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1 Introduction

Adjustment costs play a major role in explaining a wide range of economic

phenomena. Examples include the investment behavior of firms (e.g. Jorgen-

son, 1963; Hayashi, 1982; Cooper & Haltiwanger, 2006), price stickiness (e.g.

Mankiw, 1985; Caplin & Spulber, 1987; Golosov & Lucas, 2007), aggregate

consumption dynamics (e.g. Kaplan & Violante, 2014; Berger & Vavra, 2015)

and housing consumption and asset pricing (Grossman & Laroque, 1990).

In this paper, we develop a theory of monotone comparative statics with

adjustment costs. Our fundamental insight is that, surprisingly, very little

needs to be assumed about the cost function: comparative statics requires

only that not adjusting be costless, plus the usual ordinal complementarity

assumptions on the objective function. We use this insight to show that

Samuelson’s (1947) le Chatelier principle is far more general than previously

thought: it holds whenever adjustment is costly, given only minimal structure

on costs. We extend our comparative-statics and le Chatelier results to a fully

forward-looking dynamic model of adjustment.

We apply our results to models of factor demand, capital investment, and

pricing. These models are typically studied only under strong functional-form

assumptions, and the cases of convex and non-convex costs are considered

separately and handled very differently. Our general results yield robust com-

parative statics for these standard models, dispensing with auxiliary assump-

tions and handling convex and non-convex costs in a unified fashion.

The abstract setting is as follows. An agent chooses an action x from a

sublattice L Ď Rn. Her objective F px, θq depends on a parameter θ. At the
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initial parameter θ, the agent chose x P arg maxxPLF px, θq. The parameter

now increases to θ̄ ą θ, and the agent may adjust her choice. Adjusting

dimension i of the action by εi “ xi ´ xi costs Cipεiq ě 0, and the agent’s

new choice maximizes Gpx, θ̄q “ F px, θ̄q ´
řn

i“1Cipxi ´ xiq.

The cost functions Ci : RÑ r0,8s are quite general: our only assumptions

are that non-adjustment is costless (Cip0q “ 0) and, for some results, that Ci

is single-dipped. Thus costs need not be convex, for example. Some adjust-

ments εi may be infeasible, as captured by a prohibitive cost Cipεiq “ 8.

Our basic question is under what assumptions on the objective F and

costs Ci the agent’s choice increases, in the sense that x̄ ě x for some x̄ P

arg maxxPLGpx, θ̄q (provided the argmax is not empty). Our fundamental

result, Theorem 1, answers this question: nothing need be assumed about

costs except that non-adjustment is free (Cip0q “ 0), while F need only

satisfy the ordinal complementarity conditions of quasi-supermodularity and

single-crossing differences that feature in similar comparative-statics results

absent adjustment costs (see Milgrom & Shannon, 1994). Thus costs need

not even be single-dipped, and the objective need not satisfy any cardinal

properties, such as supermodularity or increasing differences. We also give a

‘strict’ variant (Proposition 1): adding either of two mild assumptions yields

the stronger conclusion that x̄ ě x for every x̄ P arg maxxPLGpx, θ̄q.

We use our fundamental result to re-think Samuelson’s (1947) le Chatelier

principle, which asserts that the response to a parameter shift is greater

at longer horizons. Our Theorem 2 provides that the le Chatelier principle

holds whenever short-run adjustment is subject to single-dipped adjustment

costs Ci, long-run adjustment is frictionless, and the objective F satisfies
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the ordinal complementarity conditions. Formally, the theorem states that

under these assumptions, given any long-run choice x̄ P arg maxxPLF px, θ̄q

satisfying x̄ ě x, we have x̄ ě x̂ ě x for some optimal short-run choice

x̂ P arg maxxPLGpx, θ̄q, provided the argmax is nonempty.1 This substantially

generalizes Milgrom and Roberts’s (1996) le Chatelier principle, in which

short-run adjustment is assumed to be impossible for some dimensions i

(Cipεiq “ 8 for all εi ‰ 0) and costless for the rest (Ci ” 0). We extend our

le Chatelier principle to the case in which long-run adjustment is also costly,

but cheaper on the margin than short-run adjustment (Proposition 2).

We then extend our comparative-statics and le Chatelier theorems to a

fully dynamic, forward-looking model of costly adjustment over time. The

parameter permanently shifts at date t “ 0 from θ to θ̄ ą θ, shifting the

frictionless optimum from x to some x̄ ě x. Starting at x0 “ x, the agent

chooses an adjustment path pxtq
8
t“1 to maximize a discounted sum of her

period payoffs F pxt, θ̄q ´
řn

i“1Cipxt,i ´ xt´1,iq. Theorem 3 validates the le

Chatelier principle: the agent adjusts more at longer horizons, in the sense

that x ď xt ď xT ď x̄ holds at any dates t ă T , for some optimal path

pxtq
8
t“1 (provided an optimal path exists). The hypotheses of this theorem

strengthen those of Theorem 2 by requiring cardinal complementarity of

F (supermodularity and increasing differences), as well as a mild technical

condition. With time-varying costs Ct
i , the same hypotheses imply the weaker

conclusion that x ď xt ď x̄ for every period t (Proposition 3).

The rest of this paper is arranged as follows. In the next section, we de-

1Furthermore, if x̄ is the largest element of arg maxxPLF px, xq, then x̄ ě x̂ for any
short-run choice x̂ P arg maxxPLGpx, θ̄q such that x̂ ě x.
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scribe the setting. We present our fundamental comparative-statics insight

(Theorem 1) in section 3. In section 4, we develop a general le Chatelier prin-

ciple (Theorem 2), and apply it to monopoly pricing and factor demand. In

section 5, we introduce a dynamic, forward-looking adjustment model, derive

a dynamic le Chatelier principle (Theorem 3), and apply it to pricing. We

conclude in section 6 by examining the implications of our results for capi-

tal investment. The appendix contains a number of definitions of standard

order-theoretic concepts, as well as all proofs omitted from the main text.

2 Setting

The agent’s long-term objective is F px, θq, where x is the choice variable and

θ P Θ a parameter. The choice variable x belongs to a sublattice L of Rn;

more generally, it could be a sublattice of any vector lattice.

We shall be assuming that the dimensions xi of the action x are com-

plementary: precisely, that the function F p¨, θq is quasi-supermodular (or,

sometimes, supermodular). This is automatically the case when the action is

one-dimensional (n “ 1), as is frequently the case in applications.

At the initial parameter θ “ θ, an optimal choice x was made:

x P arg maxxPLF px, θq.

(Note that we allow for a multiplicity of optimal actions.) This is the agent’s

‘starting point,’ and we shall consider how she responds in the short and long

run to a change in the parameter from θ to θ̄, where θ ă θ̄.
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Each dimension xi of the choice variable is subject to an adjustment cost

Ci : R Ñ r0,8s, so that adjusting from xi to xi costs Cipxi ´ xiq. Our only

maintained assumption on Ci is that non-adjustment is free: Cip0q “ 0. Note

that we allow some adjustments εi to have infinite cost Cipεiq “ 8, meaning

that they are infeasible.

Given a vector ε “ pε1, ε2, . . . , εnq of adjustments, the total cost of adjust-

ment is

Cpεq “
n
ÿ

i“1

Cipεiq.

The agent adjusts her choice x P L to maximize

Gpx, θ̄q “ F px, θ̄q ´ Cpx´ xq.

Example 1. (a) Cipεiq “ |εi|. (b) Free disposal: Cipεiq “ εi if εi ą 0 and

Cipεiq “ 0 if εi ď 0. (c) A constraint E Ď R: Cipεiq “ 0 if εi P E and Cipεiq “

8 otherwise. (d) Increments: Cipεiq “ |εi| if εi is integer and Cipεiq “ 8

otherwise. (e) Minimum adjustments εi ď 0 ď ε̄i: Cip0q “ 0, Cipεiq “ 8 if

εi ‰ 0 and εi ă εi ă ε̄i, and Cipεiq “ |εi| otherwise.

3 Comparative statics

Our fundamental comparative-statics result is the following.

Theorem 1. Suppose F px, θq is quasi-supermodular in x and has single-

crossing differences in px, θq, and that Cip0q “ 0 for every dimension i. Then

x̂ ě x for some x̂ P arg maxxPLGpx, θ̄q, provided the argmax is nonempty.

6



Proof. Let x1 P arg maxxPLGpx, θ̄q. We claim that x̂ “ x_x1 also maximizes

Gp¨, θ̄q; obviously this is bigger than x. We have F px, θq ě F px ^ x1, θq by

definition of x. Thus F px_x1, θq ě F px1, θq by quasi-supermodularity, whence

F px _ x1, θ̄q ě F px1, θ̄q by single-crossing differences. Since each Ci satisfies

Cip0q “ 0 ď Cipεiq for any adjustment εi, we have

Ci pmaxtxi, x
1
iu ´ xiq ď Ci px

1
i ´ xiq for each dimension i,

and thus Cpx_ x1 ´ xq ď Cpx1 ´ xq. (That was the crucial step.) Thus

Gpx̂, θ̄q “ F px_ x1, θ̄q ´ Cpx_ x1 ´ xq ě F px1, θ̄q ´ Cpx1 ´ xq “ Gpx1, θ̄q.

Since x1 maximizes Gp¨, θ̄q on L, it follows that x̂ does, too. QED

Theorem 1 shows that the basic comparative-statics result (see Milgrom

& Shannon, 1994, Theorem 4), which guarantees comparative statics given

quasi-supermodularity and single-crossing differences of the objective F , is

not upset by the presence of adjustment costs: an increase of the parameter

θ still leads to a higher action (modulo tie-breaking).

This result is striking because the assumptions on the adjustment cost C

are weak. We assumed only additive separability and that non-adjustment is

free. Even these assumptions are stronger than necessary; the exact property

that C must satisfy is that for any vector ε, we have

Cpε1, . . . , εnq ě C pmax tε1, 0u , . . .max tεn, 0uq .
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(In the proof, ε “ x1 ´ x, and pmax tε1, 0u , . . . ,max tεn, 0uq “ x_ x1 ´ x.)

It is also worth noting that the objective F need not satisfy any cardi-

nal properties, such as supermodularity or increasing differences: the ordinal

properties of quasi-supermodularity and single-crossing differences suffice.

This is valuable for applications, since it is common for F to exhibit single-

crossing but not increasing differences. That is the case in monopoly pricing,

for example—see section 4.2 below.

Remark 1. Theorem 1 is phrased differently than the basic result (see Mil-

grom & Shannon, 1994, Theorem 4), which asserts that if F px, θq is quasi-

supermodular in x and has single-crossing differences in px, θq, then

x2 P arg maxxPLF px, θq and x1 P arg maxxPLF px, θ̄q

ùñ x2 ^ x1 P arg maxxPLF px, θq and x2 _ x1 P arg maxxPLF px, θ̄q.

A version of Theorem 1 with this form also holds: under the same hypotheses,

x P arg maxxPLF px, θq and x1 P arg maxxPLGpx, θ̄q

ùñ x^ x1 P arg maxxPLF px, θq and x_ x1 P arg maxxPLGpx, θ̄q.

The latter property (concerning x_ x1) is exactly what is shown in the proof

of Theorem 1. For the former property (concerning x^x1), suppose it were to

fail; then F px, θq ą F px ^ x1, θq, so that replicating the steps in the proof of

Theorem 1 delivers Gpx_x1, θ̄q ą Gpx1, θ̄q, a contradiction with the optimality

of x1 for Gp¨, θ̄q.
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3.1 ‘Strict’ comparative statics

We now provide a ‘strict’ counterpart to Theorem 1, giving conditions under

which x̂ ě x holds for any optimal choice x̂. Say that reduction is costly if

Cipεiq ą 0 for every εi ă 0 and every dimension i.

Proposition 1. Suppose F px, θq is quasi-supermodular in x and has single-

crossing differences in px, θq, that Cip0q “ 0 for every dimension i, and either

(a) that the single-crossing differences of F px, θq in px, θq is strict, or

(b) that reduction is costly.

Then x̂ ě x for any x̂ P arg maxxPLGpx, θ̄q.
2

Proposition 1 is the costly-adjustment analog of the standard ‘strict’

comparative-statics result (see Milgrom & Shannon, 1994, Theorem 41), which

states that given any x P arg maxxPLF px, θq, if F px, θq is quasi-supermodular

in x and has strictly single-crossing differences in px, θq, then x̂ ě x for any

x̂ P arg maxxPLF px, θ̄q. Part (a) directly extends this result to the costly-

adjustment case. Part (b) shows that the ‘strictness’ in the hypotheses re-

quired to obtain a ‘strict’ comparative-statics conclusion can come from the

costs Ci rather than the objective F . In particular, the ‘strict’ hypothesis

that reduction is costly ensures that even if some actions strictly lower than

x are optimal for the gross objective F p¨, θ̄q, they will not be chosen due to

their cost.

2A variant of Proposition 1 can be obtained by mixing the ‘strictness’ properties (a)
and (b): if x “ py, zq, where F py, z, θq has strict single-crossing differences in py, θq for any
fixed z, and z-reduction is costly, then the conclusion goes through, with the same proof.
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4 The le Chatelier principle

The le Chatelier principle asserts that long-run elasticities exceed short-run

elasticities. In this section, we show that the le Chatelier principle is far more

general than previously claimed: it arises whenever adjustment is costly, given

only minimal structure on costs. The classic formalization, which assumes

that only some dimensions of the action are adjustable in the short run, is the

special case in which each dimension’s adjustment cost is either prohibitively

high or equal to zero.

We consider the agent’s short- and long-run responses to an increase of

the parameter from θ to θ̄ ą θ. Her short-run response x̂ takes adjustment

costs into account, so it maximizes Gp¨, θ̄q. In the long run, the agent adjusts

to a new frictionless optimum x̄ P arg maxxPLF px, θ̄q.

Say that the adjustment cost Ci is upward monotone if it is increasing

on R`, i.e., Cipεiq ď Cipε
1
iq whenever 0 ď εi ď ε1i. A sufficient condition is

single-dippedness (which demands, in addition to upward monotonicity, that

Ci be decreasing on R´).

Theorem 2 (le Chatelier principle). Suppose F px, θq is quasi-supermodular

in x and has single-crossing differences in px, θq, and that each Ci is upward

monotone with Cip0q “ 0. Let x̄ P arg maxxPLF px, θ̄q satisfy x̄ ě x.3 Then

• x̄ ě x̂ ě x for some x̂ P arg maxxPLGpx, θ̄q provided the argmax is

nonempty, and

3Given the properties of F , a standard result (Milgrom & Shannon, 1994, Theorem 4)
guarantees that such an x̄ exists, provided the argmax is nonempty.
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• if x̄ is the largest element of arg maxxPLF px, θ̄q, then x̄ ě x̂ for any

x̂ P arg maxxPLGpx, θ̄q such that x̂ ě x.

Proof. For the first part, assume that arg maxxPLGpx, θ̄q is nonempty. By

Theorem 1, we may choose an x1 P arg maxxPLGpx, θ̄q such that x1 ě x. We

claim that x̄^x1 also maximizes Gp¨, θ̄q; this suffices since x̄ ě x̄^x1 ě x. We

have F px̄_x1, θ̄q ď F px̄, θ̄q by definition of x̄, which by quasi-supermodularity

implies that F px1, θ̄q ď F px̄ ^ x1, θ̄q. Since each Ci is upward monotone and

x1 ě x̄^ x1 ě x, we have Cpx1 ´ xq ě Cpx̄^ x1 ´ xq. Thus

F px1, θ̄q ´ Cpx1 ´ xq ď F px̄^ x1, θ̄q ´ Cpx̄^ x1 ´ xq,

which since x1 maximizes Gp¨, θ̄q on L implies that x̄^ x1 does, too.

For the second part, let x̄ be the largest element of arg maxxPL F px, θ̄q,

and let x̂ ě x belong to arg maxxPLGpx, θ̄q; we will show that x̄ ě x̂. The

optimality of x̂ implies that Gpx̂, θ̄q ě Gpx̄^x̂, θ̄q. Since x̄ ě x and x̂ ě x, the

upward monotonicity of each Ci implies that Cpx̂´ xq ě Cpx̄^ x̂´ xq. Thus

F px̂, θ̄q ě F px̄^x̂, θ̄q, so that F px̄_x̂, θ̄q ě F px̄, θ̄q by quasi-supermodularity;

hence x̄_ x̂ also maximizes F p¨, θ̄q on L. Since x̄ is the largest maximizer of

F p¨, θ̄q, we conclude that x̄ ě x̂. QED

Theorem 2 nests the le Chatelier principle of Milgrom and Roberts (1996),

in which it is assumed that only some dimensions xi of the choice variable can

be adjusted in the short run, and that such adjustments are costless. This is

the special case of our model in which some dimensions i have Ci ” 0, while

the rest have Cipεiq “ 8 for every εi ‰ 0.
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Like Theorem 1, Theorem 2 requires F only to satisfy ordinal comple-

mentarity properties, not cardinal ones. This greatly extends its applicability,

allowing it to be used to study pricing, for example (see section 4.2 below).

4.1 Application to factor demand

Consider a stylized model of production, following Milgrom and Roberts

(1996). A firm uses capital k and labor ` to produce output fpk, `q. Profit at

real factor prices pr, wq is F pk, `,´wq “ fpk, `q ´ rk ´w`. Adjustment costs

Ci are single-dipped with Cip0q “ 0, and otherwise unrestricted.

Theorem 2 provides that if capital and labor are complements (i.e., f is

supermodular), then a drop in the wage w precipitates a short-run increase

of ` (and of k), and a further increase in the long run. If capital and labor

are substitutes (f submodular), then we may apply Theorem 2 to the choice

variable px1, x2q “ p´k, `q to conclude that ` still increases (but k decreases)

in the short run, and then increases further in the long run.4

Milgrom and Roberts (1996) were the first to use the theory of mono-

tone comparative statics to obtain such a result. They assumed that labor

adjustments are costless (C` ” 0) and that capital cannot be adjusted at

all in the short run (Ckpεkq “ 8 for every εk ‰ 0). Our result reveals that

much weaker assumptions suffice. It turns out not to matter whether labor

is cheap to adjust relative to capital. What matters is, rather, that short-run

adjustments are costly and that long-run adjustments are not.5

4This trick is due to Milgrom and Roberts (1996). Applying Theorem 2 here requires
that the capital adjustment cost be decreasing on R´; single-dippedness ensures this.

5More generally, long-run adjustment can be costly, so long as it is cheaper on the
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4.2 Application to pricing

The central plank of new Keynesian macroeconomic models is price sticki-

ness, and the oldest and most important microfoundation for this property is

(non-convex) adjustment costs (e.g. Mankiw, 1985; Caplin & Spulber, 1987;

Golosov & Lucas, 2007). These may be real costs of updating what prices are

displayed: empirically, such ‘menu costs’ can be non-negligible (see e.g. Levy,

Bergen, Dutta, & Venable, 1997). Or they may arise from consumers react-

ing adversely to price hikes by temporarily reducing demand (as in Antić &

Salant, in progress).

To study pricing, we consider the simplest model, following Milgrom and

Roberts (1990): a monopolist with constant marginal cost c ě 0 faces a

decreasing demand curve Dp¨, ηq parametrized by η, so earns a profit of

F pp, pc,´ηqq “ pp ´ cqDpp, ηq if she prices at p P R`. We assume that de-

mand Dpp, ηq is always strictly positive, and that η is an elasticity shifter:

when it increases, so does the absolute elasticity of demand at every price p.

Then profit F pp, θq “ F pp, pc,´ηqq has log increasing differences in pp,´ηq

and has increasing differences in pp, cq, so has single-crossing differences in

pp, θq “ pp, pc,´ηqq. F pp, θq is automatically quasi-supermodular in p since

it is one-dimensional (n “ 1).

Adjusting the price by ε incurs a cost of Cpεq ě 0. We assume nothing

about C except that Cp0q “ 0. In many macroeconomic models, it is a pure

fixed cost: Cpεq “ k ą 0 for every ε ‰ 0. When adjustment costs arise from

price-hike-averse consumers, we have Cpεq “ 0 for ε ď 0 and Cpεq ą 0 for

margin than short-run adjustment—see section 4.3 below.
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ε ą 0. If consumers are inattentive to small price changes, then Cpεq “ 0 if

ε P rε, ε̄s and Cpεq ą 0 otherwise, where ε ă 0 ă ε̄.

By Theorem 1, the familiar comparative-statics properties of the monopoly

problem are highly robust to the introduction of adjustment costs: it remains

true that the monopolist raises her price whenever her marginal cost c rises

and whenever demand becomes less elastic (i.e., η falls). No assumptions on

the adjustment cost C are required for these results except that Cp0q “ 0.

Under the mild additional assumption that C is upward monotone, The-

orem 2 yields a dynamic prediction: in response to a shock that increases her

marginal cost or decreases the elasticity of demand, the monopolist initially

raises her price, and then increases it further over the longer run. Thus one-off

permanent cost and demand shocks lead, quite generally, to price increases

that are to some extent gradual.

A key reason why we can draw such general conclusions about pricing is

that Theorems 1 and 2 require F to satisfy only ordinal (not cardinal) com-

plementarity conditions. Specifically, we used the fact that the monopolist’s

profit undergoes a ‘single-crossing differences’ shift when demand becomes

less elastic (i.e., when η falls). A result which assumed the cardinal property

of increasing differences would have been inapplicable, since elasticity shifts

do not generally cause profit to shift in an ‘increasing differences’ fashion.6

6This applied advantage of requiring only ordinal complementarity was emphasized by
Milgrom and Roberts (1990) and Milgrom and Shannon (1994) in the context of models
with costless adjustment.
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4.3 Short- vs. medium-run adjustment

We now extend our le Chatelier principle to assert not merely that long-

run elasticities exceed short-run elasticities, but further that medium-run

elasticities lie in-between.

To that end, we allow the cost Cip¨, hq : R Ñ r0,8s of adjusting dimen-

sion i to vary with the horizon h. We shall assume that Ci has decreasing

differences, meaning that adjustment is cheaper on the margin at longer

horizons. At horizon h, the agent adjusts her choice x P L to maximize

Gpx, θ̄, hq “ F px, θ̄q ´ Cpx ´ x, hq, where Cpε, hq “
řn

i“1Cipεi, hq. We com-

pare a short horizon h with a longer horizon h̄ ą h.

By applying Theorem 1, Topkis’s theorem and Theorem 2 in turn, we

obtain a chain of three inequalities:

Proposition 2. Suppose F px, θq is supermodular in x and has increas-

ing differences in px, θq, and that each Cipεi, hq has decreasing differences

in pεi, hq, is upward monotone in εi, and satisfies Cip0, hq “ 0. Then

x ď max
 

arg maxxPLGpx, θ̄, hq
(

ď max
 

arg maxxPLGpx, θ̄, h̄q
(

ď max
 

arg maxxPLF px, θ̄q
(

for any horizons h ă h̄, provided all three maxima exist.7

7Sufficient conditions for these maxima to exist are compactness of L, upper semi-
continuity of F p¨, θ̄q and lower semi-continuity of Cp¨, hq and Cp¨, h̄q. Then all three
argmaxes are nonempty and compact. They are also sublattices, by a standard result
(Topkis, 1978, Theorem 4.1) which applies since F p¨, θ̄q is supermodular and Cp¨, hq and
Cp¨, h̄q are additively separable (so that Gp¨, θ̄, hq and Gp¨, θ̄, h̄q are supermodular, too).
It follows by the Frink–Birkhoff theorem (see Topkis, 1998, Theorem 2.3.1) that all three
argmaxes are subcomplete sublattices, so possess greatest elements.
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Proposition 2 admits alternative interpretations. One is that h̄ is the long

run, in which case the result says that the le Chatelier principle remains valid

if long-run adjustment is also costly, provided it is cheaper on the margin than

adjusting in the short run. Another interpretation is that h is a parameter

governing adjustment costs; the result then says that short-run adjustments

are greater the lower are marginal costs.

Note that unlike our preceding results, Proposition 2 requires cardinal

assumptions (supermodularity and monotone differences) rather than merely

ordinal ones (quasi-supermodularity and single-crossing differences). This is

because the middle inequality demands comparative statics with respect to

the parameter h, which essentially requires that Gpx, θ̄, hq “ F px, θ̄q´Cpx´

x, hq be quasi-supermodular in x and have single-crossing differences in px, hq

(see Milgrom & Shannon, 1994, Theorem 4). For this, it is not enough that

F and Ci themselves satisfy the ordinal complementarity conditions, since

these properties are not generally preserved by addition. By contrast, the

stronger cardinal complementarity conditions are stable under addition.

This logic is a commonplace of the literature: when the objective is the

sum of two or more primitive functions, comparative-statics conclusions can

typically be drawn only under cardinal complementarity assumptions, since

ordinal properties are not preserved by summation. What is noteworthy is

thus not that Proposition 2 requires cardinal assumptions, but that our pre-

ceding results (Theorems 1 and 2, and Proposition 1) do not.
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5 Dynamic adjustment

The le Chatelier principle takes a classical, ‘reduced-form’ approach to dy-

namics. In this section, we instead consider a fully-fledged, forward-looking

dynamic model of adjustment. We show that the le Chatelier principle re-

mains valid: in the short run, the agent’s choice exceeds x and does not

overshoot x̄. We furthermore show that the path of adjustment is monotone,

so that the agent adjusts more in the medium run than in the short run.

5.1 Setting

The agent faces an infinite-horizon decision problem in discrete time. In each

period, she takes an action x P L, and earns a payoff of F px, θq that is super-

modular in x and has increasing differences in px, θq. The cost of adjusting

dimension i by εi from period t ´ 1 to period t is Ct
i pεiq P r0,8s. The total

cost of an adjustment ε “ pε1, . . . , εnq is denoted Ctpεq “
řn

i“1C
t
i pεiq.

At the outset, there is a one-time permanent shift of the parameter from

θ to θ̄ ą θ. Absent adjustment costs, the long-run optima are

x P arg maxxPLF px, θq and x̄ P arg maxxPLF px, θ̄q.

We assume that they satisfy x ď x̄.8 The agent initially chose x0 “ x.

The agent is forward-looking, and discounts future payoffs by a factor of

δ P p0, 1q. From the perspective of period t “ k, given her period-pk ´ 1q

8Given the properties of F , a standard result (Milgrom & Shannon, 1994, Theorem 4)
guarantees the existence of such x and x̄, provided the argmaxes are nonempty.
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choice xk´1, the agent’s payoff from choosing pxtq
8
t“k going forward is

Gk
ppxtq

8
t“k, xk´1, θ̄q “ Fppxtq8t“k, θ̄q ´ Ck

pxk´1, pxtq
8
t“kq,

where

Fppxtq8t“k, θ̄q “
8
ÿ

t“k

δt´kF pxt, θ̄q

and

Ck
pxk´1, pxtq

8
t“kq “

8
ÿ

t“k

δt´kCt
pxt ´ xt´1q.

The agent’s problem is to choose a sequence pxtq
8
t“1 to maximize G1p¨, x0, θ̄q.

5.2 Dynamic le Chatelier principle

The following shows that our le Chatelier principle (Theorem 2) remains valid

when the agent can adjust over time and is forward-looking: her ‘short-run’

choice xt still satisfies x ď xt ď x̄.

Proposition 3 (dynamic le Chatelier principle). Suppose F px, θq is super-

modular in x and has increasing differences in px, θq, and that each Ct
i is

single-dipped with Cip0q “ 0. Then provided the agent’s problem admits a

solution, there is a solution pxtq
8
t“1 satisfying x ď xt ď x̄ in every period t.

When adjustment costs are time-invariant, a stronger dynamic le Chate-

lier principle holds: for any periods t ă T we have x ď xt ď xT ď x̄, which is

to say that the agent adjusts less in the short run than in the medium run.

We shall use ‘BCS’ as shorthand for ‘bounded on compact sets.’
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Theorem 3 (strong dynamic le Chatelier principle). Suppose F px, θq is su-

permodular and BCS in x and has increasing differences in px, θq, and that

Ct
i “ Ci for every period t and dimension i, where Ci is single-dipped and

BCS with Cip0q “ 0. Then provided the agent’s problem admits a solution,

there is a solution pxtq
8
t“1 satisfying x ď xt ď xT ď x̄ for all periods t ă T .

The BCS requirements are mild, but they do imply that every adjustment

has finite cost. Obviously continuity is a sufficient condition for BCS.

These results differ from our first two principal results, Theorems 1 and

2, in requiring cardinal rather than ordinal complementarity assumptions.

Cardinality is needed for the usual reason, discussed at the end of section 4.

5.3 Application to pricing

An active literature in macroeconomics (e.g. Golosov & Lucas, 2007) exam-

ines the price stickiness central to the new Keynesian paradigm by studying

fully forward-looking dynamic models of pricing subject to adjustment costs

(usually called ‘menu costs’ in this context—see section 4.2). The basic mech-

anism is that non-convexities in adjustment costs give rise to price stickiness.

Theorem 3 delivers comparative statics for such pricing models, without

any of the parametric assumptions that are typically placed on adjustment

costs.9 Consider again the monopoly pricing problem described in section

4.2, and recall that the monopolist’s profit has increasing differences in pp, cq,

where p is her price and c is her marginal cost. Assume that the adjustment

9Common functional forms include quadratic (Rotemberg, 1982) and pure fixed cost
(many papers, e.g. Caplin & Spulber, 1987; Caplin & Leahy, 1991; Golosov & Lucas, 2007).
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cost C is single-dipped and BCS with Cp0q “ 0. Theorem 3 asserts that

supply shocks cause inflation at every horizon: a one-off permanent increase of

marginal cost leads prices to increase monotonically over time. The theorem

furthermore provides that the path of prices does not overshoot the new

frictionless monopoly price.

Although we phrased this finding in terms of a monopolist’s pricing prob-

lem, it applies equally to the typical new Keynesian setting of monopolistic

competition between many firms selling differentiated goods (see e.g. Gaĺı,

2015). In that case, the demand curve in our analysis above is to be under-

stood as residual demand, taking into account the other firms’ pricing.

6 Application to capital investment

In the neoclassical theory of investment (originating with Jorgenson, 1963),

a firm adjusts its capital stock optimally over time subject to adjustment

costs. In the simplest such model, the profit of a firm with capital stock kt is

F pkt, pp, η,´rqq “ pfpkt, ηq ´ rkt, where pp, rq are the prices of output and

capital and fp¨, ηq is an increasing production function. Capital is subject to

an adjustment cost: investing it “ kt´ kt´1 costs Cpitq ě 0, where Cp0q “ 0.

We assume that f has increasing differences, so that the parameter η shifts

the marginal product of capital. Then F pk, θq has increasing differences in

pk, θq, where θ “ pp, η,´rq. Our discussion below extends directly to richer

variants of this model featuring e.g. depreciation and time-varying prices.

The early literature assumed convex adjustment costs Cp¨q, which yields
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gradual capital accumulation and an equivalence of the neoclassical the-

ory with Tobin’s (1969) ‘q’ theory of investment (see Hayashi, 1982). Later

work focused on the ‘lumpy’ investment behavior that arises when adjust-

ment costs are non-convex. ‘Lumpiness’ is empirically well-documented (see

Cooper & Haltiwanger, 2006), and has implications for, among other things,

business cycles (e.g. Thomas, 2002; Bachmann, Caballero, & Engel, 2013;

Winberry, 2021) and the effects of microfinance programs on entrepreneur-

ship in poor countries (e.g. Field, Pande, Papp, & Rigol, 2013; Bari, Malik,

Meki, & Quinn, 2021).

Our comparative-statics theory handles both the convex case and rich

forms of non-convexity. Our le Chatelier principles (the ‘classical,’ reduced-

form Theorem 2 and the dynamic, forward-looking Theorem 3) are applicable

provided merely that adjustment costs are single-dipped. Investment then

increases at every horizon, and by more at longer horizons, whenever the

marginal profitability of capital increases, whether due to a drop in its price

r, a rise in the price p of output, or an increase of the marginal product of

capital (an increase of η).

The aforementioned papers on microfinance consider models in which ad-

justment costs fail even to be single-dipped: there is a minimum investment

size I ą 0, meaning that investing i P p0, Iq costs Cpiq “ 8, (whereas invest-

ing i ě I has finite cost). Our fundamental result, Theorem 1, can accom-

modate such failures of single-dippedness: even with exotic adjustment costs

like these, a rise in the marginal profitability of capital increases investment,

just as would be the case if adjustment were costless.

All of these results generalize to multiple factors of production, on the
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pattern of section 4.1. It suffices to assume that the factors x “ px1, . . . , xnq

are complements in production, meaning that the production function fpx, ηq

is supermodular in x. Then, denoting factor prices by r “ pr1, . . . , rnq, the

profit function F px, pp, η,´rqq “ pfpx, ηq ´ r ¨ x is supermodular in x, and

has increasing differences in px, pp, η,´rqq as before, so that all of our general

results remain applicable. In case there are just n “ 2 factors of production,

the complementarity hypothesis may be replaced with substitutability (sub-

modularity of fpx, ηq in x), using the trick described in section 4.1.

Appendix

A Standard definitions

A function ψ : R Ñ r0,8s is single-dipped exactly if there is an x P R such

that ψ is decreasing on p´8, xs and increasing on rx,8q.

For x, y P Rn, we write x^y “ pmintx1, y1u, . . . ,mintxn, ynuq and x_y “

pmaxtx1, y1u, . . . ,maxtxn, ynuq. A set L Ď Rn is a sublattice of Rn exactly if

for any x, y P L, the vectors x^ y and x_ y also belong to L.

Similarly, for any nonempty set X Ď Rn, we write

ľ

X “

´

inf
xPX

x1, . . . , inf
xPX

xn

¯

and
ł

X “

ˆ

sup
xPX

x1, . . . , sup
xPX

xn

˙

.

A set L Ď Rn is a subcomplete sublattice of Rn if for every nonempty X Ď

L, the vectors
Ź

X and
Ž

X belong to L. If a nonempty set X Ď Rn

contains
Ž

X, we call
Ž

X the greatest element of X, and denote it by

22



maxX. Similarly for the least element, denoted minX.

Fix a sublattice L of Rn. A function φ : L Ñ R is called supermodular

if φpxq ´ φpx ^ yq ď φpx _ yq ´ φpyq for any x, y P L, quasi-supermodular

if φpxq ´ φpx ^ yq ěpąq 0 implies φpx _ yq ´ φpyq ěpąq 0, and (quasi-

)submodular if ´φ is (quasi-)supermodular. Clearly supermodularity implies

quasi-supermodularity. If n “ 1, then every function φ : L Ñ R is trivially

supermodular.

Let Θ be a partially ordered set. A function F : L ˆ Θ Ñ R has (strict)

increasing differences if F py, θq ´ F px, θq is (strictly) increasing in θ when-

ever x ď y, has single-crossing differences if F py, θ1q´F px, θ1q ěpąq 0 implies

F py, θ2q ´ F px, θ2q ěpąq 0 whenever x ď y and θ1 ď θ2, has strict single-

crossing differences if F py, θ1q ´ F px, θ1q ě 0 implies F py, θ2q ´ F px, θ2q ą 0

whenever x ă y and θ1 ă θ2, and has (strict) decreasing differences if ´F

has (strict) increasing differences. A function F : L ˆ Θ Ñ R`` has (strict)

log increasing differences exactly if lnF has (strict) increasing differences.

(Strict) increasing differences and (strict) log increasing differences each im-

ply (strict) single-crossing differences.

B Proof of Proposition 1

Let x̂ P arg maxxPLGpx, θ̄q, and suppose toward a contradiction that x̂ ğ

x. Note that x _ x̂ ą x̂ and x ą x ^ x̂. The proof of Theorem 1 yields

F px_ x̂, θ̄q ě F px̂, θ̄q and Cpx_ x̂´xq ď Cpx̂´xq, where the first inequality

is strict if single-crossing differences is strict, and the second inequality is
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strict if reduction is costly. In either case, we have

F px_ x̂, θ̄q ´ Cpx_ x̂´ xq ą F px̂, θ̄q ´ Cpx̂´ xq,

which contradicts the fact that x̂ maximizes Gp¨, θ̄q on L. QED

C Proof of Proposition 2

The first inequality follows from Theorem 1, and the last one follows from

Theorem 2. The middle inequality holds by Topkis’s theorem (Topkis, 1978,

Theorem 6.1) since Gpx, θ̄, hq is supermodular in x (as F px, θ̄q is, and Cp¨, hq

is additively separable) and has increasing differences in px, hq (since each Ci

has decreasing differences). QED

D Proof of Proposition 3

Let pxtq
8
t“1 maximize G1p¨, x0, θ̄q. We shall show that ppxt _ xq ^ x̄q8t“1 also

maximizes G1p¨, x0, θ̄q; this suffices since x ď pxt _ xq ^ x̄ ď x̄ for each t.

We have Fppxq8t“1, θq ě Fppxt^xq8t“1, θq since x maximizes F p¨, θq, which

by supermodularity implies that Fppxt _ xq8t“1, θq ě Fppxtq8t“1, θq, whence

Fppxt _ xq8t“1, θ̄q ě Fppxtq8t“1, θ̄q by increasing differences. We also have

C1px0, pxt_xq
8
t“1q ď C1px0, pxtq

8
t“1q since for each dimension i and each period
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t, Ct
i is single-dipped and minimized at 0, and

either xt,i ´ xt´1,i ď maxtxt,i, xiu ´maxtxt´1,i, xiu ď 0

or xt,i ´ xt´1,i ě maxtxt,i, xiu ´maxtxt´1,i, xiu ě 0.

Thus px˚t q
8
t“1 “ pxt _ xq

8
t“1 also maximizes G1p¨, x0, θ̄q.

Since x̄ maximizes F p¨, θ̄q, we have Fppx̄q8t“1, θ̄q ě Fppx˚t _ x̄q8t“1, θ̄q, so

that Fppx˚t ^ x̄q8t“1, θ̄q ě Fppx˚t q8t“1, θ̄q by supermodularity. As above, we have

C1px0, px
˚
t ^ x̄q8t“1q ď C1px0, px

˚
t q
8
t“1q. Thus px˚t ^ x̄q8t“1 “ ppxt _ xq ^ x̄q8t“1

also maximizes G1p¨, x0, θ̄q, as claimed. QED

E Proof of Theorem 3

Note that under the theorem’s hypotheses, the functions Ct and Gt are the

same in each period t, so may be written simply as C and G.

For any sequence x “ pxtq
8
t“1 in L and any k P N, let Skx denote the

sequence in L whose tth entry is xt for t ă k and xt´1 _ xt for t ě k.

Assume that the agent’s problem admits a solution. Let x1 “ px1t q
8
t“1 be

a solution satisfying x ď x1t ď x̄ in every period t; such a solution exists by

Proposition 3. Define Xt “ x11 _ x
1
2 _ ¨ ¨ ¨ _ x

1
t´1 _ x

1
t for t P N, and X0 “ x.

Write xk “ SkSk´1 ¨ ¨ ¨S3S2x for k ě 2. By inspection, the first k entries

of xk are X1, X2, . . . , Xk´1, Xk. Clearly x ď Xt ď XT ď x̄ for any periods

t ă T . To prove the theorem, we need only show that x8 “ pX1, X2, X3, . . . q

is optimal.

25



It suffices to show for each k P N that xk is optimal. For then, letting

V be the optimal value and noting that both xk “ pxtq
8
t“1 and x8 have

X1, . . . , Xk as their first k entries, we have

ˇ

ˇGpx8, x0, θ̄q ´ V
ˇ

ˇ “
ˇ

ˇGpx8, x0, θ̄q ´ Gpxk, x0, θ̄q
ˇ

ˇ

“ δk
ˇ

ˇGppXtq
8
t“k`1, Xk, θ̄q ´ Gppxtq8t“k`1, Xk, θ̄q

ˇ

ˇ .

By BCS, the right-hand ‘| ¨ |’ is bounded uniformly over k P N,10 and so the

right-hand side vanishes as k Ñ 8, yielding Gpx8, x0, θ̄q “ V .

To show that xk is optimal for each k P N, we employ induction on k P N.

The base case k “ 1 is immediate.

For the induction step, fix any k P N, and suppose that xk “ pxtq
8
t“1 is

optimal; we will show that xk`1 “ Sk`1x
k is also optimal. Let prxtq

8
t“1 be the

sequence with tth entry xt for t ă k and xt^xt`1 for t ě k. Since xk “ pxtq
8
t“1

is optimal, and prxtq
8
t“1 shares its first k ´ 1 entries X1, . . . , Xk´1, we have

Gppxtq8t“k, Xk´1, θ̄q ě Gppx̃tq8t“k, Xk´1, θ̄q,

which may be written in full as

8
ÿ

t“k

δt´k
“

F pxt, θ̄q ´ F pxt ^ xt`1, θ̄q
‰

´

8
ÿ

t“k

δt´k rCpxt ´ xt´1q ´ Cpxt ^ xt`1 ´ xt´1 ^ xtqs ě 0. (1)

10Since Xt and xt belong to the compact set rx, x̄s in every period t, there are constants
A,B ą 0 such that |F pXt, θ̄q ´ F pxt, θ̄q| ď 2A and |CpXt ´Xt´1q ´ Cpxt ´ xt´1q| ď 2B
for all t, so the right-hand ‘| ¨ |’ is bounded by 2pA`Bq{p1´ δq.
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(Note that since xt “ Xt for every t ď k, we have xk´1^xk “ Xk´1 “ xk´1.)

Since F p¨, θ̄q is supermodular, it holds for every t ě k that

F pxt _ xt`1, θ̄q ´ F pxt`1, θ̄q ě F pxt, θ̄q ´ F pxt ^ xt`1, θ̄q (2)

We furthermore claim that for each t ě k,

Cpxt _ xt`1 ´ xt´1 _ xtq ´ Cpxt`1 ´ xtq

ď Cpxt ´ xt´1q ´ Cpxt ^ xt`1 ´ xt´1 ^ xtq; (3)

we shall prove this shortly. Combining (1), (2) and (3), and changing variables

in the sums, we obtain

8
ÿ

t“k`1

δt´pk`1q
“

F pxt´1 _ xt, θ̄q ´ F pxt, θ̄q
‰

´

8
ÿ

t“k`1

δt´pk`1q rCpxt´1 _ xt ´ xt´2 _ xt´1q ´ Cpxt ´ xt´1qs ě 0.

By inspection, this says precisely that px̂tq
8
t“1 “ xk`1 “ Sk`1x

k satisfies

Gppx̂tq8t“k`1, Xk, θ̄q ě Gppxtq8t“k`1, Xk, θ̄q.

(Note that since xt “ Xt for every t ď k, we have xpk`1q´2 _ xpk`1q´1 “

Xk´1_Xk “ Xk “ xpk`1q´1.) Since xk`1 “ px̂tq
8
t“1 and xk “ pxtq

8
t“1 agree in

their first k entries, and xk is optimal, it follows that xk`1 is optimal, too.
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It remains to show that (3) holds. It suffices to prove for each i that

Cipb_c´a_bq`Cipb^c´a^bq ď Cipb´aq`Cipc´bq for any a, b, c. (4)

(We’ve renamed xt´1,i “ a, xt,i “ b and xt`1,i “ c.) When b is not extreme

(neither least nor greatest), (4) holds trivially because the left-hand side is

equal to the right-hand side. When b is extreme, (4) reads

Cipc´ aq ď Cipb´ aq ` Cipc´ bq,

and we have

either (i) 0 ď c´ a ď b´ a or (ii) 0 ď c´ a ď c´ b

or (iii) 0 ě c´ a ě b´ a or (iv) 0 ě c´ a ě c´ b.

Since Ci is single-dipped, minimized at zero and non-negative, we have Cipc´

aq ď Cpb ´ aq ď Cpb ´ aq ` Cpc ´ bq in the first and third cases, and

Cipc´ aq ď Cpc´ bq ď Cpb´ aq ` Cpc´ bq in the second and fourth. QED

Condition (4) is a special case (with b “ d) of the following condition:

Cipb_ c´ a_ dq`Cipb^ c´ a^ dq ď Cipb´ aq`Cipc´ dq for any a, b, c, d.

This says that the map pa, bq ÞÑ Cipa´ bq is submodular, which holds if and

only if Ci is convex. Remarkably, we did not have to assume convexity to

obtain a monotone adjustment path—single-dippedness was enough.
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