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Simple Tests for Selection: Learning More from Instrumental Variables 

 

Abstract 

We provide simple tests for selection on unobserved variables in the Vytlacil-Imbens-Angrist 

framework for Local Average Treatment Effects. The tests allow researchers not only to test for 

selection on either or both of the treated and untreated outcomes, but also to assess the 

magnitude of the selection effect. The tests are quite simple; undergraduates after an introductory 

econometrics class should be able to implement these tests. We illustrate our tests with two 

empirical applications: the impact of children on female labor supply from Angrist and Evans 

(1998) and the impact of training on adult women from the Job Training Partnership Act (JTPA) 

experiment. 
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1. Introduction 

In the years since the publication of Imbens and Angrist (1994), applied researchers have 

embraced the interpretation of Instrumental Variables (IV) estimators, particularly with binary 

instruments, as measuring the impact of treatment on the subset of respondents who comply with 

the instrument, which Imbens and Angrist term a Local Average Treatment Effect, or LATE. 

The LATE framework allows researchers to consistently estimate models in which individuals 

may differ in the effects of treatment.  But the LATE framework comes with some costs. First, 

the LATE approach requires the assumption that instruments have a “monotonic” impact on 

behavior.  Put differently, the instruments must induce all agents to behave in a weakly uniform 

manner when subjected to a change in the value of the instrument. Informally, if the instrument 

induces some agents to enter the treatment, then the instrument must not induce any agent to 

leave the treatment. Second, because the impact of treatment may be heterogeneous across 

agents, the traditional Durbin-Hausman-Wu test for the equivalence of the IV and Ordinary Least 

Squares (OLS) estimates is not valid in a LATE framework. More broadly, the relationship 

between the OLS and IV estimates becomes less informative about the existence of selection 

within the LATE framework. Thus, researchers face the paradox of using IV estimation to 

correct for selection on unobserved variables, but with no clear evidence to demonstrate that 

such selection exists.   

 To see why, consider the framework of Angrist et al. (1996) in which there is a binary 

instrument, {0,1}iZ ∈ . Without loss of generality, let 1iZ =  increase the likelihood of treatment. 

They show that we may divide agents into three mutually exclusive sets: the “Always takers,” 

the “Never takers,” and the “Compliers.” These are defined as: 

{ : ( 1) ( 0) 1}i i i iA i D Z D Z= = = = = ; 
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{ : ( 1) ( 0) 0}i i i iN i D Z D Z= = = = = ; 

{ : ( 1) 1; ( 0) 0}i i i iC i D Z D Z= = = = = , 

where ( )i iD D Z=  denotes the treatment choice of agent “i” as a function of iZ , with 1iD =  for 

treatment and 0iD =  for no treatment. In this framework, the Wald estimator corresponds to a 

LATE estimator 

( ) ( )
( ) ( ) ( )1 0

| 1 | 0
|

| 1 | 0
i i i iW

i i
i i i i

E Y z E Y z
E Y Y C

E D z E D z
= − =

∆ = = −
= − =

, 

where 1iY  denotes the treated potential outcome of the thi  agent, 0iY  denotes the untreated 

potential outcome of the thi agent, and 1 0(1 )i i i i iY DY D Y= + − denotes the observed outcome. 

 Selection on unobserved variables means that one or more of these four conditions fails: 

0 0 0( | ) ( | ) ( | )i i iE Y N E Y C E Y A= = ; 

1 1 1( | ) ( | ) ( | )i i iE Y N E Y C E Y A= = . 

These conditions do not imply the equivalence of the OLS and IV estimands, which could differ 

for a number of reasons including omitted subgroup interactions combined with a different 

distribution of compliers across subgroups than among the always and/or never takers. Nor does 

equivalence of the estimands imply the conditions. To see this consider the following example: 

Suppose that ( ) ( ) ( ) 1/ 3P C P A P N= = = and that ( ) 1 / 2P Z = . Further, let 1( | ) 1E Y A = , 

1 0( | ) ( | ) 0E Y C E Y C= = , and 0( | ) 1E Y N = . In this case, the expected value of the OLS estimate 

of the impact of treatment equals zero. The expected value of the IV estimate, however, also 

equals zero, but 1 1( | ) ( | )E Y A E Y C>   and 0 0( | ) ( | )E Y N E Y C>   so we clearly have selection on 

1Y and 0Y . How then do we test for such selection? 
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 In this paper, we provide a set of simple tests for the presence of selection. These tests 

consider two of the four conditions above; the data do not provide information regarding the 

other two. As such, we test necessary but not sufficient conditions for the absence of selection. 

For simplicity we focus on the case of conditional mean independence; the straightforward 

generalization to full conditional independence does not add any substantive insights. Relative to 

the traditional Durbin-Wu-Hausman test that compares the IV and OLS estimates, our tests 

reveal substantively relevant information regarding whether selection occurs on the treated 

outcome, the untreated outcome, or both. 

Drawing on the work of Black et al. (2015), our tests come in two forms. First, 

conditional on covariates, we compare the outcomes of the set of agents who comply with the 

instrument when not treated to the set of agents who never take treatment. Second, we compare 

the mean outcomes of agents who comply with the instrument when treated to the set of agents 

who always take treatment. Mechanically, these tests are implemented by estimating outcome 

equations for those who are untreated, or treated, as a function of the covariates and the 

instruments (or the probability of selection). With a simple Wald-like adjustment, our tests allow 

researchers to assess the economic magnitude of the selection effect as well. 

 Our tests resemble those in Heckman’s (1979) seminal paper on the bivariate normal 

selection model. In the two-step estimator for the normal selection model with a common 

treatment effect, the inverse Mills’ ratio represents the control function, and the coefficient on 

the inverse Mills’ ratio identifies the correlation between the errors of the outcome equation and 

the selection equation. Under the null hypothesis of no selection on unobserved variables, a 

simple test for selection asks if the coefficient on the inverse Mills’ ratio differs from zero. In 

more general selection models, the exact form of the control function is unknown, and the 
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control function is estimated semiparametrically as in the estimators examined in Newey, 

Powell, and Walker (1990) and the related literature, but the nature of the test remains the same. 

 Not surprisingly given its close relationship to Heckit, aficionados of latent index models 

have recognized the utility of testing for the existence of selection. For instance, Blundell et al. 

(2005) compare estimates from OLS, matching, IV, and latent index models. They note that the 

coefficients on their control functions allow a test for selection, or, in the nomenclature of 

matching, violation of conditional independence.   

Our paper is closely related to Heckman et al. (2010), hereinafter HSU, who derive both 

parametric and nonparametric tests for the correlated random coefficient model. Formally, HSU 

develop a test for the independence of treatment status and the idiosyncratic effect of treatment 

conditional on covariates. Drawing on the work of Heckman and Vytlacil (2005, 2007a,b), who 

show that conditional independence of 0Y and 1Y implies constant marginal treatment effects, 

HSU (2010) propose parametric and nonparametric tests that regress the realizations of the 

dependent variable against the estimated propensity score (which includes the instruments) to see 

if the realizations of the outcome variables are linear functions of the propensity score. But as 

HSU note, their nonparametric tests suffer from low power in sample sizes common in empirical 

studies. In addition, our tests are considerably easier to implement than their nonparametric tests, 

which generally require the use of the bootstrap procedures of Romano and Wolf (2005) and 

Romano and Shaikh (2006) for the step-down method of multiple hypothesis testing. Our tests 

also provide more insight into the precise nature of the selection problem because we allow for 

selection on one or both of 1Y  and 0Y .    

Similarly, in the context of a Marginal Treatment Effects (MTE) model, Brinch, 

Mogstad, and Wiswall (2017) propose testing for a constant MTE by regressing 



5 
 

( )( )0 1 01i i i i i iY DY D Y Y= + − −  against iD , iZ  and their interactions. As Brinch, Mogstad, and 

Wiswall note, the extension of their test to a model with covariates is straightforward, but for a 

linear parametric model the test would involve the estimation of a very large number of 

interaction terms. 

Bertanha and Imbens (2014) consider closely related tests in the context of fuzzy 

regression discontinuity designs. They do not, however, relate their discussion to general tests for 

selection on unobserved variables for IV. Similarly, Huber (2013) provides a Wald test for the 

exogeneity of noncompliance in experiments closely related to ours, but does not extend the 

analysis to other IV settings. Angrist (2004) proposes a test that compares the estimated 

treatment effect for compliers to an estimate obtained from using the always takers and the never 

takers. His test does not distinguish among selection on one or both of 1Y   and 0Y  and assumes 

the magnitude of the treatment effect does not vary with covariates. Guo et al. (2014) provide a 

substantially more complex test in the IV context. Battistin and Rettore (2008) and Costa Dias et 

al. (2013) consider related tests that exploit particular empirical contexts. 

 We find it peculiar that while the LATE revolution has led to a more sophisticated 

interpretation of IV estimates, researchers rarely make an empirical case via testing for the use of 

instrumental variables methods. Heckman et al. (1998) find that most of the difference between 

simple nonexperimental and experimental estimates of the treatment effect in the Job Training 

Partnership Act (JTPA) data results from lack of common support and from differences in the 

distributions of covariates, leaving selection on unobserved variables to account for only about 

seven percent of the difference. Blundell et al. (2005) find, when estimating their “single 

treatment” model using the very rich National Child Development Survey data, that there is little 

evidence that their matching estimates suffer from any selection bias. Similarly, when their 
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outcomes are measured in the same way, Diaz and Handa (2006) report that their propensity 

score matching estimates matched the experimental evidence from the famous PROGRESA 

experiment with their set of conditioning variables.  While by no means conclusive, matching on 

a rich set of covariates motivated by theory and the institutional context, and limiting the analysis 

to the region of common support between treated and untreated units, substantially reduce bias in 

many substantive contexts. Put differently, sometimes unconditional differences in mean 

outcomes between treated and untreated units arise mainly from selection on observed variables 

and lack of common support rather than from selection on unobserved variables. Indeed, given 

the necessary, and often empirically quite large, increase in the variance of estimates when using 

instrumental variables methods, a researcher might well prefer a precise but modestly biased 

OLS estimate to a consistent but imprecise IV estimate, much as in nonparametric estimation, a 

researcher trades off bias and variance via the choice of a bandwidth or other tuning parameter.  

 In the next section of our paper, we outline the necessary restrictions to implement 

matching and OLS. In section three, we outline the necessary assumptions for Imbens and 

Angrist’s IV estimation and the latent index approach of Vytlacil (2002). In section four, we 

outline a simple test for violation of the conditional independence assumption. In section five, we 

provide our empirical applications, and in section six we offer concluding remarks. 

 

2. Matching, Ordinary Least Squares and Selection on Observed Variables 

In this section, we briefly present the standard evaluation framework for thinking about 

estimating the causal impact of treatment. Our presentation builds on Heckman et al. (1997), 

Heckman and Smith (1998), and Heckman et al. (1999). Using the notation introduced above, we 



7 
 

define the causal impact of the treatment on agent “i” as  

1 0i i iY Yδ = − .      (1) 

The fundamental problem of evaluation is that we observe only one of the two potential 

outcomes; researchers must estimate the other, which the literature refers to as the “missing 

counterfactual.” 

Matching estimators represent one intuitive class of estimators for generating the missing 

counterfactuals. These estimators rely on the assumption that researchers have sufficiently rich 

covariates that any differences in the treatment decisions of the agents are independent of the 

agents’ potential outcomes conditional on the covariates. Let X denote those covariates.  

Formally, matching estimators rely on two assumptions. First, and most vexing, matching 

estimators require the Conditional Independence Assumption (CIA) for a causal interpretation. 

Various “flavors” of the CIA correspond to different parameters of interest. The strongest flavor 

demands that: 

                                                      0 1( , ) |i i i iY Y D X⊥                                                                 (CIA) 

where “⊥ ” denotes statistical independence. This version of the CIA applies to the Average 

Treatment Effect (ATE), or 

                                                       1 0( )ATE
i iE Y Y∆ = −                                                                   (2) 

The CIA for 0Y assumes  

                                                               0 |i i iY D X⊥                                                               (CIA0) 

This version of the CIA allows the estimation of  

                                                   1 0( | 1)ATET
i i iE Y Y D∆ = − =                                                           (3) 
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Because researchers observe 1iY for those who are treated, estimation of the ATET∆ only requires 

the weaker (CIA0) rather than the (CIAATE). Similarly, when estimating the average treatment 

effect for the nontreated, researchers need only assume 

                                                            1 |i i iY D X⊥                                                                  (CIA1) 

which allows the estimation of  

                                                     1 0( | 0)ATEN
i i iE Y Y D∆ = − = .                                                      (4) 

Of course, the (CIA) implies that both (CIA1) and (CIA0) hold. 

Second, matching estimators also require the Common Support Assumption (CSA) or 

0 Pr( 1| ) 1i iD X< = <  .     (CSA)   

In other words, the CSA simply requires an untreated comparison unit with approximately the 

same realization of the covariates as each treated unit and, when estimating ATE∆  rather than 

ATET∆ , vice versa. Of course, the CSA is a testable assumption. When the CSA fails in practice, 

as it sometimes does, researchers generally change the definition of the relevant population to 

that over which the CSA holds, reflecting the limited variation that the data provide; see the 

discussions in Black and Smith (2004) and Crump et al. (2009). 

 When applying semiparametric or nonparametric matching methods, researchers 

commonly specify the functions that determine the potential outcomes 0 1( , )i iY Y as 

1 1 1( )i i iY g X ε= +        (5) 

0 0 0( )i i iY g X ε= +        (6) 

where 0 1( ( ), ( ))g g⋅ ⋅ denote the unknown conditional mean functions and 0 1( , )i iε ε summarize the 

residual uncertainty associated with the unobserved variables. With the CSA and the appropriate 

version of the CIA, researchers may use a variety of methods to estimate the unknown 
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conditional mean functions; see for instance Heckman et al. (1999), Imbens (2004), Smith and 

Todd (2005), Huber et al. (2013), and Busso et al. (2014). 

A common alternative to matching methods uses OLS to estimate parametric linear 

models. In this approach, researchers specify the functional form of the conditional mean 

function as 

           1 1( )i ig X X β′=        (7) 

0 0( )i ig X X β′=  .     (8) 

In these models, the researcher avoids invoking the CSA (but not the CIA) by instead making 

assumptions about the functional form. 

  The common criticism of estimates obtained by matching or by OLS estimation of a 

parametric linear model is that they rely on the CIA, which appears implausible in many 

substantive contexts given the available data on conditioning variables. To avoid making the 

CIA, applied researchers often turn to IV estimation. While traditional IV methods require a 

common treatment effect for all units, Imbens and Angrist (1994) demonstrate that under 

different assumptions IV estimation allows for heterogeneous treatment effects. Researchers now 

routinely invoke their LATE framework when applying IV methods. 

It is difficult to overemphasize the importance of this advance. Models that omit selection 

into treatment based upon (possibly very partial) knowledge of heterogeneous treatment effects  

seem incapable of capturing the complexity of human behavior. Incorporating such treatment 

effect heterogeneity allows researchers to consider and estimate far more plausible and 

interesting models, including the justifiably famous Roy (1951) model. Indeed, Heckman et al. 

(2006) term such heterogeneous impacts “essential heterogeneity.” 
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3. The IV and Control Function Approach to Selection on Unobserved Variables 

We consider the possible decisions of agent “i” for any value of iZ , which is the set 

{ ( ) | }iD z z∈'  . We may now state the assumptions of the LATE estimator as the Existence of 

Instruments (EI) and Monotonicity (M). Formally,     

 

0 1( , ,{ ( ) | z )} | )i i i i iY Y D z Z X∈ ⊥' and Pr( 1| , )D X Z= is a nontrivial function of Z     (EI)         

0 1 ,z z∀ ∈'   either 0 1( ) ( )  i iD z D z i≥ ∀  or 0 1( ) ( )  i iD z D z i≤ ∀ .    (M) 

 

The (M) assumption requires that all agents respond to the instrument in the same direction, not 

that the function Pr( 1| , )i i iD X Z=  be monotone in Z ; this led Heckman et al. (2006) to rename 

the condition uniformity, although the somewhat confusing monotonicity was too well-

established to be displaced. The (M) assumption is of course restrictive. Should the (M) 

assumption fail while the (EI) assumption holds, IV estimation provides a mixture of treatment 

effects associated with agents who both enter and leave the treatment as the instrument varies. To 

keep the notation simple, we continue to assume {0,1}iZ ∈ ; our arguments, however, generalize 

to continuous instruments. 

 Imbens and Angrist note that the latent index models pioneered by Heckman and various 

co-authors imply the (EI) and (M) conditions. In an important paper, Vytlacil (2002) shows the 

equivalence of the two approaches. Latent index models may be used to circumvent the problems 

associated with selection on unobserved variables. In our notation, one may define the 

expectations of the errors in our equations (5) and (6) as zero, or 1 0( ) ( ) 0i iE Eε ε= = . This is, of 

course, a convenient normalization with any nonzero mean being absorbed into the conditional 
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mean functions. When we observe only a portion of our potential outcomes, we no longer know 

that the conditional expectations 1( | 1)i iE Dε =  and 0( | 0)i iE Dε =  equal zero. To see why, we 

follow Vytlacil (2002) and let 

1( ( , ) 0)i i i iD h Z X U= + ≥  and ( , )i ih Z X  be a nontrivial function of Z (V1) 

1 0( , , ) |i i i i iZ Y Y U X⊥        (V2) 

where 1( )⋅  is an indicator function for the logical condition inside the parentheses holding, iU  is 

a random variable, and ( , )i ih Z X   is the index function.   

 With assumptions (EI) and (M) (or the equivalent assumptions (V1) and (V2) for latent 

index models), we may write 1( | 1)i iE Dε = and 0( | 0)i iE Dε = as 

                                                        1 1 1( | 1) ( , ( , ))i i i i i iE D c X P X Z eε = = +                             (9) 

0 0 0( | 0) ( , ( , ))i i i i i iE D c X P X Z eε = = +                            (10) 

where ( , ) Pr( 1| , )i i i i iP Z X D X Z= =  is the conditional probability of treatment or propensity 

score. Unlike the propensity score used by propensity score matching estimators under the 

CIA, this propensity score also includes at least one instrument; see Heckman and Navarro-

Lazano (2004) for further discussion. We denote the control functions that embody the 

conditional means of 1ε and 0ε  by 1( )c ⋅  and 0( )c ⋅ ; including them in the conditioning 

implies 1 0( ) ( ) 0i iE e E e= = .    

 The control function approach allows an easier interpretation of the independence 

assumption 0 1( , ,{ ( ) | z )} | )i i i i iY Y D z Z X∈ ⊥'  embedded in the assumption (EI). The 

independence assumption simply requires that iZ  be independent of 1 0( , , )i i iU Y Y  conditional on 
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iX . Given the equivalence of the LATE and control function assumptions, we refer to the (EI) 

and (M) assumptions, or (V1) and (V2), as the Vytlacil-Imbens-Angrist (VIA) assumptions. 

 

4. Testing for Conditional Independence under the VIA Assumptions 

A. Instrumental Variables 

In this section, we develop a simple, easily applied test for selection on unobserved variables.   

As noted above, the various (CIA) assumptions allow researchers to ignore the possibility of 

selection on unobserved variables, although they typically invoke them without looking for 

evidence of selection on unobserved variables. In contrast, the VIA assumptions allow 

researchers to consistently estimate LATEs for those individuals who comply with the 

instruments. In the case of a linear parametric model with a single instrument we would augment 

equations (7) and (8) to obtain 

1 1 1( | , , 1)i i i i i iE Y X Z D X Zβ α= = +       (11) 

0 0 0( | , , 0)i i i i i iE Y X Z D X Zβ α= = + .      (12) 

With non-binary instruments researchers may wish to add higher order terms – replace iZ with 

( )if Z  – though this raises subtle but important issues of model selection that lie outside the 

scope of this paper. With multiple instruments, researchers would probably want to replace iZ  

with the estimated propensity score, ˆ ( , )i ip Z X  and adjust the standard errors for generated 

regressors as in Murphy and Topel (2002). Joo and LaLonde (2014) present a control function 

version of our test along these lines.    

 The model behind equations (11) and (12) represents an important departure from the 

canonical model used in IV applications, given by 

i i i iY X Dβ δ ε= + +        (13) 
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In contrast, the model underlying equations (11) and (12) consists of 

1 1 1i i iY X β ε= +        (14) 

0 0 0i i iY X β ε= + .      (15) 

Equations (14) and (15) allow researchers to estimate heterogeneous treatment effects, ( )iX∆ , 

that differ with the realization of the covariates while still maintaining the CIA. There is, of 

course, generally no theoretical reason to prefer equation (13) to equations (14) and (15), but the 

demands on instrument strength usually dissuade researchers from using the model described by 

equations (14) and (15) when they resort to IV estimation because they fear selection on 

unobserved variables. 

In the case of matching estimators, we would augment equations (5) and (6) and specify 

the conditional mean functions as 

1 1 1( | , , 1) ( )i i i i i iE Y X Z D g X Zα= = +       (16) 
 0 0 0( | , , 1) ( )i i i i i iE Y X Z D g X Zα= = +       (17).   

 
To clarify the relationship among the various forms of the CIA and our test, it is useful to outline 

the samples used and hypotheses involved when estimating these auxiliary regressions. Formally, 

we estimate (12) or (17) using the sample of untreated observations to test 

H0: CIA0 holds, or 0 0α =   

HA: CIA0 does not hold, or 0 0α ≠ .  

Similarly, we estimate equations (11) and (16) using the sample of treated observations to test 

H0: CIA1 holds, or 1 0α =   

HA: CIA1 does not hold, or 1 0α ≠ .  
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To develop some intuition for the tests, assume that ( 1) ( 0)i i i iD z D z= ≥ =  and divide 

agents under the VIA into the three types defined in the introduction: “always takers,” “never 

takers,” and “compliers.” The test given in either equation (11) or equation (16) simply compares 

1( | , )E Y x A  to 1( | , )E Y x C . As Black et al. (2015) note, this is easily done because 

1 1( | , 0) ( | , )E Y x z E Y x A= =  and 1 1( | , 1) ( | , )E Y x z E Y x A C= = ∪ . Thus, at X x=  we have that 

1 1
1

Pr( | )( ( | , ) ( | , ))( )
Pr( | ) Pr( | )

i iC x E Y x C E Y x Ax
C x A x

α −
≡

+
 . 

The regression coefficient in either equation (11) or equation (16) then simply integrates over the 

realizations of X, or 1 1( ) ( )x dF xα α= ∫  for some function ( )F x . Put differently, the tests look for 

evidence of a non-constant control function in equation (9), which constitutes evidence that 

unobserved variables affect the outcomes. A parallel argument applies to 0α . 

The finding that either 0 0α ≠ or 1 0α ≠ constitutes evidence of either selection or 

violation of the exclusion restrictions (i.e., the failure of EI) or both. Assuming the validity of the 

exclusion restriction, rejection of one or both of the null hypotheses provides simple and 

compelling evidence for violation of the CIA. Indeed, we view the simplicity of our tests as their 

greatest virtue.  

The tests also allow researchers to assess whether any selection arises on 0Y , which 

represents a violation of CIA0, or on 1Y , which represents a violation of CIA1, or both. In 

addition, as with the tests for selection in Heckman (1979), our tests allow researchers to 

determine the signs of the relevant selection effects and their magnitudes. This allows 

researchers to provide a much more nuanced discussion of the nature of the agents’ choice 

behavior. Given the equivalence that Vytlacil (2000, 2002) demonstrates, it is perhaps not 
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surprising that we may learn more about the selection problem using IV methods than we learn 

from current practices. 

In the next two subsections, we show how to adapt these tests to two other common 

settings in applied research: fuzzy regression discontinuity designs and experiments with 

imperfect compliance. 

 

B. Fuzzy regression discontinuity 

In regression discontinuity designs, treatment depends on a running variable iS   and has the 

feature that the probability of treatment jumps (i.e. has a discontinuity) at some particular value 

of iS . We assume that the jump in the probability of treatment occurs at 0iS = . To use both of 

our tests we require fuzziness on both sides of the discontinuity; put differently, we need both 

treated and untreated units on both sides of the cutoff. Formally, we require 

0 0
1 lim Pr( 1| , ) lim Pr( 1| , ) 0

S S
D X S D X S

↓ ↑
> = > = >  

or the same condition but with the two limits reversed. With both treated and untreated units on 

only one side of the discontinuity, a researcher can apply our test for one of 0 1( , )Y Y but not both. 

As emphasized by Imbens and Lemieux (2008) and Lee and Lemieux (2010), when faced with a 

fuzzy RD, researchers who use the discontinuity at S = 0 as an instrument for treatment estimate 

a LATE at S = 0. 

Because of the discrete change in the treatment probability at S = 0, under selection on 

unobserved variables we would expect a jump in the control function at the same point. More 

formally, selection on unobserved variables implies a jump in the value of 0( | , 0)E Y S D =  as S 
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crosses zero, while the (CIA0) assumption implies a smooth 0( | , 0)E Y S D = function around 

zero. This suggests a simple test based on a model of the form 

0 0 0( | 0) ( , ) 1( 0)i i i i iE Y D g X S Sα= = + ≥      (18) 

with the null hypothesis being that 0 0α = or the corresponding version for testing CIA1 

1 1 1( | 1) ( , ) 1( 0)i i i i iE Y D g X S Sα= = + ≥      (19) 

with the null hypothesis being that 1 0α = . Estimation of the sample analogue of (18) makes use 

only of untreated observations, which constitute a mixture of compliers and never takers. 

Similarly, estimation of the sample analogue of (19) uses only treated observations, which 

constitute a mixture of compliers and always takers. 

As noted in the introduction, Bertanha and Imbens (2014) consider closely related tests 

for fuzzy regression discontinuity designs. Indeed, they state, “As a matter of routine, we 

recommend that researchers present graphs with estimates of these two conditional expectations 

in addition to graphs with estimates of the expected outcome conditional on the forcing variable 

alone.” We concur. 

 

C. Experiments with Imperfect Compliance 

As Heckman (1996) emphasizes, random assignment creates an instrument for treatment. 

Because many social experiments have imperfect compliance – Heckman et al. (2000) lists 

numerous examples – with both treatment group dropout and control group substitution into 

similar treatments provided elsewhere, one could easily implement our tests to check for 

selection on 1Y  or 0Y in experiments. For instance, Table II of Heckman et al. (2000) reports that, 

among those recommended for classroom training prior to random assignment, somewhere 



17 
 

between 49 and 59 percent of the treatment group in the Job Training Partnership Act (JTPA) 

experiment received services, depending on the demographic group, while between 27 and 40 

percent of the control group received services. 

 With this much dropout and substitution, applied researchers will often rely on the Bloom 

(1984) estimator. To use the Bloom estimator, the researcher need only use random assignment 

to the treatment group as an instrument for the receipt of treatment. As random assignment 

provides a binary instrument, the Wald estimator recovers the LATE for those who comply with 

the experimental protocol. Huber (2013) provides a Wald test of the exogeneity of non-

compliance in experiments closely related to our own analysis. 

 

D. Recovering Estimates of the Magnitude of the Selection Effect 

 To recover estimates of the magnitude of the selection effect, continue to assume that 

1Z =  encourages treatment, and ignore covariates for notational simplicity. We have 

0 0 0
Pr( ) Pr( )( | 0, 0) ( | ) ( | )

Pr( ) Pr( ) Pr( ) Pr( )i i i i i
C NE Y Z D E Y C E Y N

C N C N
= = = +

+ +
    (20) 

while 

0 0( | 1) ( | )i i iE Y Z E Y N= =       (21) 

so that  

0 0 0 0 0
Pr( )( | 1, 0) ( | 0, 0) ( ( | ) ( | ))

Pr( ) Pr( )i i i i i i i i
CE Y Z D E Y Z D E Y N E Y C

C N
α ≡ = = − = = = −

+
 .  (22)  

Thus, a measure of the selection effect for 0Y , which we denote 0B , is simply 

( ) ( )0 0 0 0
Pr( ) Pr( )| |

Pr( )
C NB E Y N E Y C

C
α+

= − = .    (23) 

 Similarly, we have 
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1 1 1
Pr( ) Pr( )( | 1, 1) ( | ) ( | )

Pr( ) Pr( ) Pr( ) Pr( )i i i i i
C AE Y Z D E Y C E Y A

C A C A
= = = +

+ +
   (24) 

while 

1 1( | 0, 1) ( | )i i i iE Y Z D E Y A= = =      (25) 

so that 

1 1 1 1 1
Pr( )( | 1, 1) ( | 0, 1) ( ( | ) ( | ))

Pr( ) Pr( )i i i i i i i i
CE Y Z D E Y Z D E Y C E Y A

C A
α ≡ = = − = = = −

+
 .  (26) 

A measure of the selection effect for 1Y , which we denote 1B , is simply 

( ) ( )1 1 1 1
Pr( ) Pr( )| |

Pr( )
C AB E Y C E Y A

C
α+

= − =  .     (27) 

To implement these measures empirically, we may use the OLS estimates of 0 1( , )α α . We 

know that Pr( ) Pr( 1| Z 0)i iA D= = = , Pr( ) Pr( 0 | 1)i iN D Z= = = , and Pr( ) 1 Pr( ) Pr( )C N A= − −  

so we have sample analogues of all the terms on the right-hand sides of equations (23) and (27). 

E. Complications with Instruments 

 Applied researchers know from painful experience the numerous complications that 

attend IV estimation. In this subsection, we discuss how three of these complications affect our 

test: weak instruments, failure of the monotonicity (M) assumption, and failure of the assumption 

of the existence of instruments (EI) (or exclusion restriction) assumption. 

 Weak instruments imply a relatively small number of compliers which in turn implies 

relatively low power for our test. Put differently, with a weak instrument, comparing the 

conditional means of, say, always takers and compliers will provide only noisy evidence 

regarding the null of no selection in the absence of a very large selection effect, a very large 

sample, or both.  



19 
 

The case for the monotonicity (M) assumption typically rests on some combination of 

institutional knowledge and economic theory specific to a particular empirical context. Our test 

provides no help in detecting failures of the (M) assumption. When it does fail, the untreated 

units include what Angrist et al. (1996) call defiers, agents who change treatment status when the 

value of the instrument changes but in an unexpected way, in addition to compliers and never 

takers. Similarly, the treated units now comprise always takers, compliers and defiers. The 

presence of the defiers undoes the LATE interpretation of the IV estimand. 

 Finally, because our test implicitly represents a joint test of the (EI) assumption and the 

null of no selection bias, failure of the (EI) assumption can lead to incorrect inferences regarding 

the presence or absence of selection. When failure of the EI assumption leads the test to reject 

the joint null, researchers may proceed to place heavy weight on the IV estimates, when in fact 

they provide an unknown mixture of the population treatment effect and the bias associated with 

the invalid instrument. 

 

5. Empirical Applications 

A. Angrist and Evans (1998) data 

Our first application draws on Angrist and Evans (1998). This paper uses data from the 1980 and 

1990 US Censuses to measure the causal impact of children on maternal labor supply. Because 

fertility is likely to be endogenous with respect to women’s labor supply decisions, Angrist and 

Evans devise an ingenuous instrumental variables strategy. Limiting their sample to women who 

have at least two children, Angrist and Evans noticed that women whose first two children are 

the same sex are more likely to have additional children than women whose first two children are 

of opposite sexes. For instance, in the 1980 Census, married women whose first two children are 
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of the same sex are about six percentage points more likely to have additional children than 

women whose first two children are of opposite sexes. For our analysis, we focus on the labor 

supply decisions of women in the 1980 Census, corresponding to the estimates in column (2) of 

their Table 7.  

 In many ways, this design is ideal. Because of the random nature of child sex 

determination, the sample is split approximately equally between families whose first two 

children are of the same sex and those whose children are of opposite sexes. In these data, 51.1% 

of the children born are male, and in 50.6% of families the first two children are of the same sex.  

Formally, the system that Angrist and Evans estimate is: 

i i i iy x morekidsβ δ ε′= + +         (28) 

i i i imorekids x b samesex uγ′= + +        (29) 

where morekids is an indicator for having more than two children. The covariates include the age 

of the mother, the age of the mother at first birth, indicators for whether the mother is black or 

whether the mother is nonblack and nonwhite (white is the omitted category), an indicator for 

whether the mother is Hispanic, an indicator for whether the first child was a boy, and an 

indicator for whether the second child was a boy. The instrument, samesex, is an indicator for 

whether the first two children were either two boys or two girls. For dependent variables, we use 

a subset of those explored by Angrist and Evans: whether the mother worked in the previous 

year, the number of weeks worked in that year, typical hours worked in that year, and her income 

from working. We set all of these variables to zero for women who did not work in the previous 

year. The sample is limited to women 21 to 35 years of age; see Angrist and Evans (1998) for 

more details. 

 In Table 1, we replicate the Angrist and Evans results in the 1980 Census; see their Table 

7, columns (1) and (2). We also use a semiparametric approach and estimate 
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( )i i i iy g x morekidsδ ε= + +       (30) 

( )i i i imorekids h x samesex uγ= + +      (31) 

where ( )g ⋅  and ( )h ⋅  are unknown functions. Because we have only discrete conditioning 

variables, we estimate ( )ig x by a fully saturated regression. Our parametric results – both the 

OLS and Two-Stage-Least-Squares (TSLS) estimates – exactly match the Angrist and Evans 

findings. Moreover, the semiparametric estimates are virtually identical to the parametric 

estimates of Angrist and Evans, which is not too surprising given that the sex of women’s 

offspring is independent of all of our observed characteristics. 

 Of course, to interpret the IV estimand as a LATE we need to assume the VIA conditions. 

Angrist and Evans documented that the instrument does indeed raise fertility. In addition, we 

need to assume that the instrument provides an exclusion restriction in the sense that having the 

first two children of the same sex does not directly affect women’s labor supply decisions, and 

we need to assume the monotonicity (or uniformity) condition so that having two children of the 

same sex reduces no one’s fertility. With these (strong) assumptions, we may now implement our 

parametric tests of the CIAs using: 

0 0 0 0i i i iy x samesexβ α ε′= + +        (32) 

1 0 1 1i i i iy x samesexβ α ε′= + +       (33) 

and our semiparametric tests using 

0 0 0 0( )i i i iy g x samesex vα= + +                (34) 

1 1 1 1( )i i i iy g x samesex vα= + +      (35) 
 
where for our semiparametric analysis we need to drop the indicator for having a boy as the 

second child in order to avoid making the samesex variable perfectly collinear with the ix vector. 
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We estimate equations (32) and (34) on the sample of 236,092 women who have two children, 

and equations (33) and (35) using the sample of 158,743 who have three or more children.   

 Table 2 presents our results. For the case (CIAATET), the data strongly reject the null that

0 0α = . For each of the four outcomes, we reject the null hypothesis at a five-percent confidence 

level. In each case, we estimate a positive coefficient 0α  on Z, where Z = 1 among the non-

treated corresponds to the never-takers. Thus, we find that the never takers have higher earnings, 

hours worked, and weeks worked, and are more likely to work at all conditional on our 

covariates relative to the compliers who do not have a third child. 

 In contrast, we find little evidence against the (CIAATEN). Unlike the estimates of 0α , our 

estimates of 1α  are statistically insignificant and economically very small. Thus, we find no 

evidence of selection when estimating the missing counterfactual 1Y . Frankly, we find this result 

stunning. The US Census data have large sample sizes but suffer a paucity of covariates, with the 

data including only broad demographic controls. Before undertaking this analysis, we fully 

expected to show a two-sided selection problem. The data disagreed.   

To describe the magnitude of the selection effects we use the nonparametric estimates in 

column (3) of Table 2. Compared to the compliers, we find that the never takers are five 

percentage points more likely to have worked last year, worked about three weeks more, worked 

about two hours more per week, and earned $1,965 more per year. Comparing the compliers to 

the always takers, we find that compliers were one percentage point more likely to work last 

year, they worked about 0.4 extra weeks per year, they worked a tenth of an hour more per week, 

and earned $38 dollars less per year than the always takers. Obviously, the compliers represent a 

poor comparison group for the never takers, but the compliers do not seem substantially different 

than the always takers.  
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 Angrist (2004) tests for selection on weeks worked (as well as other outcomes we do not 

consider) using his test and finds evidence of selection. His test considers the joint hypothesis of 

no selection on 0 1( , )i iY Y in the context of a canonical model such as equation (13), which rules 

out by assumption any heterogeneous treatment effects associated with the covariates, iX .  Even 

with the relatively parsimonious equation (13) specification, the Angrist tests fails to detect 

selection in our four outcomes at the five percent level, although the tests do detect selection at a 

10 percent level in two of the four outcomes. 

B. Eberwein, Ham, and LaLonde (1997) data 

When facing control group substitution and treatment group dropout in an experiment, 

researchers will often estimate two treatment parameters: the intent-to-treat parameter, estimated 

as the difference in a dependent variable between the treatment and control groups, and the 

impact of treatment for those who comply with the treatment protocol, estimated using Bloom’s 

(1984) estimator. Bloom’s estimator corresponds to TSLS using assignment to the treatment 

group as an instrument for the receipt of treatment. Because assignment to the treatment group is 

independent of the potential outcomes 0 1( , )Y Y , it represents an exclusion restriction that functions 

as an instrument under the VIA assumptions. 

We examine the impact of training for a sample of adult women who took part in the Job 

Training Partnership Act (JTPA) experiment; see Bloom et al. (1997) for a discussion of the 

experiment and analysis of the results. Our sample, the same one used by Eberwein, Ham, and 

LaLonde (1997), consists of women recommended for classroom training (the “CT-OS treatment 

stream” in the jargon of the experiment) prior to random assignment. We measure training as the 

onset of self-reported classroom training within nine months of randomization. We focus on 

classroom training and ignore other (usually much less intensive) services, such as job search 
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assistance, received by some members of both the treatment and control groups for simplicity. 

We rely on the self-reported training data for both groups, rather than the self-reports for the 

controls and the JTPA administrative data for the treatment group, for comparability; Smith and 

Whalley (2017) offer a depressing exploration of the concordance of administrative and self-

reported measures of service receipt in the JTPA study data. The administrative data from the 

experiment provides the indicator for random assignment to the treatment group rather than the 

control group. For our outcome variable, we use an indicator for self-reported employment in the 

eighteenth month after random assignment. There was much non-compliance in this sample. 

Only about 65 percent of the treatment group reports receiving classroom training in the first 

nine months after random assignment. There was much control group substitution as well: about 

34 percent of the control group reports receiving classroom training in the first nine months after 

random assignment. 

 In Table 3, we provide two sets of estimates of the intent-to-treat parameter. In column 

(1) we provide the simple difference estimates given by 

i i iy Rβ δ ε= + + ,      (36) 

where iy  is the outcome variable, iR  is an indicator for whether the participant was assigned to 

the treatment group during random assignment, iε  is the error term, and ( , )β δ  are parameters to 

be estimated. The estimated intent-to-treat parameter, δ̂ , equals 0.041 and statistically differs 

from zero at the five-percent level. This relatively modest effect, however, hides a larger impact 

of treatment for people who complied with the treatment protocol, which equals 0.136 and again 

is statistically significant at the five-percent level. The differential arises, of course, because 

random assignment only increases the rate of treatment by about 0.305, the coefficient on the 
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indicator for random assignment to the treatment group from the first-stage of our TSLS Bloom 

estimator. 

 Nothing in this analysis, however, informs the researcher regarding the presence or 

absence of selection into treatment based on unobserved variables. Toward that end, we next 

estimate the following equations 

0 0 0 0i i iy Rβ α ε= + +       (37) 

1 1 1 1i i iy Rβ α ε= + +        (38) 

where 0 1( , )i iy y  are the outcomes of those not receiving training and receiving training. We 

estimate Equation (37) using the 1,233 adult women who do not receive training and estimate 

equation (40) using the 1,501 who do receive training. We find little evidence that the compliers 

have different 0Y than those who never take training. The coefficient on the indicator for 

assignment to the treatment group in equation (37) is small, 0.006, and statistically insignificant 

at the five-percent level. In contrast, the coefficient on the indicator for assignment to the 

treatment group in equation (38) is large, 0.068, and statistically significant. These estimates 

imply that while the always takers have a mean employment rate of 0.50, the compliers when 

treated have a mean employment rate of 0.65. Thus, the always takers are adversely selected with 

respect to the likelihood of employment.   

 A finding of substantively large selection on unobserved variables in the absence of 

covariates will hardly surprise most readers. Thus, we augment our equations with a vector of 

variables measuring the educational and demographic characteristics of those randomly assigned, 

as well as their pre-random assignment labor market activity and transfer payment receipt; see 

the notes to Table 3 for a complete list of the covariates. Their inclusion (as expected) has only 

modest effects on the intent-to-treat and LATE estimates, although some may be dismayed that 
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the estimates no longer clear the five-percent hurdle. More surprisingly, the results of our tests 

for selection on unobserved variables also change very little when we add covariates. In the 1Y  

regression, the coefficient on the assignment indicator for those receiving treatment falls from 

0.068 to 0.062 and remains significant at the five-percent level. Despite the inclusion of detailed 

information on labor supply in the 12 months prior to random assignment and other controls, the 

coefficient on the assignment to the treatment group falls by only about nine percent. The 

observed variables examined here account for little of the selection. In contrast, our test 

consistently fails to detect unobserved differences between the compliers and the never takers. 

 

6. Conclusion 

In this paper, we have derived a simple test for selection on unobserved variables when using 

instrumental variables. The test is simple; any well-trained undergraduate can implement it. It 

generalizes various existing tests in the literature. Using a Wald-like estimator, one can use the 

estimates generated by our test to assess the magnitude of the selection effect as well and thereby 

gain a much better understanding of the precise nature of any selection on unobserved variables.  

Magnitudes matter (in addition to signs and stars). As such, calculation of the selection 

effect may prove extremely valuable in many substantive contexts. As Cameron and Trivedi 

(2005, p. 107) reminds us, with one instrument we may compare the variance of the parameter of 

interest from the canonical model (equation (13)) estimated using instrumental variables to the 

variance of the parameter estimated using OLS using the equation: 

ˆ( )ˆ( )
( , )

OLS
IV SESE

D Z
δδ

ρ
= � �   

where ( , )D Zρ � � denotes the partial correlation coefficient after removing the variation correlated 
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with the other covariates X, what Black and Smith (2006) term the “Yulized residuals” in honor 

of Yule’s (1907) brilliant paper. This partial correlation coefficient may be quite modest, 0.10 or 

even 0.05 depending on the strength of the instrument, suggesting dramatic decreases in the 

precision of the estimates when using IV methods. For example, Black et al. (2015) estimate that 

( , )D Zρ � � equals only 0.059 in their application. In many situations, serious researchers will trade 

off increases in bias for reductions in variance. Our method provides researchers with a means of 

assessing this bias and so allows them to make a quantitatively informed decision regarding 

whether or not the “IV” cure for the “OLS bias” disease is worse than the disease itself. 

 Since the publication of Vytlacil (2002), we have understood the equivalence between the 

assumptions necessary for the LATE interpretation of IV estimates and models of selection into 

treatment based on latent indices. But IV estimation has always seemed to provide less 

information about the nature of the selection effect than control function estimation. In this 

paper, however, we showed that simple auxiliary regressions will produce rich insights into the 

nature and magnitude of the selection effect when using IV estimation. 

 Our two empirical applications nicely demonstrate the knowledge our tests produce. 

First, we revisit the Angrist and Evans (1998) analysis of the impact of children on married 

women’s labor supply using the sex composition of the first two children as an instrument. To 

our considerable surprise, we find little evidence of selection into having more than two children 

despite the relatively modest set of covariates available in the census. In contrast, those who 

complied with the instrument and had at least one more child seem extremely different from 

those who always stop at two children. The labor market earnings of never takers exceed those of 

women who complied with the instruments by about $2,000 per year. Surprisingly, we find no 
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(statistically or substantively) significant differences between the always takers and the 

compliers. 

Our second application also yielded a surprise. We reanalyzed the probability of 

employment 18 months after random assignment for adult women in (one part of ) the JTPA 

experiment. While we found a sizeable impact of training on the compliers (0.136 without 

covariates), we estimated an even larger selection effect, as the employment rate of compliers 

when trained exceeds that of always takers when trained by 0.145 (again, without covariates). 

Even after conditioning on an extensive set of predetermined covariates, the selection effect 

remained larger than the treatment effect on the compliers.  
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Table 1: Causal Impact of Having More than Three Children on Mother’s Labor Supply, 
Angrist and Evans 1998 
 
 More kids 

coefficient, 
parametric 
OLS model 

 

More kids 
coefficient, 

parametric IV 
model 

 

More kids 
coefficient, 

semiparametric 
model 

More kids 
coefficient, 

semiparametric IV 
model 

Worked last 
year 
 
 

-0.176*** 

(0.00162) 
-0.120*** 

(0.0249) 
-0.174*** 

(0.00164) 
-0.117*** 

(0.0250) 

Weeks worked 
 
 

-8.97*** 

(0.0707) 
-5.66*** 

(1.108) 
-8.90*** 
(0.0727) 

-5.53*** 

(1.109) 

Hours worked 
 
 

-6.66*** 

(0.0611) 
-4.59*** 

(0.9452) 
-6.59*** 
(0.0620) 

-4.45*** 

(0.9461) 

Income 
 
 

-3,768*** 

(33.45) 
-1,960*** 
(541.5) 

-3,739 
(35.47) 

-1,915*** 
(542.0) 

First Stage: 
Same sex 
coefficient 
 

--- 0.062*** 
(0.0015) 

 

---- 0.062*** 
(0.0015) 

N 394,835 394,835 394,835 394,835 
 
*5 percent significance level, ** 1 percent significant level, *** 0.1 percent significance level 
 
Notes: Covariates in the parametric model include the age of the mother, the age of the mother at first birth, indicators for 
whether the mother is black or non-black and non-white, an indicator for whether the mother is Hispanic, an indicator for whether 
the first child was a boy, and an indicator for whether the second child was a boy. For the semiparametric model, we drop the 
indicator for the second child being a boy to avoid perfect colinearity with the instrument, an indicator that both of the first two 
children are the same sex. The semiparametric IV regression model uses a fully saturated model in the covariates and an 
additively separable term for having more children. The F-statistic on the instrument for the parametric model equals 1,711.  For 
the semiparametric model it equals 1,702. For the semiparametric model, 72 cases have predicted values of one for the 
probability of having more children and 168 have predicted probabilities of zero. Our parametric estimates exactly match those of 
Angrist and Evans, Table 7, columns (1) and (2).  
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Table 2: Test of CIA using Angrist and Evans (1998) Data 
 OLS 

 
Semiparametric 

Worked last year (CIAATET) 
test 

(CIAATEN) 
test 

(CIAATET) 
test 

(CIAATEN) 
test 

 
Dependent variable 
 

0Y   1Y   0Y   1Y   

Coefficient on instrument 
(standard error) 
[selection effect] 
 

0.0046* 

(0.00197) 
[0.047] 

0.0015 
(0.0025) 
[0.011] 

0.0051** 

(0.0020) 
[0.052] 

0.0017 
(0.0025) 
[0.012] 

N 
 

236,092 158,743 236,092 158,743 

Weeks worked (CIAATET) 
test 

(CIAATEN) 
test 

(CIAATET) 
test 

(CIAATEN) 
test 

 
Dependent variable 
 

0Y   1Y   0Y   1Y   

Coefficient on instrument 
(standard error) 
[selection effect] 
 

0.297*** 

(0.0902) 
[3.01] 

0.053 
(0.1043) 
[0.37] 

0.315*** 

(0.0903) 
[3.19] 

0.063 
(0.1047) 
[0.44] 

N 236,092 158,743 236,092 158,743 
 
   
Hours worked (CIAATET) 

test 
(CIAATEN) 

test 
(CIAATET) 

test 
(CIAATEN) 

test 
 

Dependent variable 
 

0Y   1Y   0Y   1Y   

Coefficient on instrument 
(standard error) 
[selection effect] 
 

0.205** 

(0.0753) 
[2.08] 

-0.0004 
(0.0925) 
[0.00] 

0.221** 

(0.0753) 
[2.24] 

0.016 
(0.0927) 
[0.11] 

N 236,092 158,743 236,092 158,743 
 
   
Income (CIAATET) 

test 
(CIAATEN) 

test 
(CIAATET) 

test 
(CIAATEN) 

test 
 

Dependent variable 
 0Y   1Y   0Y  1Y  

Coefficient on instrument 
(standard error) 
[selection effect] 
 

188*** 

(45.43) 
[1,904] 

-7.01 
(48.28) 
[-49] 

194*** 

(45.40) 
[1,965] 

-5.49 
(48.41) 
[-38] 

N 236,092 158,743 236,092 158,743 
 

*5 percent significance level, ** 1 percent significant level, *** 0.1 percent significance level 
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Table 3: Impact of Training for Adult Women Recommended for Classroom Training in 
the National JTPA Study 
 (1) 

 
(2) 

Covariates 
 

No Yes 

Mean of employment for control group 
 

0.505 0.505 

Mean training for control group 
 

0.344 0.344 

Intent to treat 
(standard error) 
(n=2,374) 
 

0.041** 

(0.0203) 
0.037* 

(0.0198) 

Bloom estimator   
First-stage treatment indicator 
(standard error) 
[F-statistic on instrument] 
(n=2,374) 

0.305*** 

(0.0194) 
[246] 

0.305*** 

(0.0191) 
[246] 

Impact of classroom training on compliers 
(standard error) 
[n=2,374] 

0.136** 

(0.0670) 
0.122* 

(0.0650) 

Treatment group indicator for 0Y regression 
(standard error) 
[selection effect]  
(n=1,233) 

0.006 
(0.0285) 
[0.013] 

 

0.005 
(0.0273) 
[0.011] 

Treatment group indicator for 1Y regression 
(standard error)  
[selection effect] 
(n=1,501) 

0.068** 

(0.0318) 
[0.145] 

0.062** 

(0.0313) 
[0.132] 

 
Note: The dependent variable is an indicator variable for whether the participant is employed in the 18th month after random 
assignment. The treatment indicator equals one when the participant is assigned to the treatment group. The classroom training 
variable is an indicator for whether the participant received classroom training in the first nine months after random assignment. 
For the specification with covariates, the set of covariates include age and the square of age and a vector of indicator variables. 
The indicator variables indicate whether the participant has never been married, whether the participant is currently married, 
whether the participant is a non-Hispanic black, whether the participant is Hispanic, whether the participant is another 
race/ethnicity (white, non-Hispanic is the excluded category), whether the participant has less than a high school degree, whether 
the participant has a General Education Development degree, whether the participant has more than a high school degree (high 
school degree is the excluded category), whether the participant was on Aid to Families with Dependent Children (AFDC) at the 
time of random assignment, whether the participant was on AFDC for two years or more, whether the participant was on food 
stamps at the time of random assignment, whether the participant had children under five years of age in the household, whether 
the participant had children under 18 in the household, whether the participant reported problems with her English skills, whether 
the participant reported never working for pay, whether the participant reported never working full time, whether the participant 
worked in the 12 months prior to random assignment, a cubic in the fraction of the year that the participant worked prior to 
random assignment, and 15 indicators for the experimental sites. To avoid dropping observations, if a variable was missing we 
set its value to zero and added an indicator variable equal to one when the variable was missing. 
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