑱𝑛𝑛×𝑚𝑚 the matrix of 

ones that is handy for expressing sums. Note for example that the product of 𝑱𝑱1×𝑛𝑛 and 𝒚𝒚𝑛𝑛×1 is 

simply the sum of the elements of 𝒚𝒚. 

𝑱𝑱1×𝑛𝑛𝒚𝒚𝑛𝑛×1 = (1 ⋯ 1)�
𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� = �𝑦𝑦𝑗𝑗

𝑛𝑛

𝑗𝑗=1

 

Now, let us move to a slightly more complicated case. Assume one class with 𝑛𝑛 pupils and 

all pupils interact with each other; hence the number of peers is 𝑛𝑛 − 1. If we want to express the 

average of peers’ outcomes for each individual, we can sum up all outcomes in the class, subtract 

the outcome of an individual 𝑖𝑖 and divide by 𝑛𝑛 − 1.  

1
𝑛𝑛 − 1

�𝑦𝑦𝑗𝑗
𝑗𝑗∈𝑃𝑃𝑖𝑖

=
1

𝑛𝑛 − 1
��

1 ⋯ 1
⋮   ⋮
1 ⋯ 1

�  �
𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� − �

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
�� =

1
𝑛𝑛 − 1

(𝑱𝑱𝑛𝑛×𝑛𝑛𝒚𝒚𝑛𝑛×1 − 𝒚𝒚𝑛𝑛×1) 

We can further manipulate with the above equation to get the network matrix that calculates 

the average peer score for each individual 𝑖𝑖.  

1
𝑛𝑛 − 1

�𝑦𝑦𝑗𝑗
𝑗𝑗∈𝑃𝑃𝑖𝑖

=
1

𝑛𝑛 − 1
(𝑱𝑱𝑛𝑛×𝑛𝑛𝒚𝒚𝑛𝑛×1 − 𝒚𝒚𝑛𝑛×1) =

1
𝑛𝑛 − 1

(𝑱𝑱𝑛𝑛×𝑛𝑛𝒚𝒚𝑛𝑛×1 − 𝑰𝑰𝑛𝑛𝒚𝒚𝑛𝑛×1)

=
1

𝑛𝑛 − 1
(𝑱𝑱𝑛𝑛×𝑛𝑛 − 𝑰𝑰𝑛𝑛)𝒚𝒚𝑛𝑛×1 

where 𝑰𝑰𝑛𝑛 is an 𝑛𝑛 × 𝑛𝑛 identity matrix. Now we can define a network matrix as 
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𝑮𝑮 ≔
1

𝑛𝑛 − 1
(𝑱𝑱𝑛𝑛×𝑛𝑛 − 𝑰𝑰𝑛𝑛) =

1
𝑛𝑛 − 1

�

0 1 ⋯ 1
1 0  ⋮
⋮  ⋱ 1
1 ⋯ 1 0

� 

We can note that a network matrix 𝑮𝑮 has zeros at diagonal and 1
𝑛𝑛−1

 otherwise. Using the 

element-wise definition, we can write 

(𝑮𝑮)𝑖𝑖𝑖𝑖 ≔ �
1

𝑛𝑛 − 1
 if 𝑗𝑗 ≠ 𝑖𝑖 
 

0 if 𝑗𝑗 = 𝑖𝑖 
 

Finally, let us move to the most general case in which an individual 𝑖𝑖 has a general set of 

peers 𝑃𝑃𝑖𝑖 with 𝑛𝑛𝑖𝑖 peers. Inspired by the previous special case, the 𝑖𝑖𝑡𝑡ℎ row of a network matrix 𝑮𝑮 

should have zeros in 𝑗𝑗𝑡𝑡ℎ columns for pupils 𝑗𝑗 outside of peers group 𝑃𝑃𝑖𝑖. In 𝑗𝑗𝑡𝑡ℎ columns for pupils 

𝑗𝑗 inside of peers group 𝑃𝑃𝑖𝑖, the elements should be 1
𝑛𝑛𝑖𝑖

. For example, if the first of 5 individuals have 

three peers – second, fourth, and fifth, the corresponding row for the first individual is 

�0
1
3

0
1
3

1
3
�

⎝

⎜
⎛

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3
𝑦𝑦4
𝑦𝑦5⎠

⎟
⎞

=
1
3

(𝑦𝑦2 + 𝑦𝑦4 + 𝑦𝑦5) 

One can realize that the general definition of a network matrix 𝑮𝑮 is  

(𝑮𝑮)𝑖𝑖𝑖𝑖 ≔ �
1
𝑛𝑛𝑖𝑖

 if 𝑗𝑗 ∈ 𝑃𝑃𝑖𝑖  
 

0 if 𝑗𝑗 ∉ 𝑃𝑃𝑖𝑖 
 

Indeed, if we write the multiplication of 𝑮𝑮 and 𝒚𝒚 elements by elements, we get 

(𝑮𝑮𝑮𝑮)𝑖𝑖 = �(𝑮𝑮)𝑖𝑖𝑖𝑖𝑦𝑦𝑗𝑗
𝑗𝑗

=
1
𝑛𝑛𝑖𝑖
� 𝑦𝑦𝑗𝑗
𝑗𝑗∈𝑃𝑃𝑖𝑖

 

Now we are prepared to formulate the linear-in-means peer effects model in matrix 

notation. Let us denote 𝑛𝑛 the number of all pupils in the sample and write 

 𝒚𝒚 = 𝛼𝛼𝑱𝑱𝑛𝑛×1 + 𝛽𝛽𝑮𝑮𝑮𝑮 + 𝑿𝑿𝑿𝑿 + 𝑮𝑮𝑮𝑮𝑮𝑮 + 𝜺𝜺 (3) 
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Note that our definition of 𝑮𝑮 works also properly for the 𝑛𝑛 × 𝑘𝑘 matrix 𝑿𝑿 of peers’ 

background characteristics. One way to see this directly is to express matrix 𝑿𝑿 as a vector of 𝑛𝑛 rows 

𝒙𝒙𝑖𝑖.  

 

The simplified version of our model with one background characteristic is  

 

 𝒚𝒚 = 𝛼𝛼𝑱𝑱𝑛𝑛×1 + 𝛽𝛽𝑮𝑮𝑮𝑮 + 𝛾𝛾𝒙𝒙 + 𝛿𝛿𝑮𝑮𝑮𝑮 + 𝜺𝜺 (4) 

 

2.2 Reduced Form of the Linear-in-Means Peer Effects Model 

Before the analysis of the identification of the linear-in-means peer effects model, we 

derive its reduced form, which helps us with the intuition. The following parts are relatively 

technical; hence, we use the simplified version of our model with one background characteristic 

[equation (4)]. Note that Bramoullé et al. (2009) describe only the simplified version of the peer 

effects model. First, we separate educational outcomes 𝒚𝒚 to the left-hand side and the rest of the 

variables to the righthand side 

(𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)𝒚𝒚 = 𝛼𝛼𝑱𝑱𝑛𝑛×1 + (𝛾𝛾𝑰𝑰𝑛𝑛 + 𝛿𝛿𝑮𝑮)𝒙𝒙 + 𝜺𝜺 

Multiplying by (𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1 from the left-hand side gives 

 𝒚𝒚 = 𝛼𝛼(𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1𝑱𝑱𝑛𝑛×1 + (𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1(𝛾𝛾𝑰𝑰𝑛𝑛 + 𝛿𝛿𝑮𝑮)𝒙𝒙 + (𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1𝜺𝜺 (5) 

This reduced form can be further simplified using special properties of matrices 𝑮𝑮 and 

(𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1. Bramoullé et al. (2009) provide usually brief derivations and the steps may not be 

clear while reading for the first time. They also sometimes refer to different papers with a similar 

issue considering proofs. Hence, we decided to provide some derivations and proofs in detail, 

which can be skipped while reading our work for the first time.  

Now, we assume that no-one is isolated, e.g., 𝑃𝑃𝑖𝑖 is a non-empty set for all 𝑖𝑖. We impose 

this assumption on the beginning of our derivation, since all proofs are simpler. However, it should 

be possible to realise this assumption if needed and one needs to check what will be different. 
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Usually, the following statements are slightly modified, for example, the 𝐺𝐺 is not row normalised; 

however, some rows can be zeros. Consequently, 𝑮𝑮𝑘𝑘𝑱𝑱𝑛𝑛×1 ≠ 𝑱𝑱𝑛𝑛×1 and the elements of the resulting 

vector are zeros and ones. Isolated individuals cause some eigenvalues to be zeros; hence, 

proposition 1.3 still holds. Finally, proposition 2.3 should also be modified. 

Proposition 1. The Properties of a Network Matrix 𝑮𝑮 

Assume that no-one is isolated, e.g., 𝑃𝑃𝑖𝑖 is a non-empty set for all 𝑖𝑖. 

1.1. 𝑮𝑮 is row normalised. 

1.2. 𝑮𝑮𝑘𝑘𝑱𝑱𝑛𝑛×1 = 𝑱𝑱𝑛𝑛×1  

1.3. The eigenvalues 𝜆𝜆 of 𝑮𝑮 are less than one in an absolute value, e.g., |𝜆𝜆| ≤ 1. 

1.4. If 𝑮𝑮 is diagonalizable, lim
𝑘𝑘→∞

𝑮𝑮𝑘𝑘 = 𝑮𝑮� where 𝑮𝑮� is a finite matrix. 

 
The Proof of Proposition 1. 

1.1. We can use the elementwise definition of 𝑮𝑮 matrix 

(𝑮𝑮)𝑖𝑖𝑖𝑖 ≔ �
1
𝑛𝑛𝑖𝑖

 if 𝑗𝑗 ∈ 𝑃𝑃𝑖𝑖 
 

0 if 𝑗𝑗 ∉ 𝑃𝑃𝑖𝑖 
 

and express the sum of its elements in 𝑖𝑖𝑡𝑡ℎ row  

�(𝑮𝑮)𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

= �
1
𝑛𝑛𝑖𝑖𝑗𝑗∈𝑃𝑃𝑖𝑖

= 1 

since we are summing over 𝑛𝑛𝑖𝑖 elements.  

1.2. Let us start with 𝑘𝑘 = 1. The 𝑖𝑖𝑡𝑡ℎ element of the product of 𝑮𝑮 and 𝑱𝑱𝑛𝑛×1 is 

(𝑮𝑮𝑱𝑱𝑛𝑛×1)𝑖𝑖 = �(𝑮𝑮)𝑖𝑖𝑖𝑖(𝑱𝑱𝑛𝑛×1)𝑗𝑗1

𝑛𝑛

𝑗𝑗=1

= �(𝑮𝑮)𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

 

Proposition 1.1 implies that the above sum is equal to one. Consequently, each row of 

the analysed product is one and we can write 
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𝑮𝑮𝑱𝑱𝑛𝑛×1 = 𝑱𝑱𝑛𝑛×1 

Finally, iteratively applying the above formula we get 

𝑮𝑮𝑘𝑘𝑱𝑱𝑛𝑛×1 = 𝑮𝑮𝑘𝑘−1𝑮𝑮𝑱𝑱𝑛𝑛×1 = 𝑮𝑮𝑘𝑘−1𝑱𝑱𝑛𝑛×1 = 𝑮𝑮𝑘𝑘−2𝑱𝑱𝑛𝑛×1 =  . . .  = 𝑮𝑮𝑱𝑱𝑛𝑛×1 = 𝑱𝑱𝑛𝑛×1 

1.3. This statement could be directly proved by recalling the Gershgorin Circle Theorem2. 

However, the proof is not too complex and we can modify it to our special case of a 

matrix 𝑮𝑮. Let 𝜆𝜆 be an eigenvalue and 𝒗𝒗 be an eigenvector of a matrix 𝑮𝑮. Then by the 

definition of eigenvalues and eigenvectors, we can write 

𝑮𝑮𝑮𝑮 = 𝜆𝜆𝒗𝒗 

Now we write the 𝑖𝑖𝑡𝑡ℎ row of the above equality 

�(𝑮𝑮)𝑖𝑖𝑖𝑖𝑣𝑣𝑗𝑗

𝑛𝑛

𝑗𝑗=1

= 𝜆𝜆𝑣𝑣𝑖𝑖 

Now, we choose one particular row so that 𝑣𝑣𝑖𝑖 is the greatest component of a vector 𝒗𝒗 in 

the absolute value. Moreover, the eigenvectors are determined up to normalization, so 

let us impose that 𝑣𝑣𝑖𝑖 = 1. Thus, we can write 

�𝑣𝑣𝑗𝑗� ≤ 1 ∀ 𝑗𝑗 

The analysed equation becomes 

�(𝑮𝑮)𝑖𝑖𝑖𝑖𝑣𝑣𝑗𝑗

𝑛𝑛

𝑗𝑗=1

= 𝜆𝜆 

Let us take an absolute value of this equation 

|𝜆𝜆| = ��(𝑮𝑮)𝑖𝑖𝑖𝑖𝑣𝑣𝑗𝑗

𝑛𝑛

𝑗𝑗=1

� 

and apply the triangular inequality 

 
 
2 Gershgorin Circle Theorem: https://en.wikipedia.org/wiki/Gershgorin_circle_theorem  

https://en.wikipedia.org/wiki/Gershgorin_circle_theorem
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|𝜆𝜆| = ��(𝑮𝑮)𝑖𝑖𝑖𝑖𝑣𝑣𝑗𝑗

𝑛𝑛

𝑗𝑗=1

� ≤�(𝑮𝑮)𝑖𝑖𝑖𝑖�𝑣𝑣𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

 

Note that the elements (𝑮𝑮)𝑖𝑖𝑖𝑖 are positive, and hence their absolute value is the same 

number. The inequality �𝑣𝑣𝑗𝑗� ≤ 1 ∀ 𝑗𝑗 implies that   

|𝜆𝜆| ≤�(𝑮𝑮)𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

= 1 

where the last equality comes from Proposition 1.1. 

1.4. We start our proof assuming that 𝑮𝑮 is diagonalizable. Let us denote by 𝑫𝑫 the diagonal 

matrix so that  

𝑮𝑮 = 𝑷𝑷𝑷𝑷𝑷𝑷−𝟏𝟏 

Then for the 𝑘𝑘𝑡𝑡ℎ power of matrix 𝑮𝑮 holds 

𝑮𝑮𝑘𝑘 = 𝑷𝑷𝑫𝑫𝑘𝑘𝑷𝑷−𝟏𝟏 

The diagonal elements of a matrix 𝑫𝑫 are the eigenvalues 𝜆𝜆 of a matrix 𝑮𝑮, and hence the 

examined limit is 

lim
𝑘𝑘→∞

𝑮𝑮𝑘𝑘 = 𝑷𝑷� lim
𝑘𝑘→∞

𝑫𝑫𝑘𝑘�𝑷𝑷−1 = 𝑷𝑷

⎝

⎜
⎛

lim
𝑘𝑘→∞

𝜆𝜆1𝑘𝑘 0 ⋯ 0

0 lim
𝑘𝑘→∞

𝜆𝜆2𝑘𝑘  ⋮
⋮  ⋱ 0
0 ⋯ 0 lim

𝑘𝑘→∞
𝜆𝜆𝑛𝑛𝑘𝑘⎠

⎟
⎞
𝑷𝑷−1 

However, proposition 1.3 implies that also lim
𝑘𝑘→∞

𝜆𝜆𝑖𝑖𝑘𝑘 is less than one in absolute value, 

and hence the matrix lim
𝑘𝑘→∞

𝑫𝑫𝑘𝑘 is finite. Noting that 𝑷𝑷, lim
𝑘𝑘→∞

𝑫𝑫𝑘𝑘, and 𝑷𝑷−1 are finite, their 

product 𝑮𝑮� is also finite.  
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The properties of a matrix 𝐺𝐺 will be crucial for the analysis of the properties of matrix 𝑰𝑰𝑛𝑛 −

𝛽𝛽𝑮𝑮. Regarding proposition 1.4, one may ask if the matrix 𝑮𝑮 is diagonalizable in general. We do 

not know; however, we will prove an important property of 𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮 even in the case in which 𝑮𝑮 

is not diagonalizable.  

Proposition 2. The Properties of a Matrix 𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮 

Assume that |𝛽𝛽| < 1, then 

2.1. the eigenvalues of a matrix 𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮 are positive, a matrix has full rank and is invertible. 

2.2. the inverse of a matrix 𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮 can be expressed as an infinite sum 

(𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1 = �𝛽𝛽𝑘𝑘𝑮𝑮𝑘𝑘
∞

𝑘𝑘=0

  

2.3. (𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1𝑱𝑱𝑛𝑛×1 = 1
1−𝛽𝛽

𝑱𝑱𝑛𝑛×1 

 

The Proof of Proposition 2. 

2.1. Let 𝜆𝜆 be an eigenvalue and 𝒗𝒗 be an eigenvector of a matrix 𝑮𝑮. First, we show that 𝒗𝒗 is 

also an eigenvector of a matrix 𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮 with eigenvalue 1 − 𝛽𝛽𝛽𝛽. 

(𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)𝒗𝒗 = 𝑰𝑰𝑛𝑛𝒗𝒗 − 𝛽𝛽𝑮𝑮𝑮𝑮 = 𝒗𝒗 − 𝛽𝛽𝛽𝛽𝒗𝒗 = (1 − 𝛽𝛽𝛽𝛽)𝒗𝒗 

where in the second equality, we are using 𝑮𝑮𝑮𝑮 = 𝜆𝜆𝒗𝒗, which is the property of 

eigenvalues and eigenvectors of matrix 𝑮𝑮. Using |𝜆𝜆| ≤ 1 (proposition 1.3) and |𝛽𝛽| < 1 

implies 𝜆𝜆𝜆𝜆 < 1. Now we can multiply this inequality by a negative one 

−𝜆𝜆𝜆𝜆 > −1 

and add one 

1 − 𝜆𝜆𝜆𝜆 > 0 

Thus, we have proved that eigenvalues of a matrix 𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮 are positive and 

consequently, matrix 𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮  has full rank and is invertible.  
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2.2. The series expansion is analogical to the formula for the sum of a geometric sequence. 

The formula for the inverse of a matrix 𝑨𝑨 can be verified by the relation  

𝑨𝑨𝑨𝑨−1 = 𝑰𝑰𝑛𝑛 

Let us write the identity for an inverse matrix in our case. First, we should pay attention 

to the proper definition of an infinite series.  

(𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)�𝛽𝛽𝑘𝑘𝑮𝑮𝑘𝑘
∞

𝑘𝑘=0

= (𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮) lim
𝑙𝑙→∞

�𝛽𝛽𝑘𝑘𝑮𝑮𝑘𝑘
𝑙𝑙

𝑘𝑘=0

= lim
𝑙𝑙→∞

�(𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)�𝛽𝛽𝑘𝑘𝑮𝑮𝑘𝑘
𝑙𝑙

𝑘𝑘=0

� 

Now we multiply the parenthesis and the series. 

lim
𝑙𝑙→∞

�(𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)�𝛽𝛽𝑘𝑘𝑮𝑮𝑘𝑘
𝑙𝑙

𝑘𝑘=0

� = lim
𝑙𝑙→∞

��𝛽𝛽𝑘𝑘𝑮𝑮𝑘𝑘
𝑙𝑙

𝑘𝑘=0

−�𝛽𝛽𝑘𝑘+1𝑮𝑮𝑘𝑘+1
𝑙𝑙

𝑘𝑘=0

� =

= 𝑰𝑰𝑛𝑛 − lim
𝑙𝑙→∞

(𝛽𝛽𝑙𝑙+1𝑮𝑮𝑙𝑙+1) 

We can see that our limit shares the properties of the telescoping series, that were used 

in the second equality.  

Now, we split our proof into two cases. First, if 𝑮𝑮 is diagonalizable, then proposition 

1.4 implies that we can split the limit and obtain 

lim
𝑙𝑙→∞

(𝛽𝛽𝑙𝑙+1𝑮𝑮𝑘𝑘+1) = lim
𝑙𝑙→∞

(𝛽𝛽𝑙𝑙+1) lim
𝑙𝑙→∞

(𝑮𝑮𝑙𝑙+1) = lim
𝑙𝑙→∞

(𝛽𝛽𝑙𝑙+1)𝑮𝑮� = 0 

since 𝑮𝑮� is finite and |𝛽𝛽| < 1. 

Second, if 𝑮𝑮 is not diagonalizable, then 𝑮𝑮� is not finite (as we show below) and we cannot 

conduct so simple a proof to show that lim
𝑙𝑙→∞

(𝛽𝛽𝑙𝑙+1𝑮𝑮𝑙𝑙+1) = 0. Nevertheless, if 𝑮𝑮 is not 

diagonalizable, there still exists the Jordan normal form 𝑵𝑵 of a matrix 𝑮𝑮 and we can use 

it. The following holds 

𝑮𝑮 = 𝑷𝑷�

𝑵𝑵1 0 ⋯ 0
0 𝑵𝑵2  ⋮
⋮  ⋱ 0
0 ⋯ 0 𝑵𝑵𝑚𝑚

�𝑷𝑷−1 
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where 𝑵𝑵𝑖𝑖 are Jordan blocks and 𝑚𝑚 is their number (𝑚𝑚 < 𝑛𝑛). The Jordan block has 

eigenvalues on its diagonal, ones on the superdiagonal, and zeros otherwise.  

𝑵𝑵𝑖𝑖 = �

λi 1   
 λi ⋱  
   ⋱ 1
   λi

� 

Now we need to express the powers of Jordan blocks. If one is familiar with the powers 

of Jordan normal form, she can move to the last rows of the following proof.  

Now we can decompose the Jordan block to the sum of two matrices and use the 

binomial theorem. 

𝑵𝑵𝑖𝑖
𝑘𝑘 =

⎝

⎜
⎛
𝜆𝜆𝑖𝑖𝑰𝑰 + �

0 1   
 0 ⋱  
   ⋱ 1
   0

�

⎠

⎟
⎞

𝑘𝑘

 

𝑵𝑵𝑖𝑖
𝑘𝑘 = ��𝑘𝑘𝑙𝑙 �

𝑘𝑘

𝑙𝑙=0

𝜆𝜆𝑖𝑖𝑘𝑘−𝑙𝑙𝑰𝑰𝑘𝑘−𝑙𝑙 �

0 1   
 0 ⋱  
   ⋱ 1
   0

�

𝑙𝑙

 

𝑵𝑵𝑖𝑖
𝑘𝑘 = ��𝑘𝑘𝑙𝑙�

𝑘𝑘

𝑙𝑙=0

𝜆𝜆𝑖𝑖𝑘𝑘−𝑙𝑙 �

0 1   
 0 ⋱  
   ⋱ 1
   0

�

𝑙𝑙

 

Now the expression seems to be even more complex. However, the powers of the matrix 

with superdiagonal of ones and zeros otherwise exhibit a special pattern. Each power 

shifts the superdiagonal one step to the right (one can see it multiplying these matrices 

directly). As a result, we can write 

𝑵𝑵𝑖𝑖
𝑘𝑘 = 𝜆𝜆𝑖𝑖𝑘𝑘𝑰𝑰 + �𝑘𝑘1� 𝜆𝜆𝑖𝑖

𝑘𝑘−1

⎝

⎜
⎛

0 1    
 0 1   
  0 ⋱  
   ⋱ 1
    0⎠

⎟
⎞

+ �𝑘𝑘2� 𝜆𝜆𝑖𝑖
𝑘𝑘−2

⎝

⎜
⎛

0 0 1   
 0 0 ⋱  
  0 ⋱ 1 
   ⋱ 0
    0⎠

⎟
⎞

+ ⋯ 

which can be summarised in one matrix 
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𝑵𝑵𝑖𝑖
𝑘𝑘 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛
𝜆𝜆𝑖𝑖𝑘𝑘 �𝑘𝑘1� 𝜆𝜆𝑖𝑖

𝑘𝑘−1 �𝑘𝑘2� 𝜆𝜆𝑖𝑖
𝑘𝑘−2 ⋯  

 𝜆𝜆𝑖𝑖𝑘𝑘 �𝑘𝑘1� 𝜆𝜆𝑖𝑖
𝑘𝑘−1 ⋱  

  𝜆𝜆𝑖𝑖𝑘𝑘 ⋱ �𝑘𝑘2� 𝜆𝜆𝑖𝑖
𝑘𝑘−2 

   ⋱ �𝑘𝑘1� 𝜆𝜆𝑖𝑖
𝑘𝑘−1

    𝜆𝜆𝑖𝑖𝑘𝑘 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

Now, we can see that the limit lim
𝑘𝑘→∞

𝑮𝑮𝑘𝑘 can be possibly infinity. Indeed, 𝜆𝜆𝑖𝑖 can be 

possibly 1, then for example  �𝑘𝑘1� = 𝑘𝑘 and it approaches infinity as 𝑘𝑘 goes to infinity. 

However, let us show that the desired limit is zero, e.g., lim
𝑙𝑙→∞

(𝛽𝛽𝑘𝑘𝑮𝑮𝑘𝑘) = 0.  

lim
𝑘𝑘→∞

(𝛽𝛽𝑘𝑘𝑮𝑮𝑘𝑘) = lim
𝑘𝑘→∞

⎝

⎜
⎛
𝛽𝛽𝑘𝑘𝑷𝑷�

𝑵𝑵1 0 ⋯ 0
0 𝑵𝑵2  ⋮
⋮  ⋱ 0
0 ⋯ 0 𝑵𝑵𝑚𝑚

�

𝑘𝑘

𝑷𝑷−1

⎠

⎟
⎞

=

= 𝑷𝑷 lim
𝑘𝑘→∞

⎝

⎛
𝛽𝛽𝑘𝑘𝑵𝑵1

𝑘𝑘 0 ⋯ 0
0 𝛽𝛽𝑘𝑘𝑵𝑵2

𝑘𝑘  ⋮
⋮  ⋱ 0
0 ⋯ 0 𝛽𝛽𝑘𝑘𝑵𝑵𝑚𝑚

𝑘𝑘 ⎠

⎞𝑷𝑷−1 

Note that 𝛽𝛽𝑘𝑘 is scalar and can be moved into the Jordan normal form. Moreover, 

matrices 𝑷𝑷 and 𝑷𝑷−1 are finite, and hence they can be placed outside of the limit. Now 

we can examine the limit lim
𝑘𝑘→∞

�𝛽𝛽𝑘𝑘𝑵𝑵𝑖𝑖
𝑘𝑘� of an arbitrary Jordan block. Let us examine an 

arbitrary element above the diagonal of matrix lim
𝑘𝑘→∞

�𝛽𝛽𝑘𝑘𝑵𝑵𝑖𝑖
𝑘𝑘�. 

lim
𝑘𝑘→∞

�𝛽𝛽𝑘𝑘 �𝑘𝑘𝑗𝑗� �𝜆𝜆𝑖𝑖
𝑘𝑘−𝑗𝑗�� ≤ lim

𝑘𝑘→∞
�𝛽𝛽𝑘𝑘 �𝑘𝑘𝑗𝑗�� 

since |𝜆𝜆| ≤ 1 (proposition 1.3).  

lim
𝑘𝑘→∞

�𝛽𝛽𝑘𝑘 �𝑘𝑘𝑗𝑗�� = lim
𝑘𝑘→∞

�𝛽𝛽𝑘𝑘
𝑘𝑘!

𝑗𝑗! (𝑘𝑘 − 𝑗𝑗)!
� = lim

𝑘𝑘→∞
�𝛽𝛽𝑘𝑘

𝑘𝑘(𝑘𝑘 − 1) … (𝑘𝑘 − 𝑗𝑗 + 1)
𝑗𝑗!

� 
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Note that in the nominator, we have 𝑗𝑗 polynomials, hence multiplying them gives the 

polynomial of 𝑘𝑘 with the highest power 𝑘𝑘𝑗𝑗. Finally, using, e.g.,  L’Hospital’s rule, gives 

that  

lim
𝑘𝑘→∞

�𝛽𝛽𝑘𝑘
𝑘𝑘(𝑘𝑘 − 1) … (𝑘𝑘 − 𝑗𝑗 + 1)

𝑗𝑗!
� = lim

𝑘𝑘→∞
�𝛽𝛽𝑘𝑘𝑘𝑘𝑗𝑗� = 0 

since |𝛽𝛽| < 1. One may ask if this complicated proof was necessary; hence, we will 

provide an example of a network matrix that is not diagonalizable.  

⎝

⎜
⎛

0
1
2

1
2

1
2

0
1
2

1 0 0⎠

⎟
⎞

 

One may verify that this matrix is not diagonalizable executing the following code in 

Wolfram Alpha. 

diagonalize {{0,1/2,1/2}, {1/2,0,1/2}, {1,0,0}} 

which gives the corresponding Jordan normal form  

⎝

⎜
⎛
−

1
2

1 0

0 −
1
2

0

0 0 1⎠

⎟
⎞

 

2.3.  The previous proof was quite technical; however, as a reward, its result will be 

efficiently used in this proof. Let us express the (𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1 as the infinite series. 

(𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1𝑱𝑱𝑛𝑛×1 = �𝛽𝛽𝑘𝑘𝑮𝑮𝑘𝑘
∞

𝑘𝑘=0

𝑱𝑱𝑛𝑛×1 

Recall that 𝑮𝑮𝑘𝑘𝑱𝑱𝑛𝑛×1 = 𝑱𝑱𝑛𝑛×1 (proposition 1.2). 

(𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1𝑱𝑱𝑛𝑛×1 = �𝛽𝛽𝑘𝑘
∞

𝑘𝑘=0

𝑱𝑱𝑛𝑛×1 
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Finally, note that ∑ 𝛽𝛽𝑘𝑘∞
𝑘𝑘=0 = 1

1−𝛽𝛽
 since |𝛽𝛽| < 1. (The formula for the sum of 

geometrical sequence.) 

(𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1𝑱𝑱𝑛𝑛×1 =
1

1 − 𝛽𝛽
𝑱𝑱𝑛𝑛×1 

 

Propositions 2 enable us to simplify the reduced form of the peer effects model [equation 

(5)]. 

𝒚𝒚 = 𝛼𝛼(𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1𝑱𝑱𝑛𝑛×1 + (𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1(𝛾𝛾𝑰𝑰𝑛𝑛 + 𝛿𝛿𝑮𝑮)𝒙𝒙 + (𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1𝜺𝜺 

Specifically, let us apply proposition 2.3 in the first term in the right-hand side. 

𝒚𝒚 =
𝛼𝛼

1 − 𝛽𝛽
𝑱𝑱𝑛𝑛×1 + (𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1(𝛾𝛾𝑰𝑰𝑛𝑛 + 𝛿𝛿𝑮𝑮)𝒙𝒙 + (𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1𝜺𝜺 

and express (𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1 in the second term in the right-hand side as an infinite sum.  

(𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1(𝛾𝛾𝑰𝑰𝑛𝑛 + 𝛿𝛿𝑮𝑮)𝒙𝒙 = �𝛽𝛽𝑘𝑘𝑮𝑮𝑘𝑘
∞

𝑘𝑘=0

(𝛾𝛾𝑰𝑰𝑛𝑛 + 𝛿𝛿𝑮𝑮)𝒙𝒙 = �(𝛾𝛾𝛽𝛽𝑘𝑘𝑮𝑮𝑘𝑘 + 𝛿𝛿𝛽𝛽𝑘𝑘𝑮𝑮𝑘𝑘+1)𝒙𝒙
∞

𝑘𝑘=0

 

Now, let us separate the explanatory part of individuals’ background characteristics. 

(𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1(𝛾𝛾𝑰𝑰𝑛𝑛 + 𝛿𝛿𝑮𝑮)𝒙𝒙 = 𝛾𝛾𝒙𝒙 + �(𝛾𝛾𝛽𝛽𝑘𝑘+1𝑮𝑮𝑘𝑘+1 + 𝛿𝛿𝛽𝛽𝑘𝑘𝑮𝑮𝑘𝑘+1)𝒙𝒙
∞

𝑘𝑘=0

 

Note that we had to split the sum and shift the summing indices one step forward in the 

first sum. Now, we can simplify the obtained sum.   

(𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1(𝛾𝛾𝑰𝑰𝑛𝑛 + 𝛿𝛿𝑮𝑮)𝒙𝒙 = 𝛾𝛾𝒙𝒙 + (𝛾𝛾𝛾𝛾 + 𝛿𝛿)�𝛽𝛽𝑘𝑘𝑮𝑮𝑘𝑘+1𝒙𝒙
∞

𝑘𝑘=0

 

Taking all modifications together, we can obtain the simplified reduced form peer effects 

model. 

 
𝒚𝒚 =

𝛼𝛼
1 − 𝛽𝛽

𝑱𝑱𝑛𝑛×1 + 𝛾𝛾𝒙𝒙 + (𝛾𝛾𝛾𝛾 + 𝛿𝛿)�𝛽𝛽𝑘𝑘𝑮𝑮𝑘𝑘+1𝒙𝒙
∞

𝑘𝑘=0

+ (𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1𝜺𝜺 (6) 
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2.3 Identification of the Linear-in-Means Peer Effects Models – General 

Conditions 

For the discussion of the identification of the linear-in-means peer effects model, we 

maintain the simplification that we have only one background characteristic and 𝛾𝛾 is a scalar. We 

discuss the matrix form of the model 

 𝒚𝒚 = 𝛼𝛼𝑱𝑱𝑛𝑛×1 + 𝛽𝛽𝑮𝑮𝑮𝑮 + 𝛾𝛾𝒙𝒙 + 𝛿𝛿𝑮𝑮𝑮𝑮 + 𝜺𝜺 (4) 

and its reduced form. 

 
𝒚𝒚 =

𝛼𝛼
1 − 𝛽𝛽

𝑱𝑱𝑛𝑛×1 + 𝛾𝛾𝒙𝒙 + (𝛾𝛾𝛾𝛾 + 𝛿𝛿)�𝛽𝛽𝑘𝑘𝑮𝑮𝑘𝑘+1𝒙𝒙
∞

𝑘𝑘=0

+ (𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1𝜺𝜺 (6) 

First, we discuss the nature of a matrix 𝑮𝑮. We can assume that 𝑮𝑮 is a parameter of the 

model and it is not affected by random variables in the model. This assumption may hold if we 

consider classes as peer groups and the number of pupils in classes is given by some institution. 

Another possibility is that 𝑮𝑮 is stochastic and naturally enters the identification conditions of our 

model.  

Second, in this section, we assume that the conditional mean of errors given regressors is 

zero 

𝔼𝔼[𝜀𝜀𝑖𝑖|𝒙𝒙𝑖𝑖] = 0 

which is enough for the case in which 𝑮𝑮 is fixed. If 𝑮𝑮 is stochastic, then the conditional 

mean of errors should be zero given the realization of 𝑮𝑮.  

𝔼𝔼[𝜀𝜀𝑖𝑖|𝒙𝒙𝑖𝑖,𝑮𝑮𝑖𝑖] = 0 

Third, equation (6) reveals that peer effects encoded in vectors 𝑮𝑮𝑘𝑘+1𝒙𝒙 cannot be identified 

if  𝛾𝛾𝛾𝛾 + 𝛿𝛿 = 0. Indeed, if 𝛾𝛾𝛾𝛾 + 𝛿𝛿 = 0, then peer effects vanish from equation (6) and the 

corresponding information is lost. Fourth, considering identification in simple OLS, intuitively, 

several vectors 𝑮𝑮𝑘𝑘+1𝒙𝒙 in the infinite sum should be linearly independent. Since we have constant 

𝛼𝛼 and three parameters 𝛽𝛽, 𝛾𝛾, and 𝛿𝛿 related to regressors 𝒙𝒙, we can expect that the necessary 

condition is that 𝑰𝑰𝑛𝑛,𝑮𝑮, and 𝑮𝑮2 are linearly independent [the condition for 𝑰𝑰𝑛𝑛 comes intuitively from 
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the term 𝛾𝛾𝒙𝒙 in equation (6)]. However, we have to prove that this condition is also sufficient for 

the identification in our peer effects model. 

Proposition 3. Identification of the Linear-in-Means Peer Effects Model 

Assume that 𝛾𝛾𝛾𝛾 + 𝛿𝛿 ≠ 0 and 𝔼𝔼[𝜀𝜀𝑖𝑖|𝒙𝒙𝑖𝑖,𝑮𝑮𝑖𝑖] = 0. If the matrices 𝑰𝑰𝑛𝑛,𝑮𝑮, and 𝑮𝑮2 are linearly 

independent, then the linear-in-means peer effects model is identified, e. g., parameters 𝛼𝛼,𝛽𝛽, 𝛾𝛾, 

and 𝛿𝛿 are identified.  

 

The Proof of Proposition 3. 

Consider two sets of parameters {𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝛿𝛿} and {𝛼𝛼′,𝛽𝛽′, 𝛾𝛾′, 𝛿𝛿′} leading to the same educational 

outcomes 𝒚𝒚 in equation (5), which has the form 

𝒚𝒚 = 𝛼𝛼(𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1𝑱𝑱𝑛𝑛×1 + (𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1(𝛾𝛾𝑰𝑰𝑛𝑛 + 𝛿𝛿𝑮𝑮)𝒙𝒙 + (𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1𝜺𝜺 

This assumption implies the following two conditions 

𝛼𝛼(𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1𝑱𝑱𝑛𝑛×1 = 𝛼𝛼′(𝑰𝑰𝑛𝑛 − 𝛽𝛽′𝑮𝑮)−1𝑱𝑱𝑛𝑛×1 

(𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1(𝛾𝛾𝑰𝑰𝑛𝑛 + 𝛿𝛿𝑮𝑮)𝒙𝒙 = (𝑰𝑰𝑛𝑛 − 𝛽𝛽′𝑮𝑮)−1(𝛾𝛾′𝑰𝑰𝑛𝑛 + 𝛿𝛿′𝑮𝑮)𝒙𝒙 

Let us start with the second condition. Since 𝒙𝒙 may be an arbitrary vector, the matrices in front 

of 𝒙𝒙 have to be identical. (In the case of the first condition one can find the different matrices 𝑨𝑨 

and 𝑨𝑨′ that satisfy  𝑨𝑨𝑱𝑱𝑛𝑛×1 = 𝑨𝑨′𝑱𝑱𝑛𝑛×1. Proposition 1.2 implies that any network matrix satisfies 

this condition.) 

(𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1(𝛾𝛾𝑰𝑰𝑛𝑛 + 𝛿𝛿𝑮𝑮) = (𝑰𝑰𝑛𝑛 − 𝛽𝛽′𝑮𝑮)−1(𝛾𝛾′𝑰𝑰𝑛𝑛 + 𝛿𝛿′𝑮𝑮) 

Now, let us multiply the above equation by (𝑰𝑰𝑛𝑛 − 𝛽𝛽′𝑮𝑮)(𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮) from the left-hand side 

(𝑰𝑰𝑛𝑛 − 𝛽𝛽′𝑮𝑮)(𝛾𝛾𝑰𝑰𝑛𝑛 + 𝛿𝛿𝑮𝑮) = (𝑰𝑰𝑛𝑛 − 𝛽𝛽′𝑮𝑮)(𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)(𝑰𝑰𝑛𝑛 − 𝛽𝛽′𝑮𝑮)−1(𝛾𝛾′𝑰𝑰𝑛𝑛 + 𝛿𝛿′𝑮𝑮) 

Since 𝑰𝑰𝑛𝑛 and 𝑮𝑮 are commutative, one may easily show that the product (𝑰𝑰𝑛𝑛 − 𝛽𝛽′𝑮𝑮)(𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮) is 

also commutative. Therefore, we can cancel analogically matrices on the right-hand side 

(𝑰𝑰𝑛𝑛 − 𝛽𝛽′𝑮𝑮)(𝛾𝛾𝑰𝑰𝑛𝑛 + 𝛿𝛿𝑮𝑮) = (𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)(𝛾𝛾′𝑰𝑰𝑛𝑛 + 𝛿𝛿′𝑮𝑮) 

Now we can multiply parenthesis and obtain 
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𝛾𝛾𝑰𝑰𝑛𝑛 + 𝛿𝛿𝑮𝑮 − 𝛽𝛽′𝛾𝛾𝑮𝑮 − 𝛽𝛽′𝛿𝛿𝑮𝑮2 = 𝛾𝛾′𝑰𝑰𝑛𝑛 + 𝛿𝛿′𝑮𝑮 − 𝛽𝛽𝛽𝛽′𝑮𝑮 − 𝛽𝛽𝛽𝛽′𝑮𝑮2 

(𝛾𝛾 − 𝛾𝛾′)𝑰𝑰𝑛𝑛 + (𝛿𝛿 − 𝛿𝛿′ + 𝛽𝛽𝛾𝛾′ − 𝛽𝛽′𝛾𝛾)𝑮𝑮 + (𝛽𝛽𝛿𝛿′ − 𝛽𝛽′𝛿𝛿)𝑮𝑮2 = 0 

If the matrices 𝑰𝑰𝑛𝑛,𝑮𝑮, and 𝑮𝑮2 are linearly independent, then the above equation implies the 

following three conditions 

𝛾𝛾 − 𝛾𝛾′ = 0 

𝛿𝛿 − 𝛿𝛿′ + 𝛽𝛽𝛾𝛾′ − 𝛽𝛽′𝛾𝛾 = 0 

𝛽𝛽𝛿𝛿′ − 𝛽𝛽′𝛿𝛿 = 0 

First, we can see that 𝛾𝛾′ = 𝛾𝛾. The remaining system of equations can be solved expressing 𝛿𝛿′ 

from the last condition  

𝛿𝛿′ =
𝛿𝛿𝛽𝛽′

𝛽𝛽
 

and plugging into the second. 

𝛿𝛿 −
𝛿𝛿𝛽𝛽′

𝛽𝛽
+ 𝛽𝛽𝛽𝛽 − 𝛽𝛽′𝛾𝛾 = 0 

𝛿𝛿 + 𝛽𝛽𝛽𝛽 = 𝛽𝛽′ �
𝛿𝛿
𝛽𝛽

+ 𝛾𝛾� 

𝛽𝛽′ =
𝛿𝛿 + 𝛽𝛽𝛽𝛽
𝛿𝛿
𝛽𝛽 + 𝛾𝛾

 

𝛽𝛽′ = 𝛽𝛽
𝛿𝛿 + 𝛽𝛽𝛽𝛽
𝛿𝛿 + 𝛽𝛽𝛽𝛽

= 𝛽𝛽 

Now we can express also 𝛿𝛿′ 

𝛿𝛿′ =
𝛿𝛿
𝛽𝛽
𝛽𝛽 = 𝛿𝛿 

Finally, recalling our very first condition  

𝛼𝛼(𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1𝑱𝑱𝑛𝑛×1 = 𝛼𝛼′(𝑰𝑰𝑛𝑛 − 𝛽𝛽′𝑮𝑮)−1𝑱𝑱𝑛𝑛×1 

we can use 𝛽𝛽 = 𝛽𝛽′ and obtain that  
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𝛼𝛼′ = 𝛼𝛼 

since 𝛼𝛼 and 𝛼𝛼′ are the factors of two identical vectors. Now we can see that all parameters in 

our model are uniquely identified. However, we should take care of some “degenerated” cases. 

In our derivation, we can see two conditions, 𝛽𝛽 ≠ 0 and 𝛿𝛿 + 𝛽𝛽𝛽𝛽 ≠ 0. If we were to start 

expressing 𝛽𝛽′ instead of 𝛿𝛿′, we would get the condition 𝛿𝛿 ≠ 0. The condition 𝛿𝛿 + 𝛽𝛽𝛽𝛽 ≠ 0 was 

initially assumed; hence, let us move to the conditions 𝛽𝛽 ≠ 0 and 𝛿𝛿 ≠ 0.  

Let us examine the initial condition once again noting that 𝛾𝛾′ = 𝛾𝛾. The conditions are 

𝛿𝛿 − 𝛿𝛿′ + 𝛽𝛽𝛽𝛽 − 𝛽𝛽′𝛾𝛾 = 0 

𝛽𝛽𝛿𝛿′ − 𝛽𝛽′𝛿𝛿 = 0 

and let us analyse them in all 3 cases.  

If 𝛽𝛽 = 0 and 𝛿𝛿 ≠ 0, then the condition 𝛽𝛽𝛿𝛿′ − 𝛽𝛽′𝛿𝛿 = 0 implies that 𝛽𝛽′ = 0 and consequently the 

condition 𝛿𝛿 − 𝛿𝛿′ + 𝛽𝛽𝛽𝛽 − 𝛽𝛽′𝛾𝛾 = 0 implies that 𝛿𝛿 = 𝛿𝛿′. Hence, the model is identified.  

If 𝛽𝛽 ≠ 0 and 𝛿𝛿 = 0, then the condition 𝛽𝛽𝛿𝛿′ − 𝛽𝛽′𝛿𝛿 = 0 implies that 𝛿𝛿′ = 0 and consequently the 

condition 𝛿𝛿 − 𝛿𝛿′ + 𝛽𝛽𝛽𝛽 − 𝛽𝛽′𝛾𝛾 = 0 implies that 𝛽𝛽 = 𝛽𝛽′, since the condition 𝛿𝛿 + 𝛽𝛽𝛽𝛽 ≠ 0 implies 

that 𝛾𝛾 ≠ 0 in this case. Hence, the model is identified.  

If 𝛽𝛽 = 0 and 𝛿𝛿 = 0, then the condition 𝛿𝛿 + 𝛽𝛽𝛽𝛽 ≠ 0 is violated and we do not need to consider 

this case.  

 

Now, let us think more about the condition on matrix 𝑮𝑮. It is intuitive that the vector 𝑮𝑮𝑮𝑮 of 

peers’ background characteristics play an important role in the identification of peer effects. 

However, the vector 𝑮𝑮2𝒙𝒙 also has an interesting interpretation. Indeed, let us write. 

𝑮𝑮2𝒙𝒙 = 𝑮𝑮(𝑮𝑮𝑮𝑮) 

Hence, we are calculating the effects of peers’ peers. Alternatively, we can say that we are 

measuring how the peers of our peers can influence us through the effect on our peers. The 

condition that 𝑮𝑮𝑮𝑮  and 𝑮𝑮2𝒙𝒙 have to be linearly independent, for example, means that the peers of 

our peers who are not directly our peers can enable the estimation. 
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On the other hand, however, there is one mathematical trick that enables the estimation in 

the case of school classes, where the peers of our peers are also our peers. The identification is 

then possible even though it is relatively weak. We address this in the next section.    

2.4 Identification of the Linear-in-Means Peer Effects Model – Specific 

Cases and the Reflection Problem 

In this section, we want to show that the identification of the peer effects model is possible 

using group size variation proposed by Lee (2007). Specifically, if we have at least two types of 

classes with different sizes, then the linear-in-means peer effects model can be identified. 

However, it contradicts the previous results of Manski (1993) and Moffitt (2001). Hence, we also 

show why the previous studies did not find the identification. Moreover, the examples of non-

identification underline how the identification conditions are important. Hence, let us start with 

the identification proposed by Lee (2007). 

Proposition 4. The Identification of Peer Effects Proposed by Lee (2007). 

Let us assume that pupils interact within their classes only and there are at least two types of 

classes with sizes 𝑚𝑚1 and 𝑚𝑚2. If 𝛾𝛾𝛾𝛾 + 𝛿𝛿 ≠ 0 then peer effects are identified. 

 

The Proof of Proposition 4. 

Since we assume that 𝛾𝛾𝛾𝛾 + 𝛿𝛿 ≠ 0, we can recall proposition 3 and we need to show that the 

matrices 𝑰𝑰𝑛𝑛,𝑮𝑮, and 𝑮𝑮2 are linearly independent. Without loss of generality, we consider two 

classes only. Let us recall the definition of matrix 𝑮𝑮 

(𝑮𝑮)𝑖𝑖𝑖𝑖 ≔ �
1
𝑛𝑛𝑖𝑖

 if 𝑗𝑗 ∈ 𝑃𝑃𝑖𝑖 
 

0 if 𝑗𝑗 ∉ 𝑃𝑃𝑖𝑖 
 

 where 𝑛𝑛𝑖𝑖 is the number of the peers of individual 𝑖𝑖. Note that individual 𝑖𝑖 is excluded from her 

peers’ group, and hence 𝑛𝑛𝑖𝑖  is the class size of an individual 𝑖𝑖 minus one. (Note that there is 

particular inconvenience in the notation since for an individual 2 holds that 𝑛𝑛2 = 𝑚𝑚1 − 1).  
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One can write the matrix 𝑮𝑮 for a simple particular case and then it is clear that the matrix 𝑮𝑮 is 

block diagonal 

𝑮𝑮 = �𝑮𝑮1 𝟎𝟎
𝟎𝟎 𝑮𝑮2

� 

with blocks 𝑮𝑮𝑖𝑖 that have zeros on diagonals and 1
𝑚𝑚𝑖𝑖−1

 otherwise.  

𝑮𝑮𝑖𝑖 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

0
1

𝑚𝑚𝑖𝑖 − 1
⋯

1
𝑚𝑚𝑖𝑖 − 1

1
𝑚𝑚𝑖𝑖 − 1

0  ⋮

⋮  ⋱ 
1

𝑚𝑚𝑖𝑖 − 1
1

𝑚𝑚𝑖𝑖 − 1
⋯

1
𝑚𝑚𝑖𝑖 − 1

0
⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

It will be useful to write matrix 𝑮𝑮𝑖𝑖 as  

𝑮𝑮𝑖𝑖 =
1

𝑚𝑚𝑖𝑖 − 1
�𝑱𝑱𝑚𝑚𝑖𝑖×𝑚𝑚𝑖𝑖 − 𝑰𝑰𝑚𝑚𝑖𝑖�    

Since we want to compare 𝑰𝑰𝑛𝑛,𝑮𝑮, and 𝑮𝑮2 we need to express 𝑮𝑮2, which is 

𝑮𝑮2 = �𝑮𝑮1
2 𝟎𝟎
𝟎𝟎 𝑮𝑮22

� 

and hence, we need to calculate 𝑮𝑮𝑖𝑖2  

𝑮𝑮𝑖𝑖2 = �
1

𝑚𝑚𝑖𝑖 − 1
�
2

�𝑱𝑱𝑚𝑚𝑖𝑖×𝑚𝑚𝑖𝑖 − 𝑰𝑰𝑚𝑚𝑖𝑖�
2

=   �
1

𝑚𝑚𝑖𝑖 − 1
�
2

�𝑱𝑱𝑚𝑚𝑖𝑖×𝑚𝑚𝑖𝑖
2 − 2𝑱𝑱𝑚𝑚𝑖𝑖×𝑚𝑚𝑖𝑖 + 𝑰𝑰𝑚𝑚𝑖𝑖�  

since 𝑰𝑰𝑚𝑚𝑖𝑖 commutates with any matrix. One can think that the product of the row and column of 

ones is the dimension of both entities, and hence 

𝑱𝑱𝑚𝑚𝑖𝑖×𝑚𝑚𝑖𝑖
2 = 𝑚𝑚𝑖𝑖𝑱𝑱𝑚𝑚𝑖𝑖×𝑚𝑚𝑖𝑖 

consequently  

𝑮𝑮𝑖𝑖2 =   �
1

𝑚𝑚𝑖𝑖 − 1
�
2

�(𝑚𝑚𝑖𝑖 − 2)𝑱𝑱𝑚𝑚𝑖𝑖×𝑚𝑚𝑖𝑖 + 𝑰𝑰𝑚𝑚𝑖𝑖� =
𝑚𝑚𝑖𝑖 − 2

(𝑚𝑚𝑖𝑖 − 1)2 𝑱𝑱𝑚𝑚𝑖𝑖×𝑚𝑚𝑖𝑖 +
1

(𝑚𝑚𝑖𝑖 − 1)2 𝑰𝑰𝑚𝑚𝑖𝑖 
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Now we can see that 𝑮𝑮𝑖𝑖2 is linearly dependent on 𝑮𝑮𝑖𝑖 and 𝑰𝑰𝑚𝑚𝑖𝑖 since all are the linear combinations 

of the matrices 𝑱𝑱𝑚𝑚𝑖𝑖×𝑚𝑚𝑖𝑖 and 𝑰𝑰𝑚𝑚𝑖𝑖. Despite that, let us examine the whole matrix 𝑮𝑮. It is useful to 

express the matrix 𝑮𝑮 using the matrices 𝑱𝑱𝑚𝑚𝑖𝑖×𝑚𝑚𝑖𝑖 and 𝑰𝑰𝑚𝑚𝑖𝑖. 

𝑮𝑮 =

⎝

⎛

1
𝑚𝑚1 − 1

�𝑱𝑱𝑚𝑚1×𝑚𝑚1 − 𝑰𝑰𝑚𝑚1� 𝟎𝟎

𝟎𝟎
1

𝑚𝑚2 − 1
�𝑱𝑱𝑚𝑚2×𝑚𝑚2 − 𝑰𝑰𝑚𝑚2�⎠

⎞ 

𝑮𝑮 =

⎝

⎛

1
𝑚𝑚1 − 1

𝑱𝑱𝑚𝑚1×𝑚𝑚1 𝟎𝟎

𝟎𝟎
1

𝑚𝑚2 − 1
𝑱𝑱𝑚𝑚2×𝑚𝑚2⎠

⎞ −

⎝

⎛

1
𝑚𝑚1 − 1

𝑰𝑰𝑚𝑚1 𝟎𝟎

𝟎𝟎
1

𝑚𝑚2 − 1
𝑰𝑰𝑚𝑚2⎠

⎞ 

and similarly for the matrix 𝑮𝑮2. 

𝑮𝑮2 =

⎝

⎛

𝑚𝑚1 − 2
(𝑚𝑚1 − 1)2 𝑱𝑱𝑚𝑚1×𝑚𝑚1 +

1
(𝑚𝑚1 − 1)2 𝑰𝑰𝑚𝑚1 𝟎𝟎

𝟎𝟎
𝑚𝑚2 − 2

(𝑚𝑚2 − 1)2 𝑱𝑱𝑚𝑚2×𝑚𝑚2 +
1

(𝑚𝑚2 − 1)2 𝑰𝑰𝑚𝑚2⎠

⎞ 

𝑮𝑮2 =

⎝

⎛

𝑚𝑚1 − 2
(𝑚𝑚1 − 1)2 𝑱𝑱𝑚𝑚1×𝑚𝑚1 𝟎𝟎

𝟎𝟎
𝑚𝑚2 − 2

(𝑚𝑚2 − 1)2 𝑱𝑱𝑚𝑚2×𝑚𝑚2⎠

⎞ +

⎝

⎛

1
(𝑚𝑚1 − 1)2 𝑰𝑰𝑚𝑚1 𝟎𝟎

𝟎𝟎
1

(𝑚𝑚2 − 1)2 𝑰𝑰𝑚𝑚2⎠

⎞ 

 

Finally, the examination of the linear dependence of the matrices 𝑰𝑰𝑛𝑛,𝑮𝑮, and 𝑮𝑮2 can be 

formulated as the question. Is there some positive 𝜆𝜆𝑖𝑖 satisfying the following condition? 

𝜆𝜆1𝑰𝑰𝑛𝑛 + 𝜆𝜆2𝑮𝑮 + 𝜆𝜆3𝑮𝑮2 = 0 

If there is some positive 𝜆𝜆𝑖𝑖 satisfying the above condition, then the matrices 𝑰𝑰𝑛𝑛,𝑮𝑮, and 𝑮𝑮2 are 

linearly dependent. Otherwise, the matrices 𝑰𝑰𝑛𝑛,𝑮𝑮, and 𝑮𝑮2 are linearly independent. 

One can imagine that plugging in for all three matrices would lead to a confusing expression. 

Hence, we will rewrite it for both blocks separately.  

𝜆𝜆1𝑰𝑰𝑚𝑚𝑖𝑖 + 𝜆𝜆2 �
1

𝑚𝑚𝑖𝑖 − 1
𝑱𝑱𝑚𝑚𝑖𝑖×𝑚𝑚𝑖𝑖 −

1
𝑚𝑚𝑖𝑖 − 1

𝑰𝑰𝑚𝑚𝑖𝑖� + 𝜆𝜆3 �
𝑚𝑚𝑖𝑖 − 2

(𝑚𝑚𝑖𝑖 − 1)2 𝑱𝑱𝑚𝑚𝑖𝑖×𝑚𝑚𝑖𝑖 +
1

(𝑚𝑚𝑖𝑖 − 1)2 𝑰𝑰𝑚𝑚𝑖𝑖� = 0 
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which can be expressed as 

𝑰𝑰𝑚𝑚𝑖𝑖 �𝜆𝜆1 −
1

𝑚𝑚𝑖𝑖 − 1
𝜆𝜆2 +

1
(𝑚𝑚𝑖𝑖 − 1)2 𝜆𝜆3� + 𝑱𝑱𝑚𝑚𝑖𝑖×𝑚𝑚𝑖𝑖 �

1
𝑚𝑚𝑖𝑖 − 1

𝜆𝜆2 +
𝑚𝑚𝑖𝑖 − 2

(𝑚𝑚𝑖𝑖 − 1)2 𝜆𝜆3� = 0 

Since 𝑰𝑰𝑚𝑚𝑖𝑖 and 𝑱𝑱𝑚𝑚𝑖𝑖×𝑚𝑚𝑖𝑖 are linearly independent the above condition implies the following 

𝜆𝜆1 −
1

𝑚𝑚𝑖𝑖 − 1
𝜆𝜆2 +

1
(𝑚𝑚𝑖𝑖 − 1)2 𝜆𝜆3 = 0 

1
𝑚𝑚𝑖𝑖 − 1

𝜆𝜆2 +
𝑚𝑚𝑖𝑖 − 2

(𝑚𝑚𝑖𝑖 − 1)2 𝜆𝜆3 = 0 

Note that since 𝑖𝑖 ∈ {1,2}, we have the four conditions for the three unknown parameters 𝜆𝜆1, 𝜆𝜆2, 

and 𝜆𝜆3. First, we will slightly modify the conditions multiplying both by (𝑚𝑚𝑖𝑖 − 1)2 

(𝑚𝑚𝑖𝑖 − 1)2𝜆𝜆1 − (𝑚𝑚𝑖𝑖 − 1)𝜆𝜆2 + 𝜆𝜆3 = 0 

(𝑚𝑚𝑖𝑖 − 1)𝜆𝜆2 + (𝑚𝑚𝑖𝑖 − 2)𝜆𝜆3 = 0 

adding the second condition to the first 

(𝑚𝑚𝑖𝑖 − 1)2𝜆𝜆1 + (𝑚𝑚𝑖𝑖 − 1)𝜆𝜆3 = 0 

(𝑚𝑚𝑖𝑖 − 1)𝜆𝜆2 + (𝑚𝑚𝑖𝑖 − 2)𝜆𝜆3 = 0 

and dividing the first condition by (𝑚𝑚𝑖𝑖 − 1). 

(𝑚𝑚𝑖𝑖 − 1)𝜆𝜆1 + 𝜆𝜆3 = 0 

(𝑚𝑚𝑖𝑖 − 1)𝜆𝜆2 + (𝑚𝑚𝑖𝑖 − 2)𝜆𝜆3 = 0 

Now, let us choose three of four conditions and write them explicitly in matrix notation (we are 

choosing the first condition twice) 

𝑨𝑨𝑨𝑨 = �
𝑚𝑚1 − 1 0 1
𝑚𝑚2 − 1 0 1

0 𝑚𝑚1 − 1 𝑚𝑚1 − 2
��

𝜆𝜆1
𝜆𝜆2
𝜆𝜆3
� = 0 

Obviously, if 𝑚𝑚1 = 𝑚𝑚2, then the matrix 𝑨𝑨 is singular and the vector 𝝀𝝀 may not be zero. However, 

if 𝑚𝑚1 ≠ 𝑚𝑚2, then the matrix 𝑨𝑨 is not singular, the vector 𝝀𝝀 has to be zero and the matrices 𝑰𝑰𝑛𝑛,𝑮𝑮, 

and 𝑮𝑮2 are linearly independent. Indeed, one can show that 𝑨𝑨 is singular calculating its 

determinant. 
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|𝑨𝑨| = �
𝑚𝑚1 − 1 0 1
𝑚𝑚2 − 1 0 1

0 𝑚𝑚1 − 1 𝑚𝑚1 − 2
� = (𝑚𝑚1 − 1)(𝑚𝑚2 − 1) − (𝑚𝑚1 − 1)2 

Obviously, if 𝑚𝑚1 ≠ 𝑚𝑚2 the |𝑨𝑨| ≠ 0.  

 

The result of proposition 4 can be also intuitively interpreted; however, let us firstly discuss 

the non-identification of the peer effects model analysed by Manski (1993) and Moffitt (2001). 

We provide an intuition for all cases together.  

Proposition 5. The Reflection Problem and the Non-Identification of Peer Effects in the 

Models Proposed by Manski (1993) and Moffitt (2001). 

Manski (1993): Let us assume that pupils interacted within their classes only and an individual 

𝑖𝑖 is included in its set of peers, e.g., 𝑖𝑖 ∈ 𝑃𝑃𝑖𝑖. Then peer effects are not identified (the reflection 

problem). 

Moffitt (2001): Let us assume that pupils interacted within their classes only and an individual 

𝑖𝑖 is excluded from the set of her peers, e.g., 𝑖𝑖 ∉ 𝑃𝑃𝑖𝑖. Moreover, assume that all classes have the 

same size 𝑚𝑚. Then peer effects are not identified. 

 

The proof of Proposition 5. 

Let us start with the model proposed by Manski (1993). Allowing class size to vary, assume that 

we have classes each with the size 𝑐𝑐𝑗𝑗. Additionally, let 𝑝𝑝 be the number of classes. Since 

individuals cannot interact between the classes, the network matrix 𝑮𝑮 has a block-diagonal form. 

𝑮𝑮 = �

𝐆𝐆1 0 ⋯ 0
0 𝐆𝐆2  ⋮
⋮  ⋱ 0
0 ⋯ 0 𝐆𝐆p

�  

The blocks 𝐆𝐆j are in this special case matrices of ones divided by 𝑐𝑐𝑗𝑗. 

𝐆𝐆j =
1
𝑐𝑐𝑗𝑗
𝑱𝑱𝑐𝑐𝑗𝑗×𝑐𝑐𝑗𝑗 
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Consequently, the second power of 𝐆𝐆j is 

𝐆𝐆j2 =
1
𝑐𝑐𝑗𝑗2
𝑱𝑱𝑐𝑐𝑗𝑗×𝑐𝑐𝑗𝑗
2 =

1
𝑐𝑐𝑗𝑗2
𝑐𝑐𝑗𝑗𝑱𝑱𝑐𝑐𝑗𝑗×𝑐𝑐𝑗𝑗 = 𝐆𝐆j 

We can see that the same holds for the whole matrix 𝑮𝑮. 

𝑮𝑮2 = 𝑮𝑮 

This means that the assumption in proposition 3 is violated. One may go through its proof and 

see that if the matrices 𝑰𝑰𝑛𝑛,𝑮𝑮, and 𝑮𝑮2 are linearly dependent, we lose the condition 𝛽𝛽𝛿𝛿′ − 𝛽𝛽′𝛿𝛿 =

0 and we have only two equations for three parameters.  

𝛾𝛾 − 𝛾𝛾′ = 0 

𝛿𝛿 − 𝛿𝛿′ + 𝛽𝛽𝛾𝛾′ − 𝛽𝛽′𝛾𝛾 = 0 

Hence, the parameters of the peer effects model are not identified. Bramoullé et al. (2009) 

provides rigorous proof examining all special cases; however, we do not find it necessary in our 

work. 

Let us move to the model proposed by Moffitt (2001). Without loss of generality, we can analyse 

just a sample with one class of size 𝑚𝑚. The network matrix 𝑮𝑮 is  

𝑮𝑮 =
1

𝑚𝑚− 1
(𝑱𝑱𝑚𝑚×𝑚𝑚 − 𝑰𝑰𝑚𝑚) 

as we derived in section 2.1. Consequently,  

𝑮𝑮2 =
1

(𝑚𝑚 − 1)2
(𝑱𝑱𝑚𝑚×𝑚𝑚 − 𝑰𝑰𝑚𝑚)2 =

1
(𝑚𝑚− 1)2

(𝑱𝑱𝑚𝑚×𝑚𝑚
2 − 2𝑱𝑱𝑚𝑚×𝑚𝑚 + 𝑰𝑰𝑚𝑚) 

Since 𝑱𝑱𝑚𝑚×𝑚𝑚
2 = 𝑚𝑚𝑱𝑱𝑚𝑚×𝑚𝑚, we can write  

𝑮𝑮2 =
1

(𝑚𝑚 − 1)2 �
(𝑚𝑚− 2)𝑱𝑱𝑚𝑚×𝑚𝑚 + 𝑰𝑰𝑚𝑚� 

We can see that 𝑮𝑮2 is the linear combination of 𝑱𝑱𝑚𝑚×𝑚𝑚 and 𝑰𝑰𝑚𝑚, and hence 𝑮𝑮2 is linearly dependent 

on 𝑮𝑮 and 𝑰𝑰𝑚𝑚. Using the same argument as in the non-identification of the model proposed by 

Manski (1993), the peer effects model proposed by Moffitt (2001) is also unidentified.  
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Let us compare proposition 4 and proposition 5 in words. The non-identification in the 

model proposed by Manski (1993) and the identification in the model proposed by Lee (2007) 

seem to be a mathematical trick. Let us connect this result with the intuition that peers of peers 

who are not directly peers of an examined individual may provide an instrument for the 

identification (As we discussed in the end of section 2.3). If we include an individual in the peer 

group (Manski 1993), the peers of our peers are also our peers. However, if we exclude an 

individual 𝑖𝑖 from her peer group, then her peers have a different peer group. The difference is that 

the peer group of peers includes an individual 𝑖𝑖 and excludes one different individual.  

On the other hand, however, one may imagine that the differences in means with excluded 

or included individual is rather small. Especially in case of relatively large peer groups the 

differences are also relatively small. This property of the model can be analysed using Monte-

Carlo simulations and Boucher et al. (2014) confirms this intuition. 

Furthermore, let us discuss the reflection problem introduced by Manski (1993), which is 

often cited in the peer effects literature. The reflection problem states that 𝛽𝛽 and 𝛿𝛿 are not 

separately identified. Using terminology proposed by Manski (1993) endogenous and exogenous 

peer effects are not separately identified. We can see that Bramoullé et al. (2009) provides 

instructions on how to avoid this type of reflection problem. Simply exclude an individual 𝑖𝑖 from 

her peer group. Importantly, Manski (1993) addresses another type of the reflection problem 

allowing for correlated effects. We describe it in detail in the following sections.  

2.5 The Problem of Correlated Effects 

Manski (1993) also addresses another type of reflection problem allowing for correlated 

effects. He assumes that peers may be sorted into a group according to some unobserved variable 

that directly affects educational outcomes. Consider the following example from the Czech 

educational system. For simplicity, we can model the situation assuming two types of schools: 

prestigious and non-prestigious. The average pupils’ characteristics may differ between these types 

of schools and we can control for this. However, pupils may also be sorted according to some 

unobserved variable, for example, inborn ability. If pupils with higher inborn ability attend 

prestigious schools, educational outcomes of individual 𝑖𝑖 will be correlated with the average 
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outcome of her peers even if there are no endogenous and exogenous effects. Consequently, the 

peer effects estimators will be biased.  

2.6 The Description of Selection 

If we want to check whether there is selection in our data, one may define the average 

correlation 𝜌𝜌 of background characteristics among pupils within classes. We can choose one 

relevant background characteristic (for example socioeconomic status) and examine it. We 

intuitively motivate our definition of average correlation 𝜌𝜌 and it is inspired by Feld and Zölitz 

(2017). Denote by 𝒩𝒩𝑖𝑖 the set of classmates of an individual 𝑖𝑖 including also individual 𝑖𝑖. We 

examine the covariation of classmates 

Cov�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗�    ∀  𝑗𝑗 ∈ 𝒩𝒩𝑖𝑖 

and we average it between all classes. Our analysis is specific since we are examining 

group interactions, and hence it is reasonable to describe the data that we want to analyse. Consider 

a class with three pupils whose characteristics are {−1,0,1}. The examined pairs �𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� can be 

represented as the cartesian second power of the set {−1,0,1}. The graphical representation of pairs 

�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� is provided in figure 1 a). Note that diagonal pairs [𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖] are also included since with them 

the correlation of peers in one class is zero.  

Now we move to the case with 4 pupils assigned into 2 classes. Pupils’ test scores are 

{−2,−1,1,2} and we calculate Cov�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� ∀  𝑗𝑗 ∈ 𝒩𝒩𝑖𝑖 for different assignments. Cov�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� is 

defined by 

Cov�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� = E�𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗� − E[𝑥𝑥𝑖𝑖]E�𝑥𝑥𝑗𝑗� 

Since 𝑥𝑥𝑗𝑗 comes from the second power of 𝑥𝑥𝑖𝑖, both variables have identical expected values 

and we can write  

Cov�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = E�𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗� − E[𝑥𝑥𝑖𝑖]2 
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Figure 1: Cartesian’s products of pupils’ test scores.  

The figure graphically represents pairs�𝑦𝑦𝑖𝑖 ,𝑦𝑦𝑗𝑗� used for the computation of average peers’ correlation. Part a) 

represents one class with test scores {−1, 0, 1}. Parts b), c) and d) represent test scores of pupils allocated into 

two classes distinguished by blue and green colour.  
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Hence the corresponding estimator of average correlation is 

 
𝜌𝜌� = Cov� �𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� =

1
𝑁𝑁𝑝𝑝

� 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗  

𝑁𝑁𝑝𝑝

𝑖𝑖,𝑗𝑗=1

− �
1
𝑁𝑁
�𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

�

2

 ∀  𝑗𝑗 ∈ 𝒩𝒩𝑖𝑖 (7) 

where 𝑁𝑁𝑝𝑝 is the number of pairs [𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗] and 𝑁𝑁 is the number of pupils. If we write the 

numbers of pupils in each class into a vector, then 𝑁𝑁 is the sum of its elements and 𝑁𝑁𝑝𝑝 is the sum 

of its elements squared. To provide more intuition for our definition, we are enclosing the 

following examples. 

 

Let us consider three different assignments of pupils into classes with background 

characteristics {−2,−1,1,2}. First, the classes are {−2,2} and {−1,1} and the pairs [𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗] are 

graphically represented in figure 1 b). Second, the classes are {−2,1} and {−1,2} and the pairs 

[𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗] are graphically represented in figure 1 c). Third, the classes are {−2,−1} and {1,2} and the 

pairs [𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗] are graphically represented in figure 1 d). The first case represents the most 

symmetrical assignment because the averages of both classes are zeros. The second case represents 

a slightly asymmetrical assignment since the averages of classes are -0.5 and 0.5. The third case is 

fully asymmetrical and the averages are -1.5 and 1.5. 

Now we calculate the average correlation in the three cases above according to equation 

(7). Case 1 with classes {−2,2} and {−1,1} equation (7) gives 

1
𝑁𝑁
� 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗  
𝑁𝑁

𝑖𝑖,𝑗𝑗=1

 ∀  𝑗𝑗 ∈ 𝒩𝒩𝑖𝑖 =
1
8
�𝑥𝑥1 � 𝑥𝑥𝑗𝑗

𝑥𝑥𝑗𝑗∈𝒩𝒩1

+ 𝑥𝑥2 � 𝑥𝑥𝑗𝑗
𝑥𝑥𝑗𝑗∈𝒩𝒩2

+ 𝑥𝑥3 � 𝑥𝑥𝑗𝑗
𝑥𝑥𝑗𝑗∈𝒩𝒩3

+ 𝑥𝑥4 � 𝑥𝑥𝑗𝑗
𝑥𝑥𝑗𝑗∈𝒩𝒩4

� = 

=
1
8

{(−2) ∙ (−2 + 2) + (−1) ∙ (−1 + 1) + 1 ∙ (−1 + 1) + 2 ∙ (−2 + 2)} = 0 

In cases 2 and 3, the same calculation gives 0.25 and 2.25. Finally, we can define the 

average correlation 𝜌𝜌 as  
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𝜌𝜌 =
Cov�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�

�Var[𝑥𝑥𝑖𝑖]�Var�𝑥𝑥𝑗𝑗�
=

Cov�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗�
Var[𝑥𝑥𝑖𝑖]

 

where second equality follows from the fact that 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 have the same values. For the 

sample with zero mean, we can express the average correlation as 

 

𝜌𝜌� =

1
𝑁𝑁𝑝𝑝

∑ 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗  𝑁𝑁𝑝𝑝
𝑖𝑖,𝑗𝑗=1 − �1

𝑁𝑁∑ 𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1 �

2

1
𝑁𝑁∑ 𝑥𝑥𝑖𝑖2𝑁𝑁

𝑖𝑖

 (8) 

An average variance in our sample is 2.5, hence the correlations in cases 1, 2, and 3 are 0, 

0.1, and 0.9. We see that our definition of average correlation among peers is in the interval [0, 1]. 

The value 𝜌𝜌� = 0 describes the fully symmetrical assignment and the value 𝜌𝜌� = 1 describes fully 

selective assignment. Regarding class compositions, fully symmetrical assignment corresponds to 

the sample of classes with the same means and fully selective assignment corresponds to the case 

in which all pupils in each class have the same scores. 

One may ask why we are calculating the average peers’ correlation of characteristics 𝑥𝑥, if 

we are able to account for this selection in our peer effects model. The reason is that if there is 

selection according to an observed variable, there may also be an unobserved variable that affects 

educational outcomes and may cause the selection bias in peer effects estimation.  

Finally, we would like to stress that the average peers’ correlation 𝜌𝜌� is equal to 0 in the 

case of fully symmetrical assignment. This means that under random sampling, there is some 

correlation 𝜌𝜌� thanks to the random fluctuations. One can randomly assign pupils in the analysed 

sample into artificial classes and check what is the average correlation 𝜌𝜌� under the random 

sampling.   

2.7 Identification in Linear-in-Means Peer Effects Models in a Selective 

Environment 

If there is a selection according to some unobserved variable that affects educational 

outcomes, then each class has an average value of an unobserved variable and average contribution 
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to educational outcomes. Therefore, adding fixed effects for each class or generally peer group can 

solve the problem of selection. Hence, the corresponding extension of linear-in-means peer effects 

model is 

 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑙𝑙 + 𝛽𝛽
1
𝑛𝑛𝑖𝑖
� 𝑦𝑦𝑗𝑗𝑗𝑗
𝑗𝑗∈𝑃𝑃𝑖𝑖

+ 𝛾𝛾𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛿𝛿
1
𝑛𝑛𝑖𝑖
� 𝑥𝑥𝑗𝑗𝑗𝑗
𝑗𝑗∈𝑃𝑃𝑖𝑖

+ 𝜀𝜀𝑖𝑖  

where 𝑙𝑙 denotes a particular group. Now, we rewrite our peer effects model in matrix 

notation for one particular group 𝑙𝑙.  

𝒚𝒚𝑙𝑙 = 𝛼𝛼𝑙𝑙𝑱𝑱𝑚𝑚𝑙𝑙×1 + 𝛽𝛽𝑮𝑮𝑙𝑙𝒚𝒚𝑙𝑙 + 𝛾𝛾𝒙𝒙𝑙𝑙 + 𝛿𝛿𝑮𝑮𝑙𝑙𝒙𝒙𝑙𝑙 + 𝜺𝜺𝑙𝑙 

where 𝑚𝑚𝑙𝑙 is the number of pupils in group 𝑙𝑙. The elimination of group fixed effect 𝛼𝛼𝑙𝑙 can 

be conducted in different manners. We follow the technique used by Bramoullé et al. (2009) and 

apply matrix 𝑮𝑮𝑙𝑙 to the whole equation.  

𝑮𝑮𝑙𝑙𝒚𝒚𝑙𝑙 = 𝛼𝛼𝑙𝑙𝑮𝑮𝑙𝑙𝑱𝑱𝑚𝑚𝑙𝑙×1 + 𝛽𝛽𝑮𝑮𝑙𝑙𝟐𝟐𝒚𝒚𝑙𝑙 + 𝛾𝛾𝑮𝑮𝑙𝑙𝒙𝒙𝑙𝑙 + 𝛿𝛿𝑮𝑮𝑙𝑙𝟐𝟐𝒙𝒙𝑙𝑙 + 𝑮𝑮𝑙𝑙𝜺𝜺𝑙𝑙 

Note that 𝑮𝑮𝑙𝑙𝑱𝑱𝑚𝑚𝑙𝑙×1 = 𝑱𝑱𝑚𝑚𝑙𝑙×1 since 𝑮𝑮𝑙𝑙 is row normalised (proposition 1.2). Now we can 

subtract both equations and obtain  

𝒚𝒚𝑙𝑙 − 𝑮𝑮𝑙𝑙𝒚𝒚𝑙𝑙 = 𝛽𝛽𝑮𝑮𝑙𝑙𝒚𝒚𝑙𝑙 − 𝛽𝛽𝑮𝑮𝑙𝑙𝟐𝟐𝒚𝒚𝑙𝑙 + 𝛾𝛾𝒙𝒙𝑙𝑙 − 𝛾𝛾𝑮𝑮𝑙𝑙𝒙𝒙𝑙𝑙 + 𝛿𝛿𝑮𝑮𝑙𝑙𝒙𝒙𝑙𝑙 − 𝛿𝛿𝑮𝑮𝑙𝑙𝟐𝟐𝒙𝒙𝑙𝑙 + 𝜺𝜺𝑙𝑙 − 𝑮𝑮𝑙𝑙𝜺𝜺𝑙𝑙 

Now we can factorise the matrix 𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙 

�𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙�𝒚𝒚𝑙𝑙 = 𝛽𝛽�𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙�𝑮𝑮𝑙𝑙𝒚𝒚𝑙𝑙 + 𝛾𝛾�𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙�𝒙𝒙𝑙𝑙 + 𝛿𝛿�𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙�𝑮𝑮𝑙𝑙𝒙𝒙𝑙𝑙 + �𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙�𝜺𝜺𝑙𝑙 

We can also separate 𝒚𝒚𝑙𝑙 to the right-hand side and fuse the terms including 𝒙𝒙𝑙𝑙 

�𝑰𝑰𝑚𝑚𝑙𝑙 − 𝛽𝛽𝑮𝑮𝑙𝑙��𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙�𝒚𝒚𝑙𝑙 = �𝛾𝛾𝑰𝑰𝑚𝑚𝑙𝑙 + 𝛿𝛿𝑮𝑮𝑙𝑙��𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙�𝒙𝒙𝑙𝑙 + �𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙�𝜺𝜺𝑙𝑙 

Finally, we can multiply the above equation by �𝑰𝑰𝑚𝑚𝑙𝑙 − 𝛽𝛽𝑮𝑮𝑙𝑙�
−1

 

 �𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙�𝒚𝒚𝑙𝑙 = �𝑰𝑰𝑚𝑚𝑙𝑙 − 𝛽𝛽𝑮𝑮𝑙𝑙�
−1
�𝛾𝛾𝑰𝑰𝑚𝑚𝑙𝑙 + 𝛿𝛿𝑮𝑮𝑙𝑙��𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙�𝒙𝒙𝑙𝑙

+ �𝑰𝑰𝑚𝑚𝑙𝑙 − 𝛽𝛽𝑮𝑮𝑙𝑙�
−1
�𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙�𝜺𝜺𝑙𝑙 

(9) 

Equation (9) is analogical to equation (5) derived for the non-selective environment. Let 

us provide conditions under which peer effects are identified. Intuitively, we can expect a more 

demanding condition in comparison with the model for a non-selective environment (proposition 
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3), since we need to eliminate group fixed effects. The conditions are summarised in the following 

proposition. 

Proposition 6. The Identification of Linear-in-Means Peer Effects Model in a Selective 

Environment 

Assume that 𝛾𝛾𝛾𝛾 + 𝛿𝛿 ≠ 0 and 𝔼𝔼[𝜀𝜀𝑖𝑖|𝒙𝒙𝑖𝑖,𝑮𝑮𝑖𝑖] = 0. If the matrices 𝑰𝑰𝑛𝑛,𝑮𝑮, 𝑮𝑮2 and 𝑮𝑮3 are linearly 

independent, then the linear-in-means peer effects model is identified, e. g., parameters 𝛼𝛼,𝛽𝛽, 𝛾𝛾, 

and 𝛿𝛿 are identified. 

 

The Proof of Proposition 6 

The proof of proposition 6 is analogical to the proof of proposition 3. Consider two sets of 

parameters {𝛽𝛽, 𝛾𝛾, 𝛿𝛿} and {𝛽𝛽′, 𝛾𝛾′, 𝛿𝛿′} leading to the same educational outcomes 𝒚𝒚 in equation (9). 

This implies the following conditions 

�𝑰𝑰𝑚𝑚𝑙𝑙 − 𝛽𝛽𝑮𝑮𝑙𝑙�
−1
�𝛾𝛾𝑰𝑰𝑚𝑚𝑙𝑙 + 𝛿𝛿𝑮𝑮𝑙𝑙��𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙�𝒙𝒙𝑙𝑙 = �𝑰𝑰𝑚𝑚𝑙𝑙 − 𝛽𝛽′𝑮𝑮𝑙𝑙�

−1
�𝛾𝛾′𝑰𝑰𝑚𝑚𝑙𝑙 + 𝛿𝛿′𝑮𝑮𝑙𝑙��𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙�𝒙𝒙𝑙𝑙 

Since 𝒙𝒙 may be an arbitrary vector, the matrices in front of 𝒙𝒙 have to be identical.  

�𝑰𝑰𝑚𝑚𝑙𝑙 − 𝛽𝛽𝑮𝑮𝑙𝑙�
−1
�𝛾𝛾𝑰𝑰𝑚𝑚𝑙𝑙 + 𝛿𝛿𝑮𝑮𝑙𝑙��𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙� = �𝑰𝑰𝑚𝑚𝑙𝑙 − 𝛽𝛽′𝑮𝑮𝑙𝑙�

−1
�𝛾𝛾′𝑰𝑰𝑚𝑚𝑙𝑙 + 𝛿𝛿′𝑮𝑮𝑙𝑙��𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙� 

Now, we can multiply the equation by �𝑰𝑰𝑚𝑚𝑙𝑙 − 𝛽𝛽′𝑮𝑮𝑙𝑙��𝑰𝑰𝑚𝑚𝑙𝑙 − 𝛽𝛽𝑮𝑮𝑙𝑙� to eliminate matrix inverses.  

�𝑰𝑰𝑚𝑚𝑙𝑙 − 𝛽𝛽′𝑮𝑮𝑙𝑙��𝛾𝛾𝑰𝑰𝑚𝑚𝑙𝑙 + 𝛿𝛿𝑮𝑮𝑙𝑙��𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙�

= �𝑰𝑰𝑚𝑚𝑙𝑙 − 𝛽𝛽′𝑮𝑮𝑙𝑙��𝑰𝑰𝑚𝑚𝑙𝑙 − 𝛽𝛽𝑮𝑮𝑙𝑙��𝑰𝑰𝑚𝑚𝑙𝑙 − 𝛽𝛽′𝑮𝑮𝑙𝑙�
−1
�𝛾𝛾′𝑰𝑰𝑚𝑚𝑙𝑙 + 𝛿𝛿′𝑮𝑮𝑙𝑙��𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙� 

One may easily think that matrices �𝑰𝑰𝑚𝑚𝑙𝑙 − 𝛽𝛽′𝑮𝑮𝑙𝑙� and �𝑰𝑰𝑚𝑚𝑙𝑙 − 𝛽𝛽𝑮𝑮𝑙𝑙� are commutative, and hence 

we can eliminate the second matrix inverse.  

�𝑰𝑰𝑚𝑚𝑙𝑙 − 𝛽𝛽′𝑮𝑮𝑙𝑙��𝛾𝛾𝑰𝑰𝑚𝑚𝑙𝑙 + 𝛿𝛿𝑮𝑮𝑙𝑙��𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙� = �𝑰𝑰𝑚𝑚𝑙𝑙 − 𝛽𝛽𝑮𝑮𝑙𝑙��𝛾𝛾′𝑰𝑰𝑚𝑚𝑙𝑙 + 𝛿𝛿′𝑮𝑮𝑙𝑙��𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙� 

Now, we can multiply parenthesis and obtain 

�𝛾𝛾𝑰𝑰𝑚𝑚𝑙𝑙 + 𝛿𝛿𝑮𝑮𝑙𝑙 − 𝛽𝛽′𝛾𝛾𝑮𝑮𝑙𝑙 − 𝛽𝛽′𝛿𝛿𝑮𝑮𝑙𝑙2��𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙� = �𝛾𝛾′𝑰𝑰𝑚𝑚𝑙𝑙 + 𝛿𝛿′𝑮𝑮𝑙𝑙 − 𝛽𝛽𝛾𝛾′𝑮𝑮𝑙𝑙 − 𝛽𝛽𝛿𝛿′𝑮𝑮𝑙𝑙2��𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙� 
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𝛾𝛾𝑰𝑰𝑚𝑚𝑙𝑙 + 𝛿𝛿𝑮𝑮𝑙𝑙 − 𝛽𝛽′𝛾𝛾𝑮𝑮𝑙𝑙 − 𝛽𝛽′𝛿𝛿𝑮𝑮𝑙𝑙2 − 𝛾𝛾𝑮𝑮𝑙𝑙 − 𝛿𝛿𝑮𝑮𝑙𝑙2 + 𝛽𝛽′𝛾𝛾𝑮𝑮𝑙𝑙2 + 𝛽𝛽′𝛿𝛿𝑮𝑮𝑙𝑙3

= 𝛾𝛾′𝑰𝑰𝑚𝑚𝑙𝑙 + 𝛿𝛿′𝑮𝑮𝑙𝑙 − 𝛽𝛽𝛾𝛾′𝑮𝑮𝑙𝑙 − 𝛽𝛽𝛿𝛿′𝑮𝑮𝑙𝑙2 − 𝛾𝛾′𝑮𝑮𝑙𝑙 − 𝛿𝛿′𝑮𝑮𝑙𝑙2 + 𝛽𝛽𝛾𝛾′𝑮𝑮𝑙𝑙2 + 𝛽𝛽𝛿𝛿′𝑮𝑮𝑙𝑙3 

Let us separate terms with the identity matrix 𝑰𝑰𝑚𝑚𝑙𝑙 and different powers of matrix 𝑮𝑮𝑙𝑙 . 

(𝛾𝛾 − 𝛾𝛾′)𝑰𝑰𝑚𝑚𝑙𝑙 + (𝛿𝛿 − 𝛿𝛿′ + 𝛽𝛽𝛾𝛾′ − 𝛽𝛽′𝛾𝛾 + 𝛾𝛾′ − 𝛾𝛾)𝑮𝑮𝑙𝑙 + (𝛽𝛽𝛿𝛿′ − 𝛽𝛽′𝛿𝛿 + 𝛿𝛿′ − 𝛿𝛿 + 𝛽𝛽′𝛾𝛾 − 𝛽𝛽𝛾𝛾′)𝑮𝑮𝑙𝑙2

+ (𝛽𝛽′𝛿𝛿 − 𝛽𝛽𝛿𝛿′)𝑮𝑮𝑙𝑙3 = 0 

If 𝑰𝑰𝑚𝑚𝑙𝑙, 𝑮𝑮𝑙𝑙, 𝑮𝑮𝑙𝑙
2, and 𝑮𝑮𝑙𝑙3 are linearly independent, then all parentheses have to equal zeros which 

gives 

𝛾𝛾 = 𝛾𝛾′ 

𝛿𝛿 − 𝛿𝛿′ + 𝛽𝛽𝛾𝛾′ − 𝛽𝛽′𝛾𝛾 = 0 

𝛽𝛽𝛿𝛿′ − 𝛽𝛽′𝛿𝛿 + 𝛿𝛿′ − 𝛿𝛿 + 𝛽𝛽′𝛾𝛾 − 𝛽𝛽𝛾𝛾′ = 0 

𝛽𝛽′𝛿𝛿 − 𝛽𝛽𝛿𝛿′ = 0 

The last equation can be added to the third, which gives 

𝛾𝛾 = 𝛾𝛾′ 

𝛿𝛿 − 𝛿𝛿′ + 𝛽𝛽𝛾𝛾′ − 𝛽𝛽′𝛾𝛾 = 0 

𝛿𝛿′ − 𝛿𝛿 + 𝛽𝛽′𝛾𝛾 − 𝛽𝛽𝛾𝛾′ = 0 

𝛽𝛽′𝛿𝛿 − 𝛽𝛽𝛿𝛿′ = 0 

The second and third equations are the same, and hence three equations are remaining  

𝛾𝛾 = 𝛾𝛾′ 

𝛿𝛿 − 𝛿𝛿′ + 𝛽𝛽𝛾𝛾′ − 𝛽𝛽′𝛾𝛾 = 0 

𝛽𝛽′𝛿𝛿 − 𝛽𝛽𝛿𝛿′ = 0 

One may note that this is the same system of equations as in the proof of proposition 3. The 

same arguments imply that if 𝛿𝛿 + 𝛽𝛽𝛽𝛽 ≠ 0, then parameters {𝛽𝛽, 𝛾𝛾, 𝛿𝛿} are uniquely determined.  

Importantly, we would like to stress that in the above derivation, one could make a serious 

mistake. Consider our conditions before we multiplied all parentheses 
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�𝑰𝑰𝑚𝑚𝑙𝑙 − 𝛽𝛽′𝑮𝑮𝑙𝑙��𝛾𝛾𝑰𝑰𝑚𝑚𝑙𝑙 + 𝛿𝛿𝑮𝑮𝑙𝑙��𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙� = �𝑰𝑰𝑚𝑚𝑙𝑙 − 𝛽𝛽𝑮𝑮𝑙𝑙��𝛾𝛾′𝑰𝑰𝑚𝑚𝑙𝑙 + 𝛿𝛿′𝑮𝑮𝑙𝑙��𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙� 

If we multiplied it by �𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙�
−1

, we would obtain 

�𝑰𝑰𝑚𝑚𝑙𝑙 − 𝛽𝛽′𝑮𝑮𝑙𝑙��𝛾𝛾𝑰𝑰𝑚𝑚𝑙𝑙 + 𝛿𝛿𝑮𝑮𝑙𝑙� = �𝑰𝑰𝑚𝑚𝑙𝑙 − 𝛽𝛽𝑮𝑮𝑙𝑙��𝛾𝛾′𝑰𝑰𝑚𝑚𝑙𝑙 + 𝛿𝛿′𝑮𝑮𝑙𝑙� 

This is an identical condition as in the proof of proposition 3 which would lead to the 

identification condition that 𝑰𝑰𝑚𝑚𝑙𝑙, 𝑮𝑮𝑙𝑙, and 𝑮𝑮𝑙𝑙2 have to be linearly independent. However, 

multiplying the whole condition by �𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙�
−1

 can lead to the loss of some information about 

matrix 𝑮𝑮𝑙𝑙. We can test this hypothesis assuming that 𝑮𝑮𝑙𝑙3 linearly depends on 𝑰𝑰𝑚𝑚𝑙𝑙, 𝑮𝑮𝑙𝑙, and 𝑮𝑮𝑙𝑙2.  

𝑮𝑮𝑙𝑙3 = 𝜆𝜆0𝑰𝑰𝑚𝑚𝑙𝑙 + 𝜆𝜆1𝑮𝑮𝑙𝑙 + 𝜆𝜆2𝑮𝑮𝑙𝑙2 

Therefore, our identification condition is  

(𝛾𝛾 − 𝛾𝛾′)𝑰𝑰𝑚𝑚𝑙𝑙 + (𝛿𝛿 − 𝛿𝛿′ + 𝛽𝛽𝛾𝛾′ − 𝛽𝛽′𝛾𝛾 + 𝛾𝛾′ − 𝛾𝛾)𝑮𝑮𝑙𝑙 + (𝛽𝛽𝛿𝛿′ − 𝛽𝛽′𝛿𝛿 + 𝛿𝛿′ − 𝛿𝛿 + 𝛽𝛽′𝛾𝛾 − 𝛽𝛽𝛾𝛾′)𝑮𝑮𝑙𝑙2

+ (𝛽𝛽′𝛿𝛿 − 𝛽𝛽𝛿𝛿′)�𝜆𝜆0𝑰𝑰𝑚𝑚𝑙𝑙 + 𝜆𝜆1𝑮𝑮𝑙𝑙 + 𝜆𝜆2𝑮𝑮𝑙𝑙2� = 0 

which can be rewritten as 

�𝛾𝛾 − 𝛾𝛾′ + 𝜆𝜆0(𝛽𝛽′𝛿𝛿 − 𝛽𝛽𝛿𝛿′)�𝑰𝑰𝑚𝑚𝑙𝑙 + (𝛿𝛿 − 𝛿𝛿′ + 𝛽𝛽𝛾𝛾′ − 𝛽𝛽′𝛾𝛾 + 𝛾𝛾′ − 𝛾𝛾 + 𝜆𝜆1(𝛽𝛽′𝛿𝛿 − 𝛽𝛽𝛿𝛿′) )𝑮𝑮𝑙𝑙

+ �𝛽𝛽𝛿𝛿′ − 𝛽𝛽′𝛿𝛿 + 𝛿𝛿′ − 𝛿𝛿 + 𝛽𝛽′𝛾𝛾 − 𝛽𝛽𝛾𝛾′ + 𝜆𝜆2(𝛽𝛽′𝛿𝛿 − 𝛽𝛽𝛿𝛿′)�𝑮𝑮𝑙𝑙2 = 0 

If 𝑰𝑰𝑚𝑚𝑙𝑙, 𝑮𝑮𝑙𝑙, and 𝑮𝑮𝑙𝑙2 are linearly independent, the following conditions have to be satisfied 

𝛾𝛾 − 𝛾𝛾′ + 𝜆𝜆0(𝛽𝛽′𝛿𝛿 − 𝛽𝛽𝛿𝛿′) = 0 

𝛿𝛿 − 𝛿𝛿′ + 𝛽𝛽𝛾𝛾′ − 𝛽𝛽′𝛾𝛾 + 𝛾𝛾′ − 𝛾𝛾 + 𝜆𝜆1(𝛽𝛽′𝛿𝛿 − 𝛽𝛽𝛿𝛿′) = 0 

𝛽𝛽𝛿𝛿′ − 𝛽𝛽′𝛿𝛿 + 𝛿𝛿′ − 𝛿𝛿 + 𝛽𝛽′𝛾𝛾 − 𝛽𝛽𝛾𝛾′ + 𝜆𝜆2(𝛽𝛽′𝛿𝛿 − 𝛽𝛽𝛿𝛿′) = 0 

Now we want to use a special property of matrix 𝑮𝑮𝑙𝑙, which implies particular properties of 

parameters 𝜆𝜆0, 𝜆𝜆1, and 𝜆𝜆2. Let us multiply our definition of 𝑮𝑮𝑙𝑙 by 𝑱𝑱𝑚𝑚𝑙𝑙×1.  

𝑮𝑮𝑙𝑙3𝑱𝑱𝑚𝑚𝑙𝑙×1 = 𝜆𝜆0𝑱𝑱𝑚𝑚𝑙𝑙×1 + 𝜆𝜆1𝑮𝑮𝑙𝑙𝑱𝑱𝑚𝑚𝑙𝑙×1 + 𝜆𝜆2𝑮𝑮𝑙𝑙2𝑱𝑱𝑚𝑚𝑙𝑙×1 

However, 𝑮𝑮𝑙𝑙𝑘𝑘𝑱𝑱𝑚𝑚𝑙𝑙×1 = 𝑱𝑱𝑚𝑚𝑙𝑙×1 since the matrix 𝑮𝑮𝑙𝑙 is row normalised (proposition 1.2). Therefore, 

we can write that  
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𝑱𝑱𝑚𝑚𝑙𝑙×1 = (𝜆𝜆0 + 𝜆𝜆1 + 𝜆𝜆2)𝑱𝑱𝑚𝑚𝑙𝑙×1 

1 = 𝜆𝜆0 + 𝜆𝜆1 + 𝜆𝜆2 

Now, we can sum up the first two equations  

𝛿𝛿 − 𝛿𝛿′ + 𝛽𝛽𝛾𝛾′ − 𝛽𝛽′𝛾𝛾 + (𝜆𝜆0 + 𝜆𝜆1)(𝛽𝛽′𝛿𝛿 − 𝛽𝛽𝛿𝛿′) = 0 

and plug in the condition for lambdas 

𝛿𝛿 − 𝛿𝛿′ + 𝛽𝛽𝛾𝛾′ − 𝛽𝛽′𝛾𝛾 + (1 − 𝜆𝜆2)(𝛽𝛽′𝛿𝛿 − 𝛽𝛽𝛿𝛿′) = 0 

The multiplication of parenthesis leads to 

𝛿𝛿 − 𝛿𝛿′ + 𝛽𝛽𝛾𝛾′ − 𝛽𝛽′𝛾𝛾 + 𝛽𝛽′𝛿𝛿 − 𝛽𝛽𝛿𝛿′ − 𝜆𝜆2(𝛽𝛽′𝛿𝛿 − 𝛽𝛽𝛿𝛿′) = 0 

One may note that this is exactly the third condition. Summarising this result, we have shown 

that if  𝑮𝑮𝑙𝑙3 linearly depends on 𝑰𝑰𝑚𝑚𝑙𝑙, 𝑮𝑮𝑙𝑙, and 𝑮𝑮𝑙𝑙2, then three identification conditions can be 

reduced into two. Obviously, three conditions cannot uniquely determine three parameters 

{𝛽𝛽′, 𝛾𝛾′, 𝛿𝛿′}. 
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3 Empirical Analysis  

3.1 The Description of Czech Education and Data 

Children in the Czech Republic start their primary schooling when they are 6 years old and 

finish it usually when they are 15 years old. Primary schooling is also part of compulsory schooling 

hence all pupils have to spend 9 years in education. A majority of pupils spends their primary 

schooling in one primary school; however, there are two main exceptions. First, some schools 

provide education from 1st to 5th grade and pupils have to move to another school to continue their 

compulsory schooling.  Second, there are junior secondary grammar schools preparing pupils for 

the academic track. Junior secondary grammar schools accept pupils who finished 5th grade and 

offer them education for further 8 years. Junior secondary grammar schools usually select high-

achieving pupils from different primary schools and thus pupils create new groups meeting new 

classmates, which is important for our analysis.   

To examine peer effects among Czech pupils, we analyse data from Czech Longitudinal 

Study in Education (CLOSE). The data contains pupils’ test scores in Math, Reading, English and 

Learning Skills from 4th, 6th, and 9th grades. The observational study started with a sample of pupils 

from primary schools in 4th grade as collected within he international joint PIRLS and TIMSS 

surveys in 2011. In 6th grade, the pupils transferring to junior secondary grammar schools were 

not followed, and therefore there was added the sample of pupils entering junior secondary 

grammar schools and we can observe their test scores also in 9th grade. The data contain also 

information about pupils’ families, relationships in classes, relationships with teachers, among 

others. Typical empirical analysis of pupils’ test scores usually uses the background characteristics 

of pupils as explanatory variables. However; in our case, it would involve using many variables 

with relatively weak predictive power, which would seriously complicate our analysis of peer 

effects. Moreover, it is widely believed that pupils’ test scores are directly affected by pupils’ 

innate ability which is not directly observable. Therefore, we decide to focus on the pupils from 

junior secondary grammar schools and use their 6th-grade score as an explanatory variable for the 

9th-grade score. The advantage is that the 6th-grade score is not affected by peer effects from new 

peers and summarizes information about pupils’ background characteristics and inborn abilities.  
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Figure 2: Distribution of Class Sizes 

 

 

Another advantage is that pupils’ 6th-grade score from a particular subject is a strong 

predictor of pupils’ 9th-grade score in the same subject.  

Regarding the data characteristics, we observe 1407 pupils in 57 classes. The average class 

size is 25 and the distribution of class sizes is shown by figure 2. All test scores are normalised to 

have zero mean and unit variance. Socioeconomic status (SES) is analogically normalised for the 

whole sample of data from CLOSE, therefore it is not normalised in our subsample of junior 

secondary grammar schools. The SES of pupils is calculated by the authors of CLOSE. For the 

estimation of peer effects, we have to check if there is a selection of pupils into classes according 

to their background characteristics (6th-grade scores). We could calculate average peers’ 

correlation according to equation (8) then permutate pupils test scores within the whole sample 

and compare average peers’ correlation of original and permutated data. If permutated average 

peers’ correlation were significantly lower than original, then we would have a selection present. 

However, we argue that we have a selection in our sample since we observe an even more special 

selection. Figure 3 shows that the class average in 6th-grade Math score is increasing with class 

size. We also conduct an OLS regression, which confirms that class averages in 6th-grade Math 

scores are increasing with class sizes and the regression coefficient is statistically significant.  
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The observed pattern is expectable in the Czech environment since class sizes should be 

lower than 30 (this rule is not fully enforced). It means that some schools are prestigious, can select 

high-achieving pupils and fulfil the capacity of 30 pupils in classes. On the other hand, some 

schools are less prestigious, select relatively low-achieving pupils and also have smaller class 

sizes. Summarising these observations, an environment of junior secondary grammar schools is 

selective and we need to estimate peer effects model with class fixed effects.  

Considering the choice of explanatory variables, we decide to use three different 

specifications. We are measuring the explanatory power of explanatory variables by conducting 

OLS regression without peer effects. 

𝑦𝑦𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽𝑥𝑥𝑖𝑖 + 𝜀𝜀𝑖𝑖 

Outcomes 𝑦𝑦𝑖𝑖 are in this case Math scores from 9th grade. As an explanatory variable, we 

use Math test scores in 6th grade, SES, and the average test scores in 6th grade from Math, Reading, 

English and Learning Skills. The estimated values for coefficients 𝛽𝛽 are reported in table 1, 

including also the coefficient of determination 𝑅𝑅2. We can see that Math test scores in 6th grade  

 

Figure 3: Correlation between Class Average Score and Size. 

The figure shows that class average Math score in 6th grade is positively correlated with class size. Therefore, we 

can observe selection of pupils into classes based on their achievements in Math.  
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Table 1: Linear regression of Math test scores in 9th grade using different explanatory variables.   
We conduct three different regressions with only one explanatory variable, since we also use only one explanatory 

variable in our peer effects model.  

Explanatory Variable Math Test Score in 6th 
Grade SES The Average of Test 

Scores in 6th Grade 

Regression Coefficient 0.574 
(0.027) 

0.214 
(0.034) 

0.597 
(0.024) 

𝑅𝑅2 33% 3% 34% 
    

and average test scores in 6th grade are strongly predicting Math test scores in 9th grade. Moreover, 

regression coefficients are practically identical in magnitude and predictive power, which makes 

both measures a perfect instrument for robustness check in peer effects analysis. However, SES is 

a weaker predictor of the Math score in 9th grade, which complicates further analysis of peer 

effects.  

3.2 The Estimation of Peer Effects Model 

Since the environment of junior secondary grammar schools is selective, we estimate peer 

effects model with class fixed effects and follow the approach proposed by Bramoullé (2009). 

First, we generalise the model derived in section 2.7.  

�𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙�𝒚𝒚𝑙𝑙 = 𝛽𝛽�𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙�𝑮𝑮𝑙𝑙𝒚𝒚𝑙𝑙 + 𝛾𝛾�𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙�𝒙𝒙𝑙𝑙 + 𝛿𝛿�𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙�𝑮𝑮𝑙𝑙𝒙𝒙𝑙𝑙 + �𝑰𝑰𝑚𝑚𝑙𝑙 − 𝑮𝑮𝑙𝑙�𝜺𝜺𝑙𝑙 

where 𝑮𝑮𝑙𝑙 is the network matrix for class 𝑙𝑙. Now, we create network matrix 𝑮𝑮, which has 

matrices 𝑮𝑮𝑙𝑙 on its diagonal.  Similarly, we can stack vectors 𝒚𝒚𝑙𝑙 and 𝒙𝒙𝑙𝑙 into vectors 𝒚𝒚 and 𝒙𝒙 

describing pupils test scores for the whole sample. The general form of our model is 

 (𝑰𝑰𝑛𝑛 − 𝑮𝑮)𝒚𝒚 = 𝛽𝛽(𝑰𝑰𝑛𝑛 − 𝑮𝑮)𝑮𝑮𝑮𝑮 + 𝛾𝛾(𝑰𝑰𝑛𝑛 − 𝑮𝑮)𝒙𝒙 + 𝛿𝛿(𝑰𝑰𝑛𝑛 − 𝑮𝑮)𝑮𝑮𝑮𝑮 + (𝑰𝑰𝑛𝑛 − 𝑮𝑮)𝜺𝜺 (10) 

In the first step, we calculate 2SLS estimators of peer effects. We construct the matrix of 

instruments 

𝑺𝑺 = [(𝑰𝑰𝑛𝑛 − 𝑮𝑮)𝒙𝒙     (𝑰𝑰𝑛𝑛 − 𝑮𝑮)𝑮𝑮𝑮𝑮     (𝑰𝑰𝑛𝑛 − 𝑮𝑮)𝑮𝑮2𝒙𝒙] 

and the matrix of explanatory variables  

𝑿𝑿� = [(𝑰𝑰𝑛𝑛 − 𝑮𝑮)𝑮𝑮𝑮𝑮     (𝑰𝑰𝑛𝑛 − 𝑮𝑮)𝒙𝒙     (𝑰𝑰𝑛𝑛 − 𝑮𝑮)𝑮𝑮𝑮𝑮] 

The estimators in the first step are  
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�
𝛽̂𝛽1
𝛾𝛾�1
𝛿𝛿1
� = �𝑿𝑿�′𝑺𝑺(𝑺𝑺′𝑺𝑺)−1𝑺𝑺′𝑿𝑿��

−1
𝑿𝑿�′𝑺𝑺(𝑺𝑺′𝑺𝑺)−1𝑺𝑺′𝒚𝒚 

In the second step, we construct a new instrument  

𝒁𝒁 = [E[(𝑰𝑰𝑛𝑛 − 𝑮𝑮)𝑮𝑮𝑮𝑮|𝑮𝑮,𝒙𝒙]     (𝑰𝑰𝑛𝑛 − 𝑮𝑮)𝒙𝒙     (𝑰𝑰𝑛𝑛 − 𝑮𝑮)𝑮𝑮𝑮𝑮] 

To calculate E[(𝑰𝑰𝑛𝑛 − 𝑮𝑮)𝑮𝑮𝑮𝑮|𝑮𝑮,𝒙𝒙], we generalize equation (9) to describe the whole sample 

(𝑰𝑰𝑛𝑛 − 𝑮𝑮)𝒚𝒚 = (𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1(𝛾𝛾𝑰𝑰𝑛𝑛 + 𝛿𝛿𝑮𝑮)(𝑰𝑰𝑛𝑛 − 𝑮𝑮)𝒙𝒙 + (𝑰𝑰𝑛𝑛 − 𝛽𝛽𝑮𝑮)−1(𝑰𝑰𝑛𝑛 − 𝑮𝑮)𝜺𝜺𝑙𝑙 

multiply it by the matrix 𝑮𝑮 and apply the expectation operator. 

E[(𝑰𝑰𝑛𝑛 − 𝑮𝑮)𝑮𝑮𝑮𝑮|𝑮𝑮,𝒙𝒙] = 𝑮𝑮�𝑰𝑰𝑛𝑛 − 𝛽̂𝛽1𝑮𝑮�
−1
�𝛾𝛾�1𝑰𝑰𝑛𝑛 + 𝛿𝛿1𝑮𝑮�(𝑰𝑰𝑛𝑛 − 𝑮𝑮)𝒙𝒙 

Note that we are using estimators calculated in the first step. The peer effects estimators in 

the second step are given as 

�
𝛽̂𝛽2
𝛾𝛾�2
𝛿𝛿2
� = �𝒁𝒁′𝑿𝑿��

−1
𝒁𝒁′𝒚𝒚 

For the estimation of the variance of the parameters in the second step, we need to calculate 

residuals (𝑰𝑰𝑛𝑛 − 𝑮𝑮)𝜺𝜺 from equation (10) and allocate them on the diagonal of matrix 𝑫𝑫. The 

variance estimator of the parameters is 

𝑽𝑽� = �𝒁𝒁′𝑿𝑿��
−1

 𝒁𝒁′𝑫𝑫𝒁𝒁�𝑿𝑿�′𝒁𝒁�
−1

 

Table 2 presents our peer effects estimators calculated using data from CLOSE. We 

observe negative and significant endogenous peer effects and positive and significant exogenous 

peer effects in Math, Reading, and English. On the contrary, both peer effects estimators for 

Learning Skills are not significant.   

Surprisingly, peer effects estimators are unrealistically high in comparison with previous 

studies (typically smaller than one in absolute value). First, we should examine if our variance 

estimator for the calculation of standard errors performs well in this setting. If we calculate 

significance levels for peer effects in Math, we receive a 99.76% probability that 𝛽̂𝛽2 is negative 

and almost 100% probability that 𝛿𝛿2 is positive. Therefore, we conduct bootstrap simulation using 

1,000 repetitions and resampling at the class levels.  
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Then we calculate bootstrap significance levels and obtain a 96.1% probability that 𝛽̂𝛽2 is negative 

and a 95.9% probability that 𝛿𝛿2 is positive. We can see that bootstrap significance levels are lower 

than significance levels calculated using standard errors. We can also see that bootstrap 

significance levels are closer to the standard boundary 95% for the statistically significant result. 

However, the results in table 2 show that peer effects in Math and Reading remain statistically 

significant even after computing bootstrap significant levels and we will discuss it in further 

analysis. Since the bootstrap errors seem to be more realistic, we use them for the calculation of 

bootstrap confidence intervals (CI) that are also reported in table 2. Bootstrap confidence intervals 

are computed ordering bootstrap estimators in increasing order obtaining sequence �𝜃𝜃𝑖𝑖𝑏𝑏�𝑖𝑖=1
1,000

 . 

Then the lower bound of our bootstrap CI is 𝜃𝜃25𝑏𝑏  and the upper bound is 𝜃𝜃975𝑏𝑏 .  

Table 2: Estimation of peer effects on 9th grade score using 6th grade score as explanatory variable 

The table shows the efficient estimators of endogenous peer effects 𝛽̂𝛽2, the estimators of exogenous peer 

effect 𝛿̂𝛿2, and coefficient of explanatory variable 𝛾𝛾�2. Outcome variable is test score in 9th grade from particular 

subject and explanatory variable is test score in 6th grade from the same subject. Standard deviations implied 

by the estimator of variance matrix are in parenthesis. We also provide confidence intervals (with 95% 

probability) and significancy levels calculated using bootstrap simulations.  

 𝛽̂𝛽2 𝛾𝛾�2 𝛿̂𝛿2 

Math −31 
(11) 

0.47 
(0.10) 

14.6 
(3.0) 

Bootstrap CI [−62 ;  12] [0.24 ;  0.69] [−8.3 ;  30.6] 
Bootstrap 𝑝𝑝-value 96.1% 98.7% 95.9% 

Reading −26.2 
(5.0) 

0.276 
(0.048) 

7.7 
(2.5) 

Bootstrap CI [−56.4 ;  18.7] [0.060 ;  0.757] [−1.0 ;  21.9] 
Bootstrap 𝑝𝑝-value 95.2% 98.6% 97.4% 

English −19.8 
(1.8) 

0.497 
(0.036) 

10.3 
(1.4) 

Bootstrap CI [−80.7 ;  18.1] [0.015 ;  0.889] [−17.0 ;  45.0] 
Bootstrap 𝑝𝑝-value 94.6% 97.8% 93.4% 

Learning Skills −9.2 
(9.6) 

0.16 
(0.32) 

−3 
(12) 

Bootstrap CI [−176 ;  225] [−5.11 ;  4.18] [−259 ;  175] 
Bootstrap 𝑝𝑝-value 70.3% 66.0% 56.6% 
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To examine the robustness of our results, we repeat our estimation for two alternative 

explanatory variables: SES and average test scores in 6th grade from Math, Reading, English and 

Learning Skills. The peer effects estimators are in table 3. In the case of SES as the explanatory 

variable, we see that exogenous peer effects estimators are not statistically significant, which is 

probably caused by the small explanatory power of SES as we showed in table 1. Regarding 

endogenous peer effects, they are negative and statistically significant in Math, Reading, and 

English, which is consistent with the results in table 2. Peer effects estimators in Learning Skills 

are not statistically significant, which is also consistent with the results in table 2. 

Table 3: Estimation of peer effects on 9th grade score using SES and the average of 6th grade scores as 

explanatory variables 

The table shows the efficient estimators of endogenous peer effects 𝛽̂𝛽2, the estimators of exogenous peer effect 𝛿̂𝛿2, 

and coefficient of explanatory variable 𝛾𝛾�2. Outcome variable is test score in 9th grade from particular subject and 

explanatory variables are SES and the average of 6th grade scores from all subjects. Standard deviations implied by 

the estimator of variance matrix are in parenthesis. 

 SES as Explanatory Variable 

 𝛽̂𝛽2 𝛾𝛾�2 𝛿̂𝛿2 
    

Math −22.6 
(8.2) 

0.064 
(0.090) 

1.6 
(2.5) 

Reading −19.6 
(1.3) 

0.103 
(0.049) 

2.1 
(1.1) 

English −18.54 
(0.57) 

0.076 
(0.046) 

1.34 
(0.94) 

Learning Skills −9.5 
(9.6) 

−0.00 
(0.20) 

−1.5 
(5.7) 

    

 The Average of Test Scores in 6th Grade as Explanatory Variable 

 𝛽̂𝛽2 𝛾𝛾�2 𝛿̂𝛿2 
    

Math −38 
(99) 

0.37 
(0.66) 

15 
(28) 

Reading −21.3 
(5.1) 

0.396 
(0.042) 

8.8 
(2.6) 

English −33.2 
(7.8) 

0.47 
(0.12) 

16.3 
(2.6) 

Learning Skills −8 
(46) 

0.25 
(0.80) 

−1 
(40) 
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In the case of the averages of test scores in 6th grade as the explanatory variable, we can 

see that peer effects in Reading and English are consistent with the results in table 2. However, the 

results from Math are significantly different and endogenous and exogenous peer effects 

estimators are not statistically significant since their standard errors are relatively high. Peer effects 

estimators in Learning Skills are not statistically significant, which is consistent with the results in 

table 2. 

Summarising the results from table 2 and table 3, peer effects in Learning Skills are not 

significant for all types of explanatory variables. Regarding peer effects in Math, using the average 

of test scores in 6th grade as an explanatory variable leads to the not statistically significant 

estimators therefore, we conclude, that peer effects in Math are not robust for different 

specifications of explanatory variables. Regarding peer effects in English, both are statistically 

significant; however, note that bootstrap simulations suggest that estimators are noisy and peer 

effects estimators are not statistically significant in real. Finally, regarding peer effects in Reading, 

the estimators are statistically significant and robust to different specifications of explanatory 

variables. Before we discuss the significant result for peer effects in Reading, we will conduct a 

placebo check to understand deeper the properties of our peer effects estimation method.   

3.3 Placebo Test 

The peer effects estimators from the previous part show another interesting pattern – all 

endogenous peer effects estimators are negative. Therefore, arises the possibility that peer effects 

estimators are jointly significant. However, it could imply that peer effects estimators are also 

unrealistically high in comparison with previous research. Hence, we will examine if our 

estimators are biased.  

To examine the bias of peer effects estimators, we permutate vectors of explanatory 

variables 𝒙𝒙 and outcome variables 𝒚𝒚. Importantly, we permutate 𝒙𝒙 and 𝒚𝒚 together, and hence the 

value of the explanatory variable 𝑥𝑥𝑖𝑖 of individual pupil remains connected to her outcome variable 

𝑦𝑦𝑖𝑖. Since we do not change the network matrix, the permutation of vectors 𝒙𝒙 and 𝒚𝒚 can be 

interpreted as a random distribution of pupils among classes. Consequently, peer effects estimators 

with permutated characteristics of pupils should be zero.  
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For placebo analysis, we use test scores from 6th grade as the explanatory variable and test 

scores from 9th grade in the same subject as the outcome variable. The results are in table 4 and 

we can observe several patterns. First, all results are statistically insignificant and standard errors 

are relatively high in the comparison with standard errors from previous analysis of peer effects 

(in table 2 and table 3). Standard errors are high due to heavy tails of the distribution of peer effects 

and we have observed it in the case of bootstrap simulation despite we have not reported them in 

table 2. To stress that the variance of most of the estimators is lower, we report histograms of peer 

effects estimators in Reading in figure 4. We can see that the mean values of estimators correspond 

to median values and it seems that in Reading, endogenous peer effects are downwardly biased for 

18 points and exogenous peer effects are upwardly biased for 7 points.  

Table 4: Placebo Analysis of the Bias of Peer Effects Estimators 

The table shows the efficient estimators of endogenous peer effects 𝛽̂𝛽2, the estimators of exogenous peer effect 𝛿̂𝛿2, 

and coefficient of explanatory variable 𝛾𝛾�2 in the sample of pupils randomly allocated between classes. Outcome 

variable is test score in 9th grade from particular subject and explanatory variable is 6th grade score from the same 

subject. Standard deviations implied by the estimator of variance matrix are in parenthesis. Expected bias of peer 

effects estimators is used for the correction of peer effects estimators from table 2 examining if the estimators are 

significantly different from corresponding bias.  

 𝛽̂𝛽2 𝛾𝛾�2 𝛿𝛿2 

Math −13 
(136) 

0.55 
(1.49) 

7.5 
(82.4) 

Reading −18 
(166) 

0.39 
(1.46) 

7.4 
(91.2) 

English −20 
(216) 

0.58 
(1.50) 

12 
(100) 

Learning Skills −29 
(204) 

−0.57 
(1.14) 

17 
(138) 

 Updated bootstrap p-values of peer effects estimators from table 2 

Math 91.2% − 86.1% 

Reading 66.9% − 48.1% 

English 53.8% − 29.4% 

Learning Skills 19.2% − 19.8% 
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Taking observed biases into account significantly lowers p-values of estimated peer effects 

and the updated values are in the second part of table 4. Specifically, on the example of Reading, 

we measure the probability that endogenous peer effects estimator is less than 18 and exogenous 

peer effects estimator is higher than 7.4. To conclude, it is probable that significant peer effects 

estimators in our previous analysis were caused by the bias of the used estimators.  

We hypothesize that both, underestimation of the standard errors of peer effects estimators 

and the bias of peer effects estimators can be caused by small sample size and relatively low class-

size variation. New estimators are usually tested on appropriate samples and our sample size is 

more than ten times lower than the sample size used by Boucher et al. (2014). Boucher et al. (2014) 

also show that the theoretical condition of having at least three class sizes is not practically 

sufficient for the identification of peer effects and one also needs sufficient class size variation. 

Therefore, the hypothesis that standard estimators do not perform well in our setting is, in our 

opinion, the most realistic explanation of observed results.  

3.4 Simple Analysis of Social Effects  

As we argued, peer effects estimators seem to be insignificant in our analysis. The 

theoretical part of our thesis suggests that the estimation of endogenous and exogenous peer effects 

is rather difficult and requires a rich data sample. Boucher et al. (2014) use a similar method and 

their data sample contains 116,534 students in contrast with 1,407 students in our case. However, 

Figure 4: Distribution of Peer Effects Estimators in Reading from Placebo Analysis  

Endogenous peer effects estimators are 𝛽̂𝛽2 and exogenous peer effects estimators are 𝛿̂𝛿2. 

  
       𝛽̂𝛽2        𝛿̂𝛿2 
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pupils do not take all tests, and therefore sample sizes vary across different subjects. However, 

they conduct Monte-Carlo simulations with a sample size of approximately 42,000 pupils, which 

can be regarded as a sufficient sample size for the analysis of peer effects. Nevertheless, we would 

like to analyse peer effects within our possibilities, for example, to provide some advice for 

policymakers of parents of pupils. Therefore, we ask whether it is “better” to attend class with 

high-achieving peers or low-achieving peers. This means that we want to measure the total effect 

of peers on the expected score of individuals.  

We propose a comparison of class averages in 6th and 9th grade. If peer effects are positive, 

then the class with a relatively high average test score will increase its average relative to the class 

with a low average test score. Since aggregated test scores are normalised to have zero mean and 

unit variance the changes in class averages are related to the specific mechanism within the classes. 

If we conduct OLS regression 

𝑦𝑦�𝑖𝑖9𝑡𝑡ℎ = 𝑎𝑎 + 𝑏𝑏𝑦𝑦�𝑖𝑖6𝑡𝑡ℎ + 𝜀𝜀𝑖𝑖 

where 𝑦𝑦�𝑖𝑖9𝑡𝑡ℎ is class average score in 9th grade and 𝑦𝑦�𝑖𝑖6𝑡𝑡ℎ is class average score in 6th grade. 

Consequently, 𝑏𝑏 > 1 implies that the high-achieving class increases its average score relative to 

the low-achieving class. We expect that the potential effect could be caused by peer effects and 

the effect of class sizes since we observe the selection of pupils according to class sizes (figure 3). 

Therefore, we include also the effect of class size 

𝑦𝑦�𝑖𝑖9𝑡𝑡ℎ = 𝑎𝑎 + 𝑏𝑏𝑦𝑦�𝑖𝑖6𝑡𝑡ℎ + 𝑐𝑐𝑁𝑁𝑖𝑖 + 𝜀𝜀𝑖𝑖 

where 𝑁𝑁𝑖𝑖 is the number of pupils in a class. The regression coefficients are reported in table 

5. The results show that coefficient 𝑏𝑏� is less than one for all four subjects. Moreover, coefficient 𝑏𝑏� 

is significantly different from one for Reading, English, and Learning Skills. In the case of Math, 

coefficient 𝑏𝑏� is statistically indistinguishable from one. Regarding the coefficient 𝑐̂𝑐 describing the 

effect of class size, we observe a positive and statistically significant effect on Learning Skills.  

Finally, we calculate the average of coefficients across all four subjects using the delta method for 

the calculation of standard errors. The coefficient 𝑏𝑏� across all subjects is significantly less than 

one and the coefficient 𝑐̂𝑐 is significantly positive.  
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To interpret observed results, if peer effects are a significant mechanism affecting test 

scores of pupils, then these peer effects are negative. However, since we conduct a simple OLS 

regression omitting many possibly relevant variables, there can be a different mechanism causing 

observed effects. For example, if we had two types of classes with normally distributed pupils test 

scores with means -1 and 1, then an increase of variance of the distribution of test scores would 

reduce the difference between class averages since we always normalise aggregated scores to have 

unit variance. Consequently, we would observe coefficient 𝑏𝑏� smaller than one even in the absence 

of true peer effects. On the other hand, the observed pattern can be still relevant for parents of 

policymakers. Class averages converge together over time, and hence it may not be so important 

whether an individual attends a low- or high-achieving class.  

 

Table 5: Regression of the class average score in 9th grade on class average score in 6th grade and class size. 

Estimator 𝑎𝑎� estimates constant term, estimator 𝑏𝑏� estimates the effect of 6th grade, and 𝑐̂𝑐 estimates the effect of 

class size.  

 𝑎𝑎� 𝑏𝑏� 𝑐̂𝑐 

Math 0.08 
(0.33) 

0.961 
(0.099) 

−0.003 
(0.013) 

Reading −0.29 
(0.36) 

0.549 
(0.090) 

0.012 
(0.014) 

English −0.36 
(0.28) 

0.761 
(0.074) 

0.014 
(0.011) 

Learning Skills −1.00 
(0.52) 

0.700 
(0.091) 

0.040 
(0.020) 

Total Effect −0.39 
(0.19) 

0.743 
(0.044) 

0.0156 
(0.0075) 
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4 Further Research 

The linear in means peer effects model is the simplest model describing peer interactions, 

and hence do not capture several phenomena that could occur in real world. First, pupils are 

affected by the mean characteristics of their peers regardless of other characteristics of the peers' 

distribution, for example, variance. Second, the aggregated effect of the reallocation of pupils on 

their educational outcomes is zero. Third, all pupils are affected by their peers in the same 

magnitude regardless their individual characteristics. We know that the above-mentioned 

limitations of the linear-in-means peer effects model should be relevant thanks to the experiments 

conducted by Duflo et al. (2011) and Carrell et al. (2013). Both studies showed that the 

manipulations with class compositions have a measurable impact on the pupils educational 

outcomes.  

Note that all three limitations of the linear-in-means peer effects model are tightly 

connected since, for example, including the effect of the variance of the educational outcomes of 

peers would imply that manipulating homogeneity of classes would have a non-zero aggregate 

effect. Similarly, including heterogeneity of peer effects would predict that reallocation of pupils 

could have a non-zero aggregate effect. Recall the linear-in-means peer effects model [equation 

(2)] 

𝑦𝑦𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽
1
𝑛𝑛𝑖𝑖
� 𝑦𝑦𝑗𝑗
𝑗𝑗∈𝑃𝑃𝑖𝑖

+ 𝛾𝛾𝑥𝑥𝑖𝑖 + 𝛿𝛿
1
𝑛𝑛𝑖𝑖
� 𝑥𝑥𝑗𝑗
𝑗𝑗∈𝑃𝑃𝑖𝑖

+ 𝜀𝜀𝑖𝑖 

Now we can add two terms to describe the effect of the variance of peers’ outcomes and 

characteristics. 

𝑦𝑦𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1
1
𝑛𝑛𝑖𝑖
� 𝑦𝑦𝑗𝑗
𝑗𝑗∈𝑃𝑃𝑖𝑖

+ 𝛽𝛽2
1
𝑛𝑛𝑖𝑖
� 𝑦𝑦𝑗𝑗2

𝑗𝑗∈𝑃𝑃𝑖𝑖

+ 𝛾𝛾𝑥𝑥𝑖𝑖 + 𝛿𝛿1
1
𝑛𝑛𝑖𝑖
� 𝑥𝑥𝑗𝑗
𝑗𝑗∈𝑃𝑃𝑖𝑖

+ 𝛿𝛿2
1
𝑛𝑛𝑖𝑖
� 𝑥𝑥𝑗𝑗2

𝑗𝑗∈𝑃𝑃𝑖𝑖

+ 𝜀𝜀𝑖𝑖 

Regarding the heterogeneity of peer effects, we could add the interaction of peer effects 

with the characteristic of individual 
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𝑦𝑦𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1
1
𝑛𝑛𝑖𝑖
� 𝑦𝑦𝑗𝑗
𝑗𝑗∈𝑃𝑃𝑖𝑖

+ 𝛽𝛽2
1
𝑛𝑛𝑖𝑖
� 𝑦𝑦𝑗𝑗2

𝑗𝑗∈𝑃𝑃𝑖𝑖

+ 𝛽𝛽3
1
𝑛𝑛𝑖𝑖
� 𝑦𝑦𝑗𝑗
𝑗𝑗∈𝑃𝑃𝑖𝑖

𝑥𝑥𝑖𝑖 + 𝛾𝛾𝑥𝑥𝑖𝑖 + 𝛿𝛿1
1
𝑛𝑛𝑖𝑖
� 𝑥𝑥𝑗𝑗
𝑗𝑗∈𝑃𝑃𝑖𝑖

+ 𝛿𝛿2
1
𝑛𝑛𝑖𝑖
� 𝑥𝑥𝑗𝑗2

𝑗𝑗∈𝑃𝑃𝑖𝑖

+ 𝛿𝛿3
1
𝑛𝑛𝑖𝑖
� 𝑥𝑥𝑗𝑗𝑥𝑥𝑖𝑖
𝑗𝑗∈𝑃𝑃𝑖𝑖

+ 𝜀𝜀𝑖𝑖 

Obviously, this is one of many ways how it is possible to extend the peer effect model. We 

could, for example, substitute the second moment ∑ 𝑦𝑦𝑗𝑗2𝑗𝑗∈𝑃𝑃𝑖𝑖  by the estimator of variance 

∑ �𝑦𝑦𝑗𝑗2 −
1
𝑛𝑛𝑖𝑖
∑ 𝑦𝑦𝑗𝑗𝑗𝑗∈𝑃𝑃𝑖𝑖 �𝑗𝑗∈𝑃𝑃𝑖𝑖 . Different specifications would change the interpretation of estimators; 

however, the described information would be the same.  

Despite, it is relatively simple to extend the linear-in-means peer effects model, it is much 

more difficult to discuss identification in the extended model. Our theoretical analysis in section 2 

uses mathematical tricks which cannot be applied in the extended model. It is also out of the scope 

of our thesis to describe the identification of the extended model and we leave it for further 

research.  

Finally, we would like to discuss the role of endogenous network formation. For example, 

Carrell et al. (2013) observe that pupils create an endogenous network of friends within their 

classes. They hypothesise that this endogenous friendship network may be more relevant for peer 

interactions than the interactions within the whole class. Therefore, the research of peer effects 

should take friendship networks into account directly observing network or simulating it based on 

the observed characteristics. The simulations of endogenous network formation were examined 

for example by Hsieh and Lee (2016) and Goldsmith-Pinkham and Imbens (2013). To conclude, 

promising ways for further research of peer effects include, in our opinion, the description of non-

linearities, heterogeneities, and more detailed friendship networks 
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Summary 

Research on peer effects is a current and ever-expanding field in human sciences. Our 

literature review supports its importance and provides numerous examples of real-life 

environments where peer effects are present. In the second part, we provide a theoretical analysis 

of the widely used linear-in-means peer effects models. Although the linear-in-means peer effects 

model has already been analysed in previous studies, often the analyses are rather brief and 

sometimes lack proofs of particular arguments. Hence, we contribute to the field by providing step-

by-step derivations of different functional forms of the peer effects model, motivating crucial 

definitions using simple examples and intuition, and proving particular statements that have not 

been proven in previous studies.  

In the empirical part, we analyse peer effects in education among pupils in junior secondary 

schools in the Czech Republic. We use a subsample of Czech pupils since the data allow us to 

observe the explanatory variable for test scores that is not-affected by peer effects. We find 

negative and statistically significant endogenous peer effects and positive and statistically 

significant exogenous peer effects in Math, Reading, and English. However, our estimates are 

point unrealistically high, which may be explained by several factors. We conduct bootstrap 

simulation for the calculation of standard errors and significance levels and we show that the 

estimators of standard errors are likely beign underestimated. We also conduct a placebo check 

randomly distributing pupils among classes and show that our peer effects estimators are slightly 

biased. Both, the bootstrap simulations and a placebo check suggest that our peer effects estimators 

are in reality statistically insignificant. We hypothesise that possibly incorrect results from 

standard peer effects estimation may be caused by a small sample size and a relatively small class-

size variation.  

Finally, we provide a summary of further extensions of peer effects models that can be 

used in peer effects research. We discuss the extensions along two main dimensions. We suggest 

introducing non-linearities into the peer effects mode, which means that peer effects are not linear 

in means and can depend on higher powers of explanatory variables. However, it increases the 

demand on the sample sizes of the data. The second dimension is to introduce heterogeneity in 
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peer effects. This means that pupils do not affect all other pupils in their classroom in the same 

magnitude and peer effects should also depend on the characteristics of the affected individual.  

References 

Ali, M.M., Dwyer, D.S., 2011. Estimating Peer Effects in Sexual Behavior Among Adolescents. 

Journal of Adolescence 34, 183–190. https://doi.org/10.1016/j.adolescence.2009.12.008 

Banerjee, A., Chandrasekhar, A.G., Duflo, E., Jackson, M.O., 2013. The Diffusion of 

Microfinance. Science 341, 1236498–1236498. https://doi.org/10.1126/science.1236498 

Betts, J.R., n.d. Peer Groups and Academic Achievement: Panel Evidence from Administrative 

Data 35. Unpublished manuscript.  

Boucher, V., Bramoullé, Y., Djebbari, H., Fortin, B., 2014. Do Peers Affect Student Achievement? 

Evidence from Canada Using Group Size Variation: Do Peers Affect Student Achievement? 

J. Appl. Econ. 29, 91–109. https://doi.org/10.1002/jae.2299 

Bramoullé, Y., Djebbari, H., Fortin, B., 2009. Identification of Peer Effects Through Social 

Networks. Journal of Econometrics 150, 41–55.  

https://doi.org/10.1016/j.jeconom.2008.12.021 

Burke, M.A., Sass, T.R., 2008. Classroom Peer Effects and Student Achievement 47. Working 

paper. 

Card, D., Giuliano, L., 2013. Peer Effects and Multiple Equilibria in the Risky Behavior of Friends. 

The review of Economics and Statistics 95(4), 1130–1149.  

Carrell, S., Sacerdote, B., West, J., 2013. From Natural Variation to Optimal Policy? The 

Importance of Endogenous Peer Group Formation. Econometrica 81, 855–882. 

https://doi.org/10.3982/ECTA10168 

CLOSE, Institute for Research and Development of Education [ online ]. 2014, 2021 [Retrieved 

on a date]. Available from: https://pages.pedf.cuni.cz/uvrv-en/close-czech-longitudinal-

study-in-education/ 

Duflo, E., Dupas, P., Kremer, M., 2011. Peer Effects, Teacher Incentives, and the Impact of 

Tracking: Evidence from a Randomized Evaluation in Kenya. American Economic Review 

101, 1739–1774. https://doi.org/10.1257/aer.101.5.1739 



62 
 

Duflo, E., Saez, E., 2002. Participation and Investment Decisions in a Retirement Plan: The 

Influence of Colleagues’ Choices. Journal of Public Economics 85, 121–148. 

Eisenberg, D., Golberstein, E., Whitlock, J.L., 2014. Peer Effects on Risky Behaviors: New 

Evidence from College Roommate Assignments. Journal of Health Economics 33, 126–138. 

https://doi.org/10.1016/j.jhealeco.2013.11.006 

Feld, J., Zölitz, U., 2017. Understanding Peer Effects: On the Nature, Estimation, and Channels of 

Peer Effects. Journal of Labor Economics, 2017, vol. 35, no. 3 387–428. 

Goldsmith-Pinkham, P., Imbens, G.W., 2013. Social Networks and the Identification of Peer 

Effects. Journal of Business & Economic Statistics 31, 253–264. 

https://doi.org/10.1080/07350015.2013.801251 

Gershgorin Circle Theorem, Wikipedia [ online ]. 2021, 2021 [Retrieved on a date]. Available 

from: https://en.wikipedia.org/wiki/Gershgorin_circle_theorem 

Hsieh, C.-S., Lee, L.F., 2016. A Social Interactions Model with Endogenous Friendship Formation 

and Selectivity: A Social Interactions Model. J. Appl. Econ. 31, 301–319. 

https://doi.org/10.1002/jae.2426 

Lee, L., 2007. Identification and estimation of econometric models with group interactions, 

contextual factors and fixed effects. Journal of Econometrics 140, 333–374. 

https://doi.org/10.1016/j.jeconom.2006.07.001 

Lefgren, L., 2004. Educational peer effects and the Chicago public schools. Journal of Urban 

Economics 56, 169–191. https://doi.org/10.1016/j.jue.2004.03.010 

Manski, C., 1993. Identification of endogenous social effects: The reflection problem. Review of 

Economic Studies 60 (3), 531–542. 

Miguel, E., Kremer, M., 2004. Worms: Identifying Impacts on Education and Health in the 

Presence of Treatment Externalities. Econometrica 72, 159–217. 

https://doi.org/10.1111/j.1468-0262.2004.00481.x 

Moffitt, R., 2001. Policy interventions low-level equilibria, and social interactions. In: Durlauf, 

Steven, Young, Peyton (Eds.), Social Dynamics. MIT Press. 

Nakajima, R., 2007. Measuring Peer Effects on Youth Smoking Behaviour. The Review of 

Economic Studies 74, 897–935. https://doi.org/10.1111/j.1467-937X.2007.00448.x 

Neidell, M., Waldfogel, J., 2010. Cognitive and Noncognitive Peer Effects in Early Education. 

The review of Economics and Statistics, 92(3), 562–576. 



63 
 

Nicoletti, C., Salvanes, K.G., Tominey, E., 2018. The Family Peer Effect on Mothers’ Labor 

Supply. American Economic Journal: Applied Economics 10, 206–234. 

https://doi.org/10.1257/app.20160195 

Sacerdote, B., 2011. Peer Effects in Education: How Might They Work, How Big Are They and 

How Much Do We Know Thus Far? Handbook of the Economics of Education. Elsevier, 

pp. 249–277. https://doi.org/10.1016/B978-0-444-53429-3.00004-1 

Trogdon, J.G., Nonnemaker, J., Pais, J., 2008. Peer effects in adolescent overweight. Journal of 

Health Economics 27, 1388–1399. https://doi.org/10.1016/j.jhealeco.2008.05.003 

Vigdor, J.L., Nechyba, T.S., 2007. Peer effects in North Carolina public schools. In: Woessmann, 

L., Peterson, P.E. (Eds.), Schools and the Equal Opportunity Problem. The MIT Press, pp. 

73–101. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


	Acknowledgements
	Abstract
	Abstrakt
	Declaration of Authorship
	Diploma Thesis Proposal
	Introduction
	1 Literature Review
	1.1 Examples of Peer Effects in Different Environments
	1.1.1 Peer Effects in Smoking
	1.1.2 Peer Effects in Sexual Behaviour

	1.2 Peer Effects in Education
	1.2.1 Peer Effects in Education with Selective Assignment


	2 Estimation of the Linear-in-Means Peer Effects Model
	2.1 Definition of the Linear-in-Means Peer Effects Model
	2.2 Reduced Form of the Linear-in-Means Peer Effects Model
	2.3 Identification of the Linear-in-Means Peer Effects Models – General Conditions
	2.4 Identification of the Linear-in-Means Peer Effects Model – Specific Cases and the Reflection Problem
	2.5 The Problem of Correlated Effects
	2.6 The Description of Selection
	2.7 Identification in Linear-in-Means Peer Effects Models in a Selective Environment

	3 Empirical Analysis
	3.1 The Description of Czech Education and Data
	3.2 The Estimation of Peer Effects Model
	3.3 Placebo Test
	3.4 Simple Analysis of Social Effects

	4 Further Research
	Summary
	References

