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Libor Dušek† and Christian Traxler‡

This version: August 5, 2019

Comments welcome!

Abstract

This paper studies how punishment for past offenses shapes future compliance behavior
via learning. The context of our study is traffic law enforcement through automated speed
cameras. We use unique data on speeding tickets and full driving histories of more than one
million cars tracked over several years in a suburb of Prague. In our setting, punishment
neither implies incapacitation nor do past tickets alter the ‘price’ for future offenses. This
allows us to identify specific deterrence effects induced by learning from law enforcement. We
present results from two empirical strategies. Firstly, a regression discontinuity design exploits
two speed level cutoffs which provide variation in punishment at the extensive (receiving a
speeding ticket) and intensive margin (tickets with low or high fines), respectively. The RDD
reveals strong and precisely estimated responses to speeding tickets: the speeding rate drops by
a third (10 percentage points) and chances of getting a further ticket fall by 70%. An increase
in punishment at the intensive margin – a more than a doubling of fines – triggers only a
limited additional effect. Secondly, an event study makes use of the high-frequency nature
of our data. The average treatment effects on the treated obtained from the event study
confirms all LATEs from the RDD. We also document that driving responses are immediate
and very persistent over time. Even two years after receiving a ticket there is no evidence on
‘backsliding’ towards speeding. The results reject unlearning and temporary salience effects
and support a reinforcement learning model in which agents, after experiencing punishment,
update their priors on the expected costs of future offending in a discontinuous, ‘coarse’
manner. Additional results indicate that learning from (local) law enforcement affects drivers’
behavior more broadly, including spillovers on non-ticketed drivers.
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1 Introduction

How do individuals respond to being punished for a crime or an offense? There are typically

numerous mechanisms through which most forms of punishment can shape future behavior.

Imprisonment, for instance, can imply incapacitation and peer effects. If one excludes such

implicit mechanisms and considers a context where the punishment for future delinquencies is

constant (rather than increasing in, e.g., earlier convictions), past punishment would be a sunk

cost: it does not evoke a general deterrence effect, leaving the choices of rational, perfectly

informed agents unaffected (Becker, 1968).

This prediction is in stark contrast to the colloquial notion of offenders ‘learning their lesson’

from punishment – an idea that can be traced back to the classical writings of Beccaria, Bentham,

and, most explicitly, von Liszt (1882).1 To express this idea in economic terms, we consider an

imperfectly informed agent; after being punished, the agent might update priors about relevant

parameters of the enforcement process (e.g., the detection risk, the level of punishment). The

agent learns from law enforcement and, in turn, adjusts behavior. A learning framework therefore

captures the idea of backward-looking individuals that “are responsive to the actual experience

of punishment” (Chalfin and McCrary, 2017, p.6). The objective of this paper is to identify such

responses to punishment – specific deterrence effects mediated by learning.

Learning from law enforcement might, in principle, occur in almost any domain. The iso-

lation of a learning channel, however, is typically impossible. As pointed out above, (expected)

punishment is often increasing with prior convictions. Past punishment then implies a general

deterrence effect. More importantly, punishment typically comprises a multidimensional treat-

ment that influences later behavior along many different channels. Imprisonment may imply

incapacitation and aging (Ganong, 2012; Barbarino and Mastrobuoni, 2014), criminogenic peer

effects (Bayer et al., 2009), or diverging labor market consequences (Mueller-Smith, 2015; Bhuller

et al., 2019). Monetary forms of punishment, in contrast, may involve non-trivial income effects.

Large fines imposed on, e.g., detected tax evaders could then alter future behavior by influencing

their risk tolerance (Kolm, 1973).

Our paper avoids these issues by focusing on traffic law enforcement. We exploit a large

administrative data set from a system of automated speed cameras in a suburb of Prague, Czech

Republic. The data cover thousands of speeding tickets and allow us to track the driving histories

of more than 1.2 million cars over several years. We observe the measured speed for every single

ride through multiple speed camera zones – independently of whether a car was speeding or not.

This feature clearly distinguishes our ability to track behavioral responses to punishment from

studies that observe, e.g., only rearresting. In our context there are no relevant income effects

and the price for re-offending is unaffected by past punishment: fines are modest (around $40–85)

and independent of past tickets. Insurance rates remain constant, too. In addition, punishment

does not induce incapacitation (driving licenses are never revoked or suspended). Thus the set-up

is ideal to isolate if and how agents learn from (traffic) law enforcement.

1The latter explicitly stressed the role of punishment as a means of teaching criminals a lesson that points out
the boundaries between compliant conduct and crime.
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We provide complementary results from two research designs. First, we implement a re-

gression discontinuity design (RDD) which exploits two speed-level cutoffs. The first cutoff is an

enforcement threshold used by the local police forces. If a car’s speed is above this cutoff (14km/h

above the speed limit), the system automatically triggers a speeding ticket. If the speed is above

a second threshold, the fine for the speeding ticket more than doubles (from $40 to $85). The two

cutoffs thus offer variation in punishment at the extensive (receiving or not receiving a speeding

ticket) and intensive margin (tickets with low or high fines), respectively. Based on the latter

variation, we can study whether specific deterrence effects are increasing with higher fines.

The RDD results document strong and precisely estimated responses to speeding tickets.

While driving frequencies remain unchanged, the average car’s speeding rate – i.e., the fraction of

rides above the speed limit – drops by a third (from 30 to 20%); the chances of getting a (further)

ticket decline by 70%. These numbers reflect a pronounced shift in the speed distribution. The

mass of rides above the speed limit (also in the range below the enforcement cutoff) strongly

declines. Most of this mass is shifted to the range slightly below the speed limit. As a consequence,

the average speed declines by 3%, with larger changes at the top of the speed distribution.

These findings are consistent with a reinforcement learning framework. After receiving a

speeding ticket, drivers update their priors on q(s), the expected penalties for driving at speed s,

and accordingly adjust their optimal speed. Within this framework, one can distinguish between

‘fine-grained’ and more ‘coarse’ updating of priors. For the former case, we predict nuanced speed

adjustments and, eventually, bunching below the enforcement cutoff. Under coarse updating,

q(s) raises for almost any speed above the limit. In turn, we should observe a strong drop

in speeding (with heaping at the speed limit) and too little experimentation to figure out the

enforcement cutoff. The evidence is consistent with these latter predictions: drivers learn about

the enforcement of speed limits and it’s consequences – but not about the threshold used in the

enforcement of speeding violations.

Coarse updating (in contrast to the fine-grained case) further implies that higher fines do

not, on average, amplify the specific deterrence effects of speeding tickets. In line with this

prediction, we do not find statically significant additional effects at the second cutoff (where the

fine increases from $40 to $85). Only for a theory-motivated subsample – rides observed under

driving conditions that favour speeding – we detect stronger effects of tickets with higher fines.

Overall, the evidence suggests that the variation in fines has a minor influence on the way drivers

learn their lesson. Intensive margin variation in punishment has therefore only a limited effect.

We complement the RDD results with an event study which makes use of the high-frequency

resolution of our data. Based on information on the exact timing when a speeding ticket is

delivered, we explore within-car variation before and after receiving a ticket. The results, firstly,

corroborate all findings from the RDD. In fact, the average treatment effects on the treated

(ATTs) obtained from the event study are almost identical to the local average treatment effects

(LATEs) from the RDD. Secondly, we document that the drop in speeding is immediate and very

persistent over time. Over two years after receiving a ticket, there is no evidence of ‘backsliding’

towards speeding. These results contradict Glueck (1928), who speculated that the “influence of
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the memory of past punishment upon the individual punished” (p.459) might fade over time such

that “former punishment has [...] little, if any, lasting effect” (p.462). The evidence clearly rejects

such unlearning. The responses to punishment are persistent and not a temporary salience effect,

which could emerge in models with limited attention or cognition (Gabaix, 2019).

In an additional step, we study how broadly (or narrowly) drivers adjust their behavior.

We document that a drop in speeding rates is also observed for other speed camera zones –

beyond the one that triggered the ticket. Studying the time spent on trips on the un-monitored

stretch between two speed cameras, we provide further evidence suggesting that the increased

compliance with speed limits inside speed camera zones is not compensated by more aggressive

speeding outside these monitored zones. Experiencing punishment seems to trigger a relatively

broad behavioral adjustment.

Finally, we also identify spillover effects. Speeding tickets not only induce a slow down of

treated cars but also of those that travel in lines behind ‘ticketed’ cars. Depending on traffic

density (and the composition of lines), this spillover can reach well beyond the next car behind

a treated one. In addition to these (at least partially mechanical) ‘backward spillovers’, we also

find some evidence on ‘forward spillovers’. Speeding tickets make (otherwise aggressive) cars drive

slower; driving less pushy, in turn, results in the car traveling ahead of a treated one at a slower

pace, too. The latter effect, however, is weaker and less robust.

Our paper relates to several strands of research. First of all, we contribute to the literature

on learning (Mobius and Rosenblat, 2014). So far, little attention has been paid to learning

from and about law enforcement. Following the influential work by Sah (1991), economists have

documented how own experiences and social interactions influence expectations about the criminal

justice system and law enforcement more broadly (e.g., Lochner, 2007).2 While there is also some

evidence indicating that word-of-mouth learning between peers influences compliance decisions

(Rincke and Traxler, 2011; Drago et al., 2019), we provide evidence that identifies responses to

punishment mediated by within-agent learning.3

In doing so, we also contribute to the economic analysis of deterrence (Chalfin and McCrary,

2017). General deterrence effects are theoretically well understood since Becker (1968) and,

meanwhile, well documented empirically (e.g., Drago et al., 2009; Draca et al., 2011). For specific

deterrence, the situation looks different. There is neither consensus on a formal, theoretical

framework (see Nagin, 2013, Section 7) nor a coherent set of empirical findings. Most economic

studies of specific deterrence have focused on the impact of imprisonment – either vis-a-vis

alternative, less severe sanctions (e.g., Hjalmarsson, 2009; Di Tella and Schargrodsky, 2013;

Bhuller et al., 2019) or in terms of longer or harsher imprisonment (e.g., Chen and Shapiro,

2See also Hjalmarsson (2008). The large criminology literature is summarized by Apel (2013).
3For the domain of tax enforcement, a recent survey documents strong correlations between past exposure

to tax audits and firms perceived auditing risk (Bérgolo et al., 2018). This is consistent with randomized audit
interventions which typically induce long-lasting compliance responses among audited taxpayers (see, e.g., Kleven
et al. 2011; Advani et al. 2019, who find positive effects, but also DeBacker et al. 2015, who report negative effects).
The repeated interaction of tax authorities and taxpayers, however, is fairly complex. Hence, in addition to the
income effects mentioned see above, there are numerous mechanism beyond learning and updated expectations that
could shape responses to experiencing an audit.
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2007; Drago et al., 2011; Ganong, 2012; Kuziemko, 2013; Mastrobuoni and Terlizzese, 2019).4

Despite a large number of studies that rely on credible, quasi-experimental variation, results

on specific deterrence are very mixed, with evidence from similar contexts indicating positive,

negative, or null effects.5

We differ from (and contribute to) this strand of research in several ways. First, our set-up –

the enforcement of speed limits – excludes, among others, incapacitation, criminogenic, labor

market, and general deterrence effects. This enables us to isolate learning-induced specific

deterrence. Second, our data offer an unusual opportunity to precisely track behavioral responses

to punishment over time. This allows us to document the immediacy and persistency of the effects.

Moreover, while empirical studies on criminal recidivism typically observe former offenders only

when rearrested or convicted, we observe legal activities (rides that comply with speed limits)

as well as illegal activities (rides above the speed limit, independently of whether a ticket is

triggered or not).6 Based on this feature, we illustrate changes in a continuous distribution of

(non-)compliance behavior.

Third, using a discontinuity and event study design, we provide causal estimates that consis-

tently document specific deterrence effects: we find strong, immediate and persistent responses

to extensive margin variation in punishment. For intensive margin variation in fines, however, we

only obtain limited and less precisely estimated effects. Fourth, we present a simple, formal frame-

work which offers a coherent interpretation of these responses (to both extensive and intensive

margin variation in punishment) in terms of reinforcement learning.7 The analysis shows that our

findings are consistent with a coarse, discontinuous updating of priors. The evidence rejects the

case of fine-grained updating as well as an interpretation in terms of temporary salience responses

of agents with limited attention. As further discussed below, this differentiation has interesting

policy implications. Fifth, the fact that we study variation along different margins of punishment

further distinguishes our work from most other studies (with Hansen, 2015, further discussed

below, as an important exception). Note that studies on prison sentences compare imprisonment

with other, less severe forms of punishment (or different imprisonment conditions) – thus focusing

mainly on the intensive margin. Exogenous extensive margin variation in punishment, as it is

explored in our context, is thus rare.

We are convinced that the relevance of learning-induced deterrence extends to other domains.

Support for this view is provided by Philippe (2019), who studies a recent reform of minimum

sentencing requirements in France. The requirements only applied to a specific form of recidivism:

committing exactly the same type of crime again. Using a difference-in-difference strategy that

compares offenders who faced the same sentencing threat, Philippe (2019) finds that only those

who had the chance to learn about the exact scope of the reform, respond strategically, by

4See Nagin et al. (2009) for a comprehensive review of this research.
5Mixed results are also reported in the literature on tax enforcement (see fn. 3).
6This feature also distinguishes our work from other research on traffic violations, discussed below.
7The framework complements earlier analyses, which mainly focussed on the social dimension of learning (Sah,

1991) or on Bayesian learning (Lochner, 2001). Our analysis further differs from these studies in that we examine
a continuous rather than a binary (non-)compliance decision.
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committing fewer crimes of the same type. Correlational evidence, which compares offenders

who did or did not show-up in court (and did not get the law explained), further supports this

interpretation. The chances to learn might therefore shape individual responses to interactions

with the criminal justice system.

Finally, our study also adds to the economic research on traffic law enforcement. In this

context, a few quasi-experimental studies estimate effects on the extensive margin of punishment.

In an RDD that is similar to ours, Hansen (2015) exploits the discontinuity in blood alcohol

content that triggers sanctions for a DUI violation. He finds a 17% decline in recidivism over a

four year period. Studdert et al. (2017), who also use a within-driver design, find that experiencing

a sanction reduces the likelihood of future traffic law violations by 25% during 90 days. Both

studies differ from ours, however, in that past punishment carries a general deterrent effect (related

to increases in future penalties).

Hansen (2015) also studies intensive margin variation in punishment at a second cutoff, where

statutory sanctions for future offenses remain constant. He detects an additional effect of the

enhanced punishment of aggravated DUI.8 A further RDD study with intensive margin variation

is Gehrsitz (2017), who also reports an additional deterrence effect if driving license suspensions

(which imply partial incapacitation) are added on top of fines and demerit points. Two features

distinguish our paper from all these studies: the simplicity of our set-up (which neither includes

suspensions nor jail sentences, etc.) and the fact that we can observe a continuous outcome

variable, independently of whether cars are offending or speeding below the enforcement cutoff.

This data feature allows us to present distributional effects and long-run event study analyses,

which are novel to this strand of literature.

The results from this paper have several policy implications. First, our evidence shows that

automated speed camera systems are highly effective at enforcing speed limits. After receiving

a speeding ticket, cars persistently reduce their speed in different speed camera zones, with no

evidence on compensatory speeding on un-monitored parts of the road. The spillover effects

further imply that the tickets’ impact spreads to a much vaster population of cars. Together with

a potential general deterrence effect of the speed cameras, this contributes to an overall decline

in travel speed. These findings appear relevant, given that the WHO (2018) considers effective

speed management policies as the central strategy to reduce the approximately 1.35 million annual

deaths in road traffic crashes. Studies which use variation in speed limits (Ashenfelter and

Greenstone, 2004; van Benthem, 2015) and their enforcement (DeAngelo and Hansen, 2014; Tang,

2017) indicate that the observed decline in speeding might not only lower accident risks but trigger

further positive externalities in terms of reduced air and noise pollution as well as improved

emission-related health outcomes. While a comprehensive welfare analysis is beyond the scope of

this paper, estimates in van Benthem (2015) suggest that the social benefits from enforcing speed

limits might exceed the private costs.

8Consistently with a specific deterrence interpretation, this additional effect emerges only in the long-run (i.e.,
beyond a 3-years outcome window, which could be influenced by license suspensions, revocations, or court-ordered
probation periods).
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Second, and more broadly, our work points to the importance of learning and information

policies in mediating deterrence effects. In a similar vein, Philippe (2019) notes that differences

in informational policies might actually explain why similar policy changes had different effects,

depending on whether or not the reforms were largely publicized (or individually communicated).

(Re)designing institutional settings to leverage learning effects and to amplify the dispersion of

information might therefore constitute an important (and so far under-researched) dimension of

optimal enforcement policies.

At the same time, our results also highlight the potential value of ambiguity. In our context,

the exact speed cutoff above which speeding triggers a ticket (14km/h above the speed limit) is

unknown. The coarse updating prevents drivers from finding out the exact threshold and, in turn,

implies a stronger decline in speed. With coarse updating, an ambiguous enforcement cutoff may

therefore amplify behavioral responses. In principle, this result might apply to numerous domains

– such as petty theft, minor drug possession, public nuisances, tax evasion, or environmental

pollution – where offenders face ambiguity about the exact point up to which authorities ‘tolerate’

illegal behavior and where punishment starts.9

The remainder of the paper is structured as follows. After describing the institutional back-

ground and our data, Section 3 introduces a theoretical framework. Sections 4 and 5 discuss our

empirical strategies and present the main findings from the RDD and the event study, respectively.

Additional results are discussed in Section 6.

2 Institutional Background and Data

Ricany is a residential town of 16,000 inhabitants located just outside Prague, the Czech Repub-

lic’s capital. The town experiences heavy commuter traffic and traffic safety is a major concern.

Speed measurements from 2013 suggested that 30% of all cars were exceeding the speed limit.

Speed cameras and speeding tickets. In late 2013, the city council decided to set up fixed,

speed cameras at five commuter roads (four with a speed limit of 50km/h, one with a limit of

40km/h; all are two-lane roads). The automated cameras record the average speed of all cars that

pass by measurement zones of several hundred meters: cameras placed at the entry and at the

exit point of a given zone record a car’s number plate together with a precise time stamp.10 Based

on the travel time, the average speed inside the zone is computed. It is important to emphasize

that the speed cameras record data on all cars, independently of their speed. Note further that,

while the cameras are visible (see Appendix Figure A.1), there is no ‘flash’ or any warning sign

that indicates the cameras’ activity.

All recorded data are sent electronically to the local police, in daily batches. Speeding

violations that classify for a ticket (see below) are verified by an officer and then passed on

to the civilian town administrators who manage the enforcement process.11 The speed cameras

9On the benefits of ambiguity in an enforcement context, see also Lang and Wambach (2013).
10The number plate is retrieved by applying an automatic number plate recognition technology.
11The process is standardized, leaving no scope for discretion by police officers (Makowsky and Stratmann, 2009).
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were installed in the summer of 2014 and, after a testing period, the first speeding tickets were

sent in October 2014.12

Enforcement of fines. The tickets are sent to the car owners either via mail or electronically.

As in many other countries, penalties are stepwise increasing in the speed (Traxler et al., 2018).

Minor speeding offenses with a speed of up to 20km/h above the limit are punished with a fine

of 900 CZK (approx. $39, or 3.5% of the average monthly wage). For an intermediate speeding

offense, with a speed of 20–40km/h above the limit, the fine increases to 1900 CZK (approx. $82).13

For the remainder of the paper, we refer to these levels as low and high fine, respectively. (Major

speeding offenses, with more than 40km/h above the limit, are handled according to a different

procedure. Our analysis will not examine these offenses, which are very rare in our context.)

Several institutional aspects of the enforcement system are crucial for our research design.

First, the fines do not depend on past speeding offenses. Moreover, as car insurance companies

do not learn about speeding tickets, insurance rates do not increase either. Hence, the future

‘price’ of speeding does not increase with a speeding ticket; it remains constant. Second, tickets

never result in driving licenses being revoked or suspended (or any jail sentences). Different from,

e.g., Hansen (2015) or Gehrsitz (2017), punishment does not include incapacitation.

Third, the speed used to determine which penalty applies derives from a simple adjustment

procedure (that serves as a concession to prevent appeals): the measured speed is rounded down

to the next integer and then reduced by 3km/h. A measured speed of, e.g., 73.85km/h is thus

adjusted to 70km/h. Given this procedure, the cutoff for intermediate speeding is 23km/h in

terms of measured speed above the limit. In the remainder of the paper, we will work with the

precise speed measure, i.e., before the adjustment procedure is applied.

Fourth, when the speed cameras were set up, the local police decided to only send out speeding

tickets if the measured speed was at least 14km/h above the limit. In contrast to the cutoff for

intermediate speeding, the enforcement threshold is not prescribed in any legislation. Moreover,

the cutoff was never publicly communicated (except for this paper). Hence, we do not expect

drivers to anticipate the enforcement cutoff.14

Data. The city of Ricany provided us with data on the full universe of all 26 million rides

recorded by the speed cameras from August 2014 through August 2018. For each car, we observe

the exact time of entering and exiting a camera’s zone, the measured speed (to the precision

12During the early phase, there were occasional gaps in measurement and one camera was only launched in
November. All issues were quickly resolved and cameras started to record 24/7 highly accurate, consistent data.

13About 80% pay the stipulated fines right away. Similar to a plea bargaining process, the case then ends. When
the ticket is not paid, the case reverts to a sort of ‘trial’ in which the actual driver has to be proven guilty or the car
owner may be found liable for a violation committed with his car by an unspecified driver. Convicted drivers or car
owners are then punished by a an individually assessed fine in the range of 1500–2500 CZK and 2500–5000 CZK
for minor and intermediate speeding case, respectively. Convicted drivers are further punished by a deduction in
demerit points. A companion paper studies the enforcement process in more detail (Dusek et al., 2019).

14We verified whether citizens requested information about the level of the enforcement cutoff from the local
authority under the Freedom of Information Act. Between 2014 and 2019 there was only one request that indirectly
touched on this issue. This request was made in June 2018, while nearly all observations in our analysis occurred
earlier. Citizens mainly used the FoI procedure to inquire about other aspects of the speeding camera systems.
(45 requests concerned statistics on the number of tickets, revenue collected, or the supplier of the speed camera
technology.) The information requests and the replies by the local authority are accessible online here.
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of 1/1000 km/h), and an identifier for the specific zone. The data also include an anonymized

(number plate-based) ID identifying a car as well as a variable capturing the region where the

car is registered. Recall that the cameras record all rides, irrespective of the speed. The data

therefore allow us to observe the entire driving history – speeding and non-speeding rides – of

each single car that was ever recorded by one of the five cameras. This clearly distinguishes our

set-up from related empirical work.

The speed camera data were merged with administrative data on the enforcement of the

speeding tickets. We observe the sending day for each ticket, whether it was sent by mail or

email, and when it was received.15 The data also include the amount of the fine prescribed – 900

or 1900 CZK depending on offense severity – the payment date and, in case of non-compliance,

information on further enforcement steps.

Table 1 presents basic summary statistics of the full sample, decomposed for cars that never

received a ticket and cars that did. The data set covers 26 million rides from over 1.3 million

cars. Only a small fraction of cars received any tickets; specifically, 48,422 cars received over

56,000 tickets. The ticketed cars drive more frequently (84 rides on average compared to 16 for

non-ticketed cars).

Our later analysis mainly uses two outcome variables: the measured speed and a speeding

dummy which equals one if the measured speed exceeds the speed limit. Summary statistics for

these variables are provided in the bottom panel of Table 1. The probability that a car is speeding

on a single ride is 0.126 among the never-ticketed cars and 0.189 among ticketed cars. Note that

the definition of the former variable includes all rides that violate the traffic law, irrespective of

whether it is actually ticketed (i.e., speed exceeding the enforcement cutoff) or not (speed above

the speed limit but below the cutoff). For the measured speed, which is here normalized by the

relevant speed limit (50 and 40km/h, respectively), we observe that ticketed cars drive faster (on

average 5.17 km/h below the limit) than the never-ticketed cars (6.00 km/h below the limit).

As a third outcome variable, we use a (re)offense indicator which captures if a ride had a speed

above the enforcement cutoff and thus classified for a ticket. Offending is rare: only 0.3% of all

rides exceed the enforcement cutoff. By definition, the offense rate is higher (1.5%) among cars

that ever received a ticket.

It is worth stressing that our data allow us to track cars but not individual drivers. Tickets are

mailed to the owner of a car (who can differ from the driver) and we cannot distinguish different

drivers that may share a given car (e.g., family members or different employees of a company).

While our analysis at the level of cars likely capture possible spillovers from ticketed car owners

to potential co-drivers, the estimates might nevertheless represent lower bounds for within-driver

responses to extensive and intensive margin variation in punishment. Another limitation of the

data is that, except for the region of the number plate, we have no information about cars.

15The ticket is recorded as received when the addressee signs a delivery receipt (conventional mail) or opens the
electronic mail with the ticket.
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3 Theoretical Framework

This section illustrates the potential impact of speeding tickets in a simple framework that models

optimal speed choices of a risk neutral driver. Note that the analysis can be easily extended to

other domains where (i) the expected punishment is convex in the magnitude of a legal violation

and where (ii) offenders face ambiguities about the enforcement process, in particular, about the

point up to which illegal behavior is ‘tolerated’ and not yet punished (e.g., petty theft, minor

drug possession, public nuisances).

Let the net benefits from a ride in period t ≥ 0 with speed st under exogenous driving

condition ct (e.g., weather or traffic situation) be given by the function v(st, ct).
16 v(.), which

indicates the value of time saved or mere ‘pleasure’ from driving at this speed (net of costs of

fuel consumption and accident risk), is concave in speed and ∂2v(st,ct)
∂s∂c > 0∀s, c. At time t, the

driver expects that – with probability pt(s) – speeding will trigger a ticket at costs f t(s) (fines,

transaction costs, etc.). We denote the expected costs from the ticket, the product pt(s)f t(s), by

qt(s). This continuously differentiable function qt(.) is assumed to be non-decreasing and weakly

convex in s: ∂qt/∂s ≥ 0 and ∂2qt/∂s2 ≥ 0∀t. Driving below the speed limit ŝ is never expected

to trigger a ticket: qt(s) = ∂qt

∂s = 0∀s < ŝ, t. The driver’s problem is

max
st

v(st, ct)− qt(st) (1)

and the optimal speed s∗t , for a given expectation qt(.), is characterized by the first-order condition

∂v(s∗t , ct)

∂st
=
∂qt(s∗t )

∂st
. (2)

3.1 Learning from Speeding Tickets

At the beginning of each period t > 0, a driver observes whether or not a speeding ticket was

delivered. This ‘feedback’ for a ride from period τ < t with speed sτ is denoted by Tt(sτ ) ∈ {0, 1}.
Based on the past driving and ticketing experience, the driver might then update expectations:

qt(s) = P
(
{st−1,T

t(st−1)}, {st−2,T
t(st−2)}, . . . , {s0,T

t(s0)}, qt−1(s)
)
, (3)

where P (.) describes the updating process, qt−1 is the past expectation, and τ = 0 is the period

of the first ride. Iterating the mapping P and accounting for the fact that a ride from period τ

could, in principle, result in a ticket that is delivered in any period t > τ (see Appendix B.1), one

obtains

qt(s) = Πt

((
{sτ , ~T(t, sτ )}

)
τ=0,...,t−1

, q0(s)

)
, (4)

16We neglect the possibility that drivers choose conditions, e.g., by deciding when to drive.
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where q0(s) is the prior belief in t = 0 and the vector ~T(t, sτ ) := (Tt(sτ ),Tt−1(sτ ), . . . ,Tτ+1(sτ ))

indicates if and in which period a ride at speed sτ from period τ resulted in a ticket. Current

expectations are thus a mapping of past experiences and the initial expectation.

Let us now discuss different ways of learning and updating that can be captured by Πt. A

benchmark is the case of zero updating. A driver might know the ‘true q(s)’ (discussed below) and

expectations do not evolve over time. In this case, receiving a speeding ticket should not have any

impact on subsequent speed choices. This is in contrast to predictions obtained for an imperfectly

informed driver. For such a driver, a ticket provides new information regarding the probability of

detecting a speeding offense (at a particular location and at a given speed sτ ) and the resulting

consequences. We discuss alternative updating rules in the spirit of a reinforcement learning

process, which yield different shifts in the expected costs qt(s) that imply different responses to

receiving a ticket.

Consider first a driver that, after a ride with {s∗t−1,T
t(s∗t−1) = 1}, adjusts expectations

upward: qt(s) = qt−1(s) + ∆(s), with ∆(s) > 0 in some range of s ‘near’ the previous speed

s∗t−1. An example consistent with this rule is illustrated by the dashed curve in the top left panel

of Figure 1. The illustration shows qt(s) > qt−1(s) in some speed range below s∗t−1. As depicted in

the bottom left panel, it then follows from condition (2) that the optimal speed s∗t (c) for constant

driving conditions ct = ct−1 would be lower than s∗t−1. In fact, as qt(s)/∂s becomes very step right

below s∗t−1, the car would drive strictly below s∗t−1 even for better driving conditions ct > ct−1.

A case with a more ‘coarse’ form of updating is depicted in the top right panel of Figure 1.

The dashed line shows an example where expectations shift upwards for any speed above the

speed limit: ∆(s) > 0 ∀s > ŝ and qt(s) becomes already very steep at modest levels of speeding

(see the dashed curve ∂qt(s)/∂s in the bottom right panel of Figure 1). The driver would thus

drive very ‘cautious’, at most engaging in minor violations of the speed limit, even for very good

driving conditions. A further implication is that the speeding responses to such coarse updating

should be larger than the responses following a ‘fine grained’ way of updating qt.

Independently of whether a driver responds to a speeding ticket by updating expectations in

a more fine grained or in a more coarse manner, the updating captures backward-looking agents

that “are responsive to the actual experience of punishment” (Chalfin and McCrary, 2017, p.6).

As we will see below, however, the different nuances of updating have important implications,

among others, for the ambiguity regarding the specific enforcement cutoff.17

17While the case for negative reinforcement (i.e., responses to speeding tickets) is fairly clear, one could also
consider the possibility of positive reinforcement. This might occur when drivers’ respond to ‘successful speeding’
(rides with s∗t > ŝ) that did not result in a ticket. One might argue that, judged against expected disutility qt(s∗t ),
such a ride yields a positive payoff. Note, however, that any updating response after not receiving a ticket in
period t+ 1 would be partially naive, to the extent that speeding in period t might result in a delayed ticket that
arrives in any future period τ > t. If such a positive reinforcement nevertheless occurs, drivers might become more
‘optimistic’ (in terms of qt(s)) which would, cet. par., work towards increasing optimal speed.
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3.2 The ‘True’ Enforcement Process

So far, our discussion remained agnostic about the ‘true’ probability of getting a ticket (p)

and the associated costs (f). From Section 2 we know that the actual enforcement procedure

implies that the probability of triggering a ticket is equal to zero for any speed below the

enforcement cutoff. For any speed above this cutoff, however, the chance of getting a ticket

essentially equals one. Agents might learn about this enforcement cutoff. In fact, if drivers

apply fine grained updating rules (as the one illustrated in the left panels of Figure 1), they

would not stop speeding after receiving a ticket. Instead, drivers would only slightly reduce

their speed. In combination with varying conditions ct, updating and re-optimization should

then induce sufficient experimentation in speed. In turn, this would enable drivers to figure out

the enforcement cutoff. The optimal speed (for reasonably good driving conditions) would thus

converge towards the cutoff. Empirically, we should observe bunching in the speed range below

the cutoff.

This prediction is in stark contrast to what follows from coarse updating rules. The more

coarsely drivers update expectations, the more strongly they reduce their speed. With a strong

shift in expectations and, consequentially, optimal speed choices, there is less scope for learning

the enforcement cutoff. Under sufficiently coarse updating, we should therefore not observe any

heaping at the enforcement cutoff. Coarse updating could, in contrast, contribute to bunching at

or below the actual speed limit, ŝ. From a policy perspective this means that, under coarse up-

dating, the (unresolved) ambiguous of the enforcement threshold contributes to larger behavioral

responses to speeding tickets.

As discussed in Section 2, there is a second speed cutoff at which the fine increases discontin-

uously. The true costs from the enforcement of speeding violations are thus stepwise increasing

in speed. It is straight-forward to show that, if drivers know (or learn about) this stepwise

shape, we should observe bunching below this second cutoff: instead of the interior optimum

characterized by condition (2), drivers might choose a corner solution (Traxler et al., 2018).18

This might be even more relevant as the second cutoff which is – in contrast to the enforcement

cutoff – stipulated by the law and thus public. If the second cutoff would be unknown, however,

the discussion from above regarding the scope for learning applies accordingly: whenever drivers

update expectations in a very coarse manner, they might not experiment with different levels of

speeding and ultimately not learn the second cutoff either.

A further point to assess concerns the way that experiencing a ticket with either a higher or a

lower fine – the intensive margin variation in punishment around the second cutoff – affects drivers’

updating and behavioral responses. As a benchmark case, one could consider the possibility that

updating is insensitive to the level of the fines. However, a reinforcement logic would suggest that

a stronger payoff loss (a higher fine) induces a stronger updating response.

With more fine grained updating in response to a low-fine speeding ticket, a larger penalty

might indeed produce a more pronounced change in expectations. A case along these lines

18This implicitly assumes that some drivers have a sufficiently strong taste for (and conditions favouring) speeding,
such that they are willing to accept a low-fine ticket.
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is illustrated in the left panel of Figure 2. Under a more coarse updating, however, drivers

might already respond to a low-fine ticket with a very conservative updating (see right panels

of Figure 1). It is then questionable that a higher fine would induce any stronger behavioral

responses. With more coarse updating, intensive margin variation in the experienced punishment

might therefore not amplify the impact from speeding tickets on speed choices.

One refinement of the latter prediction builds on the possibility that the q(s) function becomes

‘more convex’ after experiencing a higher rather than a low fine. Such a case is illustrated in the

right panel of Figure 2. From the graphical illustration and the discussion of optimal speed

choices above it follows that behavioural differences (in terms of different speeding levels) would

only realize for sufficiently good speeding conditions ct. We will test this prediction below.

The main behavioral predictions discussed above are summarized in Table 2. There are several

additional dimensions worth discussing. Note first that, within our framework, any updating

should produce an immediate effect. As long as there is no unlearning or forgetting, the response

in speed choices after receiving a ticket should also be persistent. When drivers are constrained

in their attention or cognition (Gabaix, 2019) – if they ‘forget’ or simply not have the risk of

speeding tickets on top of their mind – there might be scope for ‘unlearning’: speeding tickets

could serve as reminders that make the enforcement system salient. Receiving a ticket should

trigger a temporary decline in speeding but the effect should decay over time. We might thus

observe some ‘backsliding’ in the mid-run. Section 5 examines this possibility in an event study

design.

4 Regression Discontinuity Analyses

This section introduces a regression discontinuity design (RDD) that explores two discontinuities:

the enforcement cutoff yields variation in punishment at the extensive margin (i.e., receiving

or not receiving a speeding ticket); the cutoff that separates minor from intermediate speeding

offense provides variation in punishment at the intensive margin (tickets with low or high fines).

After discussing the design (Section 4.1) and assessing its validity (4.2), we present the results

in Section 4.3. Section 5 complements the RDD, which relies on variation between cars, with an

event study design that explores within variation. The latter analysis examines, among others,

the precise timing and the longevity of behavioral responses to speeding tickets.

4.1 Regression Discontinuity Design

Our raw data cover repeated observations of cars over a period of up to four years. To bring

these data into a cross-sectional format suitable for an RDD, we define assignment and outcome

variables that apply coherently to both, cars that do or do not get a speeding ticket (see

Appendix B.2). First, we compute each car’s maximum speed, Si, during a given assignment

period. This period starts with the day a car i is first observed by one of the speed cameras and

ends a months later. The ride with the maximum measured speed Si, which will serve as the

assignment variable, defines the ‘trigger zone’ and the ‘trigger day’: the place and the date the
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maximum speed was recorded. If Si is more than 14km/h above the speed limit (D1
i = 1), the

car typically receives a speeding ticket. If Si is more than 23km/h above the limit (D2
i = 1), the

fine more than doubles:

D1
i =

0 if Si < 14km/h

1 if Si ≥ 14km/h
and D2

i =

0 if Si < 23km/h

1 if Si ≥ 23km/h
. (5)

As discussed below, the two cutoffs k = {1, 2} will translate into fuzzy treatment discontinuities.

For each day covered in our data we then identify the earliest sending date of a ticket that

was triggered on that day. From this we obtain, for any given trigger day, the earliest possible

treatment day. This day defines (independently of Si) the start of an outcome period of f months.

Based on the driving behavior during this outcome period we then compute different outcome

variables (see below).19 Our main analysis below considers assignment and outcome periods of

four months (a = f = 4). We will document that our findings are very robust when we consider

any alternative combinations of periods with 3 ≤ a, f ≤ 6 months. Our main analysis observes

cars during their first sequence of the assignment and outcome periods, which we denote as the

first ‘episode’.20

We examine either individual outcomes Yit (e.g., the measured speed sit for each single ride

of car i at time t during the outcome period) or outcomes Yi that are collapsed at the car level

(e.g., the mean, median, 75th or 90th percentile of car i’s speed measures during the outcome

period). Analogously, we consider treatment dummies T kit, for k = {1, 2}, which indicate if ride t

of car i is ‘treated’: around the first cutoff (k = 1), treatment refers to a ride that happened after

receiving a speeding ticket; around the second cutoff (k = 2), the treatment dummy is switched

on after having received a ticket with a high (rather than a low) fine. The collapsed variables T ki
measure car i’s share of treated rides during the outcome period.

Not every ride of every car that classifies for treatment (Dk
i = 1) will be treated. We will thus

observe T ki < 1 for cars with Si above the respective cutoff from (5). On the one hand, this is due

to certain cars not getting any speeding tickets (e.g., police cars, ambulances as well as cars with

some foreign number plates will have T ki = 0).21 On the other hand, this also reflects variation

in the tickets’ sending days: some tickets might be mailed days or weeks after the first ticket (for

speeding offenses from that day) was sent. During the early phase of the outcome period, the

rides of many cars will be untreated (T kit = 0), resulting in T ki < 1.

19Our approach is further discussed in Appendix B.2. See, in particular, Figure B.1 which illustrates the definition
of the trigger day and the outcome period for a simple example with two cars. In an earlier version of this paper
we adopted a more static strategy that simply defined the initial months of the sample as assignment and latter
months as outcome periods. This static approach produced similar results.

20As we can track cars over multiple years, however, we can construct repeated episodes of assignment and
outcome periods (where the start of a new episode is given by the first ride observed six months after the start of
the previous episode’s outcome period). Multiple episodes are included in the analysis of spillovers (Section 6.2).

21Our data contain an identifier for certain emergency vehicles (which we exclude from the analysis). Other
emergency vehicles, however, are only identified if they qualify for a speeding ticket. To avoid selection conditional
on treatment, we do not exclude these vehicles.
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Accounting for the fuzzy nature of the RDD (and, for the moment, considering only collapsed

outcome and treatment measures), we estimate equations of the following structure:

T ki = δkDk
i + κk(Si) + ui, (6)

Yi = τkDk
i + λk(Si) + vi, (7)

for both cutoffs, k = {1, 2}, and Dk
i as defined in (5). κk(.) and λk(.) are functions that capture

the correlation between the cars’ assignment speed Si and the dependent variables around cutoff

k. We estimate these functions non-parametrically, using local polynomials.

Equations (6) and (7) correspond to the first-stage and the reduced form of an instrumental

variable approach. The first coefficient of interest, δk, captures the discontinuity in the treatment

(or, more specifically, the discontinuous increase in the share of treated rides, once Si surpasses

the respective cutoff). The coefficient τk measures the reduced form effect at cutoff k. From the

two coefficients one obtains the familiar Wald estimator for the local average treatment effect

(LATE) on Yi,

βk = τk/δk. (8)

We will estimate the models using either car-level observations (i.e., for the collapsed variables

as indicated in equations 6 and 7) or ride-level observations (using each single Yit and T kit from the

outcome period). The former approach includes just one single observation per car, irrespectively

of a car’s number of rides during the outcome period. The estimates thus give us the (local)

effects for an average car. The latter approach, in contrast, implicitly puts more weight on cars

with more observed rides (i.e., more frequent drivers). This will yield effects for an average ride.

Our main analysis of the first cutoff will include all cars during their first driving episode

that had (i) an assignment speed Si above the speed limit but below the second cutoff (i.e.,

0 < Si < 23km/h above the limit) and (ii) at least one recorded ride during the outcome period.

When we study the intensive margin variation at the second cutoff, we analogously work with a

sample of cars in their first episode with an assignment speed Si in the range 14 < Si < 43km/h

above the limit (i.e., above the enforcement cutoff but below the cutoff for major speeding offenses;

see Section 2) and at least one ride during the outcome period. All RDD estimates are based on

rides observed between the launch of the speed cameras and July 2017.22

4.2 Validity of RDD

4.2.1 Enforcement Cutoff

Treatment. Let us first provide graphical evidence on the treatment discontinuity around

the first cutoff. Figure 3 plots local linear fits, confidence intervals and binned averages for

the treatment rate T 1
i , the share of ‘ticketed rides’ (after having received a ticket) during the

outcome period. The figure – which covers the range of assignment speeds 10km/h below and up

22At this point, the local administration reduced the enforcement cutoff by 3km/h (again without communicating
anything to the public). Later rides therefore occur under a different enforcement policy.
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to 9km/h above the enforcement cutoff23 – shows a clear discontinuity in the extensive margin

of punishment: at the cutoff, the share of treated rides jumps from marginally above zero to

roughly 80%. The underlying estimates (documented in Column (1) of Table A.3) indicate a 78.7

percentage-point (pp) discontinuity in the share of treated rides.24 As discussed above, the share

of treated rides for Si above the cutoff is below one: emergency cars (and some cars with foreign

number plates) are exempted from the enforcement process and some rides during the outcome

period may occur before a speeding ticket is delivered.25 Finally, note that the treatment rate

T 1
i is basically constant above the cutoff (rather than increasing in Si). This suggests that the

enforcement authority does not systematically prioritize sending out tickets earlier for offenses

with a higher speed (within the range of minor offenses). We will return to this observation below.

Sorting. To validate if the treatment discontinuity offers as-good-as-random local variation,

there must be no sorting of cars below the cutoff.26 There are several institutional features which

make sorting appear implausible in our context. First, the actual enforcement threshold is not

publicly known. As pointed out above, the cutoff is not prescribed by the law but was determined

by the police once the speed cameras started working (see also fn. 14). Second, and even more

importantly, optimizing one’s driving speed around a given cutoff is extremely difficult in this

set-up. Recall that the speed is measured in zones of several hundred meters. Hence, one would

have to target a precise average speed in a zone.27 Optimal targeting is further complicated by

the applied tolerance rule (see Section 2) and the measurement errors of cars’ speedometers. It is

therefore unlikely that drivers would be able to precisely manipulate the assignment variable Si.

As discussed in Section 3, however, there might be nevertheless scope for figuring out the cutoff

if drivers update their expectations in a fine grained manner. We might therefore observe the

emergence of (at least imprecise) heaping over time.

To assess this point empirically, we first explore the density in the assignment variable around

the cutoff. Neither simple visualizations nor heaping tests (McCrary, 2008) provide any evidence

on sorting below the cutoff (see Figure A.2).28 The data do not indicate any bunching, not even

‘imprecise’ one. Moreover, there is absolutely no evidence on the emergence of heaping over time.

This last statement holds for the sample of all cars (Figure A.3) as well as for ‘regional cars’

23Recall that the second cutoff (23km/h above the limit) is 9km/h above the first one (14km/h above limit).
24Throughout the paper we report bias-corrected RD estimates with robust variance estimators (Calonico et al.,

2014), implemented with the 2018/09 version of the rdrobust package (Calonico et al., 2017). Our baseline
specifications use MSE-optimal bandwidths with a triangular kernel, local linear point estimators and local quadratic
estimates for the bias correction. Different kernel functions and local quadratic estimations yield almost identical
results. The (in)sensitivity w.r.t. to the bandwidth choice is further discussed below.

25Figure 3 also indicates a very small share of treated rides for cars with an assignment speed below the cutoff.
This is due to tickets that are triggered during the outcome (rather than the assignment) period. If a car with an
assignment speed Si < 14km/h is speeding with more than 14km/h above the limit during the outcome (but not
during the assignment) period, this may result in a ticket being delivered during the outcome period. In turn, we
would observe Tjt = 1 for some rides t in the outcome period.

26As pointed out by Lee and Lemieux (2010), the RDD would be still valid if drivers can only imprecisely choose
the running variable, Si.

27This aspect, as well as the non-public nature of the enforcement rule, render this cutoff different from those
studied in Traxler et al. (2018).

28Panel (a) of Figure A.2 provides weak evidence on a minor increase in the density on ‘the wrong side’ of the
cutoff. The estimate, however, is economically negligible and sensitive to bandwidth choice.
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(number plate from the local regioan and above-median driving frequency; Figure A.4). Note

that these observations are consistent with the implications from coarse updating (see Section 2

and Table 2).

Balance. Next, we examine if there are any discontinuities in cars’ observable characteristics

around the enforcement cutoff (see Figure A.5 and the reduced form estimates from Table A.1).

The analyses detect no systematic imbalances in pre-determined variables (such as the share of

cars with number plate from the local region; the cars’ driving frequency during the assignment

period (before any possible treatment); the hour/weekday/month of the trigger ride or the traffic

density on this occasion).

4.2.2 High-fine cutoff

Treatment. Evidence on the treatment discontinuity around the high-fine cutoff is provided

in Figure 4.29 The share of ‘high-fine treated’ rides – rides after having received a ticket with a

high-fine, T 2
i – discontinuously increases by 81.4 percentage points (Column (1) in Table A.4).

Hence, at the second cutoff there is a strong discontinuity in the exposure to high- rather than

low-fine tickets.

Sorting. As for the enforcement cutoff, we do not detect any evidence on heaping at or below

the high-fine cutoff (see Figure A.6) – despite the fact that the high-fine cutoff is, in principle,

public information. Similar as above, we also tested if bunching would emerge over time. The

data do not provide any evidence on this case, which is again consistent with the prediction

derived for coarse updating responses (see Table 2).

Balance. Using the same empirical strategies as in Section 4.2.1, we also examined discontinu-

ities in pre-determined, observable characteristics around the high-fine cutoff. We do not detect

any systematic imbalances (see Table A.2). At the second cutoff, however, there is scope for one

complication that relates to the way speeding tickets are sent out. Figure 3 above showed that

T 1
i , the share of rides after receiving any speeding ticket, is basically constant above the cutoff.

This indicates that – within the range of low-fine offenses – there is no differential handling of

speeding tickets with different levels of Si.

The enforcement authority might nevertheless prioritize offenses in the high-fine range and

send out such high-fine tickets much quicker. In turn, this might result in a discontinuous

increase in the share of ticketed rides, T 1
i , at the high-fine cutoff. We examined this possibility

both graphically (Fig. A.7) and in reduced form estimates (see Column (2) in Table A.4). The

analyses indicate that there is no discontinuity in T 1
i at the second cutoff. Hence, the variation

in punishment at the intensive margin – the differential exposure to high- vs low-fine tickets as

captured by T 2
i – is the only treatment variation at the second cutoff.

29Recall that the first cutoff (14km/h above the limit) is 9km/h below the second one (23km/h above the limit).
This motivates the lower bound of the Si-range covered in Figure 4.
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4.3 RDD Results

4.3.1 Punishment at the extensive margin (enforcement cutoff)

Let us first consider responses to the extensive margin variation in punishment obtained at the

enforcement cutoff. In an initial analysis, we examine possible driving frequency responses.

Note that the roads covered by the speed cameras are commuting routes that are difficult to

circumnavigate. It is thus not surprising that we find no evidence of cars either reducing their

driving frequency or stopping to drive in response to speeding tickets (see Columns 1 and 2,

Table A.5).30

Next, we turn to reduced form evidence on speeding responses. Figure 5 show pronounced

discontinuities in the cars’ speeding rates and the mean speed measured during the outcome

period. Cars with an assignment speed marginally above the enforcement cutoff have a 8.1pp

lower speeding rate and their mean speed is about 1.35km/h slower (see Columns (2) and (4),

Table A.3).31 Below we will see that this decline in the mean speed masks stronger responses at

the top of the speed distribution.

The Wald estimates for the LATE from receiving a speeding ticket are presented in Table 3.

The estimates indicate a 9.5pp drop in the speeding rate. Relative to the rate observed in the

0.5km/h bin below the cutoff, this corresponds to a 31.8% drop (see Column 1, Table 3). Column

(2) further indicates that the rate of (re)offending – i.e., the share of riders during the outcome

period with a speed of more than 14km/h above the limit – drops by 70.3% (from 0.7 to 0.2%).

Concerning the average speed, we find a 1.46km/h (or 3.2%) drop (see Column 3).32 This decline

is more pronounced at the top end of the speeding distribution: when we estimate the effect of

the speeding ticket on a car’s speed at the median, the 75th- or the 90th percentile of its’ speed

distribution, we observe an increase in the absolute (from 1.31 to 1.77km/h) and the relative

effect size (from 2.8 to 3.4%; see Columns 4–6, Table 3).

The (reduced-form) effect from receiving a speeding ticket on the speed distribution is also

depicted in Figure 6. The dashed, red line illustrates the speed distribution during the outcome

period for cars with an assignment speed Si within a 0.5km/h bin above the cutoff. Recall

that around 80% of the observed rides in this group are treated (see Figure 3). Comparing this

distribution with the one indicated by the green line – the speed distribution for outcome period

rides of cars with an assignment speed Si within a 0.5km/h bin below the enforcement cutoff –

one notices a clear shift in the distribution. Among cars that are marginally above the cutoff,

rides with speed above the limit are observed less frequently. This missing mass is mostly shifted

30In fact, we obtain a weakly significant positive estimate suggesting that cars with an assignment speed above
the enforcement cutoff are slightly more likely to ever return during the outcome period. While this observation is
consistent with anecdotes about drivers who ‘want to see’ the cameras or drive to the town hall to complain about
the speeding ticket, the effect is imprecisely estimated and sensitive w.r.t. the bandwidth choice and the length of
assignment and outcome periods (a and f).

31Recall from fn. 24 above that we report bias-corrected RD estimates (at the car level) with robust variance
estimators (Calonico et al., 2014) under MSE-optimal bandwidths.

32This estimate slightly differs to what would be obtained from simply deflating the reduced form coefficients
from Table A.3 by the treatment discontinuity, as the MSE-optimal bandwidths for the Wald estimators (that
jointly estimates δk and τk from (6) and (7)) are different to those for the reduced form estimates.
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towards the mode of the distribution, which is (for both groups) roughly 3km/h below the speed

limit.

The shift in the speed distribution is also illustrated in Figure 7. The latter figure plots the

relative change in the mass between the two speed distributions from Figure 6, in 7km/h bins

above and below the actual speed limit.33 In line with the strong drop in (re-)offenses reported

above, the figure illustrates an approximately 50% drop in the mass of rides with a speed of

14–21km/h above the limit. Consistently with a coarse updating response, however, one observes

a similarly strong drop in the range of 7–14km/h above the limit. Hence, there is a stark decline

in the share of rides in the range above the speed limit but below the enforcement cutoff. Note

that this observation is inconsistent with a very nuanced, fine grained updating of expectations.

To wrap up, the basic estimates as well as the graphical evidence documents that speeding

tickets trigger a pronounced drop in speeding and (re-)offending. Rather than a marginal tran-

sition in the speed distribution, we detect a one-third decline in the speeding rate. Consistently

with the notion of coarse updating, we observe an increased bunching mass below the actual

speed limit rather than bunching at the enforcement cutoff (see Section 4.2).

Robustness. To assess the sensitivity of our basic estimates we first consider alternative

bandwidths. Figure A.8 documents that the reduced form effects on speeding and the mean

speed are remarkably stable and significantly different from zero for any bandwidth in the range

between 0.5 up to 8km/h. In absolute terms, we would obtain larger (but only slightly less precise)

estimates for smaller bandwidths than the MSE-optimal one.

Recall from above that our sample definition is based on ad-hoc decisions regarding the length

of the assignment and the outcome period (a and f ; see Section 4.1). While the length of these

periods has indeed an impact on sample size and composition (with shorter periods, we tend to

observe fewer infrequent drivers), our estimates are remarkably stable for different combinations

of a and f values. This point is documented in Figure A.9, which plots Wald estimates for

speeding rates and mean speed for any a and f values with 3 ≤ a, f ≤ 6. (The corresponding

estimates with further details on the different samples are reported in Tables A.6 and A.7.) The

high robustness w.r.t. these two values foreshadows two results from below. We will see, on the

one hand, that type heterogeneity plays a modest role. On the other hand, the event analysis

will document that behavioral responses to tickets are immediate and very persistent. The latter

result implies that looking at shorter (e.g., f = 3) or longer outcome periods (f = 6) solely

matters in terms of sample composition.

A last important point concerns the comparison of car-level estimates from above with es-

timates at the level of single rides. As discussed in Section 4.1, this boils down to comparing

the unweighted effect of a speeding ticket on the average car with the effect on the average ride.

Estimates for the latter effects are presented in the first three columns of Table 4.34 Compared

33To compute relative changes, we normalize the observed mass in the groups marginally below and above the
cutoff. Due to the extent that (i) only 80% among the latter group are treated and that (ii) pre-treatment speed
distribution (i.e., for rides observed during the assignment period) are, by construct, different between the two
groups, the numbers from Figure 6 represent approximations for the treatment impact on the speed distribution.

34The estimates are again robust w.r.t. different a- and f -periods, see Figure A.12.
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to the results from the collapsed analysis (see Table 3), we get slightly smaller point estimates,

in particular for the effect on average speed. As we will further discuss below, this is due to more

frequently observed cars (which gain a higher weight in these estimates) responding less strongly

to tickets. In terms of relative effect size, we shall note that the estimates still indicate a 28%

[61%] drop in the probability of speeding [(re-)offending] which is similar to the relative effects

observed for the average car.

Heterogeneity. Table 5 presents the results from several split-sample exercises. Columns (1)

and (2) compare frequent and infrequent cars (as measured by the pre-treatment driving frequency

during the assignment period). Consistently with the difference between the car- vs ride-level (or

‘unweighted’ vs ‘weighted by number of rides’) estimates from above, we find stronger responses

for less frequent drivers. Both, in terms of reducing the speeding rate and reducing the mean

speed, cars that are observed less frequently (during the assignment period) display larger absolute

and relative responses to receiving a speeding ticket.

Columns (3) to (5) compare cars according to their number plate regions. Concerning the rate

of speeding, differential responses are not very pronounced (see Panel A of Tab. 5). (Non-local

cars seem to have a slightly higher speeding rate as compared to cars from the local region.)

For the mean speed, Panel B indicates that cars from the local region reduce their speed less

strongly (in absolute and in relative terms) as compared to the other cars. These findings must

be interpreted with caution, however, as the ‘local’ number plates include a relatively large area

beyond Ricany.

In a further step, we also compare the effects on rides occurring under more or less favourable

traffic condition (ct), as captured by the traffic density (measured by the time gap to the next

car ahead). Consistent with the comparative static implications from our formal framework,

Table A.8 reports larger treatment responses under ‘good’ (above median) traffic conditions:

the Wald estimates show a 2.41 and 2.78km/h (5.1 and 5.3%) drop in the mean- and the

90th-percentile-speed, respectively. The speeding rate drops by 15pp (37%). Under bad con-

ditions, these estimates are much smaller (5pp drop in speeding rate and 0.75km/h decline in

mean speed; see Panel A in Table A.8). These findings have to be interpreted with caution as

driving conditions in the outcome period are potentially shaped by the choice when to drive.35

4.3.2 Punishment at the intensive margin (high-fine cutoff)

Next we turn to the second cutoff, which provides variation in punishment at the intensive margin.

Similar as above, we first examine whether receiving a high-fine (as compared to a low-fine)

speeding ticket induces any change in driving frequency. The analyses provides null effects on

circumnavigation responses (see Columns 3 and 4, Table A.5). Next, we turn to our two main

outcome variables. Figure 8 does not indicate any clear discontinuities, neither in the speeding

rates nor in the mean speed (see the corresponding reduced form estimates in Columns 3 and 5,

35Using day-of-week and hour-of-day indicators for rides in the outcome period, however, we do not find any
evidence on speeding tickets shaping the timing of rides.
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Table A.4). The Wald estimates from Table 6 – which are based on a much smaller number of

observations as compared to those at the first cutoff (16 rather than 225 thousand cars) – include

no statistically significant estimates either. While the evidence suggests that the average car does

not respond differently to a high- or a low-fine ticket, all estimates are negative and some effect

sizes seem large (at least in relative terms). We thus explore the sensitivity of these insignificant

findings.

Concerning the different bandwidth choices, the estimates turn out to be robust (see Fig-

ure A.11). When we focus on shorter outcome periods, however, we tend to find weakly significant

effects on the mean speed (but not on the speeding rate; see Figures A.12). Next we replicate

the estimates at the level of rides. Despite boosting the number of (clustered) observations, the

ride-level estimates do not yield higher precision: we again obtain relatively large but imprecisely

estimated effects (Col. 3–4, Table 4). A similar pattern is observed in sub-sample analyses: once

more, we find no statistically significantly differences in the responses to tickets with higher fines

(see Table A.9).

The predictions from the analytical framework presented in Section 3 suggests that, under

coarse updating, intensive margin variation in penalties does not necessarily amplify the impact

from receiving a ticket. A notable exception emerges when higher penalties produce ‘more convex’

expectations (as illustrated by the q(s) functions in the right panel of Figure 2). In the latter

case, the intensive margin variation in punishment would only induce behavioural responses when

driving conditions ct are sufficiently good. This prediction is examined in Table 7, which presents

(car-level) estimates for good and bad traffic conditions (as measured by the time difference to

the next car in front at the entry of a speed camera zone).

For rides observed under relatively dense traffic, we estimate economically small and statis-

tically insignificant effects (Table 7, Columns 4–6). Under good driving conditions, however, we

observe weakly significant negative effects: a ticket with higher fines further reduces the speeding

rate by an additional 8pp (–21%); the average and 90th-percentile speed drops by another 1.5km/h

(–3%) and 2.1km/h (–4%), respectively (see Panel A, Columns 1–3 of Table 7). As compared

to the basic LATEs from receiving a speeding ticket on ‘good condition’ rides (a 15pp drop

in speeding, 2.4km/h drop in mean speed; see Columns 1–3, Table A.8), these are non-trivial

additional effects from facing tickets with higher fines.

When we condition the sample on cars that are observed under both good and bad driving

conditions, the impact on the speeding rate remains significant at the 5%-level, whereas other

estimates become smaller and turn insignificant again (Panel B of Table 7). Hence, the findings

only provide weak support for the more convex updating illustrated on the right hand side of

Figure 2. As pointed out above, however, one has to cautiously interpret these results, as drivers

might (conditional on the high-fine treatment) select into good or bad driving conditions. Overall,

the evidence suggests that the variation in fines seems to play a minor role for the way drivers

update and respond to tickets. The effect from intensive margin variation in fines seems to be

limited to rides observed under favourable driving conditions.
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5 Event Study

The results from the RDD provide compelling evidence on speeding responses to receiving a

speeding ticket. In an event study, we now exploit the high-frequency nature of our data to

examine how quickly drivers respond and how long-lasting the effects are. We can also compare

the within-estimates from the event study, which yield an average treatment effect on the treated

(ATT), with the LATE obtained from the RDD.

5.1 Design and Sample

For each car receiving a speeding ticket, we define the treatment event by the day the first ticket

is received. We refer to the ride that caused the ticket, as the ‘trigger observation’. Our main

sample includes cars with (i) at least one ride during a 20-week window after receiving the ticket

(mirroring the 4-month outcome period from the RDD) and (ii) at least one observation (beyond

the trigger) during the 12-week window before the event. We further focus on low-fine tickets,

triggered by speeding between 14 and 23km/h above the speed limit. This allows for a meaningful

comparison of the event study ATT with the LATE at the enforcement cutoff (see Section 4.3.1).

Figure 9 plots the two main outcome variables in the raw data. It includes observations for

all ticket events that occurred between the launch of the speed cameras and July 201736 which

satisfy the sample conditions described above. The time axis is defined such that week zero is the

last week before the ticket was received. Each circle represents the average speeding rate (Panel

a) or average speed (Panel b) of rides, binned in 7-day intervals before or after the event.37 The

graphs indicate strong and persistent treatment responses: after receiving the ticket, speeding

rates immediately drop by around 15pp and remain almost constant over the following 20 weeks.

A similar pattern is observed for the average speed, which declines by more than 3km/h.

However, Figure 9 also points to a mean reversion issue. In the raw data, the pre-treatment

speeding rate gradually but distinctly increases from the 6th to the 3rd week preceding the ticket.

For the mean speed, this pre-trend is even more pronounced. The pattern simply reflects that

tickets are delivered with a delay of some weeks after the offense. The trigger observations – by

definition, rides with a speed above the enforcement cutoff – are thus concentrated during the

three weeks prior to receiving a ticket. This explains the pronounced increase in speeding observed

in the raw data. A naive estimation that would include these humps would then overestimate the

impact from tickets. (A formal discussion of this point is provided in Appendix B.3.)

To deal with the issue, we exclude the trigger observations from our analysis. (Note that this

is a fairly conservative approach, as the trigger observation is a relevant observation for a car’s

behavior prior to the ticket.) The effect from this exclusion is illustrated by the lines indicated

with triangles in Figure 9: the massive humps disappear and pre-ticket trends are modest. The

final analysis-ready sample then includes 626,430 rides from 16,407 cars for their first (low-fine)

ticket event. We analogously define a sample for the first ticket event punished with a high-fine.

Later we will also examine cars around their second ticket event.
36As in the RDD analysis, this sample restriction accounts for the change in the enforcement cutoff in July 2017.
37The sample of drivers and rides may vary between the different weeks. We address this point below.

21



Based on these samples we use the following specification to estimate behavioral responses:

Yizt =

20∑
w=−12

βwDitw + λi + λz + λmz + λdz + λhz + λez + γXizt + εizt, (9)

where Yizt is a speeding outcome of car i observed at speed camera zone z and time t. Equation (9)

accounts for car (λi) and zone (λz) fixed effects. In addition, we include a rich set of dummies

for time-specific effects: calendar month (λmz), day of the week and schooldays/holidays (λdz)

as well as hour of the day dummies (λhz). As driving patterns differ between zones, all these

time-specific dummies are interacted with the zone dummies. We also include a vector of variables

capturing the driving conditions for a given ride (Xizt). The vector includes, among others, a

set of dummies that non-parametrically capture the traffic density at ride ict as well as weather

variables (temperature, precipitation, sunshine intensity, measured at a 10-minute frequency).38

The key right-hand side variables in (9) are a set of dummies Ditw indicating in which pre- or

post-event week w an observation is recorded. Week zero, the last pre-event week, is the omitted

category. The parameters of interest (the βw’s), which are identified from within-car variation in

speeding choices, have the interpretation of the expected difference in the outcome in each week

relative to the last week before receiving the ticket (after partialling out other factors). In the

following, we will plot the βw-estimates together with 95%-confidence intervals based on two-way

clustered standard errors (by car and by zone-hour).39

5.2 Event Study Results

5.2.1 Response to Punishment

Panel (a) of Figure 10 plots the estimated coefficients and confidence intervals for the binary

outcome speeding. The effects on the weeks prior to receiving the ticket exhibit no pre-trend.

The baseline rate of speeding, that is, the average speeding rate during the last week prior to

receiving the ticket, is 27% (bottom panel of Table A.11, Column 1). Immediately after receiving

the ticket, the speeding rate drops by 7.4pp. It further declines in the 2nd (and, to a lesser degree,

in the 3rd) week after facing the ticket. The effects are very precisely estimated, with the width

of the 95% confidence intervals being less than 2pp. The decline in the speeding rate stabilizes

at about 10pp below the pre-ticket level (even though there is slight but statistically insignificant

downward trend). Compared to the pre-ticket baseline, the 10pp drop implies a 37% reduction

in the speeding probability.

Panel (b) of Figure 10 presents the analogous estimates for the measured speed. We observe

a similar pattern: an immediate drop in measured speed by 1.0km/h in the first week with an

38To capture the strong influence of the traffic situation, Xizt includes dummies for whether the car ‘ahead’ of
car i (at the ride at time t and speed camera zone z) entered the zone less than 2, 2–4, . . . , 18–20, or more than
20 seconds prior to car i. As a second measure, we also included the total number of cars passing the zone z in a
particular hour of that day. The weather data were collected at the meteorological station at the Research Institute
for Landscape and Ornamental Gardening, located in a small town 7km away from Ricany. These variables vary
only over t but not between z, as weather conditions are practically identical at all five speed camera locations.

39Clustering only at the level of cars yields similar results.
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additional reduction in later (mainly the 2nd) weeks. Over the 20 weeks, the estimated effect size

varies but remains approximately flat (again, with a slight downward tendency) in the range of

1.2–1.4km/h below the baseline speed level. Relative to the baseline average of 44.86km/h in the

last pre-ticket week (see bottom panel of Table A.11, Column 2), the effect implies a reduction

in speed by 2.7–3.1%.

The two figures establish the key finding from the event study design: the behavioral responses

to receiving a speeding ticket are immediate and persistent over the mid-run. In terms of absolute

and relative effect sizes, it is worth noting that the ATTs obtained from the event study design

are very similar to the LATEs found in the RDD analysis from above. Note further that we do not

find any evidence on ‘backsliding’: speeding outcomes do not revert towards the pre-ticket levels.

This clearly rejects the idea of ‘unlearning’. The results are consistent with the learning channel

and the large drop in speeding rates supports the notion of coarse updating examined in Section 3.

Drivers seem to learn about the consequences of speeding, update their expectations such that

qt(s) increases steeply just past the speed limit, and adjust their speed choices accordingly.

Further evidence that supports coarse updating is provided by Figure 11, which depicts the

effect on the speed distribution. It is analogous to Figure 6 from above, except that it is based on

a within-car comparison: the two lines compare the same cars included in the event study sample

before and after receiving the ticket. The speed distribution for post-treatment rides (dashed red

line) contains significantly less mass in the range between the speed limit and the enforcement

cutoff than the pre-ticket distribution (solid green line). That mass is shifted predominantly to the

speeds about 5km/h below the speed limit (which is also the mode of the pre-ticket distribution).

Such a shift is inconsistent with fine-grained updating which would result in an increase in the

mass below the enforcement cutoff.

Figure 10 indicate that effects are persistent over a 20 weeks period. To explore whether there

is no backsliding in the long-run, we estimate an alternative specification which (i) extends the

time window to 6 months before and 24 months after the ticket, (ii) replacing the weekly dummies

Ditw from equation (9) with monthly dummies. With such a long horizon, compositional effects

are an issue: observations far away from the ticket date (both before and after the event) would

be disproportionately composed of regularly driving cars that may differ in their speeding pattern

and treatment responses to tickets. We therefore (iii) restrict the sample to ‘regular’ cars that

have at least one observation in each 3-month interval during the 6 + 24 month sample window.

Inevitably, the sample includes fewer cars (4,291) but a sizable number of rides (991,333).

The estimated coefficients on the monthly dummies are plotted in Figure 12 (and reported in

Table A.12). For the speeding rate, the estimates are remarkably similar to the weekly estimates,

both in terms of the qualitative pattern and the effect sizes. There is absolutely not evidence on

backsliding. On the contrary, the effect size slightly increases over the two years outcome window.

(This seems to reflect the general decline in speeding observed at the speed cameras, which is not

absorbed by our control variables.) For speed, the estimates exhibit a visible pre-trend, suggesting

that these cars increase their average speed over time before eventually getting a ticket (see fn. 17).

However, the drop in average speed after receiving a ticket is again similar in magnitude to the
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weekly estimates. Over the two-year follow-up, there is no backsliding but a further decline in

speed. All in all, these long-run estimates provide no evidence of any decaying of the effects over

time. Within our theoretical framework, the estimates are consistent with a permanent update

of the expected costs of speeding, at least for the average driver, with no ‘unlearning’ or declining

salience of the enforcement regime over time.40

5.2.2 Response to Higher Fines

Analogously to the RDD, we next investigate whether there is an additional effect from receiving

a speeding ticket with a higher penalty. To do so, we estimate equation (9) for a sample of cars

whose first ticket carried the high fine. The results – together with our estimates for small-fine

tickets – are presented in Figure 13.

For the speeding rate, the average effect sizes are virtually identical between cars receiving

a high- or a low-fine ticket. For measured speed, the effects of a high-fine ticket range between

1.5–2.0km/h, which is more pronounced than the corresponding effects from a low-fine ticket

(see Panel (b) of Figure 13). However, the estimates are less precise and typically overlap with

those obtained for low-fine tickets. Moreover, the pre-ticket baseline speed is also slightly higher

(45.75 rather than 44.86 km/h) in the high-fine sample.41 Similar to the RDD analysis, these

estimates do not provide much evidence of an additional effect from an intensive margin increase

in penalties – at least on average. (In future work, we plan to explore differential patterns for

rides under different driving conditions.)

5.2.3 Heterogeneity Analyses and Extensions

Analyzing if and how the effects vary across different types of car owners, we follow the RDD

analysis and first compare frequent and infrequent cars (as measured by the cars’ pre-ticket

driving frequencies). The results, which are presented in Figure A.13, again corroborate the

RDD estimates: we observe slightly larger effects for less frequent cars, both for the speeding rate

and the driving speed. In the same vein, Figure A.14 compares cars according to the number

plate region of a car. Consistent with the RDD results reported in Table 5, we observe smaller

effects for cars from Prague and the local region relative to cars from other regions of the country.

The differences, however, are in general statistically insignificant.

The event analysis, which in contrast to the RDD focusses on cars that receive a ticket,

enables us to explore further dimensions of heterogeneity. Among others, we observe whether a

ticket was sent to a physical person or a ‘corporation’.42 If the car owner is a private person, the

40This might be due to the visibility (and stable functioning) of the speed cameras, which serve as constant
reminders.

41In addition, there appears to be some upward trend in speed during the last pre-ticket weeks among in the
high-fine sample, which further complicates the comparison of effect sizes.

42The term ‘corporation’ is used as a shortcut that encompasses all judicial persons, e.g., business corporations,
partnerships, non-profits, or various public entities. Note, however, that a non-negligible fraction of single-person
businesses is legally organized as limited liability partnerships with only one partner, and in such cases, the judicial
person de facto represents an individual.
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individual (who is also in charge of paying the fine) will directly learn about the speeding ticket.

For cars owned by corporations, in contrast, there might be more frictions in the learning process.

Corporations might pay the tickets on behalf of their drivers without informing them. In case

of multiple drivers sharing one car, it might be hard to identify the responsible driver. Even if

the message reaches the (relevant) driver, it is unclear whether all information included in the

speeding ticket (e.g., regarding the specific location) is accurately communicated. We therefore

expect private cars to respond more swiftly and more strongly to a speeding ticket than drivers

of cars owned by corporation. Figure 14 provides some support to this expectation. During the

first 3–5 weeks after receiving the ticket, there is a 2pp stronger drop in the speeding rate and

a 0.5km/h larger decline in speed (with some of these differences weakly statistically significant;

see Table A.13). In later weeks, however, the differences shrink. This ‘catching up’ could be

explained by a delayed communication and information transmission process (which should be

particularly relevant for larger corporations).

A final dimension of heterogeneity is based on whether the car owner did or did not pay the

speeding ticket (within 90 days).43 Obviously, this is an endogenous rather than a pre-determined

characteristic. We thus have to be cautious in interpreting the strong heterogeneity in ticket

responses documented in Figure 15. The estimates indicate that cars who pay the ticket are

slowing down much more strongly. Those who do not pay the ticket nevertheless adjust their

driving behavior. During the first three weeks, the speeding rate among the former group drop

by 8–11pp. Among the latter, the drop amounts to a mere 3–5pp. Over time, this gap narrows

but does not fully disappear in later weeks. A similar (but less precisely estimated) pattern is

also observed for the level of speed.

Sensitivity Analyses. In a first set of robustness checks, we modified equation 9 by exclud-

ing/including alternative measures of traffic and weather conditions, by excluding observations

during highly congested traffic conditions, and by alternative ways of controlling for long-term

trends in speeding (linear and polynomial trends, month fixed effects). These alternative specifi-

cations produced effect sizes virtually identical to our main specification.

A second set of robustness checks takes a very different approach. The baseline regression

(equation 9) implicitly models behavioral response as a function of time. It may be the case

that the underlying learning mechanism is associated with the actual engagement in the activity

(driving through camera zones). That is, the effects might kick in as agents make speeding choices

for the 1st, 2nd, etc. time after being punished (and potentially vanish after many repetitions).

To account for this, we replicate the event study with treatment dummies defined by the order of

rides: we sort rides within each car and then define dummies grouped over intervals of five rides

before and after the ticket. In a specification akin to equation (9), we then include dummies that

cover the sequence up to the 100th ride occurring after the car received a ticket, and up to 70th

ride before the ticket. The results from this exercise are reported in Figure 16, where the omitted

category is now given by the last five rides before the ticket.

43The average time from receiving the ticket to payment is 10 days, conditional on the payment being made.
15% of car owners do not pay their tickets by that time.
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We again observe a large and persistent negative impact on both speeding measures. Quan-

titatively the estimates are very similar to our basic results obtained with weekly dummies. A

noteworthy difference is the clear positive pre-trend, which suggests that drivers explored higher

and higher speed levels before receiving a ticket. In addition, we also observe a clear increase

in the effect size between the 5th and the 20th post-ticket ride. Both observations, however, are

partially shaped by changes in sample composition, as observations further away from the ticket

are increasingly composed of cars with higher driving frequency.

Second Ticket. So far, we have focused on the impact of the first speeding ticket. However,

some cars receive a second ticket later on. Among the 33,016 cars that received at least one ticket,

17.52% get a further ticket.The probability of receiving a second ticket is significantly higher for

cars owned by corporations. It is also strongly positively correlated with the measured speed of

the first ticket, suggesting that cars with a stronger taste for speeding select into this small group

of roughly 6 thousand cars (out of a total of 1.3 million, see Table 1).

Independently of the selection process, we can estimate behavioral responses around the second

ticket event. We focus on 2,566 cars that were punished for their first speeding offense, later

received a second (low-fine) ticket and have at least one non-trigger observation during the pre-

and post- windows around the second ticket event. The results are presented in Figure 18. While

the sample is highly selected and much smaller, the baseline pre-ticket mean outcomes are similar

to our main sample. The responses to the second ticket are qualitatively similar to the responses

to the first ticket: on average, we observe again an immediate, large and sustained reduction

in the speeding probability and the speed. Quantitatively, however, the effects are about 20%

smaller than our basic estimates for the first ticket. One interpretation of these findings is that

these cars represent fine-grained updaters: drivers shift their expected costs qt(s) only slightly,

which in turns leads to a modest decline in speed. Eventually, they get a second ticket which is

followed by another small adjustment in qt and optimal speed (relative to the average response

to the first ticket). In follow-up work, we plan to explore this interpretation in more detail, by

examining the responses of this subgroup of cars to the first ticket.

6 Further Results

6.1 Narrow or Broad Learning?

The results from the RDD and the event study coherently document drivers’ responses to facing

punishment. The evidence rejects the case of no-updating and supports the learning and (coarse)

updating framework from Section 3. This subsection now explores whether drivers’ learning is

more ‘broad’ or ‘narrow’. More specifically, we ask whether drivers solely update qtz(s) – the

expected costs of speeding in the camera zone z that triggered the ticket – or whether they would

update expectations qt`(s) at other locations ` 6= z, too. We present two empirical strategies to

address this question.
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Our first approach compares the impact of a ticket triggered in zone z on rides observed in

the same zone or in other zones. Figure 17 plots event study estimates for this comparison.44 We

observe clear behavioral responses in the same zone but also at the other zones, with the drop in

the speeding rate and in measured speed being significantly larger in the zone that triggered the

ticket. This pattern is replicated in RDD estimates, which are reported in Table 8. It is important

to note, however, that the baseline rate of speeding (roughly 40 vs 19%) and the baseline level

of speed (47.6 vs 44.2km/h) are larger in the trigger zone as compared to the other zones. This

is intuitive, as cameras along faster roads generate (cet.par.) more tickets. If we account for this

fact by computing relative effect sizes, we observe much more similar effects. The RDD estimates,

for instance, indicate a 28.9% decline in speeding in the same zone and a 31.9% drop in other

zones (see Panel A, Columns 1–2, Table 8). Results are similar when we constrain the sample

to cars that are observed in both, the same and at other zones (Columns 3–4). For the relative

declines in the measured speed the initial gap remains. The RDD estimates indicate a 4.0% drop

in the same and a more modest 2.4% decline in other zones (see Panel B, Columns 1–2, Table 8;

Columns 3–4 report similar effects for a constrained sample of cars). The relative effects implied

by the estimates from the event study design are similar (see Table A.16).

The findings document that drivers seem to learn more ‘broadly’. They adjust their behavior

not only at the place of the past offense – where they faced a law enforcement response – but also

become more compliant at other roads covered by speed cameras. A natural follow-up question is

then to ask whether cars would also adjust their speed at roads that are not monitored by speed

cameras.

To tackle this point, we exploit that our data contain the exact time when a car ‘exits’ from

(the endpoint of) one speed camera zone and ‘enters’ into (the starting point of) another one

further down the road. Based on this time gap, we can learn about cars’ speed in the unmonitored

stretch in between: the faster a car drives, the quicker it will enter into the second camera zone.

Theoretically, one can derive three very different predictions about the impact of a speeding

ticket: a first hypothesis is that, while cars are updating qtz(s) at different zones z (see above),

they would not do so at roads not covered by speed cameras. In this case, we should not see any

change in the time spent on the unmonitored part of the road. A second hypothesis is that the

learning spills over and indeed results in a broad adjustment in expected fines, beyond the zones

covered by the cameras. One would thus expect a drop in the inter-zone trave time. (This could

also happen because drivers exit the first zone at a lower speed.) Finally, a third hypothesis is

that drivers optimal speed choices are influenced by travel time targets. After slowing down (i.e.,

loosing time) in the speed camera zone, they might want to ‘catch up’ by driving faster on the

unmonitored part of the road.45 We should then observe faster inter-zone rides in response to a

speeding ticket.

44Note that the camera that triggered the first ticked varies between cars.
45In terms of the model from Section 3, the marginal benefit of speeding, ∂v(.)/∂st, might increase after having

slowed down before.
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Among the five speed camera zones there is only one combination where, after exiting one

zone, one could enter (after a left turn) another camera zone. This ‘unmonitored trip’, however,

is not very frequently observed. Moreover, drivers encounter a traffic light on the way, which

introduces sizable variation in the travel time on the 1,080 meters between the exit of the first

and the entry into the next zone. One can nevertheless use the measured time to compute the

average speed on the trip. We then apply the RDD strategy from above (focussing on the variation

around the enforcement cutoff) and estimate effects on inter-zone rides.

The estimates, which are presented in Table A.10, reject the third, ‘catch-up’ hypothesis from

above. Columns (1) and (2) present car-level estimates for the (reduced form) effect on average

and on the top- (90th percentile) speed. For the mean speed, we obtain a negative but imprecisely

estimated effect.46 For the 90th percentile speed, however, we get a relatively large and weakly

significant negative coefficient. Turning to ride-level estimates, Column (3) indicates a smaller,

insignificant effect on speed.47 Using the log travel time as a dependent variable, however, the

effect is again significant and the positive sign indicates that cars slow down (take more time).

In future work, we might be able to use a larger set of data stemming from new speed cameras.

This should allow us to replicate this type of analysis and to increase power.

To wrap up, our analyses provide evidence that is consistent with the first and weakly

supportive to the second hypothesis from above: some cars seem to reduce their speed on the

unmonitored part of the road, too. Together with the results from the between-zone comparison

from above, the evidence supports the notion of a broad learning (and behavioral) response to

law enforcement.

6.2 Treatment Spillovers

In a last step, we analyze potential spillovers of speeding tickets. The basic idea is straightforward:

if a ‘ticketed’ car slows down, the following car might slow down, too.48 In fact, under dense traffic

conditions, such spillovers might reach beyond the next car in a line. In addition, we also explore

spillovers on the car ahead. Given that the ticket makes an (otherwise aggressive) car drive slower,

being less pushy might also affect the car in front of the ‘ticketed’ car.

To evaluate such spillovers we identify different car groups g in our data. In particular, we

consider lines of two or more cars which all enter a camera zone within 5 seconds to each other.

The first car (the ‘start’ of a line) is required to enter the measurement zone at least 10 seconds

after the previous car. The last car of a line (which marks the ‘end’ of a group) enters the zone

more than 5 second ahead of the next one. Based on these definitions one can then zoom into the

sequences with different lines.49 We study the responses of cars (rides) in position j in a given

46Presumably due to the traffic light, the average speed for this trip is far below the speed limit.
47See Section 4 for a discussion of the differences between (unweighted) car- and (weighted) ride-level estimates.
48We would like to thank Ben Hansen for highlighting this idea.
49The estimates presented below are qualitatively robust to changes in these specific definitions. On a more

conceptual point, note that groups (or lines) are defined around single rides. Hence, the rides at t and t+ 1 from
a given car i are, by definition, partitioned into separate groups. It should also be clear that the composition of
(and sequence within) a group naturally changes over time. This also means that the time subindex t used below is
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group g to the treatment of the car at position ` in the same group g. We then examine the

spillovers from a speeding ticket for a car, e.g., in position ` = 2 on any subsequent car in the

line (with position j > 2) but also on the car in front (in position j = 1). The estimates for cars

with position j = ` allow us the compare the direct treatment effects for different positions j.

To estimate these effects we augment the RDD introduced in Section 4. We run ride-level

estimates for a speed outcome Yi(j)gt for all cars i observed in position j in a group g at a given

ride t:

Yi(j)gt = τ `jD`g + λ`(S`g) + vi(j)gt, (10)

The key parameter, τ `j , measures the (reduced form) impact of a car in position ` that has an

assignment speed above the enforcement threshold on rides of cars observed in position j within

the same group g.50 To obtain the Wald estimate β`j = τ `j /δ
`
j we complement the reduced form

with the corresponding first stage,

T`gt = δ`jD`g + κ`(S`g) + u`gt, (11)

where the treatment dummy T`gt indicates if ride t of the car in position ` in group g is ‘ticketed’

(i.e., occurred after receiving a speeding ticket). Two remarks are at place here. First, for a given j

and `, β`j is identified from between group variation in D`g (and T`gt) driven by S`g. For j = `, the

estimates are conceptually analogous to the ride-level estimates presented above (see Table 4)).

For j 6= `, the RDD exploits variation in other cars’ assignment speed S`g rather than the ‘own’

Si. Second, we estimate β`j separately for all rides observed in position j ∈ {1, . . . , 5}. Hence, any

regression includes just one observation per group but, in general, repeated observations from a

given car i (see fn. 49). We thus cluster standard errors at the car level.

Results from this RDD are presented in Tables 9 and 10.51 Panels (a) – (d) decompose the

β`j -estimates for groups of cars with two, three, four or five and more cars in a line. The different

columns present effects on the j = 1st, 2nd, ..., 5th car within such lines. Let us first discuss the

case ` = 1, i.e., where the first car within a line is treated (see Columns 1 – 5). Unsurprisingly,

the estimates document a direct treatment effect on the (treated) cars in position j = ` = 1.

For lines with two or three cars (Panel (a) and (b) in Tables 9 and 10), the direct effects are

statistically significant and quantitatively very similar to the ride-level estimates reported above

(see Column (1) and (3) in Table 4). In addition, the estimates also reveal meaningful spillovers

on the 2nd and 3rd cars within these groups. In lines of three cars (Panel b), for instance, the

speeding rate among the first (i.e., the ‘ticketed’) car drops by 7.4pp, and by 5.5pp and 5.1pp for

the 2nd and 3rd car, respectively. A similar pattern is observed for the driving speed.

redundant and only serves to illustrate (consistently with the notation from Section 4) that we focus on ride-level
rather than collapsed outcomes.

50Analogously to D1
i from (5), D`g equals one if S`g ≥ 14km/h above the limit.

51The sample includes observations from all groups of two or more cars for which a car in position ` was observed
(i) during the outcome period with (ii) an assignment speed S`g around the enforcement cutoff. The sample size
thus varies between (but not within) different position ` and for different group sizes (number of cars in a line).
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Next, we consider groups of cars where the one in position ` = 2 is ticketed (Columns 6 – 10).

In addition to direct effects on cars in position j = 2 we again find some evidence on spillovers.

However, both the direct effects and those on the following cars tend to be smaller. This seems

to be due to the fact that the scope for speeding of the treated car is already constrained by the

mere fact that this car is observed in position ` = 2 of a line moving in relatively dense traffic.52

Despite that, we obtain some weak evidence on small treatment spillovers on the rides in front of

the treated car (i.e., in position j = 1; see Column 6, Table 10). Weakly significant estimates of

such ‘forward spillovers’ are also documented in Columns 11 – 15, for the case where the third car

(` = 3) in a line is treated. Similarly as before, however, the estimates show weaker direct effects

(again, in a context where the level of speed and the rate of speeding is already constrained by

the traffic situation) and also smaller and less precisely estimated ‘backward spillovers’.

To summarize, the estimates provide evidence on treatment spillovers. Especially for cases

where the leading car of a line is ticketed, the speeding ticket also induces a decline in speed

and speeding rate among (at least) the next two cars in the line. In addition to these (partially

mechanical) backward spillovers, however, we also find some evidence on ‘forward spillovers’ on

the car ahead. The latter spillover suggests that ticketed cars would have otherwise ‘pushed’ the

one ahead to drive faster.53

The implications from both of these spillovers are clear-cut: speeding tickets contribute to a

drop in speeding in a broader population beyond the ticketed cars. It is not necessarily clear,

however, if these spillovers are all positive from a social welfare perspective (e.g., associated with

lower noise and CO2 emissions): ‘backward spillovers’ are responses to cars who slow down in

front, which could – in case of abruptly braking cars – in principle increase accident risks.

7 Concluding Summary

Based on unique data that cover driving histories of 1.2 million cars over several years, we identi-

fied responses to experiencing law enforcement. The results from a regression discontinuity design,

which exploit speed level cutoffs with extensive or intensive margin variation in punishment,

document that speeding tickets induce a pronounced shift in the speed distribution. The effects

are reflected in a decline of the speeding rate by a third and a 70% drop in re-offending. A doubling

in the speeding tickets’ fines has only limited additional effects. Event study estimates, which

52For, e.g., lines with three cars where the one in position ` = 2 is treated, the average speed/speeding rate
of rides in position j = 2 (of cars with an assignment speed marginally below the cutoff) is 43.9km/h / 18.5%.
For lines where the first car (` = 1) is treated, the corresponding averages among rides in position j = 1 amount
to 45.8km/h / 31.0% (see the line Y (left) in Panel (b), Columns 1 and 7 in Tables 9 and Table 10). A further
observation worth noting is that the leading cars within a line – which, by our definition of car groups, have a
free road ahead – drive faster than the following cars. For instance, within lines of four cars (with the leading one
being ticketed), the speeding rate of (marginally untreated) cars in position j = 1, . . . , 4 monotonically declines
from 28.4, 17.5, 13.6 to 10.3% (see Y (left) in Panel (c), Columns 1–4, Table 9). This pattern (which also holds for
the level of speed) is also reflected in the relative effect sizes, which is sometimes larger for the spillover than for
the direct effect.

53Sensitivity checks indicate that such forward spillovers seem to be larger when the treated car (at, e.g., position
` = 2) faces more scope for speeding (e.g., when the time gap at entering the camera zone is between 3–8 (rather
than < 5) seconds).
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confirm all LATEs from the RDD, further show that the responses are immediate and persistent

over several years. Adjustments in speeding are observable in different speed camera zones and

there is no evidence on compensatory speeding on un-monitored parts of the road. Instead, the

data indicate spillover effects on untreated cars, which reduce their speed, too. Given that the

WHO (2018) considers effective speed management policies as the central strategy to reduce the

approximately 1.35 million annual deaths in road traffic crashes, these findings seem relevant.

We present a simple reinforcement learning model which offers a coherent interpretation of

the evidence. After being punished, imperfectly informed agents update their priors about the

enforcement regime. They learn from law enforcement and adjust their behavior accordingly.

Our set-up, which excludes other channels through which past punishment could shape future

compliance, is ideal to isolate such learning-induced deterrence effects. The data are consistent

with a coarse, discontinuous updating of priors (and reject a fine-grained way of updating). The

persistency of the effect further rejects the interpretation of the findings in terms of temporary

salience responses of agents with limited attention.

The results point to the importance of learning and information transmission for mediating

deterrence effects. Policy design that aims at facilitating learning effects might therefore constitute

an important, and so far under-researched dimension of optimal law enforcement. At the same

time, our results allude to the potential benefits of ambiguity in law enforcement. Under coarse

updating, an ambiguous enforcement cutoff contributes to larger behavioral responses to punish-

ment. This result might be relevant to numerous domains where offenders face ambiguity about

the red line at which an authority’s ‘tolerance’ of illegal behavior ends and where enforcement

starts (e.g., petty theft, minor drug possession, public nuisances, tax evasion). It is up to future

research to examine to which domains this applies.
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Figures

Figure 1: Updating in response to a speeding ticket
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Notes: The figures illustrate possible updating responses to receiving a speeding ticket in period t after a ride at speed st−1.
The figures on the left illustrates the case of a fine grained way of updating. The figures on the right hand side consider a more
coarse updating response. The two panel at the top displays the adjustment in qt(.), the corresponding panel at the bottom
capture the implications for the optimal speeding choice.

Figure 2: Updating in response to low- vs high-fine speeding ticket
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Notes: The figures illustrate possible updating responses to receiving a speeding ticket with either a low (qtlow) or a high fine
(qthigh). The left figure captured the case where a higher fine results in a larger updating of expectations. The right figure

depicts the possibility that, for a similarly coarse updating, the higher fine increases the convexity of qthigh (relative to qtlow).
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Figure 3: Share of ‘treated’ rides, enforcement cutoff

Notes: The figure presents the cars’ share of ticketed rides T 1
i , i.e., rides after receiving a speeding ticket (relative to all rides in

the outcome period), around the enforcement cutoff (1st cutoff). The assignment speed, Si, is normalized relative to the cutoff
(14km/h above the limit). Local linear estimates (with a MSE-optimal bandwidth), 95% confidence intervals and mean treatment
shares in 0.5km/h-bins, based on car-level observations for first relevant outcome period (see Section 4.2).

Figure 4: Share of ‘high-fine treated’ rides, high-fine cutoff

Notes: The figure presents the cars’ share of high-fine treated rides T 2
i , i.e., rides after receiving a high-fine speeding ticket, around

the high-fine cutoff (2nd cutoff). The assignment speed, Si, is normalized relative to the cutoff (23km/h above the limit). Local
linear estimates (with a MSE-optimal bandwidth), 95% confidence intervals and mean treatment shares in 0.5km/h-bins, based
on car-level observations for first relevant outcome period (see Section 4.2).
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Figure 5: Discontinuities in outcomes at the enforcement cutoff

(a) Outcome: Speeding

(b) Outcome: Speed

Notes: The figures present speeding rates (Panel a) and the cars’ mean speed (b), i.e., the car’s average share of
rides above the speed limit, around the enforcement cutoff. The assignment speed, Si, is normalized relative to the
cutoff (14km/h above the limit). Local linear estimates (with a MSE-optimal bandwidth), 95% confidence intervals
and mean outcomes in 0.5km/h-bins, based on car-level observations for first relevant outcome period.
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Figure 6: Change in the speed distribution (enforcement cutoff)
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Notes: The figure illustrates speed distributions during the outcome period (with the measured speed normalized relative to the
speed limit). The solid, green line captures the distribution for all rides from cars with an assignment speed Si within a 0.5km/h
range below the enforcement cutoff (i.e., with D1

i = 0); The dashed, red line plots the distribution for all rides from cars with an
assignment speed Si within a 0.5km/h range above the cutoff (D1

i = 1). The figure does not account for the fuzzy nature of the
RDD and thus provides a reduced form (lower bound) indication of the shift in the speed distribution of treated cars.

Figure 7: Relative change in speed distribution (enforcement cutoff)
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Notes: Based on the distributions displayed in Figure 6, we computed the difference in the speed distribution among cars with an
assignment speed Si within a 0.5km/h range above the enforcement cutoff relative to the distribution among cars with a marginally
lower assignment speed (within a 0.5km/h bin below the enforcement cutoff).
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Figure 8: Discontinuities in outcomes at the high-fine cutoff

(a) Outcome: Speeding

(b) Outcome: Speed

Notes: The figures present speeding rates (Panel a) and the cars’ mean speed (b), i.e., the car’s average share of rides
above the speed limit, around the high-fine cutoff. The assignment speed, Si, is normalized relative to the cutoff
(23km/h above the limit). Local linear estimates (with a MSE-optimal bandwidth), 95% confidence intervals and
mean outcomes in 0.5km/h-bins, based on car-level observations for first relevant outcome period.
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Figure 9: Event study: plot of raw data

(a) Outcome: Speeding

(b) Outcome: Speed

Notes: The figure plots speeding rates (Panel a) and the observed mean speed (b) in weekly intervals before and after
receiving the first ticket. The sample includes cars around the first ticket event that faced a low fine. Cars included in
the sample have at least one observation during the pre-ticket period (other than the trigger observation) and at least
observation during the post-ticket period. The blue line (indicated with circles) is based on the raw data. The dark-red
line(triangles) excludes the trigger observation from the data.
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Figure 10: Event study estimates: responses to the low-fine ticket

(a) Outcome: Speeding

(b) Outcome: Speed

Notes: The figure plots the estimated βw-coefficients from equ. (9) and their 95%-confidence intervals. Dependent variables
are the binary speeding indicator (Panel a) and the mean speed (Panel b). (The corresponding estimates are also reported
in Column (1) and (2) of Table A.11.) The sample includes cars around the first ticket event punished by the low fine, for
which at least one non-trigger observation before the ticket and at least one observation after the ticket are available. The
trigger observation is excluded. Week zero (last week before receiving the ticket) is the omitted category. Cars: 16,407.
Observations: 626,430. Mean speed in week zero: 44.86km/h. Mean speeding rate in week zero: 0.27%.
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Figure 11: Event study: shift in the speed distribution

Notes: The figure depicts speed distributions in the event study sample (same as the sample used to generate estimates in
Figure 10 and Table A.11). The speed is normalized relative to the speed limit. The solid green line plots the distribution
for all rides made 12 and fewer weeks prior to receiving the 1st speeding ticket, with the trigger observation excluded. The
dashed red line plots the distribution for all rides made during 20 weeks after receiving the ticket. The vertical lines mark
the speed limit and the first enforcement cutoff.
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Figure 12: Event study estimates: long-run effects

(a) Outcome: Speeding

(b) Outcome: Speed

Notes: The figure plots the estimated β-coefficients and their 95%-confidence intervals from an equation analogous to
equ. (9), where the single dummies indicate individual months (rather than weeks) before and after receiving a speeding
ticket. Dependent variables are the binary speeding indicator (Panel a) and the mean speed (Panel b). (The corresponding
estimates are also reported in Column (1) and (2) of Table A.12.) The sample includes cars around the first ticket event
punished by the low fine, for which there exists at least one (non-trigger) observation in each of the three-month intervals
before and after the ticket. The trigger observation is excluded. Month zero (last month before receiving the ticket) is the
omitted category. Cars: 4,291. Observations: 991,333. Mean speed in month zero: 44.35km/h. Mean speeding rate in
month zero: 0.26%.
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Figure 13: Event study estimates: responses to the high- vs low-fine ticket

(a) Outcome: Speeding

(b) Outcome: Speed

Notes: The figure plots the estimated βw-coefficients from equ. (9) and their 95%-confidence intervals for cars receiving
a high-fine tickets. The estimates for low-fine tickets (also displayed in Figure 10 above) are included for comparison.
Dependent variables are the binary speeding indicator (Panel a) and the mean speed (Panel b). (The corresponding
estimates are also reported in Table A.11.) The sample includes cars around the first ticket event punished by the high fine,
for which at least one non-trigger observation before the ticket and at least one observation after the ticket are available.
The trigger observation is excluded. Week zero is the omitted category. High-fine sample includes 2,107 cars with 65,606
rides. Mean speed in week zero: 45.75km/h. Mean speeding rate in week zero: 0.279%.
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Figure 14: Event study estimates: private owner vs corporation

(a) Outcome: Speeding

(b) Outcome: Speed

Notes: The figure plots the estimated βw-coefficients from equ. (9) and their 95%-confidence intervals, separately for private
and corporation cars. Dependent variables are the binary speeding indicator (Panel a) and the mean speed (Panel b). (The
corresponding estimates are also reported in Table A.13.) We focus on low-fine tickets and maintain all other sample
definitions from above. Week zero (last week before receiving the ticket) is the omitted category.
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Figure 15: Event study estimates: paid vs unpaid tickets

(a) Outcome: Speeding

(b) Outcome: Speed

Notes: The figure plots the estimated βw-coefficients from equ. (9) and their 95%-confidence intervals, separately for cars
that paid the ticket within 90 days of receiving it and cars that did not. Dependent variables are the binary speeding
indicator (Panel a) and the mean speed (Panel b). (The corresponding estimates are also reported in Table A.13.) Week
zero (last week before receiving the ticket) is the omitted category.
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Figure 16: Event study estimates by the ride sequence

(a) Outcome: Speeding

(b) Outcome: Speed

Notes: The figure plots the coefficients (and their 95% confidence intervals) from a regression is analogous to equ. (9) except
that week dummies are replaced with indicators for a cars’ ride sequence. Each dummy indicates five rides in their order
before and after receiving the first ticket. Camera-specific calendar month fixed effects are also included. The sample of cars
is identical to the main estimates presented in Figure 10. Dependent variables are the binary speeding indicator (Panel a)
and the mean speed (Panel b). (The corresponding estimates are also reported in Table A.15.) The dummy for the last five
rides before the ticket is the omitted category. Cars: 16,414. Observations: 1,171,931. Mean speed/speeding rate during
the five rides before the ticket: –3.67km/h (below speed limit) / 0.29%.
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Figure 17: Event study estimates by same/other speed camera

(a) Outcome: Speeding

(b) Outcome: Speed

Notes: The figure plots the estimated βw-coefficients from equ. (9) and their 95%-confidence intervals, separately for
observations occurring at the same camera where the ticket was triggered and at the other speed cameras. Dependent
variables are the binary speeding indicator (Panel a) and the mean speed (Panel b). The sample includes cars around
the first ticket event punished by the low fine, for which at least one non-trigger observation before the ticket and at
least one observation after the ticket are available. The trigger observation is excluded. Week zero (last week before
receiving the ticket) is the omitted category. The estimates are reported in Table A.16.
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Figure 18: Event study estimates for responses to the second ticket

(a) Outcome: Speeding

(b) Outcome: Speed

Notes: The figure plots the estimated βw-coefficients from equ. (9) and their 95%-confidence intervals. Dependent variables
are the mean speed (Panel a) and the binary speeding indicator (Panel b). The sample includes cars around the second
ticket event (which previously experienced a first, low-fine ticket). The sample is restricted to cars for which at least one
non-trigger observation before and at least one observation after the second ticket is available. The trigger observation is
excluded. Week zero (last week before receiving the second ticket) is the omitted category. Cars: 2,566. Observations:
157,098. Mean speed/mean speeding rate in week zero: 45.03km/h / 0.27%. The estimates are also reported in Table A.11.
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Tables

Table 1: Summary statistics

‘Not-ticketed’ ‘Ticketed’ Total
cars cars (all cars)

Car characteristics

Observations (rides) 22,049,809 4,084,958 26,134,767
Number of cars 1,304,791 48,422 1,353,213
Number of tickets 0 56,056 56,056

Observations per car 16.90 84.36 19.31
(74.84) (192.02) (82.93)

Driving frequency 2.33 3.06 2.45
(2.76) (2.87) (2.79)

Number plate: Local region 0.453 0.455 0.453
(0.498) (0.498) (0.498)

Number plate: Prague 0.393 0.439 0.400
(0.488) (0.496) (0.490)

Ride characteristics

Speed –6.00 –5.17 –5.87
(7.73) (8.60) (7.88)

Speeding 0.125 0.189 0.135
(0.331) (0.391) (0.342)

(Re)offending 0.000 0.015 0.003
– (0.120) (0.051)

Temperature 15.36 14.81 15.27
(12.19) (12.09) (12.17)

Windspeed 1.75 1.74 1.75
(1.46) (1.47) (1.46)

Hour 12.51 12.65 12.53
(4.59) (4.73) (4.61)

Weekend 0.204 0.205 0.204
(0.403) (0.404) (0.403)

Ticket/trigger characteristics

Fine amount (CZK) 1,039
(377)

Probability of paying the fine 0.933
(0.250)

Notes: The table reports the number of rides, cars and tickets together with sample means (with
standard deviations in parenthesis) for cars that did (‘ticketed’) or did not get any speeding ticket
during the sample period (August 2014–2018). Speed indicates the measured speed, relative to
the speed limit (in km/h). Number plate distinguish cars registered in the local region (Central
Bohemian, where the municipality of Ricany is located) and Prague. The residual category pools
all other regions.
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Table 2: Predictions for different ways of updating

No updating Fine grained updating Coarse updating

Behavioral response no response (small) drop in speed, (large) drop in speed,
to speeding ticket continued speeding drop in speeding

Bunching/1st cutoff yes (correct prior) yes no
(enforcement) no (incorrect prior) (evolving over time)

Bunching/2nd cutoff yes(a) (correct prior) yes(a) no(b)

(low/high fine) no (incorrect prior) (evolving over time)

Behavioral response no larger drop in speed(b) no differential effect(b)

to high- vs low-fine (no responses to either) (if higher fine induces (potentially larger drop in speed

speeding tickets stronger updating) for favourable driving conditions)

Notes: (a) These prediction implicitly assumes that a significant share of drivers have a sufficiently strong taste for
(and conditions favouring) speeding, such that they are willing to accept a low-fine speeding ticket. For the case of
coarse updating, we further assume that the second cutoff is not known. If it were known, we should see bunching (at
the second cutoff) under coarse updating, too. (b) On these predictions, see the left and the right panel of Figure 2,
respectively.
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Table 3: Wald estimates for average car: enforcement cutoff

(1) (2) (3) (4) (5) (6)
Speeding (Re)Offending Speed Speedp50 Speedp75 Speedp90

Estimate –0.0951*** –0.0051*** –1.4602*** –1.3097*** –1.4972*** –1.7723***
(βk=1) [0.0136] [0.0019] [0.2774] [0.2794] [0.2663] [0.3032]

Y (left) 0.299 0.007 46.153 46.608 49.678 51.703
Relative effect –31.80% –70.31% –3.16% –2.81% –3.01% –3.43%
Bandwidth 4.483 5.776 4.199 3.871 4.583 4.542

Notes: The table presents Wald estimates for car-level observations at the enforcement cutoff (1st cutoff), more specifically,
bias-corrected estimates with a MSE-optimal bandwidth and robust standard errors in brackets (Calonico et al., 2014,
2017). The table further indicates the effect size relative to the mean outcome in the 0.5km/h bin below the cutoff, Y (left).
Number of observations: 224,816 cars.

Table 4: Wald estimates for average ride: enforcement and high-fine cutoff

(1) (2) (3) (4) (5) (6)
Speeding (Re)Offending Speed Speeding (Re)Offending Speed

1st cutoff 2nd cutoff

Estimate –0.0707*** –0.0031*** –0.8804*** –0.0279 –0.0025 –0.8247
(βk) [0.0139] [0.0009] [0.3191] [0.0271] [0.0034] [0.6856]

Y (left) 0.253 0.005 44.515 0.216 0.008 44.424
Relative effect –27.96% –60.99% –1.98% –12.89% –29.98% –1.86%
Bandwidth 3.368 3.633 3.718 3.346 2.086 2.844
Obs. 2,505,113 2,505,113 2,505,113 264,587 264,587 264,587

Notes: The table presents Wald estimates for ride-level observations for both the enforcement cutoff (1st cutoff) and the
high-fine cutoff (2nd cutoff), more specifically, bias-corrected estimates with a MSE-optimal bandwidth and cluster robust
standard errors in brackets (Calonico et al., 2014, 2017). Number of observations indicate single rides. Standard errors are
clustered at the level of cars (with 224,816 cars in the sample for the first and 16,148 cars for the second cutoff). The table
further indicates the effect size relative to the mean outcome in the 0.5km/h bin below the cutoff, Y (left).
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Table 5: Wald estimates for subgroups: enforcement cutoff

(1) (2) (3) (4) (5)
Infrequent Frequent Local region Prague Other regions

(A) Outcome: Speeding

Estimate –0.1186*** –0.0761*** –0.0953*** –0.0781*** –0.0924**
(βk=1) [0.0244] [0.0181] [0.0226] [0.0262] [0.0370]

Y (left) 0.328 0.271 0.288 0.295 0.321
Relative effect –36.21% –28.04% –33.06% –26.48% –28.81%
Bandwidth 3.535 4.021 4.529 2.275 4.073

(B) Outcome: Mean Speed

Estimate –1.6591*** –1.2295*** –1.0293** –1.8673*** –1.6526***
(βk=1) [0.4994] [0.3192] [0.4150] [0.5316] [0.6230]

Y (left) 46.619 45.697 45.524 46.238 46.778
Relative effect –3.56% –2.69% –2.26% –4.04% –3.53%
Bandwidth 3.510 4.679 5.250 2.230 5.130

Obs. 114,899 109,917 74,638 100,946 49,232

Notes: The table presents subgroup-specific Wald estimates for car-level observations at the enforcement cutoff (1st
cutoff), more specifically, bias-corrected estimates with a MSE-optimal bandwidth and robust standard errors in
brackets (Calonico et al., 2014, 2017). The top panel (A) considers speeding (binary), the lower panel (B) the mean
speed outcome (in km/h). Columns (1) and (2) compare infrequent and frequent drivers (according to their average
frequency of rides per day, measured during the pre-treatment assignment period), columns (3), (4) and (5) compare
cars with number plates from the Ricany-Region, from Prague, and from other regions, respectively. The table further
includes the effect size relative to the mean outcome in the 0.5km/h bin below the cutoff, Y (left).

Table 6: Wald estimates for average car: high-fine cutoff

(1) (2) (3) (4) (5) (6)
Speeding (Re)Offending Speed Speedp50 Speedp75 Speedp90

Estimate –0.0243 –0.0058 –0.7225 –0.6508 –0.8824 –0.6883
(βk=2) [0.0288] [0.0104] [0.7913] [0.7782] [0.7895] [0.7819]

Y (left) 0.258 0.015 45.416 45.789 48.706 50.746
Relative effect –9.42% –39.43% –1.59% –1.42% –1.81% –1.36%
Bandwidth 3.784 2.794 2.793 2.825 3.041 4.013

Notes: The table presents Wald estimates for car-level observations at the high-fine cutoff (2nd cutoff), more
specifically, bias-corrected estimates with a MSE-optimal bandwidth and robust standard errors in brackets (Calonico
et al., 2014, 2017). The table further indicates the effect size relative to the mean outcome in the 0.5km/h bin below
the cutoff, Y (left). Number of observations: 16,148 cars.
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Table 7: Wald estimates for ‘good’ vs ‘bad’ driving conditions: high-fine cutoff

(1) (2) (3) (4) (5) (6)

Speeding Speed Speedp90 Speeding Speed Speedp90

(binary) (mean) (binary) (mean)

Panel A. Good Conditions Bad Conditions

Estimate –0.0808* –1.4711* –2.0812** –0.0075 –0.0809 –0.5930
(βk=2) [0.0471] [0.8681] [1.0525] [0.0330] [0.7750] [0.8070]

Y (left) 0.381 47.665 53.142 0.176 43.997 48.086
Relative effect –21.18% –3.09% –3.92% –4.28% –0.18% –1.23%
Bandwidth 2.628 2.865 2.409 3.124 2.952 3.273

Obs. 13,446 13,446 13,446 13,639 13,639 13,639

Panel B. Good Conditions Bad Conditions

Estimate –0.0796** –0.8873 –1.0067 –0.0038 –0.3259 –0.8595
(βk=2) [0.0393] [0.6962] [0.7688] [0.0270] [0.5453] [0.5608]

Y (left) 0.388 47.729 53.754 0.183 44.398 49.492
Relative effect –20.50% –1.86% –1.87% –2.06% –0.73% –1.74%
Bandwidth 3.013 2.940 3.258 3.675 3.743 3.916

Obs. 10,937 10,937 10,937 10,937 10,937 10,937

Notes: The table presents Wald estimates for car-level observations at the high-fine cutoff (2nd cutoff), more specifically,
bias-corrected estimates with a MSE-optimal bandwidth and robust standard errors in brackets (Calonico et al., 2014, 2017).
The table compares the effects on the speeding rate, the mean speed and the p90-speed for riders under good (Columns
1 – 3) and bad driving conditions (Columns 4 – 6). These driving conditions are defined by a median split in the traffic
situation of rides. More specifically, a ride in the outcome period with a minimum time gap of at least 5.84 seconds (the
median) to the next car ahead is classified as ‘good condition’ ride. Rides with a time gap of less than 5.84 seconds are
considered ‘bad condition’ rides. Panel A presents the estimates for cars observed under either good or bad conditions (i.e.,
we partially compare different cars). Panel B replicates the estimates for a fixed set of 10,937 cars that are observed under
both good and bad traffic conditions. The table also indicates the effect size relative to the mean outcome in the 0.5km/h
bin below the cutoff, Y (left).
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Table 8: Wald estimates: ‘same’ vs ‘other’ radar: enforcement cutoff

(1) (2) (3) (4)
same other same other

(A) Outcome: Speeding

Estimate –0.1166*** –0.0612*** –0.1065*** –0.0591***
(βk=1) [0.0184] [0.0172] [0.0207] [0.0170]

Y (left) 0.403 0.192 0.392 0.199
Relative effect –28.90% –31.87% –27.15% –29.75%
Bandwidth 4.369 3.169 4.029 3.818

(B) Outcome: Mean Speed

Estimate –1.8922*** –1.0746*** –1.8827*** –0.9951***
(βk=1) [0.3716] [0.2933] [0.3469] [0.3452]

Y (left) 47.642 44.225 47.323 44.105
Relative effect –3.97% –2.43% –3.98% –2.26%
Bandwidth 3.849 5.233 5.040 4.570

Obs. 176,937 166,773 118,894 118,894

Notes: The table presents Wald estimates for car-level observations at the enforcement cutoff (1st cutoff),
more specifically, bias-corrected estimates with a MSE-optimal bandwidth and robust standard errors in
brackets (Calonico et al., 2014, 2017). The top panel (A) considers speeding (binary), the lower panel (B)
the mean speed outcome (in km/h). Columns (1) and (3) are based on outcomes measured at the same
radar that triggered the assignment speed, Si. Columns (2) and (4) explore outcomes from other radars,
i.e., radars that differ from the one where the assignment speed, Si, was recorded. In columns (3) and (4)
the sample is constrained to cars that pass by at the ‘same’ and at least one ‘other’ radar; columns (1)
and (2) do not condition the sample (i.e., partially compare different cars). The table further indicates the
effect size relative to the mean outcome in the 0.5km/h bin below the cutoff, Y (left).
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Table 9: Treatment effects and spillovers within lines of cars — outcome: speeding

` = First Car Treated Second Car Treated Third Car Treated

j = Car 1 Car 2 Car 3 Car 4 Car 5 Car 1 Car 2 Car 3 Car 4 Car 5 Car 1 Car 2 Car 3 Car 4 Car 5

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

(a) Lines with 2 cars

Estimate –0.0576*** –0.0415*** –0.013 –0.0338***
(β`j) [0.0146] [0.0114] [0.0096] [0.0080]

Y (left) 0.308 0.203 0.201 0.187
Rel. effect –18.725% –20.460% –6.461% –18.089%
Obs. 458,672 464,764

(b) Lines with 3 cars

Estimate –0.0737*** –0.0546*** –0.0513*** –0.0136 –0.0308** –0.0036 –0.0079 –0.0240* –0.0355***
(β`j) [0.0194] [0.0157] [0.0131] [0.0155] [0.0129] [0.0119] [0.0147] [0.0139] [0.0122]

Y (left) 0.31 0.182 0.142 0.192 0.185 0.137 0.168 0.133 0.132
Rel. effect –23.783% –30.046% –36.043% –7.070% –16.641% –2.615% –4.690% –18.051% –26.869%
Obs. 184,535 186,055 187,930

(c) Lines with 4 cars

Estimate –0.0304 –0.0582*** –0.0369* –0.0105 0.0254 –0.0056 0.0138 0.0218 –0.0150 –0.0046 0.0123 –0.0081
(β`j) [0.0318] [0.0216] [0.0207] [0.0184] [0.0231] [0.0216] [0.0179] [0.0210] [0.0226] [0.0224] [0.0239] [0.0201]

Y (left) 0.284 0.175 0.136 0.103 0.152 0.133 0.089 0.08 0.188 0.135 0.111 0.101
Rel. effect –10.705% –33.214% –27.123% –10.254% 16.720% –4.221% 15.461% 27.349% –7.974% –3.396% 11.094% –8.016%
Obs. 84,502 84,969 85,928

(d) Lines with 5 or more cars

Estimate –0.0460 –0.0283 0.0019 –0.0201 –0.0392** –0.0187 –0.0295 –0.0333* –0.0114 –0.0143 –0.0269 –0.0053 –0.0504*** –0.0440** –0.0352**
(β`j) [0.0298] [0.0225] [0.0198] [0.0159] [0.0160] [0.0218] [0.0205] [0.0172] [0.0167] [0.0182] [0.0240] [0.0194] [0.0194] [0.0182] [0.0174]

Y (left) 0.296 0.201 0.137 0.101 0.101 0.181 0.159 0.135 0.102 0.109 0.154 0.107 0.137 0.095 0.083
Rel. effect –15.559% –14.053% 1.409% –20.002% –38.915% –10.343% –18.551% –24.622% –11.174% –13.085% –17.491% –4.984% –36.706% –46.432% –42.441%
Obs. 94,500 94,509 95,689

Notes: The table presents Wald estimates (at the level of rides) based on equations (10) and (11). Outcome is speeding (binary). Panels (a) – (d) focus on groups of cars
with either two, three, four or five and more cars within a line. The first (second / third) five columns consider cases where the ` = first (second / third) car within a line
has potentially qualified for a speeding ticket (i.e., D`g = {0, 1}). Within each block, the different columns present effects on the j = first, second, ... fifth car within a line.
Estimates for cases with j = ` are marked in bold. All estimates are bias-corrected, with a MSE-optimal bandwidth and cluster robust standard errors in brackets (Calonico
et al., 2014, 2017). Standard errors are clustered at the level of cars. Number of observations indicate single rides (which is constant within each line/`th-car-treated ‘block’).
Effect size is relative to the mean outcome in the 0.5km/h bin below the cutoff, Y (left).
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Table 10: Treatment effects and spillovers within lines of cars — outcome: speed

` = First Car Treated Second Car Treated Third Car Treated

j = Car 1 Car 2 Car 3 Car 4 Car 5 Car 1 Car 2 Car 3 Car 4 Car 5 Car 1 Car 2 Car 3 Car 4 Car 5

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

(a) Lines with 2 cars:

Estimate –0.5459** –0.0578 –0.3639* –0.4023*
(β`j) [0.2216] [0.2238] [0.1987] [0.2153]

Y (left) 45.524 44.043 44.486 44.129
Rel. effect –1.199% –0.131% –0.818% –0.912%
Obs. 458,672 464,764

(b) Lines with 3 cars:

Estimate –1.0030*** –0.9437*** –0.7253** –0.0621 –0.2735 0.0522 –0.4076 –0.1237 –0.1622
(β`j) [0.3137] [0.3024] [0.3212] [0.3069] [0.2952] [0.2694] [0.2580] [0.2621] [0.2497]

Y (left) 45.782 44.27 43.401 44.41 43.947 43.442 44.259 43.458 43.027
Rel. effect –2.191% –2.132% –1.671% –0.140% –0.622% 0.120% –0.921% –0.285% –0.377%
Obs. 184,535 186,055 187,930

(c) Lines with 4 cars

Estimate –0.5704 –0.7003 –0.7472 –0.4332 –0.1976 –0.2975 –0.2395 –0.2214 –0.2098 –0.1156 0.3087 0.7248
(β`j) [0.4951] [0.4678] [0.5325] [0.4617] [0.4700] [0.4551] [0.4380] [0.4784] [0.4045] [0.3363] [0.4002] [0.5063]

Y (left) 45.039 43.969 43.104 42.586 44.614 43.911 43.394 42.689 43.984 43.389 42.666 42.366
Rel. effect –1.267% –1.593% –1.734% –1.017% –0.443% –0.677% –0.552% –0.519% –0.477% –0.266% 0.723% 1.711%
Obs. 84,502 84,969 85,928

(d) Lines with 5 or more cars

Estimate –0.3679 –0.3098 0.0587 0.2304 –0.4992 –0.8500** –1.0043** –0.4091 –0.3706 –0.4023 –0.5203 –0.6752 –0.8273* –0.7025 –0.2321
(β`j) [0.4470] [0.3901] [0.3736] [0.4014] [0.4966] [0.4197] [0.4035] [0.3890] [0.3989] [0.3709] [0.5107] [0.4503] [0.4709] [0.4562] [0.3887]

Y (left) 45.25 44.034 43.401 42.69 42.468 44.265 43.797 42.823 42.374 41.833 43.9 43.313 42.983 42.57 42.162
Rel. effect –0.813% –0.704% 0.135% 0.540% –1.175% –1.920% –2.293% –0.955% –0.875% –0.962% –1.185% –1.559% –1.925% –1.650% –0.551%
Obs. 94,500 94,509 95,689

Notes: The table presents Wald estimates (at the level of rides) based on equations (10) and (11). Outcome is measured speed. Panels (a) – (d) focus on groups of cars
with either two, three, four or five and more cars within a line. The first (second / third) five columns consider cases where the ` = first (second / third) car within a line
has potentially qualified for a speeding ticket (i.e., D`g = {0, 1}). Within each block, the different columns present effects on the j = first, second, ... fifth car within a line.
Estimates for cases with j = ` are marked in bold. All estimates are bias-corrected, with a MSE-optimal bandwidth and cluster robust standard errors in brackets (Calonico
et al., 2014, 2017). Standard errors are clustered at the level of cars. Number of observations indicate single rides (which is constant within each line/`th-car-treated ‘block’).
Effect size is relative to the mean outcome in the 0.5km/h bin below the cutoff, Y (left).
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Appendix A Additional Figures and Tables

Figure A.1: Photograph of a Speed Camera

Notes: The picture shows a camera at the entry of one speed camera zone.
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Figure A.2: Density of running variable around the enforcement cutoff

(a) Distribution (‘McCrary Plot’)
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Notes: The figure illustrates the distribution of the assignment speed Si centered around the enforcement cutoff (14km/h above
the speed limit). Panel (a) plots the distribution together with the estimates from McCrary’s (2008) heaping test. Panel (b)
presents a histogram of the assignment speed Si over 50 bins (0.2km/h per bin).
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Figure A.3: Density of running variable (enforcement cutoff): Evolution over time I (all cars)
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Notes: The figure plots the distribution of observed speed measures – centered around the enforcement cutoff (14km/h
above the speed limit) – in six semi-annual intervals, starting with the first month the radars were operating. Sample
includes all cars. Estimates are from McCrary’s (2008) heaping test.
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Figure A.4: Density of running variable (enforcement cutoff): Evolution II (regional cars)
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Notes: The figure plots the distribution of observe speed measures – centered around the enforcement cutoff (14km/h above
the speed limit) – in six semi-annual intervals, starting with the first month the radars were operating. Sample includes
only ‘regional cars’, defined as cars with above-median driving frequency and a number plate from the region. Estimates
are from McCrary’s (2008) heaping test.
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Figure A.5: Continuity of other characteristics around the enforcement cutoff

Notes: The figures document continuity for several observables around the enforcement cutoff. The figures depict the cars’
number of rides as well as the driving frequency during the assignment period (pre-treatment); the traffic density (the logged
time difference to the car ahead, measured for the ride with the maximum speed); indicators for the cars’ number plate
(Prague and local Region) and trigger rides on the weekend; indicators for trigger rides in the morning, afternoon, and at
night, respectively. Further variables are considered in Table A.1.
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Figure A.6: Density of running variable around the high-fine cutoff

(a) Distribution (‘McCrary Plot’)
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Notes: The figure illustrates the distribution of the assignment speed Si centered around the high-fine cutoff (23km/h above the
speed limit). Panel (a) plots the distribution together with the estimates from McCrary’s (2008) heaping test. Panel (b) presents
a histogram of the assignment speed Si over 50 bins (0.2km/h per bin).
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Figure A.7: Share of ‘ticketed’ rides around the high-fine cutoff

Notes: The figure presents the cars’ share of ticketed rides T 1
i , i.e., rides after receiving any speeding ticket (relative to

all rides in the outcome period), around the high-fine cutoff (2nd cutoff). If high-fine tickets are sent out more quickly
than low-fine tickets, this could produce a discontinuity in T 1

i at the second cutoff. This is not supported by the data.
The assignment speed, Si, is normalized relative to the high-fine cutoff (23km/h above the limit). Local linear estimates
(with a MSE-optimal bandwidth), 95% confidence intervals and mean treatment shares in 0.5km/h-bins, based on car-level
observations.
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Figure A.8: Sensitivity of reduced form estimates at the enforcement cutoff

(a) Outcome: Speeding
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Notes: The figure depicts reduced form estimates (with 95% confidence intervals) for car-level observations at the
enforcement cutoff, varying the bandwidth in 0.5km/h steps from 0.5 to 8.0km/h of assignment speed Si. The outcome is
the speeding (top panel) and the mean speed (lower panel). The different coefficients should be compared with the results
reported in Table A.3.
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Figure A.9: Sensitivity of car-level estimates at the enforcement cutoff
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Notes: The figure depicts Wald estimates at the car-level, with 95% CI for the enforcement cutoff (1st cutoff) for different
assignment (a, in months) and follow-up periods (f). Panel (a) presents outcomes for or the speeding rate, panel (b) the mean
speed (in km/h). Number of observations, bandwidth, and relative effect sizes are reported in Tables A.6 and A.7, respectively.
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Figure A.10: Sensitivity of ride-level estimates at the enforcement cutoff
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Notes: The figure depicts Wald estimates at the ride-level, with 95% CI for the enforcement cutoff (1st cutoff) for different
assignment (a, in months) and follow-up periods (f). Panel (a) presents outcomes for the speeding rate, panel (b) for the mean
speed (in km/h).
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Figure A.11: Sensitivity of reduced form estimates at the high-fine cutoff
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(b) Outcome: Speed
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Notes: The figure depicts reduced form estimates (with 95% confidence intervals) for car-level observations at the high-fine
cutoff, varying the bandwidth in 0.5km/h steps from 0.5 to 8.0km/h of assignment speed Si. Outcome: Speed (in km/h).
Panel (a) presents outcomes for the speeding rate, panel (b) for the mean speed (in km/h).
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Figure A.12: Sensitivity of car-level estimates at the high-fine cutoff
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Notes: The figure depicts Wald estimates (at the car-level) with 95% CI for the high-fine cutoff (2nd cutoff) for different
assignment (a, in months) and follow-up periods (f). Outcome: Speed (in km/h). Observations pooled at level of cars.
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Figure A.13: Heterogeneity: speed and speeding responses by driving frequency

(a) Outcome: Speeding

(b) Outcome: Speed

Notes: The figure plots the estimated βw-coefficients from equ. (9) and their 95%-confidence intervals. Dependent variables are the
speeding dummy (Panel a) and measured speed sit in km/h(b). The sample is divided into infrequent and frequent cars, as defined by
a median split according to the average daily pre-treatment rides (i.e., rides during the period from a car’s first appearance till the day
of receiving the first ticket). We focus on low-fine tickets and maintain all other sample definitions from above. Week zero (last week
before receiving the ticket) is the omitted category. The corresponding estimates are also reported in Tables A.14.
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Figure A.14: Heterogeneity: speed and speeding responses by number plate region

(a) Outcome: Speeding

(b) Outcome: Speed

Notes: The figure plots the estimated βw-coefficients from equ. (9) and their 95%-confidence intervals. Dependent variables are
the speeding dummy (Panel a) and measured speed sit in km/h (b). The sample is split by the number plate into cars from the
‘Local’ region (i.e., where the municipality of Ricany is located), ‘Prague’, and all ‘Other’ regions. We focus on low-fine tickets
and maintain all other sample definitions from above. Week zero (last week before receiving the ticket) is the omitted category.
The estimates are also reported in Table A.14.
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Table A.1: Balancing checks: enforcement cutoff

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

driving # rides no. plate: no. plate: traffic temp wind hour (trigger ride)
frequ. (pre-treat) Prague Local region 6–9am 9–12pm 12–3pm

Estimate –0.0048 –0.1127 0.0384* 0.0182 0.0915 –0.7626** –0.1172 0.0211 –0.0306 0.0139
[0.0135] [0.8298] [0.0204] [0.0206] [0.0587] [0.3722] [0.0819] [0.0167] [0.0220] [0.0214]

Y (left) 0.259 10.645 0.456 0.302 2.926 12.010 1.833 0.141 0.217 0.206

(11) (12) (13) (14) (15) (16) (17) (18) (19) (20)

hour (trigger ride) day of week (trigger ride) month
3–6pm 6–9pm 9–12am Tue Wed Thu Fr Sa Su 02

Estimate 0.0108 0.0167 0.0067 –0.0173 0.0081 0.0215 0.0058 0.0122 –0.0029 0.0192*
[0.0195] [0.0167] [0.0114] [0.0175] [0.0153] [0.0171] [0.0140] [0.0166] [0.0187] [0.0115]

Y (left) 0.187 0.138 0.048 0.123 0.120 0.121 0.128 0.184 0.194 0.047

(21) (22) (23) (24) (25) (26) (27) (28) (29) (30)

month of year (trigger ride)
03 04 05 06 07 08 09 10 11 12

Estimate 0.0164 0.0151 –0.0173 –0.0319** 0.0098 0.0018 0.0192* –0.0039 –0.0032 –0.0087
[0.0145] [0.0137] [0.0152] [0.0132] [0.0144] [0.0114] [0.0101] [0.0113] [0.0109] [0.0151]

Y (left) 0.098 0.071 0.103 0.124 0.087 0.065 0.042 0.080 0.083 0.100

Notes: The table presents a series of balancing checks for the enforcement cutoff. In particular, the table reports bias-corrected
RD estimates with a MSE-optimal bandwidth and robust standard errors in brackets (Calonico et al., 2014, 2017). The variables
capture the cars’ driving frequency and number of rides during the assignment period (pre-treatment), indicators for the cars’
number plate (Region and Prague; residual category: all Others), as well as driving conditions (temperature, wind, and traffic
density, measured via the logged time difference to the next car in front) and time and date information for the ‘trigger ride’
(ride the maximum speed). Y (left) indicates the mean of the dependent variable in the 0.5km/h bin below the cutoff. Number of
observations for all specifications: 224,816 cars.
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Table A.2: Balancing checks: high-fine cutoff

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

driving # rides no. plate: no. plate: traffic temp wind hour (trigger ride)
frequ. (pre-treat) Prague Local region 6–9am 9–12pm 12–3pm

Estimate 0.0024 1.0433 –0.0151 0.0792* 0.0499 –0.1306 0.0948 0.0413 0.0278 0.0106
[0.0230] [1.5120] [0.0422] [0.0450] [0.0993] [0.9319] [0.1520] [0.0375] [0.0334] [0.0403]

Y (left) 0.240 8.481 0.481 0.303 3.293 11.125 1.649 0.141 0.174 0.162

(11) (12) (13) (14) (15) (16) (17) (18) (19) (20)

hour (trigger ride) day of week (trigger ride) month
3–6pm 6–9pm 9–12am Tue Wed Thu Fr Sa Su 02

Estimate –0.0381 0.0148 –0.0070 0.0000 0.0070 –0.0246 0.0274 –0.0574 0.0170 0.0422**
[0.0355] [0.0321] [0.0264] [0.0264] [0.0321] [0.0333] [0.0260] [0.0412] [0.0447] [0.0174]

Y (left) 0.199 0.145 0.095 0.104 0.129 0.116 0.083 0.241 0.241 0.029

(21) (22) (23) (24) (25) (26) (27) (28) (29) (30)

month of year (trigger ride)
03 04 05 06 07 08 09 10 11 12

Estimate 0.0028 0.0106 0.0105 –0.0659** –0.0035 –0.0358 0.0428** –0.0174 –0.0200 –0.0030
[0.0226] [0.0231] [0.0278] [0.0307] [0.0311] [0.0258] [0.0210] [0.0242] [0.0210] [0.0327]

Y (left) 0.066 0.058 0.141 0.141 0.104 0.075 0.025 0.087 0.083 0.124

Notes: The table presents a series of balancing checks for the high-fine cutoff. In particular, the table reports bias-corrected RD
estimates with a MSE-optimal bandwidth and robust standard errors in brackets (Calonico et al., 2014, 2017). The variables
capture the cars’ driving frequency and number of rides during the assignment period (pre-treatment), indicators for the cars’
number plate (Region and Prague; residual category: all Others), as well as driving conditions (temperature, wind, and traffic
density, measured via the logged time difference to the next car in front) and time and date information for the ‘trigger ride’
(ride the maximum speed). Y (left) indicates the mean of the dependent variable in the 0.5km/h bin below the cutoff. Number of
observations for all specifications: 16,148 cars.
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Table A.3: Reduced form estimates: enforcement cutoff

(1) (2) (3) (4) (5)
Ticketed Speeding (Re)Offending Speed Speedp90

Estimate 0.7866*** –0.0812*** –0.0044** –1.3512*** –1.4023***
(δ, τ) [0.0127] [0.0146] [0.0019] [0.2814] [0.2711]

Y (left) 0.017 0.299 0.007 46.153 51.703
Bandwidth 2.428 2.228 2.619 2.270 3.353

Notes: The table presents reduced form results for the enforcement cutoff, in particular, bias-corrected RD estimates with a
MSE-optimal bandwidth and robust standard errors in brackets (Calonico et al., 2014, 2017). Number of observations: 224,816
cars.

Table A.4: Reduced form estimates: high-fine cutoff

(1) (2) (3) (4) (5) (6)
High-fine Ticketed Speeding (Re)Offending Speed Speedp90

Treated (2nd cutoff)

Estimate 0.8145*** 0.0117 –0.0199 –0.0048 –0.5938 –0.5632
(δ, τ) [0.0189] [0.0350] [0.0235] [0.0085] [0.6494] [0.6381]

Y (left) 0.808 0.808 0.258 0.015 45.416 50.746
Bandwidth 5.080 2.649 3.784 2.794 2.793 4.013

Notes: The table presents reduced form results for the enforcement cutoff, in particular, bias-corrected RD estimates with a
MSE-optimal bandwidth and robust standard errors in brackets (Calonico et al., 2014, 2017). Number of observations: 16,148
cars.
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Table A.5: Reduced form estimates: driving responses at enforcement and high-fine cutoff

(1) (2) (3) (4)
Rides Ever-return Rides Ever-return

(count) (binary) (count) (binary)

1st cutoff 2nd cutoff

Estimate 0.8812 0.0389** –0.2831 0.0022
(τ) [0.6501] [0.0173] [1.6193] [0.0382]

Y (left) 7.263 0.509 7.420 0.557
Bandwidth 2.710 2.293 2.589 2.661
Obs. (Cars) 465,518 465,518 27,774 27,774

Notes: The table presents reduced form results examining extensive margin driving responses (e.g., avoiding roads
with speed cameras) at the enforcement (Columns 1 – 2) and the high-fine cutoff (Columns 3 – 4), respectively.
The sample is defined as in our main estimates (see, e.g., Tables 3 and 6 and the sample definitions discussed in
Section 4.1) but also includes cars that were not observed during the outcome period. The dependent variables
measure the number of rides during the outcome period (Columns 1 and 3) or indicate whether a car observed during
the assignment period is ever observed again (Columns 2 and 4). Bias-corrected RD estimates based on car-level
observations with a MSE-optimal bandwidth and robust standard errors in brackets (Calonico et al., 2014, 2017).
Y (left) indicates the mean outcome in the 0.5km/h bin below the cutoff.
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Table A.6: Car-level estimates for varying a and f parameters – Outcome: Speed

f = 3 f = 4 f = 5 f = 6

Estimate (β) -1.6654*** -1.4110*** -1.3028*** -1.7686***
[0.4073] [0.3583] [0.3017] [0.3438]

Y (left) 46.273 46.205 46.238 46.287
Relative effect -3.599 -3.054 -2.818 -3.821
Bandwidth 2.580 3.042 3.763 2.439

Obs

a
=

3

203,459 221,303 235,072 246,178

Estimate (β) -1.4734*** -1.4602*** -1.4402*** -1.7563***
[0.3222] [0.2774] [0.2726] [0.3133]

Y (left) 46.225 46.153 46.204 46.243
Relative effect -3.187 -3.164 -3.117 -3.798
Bandwidth 3.423 4.199 3.774 2.515
Obs

a
=

4

207,737 224,816 239,220 250,887

Estimate (β) -1.3400*** -1.3793*** -1.4013*** -1.2784***
[0.3133] [0.2919] [0.2768] [0.2478]

Y (left) 46.148 46.083 46.121 46.160
Relative effect -2.904 -2.993 -3.038 -2.769
Bandwidth 3.017 3.150 3.074 3.436
Obs

a
=

5

211,031 227,732 241,375 253,579

Estimate (β) -1.2608*** -1.2932*** -1.3481*** -1.1707***
[0.3120] [0.2837] [0.2862] [0.2597]

Y (left) 46.033 46.006 46.000 45.967
Relative effect -2.739 -2.811 -2.931 -2.547
Bandwidth 2.915 3.136 2.670 2.913
Obs

a
=

6

213,471 230,170 243,558 255,215

Notes: The table presents Wald estimates for car-level observations at the enforcement cutoff, considering
different combinations of assignment (a, in months) and follow-up periods (f). Outcome: Speed (in
km/h). The table includes the relative effect size (relative to the mean outcome in the 0.5km/h bin
below the cutoff, Y (left)), the MSE-optimal bandwidths, and the number of observations (cars) with Si

in the [−14, 9]km/H range around the cutoff. Illustration of point estimates provided in Fig. A.9.
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Table A.7: Car-level estimates for varying a and f parameters – Outcome: Speeding

f =3 f =4 f =5 f =6

Estimate (β) -0.1145*** -0.0912*** -0.0916*** -0.1066***
[0.0231] [0.0188] [0.0166] [0.0182]

Y (left) 0.314 0.299 0.301 0.305
Relative effect -36.490 -30.456 -30.437 -34.964
Bandwidth 2.285 2.795 3.107 2.309
Obs

a
=

3
203,459 221,303 235,072 246,178

Estimate (β) -0.0933*** -0.0951*** -0.1017*** -0.1066***
[0.0176] [0.0136] [0.0139] [0.0163]

Y (left) 0.310 0.299 0.302 0.305
Relative effect -30.116 -31.798 -33.735 -34.990
Bandwidth 3.251 4.483 3.846 2.560
Obs

a
=

4

207,737 224,816 239,220 250,887

Estimate (β) -0.1042*** -0.1060*** -0.1081*** -0.1025***
[0.0178] [0.0158] [0.0148] [0.0132]

Y (left) 0.310 0.301 0.302 0.306
Relative effect -33.589 -35.214 -35.754 -33.537
Bandwidth 2.725 2.879 2.911 3.390
Obs

a
=

5

211,031 227,732 241,375 253,579

Estimate (β) -0.1090*** -0.1095*** -0.1114*** -0.1055***
[0.0170] [0.0150] [0.0146] [0.0136]

Y (left) 0.312 0.304 0.304 0.305
Relative effect -34.953 -35.980 -36.593 -34.592
Bandwidth 2.746 2.983 2.771 3.036
Obs

a
=

6

213,471 230,170 243,558 255,215

Notes: The table presents Wald estimates for car-level observations at the enforcement cutoff, considering
different combinations of assignment (a, in months) and follow-up periods (f). Outcome: speeding
(binary). The table includes the relative effect size (relative to the mean outcome in the 0.5km/h bin
below the cutoff, Y (left)), the MSE-optimal bandwidths, and the number of observations (cars) with Si

in the [−14, 9]km/H range around the cutoff. Illustration of point estimates provided in Fig. A.9.
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Table A.8: Wald estimates for ‘good’ vs ‘bad’ driving conditions (enforcement cutoff)

(1) (2) (3) (4) (5) (6)

Speeding Speed Speedp90 Speeding Speed Speedp90

(binary) (mean) (binary) (mean)

Panel A. Good Conditions Bad Conditions

Estimate –0.1512*** –2.4135*** –2.7780*** –0.0536*** –0.7510*** –0.7596**
(βk=1) [0.0218] [0.4252] [0.4723] [0.0133] [0.2765] [0.3388]

Y (left) 0.410 47.770 52.828 0.197 44.390 48.744
Relative effect –36.86% –5.05% –5.26% –27.25% –1.69% –1.56%
Bandwidth 2.962 2.951 2.987 4.904 5.020 3.717

Obs. 171,329 171,329 171,329 185,829 185,829 185,829

Panel B. Good Conditions Bad Conditions

Estimate –0.1283*** –1.8548*** –2.4969*** –0.0538*** –0.8609*** –0.8842***
(βk=1) [0.0149] [0.3454] [0.3902] [0.0130] [0.2835] [0.3099]

Y (left) 0.395 47.219 53.062 0.190 44.386 49.528
Relative effect –32.46% –3.93% –4.71% –28.37% –1.94% –1.78%
Bandwidth 6.925 5.255 5.207 5.193 4.844 4.394

Obs. 132,342 132,342 132,342 132,342 132,342 132,342

Notes: The table presents Wald estimates for car-level observations at the enforcement cutoff, more specifically,
bias-corrected estimates with a MSE-optimal bandwidth and robust standard errors in brackets (Calonico et al., 2014,
2017). The table compares the effects on the speeding rate, the mean speed and the p90-speed for riders under good
(Columns 1 – 3) and bad driving conditions (Columns 4 – 6). These driving conditions are defined by a median split in the
traffic situation of rides. More specifically, a ride in the outcome period with a minimum time gap of at least 5.78 seconds
(the median) to the next car ahead is classified as ‘good condition’ ride. Rides with a time gap of less than 5.78 seconds are
considered ‘bad condition’ rides. Panel A presents the estimates for cars observed under either good or bad conditions (i.e.,
we partially compare different cars). Panel B replicates the estimates for a fixed set of 132,342 cars that are observed under
both good and bad traffic conditions. The table also indicates the effect size relative to the mean outcome in the 0.5km/h
bin below the cutoff, Y (left).
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Table A.9: Wald estimates for subgroups: high-fine cutoff

(1) (2) (3) (4) (5)
Infrequent Frequent Local region Prague Other regions

(A) Outcome: Speeding

Estimate –0.0510 –0.0113 –0.0732 0.0229 –0.0644
(βk=2) [0.0432] [0.0425] [0.0480] [0.0451] [0.0834]

Y (left) 0.289 0.220 0.279 0.251 0.244
Relative effect –17.67% –5.13% –26.18% 9.13% –26.38%
Bandwidth 3.766 2.748 3.798 3.108 2.658

(B) Outcome: Mean Speed

Estimate –0.9985 –0.5009 0.3482 –0.5939 –2.1516
(βk=2) [0.9547] [1.2346] [1.2142] [0.9385] [2.2243]

Y (left) 46.627 43.924 44.839 46.075 44.757
Relative effect –2.14% –1.14% 0.78% –1.29% –4.81%
Bandwidth 3.223 2.697 4.044 3.177 2.829

Obs. 8,075 8,073 5,310 7,607 3,231

Notes: The table presents subgroup-specific Wald estimates for car-level observations at the high-fine cutoff, more specifically,
bias-corrected estimates with a MSE-optimal bandwidth and robust standard errors in brackets (Calonico et al., 2014, 2017).
The top panel (A) considers speeding (binary), the lower panel (B) the mean speed outcome (in km/h). Columns (1) and (2)
compare infrequent and frequent drivers (according to their average frequency of rides per day, measured during the pre-treatment
assignment period), columns (3), (4) and (5) compare cars with number plates from the Ricany-Region, from Prague, and from
other regions, respectively. The table further includes the effect size relative to the mean outcome in the 0.5km/h bin below the
cutoff, Y (left).
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Table A.10: Reduced form estimates: driving outcomes on unmonitored road (1st cutoff)

car-level ride-level

(1) (2) (3) (4)

Speed Speedp90 Speed log(time)

Estimate –1.1174 -3.9075* –0.6468 0.0645**
(τ) [1.8909] [2.0315] [0.4417] [0.0323]

Y (left) 28.515 37.431 26.230 5.138
Relative effect -3.92% -10.44% -2.47% 1.26%
Bandwidth 3.128 2.744 1.984 1.556
Obs. 3,683 3,683 88,596 88,596

Notes: The table presents reduced form results examining driving responses at the un-monitored road (the stretch of road between
existing speed cameras No. 1 and entering into camera zone no. 4). The table reports both, estimates at the level of cars (Columns
1–2). and at the level of rides (Columns 3–4). In the former, the dependent variables are mean speed and the 90th-percentile
speed on the un-monitored road (collapsed at the car level), respectively. The latter specifications, use the speed per ride, sit, as
well as the log of the travel time between the radars. Similar as in our main RDD estimates, the sample includes all cars that are
observed on a trip that passed the two speed cameras during their first outcome period after recording an assignment speed in
the range around the enforcement cutoff. Bias-corrected RD estimates with a MSE-optimal bandwidth and robust (Columns 1–2)
and clustered (3–4) standard errors in brackets (Calonico et al., 2014, 2017). Y (left) indicates the mean outcome in the 0.5km/h
bin below the cutoff, which is used to compute the relative effect size.
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Table A.11: Event analysis: low- and high-fine tickets

(1) (2) (3) (4) (5) (6) (7) (8)

Low Fine Ticket High Fine Ticket
first ticket second ticket first ticket second ticket

Speeding Speed Speeding Speed Speeding Speed Speeding Speed

Week -11 before 0.002 0.045 0.029*** 0.397** -0.003 -0.415 0.042 1.028*
(0.004) (0.087) (0.008) (0.171) (0.014) (0.290) (0.026) (0.549)

Week -10 before 0.001 -0.07 0.023*** 0.265 -0.003 -0.431* 0.009 1.021*
(0.004) (0.089) (0.009) (0.167) (0.013) (0.254) (0.025) (0.558)

Week -9 before 0.004 -0.034 0.023*** 0.386** -0.002 -0.656** 0.013 0.465
(0.004) (0.086) (0.009) (0.171) (0.014) (0.272) (0.023) (0.558)

Week -8 before 0.001 -0.099 0.028*** 0.207 -0.016 -0.411 0.006 0.516
(0.004) (0.086) (0.008) (0.169) (0.013) (0.254) (0.026) (0.669)

Week -7 before -0.004 -0.151* 0.024*** 0.397** 0.007 -0.664*** 0.011 0.624
(0.004) (0.086) (0.009) (0.171) (0.013) (0.249) (0.025) (0.557)

Week -6 before 0.003 -0.073 0.023*** 0.178 -0.006 -0.525** 0 0.675
(0.004) (0.084) (0.008) (0.169) (0.012) (0.243) (0.026) (0.561)

Week -5 before 0.002 -0.1 0.024*** 0.458*** -0.016 -0.466* 0.013 0.508
(0.004) (0.082) (0.008) (0.160) (0.013) (0.276) (0.027) (0.552)

Week -4 before 0.010*** -0.03 0.019** 0.332** -0.016 -0.774*** 0.007 0.553
(0.004) (0.081) (0.008) (0.162) (0.012) (0.249) (0.025) (0.520)

Week -3 before 0.008* 0.028 0.026*** 0.582*** -0.002 -0.343 0.014 0.606
(0.004) (0.080) (0.008) (0.158) (0.012) (0.241) (0.024) (0.537)

Week -2 before 0.007* 0.061 0.016** 0.301* -0.008 -0.348 -0.011 0.939*
(0.004) (0.078) (0.008) (0.159) (0.012) (0.235) (0.025) (0.506)

Week -1 before 0.008** 0.133* 0.008 0.01 0.003 -0.465** 0.003 0.233
(0.004) (0.077) (0.008) (0.164) (0.011) (0.215) (0.025) (0.513)

Week 1 after -0.074*** -0.972*** -0.065*** -1.079*** -0.073*** -1.512*** -0.063*** -0.638
(0.004) (0.076) (0.007) (0.157) (0.011) (0.229) (0.022) (0.509)

Week 2 after -0.090*** -1.162*** -0.076*** -1.119*** -0.091*** -1.628*** -0.100*** -0.951*
(0.004) (0.077) (0.008) (0.161) (0.012) (0.247) (0.025) (0.554)

Week 3 after -0.097*** -1.230*** -0.072*** -1.133*** -0.095*** -2.006*** -0.077*** -0.948*
(0.004) (0.078) (0.008) (0.169) (0.012) (0.244) (0.024) (0.554)

Week 4 after -0.095*** -1.252*** -0.082*** -1.180*** -0.102*** -1.834*** -0.083*** -1.199**
(0.004) (0.082) (0.008) (0.166) (0.012) (0.233) (0.023) (0.547)

Week 5 after -0.095*** -1.365*** -0.071*** -1.020*** -0.096*** -1.805*** -0.080*** -0.492
(0.004) (0.081) (0.008) (0.168) (0.012) (0.235) (0.022) (0.535)

Week 6 after -0.097*** -1.263*** -0.085*** -1.288*** -0.093*** -1.828*** -0.073*** -1.286**
(0.004) (0.083) (0.008) (0.173) (0.013) (0.257) (0.026) (0.593)

Week 7 after -0.096*** -1.302*** -0.081*** -1.264*** -0.092*** -1.564*** -0.079*** -0.651
(0.004) (0.081) (0.008) (0.168) (0.013) (0.231) (0.026) (0.597)

Week 8 after -0.095*** -1.224*** -0.080*** -1.242*** -0.107*** -1.900*** -0.097*** -1.022*
(0.004) (0.086) (0.008) (0.178) (0.012) (0.241) (0.024) (0.558)

Week 9 after -0.097*** -1.242*** -0.074*** -0.836*** -0.103*** -2.000*** -0.067*** -0.682
(0.004) (0.082) (0.008) (0.172) (0.012) (0.249) (0.023) (0.547)

Week 10 after -0.100*** -1.351*** -0.072*** -1.083*** -0.098*** -1.838*** -0.092*** -1.232**
(0.004) (0.084) (0.008) (0.167) (0.013) (0.254) (0.024) (0.592)

Week 11 after -0.099*** -1.257*** -0.087*** -1.181*** -0.100*** -1.591*** -0.063*** -0.841
(0.004) (0.083) (0.008) (0.170) (0.012) (0.235) (0.023) (0.619)

Week 12 after -0.099*** -1.477*** -0.081*** -1.209*** -0.109*** -1.767*** -0.094*** -0.559
(0.004) (0.086) (0.008) (0.172) (0.013) (0.248) (0.023) (0.545)

Week 13 after -0.098*** -1.250*** -0.080*** -1.389*** -0.110*** -1.755*** -0.068*** -0.669
(0.004) (0.085) (0.008) (0.172) (0.013) (0.256) (0.024) (0.585)

Week 14 after -0.102*** -1.283*** -0.087*** -1.359*** -0.116*** -1.938*** -0.079*** -0.814
(0.004) (0.085) (0.009) (0.172) (0.012) (0.256) (0.024) (0.565)

Week 15 after -0.099*** -1.349*** -0.089*** -1.488*** -0.111*** -1.956*** -0.103*** -0.837
(0.004) (0.085) (0.008) (0.175) (0.013) (0.253) (0.022) (0.552)

Week 16 after -0.109*** -1.447*** -0.081*** -1.300*** -0.110*** -1.972*** -0.114*** -1.746***
(0.004) (0.084) (0.009) (0.187) (0.014) (0.272) (0.024) (0.586)

Week 17 after -0.101*** -1.345*** -0.084*** -1.306*** -0.108*** -1.922*** -0.096*** -1.124*
(0.004) (0.087) (0.009) (0.185) (0.013) (0.251) (0.028) (0.634)

Week 18 after -0.108*** -1.370*** -0.089*** -1.321*** -0.093*** -1.983*** -0.104*** -1.067*
(0.004) (0.086) (0.009) (0.188) (0.013) (0.265) (0.025) (0.558)

Week 19 after -0.110*** -1.509*** -0.083*** -1.336*** -0.112*** -1.904*** -0.099*** -1.515***
(0.004) (0.086) (0.008) (0.180) (0.013) (0.272) (0.025) (0.548)

Week 20 after -0.108*** -1.436*** -0.074*** -1.229*** -0.102*** -1.994*** -0.104*** -1.112**
(0.004) (0.086) (0.009) (0.183) (0.013) (0.261) (0.026) (0.504)

Pre-ticket mean 0.27 44.858 0.271 45.033 0.279 45.753 0.271 45.049
Observations 626,430 626,430 157,098 157,098 65,606 65,606 19,523 19,523
No. of cars 16,407 16,407 2,566 2,566 2,107 2,107 402 402
R2 0.233 0.243 0.230 0.236 0.241 0.267 0.243 0.280

Notes: Regressions include car fixed effects, zone-fixed effects, and zone-specific dummy variables indicating
the hour of the day, day of the week, month of the year, weekend, school holidays. They also include measures
of traffic intensity and weather variables. Standard errors are two-way clustered, by car and by zone-hour.
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Table A.12: Event analysis: long-run effects

(1) (2) (3) (4)

first ticket second ticket

Speeding Speed Speeding Speed

Month -5 before -0.017*** -0.455*** 0.006 0.011
(0.004) (0.083) (0.008) (0.158)

Month -4 before -0.008** -0.262*** 0.009 -0.067
(0.004) (0.077) (0.007) (0.151)

Month -3 before -0.007** -0.289*** 0.011 0.009
(0.003) (0.074) (0.007) (0.151)

Month -2 before -0.003 -0.099 0.007 0.026
(0.003) (0.071) (0.007) (0.137)

Month -1 before -0.001 -0.157** 0.012* 0.087
(0.003) (0.067) (0.006) (0.129)

Month 1 after -0.098*** -1.200*** -0.086*** -1.266***
(0.003) (0.070) (0.007) (0.146)

Month 2 after -0.099*** -1.251*** -0.092*** -1.259***
(0.004) (0.072) (0.007) (0.147)

Month 3 after -0.100*** -1.331*** -0.083*** -1.204***
(0.004) (0.074) (0.008) (0.141)

Month 4 after -0.105*** -1.383*** -0.085*** -1.330***
(0.004) (0.071) (0.008) (0.161)

Month 5 after -0.107*** -1.491*** -0.085*** -1.311***
(0.003) (0.073) (0.007) (0.154)

Month 6 after -0.103*** -1.327*** -0.094*** -1.266***
(0.004) (0.075) (0.008) (0.144)

Month 7 after -0.110*** -1.372*** -0.091*** -1.247***
(0.004) (0.076) (0.008) (0.148)

Month 8 after -0.111*** -1.298*** -0.105*** -1.458***
(0.004) (0.078) (0.008) (0.148)

Month 9 after -0.112*** -1.324*** -0.107*** -1.361***
(0.004) (0.077) (0.008) (0.148)

Month 10 after -0.114*** -1.377*** -0.110*** -1.567***
(0.004) (0.078) (0.008) (0.146)

Month 11 after -0.116*** -1.435*** -0.102*** -1.404***
(0.004) (0.077) (0.008) (0.157)

Month 12 after -0.123*** -1.495*** -0.110*** -1.625***
(0.004) (0.076) (0.008) (0.162)

Month 13 after -0.126*** -1.628*** -0.109*** -1.652***
(0.004) (0.080) (0.007) (0.153)

Month 14 after -0.128*** -1.726*** -0.111*** -1.815***
(0.004) (0.079) (0.008) (0.154)

Month 15 after -0.135*** -1.707*** -0.115*** -1.643***
(0.004) (0.080) (0.007) (0.150)

Month 16 after -0.132*** -1.684*** -0.117*** -1.771***
(0.004) (0.078) (0.008) (0.155)

Month 17 after -0.134*** -1.723*** -0.115*** -1.583***
(0.004) (0.081) (0.008) (0.155)

Month 18 after -0.133*** -1.677*** -0.113*** -1.535***
(0.004) (0.081) (0.008) (0.158)

Month 19 after -0.136*** -1.713*** -0.117*** -1.597***
(0.004) (0.082) (0.008) (0.162)

Month 20 after -0.137*** -1.795*** -0.129*** -1.829***
(0.004) (0.087) (0.008) (0.160)

Month 21 after -0.137*** -1.879*** -0.130*** -1.904***
(0.004) (0.092) (0.008) (0.168)

Month 22 after -0.135*** -1.778*** -0.119*** -1.897***
(0.004) (0.095) (0.009) (0.182)

Month 23 after -0.135*** -1.751*** -0.131*** -1.896***
(0.004) (0.092) (0.009) (0.184)

Month 24 after -0.139*** -1.869*** -0.127*** -1.753***
(0.004) (0.096) (0.009) (0.189)

Pre-ticket mean 0.257 44.353 0.275 44.786
Observations 991,333 991,333 258,540 258,540
No. of cars 4291 4291 891 891
R2 0.188 0.204 0.190 0.207

Notes: Regressions include car fixed effects, zone-fixed effects, and zone-specific dummy variables indicating
the hour of the day, day of the week, month of the year, weekend, school holidays. They also include measures
of traffic intensity and weather variables. Standard errors are two-way clustered, by car and by zone-hour.
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Table A.13: Event analysis: heterogeneity I

(1) (2) (3) (4) (5) (6) (7) (8)

Car Owner Payment of Ticket
private corporation private corporation unpaid paid unpaid paid

Speeding Speed Speeding Speed

Week -11 before 0.002 0.002 0.12 -0.05 0.026** -0.002 0.31 -0.01
(0.006) (0.006) (0.12) (0.13) (0.011) (0.005) (0.22) (0.09)

Week -10 before 0.006 -0.005 0.12 -0.28** 0.020* -0.003 0.16 -0.12
(0.006) (0.006) (0.12) (0.13) (0.010) (0.005) (0.24) (0.10)

Week -9 before 0.013** -0.006 0.07 -0.16 0.027** -0.001 0.05 -0.06
(0.006) (0.006) (0.12) (0.13) (0.011) (0.005) (0.23) (0.09)

Week -8 before 0.007 -0.007 -0.03 -0.18 0.006 -0.001 -0.03 -0.11
(0.006) (0.006) (0.12) (0.13) (0.010) (0.005) (0.22) (0.09)

Week -7 before 0.004 -0.013** 0.05 -0.37*** 0.016 -0.009* 0.38* -0.26***
(0.006) (0.006) (0.12) (0.12) (0.011) (0.004) (0.21) (0.09)

Week -6 before 0.010* -0.005 -0.06 -0.1 0.013 0.001 0.27 -0.14
(0.006) (0.006) (0.11) (0.12) (0.010) (0.004) (0.21) (0.09)

Week -5 before 0.009 -0.007 -0.04 -0.18 0.017* -0.002 0.1 -0.14
(0.006) (0.006) (0.11) (0.12) (0.010) (0.004) (0.21) (0.09)

Week -4 before 0.013** 0.008 0.09 -0.16 0.030*** 0.006 0.42** -0.12
(0.006) (0.006) (0.11) (0.12) (0.010) (0.004) (0.21) (0.09)

Week -3 before 0.009 0.006 0.05 -0.01 0.021** 0.005 0.43** -0.05
(0.006) (0.006) (0.11) (0.11) (0.010) (0.004) (0.20) (0.09)

Week -2 before 0.009* 0.005 0.12 -0.01 0.022** 0.004 0.27 0.02
(0.005) (0.005) (0.11) (0.11) (0.009) (0.004) (0.20) (0.08)

Week -1 before 0.014*** 0.001 0.26** 0 0.015 0.006 0.26 0.11
(0.005) (0.005) (0.10) (0.11) (0.009) (0.004) (0.20) (0.08)

Week 1 after -0.086*** -0.062*** -1.26*** -0.70*** -0.030*** -0.082*** -0.33* -1.10***
(0.005) (0.005) (0.10) (0.11) (0.009) (0.004) (0.19) (0.08)

Week 2 after -0.099*** -0.082*** -1.35*** -0.99*** -0.040*** -0.100*** -0.70*** -1.25***
(0.005) (0.005) (0.10) (0.11) (0.009) (0.004) (0.20) (0.08)

Week 3 after -0.109*** -0.086*** -1.47*** -1.00*** -0.049*** -0.107*** -0.42** -1.39***
(0.005) (0.006) (0.11) (0.11) (0.010) (0.004) (0.20) (0.08)

Week 4 after -0.105*** -0.085*** -1.35*** -1.16*** -0.054*** -0.103*** -0.66*** -1.37***
(0.005) (0.006) (0.11) (0.12) (0.010) (0.004) (0.21) (0.09)

Week 5 after -0.107*** -0.084*** -1.53*** -1.21*** -0.038*** -0.107*** -0.65*** -1.51***
(0.005) (0.006) (0.11) (0.12) (0.010) (0.004) (0.20) (0.09)

Week 6 after -0.107*** -0.088*** -1.42*** -1.11*** -0.048*** -0.107*** -0.60*** -1.39***
(0.006) (0.006) (0.11) (0.12) (0.010) (0.004) (0.22) (0.09)

Week 7 after -0.106*** -0.087*** -1.43*** -1.19*** -0.051*** -0.106*** -0.96*** -1.37***
(0.006) (0.006) (0.11) (0.12) (0.010) (0.004) (0.22) (0.09)

Week 8 after -0.102*** -0.089*** -1.37*** -1.09*** -0.048*** -0.105*** -0.53** -1.36***
(0.006) (0.006) (0.11) (0.13) (0.011) (0.004) (0.22) (0.09)

Week 9 after -0.101*** -0.093*** -1.45*** -1.04*** -0.055*** -0.106*** -0.74*** -1.34***
(0.006) (0.006) (0.11) (0.12) (0.011) (0.004) (0.22) (0.09)

Week 10 after -0.107*** -0.094*** -1.47*** -1.24*** -0.063*** -0.107*** -0.82*** -1.46***
(0.006) (0.006) (0.11) (0.12) (0.010) (0.004) (0.22) (0.09)

Week 11 after -0.110*** -0.088*** -1.44*** -1.09*** -0.055*** -0.107*** -0.81*** -1.34***
(0.006) (0.006) (0.11) (0.12) (0.011) (0.004) (0.23) (0.09)

Week 12 after -0.108*** -0.090*** -1.60*** -1.37*** -0.059*** -0.107*** -1.19*** -1.54***
(0.006) (0.006) (0.12) (0.12) (0.011) (0.004) (0.24) (0.09)

Week 13 after -0.105*** -0.093*** -1.41*** -1.09*** -0.068*** -0.104*** -0.80*** -1.34***
(0.006) (0.006) (0.12) (0.12) (0.011) (0.004) (0.23) (0.09)

Week 14 after -0.108*** -0.097*** -1.47*** -1.11*** -0.065*** -0.109*** -0.91*** -1.36***
(0.006) (0.006) (0.12) (0.12) (0.011) (0.004) (0.24) (0.09)

Week 15 after -0.107*** -0.092*** -1.57*** -1.15*** -0.070*** -0.105*** -0.94*** -1.43***
(0.006) (0.006) (0.11) (0.12) (0.011) (0.004) (0.22) (0.09)

Week 16 after -0.113*** -0.106*** -1.62*** -1.28*** -0.089*** -0.114*** -0.97*** -1.54***
(0.006) (0.006) (0.11) (0.12) (0.011) (0.005) (0.22) (0.09)

Week 17 after -0.106*** -0.096*** -1.38*** -1.32*** -0.090*** -0.103*** -1.12*** -1.39***
(0.006) (0.006) (0.12) (0.13) (0.011) (0.005) (0.22) (0.09)

Week 18 after -0.114*** -0.103*** -1.53*** -1.23*** -0.080*** -0.115*** -0.94*** -1.46***
(0.006) (0.006) (0.12) (0.12) (0.011) (0.004) (0.23) (0.09)

Week 19 after -0.115*** -0.105*** -1.62*** -1.41*** -0.094*** -0.114*** -1.29*** -1.55***
(0.006) (0.006) (0.12) (0.12) (0.011) (0.004) (0.23) (0.09)

Week 20 after -0.109*** -0.107*** -1.49*** -1.40*** -0.078*** -0.114*** -1.00*** -1.52***
(0.006) (0.006) (0.12) (0.13) (0.012) (0.004) (0.23) (0.09)

Pre-ticket mean 0.262 0.278 44.74 44.97 0.274 0.269 45.099 44.809
No. of cars 8,393 8,014 8,393 8,014 2,474 13,933 2,474 13,933
Observations 312,885 313,545 312,885 313,545 100,364 526,066 100,364 526,066
R2 0.237 0.232 0.25 0.24 0.243 0.231 0.25 0.24

Notes: Regressions include car fixed effects, zone-fixed effects, and zone-specific dummy variables indicating
the hour of the day, day of the week, month of the year, weekend, school holidays. They also include measures
of traffic intensity and weather variables. Standard errors are two-way clustered, by car and by zone-hour.
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Table A.14: Event analysis: heterogeneity II
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

by driving frequency by number plate region
Infrequent Frequent Infrequent Frequent Local Prague Other Local Prague Other

region regions region regions

Speeding Speed Speeding Speed

Week -11 before 0.006 0.002 0.28 0.02 -0.006 0.011* 0.001 -0.1 0.19 0.03
(0.013) (0.005) (0.24) (0.09) (0.006) (0.006) (0.013) (0.13) (0.13) (0.26)

Week -10 before -0.001 0.001 0.13 -0.09 -0.001 0.002 0.001 -0.04 -0.11 -0.10
(0.013) (0.004) (0.24) (0.10) (0.006) (0.006) (0.012) (0.13) (0.14) (0.26)

Week -9 before 0.013 0.004 -0.16 -0.02 0.007 -0.002 0.015 0.07 -0.18 0.08
(0.013) (0.004) (0.24) (0.09) (0.006) (0.006) (0.013) (0.13) (0.13) (0.26)

Week -8 before 0.001 0.001 0.05 -0.11 0 0.003 -0.008 -0.1 -0.1 -0.13
(0.013) (0.004) (0.24) (0.09) (0.006) (0.006) (0.012) (0.13) (0.13) (0.26)

Week -7 before 0.009 -0.005 -0.26 -0.14 -0.006 -0.003 -0.004 -0.11 -0.18 -0.20
(0.012) (0.004) (0.24) (0.09) (0.006) (0.006) (0.011) (0.13) (0.13) (0.24)

Week -6 before 0.012 0.002 0.02 -0.08 -0.003 0.005 0.015 -0.14 -0.04 0.00
(0.012) (0.004) (0.22) (0.09) (0.006) (0.006) (0.012) (0.13) (0.12) (0.24)

Week -5 before -0.01 0.003 -0.22 -0.08 0.005 -0.003 0.004 -0.17 -0.01 -0.19
(0.012) (0.004) (0.22) (0.09) (0.006) (0.006) (0.012) (0.12) (0.12) (0.24)

Week -4 before 0.025** 0.009** 0.02 -0.04 0.007 0.014** 0.01 0.01 0.01 -0.27
(0.011) (0.004) (0.22) (0.09) (0.006) (0.006) (0.011) (0.12) (0.12) (0.24)

Week -3 before 0.008 0.008* 0.21 0 0.004 0.009 0.015 -0.07 0.11 0.05
(0.011) (0.004) (0.21) (0.09) (0.006) (0.006) (0.011) (0.12) (0.12) (0.23)

Week -2 before 0.018 0.006 0.28 0.03 0.005 0.007 0.017 -0.06 0.18 0.07
(0.011) (0.004) (0.21) (0.08) (0.006) (0.006) (0.011) (0.12) (0.11) (0.22)

Week -1 before 0.016 0.007* 0.23 0.11 0.006 0.004 0.025** 0.12 0.16 0.06
(0.010) (0.004) (0.20) (0.08) (0.006) (0.006) (0.010) (0.12) (0.12) (0.21)

Week 1 after -0.085*** -0.072*** -1.20*** -0.93*** -0.085*** -0.063*** -0.071*** -1.10*** -0.82*** -1.10***
(0.010) (0.004) (0.20) (0.08) (0.006) (0.006) (0.011) (0.11) (0.12) (0.22)

Week 2 after -0.112*** -0.087*** -1.47*** -1.11*** -0.095*** -0.082*** -0.105*** -1.28*** -1.07*** -1.12***
(0.010) (0.004) (0.20) (0.08) (0.006) (0.006) (0.011) (0.11) (0.12) (0.20)

Week 3 after -0.123*** -0.093*** -1.48*** -1.19*** -0.106*** -0.083*** -0.113*** -1.42*** -1.00*** -1.42***
(0.010) (0.004) (0.20) (0.08) (0.006) (0.006) (0.011) (0.11) (0.12) (0.21)

Week 4 after -0.097*** -0.094*** -1.43*** -1.22*** -0.100*** -0.087*** -0.104*** -1.38*** -1.07*** -1.47***
(0.010) (0.004) (0.20) (0.09) (0.006) (0.006) (0.011) (0.12) (0.12) (0.22)

Week 5 after -0.110*** -0.093*** -1.64*** -1.32*** -0.106*** -0.081*** -0.109*** -1.51*** -1.15*** -1.70***
(0.010) (0.004) (0.21) (0.09) (0.006) (0.006) (0.011) (0.12) (0.12) (0.22)

Week 6 after -0.110*** -0.095*** -1.36*** -1.25*** -0.106*** -0.084*** -0.108*** -1.50*** -1.01*** -1.29***
(0.011) (0.004) (0.21) (0.09) (0.006) (0.006) (0.011) (0.12) (0.12) (0.22)

Week 7 after -0.108*** -0.095*** -1.57*** -1.26*** -0.106*** -0.086*** -0.098*** -1.39*** -1.14*** -1.54***
(0.011) (0.004) (0.21) (0.09) (0.006) (0.006) (0.012) (0.12) (0.12) (0.23)

Week 8 after -0.110*** -0.093*** -1.37*** -1.20*** -0.102*** -0.083*** -0.120*** -1.34*** -0.96*** -1.77***
(0.011) (0.004) (0.20) (0.09) (0.006) (0.006) (0.012) (0.13) (0.13) (0.24)

Week 9 after -0.111*** -0.095*** -1.40*** -1.22*** -0.105*** -0.082*** -0.128*** -1.48*** -0.86*** -1.76***
(0.011) (0.004) (0.21) (0.09) (0.006) (0.006) (0.012) (0.12) (0.12) (0.23)

Week 10 after -0.123*** -0.097*** -1.75*** -1.30*** -0.104*** -0.091*** -0.122*** -1.43*** -1.17*** -1.77***
(0.011) (0.004) (0.22) (0.09) (0.006) (0.006) (0.013) (0.12) (0.12) (0.26)

Week 11 after -0.109*** -0.097*** -1.32*** -1.25*** -0.107*** -0.086*** -0.115*** -1.35*** -1.12*** -1.47***
(0.011) (0.004) (0.21) (0.09) (0.006) (0.006) (0.012) (0.12) (0.13) (0.24)

Week 12 after -0.112*** -0.097*** -1.55*** -1.47*** -0.108*** -0.084*** -0.122*** -1.55*** -1.38*** -1.57***
(0.011) (0.004) (0.22) (0.09) (0.006) (0.006) (0.012) (0.13) (0.13) (0.25)

Week 13 after -0.127*** -0.094*** -1.75*** -1.17*** -0.104*** -0.086*** -0.122*** -1.32*** -1.15*** -1.31***
(0.011) (0.005) (0.21) (0.09) (0.006) (0.006) (0.012) (0.13) (0.13) (0.24)

Week 14 after -0.116*** -0.100*** -1.62*** -1.23*** -0.113*** -0.088*** -0.113*** -1.43*** -1.06*** -1.49***
(0.011) (0.004) (0.21) (0.09) (0.006) (0.006) (0.012) (0.13) (0.13) (0.23)

Week 15 after -0.113*** -0.097*** -1.60*** -1.31*** -0.109*** -0.088*** -0.106*** -1.45*** -1.20*** -1.53***
(0.011) (0.005) (0.22) (0.09) (0.006) (0.006) (0.012) (0.12) (0.13) (0.22)

Week 16 after -0.121*** -0.107*** -1.65*** -1.41*** -0.113*** -0.102*** -0.120*** -1.61*** -1.22*** -1.67***
(0.011) (0.005) (0.21) (0.09) (0.006) (0.006) (0.012) (0.12) (0.13) (0.24)

Week 17 after -0.112*** -0.099*** -1.74*** -1.28*** -0.105*** -0.092*** -0.116*** -1.41*** -1.22*** -1.60***
(0.011) (0.005) (0.22) (0.09) (0.006) (0.007) (0.012) (0.13) (0.13) (0.24)

Week 18 after -0.124*** -0.106*** -1.73*** -1.31*** -0.113*** -0.098*** -0.128*** -1.36*** -1.31*** -1.73***
(0.011) (0.004) (0.22) (0.09) (0.006) (0.006) (0.012) (0.13) (0.13) (0.26)

Week 19 after -0.137*** -0.106*** -1.85*** -1.46*** -0.113*** -0.103*** -0.128*** -1.50*** -1.39*** -2.06***
(0.011) (0.004) (0.22) (0.09) (0.006) (0.006) (0.012) (0.13) (0.13) (0.24)

Week 20 after -0.116*** -0.106*** -1.77*** -1.39*** -0.113*** -0.095*** -0.133*** -1.53*** -1.20*** -1.96***
(0.011) (0.005) (0.22) (0.09) (0.006) (0.007) (0.012) (0.13) (0.13) (0.25)

Pre-ticket mean 0.321 0.261 46.48 44.57 0.258 0.273 0.299 44.48 44.96 45.74
Observations 88,557 537,873 88,557 537,873 278,333 276,598 71,499 278,333 276,598 71,499
No. of cars 8,148 8,259 8,148 8,259 5,860 7,817 2,730 5,860 7,817 2,730
R2 0.306 0.219 0.31 0.23 0.223 0.237 0.26 0.23 0.25 0.28

Notes: Regressions include car fixed effects, zone-fixed effects, and zone-specific dummy variables indicating
the hour of the day, day of the week, month of the year, weekend, school holidays. They also include measures
of traffic intensity and weather variables. Standard errors are two-way clustered, by car and by zone-hour.
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Table A.15: Event analysis: by drive-through order

(1) (2) (3) (4)

First Ticket Second Ticket
Speeding Speed Speeding Speed

Drive -61 to -65 -0.018*** -0.26*** -0.001 -0.05
(0.003) (0.07) (0.007) (0.13)

Drive -56 to 60 -0.020*** -0.43*** -0.008 -0.30**
(0.003) (0.07) (0.007) (0.13)

Drive -50 to -55 -0.017*** -0.36*** 0.003 -0.18
(0.003) (0.07) (0.006) (0.13)

Drive -46 to -50 -0.020*** -0.40*** 0.005 -0.01
(0.003) (0.07) (0.006) (0.13)

Drive -41 to -45 -0.020*** -0.34*** 0.002 -0.25**
(0.003) (0.06) (0.006) (0.13)

Drive -36 to -40 -0.015*** -0.30*** 0.007 0.20*
(0.003) (0.06) (0.006) (0.12)

Drive -31 to -35 -0.008*** -0.27*** -0.004 -0.11
(0.003) (0.06) (0.006) (0.12)

Drive -26 to -30 -0.011*** -0.21*** 0.006 0.08
(0.003) (0.06) (0.006) (0.12)

Drive -21 to -25 -0.010*** -0.23*** 0.005 -0.02
(0.003) (0.05) (0.006) (0.11)

Drive -16 to -20 -0.007*** -0.13*** 0.003 0.15
(0.003) (0.05) (0.005) (0.11)

Drive -11 to -15 -0.001 -0.04 0.003 0.04
(0.002) (0.05) (0.005) (0.11)

Drive -6 to -10 -0.000 0.02 0.006 0.14
(0.002) (0.04) (0.005) (0.10)

Drive 1 to 5 -0.093*** -1.16*** -0.095*** -1.46***
(0.002) (0.04) (0.005) (0.10)

Drive 6 to 10 -0.105*** -1.31*** -0.107*** -1.72***
(0.002) (0.04) (0.005) (0.11)

Drive 11 to 15 -0.110*** -1.34*** -0.110*** -1.68***
(0.002) (0.05) (0.006) (0.11)

Drive 16 to 20 -0.115*** -1.47*** -0.116*** -1.79***
(0.002) (0.05) (0.006) (0.11)

Drive 21 to 25 -0.117*** -1.49*** -0.117*** -1.82***
(0.003) (0.05) (0.006) (0.11)

Drive 26 to 30 -0.120*** -1.55*** -0.107*** -1.66***
(0.003) (0.05) (0.006) (0.12)

Drive 31 to 35 -0.120*** -1.52*** -0.110*** -1.83***
(0.003) (0.06) (0.006) (0.12)

Drive 36 to 40 -0.123*** -1.56*** -0.117*** -1.77***
(0.003) (0.06) (0.006) (0.12)

Drive 41 to 45 -0.123*** -1.55*** -0.118*** -1.87***
(0.003) (0.06) (0.006) (0.12)

Drive 46 to 50 -0.123*** -1.58*** -0.105*** -1.66***
(0.003) (0.06) (0.006) (0.13)

Drive 51 to 55 -0.121*** -1.55*** -0.111*** -1.65***
(0.003) (0.06) (0.006) (0.13)

Drive 56 to 60 -0.128*** -1.61*** -0.111*** -1.75***
(0.003) (0.06) (0.007) (0.13)

Drive 61 to 65 -0.126*** -1.57*** -0.110*** -1.78***
(0.003) (0.06) (0.007) (0.14)

Drive 66 to 70 -0.126*** -1.59*** -0.109*** -1.72***
(0.003) (0.06) (0.007) (0.14)

Drive 71 to 75 -0.125*** -1.52*** -0.117*** -1.97***
(0.003) (0.06) (0.007) (0.14)

Drive 76 to 80 -0.127*** -1.68*** -0.116*** -1.64***
(0.003) (0.06) (0.007) (0.14)

Drive 81 to 85 -0.131*** -1.60*** -0.117*** -1.78***
(0.003) (0.07) (0.007) (0.14)

Drive 86 to 90 -0.129*** -1.61*** -0.121*** -1.88***
(0.003) (0.07) (0.007) (0.15)

Drive 91 to 95 -0.132*** -1.64*** -0.117*** -1.87***
(0.003) (0.07) (0.007) (0.15)

Drive 96 to 100 -0.129*** -1.69*** -0.116*** -1.67***
(0.003) (0.07) (0.007) (0.15)

Pre-ticket mean 0.299 -3.665 0.326 -2.898
Observations 1,171,931 1,171,931 260,513 260,513
No. of cars 16,414 16,414 2,566 2,566
R2 0.213 0.22 0.221 0.23

Notes: Regressions include car fixed effects, zone-fixed effects, and zone-specific dummy variables indicating
the hour of the day, day of the week, month of the year, weekend, school holidays. They also include measures
of traffic intensity and weather variables. Standard errors are two-way clustered, by car and by zone-hour.
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Table A.16: Event analysis: same versus other speed camera zone

(1) (2) (3) (4)

Same zone Other zones Same zone Other zones
Speeding Speed

Week -11 before 0.007 0.004 -0.093 0.201*
(0.007) (0.005) (0.143) (0.109)

Week -10 before 0.004 0.005 -0.269* 0.155
(0.007) (0.005) (0.151) (0.105)

Week -9 before 0.009 0.006 -0.010 0.039
(0.007) (0.005) (0.141) (0.106)

Week -8 before 0.002 0.005 -0.256* 0.100
(0.007) (0.005) (0.144) (0.104)

Week -7 before 0.003 -0.003 -0.269* 0.027
(0.007) (0.005) (0.141) (0.104)

Week -6 before 0.004 0.005 -0.123 -0.008
(0.007) (0.005) (0.136) (0.105)

Week -5 before -0.002 0.005 -0.053 -0.093
(0.007) (0.005) (0.131) (0.101)

Week -4 before 0.010 0.011** -0.002 -0.015
(0.007) (0.005) (0.129) (0.102)

Week -3 before 0.009 0.008* 0.034 0.054
(0.007) (0.005) (0.126) (0.100)

Week -2 before 0.009 0.008* 0.026 0.124
(0.006) (0.005) (0.126) (0.095)

Week -1 before 0.009 0.008* 0.104 0.173*
(0.006) (0.005) (0.123) (0.095)

Week 1 after -0.102*** -0.053*** -1.394*** -0.640***
(0.006) (0.004) (0.121) (0.096)

Week 2 after -0.125*** -0.064*** -1.620*** -0.803***
(0.006) (0.004) (0.124) (0.095)

Week 3 after -0.139*** -0.066*** -1.714*** -0.840***
(0.007) (0.004) (0.124) (0.096)

Week 4 after -0.137*** -0.064*** -1.765*** -0.868***
(0.007) (0.005) (0.131) (0.100)

Week 5 after -0.136*** -0.069*** -2.003*** -0.889***
(0.007) (0.005) (0.129) (0.098)

Week 6 after -0.136*** -0.070*** -1.780*** -0.841***
(0.007) (0.005) (0.133) (0.099)

Week 7 after -0.145*** -0.063*** -1.989*** -0.796***
(0.007) (0.005) (0.133) (0.100)

Week 8 after -0.141*** -0.066*** -1.885*** -0.744***
(0.007) (0.005) (0.140) (0.103)

Week 9 after -0.141*** -0.068*** -1.835*** -0.812***
(0.007) (0.005) (0.133) (0.100)

Week 10 after -0.140*** -0.073*** -1.924*** -0.932***
(0.007) (0.005) (0.135) (0.101)

Week 11 after -0.142*** -0.068*** -1.867*** -0.809***
(0.007) (0.005) (0.132) (0.103)

Week 12 after -0.150*** -0.062*** -2.028*** -1.045***
(0.007) (0.005) (0.139) (0.106)

Week 13 after -0.141*** -0.070*** -1.858*** -0.840***
(0.007) (0.005) (0.137) (0.105)

Week 14 after -0.146*** -0.071*** -1.819*** -0.890***
(0.007) (0.005) (0.135) (0.104)

Week 15 after -0.143*** -0.068*** -1.999*** -0.855***
(0.007) (0.005) (0.135) (0.102)

Week 16 after -0.156*** -0.075*** -2.120*** -0.892***
(0.007) (0.005) (0.135) (0.104)

Week 17 after -0.149*** -0.065*** -2.085*** -0.769***
(0.007) (0.005) (0.141) (0.103)

Week 18 after -0.155*** -0.075*** -2.032*** -0.880***
(0.007) (0.005) (0.134) (0.107)

Week 19 after -0.159*** -0.078*** -2.239*** -0.996***
(0.007) (0.005) (0.137) (0.106)

Week 20 after -0.152*** -0.077*** -2.138*** -0.902***
(0.007) (0.005) (0.144) (0.105)

Pre-ticket mean 0.362 0.199 46.951 43.244
Observations 262,282 361,352 262,282 361,352
No. of cars 13,769 14,104 13,769 14,104
R2 0.273 0.233 0.293 0.246

Notes: Regressions include car fixed effects, zone-fixed effects, and zone-specific dummy variables indicating
the hour of the day, day of the week, month of the year, weekend, school holidays. They also include measures
of traffic intensity and weather variables. Standard errors are two-way clustered, by car and by zone-hour.
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B Complementary Online Appendix

B.1 Mapping experiences in expectations

Making use of (3), we can substitute for pt−1(s) and obtain

pt(s) = P
(
{st−1,T

t(st−1)}, {st−2,T
t(st−2)}, . . . , {s0,T

t(s0)}, (B.1)

P
(
{st−2,T

t−1(st−2)}, . . . , {s0,T
t−1(s0)}, pt−2(s)

))
= . . .

Iterating this substitution and accounting for the fact a ride from period τ could, in principle,

result in a ticket that is delivered in any period t > τ , we arrive at

= Πt

(
{st−1,T

t(st−1)}, {st−2,T
t(st−2),Tt−1(st−2)}, . . . , (B.2)

{s0,T
t(s0),Tt−1(s0), . . . ,T1(s0)}, p0(s)

)
Let us define the vector ~T(t, sτ ) := (Tt(sτ ),Tt−1(sτ ), . . . ,Tτ+1(sτ )), which captures a sequence of

‘ticketing experiences’ (i.e., receiving or not receiving a ticket) that follows from a ride in period

τ < t at speed sτ which might result in a ticket arriving in any period τ + 1, τ + 2, . . . , t − 1, t.

With this notation, we arrive at

pt(s) = Πt

((
{st−1, ~T(t, st−1)}

)
, . . . ,

(
{s1, ~T(t, s1)}

)
,
(
{s0, ~T(t, s0)}

)
, p0(s)

)
, (B.3)

which is the mapping from (4).

B.2 Assignment and Outcome Period in the RDD

Figure B.1 illustrates our approach (introduced in Section 4.1) to define an assignment speed and

an outcome period for each car i. The figure depicts the driving pattern and speed of two cars.

Recall first that the a-month long assignment period (with, e.g., a = 4 months), starts the first

time a car is observed. For both cars in this example we observe the highest speed during the

assignment period at the same day (a bit more than 2 months after their first ride). This point

in time – the trigger day – is indicated by the vertical dashed line. The two cars’ maximum speed

during the assignment period, Si and Sj , define their assignment speed. In the Figure, the one car

(indicated with ×) has an assignment speed is above the enforcement cutoff and will thus trigger

a speeding ticket. For the other car (indicated with •), the assignment speed Sj is below the

enforcement cutoff (indicated with the dashed, horizontal line at 14km/h above the speed limit).

The latter car will not receive a ticket (unless it would reach a speed above the enforcement limit

at a later point in time (after the end of the assignment period).

Based on all observations (not only the two cars depicted in the Figure), we would now

compute the earliest day a ticket for a speeding offense from this trigger day is sent. This

‘shortest delay’ (in the example: about two weeks) then defines the start of an f -month outcome

period (e.g., f = 4). For all cars that have an assignment speed recorded on the same trigger day,
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we would define an identical outcome period. Importantly, this property holds independent of the

level of the cars’ assignment speed (in particular, independently of whether Si or Sj is below or

above the first or the second cutoff from the RDD).

Figure B.1: Illustration of Assignment and Outcome Periods
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Notes: The figure illustrates our approach to define assignment and outcome periods for the driving patterns of two cars.

The Figure from above also illustrates that the recorded speed within the assignment period

but after the trigger date must be lower by definition. To the extent that the end of the assignment

period overlaps with the outcome period – which is more likely to occur if the trigger is observed

early during the assignment period (and/or if the ticket delay is rather short) – this will result

in lower speed values during the (early phase of the) outcome period. Note, however, that this

property holds again symmetrically for cars with an assignments speed below or above any of the

two RDD cutoffs. Hence, this properties does not drive our RDD estimates. (The latter point

can be easily verified in robustness checks. When we define alternative outcome windows that do

not overlap with the assignment period, we obtain essentially the same results.)

Let us finally note that our approach defines assignment and outcome periods in a flexible,

car-specific way (i.e., relative to the first observation and relative to the trigger day). In an earlier

version of this paper we adopted a more static strategy that simply defined the initial months of

the sample as assignment window and latter months as outcome periods. This static approach

produced very similar results, but explored a much smaller part of the sample.
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B.3 Mean reversion is event analysis

To illustrate the mean reversion issue in the raw data (which is captured in Figure 9), we introduce

a simple framework of speed choices. Speed sit at a drive-through at time t by car i is given by

sit = λi + βTit + γXit + εit, (B.4)

where λi is a car fixed effect, Tit is a treatment dummy (indicating that the driver has received

the ticket prior to time t), Xit is a vector of exogenous variables and εit is an error term. By

definition, the driver had to commit a speeding violation in order to receive a ticket later on.

Hence, the ticket dummy is positive only if the car was driving above the enforcement cutoff k1

at some point t′. This can be written as

Tit = 1 ⇐⇒ yit > k1 for some t′ < 0, (B.5)

where t = 0 indicates the event (delivery of ticket). It thus follows that

Tit = 1 ⇐⇒ εit > k1 − (λi + βTit + γXit) for some t′ < 0 (B.6)

By construction, the trigger observation with an unusually high draw of εit occurs among the

pre-ticket observations. In practice, most trigger observations are concentrated during the three

weeks prior to receiving the ticket, as most tickets were received in one to three weeks after the

speeding offense. As noted in the main text, this leads to the increase in speeding occurrences

observed in the raw data. In contrast, the observations after the ticket have, by assumption, εit

drawn from a mean-zero distribution. This implies that there is a negative correlation between

the treatment dummy and the error term. Neglecting this issue, one would overestimate the effect

from the speeding tickets.
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