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Abstract

We derive robust predictions in games involving flexible information acqui-
sition, also known as rational inattention (Sims, 2003). These predictions re-
main accurate regardless of the exact specification of players’ learning abilities.
Compared to scenarios where information is predetermined, rational inatten-
tion reduces welfare and introduces additional constraints on behavior. We
show these constraints generically do not bind; the two knowledge regimes are
behaviorally indistinguishable in most environments. Yet, we demonstrate the
welfare difference they generate is robust: optimal policy depends on whether
one assumes information is given or acquired. We provide the necessary tools
for policy analysis in this context.

1. Introduction

The economics discipline has long recognized that information matters for incentives.
Many studies have also noted the reverse, namely, that incentives shape information.
The theory of rational inattention, initiated by Sims (2003), is a case in point. This
theory suggests that economic agents effectively use their limited ability to gather
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and process information: faced with uncertainty, they flexibly acquire and use infor-
mation in an optimal fashion, trading off costs and benefits. The rational inattention
approach has been very successful, seeing a broad array of applications.1

Despite their success, most rational inattention models come with a caveat: they
require one to make non-trivial assumptions on the information acquisition envi-
ronment, and these assumptions can be challenging to verify. One reason is that
information costs and constraints are often affected by factors that are difficult to
directly measure, such as time, effort, and cognitive resources. A few tests of ra-
tional inattention have been carried out in laboratory settings, and the results have
been concerning. For example, Dean and Neligh (forthcoming) provide experimental
evidence against the ubiquitous entropy-reduction cost (Matějka and McKay, 2015).
Overall, these considerations raise the question of what predictions of rational inat-
tention are robust to the exact specification of agents’ learning abilities.

In this paper, we address these concerns by developing a framework for predictions
that are valid across all information acquisition technologies that represent rational
inattention. Using this framework, we identify the features that distinguish rational
inattention from traditional models where information is given. We demonstrate that
in most settings, there is no substantive difference in terms of behavioral outcomes,
yet a robust distinction emerges when considering welfare consequences.

Our findings carry two key implications. Firstly, they indicate that studies that
utilize rational inattention as a behavioral model need to consider and account for
the subtle details of the subjects’ attention limitations, either implicitly or explicitly;
otherwise, the analysis reverts back to standard information economics. Secondly, our
paper highlights a significant array of situations where mistakenly assuming informa-
tion is given, when it is actually acquired, can lead to misleading welfare conclusions.
We provide tools for identifying such situations and for conducting robust welfare
analysis in economies with rationally inattentive agents.

Our model begins by considering a scenario in which strategic agents, referred to
as players, are faced with the task of simultaneously selecting from a set of alternative
actions. The utility of these actions is contingent upon an unknown state of nature.
This scenario is commonly known as a base game. Our objective is to generate pre-
dictions regarding the players’ behavior and welfare within this base game. Given the

1See Maćkowiak, Matějka, and Wiederholt (2023) for a recent review.

2



inherent uncertainty surrounding the true payoff state, which directly influences the
attractiveness of various actions, these predictions rely on two factors: the informa-
tion that players are capable of acquiring and the associated costs of obtaining that
information.

Standard rational inattention models obtain predictions by combining a base game
with what we term an information technology, which specifies players’ learning ca-
pabilities regarding the payoff state. In early studies, this technology assumes that
information costs are proportional to entropy reduction, and that players can flexibly
gather information, provided that it is independent of the other agents’ information
(e.g., Maćkowiak and Wiederholt, 2009; Yang, 2015). Recent papers allow for different
cost functions and potentially correlated signals.2

Together, a base game and an information technology define an information acqui-
sition game. This game begins with players covertly choosing what costly information
to acquire. Subsequently, each player privately uses the acquired knowledge to take
an action. Predictions are derived by solving for Nash equilibrium.

We depart from the standard approach, and do not pair the base game with a
fixed information technology. Instead, we simultaneously find all the predictions one
can obtain with a technology that is consistent with rational inattention. Specifically,
we consider information technologies that satisfy three properties. First, no informa-
tion comes at zero cost. Second, (strictly) more informative signals (in the sense of
Blackwell, 1951, 1953) cost (strictly) more. And third, information choice is flexible.
These properties are satisfied by virtually all applications of rational inattention. We
are agnostic whether signals are independent or correlated across players.

Theorem 1 characterizes all behavioral and welfare implications of rational inat-
tention in a given base game. The behavior of the players is summarized by the joint
distribution of the actions they take and the payoff state drawn by nature. We call
this distribution the outcome of the game. The welfare aspect is determined by the
value that each player obtains from the game, which corresponds to their payoff net
of any costs they incurred for acquiring information.

We show rational inattention can generate any outcome that satisfies two con-
straints: obedience and separation. Each constraint comes from a different optimal-
ity condition: obedience represents optimal behavior given a fixed signal structure,

2See, e.g., Morris and Yang (2022); Ravid, Roesler, and Szentes (2022); Denti (forthcoming);
Hebert and La’O (forthcoming)
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whereas separation stems from players’ incentives to collect information. We follow
the literature (Bergemann and Morris, 2013, 2016), and use the term Bayes correlated
equilibrium (BCE) to refer to obedient outcomes. Thus, Theorem 1 says an outcome
can be generated by rational inattention if and only if it is a separated BCE (sBCE).

Theorem 1 also establishes precise bounds on the net payoff that each player can
achieve in a given equilibrium outcome. The upper bound corresponds to the scenario
in which the player acquires information at essentially no cost, and we refer to this
bound as the outcome’s gross value. The lower bound represents the situation where
the player gathers information that is so expensive that they would have been equally
satisfied without acquiring any information at all. We name this lower bound the
outcome’s uninformed value. Theorem 1 demonstrates that, given a separated BCE,
each player has the potential to achieve any payoff that surpasses their uninformed
value but remains below their gross value.

Theorem 1 allows us to study whether rationally inattentive agents exhibit special
behavioral properties, and the impact information costs have on welfare. For this
purpose, we compare the predictions made by rational inattention to those generated
by models where information is an exogenous variable. Under exogenous information,
players do not choose what they know; instead, they are endowed with a fixed signal
structure. Bergemann and Morris (2013, 2016) show that an outcome can be induced
by some signal structure if and only if it is a BCE (i.e., it is obedient). Welfare is
given by the outcome’s gross value, since no learning costs are paid when information
is predetermined.

Whereas the separation constraint can dramatically shrink the BCE set, such
situations turn out to be rare. Specifically, we show in Theorem 2 that, for generic
preferences, one can approximate every obedient outcome with outcomes that are
both obedient and separated. To put it simply, by introducing small perturbations to
the payoffs of a base game, we can transform the game into a scenario where nearly all
BCEs become separated, even if the original set of non-separated BCEs was extensive.
Thus, unless one commits to a highly structured economic setting or makes specialized
assumptions on agents’ information technologies, rational inattention is behaviorally
indistinguishable from exogenous information.

Our analysis also reveals that rational inattention and exogenous information, de-
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spite yielding the same behavioral predictions, can have distinct welfare implications.
Intuitively, when information is exogenous, the value of information must go to the
players. By contrast, in the worst case under rational inattention, players must pay
this value to purchase their information. Theorem 3 explores the impact of this in-
tuition on the set of attainable payoffs. The theorem demonstrates that, for generic
preferences, rational inattention expands the set of achievable payoffs when compared
to exogenous information. This expansion is not trivial, as it often results in a strict
inclusion of additional payoffs within the set.

The welfare difference between rational inattention and exogenous information can
have concrete repercussions for public policy. We give a proof of concept in Section 6,
where we show how to use our results to conduct robust welfare in economies where
agents are rationally inattentive. Specifically, we consider a utilitarian social planner
who understands the economic environment (i.e., the base game), but does not know
the source of players’ information (i.e., the information technology). The planner
takes a worst-case approach, as is common in robust mechanism design.3 First,
we characterize the set of binary-action symmetric games in which this planner’s
welfare evaluations depend on whether she assumes players’ information is given or
acquired. We then apply this characterization to a regime change game, in which
several investors choose whether or not to attack a distressed financial institution.
We show that the planner may choose to bolster the institution’s fundamentals if
she thinks information is exogenous, but she should never do so if she believes the
investors are rationally inattentive.

Since many settings of interest are non-generic (e.g., auctions), we conclude the
paper by studying environments for which the separation constraint binds. We pro-
vide a tight characterization, and show that separation is an all-or-nothing refinement
of BCE: the sBCE set is either dense or nowhere dense in the set of BCEs. Thus,
whenever the separation constraint binds, it dramatically reduces the set of attainable
outcomes.

Related literature. Our paper is related to several strands of literature. First,
we contribute to the study of robustness in game-theoretic predictions. Especially
pertinent is the work that uses the BCE solution concept to obtain robust predictions
in games with incomplete information (e.g., Bergemann, Brooks, and Morris, 2017;

3See Carroll (2019) for a recent survey of this literature.
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Brooks and Du, 2021). In particular, we show the robustness criterion of such studies
extend to include endogenously determined information à la rational inattention,
as long as the focus is only on the moments of the action-state distribution (e.g.,
the seller’s revenue in an auction), and the separation constraint is not binding.
Even when separation binds, our genericity result means such constraint should be
taken seriously only if the analyst is confident about the non-generic features of the
economic environment. For studies that focus on welfare (e.g., Bergemann, Brooks,
and Morris, 2015), our framework provides a road-map for understanding whether
their conclusions continue to hold once one accounts for the cost of information.

To best of our knowledge, our paper is the first to conduct a robust welfare anal-
ysis under rational inattention. Several studies have considered the effects of costly
information acquisition on public policy and efficiency (e.g., Colombo, Femminis, and
Pavan, 2014; Ravid, Roesler, and Szentes, 2022; Angeletos and Sastry, 2023; Hebert
and La’O, forthcoming). A distinctive feature of our work is that we evaluate welfare
in a manner that is independent of the specific details of agents’ learning abilities.
The tools we develop are portable and can help policy makers when estimating infor-
mation costs is challenging or infeasible.

More broadly, we contribute to the literature on rational inattention in games
(e.g., Yang, 2015; Ravid, 2020; Morris and Yang, 2022; Denti, forthcoming). Within
this literature, the closely related work of Denti (2021) is the first to consider the
question of robustness. Denti (2021) studies a two-player signaling game where the
receiver needs to pay a cost to monitor the sender’s action. He shows that, when costs
are strictly monotone, off-path beliefs play no role in equilibrium. He then character-
izes the behavioral predictions that are consistent with some strictly monotone cost
function. As part of this characterization, he obtains what is essentially the single-
player version of our Theorem 1. Our Theorem 1 expands on Denti’s (2021) result by
allowing for multiple players, and by studying welfare (Denti, 2021, does not discuss
payoffs). In addition, our analysis of generic games and the comparison to exogenous
information have no parallel in Denti (2021).

One can interpret some of our results as providing a test for rational inattention
in a strategic settings: simply check whether the observed outcome satisfies obedi-
ence and separation. Moreover, our genericity result suggests that testing separation
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requires a highly structured and controlled environment. Thus, our paper can be seen
as adding to the growing literature on the testable implications of rational inattention
(e.g., Caplin and Dean, 2015; Caplin, Dean, and Leahy, 2022; Denti, 2022; Lipnowski
and Ravid, 2022). Within this literature, the most closely related paper is Caplin and
Dean (2015).4 They develop a test for whether a single agent’s choices in multiple
menus are consistent with costly information acquisition, but do not require costs to
be strictly monotone in information. Their characterization includes obedience, as
well as another condition called no improving attention cycles (NIAC), which restricts
the agent’s behavior across decision problems. Since we consider a fixed base game,
the NIAC restriction does not apply in our setting. By contrast, Caplin and Dean’s
(2015) characterization does not require separation, because they allow for costs that
are not strictly monotone. Hence, their characterization differs from ours in that it
only considers a single agent, does not require costs to be strictly monotone, and
accounts for multiple decision problems.

Our work also expands on the uses of correlated equilibrium and its cousins for
spanning the set of predictions attainable across various ways of extending a base
game (e.g., Aumann, 1974; Myerson, 1982; Forges, 1993; Bergemann and Morris,
2016; Doval and Ely, 2020). An early and closely related paper within this literature is
Lipman and Srivastava (1990). They consider base games without payoff uncertainty,
and ask which correlated equilibria can be attained by extending the game to allow
players to acquire costly information about a common payoff-irrelevant state. They
maintain two assumptions on players’ information technology: costs are (ordinally)
symmetric across players, and players must use partitional information. They show
an obedient outcome can be generated from an information technology satisfying their
assumptions if and only if it satisfies a cyclical monotonicity condition across players
that is similar to Caplin and Dean’s (2015) NIAC. Our work differs from theirs in that
we allow for payoff uncertainty, asymmetric costs, and non-partitional information,
and that we require costs to be strictly increasing in informativeness. In addition,
Lipman and Srivastava (1990) have no analog of our payoff bounds.

4Another related paper is de Clippel and Rozen (2022). They consider a two-staged game where
the first stage player chooses how much to obfuscate the state, and the second stage player chooses
what to learn about that state whenever it is obfuscated. In their setting, the second player es-
sentially faces a single agent decision problem. Using this fact, de Clippel and Rozen (2022) apply
Caplin and Dean’s (2015) results to obtain testable prediction that are valid across all cost functions.
They then test these predictions in a lab experiment.
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2. Setup

We consider a game involving a finite number of players where the players face un-
certain payoffs, call it the base game. Before playing this base game, the players can
covertly acquire costly information to reduce the uncertainty they face. We call infor-
mation technology the description of learning resources. Together, a base game and
an information technology define an information acquisition game, our main object
of study. We focus on two equilibrium predictions: the induced outcome of the base
game, and the net value each player obtains from information acquisition. In this
section, we precisely define all these objects and provide the associated notation.

Base Game. Let I be a finite set of players, with typical element i. Each player
i has to choose an action ai from a finite set Ai. As usual, we define A−i = ∏

j,iAj

and A = Ai × A−i. Accordingly, we use a−i = (aj)j,i to denote the action profile
of all players other than i, and a = (ai, a−i) to denote the entire action profile.
Throughout the paper we adopt the same notational conventions for all Cartesian
products indexed by I \ {i} and I.

Players are expected utility maximizers who care about each other’s actions as
well as an exogenous variable θ, which is drawn from a finite set Θ according to a
full-support probability measure π ∈ ∆(Θ). We denote by ui : A×Θ→ R player i’s
von Neumann-Morgenstern utility function.

Embracing an established terminology (see, e.g., Bergemann and Morris, 2016),
we call a tuple G = (I,Θ, π, (Ai, ui)i∈I) a base game.

Information Technologies. Before taking an action in the base game, each player
has the opportunity to acquire information about θ as well as other exogenous quan-
tities of potential interests (e.g., sunspots, noisy public information). We succinctly
represent them by a single variable z taking values in a finite set Z; a Markov kernel
ζ : Θ→ ∆(Z) details the conditional distribution of z given θ.

Following Blackwell (1951), we model the acquisition of information using exper-
iments. An experiment for player i is a Markov kernel ξi : Z ×Θ→ ∆(Xi), where Xi

is a finite space of signal realizations privately observable by player i. The functions
ξi details how the distribution of i’s signal xi depends on θ and z.

By construction, the players’ signals are conditionally independent given θ and
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z. However, they may be correlated given θ only. Thus, our framework incorpo-
rates a form of correlated information acquisition, as in, among others, Hellwig and
Veldkamp (2009), Myatt and Wallace (2012), Hebert and La’O (forthcoming), and
Denti (forthcoming). Indeed, one can simply view z as a modeling device for situa-
tions in which players have access to information sources with correlated noise (e.g.,
newspapers with similar slants, consultants from the same firm).

The acquisition of information faces two kinds of frictions. First, each player
is constrained in the kind of experiments she can use: player i can only choose
experiments that lie in a given set Ei. Second, experiments come at a cost, where
Ci : Ei → R+ denotes i’s cost function. As a normalization, we assume the existence
of an experiment that costs zero; that is, Ci(ξi) = 0 for some ξi ∈ Ei.

We call a tuple T = (Z, ζ, (Xi, Ei, Ci)i∈I) an information technology.

Information Acquisition Games. Together, a base game G and an information
technology T define an information acquisition game. The game begins with the
realization of the state of nature ω = (z, θ). Without observing the state, the players
simultaneously and covertly choose experiments, and pay their costs. Then, each
player privately observes the outcome of their own experiment and takes an action.
We use σi : Xi → ∆(Ai) to denote player i’s action plan in this game, and let Σi be
the set of i’s action plans.

The solution concept we adopt is Nash equilibrium. A strategy for player i consists
of an experiment ξi ∈ Ei and an action plan σi ∈ Σ. A strategy profile (ξ∗i , σ∗i )i∈I is
an equilibrium if for all players i, (ξ∗i , σ∗i ) maximizes

 ∑
a,x,z,θ

ui(a, θ)σi(ai|xi)ξi(xi|z, θ)
∏
j,i

σ∗j (aj|xj)ξ∗j (xj|z, θ)ζ(z|θ)π(θ)
− Ci(ξi).

over all ξi ∈ Ei and σi ∈ Σi. The objective function consists of two terms: the
benefit of information (in square brackets) and the cost of information. As common
in applications, benefit and cost are additively separable.

Equilibrium Predictions. We summarize the equilibria of information acquisition
games using two statistics: the induced outcome of the base game, and the net value
each player obtains from information acquisition.

The induced outcome of the base game is the joint distribution p ∈ ∆(A×Θ) of
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the players’ actions and the payoff-relevant state. Note that the marginal distribution
of θ must be the prior π; we denote by ∆π(A × Θ) the set of probability measures
over A×Θ whose marginal on Θ is π.

The net value player i obtains from information acquisition is simply i’s expected
payoff, counting both benefits and costs of information. We denote by v = (vi)i∈I ∈ RI

the vector of such values. Since vi includes player i’s information acquisition costs, it
may differ from the expectation of ui under p.

3. Rational Inattention: A Definition

Our aim is to study the behavioral outcomes and welfare values that can be generated
in equilibrium of information acquisition games as we fix the base game and range over
all information technologies that represent rational inattention. Consistently with the
literature, we interpret rational inattention as information technologies where the set
of feasible experiments is flexible, and where it is costly to acquire more information.

To give a precise definition of “more information,” we build on the classic ranking
of experiments due to Blackwell (1951, 1953). Given a pair of experiments ξi and ξ′i,
we say ξi Blackwell dominates ξ′i (denoted ξi % ξ′i) if there exists a Markov kernel
g : Xi → ∆(Xi) such that for every xi ∈ Xi, θ ∈ Θ, and z ∈ Z with ζ(z|θ) > 0,

ξ′i(xi|z, θ) =
∑
x′i∈Xi

g(xi|x′i)ξ(x′i|z, θ).

Thus, ξi Blackwell dominates ξ′i if one can generate ξ′i by garbling the output of ξi. As
shown by Blackwell, ξi % ξ′i if and only if player i is better off observing the output of
ξi rather than the output of ξ′i (holding fixed other players’ behavior). In this sense,
ξi is more informative than ξ′i. We write ξi � ξ′i whenever ξi % ξ′i and ξ′i � ξi.

We say a set of feasible experiments Ei is flexible if, whenever a given amount of
information is feasible, a lower amount of information is feasible as well: whenever
ξi ∈ Ei and ξi % ξ′i, then ξ′i ∈ Ei. We say a cost function Ci is monotone if less
informative experiments are cheaper to acquire: for all ξi, ξ′i ∈ Ei such that ξi % ξ′i

(resp., ξi � ξ′i), we have Ci(ξi) ≥ Ci(ξ′i) (resp., Ci(ξi) > Ci(ξ′i)). We say a technology
T represents rational inattention if for every player, the set of feasible experiments
is flexible and the cost function is monotone.

Many authors regard flexibility as the key difference between rational inattention
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and traditional information-acquisition models (see, e.g., Maćkowiak, Matějka, and
Wiederholt, 2023, Section 2). Applications of rational inattention often assume all
experiments are feasible: in the language of this paper, Ei = ∆(Xi)Z×Θ. Our results
are unchanged if we adopt this more extreme definition of flexibility. The reason is
that there are no observable differences between experiments that are unfeasible and
experiments that are excessively costly.

By pairing flexibility with monotonicity, we postulate that players can save on
costs by only acquiring the information they actually use in making decisions. Matějka
and McKay (2015) provide a standard example of monotone cost function: Ci(ξi)
equals the expected reduction in uncertainty about θ and z, as measured by Shan-
non entropy. More broadly, one could substitute Shannon’s entropy with any other
strictly concave measure of uncertainty (Caplin, Dean, and Leahy, 2022). One could
also consider increasing transformations of these costs (Denti, 2022; Zhong, 2022),
or any differentiable cost function whose derivative is strictly convex (Lipnowski and
Ravid, 2022).5

4. Robust Predictions

This section presents our first main result: a robust characterization of the outcomes
and values that can be generated via rational inattention. To provide a benchmark,
we first review the case of exogenous information.

The class of information acquisition games includes situations in which the players’
information is predetermined. One can obtain them by considering technologies in
which every player has only one feasible experiment (whose cost is zero by our normal-
ization). Each such technology can be identified with a tuple S = (Z, ζ, (Xi, ξi)i∈I) .
Of course, an information acquisition game (G,S) is just a game of incomplete infor-
mation à la Harsanyi, where S is the predetermined information structure.

Among other results, Bergemann and Morris (2016) characterize the equilibrium
outcomes that can arise in a game of incomplete information (G,S) as we fix the base
game G and range over all information structures S: they call them Bayes correlated
equilibria. A Bayes correlated equilibrium (BCE) of a base game G is an outcome

5In each information acquisition game, prior beliefs are exogenously determined by π and ζ.
Thus, the issue of experiment-based vs. posterior-based information costs that sometimes arise in
applications of rational inattention (see, e.g., Ravid, 2020; Denti, Marinacci, and Rustichini, 2022)
is irrelevant here.
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p ∈ ∆π(A×Θ) such that for all i ∈ I and ai, bi ∈ Ai,

∑
a−i,θ

(ui(ai, a−i, θ)− ui(bi, a−i, θ)) p(ai, a−i, θ) ≥ 0. (1)

Following standard terminology, we name (1) the obedience constraint.6 The stan-
dard way of viewing this constraint is through the lens of a mediator who generates p
by observing the state and stochastically sending an action recommendation to each
player. The players are willing to follow these recommendations if and only if the
obedience constraint is satisfied. Even if our framework does not include an actual
mediator, throughout the paper we find it helpful to use the mediator’s metaphor as
expositional device.

Calculating players’ values under exogenous information is straightforward. If an
outcome p arises under exogenous information in a base game G, player i’s expected
payoff is

v̄i(p) =
∑
a,θ

ui(a, θ)p(a, θ).

We call v̄i(p) the gross value for player i, since it ignores information costs. Let
v̄(p) = (v̄i(p))i∈I be the vector of gross values.

What changes when information is endogenous? Our analysis highlights two main
differences between rational inattention and exogenous information.

The first difference is that outcomes generated by costly information acquisition
must satisfy an additional constraint, which we name the separation constraint. To
present this constraint, we require a few definitions. Given an outcome p ∈ ∆π(A×Θ),
a player i ∈ I, and an action ai ∈ Ai, let p(ai) = ∑

a−i,θ p(ai, a−i, θ) be the probability
of player i taking action ai under p, and let

suppi(p) = {ai ∈ Ai : p(ai) > 0}

be the set of i’s actions that have positive probability. For each ai ∈ suppi(p), let
pai ∈ ∆(A−i × Θ) be the conditional distribution of the actions of the players other

6Our definition of BCE corresponds to the specialization of Bergemann and Morris’s (2016)
definition to the case in which players’ original type spaces are degenerate. Forges (1993) refers to
such outcomes as universal Bayesian solutions.
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than i and the payoff-relevant state: for all a−i ∈ A−i and θ ∈ Θ,

pai(a−i, θ) = p(ai, a−i, θ)
p(ai)

.

We also denote the set of player i’s best responses to pai via

BR(pai) = argmax
bi∈Ai

∑
a−i,θ

ui(bi, a−i, θ)pai(a−i, θ).

Finally, we say an outcome p ∈ ∆π(A × Θ) satisfies the separation constraint if
for all i ∈ I and ai, bi ∈ suppi(p),

pai , pbi implies BR(pai) ∩BR(pbi) = ∅. (2)

In other terms, an outcome satisfies the separation constraint if distinct beliefs have
separate best responses. We refer to a BCE that satisfies the separation constraint
as a separated BCE (sBCE).

The second difference between rational inattention and exogenous information is
in the set of payoffs players obtain from a given outcome. When information is given,
each player i’s value is completely determined by the outcome p. By contrast, under
rational inattention the same outcome can arise under multiple cost functions, and so
is consistent with a set of values. As we demonstrate next, this set of values is convex,
with an upper bound given by the gross value v̄i(p). The lower bound is given by
(what we call) the outcome’s uninformed value, which is i’s maximal value if she has
to act before receiving the mediator’s recommendation. Formally, the uninformed
value of an outcome p in a base game G for player i is the quantity

vi(p) = max
bi∈Ai

∑
a,θ

ui(bi, a−i, θ)p(a, θ).

Let v(p) = (vi(p))i∈I be the vector of uninformed values.7

The next result summarizes our characterization of rational inattention in games:

7The uninformed value is related to the notion of coarse correlated equilibrium (see, e.g., Rough-
garden, 2016, Definition 13.5). Coarse correlated equilibrium relaxes the obedience constraint, re-
quiring instead that no player can benefit from deviating to a single action from all of the mediator’s
recommendation; that is, v̄i(p) ≥ vi(p) for every i.
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Theorem 1. Fix a base game G. A rational-inattention technology T exists that
induces the outcome-value pair (p, v) in an equilibrium of (G, T ) if and only if

(i) the outcome p is a separated BCE, and

(ii) for every i ∈ I, vi = vi(p) = v̄i(p) or vi ∈ [vi(p), v̄i(p)).

Thus, an outcome-value pair is consistent with rational inattention if and only
if two conditions hold. First, the outcome satisfies both the obedience constraint
and the separation constraint. And second, each player’s value is weakly above her
uninformed value, but strictly below her gross value.

We now explain why the theorem’s conditions are necessary. That every outcome
generated by rational inattention must be obedient follows from the necessity of the
obedience constraint under exogenous information. The reason is that any outcome
one can attain when players choose their information must also be attainable if play-
ers where exogenously endowed with their chosen experiment. To understand why
the separation constraint is necessary, consider a player i who takes with positive
probability a pair of actions ai and bi such that pai , pbi . As in BCE, we can inter-
pret ai and bi as signals. With rational inattention, informative signals are costly. To
save on information costs, the player could substitute ai and bi with a single action
recommendation ci. For this substitution not to be profitable, it must be that either
ci < BR(pai) or ci < BR(pbi). Since the choice of ci is arbitrary, it must be that
BR(pai) ∩BR(pbi) = ∅.

Next, we explain the necessity of Theorem 1’s payoff bounds. To understand the
lower bound, suppose we have an information technology and an equilibrium that
induces an outcome p. By assumption, player i always has the option of remaining
uninformed at no cost. Therefore, i’s optimal payoff must be higher than vi(p). As
for the upper bound, recall that information costs are non-negative. Consequently,
player i’s payoff from an equilibrium that induces p must be below her payoffs if her
information was free; that is, vi ≤ v̄i(p). Moreover, her information must come at a
strictly positive cost whenever vi(p) , v̄i(p): to generate p in this case player i must
acquire some information. Hence, player i can actually attain her gross value from
an outcome only if that value coincides with the uninformed value.

We now briefly review our proof that conditions (i) and (ii) of Theorem 1 are
sufficient. The proof is constructive, and is based on a result by Denti (2021). Denti
(2021) studies a two-player signaling game where the receiver pays a cost to monitor
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the sender’s action. Among other results, Denti (2021) shows that, when the sender
takes every action with positive probability, any receiver behavior satisfying (what
we call in this paper) obedience and separation can be justified via rational inatten-
tion. To prove the “if” direction of Theorem 1, we extend Denti’s (2021) single-agent
construction so that it applies to settings in which multiple agents simultaneously ac-
quire information. In addition, we show that any payoff between the uninformed and
the gross value can be generated in equilibrium—Denti (2021) focuses on equilibrium
outcomes and does not discuss achievable payoffs.

Theorem 1 shows that any BCE that arises from rational inattention must satisfy
the separation constraint. Next, we record that the separation constraint never elim-
inates all of a game’s Bayes correlated equilibria; that is, the set of separated BCEs
is non-empty.

Corollary 1. Every base game G admits a separated BCE.

The proof is straightforward (details omitted): A technology where all feasible
experiments are free and uninformative is flexible and monotone. The corresponding
game with information acquisition admits an equilibrium by standard arguments
(information is de facto exogenous). It follows from Theorem 1 that the outcome of
such an equilibrium is a separated BCE.8

Next, to help the reader familiarize themselves with the concepts we introduced
in this section, we show Theorem 1’s implications in a simple coordination game.

Example 1. There are two players, I = {1, 2}, each of which chooses a binary
action. The players get a payoff of 1 if their actions match, −1 otherwise. Specifically,
Ai = {−1, 1} and ui(a1, a2) = a1a2 for each i ∈ I. The payoff state is degenerate,
hence omitted.

We first give an example of a non-separated BCE. Let p ∈ ∆(A) be the outcome
such that assigns (a1, a2) = (1, 1) a probability of 1/2; each other pair of actions
occurs with probability 1/6. It is easy to see p is obedient: conditional on any
action recommendation, the probability the other player takes the same action is
at least 1/2. However, this BCE is not separated: pa1=1(a2 = 1) = 3/4 , 1/2 =
pa1=−1(a2 = 1), but a1 = 1 is a best response to both action recommendations. Thus,

8Another immediate consequence of this argument is that in the special case in which Θ is a
singleton, all (pure or mixed) Nash equilibria of the base game are separated BCEs.
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the recommendations a1 = 1 and a1 = −1 have a common best response, but lead to
different beliefs.

For an example of a separated BCE, take q ∈ ∆(A) to be the uniform distribution
over the two action profiles (a1, a2) = (1, 1) and (a1, a2) = (−1,−1). Because the
players are perfectly coordinating their actions, taking the action that the mediator
recommends is a strict best response. It follows q is a separated BCE.

We now demonstrate the difference between gross and uninformed value. Consider
the sBCE q. Since the players perfectly coordinate their actions, the gross value from
this BCE is v̄1(q) = v̄2(q) = 1. The uninformed value, however, is lower: a player
who does not see the mediator’s recommendation gets a payoff of 0 no matter what
action she takes, given that the co-player takes both actions with equal probability.
Therefore, v1(q) = v2(q) = 0.

We conclude the section with a brief discussion of what happens if we allow for
non-flexible and non-monotone technologies. To accommodate such technologies, we
need to adjust Theorem 1’s statement in two ways. First, the separation constraint
is no longer necessary. And second, players can attain their gross value even when it
differs from their uninformed value. We refer the reader to Online Appendix D for
the precise details.

5. Generic Environments

Theorem 1 shows rational inattention differs from exogenous information in two ways.
First, rational inattention reduces the set of equilibrium outcomes: an additional
separation constraint must be satisfied. Second, rational inattention expands the set
of achievable payoffs for any given equilibrium outcome: every payoff between the
uniformed value and the gross value can be obtained. In this section, we prove that
only the second difference is meaningful in generic environments.

We adopt the following notion of genericity: We fix a finite set of players I, a finite
set of payoff states Θ, a full-support prior π ∈ ∆(Θ), and a finite set of actions Ai
for each player i ∈ I. To obtain a base game, it remains to specify a profile of utility
function u = (ui)i∈I . We identify u with an element of the Euclidean space RI×A×Θ,
and say a statement is true for generic u if the closure of the subset in RI×A×Θ for
which it is false has Lebesgue measure zero. We denote by BCE(u) and sBCE(u)
the sets of BCEs and separated BCEs for the base game corresponding to u.
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As long as the sets Θ, I, and A are non-trivial, one can find many examples
of u ∈ RI×A×Θ for which the separation constraint imposes sharp restrictions on
behavior, so that most BCE are not separated—we discuss a few simple cases in
Online Appendix E. However, the next theorem shows that all such examples are
non-generic.

Theorem 2. For generic u, the set sBCE(u) is dense in the set BCE(u).

Thus, the environments in which rational inattention predict different outcomes
than incomplete information are knife edge.9 An important caveat to this result
is the notion of genericity we use: it is the most common for the static games we
study in this paper, but also the most permissive. For example, according to this
notion of genericity, many important economic applications—such as auctions—are
non-generic. The notion of genericity is also not appropriate if the base game is not
actually static but represents the strategic form of a primitive dynamic game. We
discuss sBCE in non-generic environments in Section 7.

One might be tempted to think that Theorem 2 follows from indifferences being
fragile, so to speak. This intuition works, but only for the single agent case. When
I has one element, the set of strict BCEs—i.e., the set of outcomes p such that
BR(pai) = {ai} for every player i and ai ∈ suppi(p)—is generically dense in the BCE
set. Theorem 2 then follows from noting that every strict BCE is separated.10

The situation radically changes when there are at least two players. The reason is
that, with two or more players, indifferences emerge in equilibrium in generic fashion:
when I has more than one element, there exists an open set of games where no BCE
is strict. For example, consider games in a neighborhood of Matching Pennies: they
have a unique correlated equilibrium (the fully-mixed Nash equilibrium) in which both
players are indifferent between both actions. In sum, to prove Theorem 2 beyond the
single-agent case, one cannot hope to show that indifferences are somewhat fragile.

Our proof of Theorem 2 combines two independent lemmas. The first lemma
shows that for any BCE p and utility profile u, there exists a perturbation of u
that makes p separated. In other words, every BCE of a given game is the limit of
separated BCEs of nearby games.

9It is easy to construct generic examples where the set of separated BCEs is not close. In
particular, the statement “sBCE(u) = BCE(u) for generic u” is false. It is also not true that
“cl(sBCE(u)) = BCE(u) for all u.”

10See Online Appendix F for a detailed argument.
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The second lemma shows that for generic games, any BCE that is a limit of sep-
arated BCE in nearby games is also a separated BCE when the game is held fixed.
Specifically, the second lemma shows that the correspondence u 7→ cl(sBCE(u)),
which takes utilities to the closure of the sBCE set, generically is upper hemicon-
tinuous (in fact, continuous). To prove it, we employ ideas from Blume and Zame
(1994), who study the algebraic geometry of Nash, perfect, and sequential equilibria.
In particular, we use the Tarsky-Siedenberg Theorem to show that u 7→ cl(sBCE(u))
has semi-algebraic graph, and so must be continuous for all utility profiles outside a
closed low-dimensional manifold.

Theorem 2 implies that, in generic games, rational inattention and exogenous
information are outcome equivalent. Next, we show this equivalence does not extend
to players’ welfare. In other words, even though the two knowledge regimes generically
yield the same behavioral predictions, they can have distinct welfare implications.

For u ∈ RI×A×Θ, let VR(u) be the closure of the set of attainable value vectors
under rational inattention. By Theorem 1, these are the value vectors that lie between
the uninformed value and the gross value of some limit of separated BCEs:11

VR(u) = {v ∈ [v(p, u), v̄(p, u)] : p ∈ cl(sBCE(u))}, (3)

where v(p, u) and v̄(p, u) make explicit the dependence of uninformed and gross values
on the players’ utility functions.

We also denote by VI(u) the set of attainable value vectors under exogenous in-
formation. By Bergemann and Morris (2016), this is the set of gross value vectors
attainable in some BCE,

VI(u) = {v̄(p, u) : p ∈ BCE(u)} . (4)

For an arbitrary u, there is no simple relationship between VR(u) and VI(u):
sBCE(u) is a subset of BCE(u), but v̄(p, u) is an element of [v(p, u), v̄(p, u)], so one
cannot easily conclude that VR(u) contains or is contained by VI(u), or neither.

In generic environments, the comparison is simpler:

11For two vectors of real numbers λ, γ ∈ Rn such that λ ≤ γ, we use the box, or ordered interval
notation [λ, γ] = {η ∈ Rn : λ ≤ η ≤ γ} to denote the set of all vectors between λ and γ.
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Theorem 3. For generic u, VI(u) ⊆ VR(u). In addition, if |I| ≥ 2, |Θ| ≥ 2, and
|Ai| ≥ 2 for at least two distinct players i, then the set of u for which VI(u) ⊂ VR(u)
has non-empty interior. If instead |I| = 1, then VI(u) = VR(u) for generic u.

Thus, in generic environments, rational inattention expands the set of achievable
payoffs, and it does so in a non-trivial way (i.e., with strict inclusion) for a class
of environments of positive measure. As we demonstrate in Section 6, the differ-
ence between VI(u) and VR(u) has substantial implications for welfare analysis: if a
utilitarian social planner mistakenly assumes that information is given rather than
acquired, she may end up choosing a sub-optimal policy, even in situations in which
the two knowledge regimes are outcome equivalent. Our results give the planner the
tools to avoid such mistakes.

Theorem 3 distinguishes between single-agent and many-player settings. In generic
single-agent settings, rational inattention and exogenous information are not only
outcome equivalent (as Theorem 2 states), but also welfare equivalent: BCE(u) =
sBCE(u) and VI(u) = VR(u) for generic u. In generic many-player environments, ra-
tional inattention and exogenous information are only outcome equivalent: BCE(u) =
sBCE(u) for generic u, but VI(u) ⊂ VR(u) for a set of utility profiles u with non-
empty interior.

We now clarify the difference between the case of a single agent and the case
of multiple players. Suppose first there is only one agent, and let p0 be a BCE in
which the agent receives no information. Since the agent’s payoffs depend only on
the correlation between her action and the state, and because the state’s marginal
distribution is constant across all BCEs, the agent’s uninformed value is also constant
across all BCEs, and equals her expected utility under no information; that is, every
BCE p has v(p, u) = v̄(p0, u). Moreover, since more information always helps the
agent, the BCE p0 minimizes the agent’s gross value across all BCEs. In other words,
the minimal value of VR(u) and VI(u) is the same, and equals v̄(p0, u). The single-
agent result then follows from noting that, for generic u, VR(u) and VI(u) are convex
sets that have the same maximum value (i.e., complete information).

Suppose now there are multiple players. In this case, each player cares not only
about her action and the state, but also about the actions of others. Consequently,
it is possible that to minimize one player’s uninformed value, a BCE must change
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the distribution of another player’s actions. If such a change requires giving players
valuable information, one can obtain a gap between the minimal uninformed value
and the lowest gross value for a given player. The proof of Theorem 3 constructs a
game with this property, and shows that, for this game, this property is preserved
under small perturbations.

6. Application: Robust Welfare Analysis

In this section we demonstrate how one can use our results to conduct robust welfare
analysis in an economy where agents exhibit rational inattention. The proofs for the
results in this section are in the online appendix.

We consider an economy that consists of a fixed set of agents, I, who play an
information acquisition game, (G, T ). The structure of the game depends on the
policy enacted by a utilitarian social planner. The planner has a good understanding
of the policy’s material implications, i.e., she knows a given policy leads to a given G.
However, the planner is unsure about the accompanying information technology T .

We focus on two cases regarding the source of the agents’ information. The plan-
ner either postulates that information is exogenously given, or that it is generated
by rational inattention. In both cases, the planner identifies a policy with the corre-
sponding base game G and employs a robust criterion that evaluates it according to
the worst-case utilitarian welfare across all relevant information technologies T and
ensuing equilibria.

For the exogenous information case, Bergemann and Morris’s (2016) results imply
one can find the social value of a policy G by minimizing the sum of the agents’ gross
payoffs across all BCEs. Specifically, let w̄(p) be the utilitarian welfare of an outcome
p assuming the players’ payoffs are given by their gross value,

w̄(p) =
∑
i

v̄i(p).

Then the planner’s value of a base game G under exogenous information is

w̄ = min
p∈BCE

w̄(p),

where BCE is the set of Bayes correlated equilibria of G. Since the BCE set is
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defined by linear inequalities, and w̄(p) is linear in p, one can compute w̄ via linear
programming.

What about a planner who postulates that agents are rationally inattentive? The-
orem 1 provides the answer: such a planner evaluates each base game according to
the lowest sum of uninformed values that is attainable in some separated BCE. More
precisely, for an outcome p, let w(p) be the utilitarian welfare implied by p in the
base game G if players’ payoffs are given by their uninformed value,

w(p) =
∑
i

vi(p).

Then Theorem 1 suggests that a planner who assumes information is endogenous
would evaluate each game according to the minimum of w(p) across all separated
BCEs p,

inf
p∈sBCE

w(p).

Recall, however, that Theorem 2 says that the separation constraint does not bind
for generic games. As such, imposing the separation constraint is only appropriate
if the planner is absolutely certain of the structure of the base game. Whereas such
certainty might be justifiable in certain cases, here we take the perspective of a
cautious planner who, in an economy where agents are rationally inattentive, evaluates
G according to the worst-case value of w(p) across all BCE,

w = min
p∈BCE

w(p).

Since the BCE set is defined by linear inequalities, and w(p) is convex in p, one can
compute w using convex programming.

In the rest of the section we study when the optimal policy under rational inat-
tention differs from the best policy under exogenous information. That is, we are
interested in situations where there are two policies G and G ′ such that G is preferred
to G ′ under the hypothesis that information is exogenous, w̄ > w̄′, while G ′ is pre-
ferred to G if the planner believes that rational inattention is a relevant feature of the
economy, w′ > w.

Clearly, the two knowledge regimes can generate different policy prescriptions only
if one of the policies leads to a different worst-case value under rational inattention
than it does under exogenous information. Whereas Theorem 3 guarantees the ex-
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istence of a generic G for which w̄ > w, it does not tell us when such an inequality
occurs for a fixed base game. Next, we zoom in on symmetric binary-action games
to provide a characterization of the full class of policies G for which w̄ > w.

A base game G = (I,Θ, π, (Ai, ui)i∈I) has binary actions if for every player i, Ai
contains two elements. It is symmetric if Ai = Aj for all i, j ∈ I, and if for every
permutation φ : I → I, player i, action profile a, and payoff state θ,

ui(aφ, θ) = uφ(i)(a, θ),

where aφ = (aφ(j))j∈I is the action profile such that each player j takes action aφ(j). An
outcome p ∈ ∆(A×Θ) of a symmetric base game is symmetric if p(a, θ) = p(aφ, θ)
for every permutation φ : I → I, action profile a, and payoff state θ. We denote the
set of symmetric outcomes by ∆sy

π (A×Θ), and the set of symmetric BCEs by BCEsy.
The next result characterizes the binary-action symmetric games for which ratio-

nal inattention yields strictly lower worst-case welfare than exogenous information.

Proposition 1. Let G be a symmetric, binary-action base game. Then, w < w̄ if and
only if all p∗ ∈ argminp∈∆sy

π (A×Θ)w(p) satisfy the following condition:

ai ∈ suppi(p∗) and BR(p∗ai) = {ai} for all i ∈ I and ai ∈ Ai. (5)

Thus, one can check whether w < w̄ by examining the minimizers of w(p) among
all symmetric outcomes p, ignoring the players’ obedience constraints. In particular,
one needs to check whether all these minimizers recommend both actions to every
player, and only send recommendations that induce unique best responses.12

An immediate corollary of Proposition 1 is that in a symmetric binary-action
game, if w < w̄ then

w = min
p∈∆sy

π (A×Θ)
w(p).

Consistently with Theorem 3, Proposition 1 also implies that w = w̄ if the base game
has one player only, and such player has a binary action.13

12We note that, while symmetric games are non-generic, the strict inequality identified by Propo-
sition 1 is robust. Formally, whenever the inequality w < w̄ holds for some binary-action symmetric
game G, the inequality also holds for all base games G′ in a neighborhood of G. The result follows
from the same logic we use in the proof of Lemma 7. As in Section 5, the distance between G and
G′ is the distance between the profiles of utility functions, keeping fixed I, Θ, π, and (Ai)i∈I .

13For an explanation, suppose I = {i} and Ai = {ai, bi}. Take p∗ ∈ BCE such that agent i have
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We now briefly explain the proposition’s proof. The key observation is that in a
binary action game, a BCE p has the property that v̄i(p) > vi(p) for every player i
if and only if p satisfies (5). To get intuition for the “if” direction, note that having
two recommendations that lead to strict best responses means players get a strictly
positive benefit from following them. This benefit creates a wedge between the gross
value v̄i(p), which accounts for the value of information, and the uninformed value
vi(p), which does not. For the converse direction, note that a violation of (5) means
some player i has an action that is optimal across all of the mediator’s recommen-
dations. As such, player i loses nothing by ignoring the mediator’s recommendations
and taking that action. In other words, player i’s gross value equals her uninformed
value.

Armed with the above observation, we prove the proposition in two steps. The first
step shows w < w̄ holds if and only if all optimal solutions of minp∈BCEsy w(p) satisfy
(5). This step follows from applying the above-mentioned observation to symmetric
outcomes, and showing such outcomes are sufficient for minimizing utilitarian welfare.
The second step shows that all optimal solutions of minp∈BCEsy w(p) satisfy (5) if and
only if all optimal solutions of minp∈∆sy

π (A×Θ) w(p) satisfy (5). Loosely speaking, the
reason is as follows: if the obedience constraint does not bind at the optimum—as
(5) dictates—then it can be relaxed, and therefore minimizing over p ∈ BCEsy is the
same as minimizing over p ∈ ∆sy

π (A×Θ).
Proposition 1 enables us to find circumstances where the planner’s optimal policy

depends on whether she believes information is exogenously given, or generated by
rational inattention. We demonstrate this fact below in a regime change game.

Example 2. We consider a regime change game whereby a status quo is abandoned
if a sufficiently large number of players take an action against it. Such games are
well-studied and have been used to model a variety of social phenomena, including
currency crises, bank runs, debt crises, and political revolts.14

In our application, there are n identical investors, i ∈ I = {1, . . . , n}, each of
which decides whether to speculate against (i.e., attack) a distressed financial insti-
tution (ai = 1) or not (ai = 0). Speculating costs k ∈ (0, 1). If enough investors
speculate, the institution fails (i.e., the attack succeeds), generating a profit of 1 to

no information and does not randomize between ai and bi. Then, p∗ ∈ argminp∈∆π(A×Θ) vi(p) and
suppi(p∗) is a singleton, violating (5).

14See Morris and Shin (2003) for a review.
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the speculators, and an externality of −x to all passive investors, where x ∈ (0,∞).
The payoff state θ ∈ Θ ⊆ {1, . . . , n}, determines the number of speculators required
for the attack to succeed. We assume that min Θ > 1, and max Θ < n− 1, meaning
no single investor can go against the will of all the others.15 We summarize these
payoffs below:

∑
j aj ≥ θ

∑
j aj < θ

ui(1, a−i, θ) 1− k −k
ui(0, a−i, θ) −x 0

It is easy to verify that, in this example, rational inattention and exogenous informa-
tion are outcome equivalent, that is, the sBCE set is dense in the BCE set.16

Next we demonstrate that a planner who views information as exogenous may
adopt different policies than a planner who thinks investors are rationally inattentive.
In particular, we show that only a planner who takes information as given has an
incentive to change the institution’s fundamentals, that is, Θ and π.

We begin by finding conditions under which there is a difference between the worst-
case welfare under rational inattention and exogenous information. By Proposition 1,
answering this question requires us to minimize the sum of the uninformed values
across all symmetric outcomes, ignoring obedience constraints. The following result
characterizes the solutions to this optimization problem.

Claim 1. In the regime change game, an outcome p∗ minimizes w(p) over all p ∈
∆sy
π (A×Θ) if and only if the following conditions hold: for all payoff states θ,

p∗
({

(a, θ) : θ − 1 ≤
∑
i

ai ≤ θ

})
= 0, (6)

p∗
({

(a, θ) :
∑
i

ai > θ

})
= k

1 + x
. (7)

The two optimality conditions have simple interpretations. First, no investor is
ever pivotal. And second, the attack succeeds with probability k/(1 + x). To obtain
these conditions, we show p∗ minimizes w(p) across all p ∈ ∆sy

π (A × Θ) only if each
15A fortiori, n > 3 because 2 ≤ min Θ ≤ max Θ < n− 1.
16Indeed, the regime change game admits a strict BCE p where all players take both actions

with positive probability (e.g., a convex combinations of the pure Nash equilibria in which everyone
speculates or no-one speculates). Thus, any BCE q can be approximated by a separated BCE
(1− ε)q + εp as ε→ 0.
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individual investor i is indifferent between never speculating and always speculating
when other investors play according to p∗. Minimizing across all symmetric outcomes
satisfying this indifference condition then delivers the result.17

Combining Proposition 1 and Claim 1, we deduce that w < w̄ if and only if (5)
holds for every symmetric outcome p∗ that satisfy (6) and (7). It is easy to find one
p∗ that meets all requirements: have all investors attack together with probability
k/(1 + x) regardless of the state, and no one speculates otherwise. Calculating the
sum of the uninformed values from such p∗ immediately give the worst-case welfare
under rational inattention,

w = w(p∗) = − nxk

1 + x
. (8)

Hence, under rational inattention, the planner’s value decreases in the size of the
externality x and the cost of betting on the financial institution’s demise k, but does
not depend on π; that is, the planner’s value does not depend on the institution’s
fundamentals.

Is there a symmetric outcome p∗ that satisfies (6) and (7), but violates (5)? That
is, under what conditions on the primitives of game exogenous information and ra-
tional inattention generate the same worst-case welfare? The next result provides an
answer when the payoff state is binary (see Claim 15 in the online appendix for a
many-state generalization).

Claim 2. Suppose Θ = {θ, θ̄}, where θ̄ ≥ θ. Then w = w̄ if and only if θ̄− θ ≥ 3 and

1− 1
3
(
θ̄ − θ

)
π(θ̄) ≤ k

1 + x
≤ 1

3
(
θ̄ − θ

) (
1− π(θ̄)

)
. (9)

In other terms, with binary θ, worst-case welfare under rational inattention is the
same as under exogenous information if and only if the state is sufficiently uncertain
in the sense that θ̄ − θ ≥ 3, and the probability of θ̄ is not too extreme compared
to k/(1 + x)—e.g., (9) fails if π(θ̄) goes to zero or one. In particular, the worst-case
welfare under rational inattention is always strictly below the welfare under exogenous
information when there’s certainty about the institution’s fundamentals (i.e., when θ
is deterministic).

The proof of Claim 2 is rather detailed; here we provide only a rough intuition.
Combining Proposition 1 and Claim 1, one can show the worst-case welfare under ex-

17Given the minmax nature of the optimization problem minp∈∆sy
π (A×Θ) w(p), one might have

conjectured the existence of an indifference condition.
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ogenous information coincides with the worst-case welfare under rational inattention
only if a symmetric outcome exists that satisfies two conditions. First, an investor
who does not see the mediator’s recommendation is indifferent between attacking and
not attacking. And second, for an investor who does see the mediator’s recommen-
dation, either not speculating is a best response to a “speculate” recommendation,
or vice versa. Appealing to Bayes rule, one can show that an outcome satisfies these
conditions if and only if there is limited overlap between the event where many in-
vestors are attacking and the event in which the attack succeeds. Claim 2 follows
from showing a sufficient disconnect between these two events is attainable if and
only if there is enough uncertainty about θ. Intuitively, disconnecting the two events
is easy when θ obtains both high and low values with large probability: one can have
the number of speculators just come short of a successful attack when θ is high, and
come just above the threshold when θ is low. The same cannot be done when θ is
deterministic. In that case, successful attacks necessarily involve more speculating
investors than failed ones.

A takeaway is that, unlike under rational inattention, a planner who views infor-
mation as exogenous may adopt policies that change the institution’s fundamentals.
For a concrete illustration, consider two policies G and G ′ that differ only in the insti-
tution’s fundamentals, that is, in the set of states Θ and their distribution π ∈ ∆(Θ).
Suppose G satisfies the conditions of Claim 2, but G ′ does not. Worst-case welfare
under rational inattention is the same for G and G ′: w = w′ by (8). By contrast,
G generates lower welfare under exogenous information: w̄ < w̄′ by (8) and Claim
2. Consequently, a planner who views information as being exogenous would pay
some amount to change the institution’s fundamentals, but a planner who believes
investors are rationally inattentive should not do so.

7. Further results: Non-Generic Environments

Throughout the paper, we have focused on generic settings. However, many economic
institutions of interests, such as auctions, are non-generic. We conclude our work with
a discussion of rational inattention in non-generic environments. We characterize the
(non-generic) settings in which the separation constraint has substantive impact, and
show its force has an all-or-nothing flavor: if the sBCE set is not dense in the BCE
set, it is in fact nowhere dense. The proofs are in the online appendix.
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We begin by characterizing the environments where the separation constraint has
bite. Our characterization is based on two definitions. The first definition represents
a situation where, whenever the mediator recommends player i action bi in a BCE of
the game, the player would be equally happy to take action ai. Myerson (1997) calls
this scenario “jeopardization”: action ai jeopardizes action bi if, for every BCE p

such that bi ∈ suppi(p), ai ∈ BR(pbi).18 We denote by J(bi) the set of actions that
jeopardizes bi.

Every action jeopardizes itself by the obedience constraint; hence, J(bi) is not
empty. A sufficient condition for jeopardization is weak domination: if ui(ai, a−i, θ) ≥
ui(bi, a−i, θ) for all a−i ∈ A−i and θ ∈ Θ, then ai jeopardizes bi. But the concept of
jeopardization is broader than weak domination. For example, in Matching Pennies,
Heads and Tails jeopardize each other, even if neither action is weakly dominant.

Next we introduce the second definition required for our characterization. This
definition concerns a class of BCEs where the number of actions that induce different
beliefs is minimal. To state this definition, say a BCE p is maximally supported
if the support of every other BCE is contained by the support of p. A maximally-
supported BCE p is minimally mixed if qai , qbi implies pai , pbi for every BCE q,
i ∈ I, and ai, bi ∈ suppi(q).

For an interpretation of minimal mixing, consider a mediator who wants to im-
plement a BCE p. When pai = pbi , the mediator can replace the distinct recommen-
dations of playing ai and bi with a single recommendation of mixing between the two
actions with probabilities p(ai)/(p(ai) + p(bi)) and p(bi)/(p(ai) + p(bi)). A BCE p is
minimally mixed if a mediator has the least amount of opportunities to implement p
recommending mixed actions. Whereas minimally mixed BCEs seem esoteric at first,
they are in fact, ubiquitous: the set of minimally mixed BCEs is open and dense in
the BCE set (see Lemma 13 in the online appendix).

Our next result uses the concepts of jeopardization and minimally mixed BCEs
to characterize when the BCE set and the closure of the sBCE set coincide.

Proposition 2. The following statements are equivalent:

(i) The sBCE set is dense in the BCE set.

(ii) A minimally mixed sBCE exists.

18Myerson defines jeopardization for games without payoff uncertainty; here we give the obvious
extension to games where Θ is not a singleton.
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(iii) For every BCE p, i ∈ I, ai, bi ∈ suppi(p), if pai , pbi then J(ai) ∩ J(bi) = ∅.

The result shows how jeopardization and minimal mixing can be used in appli-
cations to study sBCE. To verify that the sBCE set is dense in the BCE set, it is
enough to produce a minimally mixed sBCE. To verify that the sBCE set is not dense
in the BCE set, it is enough to produce a BCE in which two actions induce distinct
beliefs and share a common jeopardizing action. As shown by Myerson (1997), the
jeopardizing actions can be easily computed from the dual of the system of linear
inequalities that defines BCE.

Next, we build on Proposition 2 and obtain that sBCE is an all-or-nothing refine-
ment of BCE.

Proposition 3. The sBCE set is either dense or nowhere dense in the BCE set.

For a rough explanation, consider first the case in which a minimally mixed sBCE
exists. Then, by Proposition 2, the sBCE set is dense in the BCE set. Consider now
the case in which a minimally sBCE does not exist. By Proposition 2, the sBCE set
is not dense in the BCE set. To reach the stronger conclusion that the sBCE set is
nowhere dense in the BCE set, we use the fact that the set of minimally mixed BCE
is open and dense in the BCE set.

Thus, whereas the separation constraint does not bind in most circumstances,
whenever it does bind, it significantly restricts the set of attainable outcomes.

Appendix

A. Proof of Theorem 1

The proof of the theorem proceeds as follows. First, we recall a single-agent lemma
due Denti (2021). Next, with the help of the lemma, we prove the “if” and “only if”
statements of the theorem.

A.1. A single-agent lemma

We take the perspective of an individual i who has to choose an action ai ∈ Ai

whose utility wi(ai, ω) depends on an uncertain state of nature ω ∈ Ω. Both Ai and
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Ω are finite. Let ρ ∈ ∆(Ω) be the prior distribution of the state; ρ may not have
full support. Before choosing an action, the decision maker can run an experiment
ξi : Ω→ ∆(Xi) at a cost Ci(ξi) ∈ R+. Let Ei be the set of feasible experiments. The
signal space Xi is finite. Overall, the decision maker faces the following information
acquisition problem:

max
ξi∈Ei,σi∈Σi

[ ∑
ω,xi,ai

wi(ai, ω)σi(ai|xi)ξi(xi|ω)ρ(ω)
]
− Ci(ξi) (10)

where Σi is the set of all action plans σi : Xi → ∆(Ai).
In accordance with the terminology used in the main text, ξi % ξ′i if there is a

Markov kernel g : Xi → ∆(Xi) such that for every xi ∈ Xi and ω ∈ Ω with ρ(ω) > 0,

ξ′i(xi|ω) =
∑
x′i∈Xi

g(xi|x′i)ξ(x′i|ω).

We say that Ei is flexible if, whenever ξi % ξ′i and ξi ∈ Ei, then ξ′i ∈ Ei. We also say
that Ci : Ei → R+ is monotone if, whenever ξi, ξ′i ∈ Ei are such that ξi % ξ′i (resp.,
ξi � ξ′i), then Ci(ξi) ≥ Ci(ξ′i) (resp., Ci(ξi) > Ci(ξ′i)).

Among other results, Denti (2021) characterizes the pairs (ξi, σi) that are optimal
solutions of (10) for some flexible Ei and monotone Ci. To describe the characteriza-
tion, let µ(xi) = ∑

ω ξi(xi|ω)ρ(ω) be the ex-ante probability that ξi generates xi. For
every xi such that µ(xi) > 0, we denote by µxi ∈ ∆(Ω) the posterior distribution of
the state ω. Finally, let BR(µxi) = arg maxai∈Ai

∑
ω wi(ai, ω)µxi(ω) be the set of best

responses to µxi .

Lemma 1 (Denti, 2021). A flexible Ei and a monotone Ci exist such that the pair
(ξi, σi) is an optimal solution of (10) if and only if the following conditions hold:

(i) For all xi with µ(xi) > 0, σi(BR(µxi)|xi) = 1.

(ii) For all xi and x′i with µ(xi)µ(x′i) > 0, µxi , µx′i implies BR(µxi)∩BR(µx′i) = ∅.

In addition, one can choose Ci so that

Ci(ξi) =
∑

ω,xi,ai

wi(ai, ω)σi(ai|xi)ξi(xi|ω)ρ(ω)− max
ai∈Ai

∑
ω

wi(ai, ω)ρ(ω).
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A.2. Proof of the “if” statement of Theorem 1.

Let (p, v) be an outcome-value pair that satisfies Theorem 1-(i) and Theorem 1-(ii).
First, we consider the case in which v = v(p):

Lemma 2. There exist a rational-inattention technology T = (Z, ζ, (Xi, Ei, Ci)i∈I)
and an equilibrium (ξ, σ) of (G, T ) whose outcome-value pair is (p, v(p)).

Proof. For every player i and pair of actions ai, bi ∈ suppi(p), let ai ∼i bi be pai = pbi .
Note that ∼i is an equivalence relation on suppi(p). Let Zi be the corresponding set
of equivalence classes.

We take Z = ∏
i∈I Zi. To simply the exposition, we write a ∈ z if ai ∈ zi for all

i ∈ I. Given this convention, we define ζ : Θ→ Z by ζ(z|θ) = ∑
a∈z p(a, θ)/π(θ). For

every player i, we take Xi = Zi, and we define ξi : Z×Θ→ ∆(Xi) by ξi(xi|z, θ) = 1 if
xi = zi, and ξi(xi|z, θ) = 0 otherwise. We also define σi : Xi → ∆(Ai) by σi(ai|xi) =
p(ai)/

∑
bi∈xi p(bi) if ai ∈ xi, and σi(ai|xi) = 0 otherwise.

Claim 3. The outcome induced by (ξ, σ) is p, that is, for all a ∈ A and θ ∈ Θ

p(a, θ) =
∑
z

[∏
i∈I
σi(ai|zi)

]
ζ(z|θ)π(θ). (11)

To prove the claim, we need an intermediate result.

Claim 4. For all z ∈ Z, a ∈ z, and θ ∈ Θ,

p(a, θ) =
[∏
i∈I
σi(ai|zi)

]∑
b∈z

p(b, θ).

Proof. It suffices to show that for all i ∈ I,

p(a, θ) = σi(ai|zi)
∑
bi∈zi

p(bi, a−i, θ). (12)

The desired result then follows from reasoning by induction on the number of players.
So, fix some player i. By Bayes rule, p(a, θ) = p(ai)pai(a−i, θ). Recall that bi ∈ zi
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if and only if pbi = pai ; in addition, ∑bi∈zi σi (bi|zi) = 1. Therefore,

p(ai, a−i, θ) = p(ai)pai(a−i, θ) = p(ai)
∑
bi∈zi

σi (bi|zi) pai(a−i, θ)

= p(ai)
∑
bi∈zi

σi(bi|zi)pbi(a−i, θ).

Substituting in the definition of σi, one obtains (12). �

Proof of Claim 3. Fix a ∈ A and θ ∈ Θ. If p(ai) = 0 for some player i, then σ(ai|xi) =
0 for all xi ∈ Xi. Thus, both sides of (11) are equal to zero.

Suppose now that p(ai) > 0 for all players i. Take z∗ ∈ Z such that a ∈ z∗. Using
Claim 4 we get that

p(a, θ) =
[∏
i∈I
σi(ai|z∗i )

] ∑
b∈z∗

p(b, θ).

The equality (11) follows from noting that ∏i∈I σi(ai|zi) > 0 if and only if z = z∗. �

Next, for each player i, we use Lemma 1 to construct Ei and Ci. Given Ω = Z×Θ,
we define ρ ∈ ∆(Ω) and wi : Ai × Ω→ R by

ρ(z, θ) = ζ(z|θ)π(θ),

wi(ai, z, θ) =
∑
a−i

ui(ai, a−i, θ)
∏
j,i

σj(aj|zj)
 .

As in Section A.1, let µ(xi) be the ex-ante probability that ξi generates xi, and let
µxi ∈ ∆(Ω) be i’s posterior beliefs about ω = (z, θ) when xi is observed. Note
that µxi is different from pai , which is i’s posterior beliefs about (a−i, θ) when the
mediator recommends ai. Recall that BR(µxi) = arg maxbi

∑
ω wi(bi, ω)µxi(ω), while

BR(pai) = arg maxbi
∑
θ,a−i ui(bi, a−i, θ)pai(a−i, θ).

To be able to use Lemma 1, we need the following result.

Claim 5. For all xi ∈ Xi and ai ∈ xi, BR(pai) = BR(µxi).

Proof. It is enough to show that for all a−i ∈ A−i and θ ∈ Θ,

pai(a−i, θ) =
∑
z

∏
j,i

σj(aj|zj)
µxi(z, θ). (13)
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Towards this goal, we first observe that for all a−i ∈ A−i and θ ∈ Θ,

p(ai, a−i, θ) =
∑
x′i,x−i

σi(ai|x′i)∏
j,i

σj(aj|xj)
 ζ(x′i, x−i|θ)π(θ)

= σi(ai|xi)
∑
x−i

∏
j,i

σj(aj|xj)
 ζ(xi, x−i|θ)π(θ)

= p(ai)∑
bi∈xi p(bi)

∑
x−i

∏
j,i

σj(aj|xj)
 ζ(xi, x−i|θ)π(θ), (14)

where the first equality holds by Claim 3, the second equality because σi(ai|x′i) > 0 if
and only if x′i = xi, and the third equality by definition of σi(ai|xi). Summing both
sides of (14) over a−i and θ, we obtain that

p(ai) = p(ai)µ(xi)∑
bi∈xi p(bi)

.

Thus, µ(xi) = ∑
bi∈xi p(bi). We plug this finding in (14) and obtain that for all

a−i ∈ A−i and θ ∈ Θ,

p(ai, a−i, θ) = p(ai)
µ(xi)

∑
x−i

∏
j,i

σj(aj|xj)
 ζ(xi, x−i|θ)π(θ).

The equality (13) follows from observing that µxi(z, θ) = ζ(z|θ)π(θ)/µ(xi) if zi = xi,
and µxi(z, θ) = 0 otherwise. �

To verify Lemma 1-(i), take xi ∈ Xi and ai ∈ Ai such that σi(ai|xi) > 0. By
the construction of the action plan, ai ∈ xi. By the obedience constraint for p,
ai ∈ BR(pai). By Claim 5, BR(pai) = BR(µxi). Therefore, ai ∈ BR(µxi). We
deduce that Lemma 1-(i) holds.

To verify Lemma 1-(ii), take xi, x′i ∈ Xi such that µxi , µx′i . Let ai ∈ xi and
bi ∈ x′i. Since µxi , µx′i , we must have xi , x′i and, therefore, pai , pbi . By the
separation constraint for p, BR(pai)∩BR(pbi) = ∅. By Claim 5, BR(pai) = BR(µxi)
and BR(pbi) = BR(µx′i). We deduce BR(µxi) = BR(µx′i) = ∅: Lemma 1-(ii) holds.

In sum, for every player i, we can invoke Lemma 1 to find a flexible Ei and
a monotone Ci such that (ξi, σi) is a best reply to (ξ−i, σ−i). This shows that
T = (Z, ζ, (Xi, Ei, Ci)i∈I) is a rational-inattention technology such that (ξ, σ) is
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an equilibrium (G, T ) with outcome p. In addition, as in the last part of Lemma
1, we can choose costs so that, for every player i, Ci(ξi) = v̄i(p) − vi(p), that is,
v̄i(p)− Ci(ξi) = vi(p). �

Now we consider the general case in which v may differ from v(p). As a starting
point, take T = (Z, ζ, (Xi, Ei, Ci)i∈I) and (ξ, σ) as in Lemma 2. Without loss of
generality, we assume that Ei = {ξ′i : ξi % ξ′i} for every player i.

For each i ∈ I, take λi ∈ (0, 1] and define Cλi : Ei → R+ by Cλi(ξ′i) = λiCi(ξ′i).
Since Ci is monotone, Cλi is monotone. Given λ = (λi)i∈I , consider the rational-
inattention technology Tλ = (Z, ζ, (Xi, Ei, Cλi)i∈I).

Lemma 3. The strategy profile (ξ, σ) is an equilibrium of (G, Tλ).

Proof. For a player i, consider an alternative strategy (ξ′i, σ′i). With a slight abuse
of notation, we denote by ui(ξ′i, σ′i, ξ−i, σ−i) the expected utility player i obtains by
deviating to (ξ′i, σ′i). Since (ξ, σ) is an equilibrium of (G, T ),

v̄i(p)− Ci(ξi) ≥ ui(ξ′i, σ′i, ξ−i, σ−i)− Ci(ξ′i).

In addition, since ξi � ξ′i (recall: Ei = {ξ′′i : ξi % ξ′′i }), v̄i(p) ≥ ui(ξ′i, σ′i, ξ−i, σ−i). It
follows that

v̄i(p)− λiCi(ξi) ≥ ui(ξ′i, σ′i, ξ−i, σ−i)− λiCi(ξ′i).

We deduce the deviation is not profitable. �

Thus, (ξ, σ) is an equilibrium of (G, Tλ) whose outcome is p. In addition,

v̄i(p)− Cλi(ξi) = v̄i(p)− λiCi(ξi) = v̄i(p)− λi(v̄i(p)− vi(p)) = (1− λi)v̄i + λivi(p).

Hence, by appropriately choosing the vector λ, we can be sure that v is the value of
(ξ, σ). This concludes the proof of the “if” direction of of Theorem 1.

A.3. Proof of the “only if” statement of Theorem 1.

Let (p, v) be the outcome-value pair induced by an equilibrium (ξ, σ) of an information
acquisition game (G, T ) where T represents rational inattention.
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First we show that p is a separated BCE. For every player i, by the definition of
equilibrium, the equilibrium strategy (ξi, σi) maximizes

 ∑
a,x,z,θ

ui(a, θ)σ′i(ai|xi)ξ′i(xi|z, θ)
∏
j,i

σj(aj|xj)ξj(xj|z, θ)ζ(z|θ)π(θ)
− Ci(ξi)

over all ξ′i ∈ Ei and σ′i ∈ Σi. Since Ei is flexible and Ci is monotone, we can apply
Lemma 1 with appropriate definitions for Ω, ρ, and wi. Specifically, we take Ω =
Z ×Θ, and we define ρ ∈ ∆(Ω) and wi : Ai × Ω→ R by

ρ(z, θ) = ζ(z|θ)π(θ),

wi(ai, z, θ) =
∑

x−i,a−i

ui(a, θ)
∏
j,i

σj(aj|xj)ξj(xj|z, θ)
 .

From Lemma 1-(i), we obtain σi(BR(µxi)|µxi) = 1 for all xi with µ(xi) > 0. From
Lemma 1-(ii), we get that for all xi and x′i such that µ(xi) > 0 and µ(x′i) > 0, if
µxi , µx′i then BR(µxi) , BR(µx′i).

Next, we relate BR(µxi) and BR(pai). Towards this goal, for each player i and
action ai, let Xai be the set of positive-probability signals that makes player i take
action ai: Xai = {xi : µ(xi) > 0 and σ(ai|xi) > 0}.

Lemma 4. For all i ∈ I and ai ∈ suppi(p), BR(pai) = ⋂
xi∈Xai BR(µxi).

Proof. First, take bi ∈ BR(pai): we wish to show that bi ∈ BR(µxi) for all xi ∈ Xai .
By Lemma 1-(i), ai ∈ BR(µxi) for all xi ∈ Xai . Hence,

∑
z,θ

wi(ai, z, θ)µxi(z, θ) ≥
∑
z,θ

wi(bi, z, θ)µxi(z, θ). (15)

For each xi ∈ Xai , define µ(xi|ai) = σi(ai|xi)ν(xi)/p(ai). Simple algebra shows that

pai(a−i, θ) =
∑

xi∈Xai

µ(xi|ai)
∑
x−i,z

∏
j,i

σj(aj|xj)ξj(xj|z, θ)
µxi(z, θ). (16)
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Therefore,

∑
xi∈Xai

µ(xi|ai)
∑
z,θ

wi(ai, z, θ)µxi(z, θ)
 =

∑
a−i,θ

ui(ai, a−i, θ)pai(a−i, θ),

∑
xi∈Xai

µ(xi|ai)
∑
z,θ

wi(bi, z, θ)µxi(z, θ)
 =

∑
a−i,θ

ui(bi, a−i, θ)pai(a−i, θ).

As a consequence, since bi ∈ BR(pai), we have that

∑
xi∈Xai

µ(xi|ai)
∑
z,θ

wi(ai, z, θ)µxi(z, θ)
 ≤ ∑

xi∈Xai

µ(xi|ai)
∑
z,θ

wi(bi, z, θ)µxi(z, θ)
 .

It follows that (15) holds with equality for all xi ∈ Xai . Therefore, since ai ∈ BR(µxi)
for all xi ∈ Xai , we deduce that bi ∈ BR(µxi) for all xi ∈ Xai .

Next, take bi ∈ Ai such that bi ∈ BR(νxi) for all xi ∈ Xai : we wish to show that
bi ∈ BR(pai). By hypothesis, for all xi ∈ Xai and ci ∈ Ai,

∑
z,θ

wi(ci, z, θ)µxi(z, θ) ≤
∑
z,θ

wi(bi, z, θ)µxi(z, θ).

Averaging across inequalities over xi ∈ Xai , we obtain that for all ci ∈ Ai,

∑
xi∈Xai

µ(xi|ai)
∑
z,θ

wi(ci, z, θ)µxi(z, θ)
 ≤ ∑

xi∈Xai

µ(xi|ai)
∑
z,θ

wi(bi, z, θ)µxi(z, θ)
 .

Using (16), we deduce that

∑
a−i,θ

ui(ci, a−i, θ)pai(a−i, θ) ≤
∑
a−i,θ

ui(bi, a−i, θ)pai(a−i, θ).

We conclude that bi ∈ BR(pai). �

We are ready to show that p is a separated BCE. For the obedience constraint, take
i ∈ I and ai ∈ suppi(p). By Lemma 1-(i), ai ∈ BR(µxi) for all xi ∈ Xai . By Lemma
4, ai ∈ BR(pai). For the separation constraint, take i ∈ I and ai, bi ∈ suppi(p)
such that pai , pbi . Since pai , pbi , there are xai ∈ Xai and xbi ∈ Xbi such that
µxai , µxbi (this should be obvious, but for confirmation, see (16)). By Lemma 1-(ii),
BR(µxai ) ∩BR(µxbi ) = ∅. By Lemma 4, BR(pai) ∩BR(pbi) = ∅.
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To complete the proof of the “only if” direction of Theorem 1, we need to show
that for every player i, either vi = vi(p) = v̄i(p) or vi ∈ [vi(p), v̄i(p)).

Fix a player i. Since Ci(ξi) ≥ 0, it must be vi ≤ v̄i(p). In addition, uninformative
experiments have zero cost by hypothesis. Thus, since (ξi, σi) is a best response to
(ξ−i, σ−i), we have that for any uninformative experiment ξ′i,

vi ≥ max
σ′i

∑
a,x,z,θ

ui(a, θ)
σ′i(ai|xi)ξi(xi|z, θ)∏

j,i

σj(aj|xj)ξj(xj|z, θ)
 ζ(z|θ)π(θ) = vi(p).

Overall, we conclude that vi ∈ [vi(p), v̄i(p)]
If vi(p) = v̄i(p), then vi ∈ [vi(p), v̄i(p)] implies vi = vi(p) = v̄i(p). Suppose instead

that vi(p) < v̄i(p). If

∑
a,x,z,θ

ui(a, θ)
∏
j∈I

σj(aj|xj)ξj(xj|z, θ)
 ζ(z|θ)π(θ) < v̄i(p),

then obviously vi < v̄i(p) because Ci(ξi) ≥ 0. If, on the other hand,

∑
a,x,z,θ

ui(a, θ)
∏
j∈I

σj(aj|xj)ξj(xj|z, θ)
 ζ(z|θ)π(θ) = v̄i(p),

then ξi cannot be uninformative because vi(p) < v̄i(p). By monotonicity, Ci(ξi) > 0,
which implies that vi < v̄i(p). In sum, if vi(p) < v̄i(p), then vi ∈ [vi(p), v̄i(p)).

B. Proof of Theorem 2

Let ‖u‖ be the Euclidean norm of u ∈ RI×A×Θ. We begin with the following lemma.

Lemma 5. For every u ∈ RI×A×Θ, p ∈ BCE(u), and ε > 0, there exists u′ ∈ RI×A×Θ

such that ‖u− u′‖ ≤ ε and p ∈ sBCE(u′).

Proof. For each player i ∈ I, we consider a set Pi ⊆ ∆(A−i × Θ) given by Pi =
{pai : ai ∈ suppi(p)} . Let ni be the cardinality of Pi (of course, it could be that ni
is smaller than the cardinality of suppi(p)). Reasoning inductively, we can find an
enumeration p1, . . . , pni of the elements of Pi such that, for every mi ∈ {1, . . . , ni},
pmi is an extreme point of the convex hull of {p1, . . . , pmi}.
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By an hyperplane separation theorem (e.g., Rockafellar, 1970, Corollary 11.4.2)
for every mi ∈ {2, . . . , ni} we can find a function fmi : A−i ×Θ→ R such that

∑
a−i,θ

fmi(a−i, θ)pmi(a−i, θ) > 0 ≥ max
li∈{1,...,mi−1}

∑
a−i,θ

fmi(a−i, θ)pli(a−i, θ). (17)

For mi = 1, we define f1(a−i, θ) = 1 for all a−i ∈ A−i and θ ∈ Θ.
For every li ∈ {1, . . . , ni − 1}, we choose tli ∈ (0, 1] such that for every mi ∈

{li + 1, . . . , ni},

∑
a−i,θ

fmi(a−i, θ)pmi(a−i, θ) > tli
∑
a−i

fli(a−i)pmi(a−i). (18)

We can choose such a tli because the left-hand side of (18) is positive—see (17). For
li = ni, we simply define tni = 1.

For every li ∈ {1, . . . , ni}, we define sli = ∏ni
mi=li tmi . Using (18), simple algebra

shows that for every li ∈ {1, . . . , ni − 1} and mi ∈ {li + 1, . . . , ni},

smi
∑
a−i,θ

fmi(a−i, θ)pmi(a−i, θ) > sli
∑
a−i,θ

fli(a−i, θ)pmi(a−i, θ). (19)

For ai ∈ suppi(p), we define gai : A−i × Θ → R by gai(a−i, θ) = smi · fmi(a−i, θ)
where mi is such that pai = pmi . For ai < suppi(p), we define gai = 0.

Claim 6. For all ai ∈ suppi(p) and bi < {ci ∈ suppi(p) : pci = pai},

∑
a−i,θ

gai(a−i, θ)pai(a−i, θ) >
∑
a−i,θ

gbi(a−i, θ)pai(a−i, θ). (20)

Proof. Pick mi ∈ {1, . . . , ni} such that pai = pmi .From the left-hand side of (17) and
the fact that smi > 0, we obtain that

∑
a−i,θ

gai(a−i, θ)pai(a−i, θ) = smi
∑
a−i,θ

fmi(a−i, θ)pmi(a−i, θ) > 0. (21)

Hence, for bi < suppi(p), we have

∑
a−i,θ

gai(a−i, θ)pai(a−i, θ) > 0 =
∑
a−i,θ

gbi(a−i, θ)pai(a−i, θ),
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where the equality follows from gbi = 0.
Assume now that bi ∈ suppi(p). Choose li such that pbi = pli . Since pai , pbi , it

must be that mi , li. Suppose that li > mi. It follows from the right-hand side of
(17)—in (17) the roles of li and mi are inverted—that 0 ≥ ∑a−i,θ fli(a−i, θ)pmi(a−i, θ).
Thus, given that sli > 0, we deduce that

0 ≥
∑
a−i,θ

gbi(a−i, θ)pai(a−i, θ) = sli
∑
a−i,θ

fli(a−i, θ)pmi(a−i, θ).

We obtain that ∑a−i,θ gai(a−i, θ)pai(a−i, θ) > 0 ≥ ∑
a−i,θ gbi(a−i, θ)pai(a−i, θ), where

we use again (21). For the case li < mi, the condition ∑
a−i,θ gai(a−i, θ)pai(a−i, θ) >∑

a−i,θ gbi(a−i, θ)pai(a−i, θ) is equivalent to (19). We conclude that (20) holds. �

To complete the proof of the lemma, for every δ > 0 we define u′ = (u′i)i∈I by
u′i(a, θ) = ui(a, θ)+δgai(a−i, θ). By choosing δ sufficiently small, we can be make sure
that ‖u − u′‖ ≤ ε. Since p ∈ BCE(u), it follows from (20) that for all i ∈ I and
ai ∈ suppi(p), ai ∈ BR′(pai) ⊆ {bi ∈ suppi(p) : pai = pbi} where BR′(pai) is the set
of i’s best response to a belief pai given utility function u′i. Thus, p ∈ sBCE(u′). �

A subset of a Euclidean space is semi-algebraic if it is defined by finite systems of
polynomial inequalities. A correspondence between Euclidean spaces is semi-algebraic
if its graph is semi-algebraic. The background knowledge on semi-algebraic sets that
we use in this proof can be gathered from Blume and Zame (1994, Section 2).

To state the next result, let cl(sBCE(u)) be the closure of the sBCE set.

Lemma 6. The correspondences u 7→ BCE(u), u 7→ sBCE(u), and u 7→ cl(sBCE(u))
are semi-algebraic.

Proof. The BCE correspondence is semi-algebraic: for all u ∈ RI×A×Θ and p ∈ RA×Θ,
p ∈ BCE(u) if and only if the pair (u, p) is a solution to the following finite system
of polynomial inequalities: p(a, θ) ≥ 0 for all a ∈ A and θ ∈ Θ; ∑a p(a, θ) = π(θ) for
all θ ∈ Θ; and ∑a−i,θ(u(a, θ)− u(bi, a−i, θ))p(a, θ) ≥ 0 for all i ∈ I and ai, bi ∈ Ai.

The sBCE correspondence is also semi-algebraic. To prove it, for u ∈ RI×A×Θ,
p ∈ RA×Θ, i ∈ I, and ai, bi, ci ∈ Ai, we denote by F (u, p, ai, bi, ci) the quantity

∑
a−i,θ

(u(ai, a−i, θ)− u(ci, a−i, θ))p(ai, a−i, θ) + (u(bi, a−i, θ)− u(ci, a−i, θ))p(bi, a−i, θ).
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We observe that p ∈ sBCE(u) if and only if p ∈ BCE(u) and for every i ∈ I there
is Ti ⊆ Ai ×Ai such that the pair (u, p) is a solution of the following finite system of
polynomial inequalities:

∑
a−i,θ

(p(ai, a−i, θ)p(bi)− p(bi, a−i, θ)p(ai))2 = 0 for all (ai, bi) ∈ Ti,

F (u, p, ai, bi, ci) > 0 for all (ai, bi) < Ti and ci ∈ Ai.

Thus, p ∈ sBCE(u) if and only if it the solution of one of finitely many systems of
polynomial inequalities; we conclude that the sBCE correspondence is semi-algebraic.

The correspondence u 7→ cl(sBCE(u)) is also semi-algebraic. Indeed, we have
p ∈ cl(sBCE(u)) if and only if for every ε > 0 there exists q ∈ RA×Θ such that
‖p − q‖ ≤ ε and q ∈ sBCE(u). Thus, since the sBCE correspondence is semi-
algebraic, the graph of the correspondence u 7→ cl(sBCE(u)) is defined by a first-
order formula and therefore semi-algebraic by the Tarski-Seidenberg theorem (Blume
and Zame, 1994, page 787). �

We are ready to complete the proof of the theorem. By Lemma 6, the cor-
respondence u 7→ cl(sBCE(u)) is semi-algebraic. Hence, there is an open sub-
sets U of RI×A×Θ such that the complement of U has Lebesgue measure zero, and
u 7→ cl(sBCE(u)) is continuous on U (Blume and Zame, 1994, page 786).

We claim that for all u ∈ U , BCE(u) = cl(sBCE(u)). To prove the claim, take
any u ∈ U . Since BCE(u) is closed and sBCE(u) ⊆ BCE(u), cl(sBCE(u)) ⊆
BCE(u). To verify the other inclusion, we use Lemma 5 to find a sequence of games
(un)∞n=1 such that un → u and, for every n, p ∈ sBCE(un) ⊆ cl(sBCE(un)). Since
cl(sBCE(u)) is continuous at u, we have p ∈ cl(sBCE(u)); see Aliprantis and Border
(2006, Theorem 17.16). Hence, BCE(u) ⊆ cl(sBCE(u)). We deduce that BCE(u) =
cl(sBCE(u)), as desired.

C. Proof of Theorem 3

The first part of the theorem immediately follows from Theorem 2, together with (3)
and (4). To prove the theorem’s last part, note that, when |I| = 1, minVI = minVR =
v̄(p0), where p0 is a BCE that provides the player with no information (i.e., a BCE
where the player’s action does not vary with the state). The result then follows from
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noting that for a generic game, both VI and VR are convex sets that share the same
maximal value.

Next, we assume that |I| ≥ 2, |Θ| ≥ 2, and |Ai| ≥ 2 for at least two distinct player
i, and show there is an open set U ⊆ RI×A×Θ such that VI(u) ⊂ VR(u) for all u ∈ U .
To ease the exposition, we actually assume (without loss of generality) that |Ai| ≥ 2
for all players i.

To prove VI(u) ⊂ VR(u), we will determine that

min
v∈VR(u)

∑
i

vi < min
v∈VI(u)

∑
i

vi. (22)

Consistently with the notation of Section 6, we write w(p, u) = ∑
i vi(p, u) and

w̄(p, u) = ∑
i v̄i(p, u). We also denote by w(u) the minimum of w(p, u) over all

p ∈ BCE(u), and by w̄(u) the minimum of w̄(p, u) over all p ∈ BCE(u). Note that

min
v∈VR(u)

∑
i

vi = min
p∈cl(sBCE(u))

w(p, u) ≥ w(u), and min
v∈VI(u)

∑
i

vi = w̄(u).

The next lemma gives a sufficient condition for the existence of an open set U ⊆
RI×A×Θ such that (22) holds for all u ∈ U .

Lemma 7. Suppose u∗ ∈ RI×A×Θ and p∗ ∈ ∆π(A×Θ) satisfy the following properties:

(i) Each player i takes at least two actions at p∗: |suppi(p∗)| ≥ 2.

(ii) p∗ is a strict BCE: BR(pai) = {ai} for all i ∈ I and ai ∈ suppi(p).

(iii) p∗ is the unique minimizer of w(p, u∗) over all p ∈ BCE(u∗).

Then there is a neighborhood U of u∗ such that w(p, u) < w̄(u) for all u ∈ U and
p ∈ cl(sBCE(u)).

Proof. Take u∗ and p∗ that satisfy (i)-(iii). First, we verify that

w(p∗, u∗) < w̄(u∗). (23)

Take p ∈ BCE(u∗) such that w̄(u∗) = w̄(p, u∗). If p , p∗, then w̄(p, u∗) ≥ w(p, u∗) >
w(p∗, u∗), where the strict inequality holds by (iii); thus, w̄(u∗) > w(p∗, u∗). If instead
p = p∗, then w̄(p∗, u∗) > w(p∗, u∗) by (i) and (ii); thus w̄(u∗) > w(p∗, u∗). Overall, we
conclude that (23) holds, as desired.
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The rest of the proof proceed by contradiction. To attain this contradiction,
suppose there is a sequence (un)∞n=1 converging to u∗ such that

min
p∈cl(sBCE(un))

w(p, un) = w̄(un) for all n. (24)

By (ii), p∗ ∈ sBCE(un) for all n sufficiently large. Thus,

w(p∗, un) ≥ min
p∈cl(sBCE(un))

w(p, un) for all n large enough. (25)

Combining (24) and (25), we obtain that

w(p∗, un) ≥ w̄(un) for all n large enough. (26)

By standard arguments, w(p∗, u) is continuous in u. In addition, since the corre-
spondence u 7→ BCE(u) is upper hemicontinuous, w̄(u) = minp∈BCE(u) w̄(p, u) is
lower semicontinuous in u (e.g., Aliprantis and Border, 2006, Lemma 17.3). It follows
from (26) that w(p∗, u∗) = lim infn→∞w(p∗, un) ≥ lim infn→∞ w̄(un) ≥ w̄(u∗). Hence,
w(p∗, u∗) ≥ w̄(u∗), which contradicts (23). �

To complete the proof of the theorem, we construct a utility profile u∗ and and
outcome p∗ that satisfy the conditions of Lemma 7. This lemma then delivers a
neighborhood U of u∗ such that (22) holds for all u ∈ U , which in turn means that
the set of u such that VI(u) ⊂ VR(u) has non-empty interior.

We now construct u∗ and p∗. Let n be cardinality of I; by hypothesis, n ≥ 2. For
every player i, we order the set of actions from 0 to mi (where mi+1 is the cardinality
of Ai): Ai = {0, . . . ,mi}. By hypothesis, Ai contains at least two distinct elements,
thus mi ≥ 1. We also consider a partition Θ = Θl ∪ Θh of the set of payoff states
such that both Θl and Θh are nonempty; this is feasible because, by hypothesis, Θ
contains at least two elements.

For player i, we define u∗i as follows:

u∗i (a, θ) =



0 if ai = 0,
1

π(Θl)

(
−1 + 1

n−1
∑
j,i aj

)
if ai = 1 and θ ∈ Θl,

1
π(Θh)

(
2− 1

n−1
∑
j,i aj

)
if ai = 1 and θ ∈ Θh,

−1 if ai > 1.
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Thus, action 0 is a safe action. Action 1 has a payoff that depends both on the state
and on the average action of the opponents. For states in Θl, action 1 generates a
negative baseline payoff of −1, but there is also a positive externality from the actions
of others; these payoffs are scaled by 1/π(Θl). For states in Θh, action 1 generates a
positive baseline payoff of 2, but there is also a negative externality from the actions
of others; these payoffs are scaled by 1/π(Θh). Any action outside {0, 1} is strictly
dominated by 0.

Let p∗ be the outcome such that all players take action 0 when θ ∈ Θl, and all
players take action 1 when θ ∈ Θh. Clearly, (i) and (ii) of Lemma 7 hold.

All that remains is to verify (iii). To do so, note first that p∗ is the unique
minimizer of ∑i

∑
a,θ u

∗
i (1, a−i, θ)p(a, θ) over all p ∈ ∆π({0, 1}I×Θ). Since any action

outside {0, 1} is strictly dominated, we deduce that p∗ is the unique minimizer of∑
i

∑
a,θ u

∗
i (1, a−i, θ)p(a, θ) over all p ∈ BCE(u∗). Moreover, simple algebra shows

that for all players i,

max
bi

∑
a,θ

u∗i (bi, a−i, θ)p∗(a, θ) =
∑
a,θ

u∗i (1, a−i, θ)p∗(a, θ).

In turn, this implies that w(p∗, u∗) = ∑
i

∑
a,θ u

∗
i (1, a−i, θ)p∗(a, θ). Therefore, every

p ∈ BCE(u∗) \ {p∗} has

w(p, u∗) =
∑
i

max
bi

∑
a,θ

u∗i (bi, a−i, θ)p(a, θ) ≥
∑
i

∑
a,θ

u∗i (1, a−i, θ)p(a, θ)

>
∑
i

∑
a,θ

u∗i (1, a−i, θ)p∗(a, θ) = w(p∗, u∗).

we conclude that w(u∗) = w(p∗, u∗) if and only if p = p∗, that is, (iii) of Lemma 7
holds. The proof is now complete.
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Online Appendix

D. Arbitrary Information Technologies

In this section, we characterize the predictions attainable as one ranges over all in-
formation technologies. In particular, we do not require the information technology
to be flexible or monotone. We also show it is without loss to require the technology
to be flexible, and costs to be weakly monotone.19 Formally, a cost function Ci is
weakly monotone if less informative experiment are weakly cheaper to acquire: if
ξi, ξ

′
i ∈ Ei are such that ξi % ξ′i, then Ci(ξi) ≥ Ci(ξ′i).

Proposition 4. Fix a base game G. An information technology T exists that induces
the outcome-value pair (p, v) in an equilibrium of (G, T ) if and only if

(i) p is a BCE, and

(ii) for every i ∈ I, vi ∈ [vi(p), v̄i(p)].

In addition, for every player i, one can choose Ei flexible and Ci weakly monotone.

Proof. “If.” Let (p, v) be an outcome-value pair such that p is a BCE and, for every
i ∈ I, vi ∈ [vi(p), v̄i(p)]. Since p is a BCE, by Bergemann and Morris (2016) there
exist an information structure S = (Z, ζ, (Xi, ξi)i∈I) and a profile of action plans
σ = (σi)i∈I such that p is the outcome of (ξ, σ), and for every player i, σi maximizes

∑
a,x,z,θ

ui(a, θ)
σ′i(ai|xi)ξi(xi|z, θ)∏

j,i

σj(aj|xj)ξj(xj|z, θ)
 ζ(z|θ)π(θ) (27)

over all σ′i ∈ Σi. To ease notation, denote the quantity in (27) by ui(ξ′i, σ′i, ξ−i, σ−i).
For every player i, let Ei = {ξ′i : ξi � ξ′i}. In addition, take λi ∈ [0, 1] such that

vi = λivi(p) + (1− λi)v̄i(p).

For every ξ′i ∈ Ei, define Ci(ξ′i) = λi(maxσ′i ui(ξ
′
i, σ
′
i, ξ−i, σ−i) − vi(p)). Notice that Ei

is flexible and Ci is weakly monotone.
19For an analogous result in single-agent settings, see Caplin and Dean (2015).
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It follows from (27) that Ci(ξi) = λi (v̄i(p)− vi(p)) , which in turn implies that
ui(ξ, σ)− Ci(ξi) = vi. We also see that for every ξ′i ∈ Ei,

ui(ξ, σ)− Ci(ξi) = max
σ′i

ui(ξ, σ′i, σ−i)− Ci(ξi)

= λivi(p) + (1− λi) max
σ′i

ui(ξ, σ′i, σ−i)

≥ λivi(p) + (1− λi) max
σ′i

ui(ξ′i, ξ−i, σ′i, σ−i)

= max
σ′i

ui(ξ′i, ξ−i, σ′i, σ−i)− Ci(ξ′i),

where the first equality follows from (27) and the weak inequality from ξi � ξ′i. We
conclude (ξ, σ) is an equilibrium of (G, T ) with T = (Z, ζ, (Xi, Ei, Ci)i∈I); in addition,
(p, v) is the outcome-value pair corresponding to (ξ, σ).

“Only if.” Let (p, v) be the outcome-value pair of an equilibrium (ξ, σ) of an
information acquisition game (G, T ), with T = (Z, ζ, (Xi, Ei, Ci)i∈I). Define the in-
formation structure S = (Z, ζ, (Xi, ξi)i∈I). Since (ξ, σ) is an equilibrium of (G, T ), σ
is an equilibrium of (G,S). By Bergemann and Morris (2016), p is a BCE.

For every player i, Ci(ξi) ≥ 0, which implies that vi ≤ v̄i(p). In addition, by
hypothesis there exists an experiment ξ′i such that Ci(ξ′i) = 0. Thus, since (ξi, σi) is
a best response to (ξ−i, σ−i), we have that

vi ≥ max
σ′i

ui(ξ′i, ξ−i, σ′i, σ−i) ≥ vi(p).

We conclude that vi ∈ [v̄i(p), vi(p)]. �

E. Examples Where Separation Binds

In this section we present a few simple examples in which the separation constraint
has substantial bite, that is, in which the sBCE set is not dense in the BCE set. In all
the examples that follow, the sBCE set is nowhere dense is the BCE set. As Theorem
3 predicts, if the sBCE set is not dense in the BCE set, it must be nowhere dense. To
ease the exposition, we assume the payoff state is degenerate (i.e., Θ is a singleton),
and we omit it.

The simplest example in which the separation constraint has stark effects is the
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scenario in which the players’ utilities are constant: ui(a) = ui(b) for all i ∈ I and
a, b ∈ A. In this case, the BCE set is the entire simplex ∆(A). On the other hand, a
BCE is separated if and only if the players’ actions are independent. Thus, the sBCE
set can be identified with ∏i∈I ∆(Ai), the set of mixed-action profiles.

The presence of weakly dominated actions is a factor that may put a wedge be-
tween BCE and sBCE. For example, consider the following 2× 2 game:

a2 b2

a1 2, 2 2, 2
b1 3, 1 0, 0

This game can be seen as the reduced normal form of a Battle of the Sexes with
Outside Option.20 Note that a2 weakly dominates b2.

It is easy to see that the BCEs are all the outcomes p such that p(b1, b2) = 0 and
p(a1, a2) ≤ 2p(a1, b2). However, a BCE p is separated if and only if p(b1, a2) ∈ {0, 1}.
To see why, first consider the case in which p(b1, a2) = {0, 1}. Then, since player 1’s
action is deterministic (either p(a1) = 1 or p(b1) = 1), the separation constraint is
trivially satisfied for both players. Conversely, suppose that p(b1, a2) ∈ (0, 1). In this
case, player 2 takes both actions with positive probability, and they induce different
beliefs about player 1’s action: pa2(b1) > 0 = pb2(b1). Since a2 weakly dominates b2,
we have a2 ∈ BR(pa2) ∩BR(pb2). Hence, the separation constraint is not satisfied.

One should not overstate the relationship between weakly dominated actions and
separation. As the next example highlights, the separation constraint can have a
substantial impact even if no action is weakly dominated:

a2 b2 c2

a1 8, 8 3, 7 2, 6
b1 7, 3 5, 1 0, 5
c1 6, 2 1, 4 4, 0

The game, which is a variation of Myerson (1997, Figure 6), has no weakly dominated
20In the BoS with OO we have in mind, player 1 first chooses between Out and In. Given Out,

each player obtains a payoff of 2. Given In, the players participate in a coordination game in which
they simultaneously choose between a Bach concert and a Stravinsky concert. If they coordinate
on Bach, player 1 gets 3 and player 2 gets 1; if they coordinate on Stravinsky, player 1 gets 1 and
player 2 gets 3; if they mis-coordinate, they both obtain 0.
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action. It has one pure Nash equilibrium and one mixed Nash equilibrium:

(a1, a2) and
(1

2b1 + 1
2c1,

1
2b2 + 1

2c2

)
.

The BCEs are the convex combinations of the two Nash equilibria: for t ∈ [0, 1],

pt = t(a1, a2) + (1− t)
(1

2b1 + 1
2c1,

1
2b2 + 1

2c2

)
.

The game has only two separated BCE, namely, the two Nash equilibria. Indeed,
for every t ∈ (0, 1) and every player i, the action recommendations ai and bi (or ci)
induce distinct posterior beliefs about the action of the opponent: ptai(aj) = 1, while
ptbi(bj) = ptbi(cj) = 1/2. Yet, ai is best response to the belief induced by bi:

1
2ui(ai, bj) + 1

2ui(ai, cj) = 5
2 = 1

2ui(bi, bj) + 1
2ui(bi, cj).

F. Strict BCE: Single-Agent Settings

A BCE p is strict if all i ∈ I, ai ∈ suppi(p), and bi ∈ Ai with bi , ai,

∑
a−i,θ

(ui(ai, a−i, θ)− ui(bi, a−i, θ)) p(ai, a−i, θ) > 0.

In the main text, discussing Theorem 2, we mentioned the following result:

Proposition 5. Let I = {i} be a singleton. For generic ui, the set of strict BCE is
dense in the BCE set.

We expect the result to be known in the literature. However, we could not find
a good reference. Thus, next we provide a self-contained proof. The proof relies on
two lemmas on dominated actions. A mixed action αi ∈ ∆(Ai) weakly dominates
a pure action ai ∈ Ai if ∑bi ui(bi, a−i, θ)αi(bi) ≥ ui(ai, a−i, θ). for all a−i ∈ A−i and
θ ∈ Θ. The next result provides a characterization of weakly dominated actions:21

Lemma 8. The following statements are equivalent:

(i) There is no belief µai ∈ ∆(A−i ×Θ) for which ai is the unique best response.
21See any textbook on statistical decision theory for closely related results on admissibility.
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(ii) There is a mixed action αi ∈ ∆(Ai \ {ai}) that weakly dominates ai.

Proof. Condition (i) can be rewritten as

max
µi∈∆(A−i×Θ)

min
bi∈Ai\{ai}

∑
a−i,θ

(ui(ai, a−i, θ)− ui(bi, a−i, θ))µi(a−i, θ) ≤ 0.

Equivalently,

max
µi∈∆(A−i×Θ)

min
αi∈∆(Ai\{ai})

∑
a−i,θ

(ui(ai, a−i, θ)− ui(bi, a−i, θ))µi(a−i, θ)αi(bi) ≤ 0.

By the minimax theorem (e.g., Rockafellar, 1970, Corollary 37.3.2), the above in-
equality holds if and only if

min
αi∈∆(Ai\{ai})

max
µi∈∆(A−i×Θ)

∑
a−i,θ

(ui(ai, a−i, θ)− ui(bi, a−i, θ))µi(a−i, θ)αi(bi) ≤ 0.

Equivalently,

min
αi∈∆(Ai\{ai})

max
a−i,θ

∑
a−i,θ

(ui(ai, a−i, θ)− ui(bi, a−i, θ))αi(bi) ≤ 0.

which is another way of expressing condition (ii). �

A mixed action αi ∈ ∆(Ai) strictly dominates a pure action ai ∈ Ai if for all
a−i ∈ A−i and θ ∈ Θ, ∑bi ui(bi, a−i, θ)αi(bi) > ui(ai, a−i, θ). The next result shows
that generically, weakly dominated actions are strictly dominated.

Lemma 9. Let I = {i} be a singleton. For generic ui, if an action ai is weakly
dominated by some mixed action αi ∈ ∆(Ai \ {ai}), then it is strictly dominated by
some mixed action βi ∈ ∆(Ai).

Proof. Let ai be an action that is weakly dominated by a mixed action αi ∈ ∆(Ai \
{ai}). Let A′i be the support of αi, and let Θ′ be set of states θ for which

ui(ai, θ) =
∑
bi

ui(bi, θ)αi(bi). (28)

Let m be the cardinality of A′i, and let n be the cardinality of Θ′. We consider the
m × n matrix M ∈ RA′i×Θ′ given by M(bi, θ) = ui(ai, θ) − ui(bi, θ). For generic ui,
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the matrix M has full rank. By (28), the rows of M are linearly dependent. Thus,
the rank of M must be n, the number of columns. We obtain that the row space
of M has dimension n. Hence, we can find βi ∈ RA′i such that for every θ ∈ Θ′

[∑bi(ui(ai, θ)− u(bi, θ))βi(bi) < 0. For every t > 0, we define αti ∈ RA′i by

αti(bi) = αi(bi) + tβi(bi)∑
ci αi(ci) + tβi(ci)

.

For t sufficiently small, αti is a mixed action that strictly dominates ai. �

We are now ready to prove the proposition on strict BCE.

Proof of Proposition 5. Let A∗i be the set of actions that are not strictly dominated.
Since ui is generic, it follows from Lemma 9 that each ai ∈ A∗i is not weakly dominated
by a mixed action αi ∈ ∆(Ai \ {ai}). By Lemma 8, there is a belief µai ∈ ∆(Θ) for
which ai is the unique best response.

Since π has full support, we can find ν ∈ ∆(Θ) and for every ai ∈ A∗i , tai ∈ (0, 1)—
with ∑ai∈A∗i tai ≤ 1—such that

π =
∑
ai∈A∗i

taiµai +
1−

∑
ai∈A∗i

tai

 ν.
Let a∗i be a best response to ν; necessarily, a∗i ∈ A∗i . Define the outcome p ∈ ∆π(Ai×
Θ) as follows:

p(ai, θ) =


taiµai(θ) if ai ∈ A∗i \ {a∗i },

ta∗i µa∗i (θ) +
(
1−∑ai∈A∗i tai

)
ν(θ) if ai = a∗i ,

0 otherwise.

The outcome p is a strict BCE. Moreover, if q is a BCE, then suppi(q) ⊆ A∗i =
suppi(p). Thus, {sq + (1− s)p : s ∈ (0, 1) and q ∈ BCE} is a subset of the set of
strict BCE, and it is dense in the BCE set. We conclude that (for generic ui) the set
of strict BCE is dense in the BCE set. �

6



G. Proofs for Section 6

G.1. Proof of Proposition 1

First, we show that focusing on symmetric outcomes is without loss for welfare anal-
ysis in symmetric games (the assumption of binary actions has no role in this result).

Claim 7. For every BCE p, there is a symmetric BCE q such that w̄(q) = w̄(p) and
w(q) ≤ w(p).

Proof. Fix a BCE p. Let Φ be the set of permutations of I. For every permutation
φ ∈ Φ, we define the outcome pφ by pφ(a, θ) = p(aφ, θ). Note that player i in pφ

behaves as player j = φ−1(i) in p. One can verify that pφ because p is a BCE and the
game is symmetric.

We define the outcome q by q = 1
|Φ|
∑
φ∈Φ pφ, where |Φ| is the cardinality of Φ. As

noted above, each pφ is a BCE. Since the BCE set is convex, q is a BCE.
The outcome q is symmetric. Indeed, Φ = {ψ−1 ◦ φ : φ ∈ Φ} for every permutation

ψ ∈ Φ. We deduce that

q(aψ, θ) = 1
|Φ|

∑
φ∈Φ

pφ(aψ, θ) = 1
|Φ|

∑
φ∈Φ

p(ψ−1◦φ)(aψ, θ)

= 1
|Φ|

∑
φ∈Φ

p(aφ, θ) = 1
|Φ|

∑
φ∈Φ

pφ(a, θ) = q(a, θ).

Hence, q is symmetric.
To conclude the proof, we observe w̄(q) = 1

|Φ|
∑
φ∈Φ w̄(pφ) = 1

|Φ|
∑
φ∈Φ w̄(p) =

w̄(p), where the first equality holds because w̄(pφ) is affine in pφ, and the second
equality because the game is symmetric. Finally, note that w(q) ≤ 1

|Φ|
∑
φ∈Φ w(pφ) =

1
|Φ|
∑
φ∈Φ w(p) = w(p), where the first inequality holds because w(pφ) is convex in pφ,

and the second equality because the game is symmetric. �

By Claim 7, w̄ is the value of the optimization problem

min
p∈BCEsy

w̄(p), (29)
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and w is the value of the optimization problem

min
p∈BCEsy

w(p). (30)

We consider also the following optimization problem:

min
p∈∆sy

π (A×Θ)
w(p), (31)

We proceed by successive claims.

Claim 8. The following conditions are equivalent: (i) w < w̄, and (ii) vi(p) < v̄i(p)
for all players i and optimal solutions p of (30).

Proof. We first prove that (i) implies (ii). Suppose w < w̄ and let p be an optimal
solution of (30). Then, w(p) = w < w̄ ≤ w̄(p). The inequality w(p) < w̄(p) implies
that vi(p) < v̄i(p) for some player i. Since the game is symmetric and p is symmetric,
vi(p) < v̄i(p) for all players i.

We now prove that (ii) implies (i). Suppose vi(p) < v̄i(p) for all players i and
optimal solutions p of (30). Let p ∈ BCE be an optimal solution of (29). If p is also an
optimal solution of (30), then w(p) = ∑

i vi(p) <
∑
i v̄i(p) = w̄(p) by hypothesis; thus,

w < w̄. If instead p is not an optimal solution of (30), then w < w(p) ≤ w̄(p) = w̄;
thus, w < w̄. �

Claim 9. For every p ∈ BCE and i ∈ I, the following conditions are equivalent: (i)
vi(p) < v̄i(p), and (ii) ai ∈ suppi(p) and BR(pai) = {ai} for all ai ∈ Ai.

Proof. Condition (i) holds if and only if player i is strictly better by following the
action recommendation of the mediator rather then best responding ex ante. In other
terms, player i has no action ai such that for all bi ∈ suppi(p), ai ∈ BR(pbi). Given
that Ai has two elements, this is equivalent to condition (ii). �

Claim 10. The following conditions are equivalent: (i) all optimal solutions of (30)
satisfy (5), and (ii) all optimal solutions of (31) satisfy (5).

Proof. First we show that (i) implies (ii). Let p be an optimal solution of (30) and
let q be an optimal solution of (31). For every t ∈ [0, 1], define pt = (1 − t)p + tq.
Furthermore, set s = max{t : pt ∈ BCEsy}. Note that s is well defined: the set
BCEsy is closed and p0 = p ∈ BCEsy.

8



We observe that ps is an optimal solution of (30): since w(pt) is convex in t,
w(ps) ≤ (1− s)w(p) + sw(q) ≤ w(p) = w. Thus, ps must satisfy (5). But this implies
that s = 1; otherwise, one could find ε > 0 sufficiently small so that ps+ε ∈ BCEsy,
contradicting the definition of ps. This implies that q = ps satisfies (5).

Now we show that (ii) implies (i). Let p be an optimal solution of (30) and let q
be an optimal solution of (31). Since q satisfies (5), q is a BCE. Thus, q is an optimal
solution of (30). This implies that p is an optimal solution of (31), and therefore
satisfies (5). �

By combining the three claims above, we obtain Proposition 1.

G.2. Proof of Claim 1

We begin with a result that establishes a necessary condition for an outcome to solve
the relaxed program from Proposition 1. To state the result, let Ui(ai, p) be player
i’s payoff if she always takes action ai while (a−i, θ) is distributed according to p:

Ui(ai, p) =
∑

bi,a−i,θ

ui(ai, a−i, θ)p(bi, a−i, θ).

Note that for all p ∈ ∆sy
π (A×Θ) and i ∈ I, w(p) = nmax{Ui(0, p), Ui(1, p)}. Thus,

argmin
p∈∆sy

π (A×Θ)
w(p) = argmin

p∈∆sy
π (A×Θ)

max{Ui(0, p), Ui(1, p)}.

Claim 11. Every p∗ ∈ argminp∈∆sy
π (A×Θ) w(p) has Ui(0, p∗) = Ui(1, p∗) for all i ∈ I.

Proof. We prove the contrapositive: if p∗ ∈ ∆sy
π (A×Θ) has Ui(0, p∗) , Ui(1, p∗), then

p∗ < argminp∈∆sy
π (A×Θ) w(p).

We first consider the case in which Ui(0, p∗) > Ui(1, p∗). Let q be the outcome
where all investors always attack. Observe that q ∈ argminp∈∆sy

π (A×Θ) Ui(0, p), and
that every r ∈ argminp∈∆sy

π (A×Θ) Ui(0, p) has the speculative attack succeeding with
probability one. Hence, every such r has Ui(0, r) < Ui(1, r), which implies that
p∗ < argminp∈∆sy

π (A×Θ) Ui(0, p). We deduce that Ui(0, q) < Ui(0, p∗).
For every ε ∈ (0, 1), we define qε = εq + (1 − ε)p∗ ∈ ∆sy

π (A × Θ). Using the
inequality Ui(0, q) < Ui(0, p∗), we obtain that for all ε > 0 small enough,

w(qε) = nUi(0, pε) = n (εUi(0, q) + (1− ε)Ui(0, p∗)) < nUi(0, p∗) = w(p∗).
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We conclude that p∗ < argminp∈∆sy
π (A×Θ) w(p).

The argument for the case Ui(0, p∗) < Ui(1, p∗) is similar, but with q being replaced
by the outcome where no one ever speculates. �

Thanks to Claim 11, to determine argminp∈∆sy
π (A×Θ)w(p), we can study the fol-

lowing “simpler” optimization problem:

min
p∈∆sy

π (A×Θ)
Ui(0, p) s.t. Ui(0, p) = Ui(1, p). (32)

Claim 12. An outcome p ∈ ∆sy
π (A×Θ) is an optimal solution of (32) if and only if

p

∑
j,i

aj = θ − 1
 = 0 and p

∑
j,i

aj ≥ θ

 = k

1 + x
.

Proof. Simple algebra shows that every p that satisfies Ui(1, p) = Ui(0, p) must yield

Ui(0, p) = −xp
∑
j,i

aj ≥ θ

 = −x
k − p

(∑
j,i aj = θ − 1

)
1 + x

 .
Therefore, we get that (32) is the same as

min
p∈∆sy

π (A×Θ)
p

∑
j,i

aj = θ − 1
 s.t. p

∑
j,i

aj ≥ θ

 =
k − p

(∑
j,i aj = θ − 1

)
1 + x

.

Hence, to complete the proof, we only need to be sure that there is p ∈ ∆sy
π (A× Θ)

such that

p

∑
j,i

aj = θ − 1
 = 0 and p

∑
j,i

aj ≥ θ

 = k

1 + x
.

Such an outcome is easy to construct: with probability k/1 + x, all players attack;
with the remaining probability, no player attacks. �

The following result connects what we have just found with the conditions in the
statement of Claim 1.

Claim 13. For an outcome p ∈ ∆π(A×Θ), the following conditions are equivalent:
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(i) For all players i and payoff states θ,

p

∑
j,i

aj = θ − 1
 = 0, (33)

p

∑
j,i

aj ≥ θ

 = k

1 + x
. (34)

(ii) For all payoff states θ,

p

(
θ − 1 ≤

∑
i

ai ≤ θ

)
= 0, (35)

p

(∑
i

ai > θ

)
= k

1 + x
. (36)

Proof. First we show that (i) implies (ii). Since max Θ < n,

p

(∑
i

ai = θ − 1
)

= p

(∑
i

ai = θ − 1, and ai = 0 for some i
)
.

Thus, p (∑i ai = θ − 1) ≤ ∑
i p
(∑

j,i aj = θ − 1, and ai = 0
)

= 0, where the last
equality follows from (33). Moreover, since min Θ > 0,

p

(∑
i

ai = θ

)
= p

(∑
i

ai = θ, and ai = 1 for some i
)
.

Thus, p (∑i ai = θ) ≤ ∑i p
(∑

j,i aj = θ − 1, and ai = 1
)

= 0, where the last equality
follows from (33). We conclude that (35) holds.

To prove (36), notice that p (∑i ai > θ) = p (∑i ai ≥ θ) , because we have just
verified that p (∑i ai = θ) = 0. Then, fixing some player i∗,

p

(∑
i

ai ≥ θ

)
= p

(∑
i,i∗

ai ≥ θ, and ai∗ = 0
)

+ p

(∑
i,i∗

ai ≥ θ − 1, and ai∗ = 1
)

= p

(∑
i,i∗

ai ≥ θ, and ai∗ = 0
)

+ p

(∑
i,i∗

ai ≥ θ, and ai∗ = 1
)

= p

(∑
i,i∗

ai ≥ θ

)
= k

1 + x
,
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where the second equality holds by (33), and the last equality by (34). We deduce
(36). This completes the proof that (i) implies (ii).

Now we show that (ii) implies (i). Observe that

p

∑
j,i

aj = θ − 1
 = p

∑
j

aj = θ − 1, and ai = 0
+ p

∑
j

aj = θ, and ai = 1
 .

By (35), the right-hand side is equal to zero: we deduce (33). We obtain (34) from
the following chain of equalitites:

p

∑
j,i

aj ≥ θ

 = p

∑
j

aj ≥ θ, and ai = 0
+ p

∑
j

aj > θ, and ai = 1


= p

∑
j

aj > θ, and ai = 0
+ p

∑
j

aj > θ, and ai = 1


= p

∑
j

aj > θ

 = k

1 + x
,

where the second equality follows from (35), and the last equality from (36). This
completes the proof that (ii) implies (i). �

Combining the three results above, we obtain Claim 1.

G.3. Proof of Claim 2

First, we obtain necessary and sufficient conditions for w < w̄ in the regime change
game for an arbitrary number of states.

Claim 14. The inequality w < w̄ holds if and only if all symmetric outcomes p that
satisfy (6) and (7), also satisfy

pai=1

∑
j

aj ≥ θ

 >
k

1 + x
, (37)

where pai=1 is the conditional probability of (a−i, θ) given ai = 1.

Proof. By Proposition 1, the inequality w < w̄ holds if and only if all optimal solutions
of minp∈∆sy

π (A×Θ)w(p) satisfy (5). By Claim 1, the latter condition is equivalent to the
following statement: all symmetric outcomes p that satisfy (6) and (7), also satisfy
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(5). Next we verify that, for all symmetric outcomes p that satisfy (6) and (7), the
conditions (5) and (37) are equivalent.

Let p be a symmetric outcome that satisfy (6) and (7). First, note (7) implies
the attack succeeds with a probability strictly between 0 and 1, and so players must
both attack and and not attack with positive probability due to symmetry. Hence
suppi(p) = {0, 1} = Ai.

Given suppi(p) = {0, 1}, i’s obedience constraints are strict when

pai=1

∑
j,i

aj ≥ θ − 1
− k > −xpai=1

∑
j,i

aj ≥ θ

 , (38)

pai=0

∑
j,i

aj ≥ θ − 1
− k < −xpai=0

∑
j,i

aj ≥ θ

 . (39)

By (6)—see also Claim 13—

pai=1

∑
j,i

aj ≥ θ − 1
 = pai=1

∑
j,i

aj ≥ θ

 ,
and

pai=0

∑
j,i

aj ≥ θ − 1
 = pai=0

∑
j,i

aj ≥ θ

 .
Thus, (38) and (39) hold if and only if

pai=1

∑
j,i

aj ≥ θ

 >
k

1 + x
> pai=0

∑
j,i

aj ≥ θ

 .
By (6) and (7)—see also Claim 13— p

(∑
j,i aj ≥ θ

)
= k

1+x . Thus, by the law of total
probability, (38) and (39) hold if and only if

pai=1

∑
j

aj ≥ θ

 = pai=1

∑
j,i

aj ≥ θ − 1
 = pai=1

∑
j,i

aj ≥ θ

 >
k

1 + x
.

Overall, we conclude that, for all symmetric outcomes p that satisfy (6) and (7), the
conditions (5) and (37) are equivalent. �

Next we refine the characterization w < w̄ obtained in Claim 14. To state this
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refinement, denote the CDF of θ by F (θ) := ∑
θ′≤θ π(θ). Define also the cutoff θ∗ by

θ∗ = min
{
θ ∈ Θ : F (θ) ≥ k

1 + x

}
.

Claim 15. The inequality w̄ > w holds if and only if

F (θ∗) (θ∗ − E[θ|θ ≤ θ∗]) < k

1 + x

(
3− 3k

1 + x
+ θ∗ − E[θ]

)
. (40)

Proof. By Claim 14, w < w̄ is equivalent to

k

1 + x
< min

p∈∆sy
π (A×Θ)

pai=1

∑
j,i

aj ≥ θ − 1


s.t. (6) and (7).
(41)

Hence, showing (40) and (41) are equivalent is sufficient. To show this equivalence,
we first characterize the unique solution to the program on the right hand side of (41).
This solution gives the value of the program, which we then compare to k/(1 + x).

We begin with an alternative way of representing symmetric outcomes. This rep-
resentation is based on the observation that an outcome p ∈ ∆π(A×Θ) is symmetric
if and only if, conditional on the state, all action profiles with the same number of
attackers have the same probability. Consequently, p ∈ ∆sy

π (A × Θ) if and only if
there is Q : Θ→ ∆ ({0, . . . , n}) such that

p(a, θ) =
(

n∑
j aj

)
Q

∑
j

aj

∣∣∣∣θ
 π(θ),

where
(

n∑
j
aj

)
is the binomial coefficient. Thus, one can write

p(ai = 1) =
∑
θ

π(θ)
n∑

m=1

m

n
Q(m|θ).

Moreover, condition (6) is equivalent to Q(θ − 1|θ) = Q(θ|θ) = 0. Therefore,

p

∑
j,i

aj ≥ θ − 1 and ai = 1
 =

∑
θ

π(θ)
∑

m≥θ+1

m

n
Q(m|θ),
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and

p

∑
j

aj ≥ θ

 =
∑
θ

π(θ)
∑

m≥θ+1
Q(m|θ).

Hence, letting
f(Q) =

∑
θ π(θ)∑m≥θ+1mQ(m|θ)∑
θ π(θ)∑n

m=1mQ(m|θ) ,

we can write the program on the right hand side of (40) as

min
Q:Θ→∆({0,...,n})

f(Q)

s.t.
∑
θ

π(θ)
∑

m≥θ+1
Q(m|θ) = k

1 + x
,

Q(θ − 1|θ) = Q(θ|θ) = 0 for all θ.

(42)

Since the constraint set is compact and the objective continuous, the above program
admits a solution, Q∗. We now use perturbation-based arguments to show Q∗ must
satisfy a few properties:

1. Q∗(m|θ) = 0 whenever m < {θ− 2, θ + 1}: if Q∗(m|θ) > 0 for m > θ + 1 (resp.,
m < θ − 2), one can reduce the objective without violating the constraints by
moving ε > 0 mass from Q∗(m|θ) to Q∗(θ + 1|θ) (resp., Q∗(θ − 2|θ)).

2. If Q∗(θ + 1|θ) > 0, then Q∗(θ′ + 1|θ′) = 1 for all θ′ < θ: For a contradiction,
suppose Q∗(θ+ 1|θ) > 0, but Q∗(θ′+ 1|θ′) < 1 for some θ′ < θ. For every ε > 0,
define the following perturbation Qε of Q:

Qε(m|θ̂) =



Q∗(θ + 1|θ)− ε if m = θ + 1, θ̂ = θ,

Q∗(θ − 2|θ) + ε if m = θ − 2, θ̂ = θ,

Q∗(θ′ + 1|θ′) + ε π(θ)
π(θ′) if m = θ′ + 1, θ̂ = θ′,

Q∗(θ′ − 2|θ′)− ε π(θ)
π(θ′) if m = θ′ − 2, θ̂ = θ′,

Q∗(m|θ̂) otherwise.

The contradiction assumption meansQε is feasible for all sufficiently small ε > 0.
Direct computation shows

lim
ε↘0

1
ε

(f(Qε)− f(Q∗)) = π(θ)(θ′ − θ)∑
θ̂ π(θ̂)∑n

m=1mQ
∗(m|θ̂)

< 0,
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contradicting the optimality of Q.

3. If Q∗(θ − 2|θ) > 0, then Q∗(θ′ − 2|θ′) = 1 for all θ′ > θ: For a contradiction,
suppose Q∗(θ− 2|θ) > 0, but Q∗(θ′− 2|θ′) < 1 for some θ′ > θ. For every ε > 0,
define the following perturbation Qε of Q:

Qε(m|θ̂) =



Q∗(θ − 2|θ)− ε if m = θ − 2, θ̂ = θ,

Q∗(θ + 1|θ) + ε if m = θ + 1, θ̂ = θ,

Q∗(θ′ − 2|θ′) + ε π(θ)
π(θ′) if m = θ′ − 2, θ̂ = θ′,

Q∗(θ′ + 1|θ′)− ε π(θ)
π(θ′) if m = θ′ + 1, θ̂ = θ′,

Q∗(m|θ̂) otherwise.

The contradiction assumption meansQε is feasible for all sufficiently small ε > 0.
Direct computation shows

lim
ε↘0

1
ε

(f(Qε)− f(Q∗)) = π(θ)(θ − θ′)∑
θ̂ π(θ̂)∑n

m=1mQ(m|θ̂)
< 0,

contradicting the optimality of Q∗.

The above conditions imply the optimal Q∗ admits a cutoff θ̃ such that Q∗(θ+1|θ) = 1
for all θ < θ̃, Q∗(θ − 2|θ) = 1 for all θ > θ̃, and Q∗({θ̃ + 1, θ̃ − 2}|θ̃) = 1. Then, the
constraint ∑

θ

π(θ)
∑

m≥θ+1
Q(m|θ) = k

1 + x

pins down the optimum: we must have θ̃ = θ∗, and

Q∗(θ∗ + 1|θ∗) = 1
π(θ∗)

(
k

1 + x
− F (θ∗ − 1)

)
.

Therefore, the inequality (41) becomes

k

1 + x
< f(Q∗) =

∑
θ π(θ)∑m≥θ+1mQ

∗(m|θ)∑
θ π(θ)∑n

m=1mQ
∗(m|θ)

=
F (θ∗)E[θ + 1|θ ≤ θ∗]−

(
F (θ∗)− k

1+x

)
(θ∗ + 1)

E[θ] + k
1+x − 2

(
1− k

1+x

) .

Rearranging the above equation gives (40). �
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Finally, we prove Claim 2 by specializing Claim 15 to two states.

Proof of Claim 2. We begin the proof by explicitly stating the implication of (40) for
the binary case. In particular, we show w < w̄ if and only if one of the following two
conditions hold:

(i) k
1+x > π(θ) and k

1+x >
1
3π(θ)(θ̄ − θ).

(ii) k
1+x ≤ π(θ) and k

1+x < 1− 1
3π(θ̄)(θ̄ − θ).

To prove the above, we consider two cases, depending on the value of θ∗:

• Case 1: k/(1 + x) > π(θ). Then θ∗ = θ̄, and the inequality (40) specializes to

θ̄ − E[θ] < k

1 + x

(
3− 3k

1 + x
+ θ̄ − E[θ]

)
.

Substituting θ̄ − E[θ] = π(θ)(θ̄ − θ) and rearranging gives
(

1− k

1 + x

)
π(θ)(θ̄ − θ) < 3 k

1 + x

(
1− k

1 + x

)
,

which is equivalent to
1
3π(θ)(θ̄ − θ) < k

1 + x
.

Thus, we have established (i) is sufficient for w < w̄, and necessary if π(θ) ≥ k
1+x .

• Case 2: Suppose now k/(1 +x) ≤ π(θ). Then θ∗ = θ. Thus, the inequality (40)
is now

0 < k

1 + x

(
3− 3k

1 + x
+ θ − E[θ]

)
.

Note θ − E[θ] = −π(θ̄)(θ̄ − θ). Therefore, the above inequality is equivalent to

k

1 + x
< 1− 1

3π(θ̄)(θ̄ − θ).

Hence, (ii) is sufficient for w < w̄, and necessary if π(θ) ≤ k
1+x .

Next, we argue that a violation of one of the claim’s conditions implies that either
(i) or (ii) above hold. Suppose first θ̄ − θ < 3. In this case, 1

3π(θ)(θ̄ − θ) < π(θ), and

17



so (i) holds whenever k
1+x > π(θ). If k

1+x ≤ π(θ), then (ii) holds, because

1− 1
3π(θ̄)(θ̄ − θ) > 1− π(θ̄) = π(θ) ≥ k

1 + x
.

Suppose now θ̄ − θ ≥ 3, but (9) fails. Then one of the following inequality chains
must hold: either

k

1 + x
>

1
3(θ̄ − θ)(1− π(θ̄)) = 1

3(θ̄ − θ)π(θ) ≥ π(θ),

or
k

1 + x
< 1− 1

3(θ̄ − θ)π(θ̄) ≤ 1− π(θ̄) = π(θ).

Either way, w < w̄ holds: the first inequality chain implies (i), whereas the second
inequality chain implies (ii).

To conclude the proof, we show that the claim’s condition must hold if neither (i)
nor (ii) hold. Suppose first that k

1+x > π(θ), but (i) fails. Then

1
3(θ̄ − θ)(1− π(θ̄)) = 1

3(θ̄ − θ)π(θ) ≥ k

1 + x
> π(θ),

meaning θ̄− θ ≥ 3, and the right inequality in (9) holds. For the left inequality, note
that

1− 1
3(θ̄ − θ)π(θ̄) ≤ 1− π(θ̄) = π(θ) < k

1 + x
.

Suppose now k
1+x ≤ π(θ), but (ii) fails. Then,

1− π(θ̄) ≥ k

1 + x
≥ 1− 1

3(θ̄ − θ)π(θ̄).

The right inequality above delivers the left inequality in (9). Moreover, the implied
inequality between the left most expression and the right most expression implies

1
3(θ̄ − θ)π(θ̄) ≥ π(θ̄),

and so θ̄ − θ ≥ 3. Finally, to get the right inequality in (9), notice that

k

1 + x
≤ 1− π(θ̄) ≤ 1

3(θ̄ − θ)(1− π(θ̄)),
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where the last inequality holds because θ̄ − θ ≥ 3. �

H. Proofs for Section 7

H.1. Main Results

In this section, we prove Proposition 2 and Proposition 3. As a first step, we prove a
basic lemma about best responses. In what follows, for p ∈ ∆(A×Θ), ai ∈ suppi(p),
and bi ∈ Ai, take ui (bi, pai) ∈ R to be

ui (bi, pai) =
∑
a−i,θ

ui(bi, a−i, θ)pai(a−i, θ).

Lemma 10. For every t ∈ (0, 1), p, q ∈ BCE, i ∈ I, and ai ∈ suppi(p),

BR
(
(tp+ (1− t)q)ai

)
⊆ BR (pai) .

Proof. Take bi ∈ BR
(
(tp+ (1− t)q)ai

)
. If ai < suppi(q), then (tp+ (1− t)q)ai = pai ,

which immediately implies the desired result.
Suppose now that ai ∈ suppi(q). Since p, q ∈ BCE, we have

ui(ai, pai) ≥ ui(bi, pai) and ui(ai, qai) ≥ ui(bi, qai).

Simple algebra shows that there exists s ∈ (0, 1) such that

(tp+ (1− t)q)ai = spai + (1− s)qai .

Since bi ∈ BR
(
(tp+ (1− t)q)ai

)
, we obtain that

sui(bi, pai) + (1− s)ui(bi, qai) = ui(bi, spai + (1− s)qai)

≥ ui(ai, spai + (1− s)qai)

= sui(ai, pai) + (1− s)ui(ai, qai).

We conclude that ui(ai, pai) = ui(bi, pai) and ui(ai, qai) = ui(bi, qai). It follows from
p ∈ BCE that bi ∈ BR (pai) . �
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Next, we show that taking convex combinations of BCEs usually preserve the set
of action recommendations that lead to different beliefs.

Lemma 11. For every p, q ∈ ∆(A × Θ), i ∈ I, and ai, bi ∈ suppi(p) with pai , pbi,
there are at most two t ∈ (0, 1) such that

(tp+ (1− t)q)ai = (tp+ (1− t)q)bi . (43)

Proof. Note that t ∈ (0, 1) is a solution of (43) if and only if for every a−i ∈ A−i and
θ ∈ Θ,

(tp(ai, a−i, θ) + (1− t)q(ai, a−i, θ)) (tp(bi) + (1− t)q(bi))

=(tp(bi, a−i, θ) + (1− t)q(bi, a−i, θ)) (tp(ai) + (1− t)q(ai)) . (44)

Each equation (44) is polynomial in t, with degree at most two. Since pai , pbi , at
least one such polynomial equation does not have degree zero and, therefore, has at
most two solutions. We deduce that (43) has at most two solutions for t ∈ (0, 1). �

Our next goal is to show that minimally mixed BCEs are the norm rather than
the exception. As an intermediate step, we first show the set of minimally mixed
BCEs is non-empty.

Lemma 12. A minimally mixed BCE exists.

Proof. For every p ∈ BCE, define the set

X(p) =
⋃
i

{(ai, bi) : ai, bi ∈ suppi(p) and pai , pbi} .

Note that p ∈ BCE is minimally mixed if and only if it has maximal support and for
every q ∈ BCE, X(q) ⊆ X(p).

Since the set A × Θ is finite and BCE is a convex set, we can find a maximal
support p ∈ BCE such that for every maximal-support q ∈ BCE, the cardinality of
X(p) is larger than the cardinality of X(q).

We now show that p is BCE-minimally mixed. Fix an arbitrary q ∈ BCE. For
every t ∈ (0, 1), define pt = tp + (1 − t)q, which is a BCE because BCE is convex.
Since p has maximal support, the same is true for pt. Thus, the cardinality of X(p)
is larger than the cardinality of X(pt). By Lemma 11, we can find t ∈ (0, 1) such
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that X(p) ⊆ X(pt) and X(q) ⊆ X(pt). This shows that X(q) ⊆ X(p); otherwise,
the cardinality of X(pt) would be strictly larger than the cardinality of X(p). We
conclude that p is minimally mixed. �

We now show that the minimally mixed BCEs includes most BCEs in a precise
sense.

Lemma 13. The set of minimally mixed BCEs is open and dense in the set of BCEs.

Proof. Let PM denote the set of minimally mixed BCEs. We first argue that PM is
open in BCE. Towards this goal, note the following sets are open in BCE for every
i ∈ I and ai, bi ∈ Ai:

{p ∈ BCE : p(ai) > 0}, and {p ∈ BCE : p(ai)p(bi) > 0 and pai , pbi}.

Since A is finite, we obtain that PM equals the intersection of a finite number of open
subsets of PM . It follows PM is open in BCE.

To see PM is dense in BCE, fix some q ∈ BCE. Take p to be a minimally mixed
BCE, which exists by Lemma 12. For every t ∈ (0, 1), define pt = tp + (1 − t)q.
Because p has maximal support, the same is true for pt for all t ∈ (0, 1). Moreover,
by Lemma 11, a finite set T ⊆ (0, 1) exists such that for all t ∈ (0, 1) \ T , i ∈ I, and
ai, bi ∈ suppi(p),

pai , pbi implies ptai , p
t
bi
.

Thus, pt is a minimally mixed BCE for all t ∈ (0, 1) \ T . Thus, q is a limit point of
{pt : t ∈ (0, 1) \ T}, which implies it is a limit point of PM . �

We are now ready to prove Proposition 2 and Proposition 3.

Proof of Proposition 2. That (i) implies (ii) follows from Lemma 13.
We now show (ii) implies (iii). Let q be a minimally mixed sBCE. Fix any p ∈

BCE, i ∈ I and ai, bi ∈ suppi(p) such that pai , pbi . Since q is minimally mixed,
ai, bi ∈ suppi(q) (because q has maximal support) and qai , qbi . Thus,

∅ = BR(qai) ∩BR(qbi) ⊇ J(ai) ∩ J(bi),

where we use the separation constraint, and then the fact that J(ci) = ∩p̃∈PBR(p̃ci)
for all ci ∈ Ai. We conclude (ii) implies (iii).
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Finally, we argue (iii) implies (i). Fix any p ∈ BCE. Because A is finite and
BCE is convex, it follows from Lemma 10 that we can find q ∈ BCE such that q has
maximal support and

BR(qai) = J(qai) (45)

for all i ∈ I and ai ∈ suppi(q).
For t ∈ (0, 1), let pt = tp + (1− t)q. We claim that pt ∈ sBCE. That pt ∈ BCE

follows from convexity of the BCE set. To see pt is a sBCE, take any i ∈ I and
ai, bi ∈ suppi(pt) such that ptai , p

t
bi

. Since q has maximal support, ai, bi ∈ suppi(q).
Then,

BR(ptai) ∩BR(ptbi) ⊆ BR(qai) ∩BR(qbi) = J(ai) ∩ J(bi) = ∅,

where first we use Lemma 10, then (45), and finally Proposition 2-(iii). We conclude
pt ∈ sBCE for all t ∈ (0, 1). Proposition 2-(i) then follows from p = limt→1 p

t. �

Proof of Proposition 3. It is enough to prove that if sBCE is not nowhere dense in
BCE, then it is dense in BCE. Suppose sBCE is dense in some non-empty set
P̃ ⊆ BCE that is open in BCE. Let PM the set of minimally mixed BCEs. Note
P̃ ∩ PM is open (in BCE) and non-empty by Lemma 13. But sBCE is dense in P̃ ,
and so sBCE ∩ (P̃ ∩PM) must also be non-empty. Thus, we have found a minimally
mixed sBCE. That sBCE is dense in BCE then follows from Proposition 2. �

H.2. Checking for Equal Beliefs

To check the conditions of Proposition 2, knowing which actions induce different
beliefs for some BCE is useful. In this section, we prove a result that shows how to find
actions that lead to different beliefs in a closed convex set of outcomes P ⊆ ∆(A×Θ).22

For a player i, say an action ai is P -coherent if a p ∈ P exists with p(ai) > 0.23

Let 0 be the all-zeros vector in RA−i×Θ; in what follows, we use the convention that
pai = 0 for every p ∈ ∆(A×Θ) and ai ∈ Ai such that p(ai) = 0. We say an outcome
p ∈ P has P -maximal support if the support of every other q ∈ P is contained by
the support of p.

22Neither the obedience nor the separation constraint play any role in this section.
23Our notion of P -coherent is inspired by the notion of coherence in Nau and McCardle’s “Coherent

behavior in noncooperative games” (Journal of Economic Theory, vol. 50, pp. 424-444, 1990).
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Proposition 6. Fix a player i and two P -coherent actions ai, bi ∈ Ai. Then every
p ∈ P with ai, bi ∈ suppi(p) has pai = pbi if and only if one of the following two
conditions hold:

(i) A µ ∈ ∆(A−i ×Θ) exists such that for all p ∈ ext(P ), {pai , pbi} ⊆ {µ,0}.

(ii) A constant λ > 0 exists such that for all p ∈ ext(P ), p(ai)pai = λp(bi)pbi.

Thus, to know whether a pair of actions leads to the same beliefs in all outcomes
in P , it is enough to check the extreme points of P for one of two properties. The
first property states these actions induce the same beliefs in all of the set’s extreme
points. The second property requires the likelihood ratio for these actions to be
constant across all these extreme points.

To prove the proposition, we need the following lemma.

Lemma 14. Fix a player i and two actions ai, bi ∈ Ai. Let p, q ∈ ∆(A × Θ) such
that {ai, bi} ⊆ suppi(p)∪ suppi(q). Suppose rai = rbi for all r ∈ {p, q} with {ai, bi} ⊆
suppi(r). If (tp + (1 − t)q)ai = (tp + (1 − t)q)bi for some t ∈ (0, 1), then one of the
following two conditions hold:

(i) A µ ∈ ∆(A−i ×Θ) exists such that for all r ∈ {p, q}, {rai , rbi} ⊆ {µ,0}.

(ii) A constant λ > 0 exists such that for all r ∈ {p, q}, r(ai) = λr(bi).

Proof. Let pt := tp + (1 − t)q. We proceed by contradiction: we assume that
Lemma 14-(i) and Lemma 14-(ii) both fail and show that ptai , p

t
bi

.
We begin by noting that one can rewrite the condition that rai = rbi for all

r ∈ {p, q} with {ai, bi} ⊆ suppi(r) as

r(ai)r(bi)rai = r(ai)r(bi)rbi for all r ∈ {p, q}. (46)

Because suppi(pt) = suppi(p) ∪ suppi(q) and {ai, bi} ⊆ suppi(p) ∪ suppi(q), we have
{ai, bi} ⊆ suppi(pt). Thus, applying Bayes rule, we obtain that ptai = ptbi if and only
if for every a−i ∈ A−i and θ ∈ Θ, one has

pt(ai)pt(bi, a−i, θ)− pt(bi)pt(ai, a−i, θ) = 0.

Expanding the left hand side of the above equation by substituting in the definition
of pt, rearranging terms as a polynomial in t, and using (46), delivers that the above
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display equation is equivalent to

(t− t2)
[
p(ai)q(bi, a−i, θ) + q(ai)p(bi, a−i, θ)− q(bi)p(ai, a−i, θ)− p(bi)q(ai, a−i, θ)

]
= 0.

Since t ∈ (0, 1), we get that ptai = ptbi if and only if for every a−i ∈ A−i and θ ∈ Θ,
one has

p(ai)q(bi, a−i, θ) + q(ai)p(bi, a−i, θ)− q(bi)p(ai, a−i, θ)− p(bi)q(ai, a−i, θ) = 0.

Writing the above in vector notation delivers that ptai = ptbi is equivalent to

p(ai)q(bi)qbi + q(ai)p(bi)pbi − q(bi)p(ai)pai − p(bi)q(ai)qai = 0. (47)

We now divide the proof into cases. Consider first the case in which {ai, bi} ⊆
suppi(p) ∩ suppi(q). In this case, (46) implies pai = pbi and qai = qbi , and so we get
that

p(ai)q(bi)qbi + q(ai)p(bi)pbi − q(bi)p(ai)pai − p(bi)q(ai)qai =

= (p(ai)q(bi)− p(bi)q(ai))(qai − pai) , 0,

where the inequality follows from failure of Lemma 14-(i) and Lemma 14-(ii). We
conclude (47) fails.

Consider now the case in which {ai, bi} * suppi(p)∩suppi(q). Because Lemma 14-
(ii) fails, we can assume p(ai) = 0 < p(bi) without loss of generality. Since the lemma
assume ai ∈ suppi(p)∪ suppi(q), it follows q(ai) > 0. Therefore, we can use failure of
Lemma 14-(ii) to deduce that pbi , qai . Using these facts, we obtain that

p(ai)q(bi)qbi + q(ai)p(bi)pbi − q(bi)p(ai)pai − p(bi)q(ai)qai = q(ai)p(bi)(pbi − qai) , 0.

It follows that (47) fails. �

We are now ready to prove Proposition 6. The “if” portion is straightforward; the
“only if” portion uses Lemma 14.

Proof of Proposition 6. We first prove the “if” portion. Let p ∈ P and ai, bi ∈
suppi(p). Let t1, . . . , tn > 0 and p1, . . . , pn ∈ ext(P ) such that p = ∑n

m=1 t
mpm.
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Simple algebra shows that for all ci ∈ suppi(p)

pci =
n∑

m=1

tmpm(ci)∑n
l=1 t

lpl(ci)
pmci .

If Proposition 6-(i) holds, then

pai =
n∑

m=1

tmpm(ai)∑n
l=1 t

lpl(ai)
pmai =

n∑
m=1

tmpm(ai)∑n
l=1 t

lpl(ai)
µ

= µ

=
n∑

m=1

tmpm(bi)∑n
l=1 t

lpl(bi)
µ =

n∑
m=1

tmpm(bi)∑n
l=1 t

lpl(bi)
pmbi = pbi .

Suppose now Proposition 6-(ii) holds. For every m, pm(ai)pmai = λpm(bi)pmbi implies
pm(ai) = λpm(bi) and pmai = pmbi . Thus,

pai =
n∑

m=1

tmpm(ai)∑n
l=1 t

lpl(ai)
pmai =

n∑
m=1

tmλpm(bi)∑n
l=1 t

lλpl(bi)
pmbi =

n∑
m=1

tmpm(bi)∑n
l=1 t

lpl(bi)
pmbi = pbi .

This concludes the proof of the proposition’s “if” portion.
We now show the proposition’s “only if” portion. We proceed by contradiction:

we assume that Proposition 6-(i) and Proposition 6-(ii) both fail and show that there
exists p ∈ P such that ai, bi ∈ suppi(p) and pai , pbi . As we are done if pai , pbi for
some p ∈ ext(P ) with ai, bi ∈ suppi(p), assume pai = pbi holds for all such p.

Since Proposition 6-(i) fails, and ai and bi are P -coherent, there exist p, q ∈ ext(P )
such that p(ai) > 0, q(bi) > 0, and pai , qbi . As we are done if (0.5p + 0.5q)ai ,
(0.5p+ 0.5q)bi , assume (0.5p+ 0.5q)ai = (0.5p+ 0.5q)bi . Since pai , qbi , Lemma 14-(i)
fails. Thus, Lemma 14-(ii) must hold: there exist λ > 0 such that p(ai) = λp(bi) and
q(ai) = λq(bi); in particular, p(bi) > 0 and q(ai) > 0.

Since Proposition 6-(ii) fails, there must exist r ∈ ext(P ) such that r(ai) , λr(bi);
in particular, r(ai) > 0 or r(bi) > 0. Let ci ∈ {ai, bi} such that r(ci) > 0. Since
pai , qbi , either rci , pai , or rci , pbi , or both. Thus, by Lemma 14, either (0.5p +
0.5r)ai , (0.5p+ 0.5r)ci , or (0.5q + 0.5r)bi , (0.5q + 0.5r)ci , or both. In any case, we
have found p ∈ P such that ai, bi ∈ suppi(p) and pai , pbi . �
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