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Abstract 
Recent experimental studies from a public good game setting found that enforcement can 
significantly facilitate cooperation (Fehr & Gächter, 2000) and lead to long-term welfare 
improvement (Gächter et al, 2008). Similar findings usually rest on the assumptions of full 
information and unrestrained punishment options. In our experiment we relax these assumptions by 
varying the structure of both information flows and punishment opportunities. We select several 
non-trivial network designs that differ systematically in their levels of fragmentation, which allows us 
to identify network fragmentation as an essential property for predictions about cooperative efforts; 
and assess the relative importance of information and punishment structures for both cooperation 
and welfare. We find that harsh fragmentation negatively affects public good provision, but mild 
fragmentation does not, at least in certain contexts. This is essentially because of fragmentation of 
information - the effect of extending punishment possibilites has only minor, and negative, influence 
on cooperation. 
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1 Introduction 
 

The importance of identifying favourable conditions for cooperation in economics cannot be 
overstated. It has far-reaching implications for both large and small scale social issues in which 
foregoing self-interest is necessary to reach optimal collective outcomes – take public goods 
provision or work-team performance as relevant examples. Traditional economic theory, based on 
models of purely self-interested agents, offers stark predictions in this respect. Unless collective-
interest coincides with self-interest, there is no cooperation and the potential for improving welfare 
is lost. Experimental research, on the other hand, has shown that individuals do not discard collective 
goals that easily. They engage in public good provision even if this does not maximize their own 
profit, albeit such tendency weakens over time (Ledyard, 1994). Furthermore, they are willing to 
sanction free-riders for their selfish behaviour where appropriate means are available, which greatly 
facilitates the achievement of optimal group outcomes (Fehr & Gächter, 2000). This can produce 
large welfare benefits in the long-term perspective, encouraging evolutionary arguments for the 
importance of norm enforcement in sustaining cooperation (Gächter et al, 2008).  

However, such findings almost always rest on the assumption of complete information about 
the behaviour of others, disregarding the embeddedness of economic relationships in individuals' 
social networks (Granovetter, 1985). Such networks emerge due to a wide variety of non-economic 
considerations, such as kinship, ethnicity, religion or political allegiance. They define the general 
structure of economic relationships within a community, only rarely allowing members to reach 
everyone else directly. Indeed, usually severe limitations of both information flows and enforcement 
opportunities occur. Such limitations in turn influence both individual behaviour and collective 
performance, as documented in the illuminating experimental study authored by Carpenter et al 
(2012).  

As such, networks differ in their social capital, a type of capital defined in Coleman (1988)as: 
“... a variety of entities, with two elements in common: they all consist of some aspect of social 
structures and they facilitate certain actions of actors – whether persons or corporate actors – within 
the social structure.“ The aspect of social structures of particular relevance for us is their 
fragmentation, a property that measures how easily can individuals reach others within the network 
(Borgatti, 2006): an individual can either be reached directly, indirectly through a chain of 
intermediaries, or not at all. Fragmented networks are quite common in everyday life and can 
emerge due to a wide array of causes. For example, the tendency to create ties with others similar to 
oneself can lead to ethnic divisions in a society; or specialized departments in a company (McPherson 
et al, 2001).   

Through the lenses of this framework we empirically evaluate two influential theories about 
social capital of different networks. To the best of our knowledge, no such systematic assessment has 
been undertaken in previous public good game studies, albeit there is some evidence about the 
importance of a related measure of network connectedness (Carpenter 2012; Leibbrandt et al 2012). 

The first hypothesis states that strong social cohesion is necessary for the emergence and 
enforcement of norms in a community, which can greatly facilitate public good provision (Coleman, 
1988). Highly fragmented groups, in contrast, are unlikely to create and sustain such norms and thus 
unlikely to reach cooperative outcomes. Anecdotal evidence of highly cohesive, or in Coleman's 
words "closed", groups with norms promoting non-selfish behaviour is provided to illustrate this 
point. For example, wholesale diamond market run by a tightly-knit Jewish community in New York 
can rely on strong norms of trust to deter cheating and thus reduce transaction costs.  



3 
 

Fig. 1 Overview of networks 

 
 
The second hypothesis acknowledges the importance of "network closure" but claims that 

too cohesive networks can become suffocating and, as a result,  a certain amount of fragmentation 
can prove out to be beneficial (Burt, 2000 & 2001; Granovetter, 1973). Balkundi (2007) supports such 
claims with a study comparing the efforts of work-teams with different levels of social fragmentation 
- moderately fragmented teams delivered the best performance, outperforming both the highly 
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cohesive and very loosely-knit teams. While the traditionally invoked argument to support such 
findings focuses on lack of new ideas in extremely cohesive networks, there is no creative element in 
our settings. Instead we rely on the previous evidence form Carpenter (2007) that extremely 
cohesive networks suffer from coordination problems1 in enforcement of norms that facilitate 
cooperation.  

Our experimental design allows us to clearly distinguish between these two theoretical 
predictions and assess their validity. To see this, look at Figure 1 above, where the networks used in 
this experiment are presented. Each network consists of two sub-networks that describe information 
flows and enforcement structure. A line segment with an arrowhead indicates who can observe (or 
punish) who – for example a line segment from individual A with an arrowhead towards individual B 
indicates that A can observe (punish) B. Both networks N[1-3] and N[4-6] differ in their levels of 
information fragmentation. Intuitively – we call N[1&5] the mildly fragmented scenario since 
everyone is within the same group;  we call the rest of these networks severely fragmented scenarios 
since in N[2&6] there is one completely isolated individual; and in N[3&6] there are two fully 
separated sub-groups.      

This selection of networks allows us to study in detail how fragmented information affects 
collective efforts within groups. In particular, we can compare mildly fragmented networks N[1&4] to 
both fully integrated benchmark N[7] and severely fragmented networks N[2-3] & [5-6]. Thus, we are 
able to assess the validity of the two contesting hypotheses presented above -  whether cohesive 
networks facilitate public good provision (Coleman, 1988) or whether moderate fragmentation can 
be beneficial (Burt, 2000). 

While such a detailed study of fragmentation is a significant extension of previous 
experimental findings (see Carpenter et al, 2012; Leibbrandt et al, 2012), the differences are even 
more important than what unites networks N[1-3] and N[4-6]. Notice that as opposed to N[1-3], 
networks N[4-6] have unrestricted punishment options since each individual can punish all other 
network members irrespective of observing his behaviour or not. Therefore each individual has 
additional punishment opportunities compared to his respective counterpart from N[4-6] (indexed 
by A, B, C or D), but these opportunities lack precise information about individual behaviour of 
possible recipients. We study whether individuals are willing to punish others under such uncertain 
conditions since this can potentially affect group performance, as previously shown in noisy 
information settings (Ambrus & Greiner, 2012; Grechenig et al, 2010)2. 

The comparison of networks N[1-3] with additional punishment opportunities to networks 
N[4-6] without them leads to the seminal contribution of this paper: the assessment of the relative 
importance of information and enforcement structure for public good provision. If networks with 
unlimited punishment N[1-3] lead to different levels of cooperation or welfare than their 
corresponding counterparts N[4-6], then enforcement structure clearly co-determines collective 
outcomes. As such it constitutes a viable target for policy or managerial decisions. Conversely, if no 
significant difference in between N[1-3] and counterparts N[4-6] can be identified, information 
                                                           
1 These can be illustrated by the famous case of Kitty Genovese, a girl repeatedly and, in the end, fatally, 
assaulted in the plain view of a whole apartment building in Queens, New York. Despite the public nature of 
the act, police was not called till long after the assault as on-lookers assumed that someone else must have 
already alerted the law enforcement. 
2 Note that our information setting is different from the quoted studies - individuals face no false information 
and have the option to punish only those they directly observe (with exception of player type D in network 
N[6]).   
 



5 
 

structure fully determines cooperation and welfare levels. As such, it should become the central 
element of theories of fragmentation (Burt, 2001; Coleman, 1988) and the main target of measures 
to improve group performance, diminishing the importance of enforcement structure in such 
matters.  

To illustrate the importance of such questions we can use a practical example: imagine an 
anonymous evaluation strategy within a company where employees assess the effort of others in 
their team. This is broadly consistent with a public goods game, where the team effort is the 
cooperative outcome of interest and negative evaluation is a means of punishment. The team is 
separated into two sub-teams that seldom meet and, on the whole, displays a rather poor collective 
performance.  The company is facing a decision on how to modify the evaluation strategy in order to 
improve the team performance. Currently, the employees are allowed to evaluate only those with 
whom they are in close contact. The company is thinking about two ways to approach this problem: 
the evaluation could be extended to colleagues that one worked with, even if only briefly (i.e. the 
other sub-team); or the two teams could be merged into one to increase information flows. The 
relative viability of solutions focusing either on enforcement possibilities or on information flows is 
precisely the issue we try to address in this paper. 

The findings of this paper can be summed up in three main points. First, severely fragmented 
information leads to lower cooperation rates, albeit specific kinds of mild fragmentation do not 
necessarily have to. Secondly, unlimited punishment opportunities in fragmented networks N[1-3] 
increase enforcement levels, but this does not lead to corresponding increase in cooperation. Finally, 
welfare levels are generally lower in networks N[1-3] – the additional punishment does not lead to 
additional cooperation and thus produces welfare losses. To come back to our main questions: 
information structure proves to be the main determinant of public good provision, irrespective of 
enforcement restraints. Welfare-wise, aligning enforcement with information flows becomes 
important, as without restraints there are unnecessarily high punishment levels that create welfare 
losses.   

The rest of this paper is organised as follows: in section 2 we discuss the differences with 
related literature, and then move on to formally define networks in section 3. Closely related 
sections 4 and 5 then proceed to describe the experimental game and procedures. Section 6 presents 
statistical analysis of data collected and the main findings of this paper. Section 7 elaborates on these 
findings and concludes.  
 

2 Differences with Related Literature 
 

Our experiment builds on the growing stream of literature focusing on social network 
analysis3. It especially contributes to the debate on whether fragmented networks hinder 
cooperation in general (Coleman, 1988), or whether certain levels of fragmentation might help avoid 
excessively cohesive, suffocating social structures (Burt, 2001). 

More precisely the research presented here is connected to the recent public good game 
studies that explore the effect of network architecture on cooperation. The most extensive, and 
particularly enlightening, among these studies was carried out by Carpenter et al (2012). In a 
systematic analysis of several monitoring networks they identified two structural properties, 

                                                           
3 For a broad review of network research in economics see for example Jackson (2010) or Goyal (2009); in 
sociology see Scott (2000) or Scott & Carringdon (2011); and in experimental science Kosfeld (2004). 
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connectedness and directedness, as important for cooperation and enforcement - if we simplify a bit 
connectedness leads to more cooperation and directedness to more enforcement. The results for 
connectedness are of particular interest, since connected networks usually make it easier to reach 
other individuals. Note however that connectedness does not capture as much information as 
fragmentation - it is a binary measure that only states that there are no disconnected individuals in a 
network but does not go into more detail.  

Opting for a narrower approach instead, the work of Leibbrandt et al (2012) is also quite 
close to ours, especially in terms of networks chosen. They find that while disconnected punishment 
networks differ significantly in terms of cooperation, they result into similar welfare levels after 
accounting for expenses on enforcement. Further, more loosely related, experimental research 
shows how a declining fraction of monitored individuals influences public good provision (Carpenter 
2007) or how star information structures can sustain cooperation (O'Gorman et al 2009). 

We differ from previous literature in two important respects. Firstly, when we impose limits 
on information networks, we do so without necessarily restraining enforcement in any way. Thus we 
can study situations in which individuals do not know precisely how all people around them behave, 
but can punish every single one of them. This enables us to answer questions central to this paper: 
do information constraints really matter if punishment options are not limited? Can dense 
punishment networks sustain cooperation despite the problems posed by severely fragmented 
information (at least in some scenarios)? Such questions bring us closer to recent studies on 
imperfect information in public goods game (Grechenig et al, 2010; Ambrus & Greiner, 2012), but 
such research focuses predominantly on the quality of information provided and does not discuss 
structural issues. 

Secondly, we propose a more sensitive network property - fragmentation - to predict 
network performance. This measure depends principally on the ease with which an individual can 
reach other individuals in a given network. In contrast to general network properties studied in 
Carpenter et al (2012), this is a non-binary measure. Thus, instead of general statements that 
networks with certain property generate more contributions than those without it, we can identify 
finer relationships: for example, that higher network fragmentation leads to lower contributions.   

    

3 Definition of a network 
 

In our experiment subjects participate in variations of the public good game that differ 
systematically in the network structure. Before we proceed to the description of the game itself we 
need to define the term network and show how networks used vary.  

We restrict our attention to four-person networks. In general, network is represented 
graphically as a collection of nodes, indexed by i = A,B,C,D, with a single person at each node. A line 
segment between two nodes indicates that individuals are conneceted by a tie, with an arrowhead 
showing its direction.  For each individual i, we further define neighborhood Ni as a collection of all 
individuals j≠i that i is connected by a tie with. The neighborhood describes the relationships of each 
subject with other subjects, and consequently the collection of individual neighborhoods 
N={NA,NB,NC,ND} completely defines all relationships in a network.  

Each of our networks consists of two sub-networks. Firstly, the information network defines 
whose contributions can an individual observe. For each subject i the neighborhood 𝑁𝑖𝐼 denotes the 
set of subjects i≠j who can be observed by i. Secondly, the punishment network defines who can an 
individual punish. For each subject the neighborhood Ni

P denotes the set of subjects i≠j who can be 
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punished by i. The network formed by NI=�NA
I ,NB

I ,NC
I ,ND

I � and NP={NA
P,NB

P,NC
P,ND

P }  thus completely 
defines the information flows and punishment opportunities in a network. 

The networks used in this experiment are shown in Figure 1 above. The network N[7] is the 
standard public goods game – we call it full-integration benchmark since both information and 
punishment networks are complete4. The networks N[1-6] are presented in a 3*2 matrix that shows 
systematic variation in: 
 

1. Fragmentation of an information network – To measure the fragmentation of a network, we 
use the following index 

 
1 1

1
( 1)

i j j iij ijd d
F

n n
> >

+

= −
−

∑ ∑
 

 
,where n stands for number of nodes in a networks and dij  for distance5 between individuals 
i and j. By defintion, F=0 for benchmark N[7] since it is fully integrated.  For both networks 
N[1-3] and N[4-6] F increases as the number of the network gets higher. Thus, we call the 
networks N[1&5] mildly fragmented scenarios; and networks N[2-3] & [5-6] the harshly 
fragmented scenarios.   

2. Symmetricity – a network is symmetric if the sets NI and NP are identical, otherwise it is 
asymmetric. The networks N[4-6] are symmetric since each subject i can punish other 
subjects if and only if he/she observes their individual contributions. The term asymmetric is 
reserved for networks N[1-3], that is for networks that have unlimited punishment 
opportunities but limited information flows . 

This variation in the structure of networks gives us an opportunity to rigorously compare how 
individual behaviour is affected by increasing levels of information fragmentation (by comparing of 
N[1-3] and N[4-6]  to N[7]); and whether such influence differs for networks where either only 
information or both information and punishment are fragmented (by comparing N[1] to N[4]; N[2] to 
N[5]; and N[3] to N[6]).  

Besides these general network properties, we also classify individual ties into two types:  
 

1. Multiplex: A tie from individual i to individual j is multiplex if j belongs to both 𝑁𝑖𝐼 and 𝑁𝑖𝑃 – 
individual i both observes and can punish individual j.   

2. Simplex: If j belongs to only one of the 𝑁𝑖𝐼 and 𝑁𝑖𝑃 sets the tie is simplex - in our case simplex 
ties mark the cases in which an individual can punish others whose contributions he doesn't 
directly observe.   
 
 

                                                           
4 A network is complete when each player type i is connected by a tie to all other player types j≠i. 
5 Distance essentially measures the reachability between individuals – if you have to force person A to force 
some other person B to do something, you don’t have so much power over person B as if you could force 
him/her directly. For a detailed discussion of this index see Borgatti (2006). 
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4 The game 
 

The subjects are first divided into groups of 4 and then participate in a two-stage public good 
game whose information and punishment structures vary across networks, as described in the 
section above. In the first stage of the game each subject receives an initial endowment of 25 tokens. 
Then subjects are asked to simultaneously   divide their 25 tokens between public (gi) and private 
accounts (xi) within their respective groups.  The payoff of an individual after 1st stage is computed 
as follows: 
 

1

, , ,
0.4i i j

j A B C D
x gπ

=

= + ∑  

 
Focusing on the right hand side of the above equation, the first term stands for the private 

account and the second for the public account income. If an individual allocates one token to his 
private account he simply receives one token for it. If instead he decides to allocate one token to the 
public account, this token is multiplied by 1.6 and divided equally among all participants in the group, 
so that each one of them receives 0.4 tokens. This makes it optimal from the group perspective to 
contribute to the public account (tokens get multiplied) and from the individual perspective to 
contribute to private account (on keeps a whole token for himself).  

In the second stage of the game, each individual i observes his/her income πi
1  resulting from 

the first stage and the total amount of tokens contributed to the public account. Furthermore, 
he/she observes individual contributions of group members j who belong to the information 
neighbourhood Ni

I and has to estimate individual contributions of others who do not. Considering the 
observed information, individual i can then decide to punish individually other group members k who 
belong to the punishment neighbourhood  Ni

P, also defined by the network structure. He/she can do 
so by reducing k‘s first-stage income πk

1 by pi
k tokens. This is costly, since i has to pay 1/3 of a token 

from his own first-stage income πi
1 to reduce k’s income πk

1 by 1 token.  Player i can't spend more 
than his/hers first-stage income in this way. In addition, no one‘s income can be reduced below zero. 
Thus, the income after the second stage of the game is determined by the following equation: 
 

1

:

1max 0,
3 P P

i j

k i
i i i j

k N j i N

p pπ π
∈ ∈

  = − − 
  

∑ ∑
  

 
At the end of the second stage, after punishment has been assigned, each subject i views the 

amount of tokens deducted from his first stage pay-off and his final second stage earnings 𝜋𝑖2. 
Together these two stages form what we call a period. 
 

5 Experimental procedures 
 

In the section above, we describe the basic parameters and proceedings of the game on one 
period. Each session consisted of 15 identical and independent periods. At the beginning of each 
session, subjects were seated in front of the computers and received instructions on how to play the 
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game6. While reading the instructions, subjects were allowed to ask clarifying questions. On average 
it took subjects between 15 and 20 minutes to read the instructions and clarifying questions were 
seldom – 1 to 2 questions per session.  

After reading the instructions, subjects were logged into the session on their PCs. At the 
beginning of the first period, the computer randomly assigned player types A, B, C, D, each type 
consisting of one fourth of the whole subject population. The player type stayed constant throughout 
the whole session and determined to which type of node was an individual assigned. The network 
structure also stayed constant throughout the whole session. In contrast, the personal composition 
of groups changed over time as, at the beginning of each period, the computer picked one 
participant of each player type at random to form a group. As a result, the group composition 
depended solely on chance and was independent of groups from any other period. 

After the game was finished, subjects were asked to fill in a short questionnaire7 – asking for 
general information about their background and probing their understanding of the instructions by 
posing 4 comprehension questions. No significant comprehension problems were reported. 

After all subjects filled out the questionnaires, their earnings from the experiment were paid 
out, privately and in cash. Each subject received a 4 EUR participation fee and, in addition, the tokens 
earned during the experiment were converted into Euros at a rate of 0.018. That means that each of 
the 25 tokens which every individual was endowed with at the beginning of each period equalled 
0,018 EUR. The average total earnings per subject (including participation fee) was approximately 
11,76 EUR. To earn this money individuals had to spend on average one hour and a half in the lab. 

We ran the experiment with a total of 256 subjects, spread through 11 sessions8 at an 
experimental economics lab at the Vysoká Škola Ekonomická in Prague. The whole experiment was 
programmed in z-TREE. Subjects were recruited through the Online Recruitment System for 
Economic Experiments (ORSEE ), so the subject pool consisted of university students from different 
countries (predominantly Czech) and with different area of studies (predominantly economics). 
Subjects had no previous experience with public good game experiments.  
 

6 Expected behaviour 
 

The current microeconomic theory gives us relatively little guidance for predicting the impact 
of social networks on individual behaviour. Since individuals are randomly re-matched every round 
there is no incentive for building reputation and self-interested individuals have no interest in 2nd 
stage punishment (𝑝𝑖𝑗 = 0). This is rationally expected by the individuals in the 1st stage of the game 
who choose to fully free ride as it is their individually most profitable strategy (𝑔𝑗 = 0). Nash 
equilibrium is reached at zero cooperation, irrespective of the social structure. Recently, such 
theoretical predictions have been transformed by incorporating behavioural norms and beliefs to 
explain the persistent experimental findings of conditionally cooperative behaviour (Falk & 
Fischbacher, 2006; Fehr & Schmidt, 1999). However, even such updated theoretical models do not 
readily incorporate the influence of social networks. As a result, we have to turn to experimental and 
theoretical research focusing directly on social network analysis. 

                                                           
6 See online resource 2 for example of instructions 
7 The results presented here survive robustness checks based on the data collected in the questionnaire - see 
online resource 3 for details. 
8 See online resource 1 for more details on subject distribution 
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Firstly, drawing heavily on social network analysis literature, we identify information network 
fragmentation as a key influence on punishment/cooperation. The principal hypothesis, based on the 
"network closure" argument (Coleman, 1988), states that the more fragmented the information 
network is, the harder it is to create and enforce norms that would sustain cooperation. 
Alternatively, focusing on the importance of structural holes and weak ties (Burt, 2001; Balkundi et 
al, 2007), we could predict that moderately fragmented information does not necessarily lead to 
decline in punishment and cooperation compared to non-fragmented networks. This approach 
acknowledges the negative effects of severe information fragmentation but claims that extremely 
cohesive networks suffer from coordination problems in enforcing of cooperation. Moderate 
fragmentation can help to coordinate effectively without making the emergence and enforcement of 
cooperative norms too difficult.  
 
Hypothesis 1: The more fragmented the information is, the less punishment and cooperation the 
network generates. 
 

Secondly, we would like to predict how will additional simplex punishment ties in asymmetric 
networks N[1-3] affect enforcement (and, consequently, contributions and welfare) . Such ties are 
likely to generate less punishment than similar multiplex ties in network N[7] due to their uncertain 
nature – if the sum of contributions of unobserved individuals is higher than group average 
(∑ gj>j∈Ni

P,j∉Ni
I �∑ gkk=A,B,C,D �/4) one cannot punish a free-rider9 with a 100% certainty10.  On the other 

hand, previous evidence from noisy information settings (Ambrus & Greiner, 2011; Grechenig et al, 
2010) suggests that individuals are not afraid to engage in punishment even under such risky 
circumstances.  
 
Hypothesis 2a:  Individuals will use simplex punishment ties in Networks N[1-3] and will do so even 
when risk of misdirection cannot be avoided. 
 
Hypothesis 2b: However, individuals are aware of risks of misdirection and simplex ties will lead to 
lower punishment per opportunity than multiplex ties.  
  

Besides that, simplex ties are likely to create coordination problems in punishment 
(Carpenter, 2004; Carpenter et al, 2012). In symmetric networks N[4-6] each multiplex tie from 
individual i to individual j clearly assigns i as the sole person responsible for punishment of j. In 
contrast, asymmetric networks N[1-3] have this responsibility diluted by additional simplex ties 
aimed at individual j. Thus, a multiplex tie from symmetric networks should generate more 
punishment per opportunity than their counterparts from asymmetric settings. 
 
Hypothesis 3: Due to coordination problems, the multiplex ties in networks N[ 4-6] will generate less 
punishment than their counterparts in networks N[1-3]. 
 
                                                           
9 We define free-rider as an individual whose contribution is lower than network average. Conversely, we 
define cooperator as an individual whose contirbution is higher or equal to network average. 
10 Conversely, if sum of contributions of unobserved individuals is lower than group average plus maximum 
contribution (∑ gj≥j∈Ni

P,j∉Ni
I  25+�∑ gkk=A,B,C,D �/4), one cannot punish an above average contributor with a 100% 

certainty.  
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Finally, the welfare and cooperation effects of additional simplex punishment ties in 
asymmetric networks are hard to assess. On one hand, simplex ties in networks N[1-3] are likely to 
generate some additional punishment of free-riders when compared to networks N[4-6]. On the 
other hand, simplex ties can also lead to significant amount of misdirected punishment (hypothesis 
2a) and to reduced use of multiplex punishment ties (hypothesis 3). Furthermore, the reaction to 
punishment can differ substantially between symmetric and asymmetric treatments. Given the 
uncertainty and complexity of such issues, we refrain from proposing a clear-cut prediction of how 
extension of punishment possibilities affects cooperation and welfare.  
 

7 Results 
 

In this section we present the main results of our experiment. Basic findings are described in 
Figure 1 above, where the mean individual statistics of group performance – contributions, 
punishment rates and efficiency - are reported for each network.  These convey an initial idea about 
how individual behaviour differs according to alterations in network structure. In what follows we 
focus on these differences in more detail by studying:  
 

• how fragmented information affects group outcomes;  
• how additional punishment opportunities in asymmetric networks affect enforcement;  
• how are the effects of fragmentation on group outcomes mitigated/exacerbated in 

asymmetric networks. 
 

Throughout this section we use non-parametric Man-Whitney two-sample ranksum tests 
(|z|) and standard one-sample t-tests (|t|) for mean comparisons. Where necessary we also run 
random-effects GLS, Probit or Tobit regressions to account for individual heterogeneity, time effects 
and additional individual controls.  
 

7.1 Information network fragmentation 
 

We begin our analysis by identifying the systematic effects of information network 
fragmentation, and other general network properties, on enforcement and cooperation. As discussed 
before we rank networks according to the values of the fragmentation index: network N[7] is the 
fully integrated benchmark; networks N [1 &  4] are the mildly fragmented scenarios; and networks 
N[2-3] & [5-6] are the severely fragmented  scenarios. 
 
7.1.1 Punishment and fragmentation 
 

Judging from Figure 2(a-b), fragmentation of information networks is negatively correlated 
with punishment received per individual - the severely fragmented networks clearly generate less 
punishment than others, as predicted by Hypothesis 1. This is particularly true for symmetric 
networks N[4-6], where even mildly fragmented network N[4] has lower mean punishment than full-
integration benchmark (|z|>3.79 for all, p<0.01); and punishment rates decline steadily with 
fragmentation index value (for N[4] to N[5-6] comparisons |z|>1.95, p<=0.05). For asymmetric 
networks N[1-3], enforcement rates decrease even more abruptly, particularly when we move from 
mildly fragmented scenario N[1] to the severely fragmented scenarios N[2-3] (all |z|>2.32, p<0.05).  
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However, the punishment rates among these networks are not necessarily lower than benchmark 
N[7] (in fact, they are almost 2 tokens per individual higher in N[1]), indicating that there may be 
some additional positive effects on punishment rates associated with network symmetricity. 
 

Fig.2 Comparison of mean punishment rates per individual 
(Fig.2 (a) for asymmetric networks; Fig.2 (b) for symmetric networks) 

 
 

Indeed, by studying Figure 2(a-b) more closely, we see a striking difference between the 
symmetric and asymmetric networks. In the latter individuals receive on average 1.4 extra tokens of 
punishment than in the former (|z|=11.32, p<0.01), which broadly confirms that people are not 
afraid to use the unlimited punishment opportunities as stated in Hypothesis 2a (see section 6.2 for 
details). 

Besides fragmentation and symmetricity, the possible effects of other important properties 
of information networks need to be assessed. Directedness11 seems to be of importance, as the 
higher punishment levels in directed networks N[1-2] & N[4-5] than in the non-directed ones (N[3 & 
6]) imply a significant positive influence on enforcement (|z|=1.99, p<0.05). The total number of 
information ties in a network, on the other hand, does not seem to have any systematic relationship 
with punishment - for example, the network N[1] with four ties leads to more punishment than both 
full-integration benchmark with 12 ties and N[2] with three ties. 12 
 
7.1.2 Cooperation and fragmentation 
 

Severely fragmented information in networks N[2-3]&[5-6] not only lowers punishment but 
also hinders cooperation.  Looking at Figure 3(a-b), the best performer among these networks (N[3]) 
yields 1.43 tokens less than the mean contributions of 14.82 tokens in benchmark network (|z|=2.26, 
p<0.05). Other comparisons are even less favourable with the extreme of network N[3] trailing 
behind by approximately 5 tokens - more than 30% of average amount contributed - behind 
benchmark (|z|=10.08, p<0.01). This confirms that fragmentation has negative influence on 
cooperation as predicted in Hypothesis 1. However, there are noteworthy exceptions. Mildly 
fragmented networks N[1&5] do not generate lower contribution levels than full-integration 
benchmark, suggesting that strong social cohesion is not always beneficial for cooperation.   
                                                           
11 In directed networks all ties only have one arrowhead implying their direction, otherwise the network is non-
directed. In terms of information N[1] is an example of a directed and N[3] of a non-directed network. 
12 These network properties were chosen according to previous evidence from Carpenter et al (2010) and 
Carpenter(2004). 
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Fig.3 Comparison of mean contribution rates 

(Fig.3 (a) for asymmetric networks; Fig.3 (b) for symmetric networks) 

 
 

The influence of directedness seems similar as in the case of punishment. The directed 
networks N[1-2]&N[4-5] outperform the non-directed ones (N[3&6]) in cooperation, with mean 
contribution of 14.41 tokens for the former and 12.69 tokens for the latter(|z|=6.73, p<0.01). The 
general result hides some heterogeneity though, with directed network N[5] generating less 
contributions than non-directed N[6]. This is at least partially caused by the fact that players at 
isolated node D in N[5] can behave selfishly with no one there to punish them for it.13 

Finally, symmetricity affects enforcement and cooperation in different ways. While 
asymmetric networks have much higher punishment rates per individual, no such effect is 
transmitted onto contributions. Indeed, symmetric networks actually achieve marginally higher 
contribution rates (by 0.7 tokens per individual; |z|>2.20, p<0.05) than the asymmetric ones, the 
difference being particularly dramatic in comparison of networks N[6] and N[3]. This has serious 
negative implications for welfare levels in asymmetric treatments since punishment is costly. 
 
7.1.3 General network properties and performance 
 

To explore the findings from this section in a more robust way, we present results from 
regression analysis that controls for general network properties in Table 1. To be more exact, we 
include a dummy for directed networks, a dummy for asymmetric networks and the values of 
fragmentation index as our explanatory variables. Column I confirms our previous results for 
punishment: information fragmentation has a sizeable negative influence on punishment rates, while 
both directedness and asymmetry have significant positive effects. If we focus on cooperation 
instead in column II, we see similar results with one exception. The symmetricity dummy becomes 
insignificant, indicating that additional punishment opportunities in asymmetric networks do not 
facilitate emergence of norms that would lead to higher public good provision. Consequently, due to 
higher levels of costly punishment, asymmetric networks suffer from significant welfare losses, as 
shown in column III.  
 
                                                           
13 Players at node D contribute only 7.94 tokens on average, compared to 14.05 tokens contributed by players 
at other nodes in N[5]. Adding simplex ties makes node D players less selfish, as in N[2] they contribute on 
average 10.05 tokens. Unfortunately, this disciplining effect is not significant due to low number of 
observations. 
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Table 1: The effects of general network properties on individual behaviour 
 (I) (II) (III) 

Dependent variable Punishment 
received 

Contribution Profit 

Fragmentation -2.936*** -5.405*** 0.538 
 (0.738) (1.401) (1.230) 
Directed 0.587* 3.539*** 0.454 
 (0.342) (0.659) (0.548) 
Asymmetric 1.471*** -0.451 -2.290*** 
 (0.378) (0.655) (0.583) 
Constant 4.238*** 15.031*** 28.294*** 
 (0.506) (0.857) (0.823) 
Includes period fixed effects Yes Yes Yes 
Observation type Per individual Per individual Per individual 
Rho 0.09 0.53 0.16 
Prob > Chi2  <0.01 <0.01 <0.01 
# Observations 3840 3840 3840 
# Subjects 256 256 256 
Note: Random-effects (on individual level) GLS regressions, Tobit to control for 
upper level of contributions (25) and lower limit of profits (0). Dependent variables 
are Punishment received (tokens deducted), Contribution (tokens contributed) and 
Profit (tokens earned). Standard errors clustered at individual level are reported in 
parentheses.* significant at 10%; ** significant at 5%; *** significant at 1% 

 

7.2 Enforcement and symmetricity 
 

In the previous section we saw that asymmetric networks generate substantially higher 
punishment than their symmetric counterparts - on average 1.18 extra tokens received per individual 
(Table 1 Column I). To understand this difference we need to focus on how additional simplex 
opportunities affect behaviour. To reach this level of detail we need to focus on punishment given 
per opportunity in the rest of the section 7.214. 
 
7.2.1 Use of simplex ties 
 

In agreement with our prediction in Hypothesis 2a, individuals15 are not afraid to use simplex 
punishment ties in networks N[1-3]. As can be seen from Figure 4(a) they deduct a mean of 1.52 
tokens per opportunity in network N[ 1]; 1.14 tokens in network N[2]; and 0.91 tokens in network 
N[3], with all these means significantly higher than zero (all |t| >11.32; p<0.01). In addition, they are 
not only willing to use simplex ties often, but also willing to use them in situations where they cannot 
be absolutely certain whether they are punishing a co-operator or a free-rider16. In network N[3], 
with the lowest simplex punishment mean, over 57.5% of total amount of simplex punishment 
happens under such uncertain circumstances. In the other two networks, this proportion is even 
higher – 72.4% in N[1] and 62.7% in N[2].  
 
 

                                                           
14 Throughout the section 7.2 focused on enforcement we exclude players at node D in network N[5], since 
they cannot punish nor be punished (with exception of Table 3 in section 7.3.1 dealing with punishment 
distribution). 
15 For relevance of comparison we exclude players at node D in network N[2], since they have no multiplex ties. 
They punish relatively infrequently and weakly compared to others. 
16 That is when  �∑ gkk=A,B,C,D �/4≤∑ gjj∈Ni

P,j∉Ni
I < 25+�∑ gkk=A,B,C,D �/4 
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Fig. 4 Comparison of punishment per opportunity against benchmark N[7] 
(panel (a) – simplex punishment; panel (b) – multiplex punishment) 

 
 
7.2.2 Multiplex versus simplex ties 
 

Even though individuals often punish using simplex ties they still prefer multiplex 
opportunities with precise information about target’s contribution, as can be seen from Figure 4(a-b). 
To be more exact, in asymmetric networks simplex ties generate approximately half the punishment 
of multiplex ties (all |z|>3.17; p<0.01) and the difference becomes even more exacerbated for 
comparisons with multiplex ties from symmetric networks. This finding confirms the hypothesis 2b 
that people are aware of the risks of misdirection associated with imprecise information. It also 
suggests that simplex punishment aggravates punishment coordination issues17. 

Focusing on those issues in more detail, we see from Figure 4(b) that multiplex ties generate 
more punishment in asymmetric networks than in the full-integration benchmark (significant for N[1-
2]; for both |z|> 2.78, p<0.01). This suggests that changes solely in information networks can 
alleviate coordination problems and increase per opportunity multiplex punishment - people are 
clearly willing to assume more responsibility for punishment of directly observed individuals when 
these are not directly observed by anyone else.  However, multiplex punishment is still significantly 
lower in asymmetric than in symmetric networks (all |z| > 4.24; p<0.01). Thus, changes in 
information networks are not likely to completely solve coordination issues unless accompanied by 
corresponding punishment restraints.  

To corroborate and extend findings from this section, we use random-effects GLS regressions 
to compare fragmented networks to omitted full-integration benchmark. In Table 2 column I we see 
that asymmetric networks N[1-3] have rather similar punishment per opportunity rates as the 
complete network. This masks an important heterogeneity that is explored in column II by including 
Multiplex dummy equal to 1 for multiplex punishment ties and 0 otherwise. The highly significant 
coefficient of this dummy shows that individuals deduct on average 1.2 tokens more when using a 
multiplex tie or, in other words, when punishing an individual whose contribution they can directly 
observe. Results in column II also reaffirm that fragmented networks in general, and the symmetric 
ones in particular, reduce coordination problems and increase multiplex punishment - all dummies 
for networks are positive, significant (except N[2]) and higher for symmetric networks.      
 

                                                           
17 When an individual i decides whether to punish individual j, he takes into consideration whether j can be 
punished by others for two reasons - firstly, he can just selfishly leave the punishment to others; secondly he 
may consider lowering his punishment if he expects others to punish j.  
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Table 2: Comparing punishment across symmetric and asymmetric networks 
 (I) (II) (III) 

Dependent variable Punishment 
given 

Punishment 
given 

Punishment 
given 

Network N[1] 0.605 1.414*** 1.030** 
 (0.426) (0.486) (0.440) 
Network N[2] -0.039 0.872* 0.364 
 (0.363) (0.462) (0.415) 
Network N[3] -0.200 0.610 0.462 
 (0.339) (0.405) (0.352) 
Network N[4] 1.997*** 1.997*** 1.847*** 
 (0.643) (0.643) (0.513) 
Network N[5] 2.712** 2.712** 2.023** 
 (1.066) (1.066) (0.845) 
Network N[6] 1.473*** 1.473*** 1.151** 
 (0.531) (0.531) (0.474) 
Multiplex  1.214*** -0.137 
  (0.273) (0.209) 
Signal-contribution   -0.167*** 
   (0.031) 
Signal-contribution>0   0.170*** 
   (0.038) 
Sure pun*Signal-cont   -0.261*** 
   (0.049) 
Sure pun*Signal-cont>0   0.303*** 
   (0.060) 
Constant 1.352*** 0.137 -0.441 
 (0.308) (0.428) (0.377) 
Includes period fixed effects Yes Yes Yes 
Observation type Per opportunity Per opportunity Per opportunity 
Rho 0.24 0.24 0.22 
Prob > Chi2  <0.01 <0.01 <0.01 
# Observations 8535 8535 8535 
# Subjects 249 249 249 
Note: Random-effects (on individual level) GLS regressions. Dependent variable is 
Punishment given (tokens deducted). Standard errors (clustered at individual level) are 
reported in parentheses.* significant at 10%; ** significant at 5%; *** significant at 
1% 

 
Finally, we analyse whether simplex and multiplex punishment has similar motivation. In full 

information settings it has been shown that whether an individual i punishes an individual j depends 
on the difference between their contributions gj-gi (e.g. Herrmann et al, 2008). In the case of simplex 

punishment, where such a comparison of individual contributions is not possible, we have to 
substitute i’s estimate of j’s contribution for j’s actual contribution. Consequently, the difference that 

should drive the punishment of individual j becomes Ei �gj� - gi. 

Therefore, in column III we add the explanatory variable Signal-Contribution that equals gj-gi 

for multiplex ties and Ei �gj� - gi for simplex ties. In addition, to control separately for punishment of 

free-riders and co-operators, we add variable Signal-Contribution>0 which equals Signal-Contribution 
if positive and is 0 otherwise. The coefficients of these variables imply that the difference between 
own and target’s estimated contribution clearly matters for simplex punishment of both below and 
above average contributors. However, this connection is much weaker than for multiplex 
punishment, as is apparent from the highly significant coefficients of interaction terms between the 
Multiplex, Signal-Contribution and Signal Contribution>0 regressors. In other words, the difference 
between own and target’s (estimated) contribution drives both simplex and multiplex punishment, 
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but the sensitivity is much lower for the former. This difference in sensitivity fully explains the lower 
punishment rates of simplex ties, since the Multiplex dummy becomes insignificant. 
 
7.3 Unrestricted enforcement and collective performance 
  

To recap briefly, people are aware of the risks involved in punishment without precise 
information and strongly prefer to punish when such information is available. Despite that, they are 
still willing to use simplex ties for punishment and to do so even under very uncertain circumstances. 
This results in higher individual enforcement efforts in asymmetric networks than in their symmetric 
counterparts, which may in turn lead to different contribution rates.     

The fact that it does not, deserves an explanation. We provide on by asking two closely 
related questions.  The first is whether punishment in asymmetric networks targets more people 
who can significantly increase their contributions (free-riders). If not, significant rise in cooperation is 
unlikely even for higher punishment levels. The second is whether people react to punishment 
differently across symmetric and asymmetric networks. If reaction to received punishment is lower in 
the latter type, increased punishment need not result into higher contributions either. 
 
7.3.1 Punishment Distribution 
 

Judging from Figure 5, punishment is not particularly well distributed in asymmetric 
networks. The blame falls partially on the risky nature of simplex punishment, prone to misdirection 
– a total bulk of 36.4% tokens deducted is assigned to co-operators (0.4 tokens per opportunity), 
leaving only 64.4% of punishment to target free-riders (0.7 tokens per opportunity). Such 
distributional concerns get particularly grave in network N[1], where 45.6% of simplex punishment 
hits co-operators. 
 

Fig. 5 – Proportion of punishment against co-operators 

 
 

If we focus on multiplex punishment instead, we see that it falls much heavier on free-riders 
with approximately 80% of it directed towards players with below average contributions. In terms of 
distribution, symmetric networks N[4-6] gain an advantage since they have higher multiplex 
punishment per opportunity than their asymmetric counterparts (see section 7.2.2). Coming back to 
Figure 4(b), this affects particularly the networks N[2-3] where multiplex punishment is lower by 
more than 1 token per opportunity than in their symmetric counterparts N[5-6]. 
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These results are further corroborated by results of random-effects GLS regression presented 
in Table 3. In column I, we limit our analysis to punishment received per individual with contributions 

equal to or above group average (gi≥ �∑ gjj=A,B,C,D � /4). Controlling for individual contributions 𝑔𝑖, we 

see that network N[1] generates significantly higher levels of punishment directed against co-
operators than any other network. This hints at why this network does not generate higher 
contributions than its symmetric counterpart N[4], in which we observe no such trend. 

 
Table 3: Comparing rates of  punishment against free-riders and co-operators 

 (I) (II) 
Dependent variable Punishment received  

(≥ contribution average) 
Punishment received  

(< contribution average) 
Network N[1] 1.704*** 2.145** 
 (0.569) (0.864) 
Network N[2] 0.354 -2.069** 
 (0.510) (0.822) 
Network N[3] -0.408 -3.165*** 
 (0.412) (0.642) 
Network N[4] -0.322 -0.824 
 (0.496) (0.714) 
Network N[5] -0.377 -3.780*** 
 (0.511) (1.085) 
Network N[6] -0.247 -4.106*** 
 (0.475) (0.897) 
Contribution -0.085*** -0.434*** 
 (0.025) (0.038) 
Constant 3.539*** 10.132*** 
 (0.517) (0.815) 
Includes period fixed effects Yes Yes 
Observation type Per opportunity Per opportunity 
Rho 0.04 0.10 
Prob > Chi2  <0.01 <0.01 
# Observations 2053 1787 
# Subjects 243 243 
Note: Random-effects GLS regressions. Dependent variable is Punishment received 
(the sum of tokens received by an individual).  Column I - individual contributions 
higher or equal to group average; Column II - individual contributions below group 
average. Standard errors (clustered at individual level) are reported in parentheses.* 
significant at 10%; ** significant at 5%; *** significant at 1% 

 

Turning our attention to individuals with below average contributions (gi< �∑ gjj=A,B,C,D � /4), 

we see much more heterogeneity (see column II). Firstly, mildly fragmented networks N[1] & N[5] do 
not generate lower punishment than full-integration benchmark. In fact, the N[1] dummy is 
significantly positive, indicating why this network reaches high cooperation rates even despite its 
high level of punishment against co-operators.  Secondly, all severely fragmented networks N[2-3] & 
N[5-6]  lag behind benchmark N[7] in punishment of free-riders, as the negative coefficients of 
corresponding dummies demonstrate. The effect is relatively less pronounced for the N[2] network, 
in which the punishment received per free-rider is only  2 tokens lower than in benchmark N[7]18. 

                                                           
18 This is possibly caused by the specific role of player type D in this network. Since player type D is completely 
unobserved, others can easily assume that he contributes less than others. To the extent that this is true, this 
can improve punishment distribution. Indeed, type D individuals in this network have lower contributions than 
others and are targeted more often by simplex punishment.  
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This possibly makes the network less disadvantaged in cooperation enforcement than other severely 
fragmented networks.   

7.3.2  Reaction to punishment 
 

To see how enforcement distribution affects cooperation, we must look at how subjects 
change their contributions in response to received punishment. To do so, we employ random effect 
Tobit regressions whose results are presented in the first two columns of Table 4 below. The 

dependent variable is the change in contributions from previous round (gi
t - gi

t-1) and the explanatory 
variables include network dummies and Lag Punished, which equals 1 if individual was punished in 
the previous round and 0 otherwise19. We also control for lagged contributions and profits, but do 
not report results of these controls since they are not of direct interest.  

 
Table 4: Comparing contributions and profits across treatments 

 (I) (II) (III) (IV) 
Dependent variable ΔContribution 

(above avg) 
ΔContribution 
(below avg) 

Contribution 
(Period >5) 

Profit 

N [1] 0.655 0.255 0.700 -2.123** 
 (0.866) (0.835) (1.339) (0.950) 
N [2] 0.540 -0.916 -2.810** -0.866 
 (0.903) (0.879) (1.238) (0.980) 
N [3] -1.693* -1.545* -4.582*** -1.927** 
 (0.876) (0.805) (1.369) (0.928) 
N [4] 1.317 -0.910 2.640** 1.438 
 (0.923) (0.904) (1.246) (1.009) 
N [5] 1.308 -1.377 -3.970*** -0.097 
 (0.987) (0.923) (1.207) (1.058) 
N [6] 0.037 -1.128 -3.842*** 0.441 
 (0.900) (0.872) (1.156) (0.978) 
Lag Punished -0.677** 1.773***   
 (0.307) (0.317)   
Constant -1.633 0.377 18.396*** 28.773*** 
 (1.316) (1.364) (1.013) (0.692) 
Includes period fixed effects Yes Yes Yes(Period>5) Yes 
Observation type Per individual Per individual Per individual Per individual 
Rho 0.24 0.23 0.60 0.16 
Prob > Chi2  <0.01 <0.01 <0.01 <0.01 
# Observations 1925 1659 2560 3840 
# Subjects 241 238 256 256 
Note: Random-effects regressions on individual level (Tobit used to control for Contribution, 
ΔContribution and Profit limits). Dependent variables are Contribution (tokens to public account), 
ΔContribution (change in contribution from previous round) and Profit (tokens earned). Standard errors 
reported in parentheses.* significant at 10%; ** significant at 5%; *** significant at 1% 
 
In column I, we limit observations to individuals whose contributions were above the group 

average in the previous round of the game (gi
t-1≥ �∑ gj

t-1
j=A,B,C,D � /4). By doing so, we find that they 

reduce their contributions significantly after being punished in the previous round. Punishment of co-
operators thus weakens cooperation and is wasteful in terms of welfare.  When we focus on free-

riders (gi
t-1< �∑ gj

t-1
j=A,B,C,D � /4) instead in column II, we find quite the opposite reaction. The 

                                                           
19 We do not use the exact amount of tokens deducted since such modelling is unnecessarily complicated for 
our purposes.  
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coefficient for Lag Punished is significant and highly positive – free-riders are quite sensitive to being 
punished and increase their contributions in response. In turn, such enforcement is likely to be vital 
to sustaining high contribution levels. The last thing of note is that in network N[3] everyone has 
marginally stronger tendency to lower contributions over time (p<0.1), which helps explain why this 
network reaches very low cooperation. 
 
7.3.3 Impact on Cooperation 
 

As noted above in section 7.1.2, severely fragmented information leads to sharp decline of 
public good provision. One of the principal questions of our paper is whether the expansion of 
punishment opportunities can somehow reverse this trend. Despite the increased levels of 
enforcement in asymmetric networks, no such reversion occurs due to the serious distributional 
concerns identified above. This finding holds irrespective of network fragmentation, albeit the causes 
differ between mildly and harshly fragmented networks:   

Both mildly fragmented networks N[1&5] generate a lot of punishment against free-riders, 
which significantly improves cooperation. The social punishment is particularly high in asymmetric 
N[1], implying higher contribution levels than in N[5]. On the other hand, N[1] also stimulates the 
extremely high levels of antisocial punishment, which weakens contributions (see Table 3 for 
corroboration). These contradictory influences cancel each other out. In the end, both mildly 
fragmented networks reach similar levels of cooperation as benchmark N[7], as can be seen from 
Figure 6(a & d). The fact that N[1] doesn't outperform N[5] receives further support in column III of 
Table 4, which reports results of a Tobit regression comparing contributions over the last ten periods.  
 

Fig. 6 Comparisons of contributions across networks 

 
 

The cases of severely fragmented networks N[2-3] & [5-6] are simpler to explain. All these 
networks generate less punishment against free-riders than full-integration benchmark (see Table 3 
column II for details). The lower levels of social punishment in turn cannot sustain high levels of 
cooperation – in every single network we can observe sharp decline in contributions over the last ten 
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periods in Figure 6(b-c) & (e-f).  This decline is also illustrated by results of a Tobit regression in 
column III of Table 4, with all coefficients of severely fragmented networks being significant and 
highly negative. The dummy for network N[2] shows that this network suffers a relatively milder 
contribution decline, probably due to higher levels of punishment against free riders (see section 
7.3.1). 
 
7.3.4 Impact on Welfare 
 

Since higher punishment rates do not elicit significantly higher contributions, asymmetric 
networks perform poorly in terms of welfare. This is true both for comparisons with their symmetric 
counterparts and with the full integration benchmark. To see that notice Figure 7 below, which 
reports the possible welfare gains realized through cooperation20. Asymmetric treatments lead to 
consistently lower welfare gains than other networks, with network N[1] and N[3] reaching 
respectively only 10% and 11% of maximal gains from cooperation.  The effect is less pronounced in 
network N[2] with 18% of gains realized, probably due to slightly more favourable enforcement 
distribution in this network (see section 7.3.1). 
 

Fig. 7 Comparison of welfare gains across networks 

 
 

These findings receive support from analysis of individual profit rates.  Asymmetric networks 
never reach higher average profit rates than 27.68 tokens per round, which does not compare 
favourably to their symmetric counterparts nor to the full-integration benchmark (at least 28.57 
tokens; significant for N[1 & 3]: all |z|>3.26, p<0.01). These differences hold even after accounting 
for individual heterogeneity and time effects in a Tobit random-effects regression – in column IV of 
Table 4 networks N[1 & 3] have significantly lower profit rates than benchmark N[7]; and all 
symmetric networks have consistently higher coefficients than their asymmetric counterparts. 
 
 
 

                                                           
20 Welfare gains for individual i are defined as the additional earnings compared to no-cooperation scenario 

divided by the additional earnings in a full-contribution scenario (𝜋𝑖
2−25

40−25
) 
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8 Concluding remarks 
 

Returning to the principal matter of interest of this paper, the relative importance of 
information and enforcement structures for collective outcomes, we can distil three important 
insights from our results.  

Firstly, information structure clearly influences enforcement and public good provision. Both 
punishment and contributions levels decline with fragmented information in symmetric networks 
N[1-3] and their asymmetric counterparts N[4-6]. This lends some support to the network closure 
argument that cohesive structures facilitate norm enforcement, which is a form of social capital 
favourable to cooperation (Coleman, 1988). However, there is an important caveat to this finding – 
notice that mild fragmentation in directed networks N[1&5] does not significantly lower cooperation 
rates compared to fully integrated benchmark.  The original network closure argument thus needs to 
be refined in the way proposed by Burt (2000 & 2001): While too loose networks are indeed harmful 
for public good provision, at least certain types of moderately fragmented social structures (e.g. 
those leading to directedness) do not necessarily need to be. This is because they can alleviate the 
problems with coordination of punishment against free-riders in extremely cohesive network N[7] 
and thus enhance norm emergence and enforcement. 

Secondly, extension of punishment opportunities leads to higher punishment even when 
information stays limited. This happens because people are not afraid to use simplex punishment 
opportunities, that is opportunities without individual information about target's contribution, in 
asymmetric networks N[1-3]. While, at first glance, such an increase in enforcement should facilitate 
emergence of norms promoting cooperation, it creates grave distributional concerns instead. In 
some cases simplex punishment is poorly aimed (N[1]) and, in others, it creates significant 
coordination problems that reduce multiplex punishment (N[2-3]). As a result, no additional public 
good provision is achieved. This broadly ties into recent experimental research on quality of 
information (Ambrus & Greiner, 2012; Grechenig et al, 2010) that has shown that dubious 
information quality seriously undermines effectiveness of individual enforcement. We extend the 
force of this argument by similar results for settings without false or confusing signals, where 
individuals can just stick to punishing people they directly observe. 

Thirdly, comparing the relative importance of information and enforcement structure for 
cooperation, we observe that information plays a much larger role in determining contributions. The 
cooperative outcomes are very similar for networks with identical information structure, irrespective 
of the punishment structure – mildly fragmented information networks N[1&4] display levels of 
contributions similar to full integration benchmark N[7], while severe information fragmentation in 
networks N[2-3] & [5-6] prevents high levels of cooperation to be sustained. If anything, overcoming 
enforcement fragmentation has negative effects on cooperation as in the case of network N[3] 
compared to N[6]. Thus, we identify fragmented information as a primary cause of low public good 
provision21, implying that information structure should play a particularly important role in theories 
predicting social capital of different networks (Burt 2000, Coleman 1988).  

Finally, there are severe welfare losses associated with unrestricted enforcement in 
asymmetric networks, since higher punishment rates do not improve cooperation. Such negative 
impacts of additional punishment are mitigated only in network N[2], probably because the 
                                                           
21 Not to overstate our findings: enforcement structure clearly has its role, since without enforcement 
cooperation cannot be sustained. What we want to point out here is that once an information structure proves 
out to be inappropriate for public good provision, no enforcement structure can overcome its problems. 
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extension of punishment allows disciplining of otherwise unreachable individual at node D. However, 
even in this case, the comparisons of networks N[2 & 3] or N[2 & 7] show persistent mildly negative 
welfare effects (albeit these become insignificant in statistically robust regression analysis).  

Our results lend support to two types of actions to stimulate collective performance in 
fragmented social structures: 1) improving information flows within social networks, such as 
integration of isolated minorities into public debates or promotion of communication across work 
teams, is likely to improve cooperation; 2) favouring enforcement based on precise information 
about individual behaviour, such as creation of specialised institutions (courts) for information 
collection and law enforcement, is likely to increase welfare. Conversely, one should be very careful 
when trying to solve information deficiencies solely by extending enforcement structure, as this can 
potentially have grave negative welfare consequences. 
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