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Abstract

We study a model that integrates productive and socialization efforts with

network choice and parental investments. We characterize the unique sym-

metric equilibrium of this game. Individuals underinvest in productive and

social effort. However, solving only the investment problem can exacerbate

the misallocations due to network choice, to the point that in the presence of

congestion effects the intervention may generate an even lower social welfare

than no intervention at all. We also study the interaction of parental invest-

ment with network choice. In many scenarios, intergenerational transmission

of abilities leads to a tendency towards to conformism, which aggravates po-

tential problems of network overpopulation. We relate our equilibrium results

with the existing evidence on parental occupational transmission.
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1 Introduction

Many productive processes are mediated by social interaction. The accumu-

lation of human capital (Moretti, 2004), innovation activities (Cassiman and

Veugelers, 2002), and crime (Glaeser, Sacerdote, and Scheinkman, 2003), are

all affected by the actions and abilities of others around us. When social inter-

actions have productive consequences, economic agents do not only devote a

considerable effort to develop social interactions but also to interact with the

“right” individuals. Until now, the literature has explored these two efforts

separately. On the one hand, Benabou (1993) sought to understand the pro-

cess of selecting the best neighborhood to profit from spillovers.1 On the other

hand, Cabrales, Calvó-Armengol, and Zenou (2011) studied the interaction

between (undirected) socialization and production efforts, but did so within

the confines of a single network.

This paper examines how individuals make optimal decisions about match-

ing with the best possible group in terms of enhancing their productive ability,

as well as about the intensity of socialization and their productive effort within

the chosen group. We model these choices in a tractable framework that allows

for a complete equilibrium and welfare analysis of individual decisions and

generates novel results with implications for policy interventions. Although

the model has a variety of potential applications, we focus on human capital

acquisition in environments where individuals have diverse backgrounds and

abilities.

Our model has three main components. First, it recognizes that there are

complementarities in productive investments (direct human capital acquisi-

tion) within networks. We assume multiplicative spillovers between an agent’s

effort and those of other members of his network. One can view this spillover

as the result of information sharing between the learners, which implies that

the individual marginal productivity with respect to one’s own stock of human

capital increases linearly in the knowledge stock of other network members.

An individual’s return on productive effort is idiosyncratic and can vary across

1This initial study has been expanded upon by a recent economic literature on social
networks. See e.g. books by Goyal (2012), Jackson (2010) or Vega-Redondo (2007).
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networks. Second, the amount of spillover also depends positively on the costly

socialization efforts of the individual and his network members. That is, taking

advantage of others’ information requires socialization and relies on the social-

izing intensity of all network members. One’s incentives to socialize increase

with the information everyone has, which implies complementarity between so-

cialization and productive investments. Finally, the agents also decide which

network to join. This choice depends on their relative abilities to gain surplus

in the different networks. Since these relative abilities are important, we also

devote a section to explore the allocation of parental effort to improve/expand

network-specific abilities.

The decision makers in the model can be seen as young people building

human capital. They can choose to invest in the Mainstream (M) or the Al-

ternative (F ) network. Within each group, the young person can exert two

types of costly effort: productive effort (devoting time to learning the skills

necessary to the main activity of the network) and socialization effort (going

to bars, libraries, sport clubs, or any activity that involves other young people

who are also developing skills). Within a network, each youngster does not

decide with whom he interacts, i.e. meetings are random, but the venue (say a

social club or a bar) determines the people with whom he is likely to interact.

The activities serve to share information which improves future production,

be it through shared knowledge or trust relations that are indispensable in

any productive activities. The fact that socialization is random within groups

makes our analysis more tractable than other models of social network cre-

ation. This allows us to use standard Nash equilibrium analysis. However,

the fact that agents also choose their network enhances our ability to evalu-

ate realistic implications and connect them to the scarce available empirical

evidence on occupational mobility.

We now summarize our results. First, we fully characterize the unique

symmetric equilibrium,2 both in terms of socialization and production effort as

well as for network choice. From the equilibrium characterization, a corollary

follows: the average socialization in a group is increasing in the average type

2The equilibrium is symmetric in the sense that agents with the same type choose the
same options.

2



of the group.3

Second, we compare the equilibrium outcomes with those that would be

chosen by a utilitarian social planner. As expected in a model with posi-

tive complementarities, the decentralized outcomes exhibit under-investment

in both socialization and production (Proposition 2). The results on net-

work choice are more subtle. When individual productivities are uniformly

distributed, there are more people than the socially desirable number in the

network whose distribution of types have a larger mean (Proposition 3). This

is noteworthy because it is the a priori more productive network that is over-

populated with decentralized sorting and a uniform distribution of individual

productivities. If we think of networks as different labor markets, our re-

sult implies that, contrary to conventional wisdom, there could be too much

integration into a mainstream labor market that has a productivity advan-

tage over the alternative labor market. The reason for this result is that the

more productive mainstream network creates stronger positive spillovers than

the less productive alternative network. The mainstream network therefore

also attracts types whose relative network-specific productivity in the main-

stream network is fairly low and who have a relative productivity advantage

in the alternative network. Moving these types to the alternative labor mar-

ket improves average welfare of everybody remaining in the mainstream labor

market. Notice, however, that despite their relative productivity advantage in

the alternative market, the relative productivity of those choosing to join the

alternative market is even higher. Hence individuals who voluntarily sorted

themselves into the alternative market might be adversely affected when these

lower types are moved into the alternative market. Under a uniform distri-

bution this second effect is close to zero, therefore the mainstream network is

overpopulated.

The overpopulation result depends on the distribution of talents. For al-

ternative distributions this result still occurs but does not hold over the full

3This empirical implication of the model is consistent with Currarini, Jackson, and Pin
(2009) where the number of interactions within friendship networks are increasing in size,
and Albornoz, Cabrales, and Hauk (2014) who find that more productive economics fields
are characterized by higher levels of co-authorship.
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range of parameter values.4 For all possible distribution functions the general

message is that individuals fail to sort themselves into networks in a socially

optimal way. This imposes novel constraints to the optimality of policy in-

tervention. To explore this further, we show that a government operating on

one margin only, inducing efficient socialization and production effort within a

network, may harm global efficiency by exacerbating misallocation due to net-

work choice. In the presence of within network congestion effects, this policy

intervention may reduce social welfare with respect to a situation with no pol-

icy intervention at all. This somewhat extreme outcome reveals an important

novel point of our paper. The fact that individuals do not only choose their

efforts within networks, but also the networks to which they belong (in a sense

the intensive and extensive margins of socialization) makes policy design more

challenging: there needs to be a coordination between the local within-network

choice and the overall process of network selection.

The implications of our result about sub-optimal one-margin policy inter-

ventions are far-reaching. For example, consider the case of public funding

of science. Government subsidies for scientific endeavors are sometimes done

by disciplinary bodies. They incentivize both production (by subsidizing par-

tially or totally the inputs into the research process) and socialization (e.g.

funding for conferences and workshops) within broad scientific fields. Our re-

sults show that different funding bodies need to coordinate their activities in

order to avoid excessive congestion in particularly well endowed fields. In this

sense, our results suggest that the UK situation, with seven funding bodies for

science5 may lead to less efficient outcomes than the US which only has the

NSF.6

Third, we explore an extension of our model where parents invest in de-

4In Appendix A.4, we provide conditions for overpopulation of the mainstream network
when productivities are distributed according to a Pareto distribution.

5EPSRC, Engineering and Physical Sciences Research Council; MRC, Medical Research
Council; BBSRC, Biotechnology and Biological Sciences Research Council; NERC, Natural
Environment Research Council; STFC, Science and Technology Facilities Council; ESRC,
Economic and Social Research Council; AHRC, Arts and Humanities Research Council.

6A recent report to the UK government was “believed to be considering various options,
including consolidating several of the councils or appointing a single official to oversee the
budgets of all of them. See Brumfiel (2013).
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veloping their children’ network-specific abilities (e.g. training of children for

specific occupations before they go into the labor market). Without parental

investment a child’s ability in a network is a random draw from an initially

given uniform distribution: the upper bound of this distribution might be

different for the parental and non-parental network. Parental investment to-

wards training of their child in a given network will raise the upper bound of

the distribution from which the child’s network-specific ability is drawn, hence

generating a first order stochastically dominating shift in the distribution of

the child’s ability. The first result is again a full characterization of the sym-

metric equilibrium of the parental investment game. We establish existence

and uniqueness of this equilibrium and show that parents will invest in en-

hancing their child’s ability in only one of the networks. We then examine

the conditions under which parents from both networks choose to enhance

their child’s ability in the same network regardless of their origin. We show

that if the initial distribution of abilities across networks is the same in both

networks, parents will put all of their effort to enhance their child’s ability in

the a priori most productive network (Proposition 8). This tendency of “con-

forming” to the more productive network can also arise under asymmetries in

the initial distribution of abilities across networks. In particular, if the initial

endowment of ability is higher in the family network than in the alternative

one, parents will invest in their child’s ability in the more productive network

if they had sufficient investment resources to revert the initial influence of the

parental network. This is an additional force towards overpopulation of the

more productive mainstream network M and can thereby increase the cost

of congestion, which as we have argued earlier, may also have negative feed-

back effects if policies are not well coordinated between networks. Since the

direction of the intergenerational transmission of network-specific abilities de-

pends on parents’ time endowments and relative network influence, our model

points to different forms of intervention should governments want to affect the

tendencies towards or against conformism.

We also examine a situation in which there is a dominant network with a

higher initial endowment for all groups. This may happen even if the dominant

network is not the most productive one. We refer to this case as a “cultural
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trap” which can occur as a result of inculturation via education or mass media.

If the pattern of choices is inefficient, our model highlights the importance of

providing extra resources to the inefficiently underpopulated network.7

Our model predicts that intergenerational network persistence is more

likely when the initial endowment of ability is higher in the family network

than in the alternative network. Moreover, this intergenerational network

persistence should be higher in the more profitable networks even if initial

endowments of network abilities are similar. We end this paper by showing

that these theoretical predictions are consistent with the evidence provided by

the literature on intergenerational occupational mobility, where it seems rea-

sonable to assume an initial ability advantage in the parental network.8 This

literature finds a high persistence of occupational categories within the family

across all countries studied. Moreover, the probability for an individual to fall

within the same occupational category as her/his parent is increasing in the

size of this occupational category (more network externalities). Also, intergen-

erational job persistence is higher in the more profitable jobs (network) and

switchers tend to move into more profitable jobs.9

This paper is organized as follows. Section 2 describes the model. Section

3 contains the equilibrium and welfare analysis. Section 4 describes the effects

of parental effort and relates our results to evidence from the occupational

mobility literature. Section 5 discusses some additional relevant literature.

Section 6 concludes. Most proofs are gathered in the Appendix.

2 The model - payoffs

We consider an economy with a continuum of heterogeneous individuals that

choose their productive group/network. There are two different networks with

local complementarities in productive investment, M and F . Each individual

i has a network specific individual productivity bni for n ∈ {M,F} which

7We also analyze for the sake of completeness the less plausible case where the parental
networks is in all cases less dominant than the non-parental network.

8See Long and Ferrie (2013) for the U.S. and U.K., Azam (2013) for India, Binzel and
Carvalho (2013) for Egypt and Knoll, Riedel, and Schlenker (2013) for Germany.

9Details are given in Section 4.3.
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is randomly and independently drawn for each network. These abilities are

distributed uniformly and independently in [0, Bn] for n ∈ {M,F}.10

After agents have chosen their network all agents within the same network

simultaneously decide their direct productive effort kni and their socialization

effort sni . Socialization activities allow them to take advantage of productive

efforts made by the other members of the network. Consequently, the pay-

off within a particular network n is the sum of two components, a private

component P n
i , and a synergistic component Sni derived from the interactions.

The private component P n
i has a linear-quadratic cost-benefit structure and is

given by

P n
i = bni k

n
i − 1/2 (kni )2 .

The synergistic component in our model, Sni has the feature that social-

ization is required to take advantage of the network externality, which is due

to the complementarity in productive efforts. In addition, the socialization

within each network is undirected.11 Specifically, this means that within net-

works agents only choose the amount of interaction si, but not the identity

of the individuals with whom they interact. However, we allow individuals to

choose the group of people with whom to socialize (the network). This is the

way in which socialization often occurs in reality: individuals choose the neigh-

borhoods where to live, the schools or colleges to attend, and the social ties

therein are mostly the result of random events. Researchers go to conferences,

businesspeople go to fairs, and synergistic effort is mostly generic within the

conference or fair attended; but clearly both researchers and businesspeople

carefully choose which conference / fair to attend.

Denoting by Ni be the network to which individual i belongs, synergistic

10We also study the case of abilities distributed according to a Pareto distribution. See
Appendix A.4.

11Both features of the synergistic payoffs are shared by the model in Cabrales, Calvó-
Armengol, and Zenou (2011). However, we propose a different functional form for the
benefits from synergistic returns. We will show that using our synergistic component Sni
leads to a game with a unique symmetric equilibrium within a network, while the game in
Cabrales, Calvó-Armengol, and Zenou (2011) has multiple equilibria. Equilibrium unique-
ness in socialization and productive efforts facilitate our analysis of directed network choice.
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returns are given by

Sni = abni (kni )1/2
∫
j∈Ni

(
bnj
(
knj
)1/2

gnij(s)
)
dj − 1

2
(sni )2 ,

where the parameter a captures the overall strength of synergies, s is the profile

of all socialization efforts and gnij(s) is the link intensity of individual i and

j which we will define below. Each network is composed by a continuum of

individuals N n ⊂ R for n ∈ {M,F} , where the measure of the set N n is Nn.

Observe that synergistic returns are multiplicative in individual productiv-

ity parameters and in the square root of productive efforts additively separable

by pairs, hence productive efforts are complementary.12 The specific functional

form implies that synergistic returns are symmetric in pairwise productive ef-

forts and that the synergistic returns exhibit constant returns to scale to over-

all productive efforts. Similar assumptions are imposed on the link intensity

which captures to which extent individuals take advantage of these productive

network externalities. These assumptions are:13

(A1) Symmetry: gnij(s
n
i , s

n
j ) = gnji(s

n
j , s

n
i ), for all i, j, n;

(A2) The total interaction intensity of individual i in network n exhibits con-

stant returns to scale to overall inputs in socialization efforts and sym-

metry:
∫
j∈Ni g

n
ij(s

n
i , s

n
j )dj = 1

Nn

∫
j∈Ni (sni )1/2

(
snj
)1/2

dj;

(A3) Anonymous socialization: gnij(s
n
i , s

n
j )/
(
snj
)1/2

= gnki(s
n
k , s

n
i )/ (snk)1/2, for

all i, j, k;

These assumptions imply a specific functional form of gnij(s
n
i , s

n
j ), which we

state in the following result:

12Complementarity in productive returns in Cabrales, Calvó-Armengol, and Zenou (2011)
is modeled by synergistic returns being multiplicative in productive efforts and additively
separable by pairs.

13While Cabrales, Calvó-Armengol, and Zenou (2011) also model symmetric and anony-
mous socialization, which is the key for generic socialization, they assume that link intensity
satisfies aggregate constant returns to scale.
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Lemma 1. Suppose that, for all s 6= 0, the link intensity satisfies assumptions

(A1), (A2) and (A3). Then, the link intensity is given by

gnij(s
n
i , s

n
j ) =

1

Nn
(sni )1/2

(
snj
)1/2

(1)

Proof of Lemma 1: Fix s. Combining (A1) and (A3) gives

(snk)1/2 gnij(s
n
i , s

n
j ) =

(
snj
)1/2

gnij(s
n
i , s

n
k)

Integrating across all j’s and using (A2) gives gnij(s
n
i , s

n
k) = 1

Nn (sni )1/2 (snk)1/2.

Notice that given (A2) and given a level of socialization effort for all

members of the network, total socialization of an individual in a network∫
j∈Ni g

n
ij(s

n
i , s

n
j )dj is independent of the size of the network. In other words,

individuals will not have more contacts in larger networks if all their mem-

bers choose the same sni independent of size. One could easily accommodate

other assumptions, where socialization is either easier or more difficult in larger

networks by using 1/ (Nn)β for some β different from 1.

Combining the private returns and the network externality yields individual

payoffs in network i as:

uni = P n
i + Sni

= bni k
n
i + abni (kni )1/2

∫
j∈Ni

(
bnj
(
knj
)1/2

gnij(s)
)
dj − 1

2
(kni )2 − 1

2
(sni )2(2)

We assume that individuals can only belong to one single network. This

assumption is consistent with a number of potential applications: most people

have only one profession to which they dedicate themselves; academics gener-

ally do not work simultaneously in very distinct fields; top athletes generally

only excel in one sport; and in spite of “Ingres’ violin” the same thing gener-

ally holds for artists. It can also be justified formally within the model in a

variety of ways. For example, by adding a sufficiently large fixed cost to join

a network which could arise from training costs.

Finally, the timing of events is as follows: each individual i first chooses
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in which network to participate, and then takes the decisions over ki and si

simultaneously.

3 The equilibrium

We solve the game by backward induction. We compare the individual opti-

mum with the social optimum in which a social planner maximizes the sum of

individual utilities. We first solve for the optimal efforts within a network and

then let individuals sort themselves (or be sorted by a social planner) into the

networks.

3.1 Choice of production and socialization efforts

For each individual we have to find the optimal productive and socialization

effort within each network (we suppress the superindex referring to the net-

work when there is no ambiguity). For the individual choice problem - the

decentralized problem - this is the choice of ki and si that maximizes (2). The

social planner, on the other hand, chooses ksi and ssi to maximize the sum of

individual utilities given by

∫
i∈NM∪NF

ui(bi)di =

∫
i∈NM∪NF

(
biki + abi

√
kisi

∫
j∈Ni

bj
√
kjsj

N i
dj − 1

2
k2i −

1

2
s2i

)
di

(3)

Proposition 1. Let a2b2
2
< 1. Then both the individual choice problem and

the social planner choice problem have a unique (interior)14 solution which for

each individual depends on the individual’s own productivity and is multiplica-

tive in a parameter common to all individuals in the network. Hence

ki = bik and si = bis for all i (4)

ksi = bik
sand ssi = bis

s for all i (5)

14The individual choice problem also has a trivial partial corner solution where si = 0.
If nobody socializes, socialization is not profitable. However, this equilibrium is not stable,
since the marginal utility of si is positive for any (even infinitesimally small) average level
of socialization in the network. We therefore ignore this solution in our analysis.
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where the optimal common network parameters for productive and socialization

effort are given by

k =
4

4− a2b22
(6)

s =
2ab2

4− a2b22
(7)

for the individual choice problem and by

ks =
1

1− a2b22
(8)

ss =
ab2

1− a2b22
(9)

for the social planner.

The resulting individual utilities are

ui(bi) = 2b2i

(
4 + a2b2

2
)

(
4− a2b22

)2 (10)

in the individual choice problem and

usi (bi) =
b2i
2

(
1

1− a2b22

)
. (11)

for the social planner solution.

Proof. See Appendix

From Proposition 1, it is easy to see that individuals fail to internalize

the positive externality of their investment decisions on the other members of

their network. Therefore, the individual utility resulting from the decentral-

ized solution (10) is lower than the individual utility resulting from the social

planner solution (11):

Proposition 2. Individuals underinvest in both productive and socialization

effort (ks > k and ss > s)

11



The common network parameters are increasing in the network parameter

a and average network squared productivity b2 and hence in average network

productivity b. Since individual socialization is si = bis, average socialization

is bs. As a corollary of Proposition 1 we then have

Corollary 1. Average socialization, bs, is increasing in b.

Corollary 1 implies that individuals within more productive networks so-

cialize more on average, an empirical implication of our model which is consis-

tent with the evidence presented in Currarini, Jackson, and Pin (2009) showing

that the number of interactions within friendship networks are increasing in

size. In Albornoz, Cabrales, and Hauk (2014) we provide some further em-

pirical evidence for this prediction based on analysis of co-authorships within

economics fields. Academic life is clearly an example of a situation in which

an individual’s productive outcomes are affected by the abilities and activ-

ities of other researchers involved in the same production process. Hence

socialization decisions become key productive choices. Moreover academics

choose their field of research: their network. Using data scrapped from the

IDEAS-RePEc website Albornoz, Cabrales, and Hauk (2014) establish that

economic researchers who work in more productive fields15 tend to have more

co-authors.16

3.2 Choice of network

Having found the second-stage utilities, we can now solve the first-stage in

which individuals sort themselves into one of the two networks M and F .

We will show now that independently of whether productive or socialization

efforts within the network are chosen by individuals (decentralized solution)

or by the social planner, there is a unique dividing line bMi = CbFi such that

15Albornoz, Cabrales, and Hauk (2014) use JEL identifiers at the uppermost level to
associate an author with a field. For every individual author, they construct a vector
with the sum of all of the JEL information contained in her papers, divided by field. An
author’s field is defined as the one in which she has the maximum value in this vector. Field
productivity is measured by the share of top 10% of the IDEAS-RePEc authors in the field.

16The measure for co-authorship is constructed scrapping data from CollEc, a RePEc
service of rankings by co-authorship centrality for authors registered in the RePEc Author
Service.
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individuals who fall below the line will choose network F , while individuals

above the line will choose network M . Such a dividing line implies that

bM2 = E
(
bM

2

i

∣∣bMi > CbFi

)
bF 2 = E

(
bF

2

i

∣∣bMi < CbFi

)
We will denote the slope of the dividing line by CP if effort choices in the

networks are decentralized and by CE if the social planner implements efficient

effort choices in the networks.

When deciding which network to join, individuals take the network choices

of others as given and choose the network that grants them the maximal utility

given optimal investment choices within the network, which could result from

the decentralized or the centralized solution derived in the previous section.

Under the decentralized solution, individuals choose network M if and only

if ui(b
M
i ) ≥ ui(b

F
i ) hence whenever

2bM
2

i

(
4 + aM

2
bM2

2
)

(
4− aM2bM2

2
)2 ≥ 2bF

2

i

(
4 + aF

2
bF 2

2
)

(
4− aF 2bF 2

2
)2 (12)

If the dividing line exists it is defined when both terms of (12) are equal or

equivalently when

bMi = bFi

√√√√√√
(

4 + aF 2bF 2
2
)

(
4 + aM2bM2

2
)
(

4− aM2bM2
2
)2

(
4− aF 2bF 2

2
)2 = bFi CP (13)

Hence CP is given as the fixed point of

CP =

√√√√√√
(

4 + aF 2bF 2
2
)

(
4 + aM2bM2

2
)
(

4− aM2bM2
2
)2

(
4− aF 2bF 2

2
)2 (14)

If ss and ks are induced (say via subsidies) by the social planner, people would
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choose network M if and only if usi (b
M
i ) ≥ usi (b

F
i ) and the dividing line should

it exists would solve

CE =

√√√√1− aM2bM2
2

1− aF 2bF 2
2 (15)

Lemma 2. Both CP defined by (14) and CE defined by (15) exist and are

unique.

Proof. See Appendix A.2.

We now check whether the decentralized and centralized networks reach

a social optimum. The following results show that in both cases the social

planner would choose a cutoff that lies to the right of the cutoff chosen by the

individuals, i.e. C∗E > CE and C∗P > CP where C∗E is the cutoff a social planner

would choose when effort choices in the networks are centralized while C∗P is

the cutoff the social planner would choose when effort choices in the networks

are decentralized.

Proposition 3. If BM > CEB
F , social welfare is increasing in C for all

C ≤ CE and C ≤ CP .

Proof. See Appendix A.3.

Proposition 3 implies that with a uniform distribution of individual tal-

ent, too few people join the F network, independently of whether there is a

social planner or not.17 Interestingly, when people freely sort themselves into

networks, it is the more efficient network that becomes overpopulated. For ex-

ample, consider an immigrant who has to decide between integrating into the

mainstream labor market or remaining within the immigrant labor network,

which is less efficient overall. Contrary to popular wisdom, Proposition 3 im-

plies excessive integration into the mainstream labor market. A similar claim

could be made for the scientific community that has to sort themselves into

theoretical and applied research activities. In the case of uniformly distributed

17The result was derived under the assumption that when BM > CEB
F or BM > CPB

F

respectively. If the corresponding assumptions were violated we would get the opposite,
namely an underpopulated M network.
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individual productivities and assuming that productivity in applied research

has a higher upper bound than in applied, the applied research community

will be overpopulated and too few people will voluntarily classify themselves

as theorists.

One can explain the result of proposition 3 as follows. At either CE or

CP , individuals at the margin are indifferent between both networks. For

this reason, moving them from one network to the other does not affect their

welfare. However, it affects average welfare in these networks by affecting

the average network type. For the F network this effect is almost non-existing

because average type does not depend on C under the uniform distribution (see

equation (41) in Appendix A.2). In the M network the average type improves

with C (see equation (43) in Appendix A.2) and hence average welfare improves

when the indifferent and close to indifferent M -types in the network are moved

to the F -network. Society would be better off had they joined the less efficient

F network. This occurs independently of whether productive and socialization

efforts are generated in a socially optimal way, or in a decentralized way.

However, the stark result that the efficient network is overpopulated hinges

on the assumption that individual productivities are uniformly distributed.

Appendix A.4 illustrates that social welfare might be increasing or decreasing

in C at C = CE when individual productivities follow a Pareto distribution.

This happens because with a Pareto distribution the average type in the less ef-

ficient F network decreases with C while the average type in the more efficient

M network increases with C.18 Hence when moving the close to indifferent

M -types to the F network, average welfare in the F network falls because

average type decreases while average welfare in the M network increases be-

cause average type increases. The overall effect on social welfare is therefore

ambiguous. It also depends on the parameters aF and aM that capture the

overall strength of the synergies in the networks. Overpopulation of the more

efficient network though does occur in many cases.19

18This can be seen by differentiating equations (58) and (59) in Appendix A.4 with respect
to C.

19In the appendix A.4 we give a sufficient condition for the M network to be overpopulated
with a Pareto distribution, when the distribution’s tail is sufficiently thin. We also show that

for constant aM
2

aF2 < 1 underpopulation of the more efficient M network occurs if synergistic
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Although the direction of overpopulation is conditional on the distribution

of abilities, the general message of our analysis is relevant in its own right: de-

centralized network selection involves sub-optimal network composition. Thus,

the social optimum is achieved when the central planner intervenes at both

margins, i.e. she/he induces optimal efforts within the networks and chooses

the optimal dividing line C∗E. By Proposition 3 C∗E > CE, however, the propo-

sition is silent towards the position of C∗E with respect to CP . This is an

interesting question, since CE requires intervention by the social planner when

choosing productive and socialization efforts within a network, while CP is

the cutoff chosen by individuals in the absence of any intervention. Can no

intervention be better than intervening at one margin only? We turn to this

question in the following section.

3.3 Global efficiency

In this section we first show that inducing the optimal socialization and pro-

duction effort can induce over-congestion. Then we show that if congestion is

costly, local efficiency for a given network would reduce global efficiency.

3.3.1 Optimal socialization and production effort can induce exces-

sive congestion.

We want to show that there are parameter values for which a decentralized

choice of network, together with an optimal choice of socialization and pro-

duction efforts can lead to over-congestion in the mainstream network M .

Proposition 4. Suppose aM = aF and BM = BF + ε. For ε small enough we

have that CE < CP < 1 < C∗E.

Proof. Suppose first that aM = aF and BM = BF . It is easy to see that in

the absence of any asymmetries C∗E = CE = CP = 1. It is then optimal, both

socially and individually, for individuals to sort into the network where they

have the higher productivity draw bji . Now, suppose we give a small advantage

to network M, by increasing BM . Since the F parameters are left unchanged

returns are sufficiently low (aF sufficiently small).
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also the utility for an individual from joining the F network is unaffected (since

average type in the F network is independent of C). From the definitions of

CE and CP it is easy to see that increasing BM will reduce CE and CP : for a

fixed C, the right hand side of both defining equations (14) and (15) decrease

if BM increases. Hence to preserve the equality, the variable C has to fall.

An increase in BM increases average type in the M network, and therefore

it draws more people into this network. However, individuals with lower bMi
than before the increase in BM are now drawn into the M network, and those

individuals lower the average type in the M network, which eventually stops

the inflow. This effect is stronger when efforts are induced optimally since

the optimal effort choices allow individuals to take more advantage of the

improved parameters in the M network, hence CE < CP < 1 when aM = aF

and BM = BF + ε, for ε small enough.

From the point of view of the social planner, when aM = aF and BM > BF

she wants a more restrictive M network, because the marginal type she pushes

into the F network does not affect the average type in the F network, while

it improves the average type in the B network. From the above discussion it

is immediate that CE < CP < 1 < C∗E and the result follows.

CE < CP < 1 < C∗E corresponds to situations in which reaching within

network efficiency induces a larger number of individuals joining the main-

stream network. Under these circumstances, the regulating government oper-

ating only on one margin is “wasting” part of the effort because it generates a

counter reaction on the other margin it does not control and induces an even

more severe overpopulation of the more efficient network than in the absence

of any intervention. We next show that this can lead to a reduction in global

efficiency if congestion is costly.
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3.3.2 Congestion can reduce global efficiency

We model congestion as follows. The utility of agents in the more crowded

network M is multiplied by the following function f
(
C, bMi

)
f
(
C, bMi

)
=

 1 if bMi < C∗BF

(C∗BF )
2

bM
2

i

+ (1− v (C))

(
1− (C∗BF )

2

bM
2

i

)
if bMi ≥ C∗BF

(16)

with f ′C
(
C, bMi

)
≥ 0 which captures that congestion is more harmful the larger

the population in M since there are fewer people in M the larger is C. Observe

that (16) takes away part of the welfare of bMi types above C∗BF and make

it closer to the welfare of type bMi = C∗BF when C is progressively smaller.20

This way of modeling congestion has the advantage that it does not alter

our equilibrium analysis. The reason is that it takes welfare away only from

agents that are “supramarginal”, i.e., they will choose to go to the M network

anyway. This is admittedly artificial, but the point of this proposition is only

to highlight a theoretical possibility, and this particular modeling device is the

simplest one that delivers the conclusion in a transparent way.

Proposition 5. Suppose congestion costs are given by f
(
C, bMi

)
defined in

equation (16), and also that there is no intervention in network choice. An in-

tervention designed to optimize the si, ki choice within network, taking as given

the equilibrium network choice might lead to a lower welfare than no interven-

tion. That is, there are parameter values for which the welfare under socially

optimal socialization and productive efforts within networks is lower than the

welfare with individually optimal choice of both socialization and productive

effort.

To prove Proposition 5 we first derive an expression for welfare.

Lemma 3. With congestion welfare when the government induces efficient

20Other ways that take surplus away from high bMi and are also related to C would also
work.

We can also have for symmetry congestion in the other network but that would not change
things. So for notational simplicity we apply congestion only in the large network.
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productive and socialization efforts within networks is given by

wE(C) =
CBF 3

8BM

[(
1

1− aF 2bF 2
2

)
+

(
1

1− aM2bM2
2

)
C2

]

+

(
1− C BF

BM

) (
CBF

)2
2

(
1

1− aM2bM2
2

)
+ (1− v (C))GE (C)

where

GE (C) =
1

BFBM

(∫ BF

0

∫ BM

CBF

bM
2

i

2

(
1

1− aM2bM2
2

)
dbMi db

F
i

)
− (17)

1

BFBM

((
BM − CBF

)
C2BF 3

2

(
1

1− aM2bM2
2

))

while welfare in the absence of government intervention is given by

wP (C) =
CBF 3

2BM


(

4 + aF
2
bF 2

2
)

(
4− aF 2bF 2

2
)2 +

(
4 + aM

2
bM2

2
)

(
4− aM2bM2

2
)2C2


+

(
1− C BF

BM

)(
CBF

)2 2
(

4 + aM
2
bM2

2
)

(
4− aM2bM2

2
)2 + (1− v (C))GP (C)

where

GP (C) =

∫ BF

0

∫ BM

CBF

2bM
2

i

BFBM

(
4 + aM

2
bM2

2
)

(
4− aM2bM2

2
)2dbMi dbFi − (18)

(
1− C BF

BM

) (
CBF

)2
2

4
(

4 + aM
2
bM2

2
)

(
4− aM2bM2

2
)2

Proof. See Appendix B
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To complete the proof of Proposition 5 we only need to find a function

v(C) and some parameter values such that no intervention gives a higher

welfare than intervention on one margin only inducing optimal productive and

socialization efforts within a network. This is done in Lemma 4. It assumes

that congestion only has a bite in extremely crowded networks.

Lemma 4. Let v (C) = 1 for C close to zero, and for C bounded away from

zero v (C) = 0. Then if 1 − aM
2 BM

4

9
≈ 0 (sufficiently small) and BM big

enough, w(CE) < w(CP )

Proof. See Appendix B

Proposition 5 points to the possibility that intervention at one margin

might be worse than no intervention. Returning to our immigrant example,

if the immigrant network has clearly a productivity disadvantage and there

are some congestion costs, the absence of any government intervention can be

socially better than the existence of local intervention via transfers and taxes

that induce the efficient effort levels within the networks.21

4 Parental influence on the child’s private re-

turn to the network

The theory developed so far can be extended to study the evolution of differ-

ent occupational or cultural groups through intergenerational transmission of

group-specific abilities. If parents can induce their children to choose a par-

ticular network, which one will they choose? The answer is not obvious, even

for purely altruistic parents who have no direct preferences to induce their

children to follow in their footsteps. These altruistic parents internalize the

welfare of their children in different networks and would like to induce their

child to join the most beneficial network. If the non-parental network is more

21A parallel result is found in education literature in models in which overall student effort
is influenced both by parental effort and the school environment. In this context Albornoz,
Berlinski, and Cabrales (2014) have shown that a reduction in class size leads to lower
parental effort and hence little (or no) improvement in overall educational performance.
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productive than the parental network parents may prefer their children to em-

brace a network different from their own. However, whether or not they can do

so also depends on how easy it is to enhance their child’s ability in the different

networks. In which network-specific abilities parents invest for their children is

an interesting question because if all parents induce their children to join the

same group, say the most productive one, then social cultural tendencies may

result in further overpopulation of the mainstream network and exacerbate

its potential cost of congestion. In this section, we show that in many plau-

sible scenarios, intergenerational transmission of abilities leads to a tendency

towards conformism, which pushes towards overpopulation of the mainstream

network M, with the potentially negative consequences on welfare we have dis-

cussed in section 3.3. In section 4.1, we introduce parental influence and prove

existence and uniqueness of the new sub-game. In section 4.2, we study the

different tendencies in society that emerge in our framework. Finally, in sec-

tion 4.3, we discuss some evidence on occupational intergenerational mobility

that is consistent with our theoretical results.

4.1 The parental influence subgame

Parents invest in improving/expanding the abilities of their children in one or

both of the networks.22 More precisely, they can change the support of the

distribution of productivities bls from which bli, the child’s productivity in net-

work l, is drawn. As children choose networks based on their own productivity

in each network, one can view parental influence as a process through which

relative productivities are affected in the direction parents decide. A realis-

tic consequence of our modeling choice is that parents cannot fully determine

which network their children eventually select.

We study the case in which network-specific productivity (bl) are dis-

tributed according to a uniform distribution described by:

bli ∼ U
[
0, elpi

]
,

22With this assumption we depart from direct socialization efforts aiming at affecting
children preferences, a possibility explored in Bisin and Verdier (2001).
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where

elpi =

{
Ak + xlpi , if the parental network k = l

Ak + xlpi if the parental network k 6= l
(19)

and xlpi summarizes the productivity-enhancing parental effort towards child

i in network l. Positive parental effort in any network induces a first order

stochastically dominating shift in the distribution of abilities for that network.

Parameters (Al, Al) capture the initial endowment of ability in the non-

parental and the parental networks, respectively. Consider a parent belonging

to network F . In this case, AF summarizes how the parental network F (e.g. a

neighborhood, a religious community, an occupation or any particular cultural

identity) influences the distribution of abilities from which his child i will draw

his ability in the parental network bFi . However, the other network, in this case

M , may also favor the acquisition of its specific abilities through, for example,

mainstream education or mass media. This is captured by AF which is the

upper bound for the ability distribution of an F-parent’s child in network

M . Both parameters (Al, Al) may differ in each network and their different

combinations can describe a rich variety of cultural or organizational contexts

in society. For example, a society characterized by a dominant culture/group

may be described as a case where AF > AF and AM < AM . Similarly, a

society where the influence of the parental network is specifically strong would

have AF < AF and AM < AM .

For parents, the decision to influence their children’s network selection

consists in choosing xFpi and xMpi to maximize:

E

max

2bF
2

i

(
4 + aF

2
bF 2

2
)

(
4− aF 2bF 2

2
)2 , 2bM2

i

(
4 + aM

2
bM2

2
)

(
4− aM2bM2

2
)2

 (20)

subject to the constraint that total effort cannot exceed an exogenous time

endowment (K):23 such as

xFpi + xMpi = K. (21)

Our parents are perfectly altruistic and do not want to impose any particu-

23In principle K could vary across networks and parents. However, endogenizing K would
complicate the analysis with no additional insights.
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lar network per se. They only care about their children’s welfare, irrespectively

of whether they join their same own network or not.24 As discussed below, al-

truistic parental involvement may generate intergenerational network mobility

within the same family.

We proceed by finding the equilibrium levels of xFpi and xMpi . As the time

allocated to enhance the abilities in the mainstream network (xMpi ) may be

expressed as K−xFpi , the exercise boils down to finding the optimal xFpi . Notice

that xFpi and xMpi are individual decisions and therefore parents take bF 2
2

and

bM2
2

as given. This allows us to ease the analysis by defining the parameters

F and M that do not depend on the individual’s characteristics as:

F =

(
4 + aF

2
bF 2

2
)

(
4− aF 2bF 2

2
)2 ,M =

(
4 + aM

2
bM2

2
)

(
4− aM2bM2

2
)2 (22)

Thus, parents choose xFpi and xMpi to maximize

E
[
max

[
2bF

2

i F, 2bM
2

i M
]]

(23)

subject to

xFpi + xMpi = K and 0 ≤ xFpi ≤ K (24)

In Appendix C we show that equation (23) for F -parents can be expressed

as:25

24This is another difference with the literature on cultural transmission, which typically
assumes that parents are imperfectly altruistic and encourage their children to adopt their
cultural traits (their own network). See Bisin and Verdier (2010) for a review.

25For M -parents the equation becomes

g
(
xFpi
)

=


2F

(A+xF
pi

)
3

6(A+K−xF
pi

)

√
F
M + 2M

(A+K−xF
pi

)
2

3 if xFpi <
K+

(
A−A
√

F
M

)
1+
√

F
M

2M
(A+K−xF

pi
)
3

6(A+xF
pi

)

√
M
F + 2F

(A+xF
pi

)
2

3 if xFpi >
K+

(
A−A
√

F
M

)
1+
√

F
M

(25)
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g
(
xFpi
)

=


2F

(A+xFpi)
3

6(A+K−xFpi)

√
F
M

+ 2M
(A+K−xFpi)

2

3
if xFpi <

K+
(
A−A
√

F
M

)
1+
√

F
M

2M
(A+K−xFpi)

3

6(A+xFpi)

√
M
F

+ 2F
(A+xFpi)

2

3
if xFpi >

K+
(
A−A
√

F
M

)
1+
√

F
M

(26)

In the Appendix C.1 we prove that g
(
xFpi
)

is convex in both branches

(Lemma 14). This implies that obtaining the maximum simply requires to

compare the value of this function at the extreme points of its two branches.

However, we need to take into account that parental investment cannot be

negative, which implies that for some parameter values only one of the two

branches exists. In these cases we only need to compare g (0) with g (K) in

the only existing branch to find the optimal solution and parents will invest

their entire time K in one network only. In the appendix, we show that both

branches of g
(
xlpi
)

exist if the switching value from one branch to the other

is neither negative nor bigger than the time endowment K which leads to the

conditions

K + A

A
>

√
F

M
>

A

K + A
for F parents (27)

and
K + A

A
>

√
M

F
>

A

K + A
for M parents (28)

Recall that F and M capture the common utility parameters for all individ-

uals in network F and M respectively and individual utility is multiplicative

in these terms. Hence, F and M capture the network’s productivity indepen-

dently of individual productivity. The conditions that both branches of the

parental optimization problem exist put restrictions on the relative network

productivities with respect to the relative upper bounds from which the child’s

productive abilities in each network are drawn. K+A describes the maximum

possible upper bound for a child’s ability in the non-parental network which is

achieved when parents invest all their resources in the non-parental network.

Similarly, K + A captures this maximum possible upper bound for a child’s

ability in the parental network. Conditions (27) and (28) say that in order for

24



both branches of the parental objective function to exist, the (square-root of

the) relative common network returns (parental network/ non-parental net-

work) have to be bounded from above by the relative upper bounds of the

talent distribution if parents invested only in the non-parental network and

from below by the relative upper bound of the talent distribution if parents

invested only in their parental network. In other words network productivity

(F and M) has to be fairly similar in both networks. It can be more dissimilar,

the higher the available investment resources K.

When these conditions are satisfied, there exists the possibility of an inte-

rior solution in which parents invest in both networks. However, the discussion

in Appendix C.2 states that this is not an equilibrium result.26 This implies

that parents will fully invest K in one network only. However, for some param-

eter values it is optimal for parents to always invest in the parental network

and for other values in the non-parental network. Proposition 6 states these

conditions. The conditions are derived by comparing the utility from investing

in the parental network to the utility of investing in the non-parental network

and we need to distinguish the cases where both branches of the objective

function exists (network productivity across networks is fairly similar) and

where only one branch exists.

Proposition 6. The decisions on cultural parental involvement are as follows:

1. F-parents will fully invest in their own network F if condition (27) is

not satisfied and

A3(
A+K

) + 2
F

M

√
F

M

(
A+K

)2
>

(A+K)3

A
+ 2

F

M

√
F

M
A

2
(29)

or if condition(27) is satisfied and

A3(
A+K

) + 2
F

M

√
F

M

(
A+K

)2
>

(
F

M

)2
A

3

(A+K)
+ 2

√
F

M
(A+K)2

(30)

26The lack of interior equilibria is probably not an essential result of our framework and
seems to be driven by the specific functional forms we choose for parents to enhance their
children’s network abilities and by the absence of externalities across networks.
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while they will fully invest in the other network M in the remaining cases.

2. M-parents will fully invest in their own network M if condition (28) is

not satisfied and

A3(
A+K

) + 2
M

F

√
M

F

(
A+K

)2
>

(A+K)3

A
+ 2

M

F

√
M

F
A

2
(31)

or if condition(28) is satisfied and

A3(
A+K

) + 2
M

F

√
M

F

(
A+K

)2
>

(
M

F

)2
A

3

(A+K)
+ 2

√
M

F
(A+K)2

(32)

while they will fully invest in the other network F in the remaining cases.

Proof. Condition (30) says that investing fully in F is better than investing

fully in M for F-parents, while condition (32) says that investing fully in M

is better than investing fully in F for M-parents when both branches of the

parental objective function as described by (75) exist. When only one branch

exists, it is the first branch for M -parents and the second branch for F -parents.

Comparing the corners in each branch gives inequalities (29) and (31).

The conditions for the different type of parents are in reality identical: they

only differ in the way relative network productivity enters in the expression.

Relative productivity always enters as productivity of parental network/ pro-

ductivity of non-parental network. While these conditions look complicated,

they behave as one expects intuitively. When network productivity differs

significantly across networks the condition to invest in their parental network

((29) for F parents and (31) for M parents) is more easily satisfied the bigger

the relative parental/non-parental network productivity, the bigger the ini-

tial parental network productivity upper bound A and the lower the initial

non-parental network productivity bound A.27 The effect of expanding the

27To see this notice condition (29) for F-parents can be rewritten as

2
F

M

√
F

M

((
A+K

)2 −A2
)
>

(
(A+K)

3

A
− A3(

A+K
)) (33)
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investment resources K is likely to tighten the condition unless A ≪ A, i.e.

the non-parental network has a huge initial productivity advantage, in which

case the condition is unlikely to be satisfied in the first place.28

Higher K makes it more likely that both branches of the parental objec-

tive function exist in which case parents will invest in their own network if

conditions (30) for F -parents and (32) for M -parents hold. Analytically, it

cannot be shown how these conditions change with the underlying parameters

A, A and K without making stark assumptions on how these parameters dif-

fer. Differences in these observable parameters will give rise to different cases

of cultural transmission as we will show in subsection 4.2 where we will give

an intuitive explanation for the different outcomes. Before doing so we need

to prove the existence of an equilibrium with endogenous parental influence

formally.

Finally, we prove existence. This requires distinguishing between different

cases depending on which corner is chosen: (i) everybody invests in the same

network or (ii) parents invest in their own network only.29 In both cases, we

have to show that the defining equation of CP given by (14) has a fixed point.

The only difficulty consists in calculating bM2 and bF 2 , since we need to take

into account that children coming from different networks may face different

uniform distributions. In Appendix C.3, we calculate bM2 and bF 2 taking into

account the proportions of F/M children coming from F/M parents, derive

an expression of CP and obtain G (C). Then, we show that G (C) has a fixed

The LHS is clearly increasing in F
M , hence the condition is easier to satisfy. LHS increases

in A while the RHS decreases, hence the condition easier to satisfy for high A
2
. The RHS

is increasing in A, so the condition is harder to satisfy.
28To see this for F-parents rewrite (33) as

2
F

M

√
F

M
>

(
(A+K)3

A
− A3

(A+K)

)
((
A+K

)2 −A2
)

Easy calculus show that how the RHS changes with K depends on the sign of

2K3 + 3K2A+ 7K2A+ 12KAA+ 4KA
2

+ 3A2A+ 6AA
2 −A3

which tends to be positive unless A≪ A.
29It is not possible to have both types of parents investing in the opposite network.
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point, which proves:

Proposition 7. An equilibrium with endogenous parental influence exists and

is unique.

4.2 Tendencies in intergenerational cultural transmis-

sion

Parents influence the way in which the distribution of society into different

groups evolves. According to Proposition 6, different combinations of the

overall productivity ratio, the time endowment, and the relative initial ability

determine in which network the parents invest effort to enhance their children’s

abilities.

Symmetric network influence

Consider first a case in which the parental and non-parental networks are sym-

metric in terms of how they influence the distribution of network-specific abil-

ities (Al = Al ∀l). As the only difference between networks is overall network

efficiency, parents invest in the most a priori profitable network irrespectively

of their time endowment. This is stated in the following proposition:

Proposition 8. If Al = Al then

xFpi = 0 and xMpi = K if M > F

xFpi = K and xMpi = 0 if M < F

Proof. See Appendix C.4.

Thus, in absence of asymmetries in network influence, there exists a general

tendency toward conformism where parents spend all their influence effort in

generating abilities for the most profitable network. Notice that the reasons

for anyone joining the “alternative” network are purely idiosyncratic. This

tendency towards conformism is important in the light of our previous result
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about overpopulation in the mainstream network, as it suggests that the in-

tergenerational transmission of ability may exacerbate potential problems of

congestion. Importantly, conformism is not confined to symmetric network

influence.

Asymmetric network influence

We allow now for differences in network influence. Given the large number of

parameters we make our point through numerical simulations. For simplicity,

we reduce the spectrum of parameters by defining y = F/M ∈ (0,∞) as

the ratio of exogenous efficiency of the networks, tl = Al/Al ∈ (0,∞) as

the ratio of the influence of parents’ network to “the others”’ network; and

z = K/Al ∈ (0,∞) as a parameter that captures time endowment restrictions.

From the perspective of the child, there are two possibilities. Either their

parents’ network dominates or he receives more influence from the other net-

work. To capture the case of parents’ network dominance, it suffices to assume

A
l
/Al > 1∀l. To explore the resulting social inculturation pattern, notice that

unconstrained parents want their children to join the most productive net-

work. For this reason, K becomes a key parameter in the presence of network

influence asymmetry.

If the time endowment (K) is large enough as to revert the neighborhood’s

influence (t), then parents in the disadvantaged network will invest in improv-

ing their children’s skills to succeed in the most productive network. This is

illustrated in Figure 1 where we depict F -parents’ decision of investing in M

network. While the x-axis represents the variable F/M , the y-axis represents

K/A and the z-axis represents t. Notice that the M -network being preferred

by F -parents requires that the overall productivity of the network F must

be highly inferior to the M network (i.e. a relatively low value of F/M).

This is, as the M -network overall productivity relative to the F−network in-

creases, it is more likely to find F -parents investing in M ’s network education.

This condition is relaxed for higher K/A and lower values of t. Naturally,

whenever F -parents have incentives to induce their child to choose the M -

network, M -parents will also do so. Thus, our model generates societies where

parents voluntarily promote intergenerational differences within families and
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Figure 1: Cultural conformism under asymmetric network influence: F-parents
investing in the M-network

cultural conformism emerges in equilibrium even under asymmetric network

influence.30

Conformism is not always the outcome. For low levels of the time endow-

ment (K), parents cannot revert the initial influence of the child’s environment

(t). In this case, the society is characterized by intergenerational transmission

of within family abilities and low mobility between networks, resulting in frag-

mentation into two well defined networks. In these societies, intergenerational

differences within families are purely associated with idiosyncratic characteris-

tics of children. For example, switching networks involve children with special

abilities in specific activities required in the non-parental network.

We now consider the case of an influential established network (not nec-

essary advantageous in terms of profits). This corresponds to societies where

the institutions are designed to promote a dominant, say M , network.31 This

30Note that if F
M < 1, and K is high enough, we have the same result but with all parents

inducing their children to choose F −Network.
31In many modern societies schools enhance the skills and abilities required by mainstream

activities (the M-network in our model).
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Figure 2: Cultural conformism under an hegemonic network: F-parents in-
vesting in the M-network

is captured by assuming AF > A
F

and AM < A
M
. If network M is not only

dominant but also the most efficient one, parents from both networks trivially

will spend all their education effort to improve their child’s productivity in net-

work M . The case where the M -network is not the most productive one, (i.e.:

F > M) is more interesting: parents in both networks may be trapped into

investing in the preponderant, yet least productive, network M if the time

endowment (K) is not large enough. While the former case is similar (but

stronger) to the cases associated with conformism, the latter case corresponds

to societies where rational parents tend to invest in the less profitable but

dominant network in society. Figures 2 and 3 display the graphic examination

of these two cases:

Figure 2 illustrates the case in which parents from the F -network invest

in capacities to be part of the M -network for 0 < tF < 1, while Figure 3

displays the case in which parents from the M-network invest their education

effort in their own network abilities for tM > 1. Naturally, both parents invest
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Figure 3: Cultural trap under with an hegemonic network: M-parents investing
in the M-network

in network M -abilities for F/M < 1. Surprisingly this might happen even if

F/M ≥ 1. As Figure 2 shows F -parents are willing to invest in the inferior

network M when K/A is sufficiently low or the dominant network’s influence is

relatively too strong (i.e.: tF → 0). Similar results hold for M -parents (Figure

3) but in this case, the strong influence of the predominant network is captured

by tM → ∞. Notice that if the M -network is deeply rooted in the society’s

culture (this is, if tM . → ∞, tF . → 0), our model can explain societies where

parents might choose not to invest in educating their children in the most

profitable network. Investment in low productivity networks is imposed by

cultural factors, trapping the society in a low productivity cultural dynamics.

4.3 Occupational mobility

Our analysis shows that parents matter to explain the distribution of individ-

uals across networks. But crucially, they matter more in some networks than

in others. Key observable variables are the relative productivity and the abil-
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ity advantage in the parental network. The occupational mobility literature

provides an interesting ground to study the implications of our analysis. In

this setup, where the parental network is clearly dominant, our model yields

the following predictions: there is high persistence of occupational categories

within families; the probability for an individual to fall within the same oc-

cupational category as her/his parent is increasing in the size of this occu-

pational category (more network externalities); intergenerational occupational

persistence is higher in more profitable occupations (network); and switchers

(children joining a different occupation than their parents’) tend to move into

more profitable jobs. We discuss now how these predictions are consistent with

available evidence on occupational mobility across four different countries.

We base our analysis on the evidence provided by the following sources of

information about occupational mobility in different countries: Long and Fer-

rie (2013), from which we draw evidence on Britain and the U.S.; Azam (2013)

for the case of India; and Binzel and Carvalho (2013) for Egypt. We restrict

ourselves to these papers because they either calculate or at least provide data

to calculate the unconditional probability to belong to a certain occupational

category (wi), and the conditional probability to belong to this category pro-

vided that it is the father’s category (Hi). The occupational categories studied

across these countries are very similar: Long and Ferrie (2013) classify pro-

fessions into two categories of white collar workers (high white collar, HWC,

and low white collar, LWC), farmers, skilled/semiskilled and unskilled. Azam

(2013) uses the same categorization but with a single white collar category.

Binzel and Carvalho (2013) look at farmers, unskilled/semi manual, skilled

manual, white collar and professionals. However, they do not necessarily re-

flect the profitability of each occupation. When the white collar category is

not split into high white collar and low white collar the profitability is no

longer clear. Also some countries group skilled and semiskilled together while

others group semi skilled and unskilled together.32

Table 1 summarizes the unconditional wi and conditional probability Hi

of belonging to the different occupational categories. Following Currarini,

32Also the profitability of farming is clearly higher in the U.S and U.K than in Egypt
which most likely is more productive in farming than India.
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Jackson, and Pin (2009) we also calculate and report a measure of inbreeding

homophily:

IHi =
Hi − wi
1− wi

,

which measures the extent of the bias with respect to baseline since IHi relates

to the maximum possible bias (the term 1− wi). The results for Britain and

the U.S. are calculations based on data from the online appendix of Long and

Ferrie (2013) for intergenerational occupational mobility in Britain and the

U.S. 1949-55 to 1972-73. The data uses males age 31-37 in 1972 from the

Oxford Mobility Study and white, native-born males age 33-39 in 1973 from

the Occupational Change survey. The occupation of the father is the one he

had when the respondent was age 14 in Britain and age 16 in the U.S. The

total number of respondents (son-father pairs) were 1123 for Britain and 2988

for the U.S. The data on India is taken from table 1 in Azam (2013) and

based on the Indian Human Development Survey 2005. We arbitrarily took

the 1965-1974 birth cohort which is based on 11557 father-son pairs.33 The

data on Egypt stems from Binzel and Carvalho (2013) web appendix based on

the 2006 cross-section of the Egypt Labor Market Panel Survey and we report

data on men born in 1968-1977.

The conditional probability to work in a certain occupational category is

always higher than the unconditional probability, i.e. Hi > wi. In other

words, there is a high persistence of occupational categories within the family

across all countries studied as expected in a setup where the parental network

is dominant. This intergenerational persistence is more pronounced in the

occupational categories with more people, a fact which points to the presence of

higher network externalities. Figure 4 clearly shows that Hi increases in wi and

that this is true even when mixing different countries. The difference between

wi and Hi varies across occupational categories. The IHi index reveals that

inbreeding homophily is highest in the most profitable occupations (high white

collar in Britain and the U.S., skilled/semi skilled in India and professional in

Egypt) and the bias is fairly low in the less profitable categories.

33Azam (2013) does not find any differences in mobility in successive ten year birth co-
horts.
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Table 1: Occupational mobility across job categories and countries
Country Category wi Hi IHi

Britain high white collar (HWC) 0,259 0,628 0,498
skilled/semi skilled 0,542 0,622 0,175
farmer 0.013 0,209 0,199
low white collar (LWC) 0,123 0,209 0,098
unskilled 0,062 0,09 0,03

U.S. high white collar (HWC) 0,372 0,617 0,39
skilled/semi skilled 0,398 0,466 0,112
farmer 0,025 0,135 0,113
low white collar (LWC) 0,111 0,161 0,07
unskilled 0,093 0,133 0,043

India skilled/semi skilled 0,400 0,716 0,527
white collar (WC) 0,120 0,444 0,369
unskilled 0,337 0,552 0,325
farmer 0,144 0,265 0,141

Egypt professional 0,276 0,556 0,386
skilled manual 0,235 0,43 0,255
white collar (WC) 0,16 0,254 0,111
semi skilled/unskilled manual 0,155 0,294 0,1639
farmer 0,174 0,403 0,276
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Figure 4: Intergenerational occupational mobility: relationship between Hi

and wi
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Table 2 displays the probabilities for a son to end up in a occupational

category j that is different from that of her/his father i. Each panel represents

a different country (Britain, US, India, Egypt). The general message of these

transition matrices is that switching is more likely towards the more profitable

occupation. In Britain and the US, switchers are more likely to be HWC (high

weight collar) or skilled/semiskilled than to fall into the lower skill categories

(farmer, LWC, unskilled), which is consistent with parents investing in their

children’s skills in the more advantageous occupations. The same is true in

the case of Egypt, where the most advantageous occupational categories are

professional and skilled manual. India exhibits a general tendency towards

switching to skilled jobs too, except for the case of farmers’ children who seem

to have a harder time to leave low skill occupations.

The literature on the intergenerational transmission of employers (see e.g.

Stinson and Wignall (2014)) is also consistent with the above predictions of

our model. Employer sharing probabilities between father and sons in the U.S.

in 2010 are much higher than the baseline probability that a father shares a
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Table 2: Occupational intergenerational transitions

Britain son

Father

HWC skilled/semi farmer LWC unskilled
HWC 0,63 0,16 0,01 0,16 0,05
skilled/semi 0,20 0,62 0,004 0,1 0,07
farmer 0,19 0,44 0,21 0,07 0,09
LWC 0,38 0,39 0,07 0,21 0,015
unskilled 0,13 0,66 0,006 0,12 0,09

US son

Father

HWC skilled/semi farmer LWC unskilled
HWC 0,62 0,21 0,004 0,12 0,05
skilled/semi 0,33 0,47 0,006 0,11 0,09
farmer 0,24 0,43 0,14 0,08 0,12
LWC 0,50 0,26 0,004 0,16 0,08
unskilled 0,25 0,51 0,01 0,1 0,13

India son

Father

skilled/semi WC unskilled farmer
skilled/semi 0,72 0,15 0,11 0,02
WC 0,4 0,44 0,1 0,06
unskilled 0,33 0,07 0,55 0,05
farmer 0,3 0,09 0,34 0,27

Egypt son

Father

professional skilled WC semi & / farmer
unskilled

professional 0,56 0,15 0,18 0,09 0,03
skilled manual 0,20 0,43 0,16 0,18 0,03
WC 0,27 0,24 0,25 0,16 0,08
semi/unskilled 0,26 0,21 0,17 0,29 0,07
farmer 0,15 0,22 0,1 0,13 0,4
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job with an unrelated male similar to her/his son.34 The employer sharing

probability is found to depend on parental earning: it is less than average for

the sons whose fathers are in the lowest earning decile, and higher than average

for the sons of the highest earning fathers. Moreover, average log earnings are

found to be significantly higher at shared than at unshared jobs except in the

case of the sons of fathers whose earnings are in the first and second lowest

decile.

5 Additional relevant literature

Our findings on parental investment are relevant to the economic analysis

of cultural transmission. An influential strand of this literature uses models

where agents have what Bisin and Verdier (2001) called imperfect empathy (see

also Bisin and Verdier (2010), Hauk and Saez-Marti (2002)). Under imperfect

empathy, altruistic parents evaluate their children’s choices in light of their

own preferences and invest in transmitting their own cultural traits. In our

model, parents would like their children to join the most profitable network

irrespectively to which network the parents themselves belong. As a conse-

quence, social minorities, if unconstrained, would tend to encourage assimila-

tion into the mainstream culture as long as it is more productive. However,

social conformism weakens when parents lack enough inculturation resources

(time or material goods) or if they are exposed to a strong cultural pressure

from their own network.35 In this sense, our model also identifies forces for

cultural segregation and integration, although we emphasize a complementary

mechanism.

Selecting networks is similar to the process of choosing friends. In this

sense, our paper is related to a growing literature on friendship formation. Cur-

rarini, Jackson, and Pin (2009) study individual preferences in friend choice.

34The overall job sharing probabilities of father and sons found by Stinson and Wignall
(2014) for the U.S., are remarkably similar to the ones found for Canada and Denmark (see
Kramarz and Skans (2007) using Swedish data, and Corak and Piraino (2011) based on
Canadian data, and Corak (2013), using both Canadian and Danish data).

35Bisin, Patacchini, Verdier, and Zenou (2010) provides evidence showing that cultural
identity investments of minority groups increase under stronger group pressure.
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Their model can explain various empirical patterns of homophily, some of

which are consistent with our theoretical observations. For example, they

document that larger groups tend to exhibit more homophily, and they also

find that individuals in larger groups tend to socialize more (they have more

ties). Our model thus generates similar patterns of socialization but in a com-

plementary framework in which we emphasize productive processes. There

are other points of connection between our paper and this literature. Cur-

rarini and Vega-Redondo (2011) present a model in which individuals draw

from either a homophilous network of same-type agents, or from the whole

network. The main result is that inbreeding is more likely to happen in large

groups because they are the ones for which the extra (fixed) cost of searching

in the whole network does not warrant the extra benefit of a wider search. We

could easily extend our model to allow agents to form connections in the two

networks, and although network size does not matter in our context, we may

also find that individuals from the less productive (a priori) network would be

more willing to pay the fixed cost to enjoy the benefits of a wider interaction.

The literature on academic connections is also relevant to this study. For

example, Ductor, Fafchamps, Goyal, and van der Leij (2013) empirically eval-

uate the predictive power of several network characteristics on individual re-

search outputs in economic research. The productivity of coauthors, closeness

centrality, and the number of past coauthors are particularly relevant to in-

fer young researchers future productivity. Given that the network selection

in our model can be naturally assumed to take place at an early stage of an

individuals’ life or career, our model can generate this observation. Moreover,

our framework suggests that an individual’s network selection could be used

to infer her/his unobservable productivity and, once chosen, the productive

effect of a network is amplified by endogenous socialization.

6 Conclusion

We have studied a model that integrates productive and socialization efforts

with network choice and parental investments. The relative simplicity of our

framework allows us to characterize the unique symmetric equilibrium of this
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game. As expected in a model with complementarities, individuals underinvest

in productive and social effort. However, solving only the investment prob-

lem can exacerbate misallocations of individuals across groups due to network

choice, to the point that in the presence of congestion costs it may generate an

even lower social welfare than no intervention at all. This is an important novel

conclusion of this paper. Individuals do not only choose their efforts within

a network but also the network to which they belong, and this has implica-

tions for policy design. We also examine the interaction of parental investment

with network choice and obtain two main results: there is preponderant ten-

dency towards conformism and intergenerational network persistence should

be higher in more profitable networks. We relate this last equilibrium result

to empirical findings on the intergenerational occupational mobility.

One possible avenue for further research would be to explore the dynamic

implications of our model. The agents’ choices in our framework are static,

but the work on homophily shows that some fruitful insights can be obtained

from dynamic models of group formation. For example, Bramoullé, Currarini,

Jackson, Pin, and Rogers (2012) show that it is only for young individuals

that homophily-based contact search biases the type distribution of contacts.36

Hence long-term networks need not be type-biased. We could extend our model

to allow for participation in diverse networks over time and thus ascertain if

biases in productive network choice persist over time. Clearly, another impor-

tant extension would be to allow some spillovers between networks and partial

participation of agents in several of them.

As noted in the introduction, this study is primarily focused on the produc-

tive reasons for choosing networks, a line of research that is complementary to

work on cultural transmission (Bisin and Verdier (2001)). That said, Reich

(2012) has shown that it is possible to fruitfully integrate cultural and pro-

ductive considerations into a network model. This may prove to be another

interesting line for extending our model.

36Another example of the interaction of homophily and dynamics is Golub and Jackson
(2012), which shows that homophily induces a lower speed of social learning (the opinions
of others like me are likely to be similar to my own).
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game

A.1 Proof of Proposition 1

The FOC for the decentralized problem are
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while the FOC for the social planner simplify to

ksi = bi + abi

√
ssi
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s
j

N i
dj for all i (36)
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We first prove that ki
si

=
kj
sj

for all i and j.

We divide (34) by (35) to get
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where bold face letters denote vectors and

K (b,k, s) =

∫
j∈Ni
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√
kjsj

N i
dj

Rearranging (38) gives(
ki
si

)2
a

2
K (b,k, s) =

√
ki
si

+
a

2
K (b,k, s) (39)

from which it is immediate that

ki
si

= F (K (b,k, s))

for some K (.) with a unique solution. To see the uniqueness notice that letting
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√
ki
si

= xi (39) can be written as

x4i
a

2
K (b,k, s) = xi +

a

2
K (b,k, s) (40)

the left hand side of (40) is a convex function taking the value 0 when xi = 0

and the right hand side it is a linear and takes the positive value a
2
K (b,k, s)

when xi = 0. Hence there is a single crossing point at the positive orthant.

Hence

ki = bi +
a

2
bi

K (b,k, s)√
F (K (b,k, s))

for all i

si =
a

2
bi
√
F (K (b,k, s))K (b,k, s) for all i

Thus it is clear we can write

ki = bik (b,k, s) for all i

si = bis (b,k, s) for all i

An analogous proof establishes that also for the centralized problem

ksi = bik
s (b,ks, ss) for all i

ssi = bis
sKs (b,ks, ss) for all i

It remains to determine the common optimal network parameters.

Using ki = bik and si = bis it follows that K (b,k, s) =
∫
j∈Ni

b2j
√
ks

N i dj =

b2
√
ks for the individual problem where

b2 =

∫
j∈Ni

b2j
N i
dj

and using ksi = bik
s and ssi = bis

s it follows that Ks (b,ks, ss) = b2
√
ksss for

the centralized problem.

Suppressing the dependence on the vectors, we get two simultaneous equa-
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tions with two unknowns, namely

k = 1 +
a

2

√
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k
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√
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2
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2
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s
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for the decentralized problem and

ks = 1 + a

√
ss

ks
b2
√
ksss = 1 + ab2ss

ss = a

√
ks

ss
b2
√
ksss = ab2ks

for the social planner. The optimal investments follow immediately from solv-

ing this system of linear equations. Assuming a2b2
2
< 1 guarantees positive

investment levels.

Introducing the optimal investment levels into the utility functions gives

us

ui(bi) = b2i k + ab2i ksb
2 − b2i

2
k2 − b2i

2
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= 2b2i

(
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2
)
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)2
for the decentralized solution and

usi (bi) = b2i k
s + ab2i k

sssb2 − b2i
2

(ks)2 − b2i
2

(ss)2
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b2i
2

(
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1− a2b22

)
.

for the centralized solution.
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A.2 Proof of Lemma 2

Let BM ≥ CBF . Then assuming a uniform distribution on individual produc-

tivities between zero and Bl we can calculate bF 2 and bM2 .

bF 2 = E
(
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2

i

∣∣bMi < CbFi

)
=

∫ BF
0

∫ cbF
0

bF
2
dbMdbF∫ BF

0

∫ cbF
0

dbMdbF
=

CBF 4

2CBF 2

So

bF 2 =
BF 2

2
(41)

bM2 = E
(
bM

2

i

∣∣bMi > CbFi

)
=

∫ BF
0

∫ BM
cbF

bM
2
dbMdbF∫ BF

0

∫ BM
cbF

dbMdbF
=

1

6

4BM3 − C3BF 3

2BM − CBF

(42)

So

bM2 =
1

6

(
BF 2

C2 + 2BFBMC + 4BM2 − 4BM3

2BM − CBF

)
(43)

We first show when bM2 is maximized.

Lemma 5. bM2 is maximized at C = BM

BF
and obtains the value

bM2

max =
BM2

2
(44)

Proof. Observe that

∂bM2

∂C
=

1

6

(
2CBF 2

+ 2BFBM − 4BM3
BF

(2BM − CBF )2

)
(45)

Since 2CBF 2
+ 2BFBM is linear and 4BM

3
BF

(2BM−CBF )2
is convex then ∂bM2

∂C
> 0

provided it is positive for C = 0 and for BM = CBF . But 6∂b
M2

∂C
= BFBM

when C = 0 and 6∂b
M2

∂C
= 0 when BM = CBF . The solution is C = BM

BF
and

substituting this value into the definition of bM2 we obtain (44). Observe that
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we have additionally shown that

∂bM2

∂C
≥ 0 for BM ≥ CBF with strict equality when BM = CBF (46)

a result we will use later.

Using the expressions derived for (41) and (42) we can calculate CP and

CE. In the case of CP the expression (14) becomes

CP =

√√√√√√√√
(

4 +
(
aF B

F2

2

)2)
(

4−
(
aF B

F2

2

)2)2

√√√√√√√√
(

4−
(
aM 1

6

4BM3−C3
PB

F3

2BM−CPBF

)2)2

(
4 + aM2

(
1
6

4BM3−C3
PB

F3

2BM−CPBF

)2)
Rearranging we get

(
4−

(
aF B

F2

2

)2)2

(
4 +

(
aF B

F2

2

)2) C2
P =

(
4−

(
aM 1

6

4BM
3−C3

PB
F3

2BM−CPBF

)2
)2

(
4 + aM2

(
1
6

4BM3−C3
PB

F3

2BM−CPBF

)2) (47)

We define

F (C) ≡

(
4− aM2

bM2
2
)2

(
4 + aM2bM2

2
)

and check how it changes with the dividing line C.

∂F (C)

∂C
= − 12 + aM

2
bM2

2(
4 + aM2bM2

2
)2 (4− aM2

bM2
2
)

2bM2 ∂bM
2

∂C
< 0

where the last inequality is true because we know that for equilibrium k and

s to be well defined it is necessary that 4− aM2
bM2

2
> 0 and ∂bM2

∂C
> 0 in the

relevant range. Hence the LHS of (47) is increasing in C while the RHS is

decreasing in the relevant range, namely BM > CBF , so equilibrium when it

exists is unique. Existence requires that for the maximum C , namely C = BM

BF
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the RHS of (47) is smaller than the LHS. Since the value of bM2(C = BM

BF
) =

bM2

max = BM
2

2
by Lemma 5 existence requires that(

4 +
(
aM BM

2

2

)2)
(

4−
(
aM BM2

2

)2)2B
M2

>

(
4 +

(
aF B

F2

2

)2)
(

4−
(
aF B

F2

2

)2)2B
F 2

but we can see that,

∂
(4+(aB)2)B

(4−(aB)2)
2

∂B
=

24a2B2 + 16 + a4B4(
4− (aB)2

)3 > 0

Therefore it holds that(
4 +

(
aM BM

2

2

)2)
(

4−
(
aM BM2

2

)2)2B
M2

>

(
4 +

(
aF B

F2

2

)2)
(

4−
(
aF B

F2

2

)2)2B
F 2

(48)

and the equilibrium CP exists. Observe that for the case where aM = aF

this holds iff BM > BF . If condition (48) were violated, we would have the

opposite inequality and then an equilibrium would exist with BM ≤ CBF .

The equilibrium would then be defined using

bM2 =
BM2

2
(49)

and

bF 2 =
1

6

4BF 3 − C3BM3

2BF − CBM
(50)

Similarly, we can use (41) and (43) to express CE and rearranging we get

(
1− aF 2BF 4

4

)
C2
E = 1−a

M2

36

(
BF 2

C2
E + 2BFBMCE + 4BM2 − 4BM3

2BM − CEBF

)2

(51)
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The solution of which needs to be compared with the maximum in C of:

bM2 = BF 2

C2
E + 2BFBMCE + 4BM2 − 4BM3

2BM − CEBF

but notice that the LHS of (51) is increasing in CE and the RHS is de-

creasing for BM > CEB
F (as per 45) hence in the relevant range equilibrium,

when it exists, is unique.

The condition for existence of CE is that for the maximum possible C =

BM/BF the LHS (51) is higher than the RHS.

BM2

1− aM2 BM4

4

>
BF 2

1− aF 2 BF4

4

(52)

for the case where aM = aF this holds iff BM > BF . If condition (52) were

violated, we would have the opposite inequality and then an equilibrium would

exist with BM ≤ CBF .

A.3 Proof of Proposition 3

(i) The social planner would choose C to maximize social welfare with socially

optimal investments in productive and socialization efforts where social welfare

is given by

w(C) =
1

BFBM

[∫ BF

0

∫ CbFi

0

bF
2

i

2

(
1

1− aF 2bF 2
2

)
dbMi db

F
i

+

∫ BF

0

∫ BM

CbFi

bM
2

i

2

(
1

1− aM2bM2
2

)
dbMi db

F
i

]

∂w(C)

∂C
=

1

BFBM

[∫ BF

0

bF
3

i

2

((
1

1− aF 2bF 2
2

)
− C2

(
1

1− aM2bM2
2

))
dbFi

]
(53)

+

∫ BF

0

∫ BM

CbFi

∂

(
bM

2

i

2

(
1

1−aM2bM2
2

))
∂C

dbMi db
F
i
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We already established when proving Lemma 5) that for all C

∫ BF

0

∫ BM

CbFi

∂

(
bM

2

i

2

(
1

1−aM2bM2
2

))
∂C

dbMi db
F
i > 0 (54)

by showing the integrand is positive as ∂bM2

∂C
> 0 (46). Letting

H (C) =
1

BFBM

[∫ BF

0

bF
3

i

2

((
1

1− aF 2bF 2
2

)
− C2

(
1

1− aM2bM2
2

))
dbFi

]

∂H(C)

∂C
=

1

BFBM

∫ BF

0

bF
3

i

2

−2C

(
1

1− aM2bM2
2

)
− C2

∂

(
1

1−aM2bM2
2

)
∂C

 dbFi


and again by Lemma 5 we know that

∫ BF

0

bF
3

i

2

∂
(

1

1−aM2bM2
2

)
∂C

 dbFi > 0

so
∂H(C)

∂C
< 0. (55)

It is also easy to see that for CE =

√
1−aM2bM2

2

1−aF2bF2
2

H (C)|C=CE
= 0

and hence by (55) we have that H (C) > 0 for C < CE and the result follows

for CE.

(ii) The social planner would choose C to maximize social welfare taking

the optimal socialization and productive effort choices by individuals as given
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so that social welfare is given by

w(C) =
1

BFBM

∫ BF

0

∫ CbFi

0

2bF
2

i

(
4 + aF

2
bF 2

2
)

(
4− aF 2bF 2

2
)2dbMi dbFi

+

∫ BF

0

∫ BM

CbFi

2bM
2

i

(
4 + aM

2
bM2

2
)

(
4− aM2bM2

2
)2dbMi dbFi



∂w(C)

∂C
=

1

BFBM

∫ BF

0

2bF
3

i


(

4 + aF
2
bF 2

2
)

(
4− aF 2bF 2

2
)2 − C2

(
4 + aM

2
bM2

2
)

(
4− aM2bM2

2
)2
 dbFi



+

∫ BF

0

∫ BM

CbFi

∂

2bM
2

i

(
4+aM

2
bM2

2
)

(
4−aM2bM2

2
)2


∂C

dbMi db
F
i

We already established when proving Lemma 5) that for all C

∫ BF

0

∫ BM

CbFi

∂

2bM
2

i

(
4+aM

2
bM2

2
)

(
4−aM2bM2

2
)2


∂C

dbMi db
F
i > 0 (56)

by showing the integrand is positive as ∂bM
2

∂C
> 0 (46). Letting

HP (C) =
1

BFBM

∫ BF

0

2bF
3

i


(

4 + aF
2
bF 2

2
)

(
4− aF 2bF 2

2
)2 − C2

(
4 + aM

2
bM2

2
)

(
4− aM2bM2

2
)2
 dbFi
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∂HP (C)

∂C
=

1

BFBM


∫ BF

0

2bF
3

i

−2C

(
4 + aM

2
bM2

2
)

(
4− aM2bM2

2
)2 − C2

∂

 (
4+aM

2
bM

2
2
)

(
4−aM2bM2

2
)2


∂C

 dbFi


and again by Lemma 5 we know that

∫ BF

0

2bF
3

i

∂

 (
4+aM

2
bM

2
2
)

(
4−aM2bM2

2
)2


∂C

dbFi > 0

So
∂HP (C)

∂C
< 0. (57)

It is also easy to see that for CP =

√√√√√
(
4+aF2bF2

2
)

(
4+aM2bM2

2
)

(
4−aM2bM2

2
)2

(
4−aF2

bF
2
2
)2

HP (C)|C=CP
= 0

and hence by (57) we have that HP (C) > 0 for C < CP and the result follows

for CP .

A.4 Pareto distribution of individual productivities

We assume now that returns b follow a Pareto distribution with shape param-

eter α

f (b) =
α

bα+1
for 1 ≤ b ≤ ∞

We will derive the results under the assumption that the C that defines the

dividing line bMi = CEb
F
i is such that C ≥ 1.37

37If C < 1, the same results hold with the names of the networks interchanged.
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Lemma 6. If C ≥ 1, then

bF 2 =
α

α− 2

1

α− 1

(2α− 2)Cα − (α− 2)

2Cα − 1
(58)

and

bM2 =
α

α− 2

α

α− 1
C2 (59)

Proof. Let C ≥ 1. Then

bF 2 = E
(
bF

2

i

∣∣bMi < CbFi

)
=

∫∞
1

∫ CbF
1

bF
2 α

bFα+1
α

bMα+1 dbMdbF∫∞
1

∫ CbF
1

α

bFα+1
α

bMα+1 dbMdbF
=

1

α

(
1− 1

2Cα

)

Similarly,

bM2 = E
(
bM

2

i

∣∣bMi > CbFi

)
=

α

α− 2

2α

2α− 2
C2

Lemma 7. The optimal choice CE defined by (15) exists and is unique.

Proof. Using the Lemma 6 CE can be rewritten as:

CE =

√√√√√ 1− aM2
(

α
α−2

α
α−1C

2
E

)2
1− aF 2

(
α
α−2

1
α−1

(
(α− 1) + 1

2CαE−1

))2 (60)

Note that the LHS of (60) is increasing in CE and the RHS is decreasing in

CE so that a unique equilibrium exists.

Moreover,

Lemma 8. CE > 1⇔ aM
2
< aF

2

Proof. Note also that if aM
2

= aF
2

the solution of (60) is at CE = 1. An

increase of aM
2

with respect to aF
2

displaces the RHS to the left so that the

new equilibrium entails CE < 1.

We are now in a position to check how a decentralized network choice

deviates from the efficient network choice CS implemented by a social planner
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who maximizes social welfare. We study the case where the social planner also

implements the socially optimal investments in productive and socialization

effort.

Proposition 9. If CE > 1, there might be too few ∂w(C)
∂C

∣∣∣
C=CE

> 0 or too

many people ∂w(C)
∂C

∣∣∣
C=CE

< 0 in the F network compared to the social optimum.

The alternative network will be underpopulated if and only if

aM
2

aF 2 >
((2α− 2)Cα − (α− 2))2Cα

α2 (2Cα − 1)3C2
(61)

Proof. The social planner would choose C to maximize social welfare with

socially optimal investments in productive and socialization efforts where social

welfare is given by

w(C) =

∫ ∞
1

∫ CbF

1

bF
2

i

2

(
1

1− aF 2bF 2
2

)
α

bF
α+1

i

α

bM
α+1

i

dbMi db
F
i

+

∫ ∞
1

∫ ∞
CbF

bM
2

i

2

(
1

1− aM2bM2
2

)
α

bF
α+1

i

α

bM
α+1

i

dbMi db
F
i

∂w(C)

∂C

=

[∫ ∞
1

bF
3

i

2

((
1

1− aF 2bF 2
2

)
− C2

(
1

1− aM2bM2
2

))
α

bF
α+1

i

α

(CbFi )
α+1db

F
i

]

+

∫ ∞
1

∫ CbF

1

∂

(
bF

2

i

2

(
1

1−aF2bF2
2

))
∂C

α

bF
α+1

i

α

bM
α+1

i

dbMi db
F
i

+

∫ ∞
1

∫ ∞
CbF

∂

(
bM

2

i

2

(
1

1−aM2bM2
2

))
∂C

α

bF
α+1

i

α

bM
α+1

i

dbMi db
F
i
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Now at CE =

√
1−aM2bM2

2

1−aF2bF2
2

∂w(C)

∂C

∣∣∣∣
C=CE

= aF
2

2bF 2 α

α− 2

1

α− 1

(
−2αCα−1

(2Cα − 1)
2

)(
1

1− aF 2bF 2
2

)2
α ((2α− 2)Cα − (α− 2))

(2α− 2) (α− 2)Cα

+aM
2

2bM2 α

α− 2

α

α− 1
2C

(
1

1− aM2bM2
2

)2
α2

α− 2

1

Cα−2
1

(2α− 2)

CE =

√
1−aM2bM2

2

1−aF2bF2
2 → C4

(
1

1−aM2bM2
2

)2

=

(
1

1−aF2bF2
2

)2

Therefore

∂w(C)

∂C

∣∣∣∣
C=CE

> 0⇐⇒ −aF 2 ((2α− 2)Cα − (α− 2))2

(2Cα − 1)3C
+ aM

2 α2

Cα−1 > 0

⇐⇒ aM
2

aF 2 >
((2α− 2)Cα − (α− 2))2Cα

α2 (2Cα − 1)3C2

and
∂w(C)

∂C

∣∣∣∣
C=CE

< 0⇐⇒ aM
2

aF 2 <
((2α− 2)Cα − (α− 2))2Cα

α2 (2Cα − 1)3C2

By Lemma 8 since CE > 1⇔ aM
2
< aF

2
, hence aM

2

aF2 < 1.

We will now show that

1 >
((2α− 2)Cα − (α− 2))2Cα

α2 (2Cα − 1)3C2
=

((α− 1) (2Cα − 1) + 1)2Cα

α2 (2Cα − 1)3C2
(62)

Note that

((α− 1) (2Cα − 1) + 1)2 < α2 (2Cα − 1)2

since that expression is equivalent to

(α− 1) (2Cα − 1) + 1 < α (2Cα − 1)

⇔ 1 < 2Cα − 1⇐⇒ 1 < Cα

thus
((α− 1) (2Cα − 1) + 1)2Cα

α2 (2Cα − 1)3C2
<

Cα

(2Cα − 1)C2
<

1

C
< 1 (63)
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where the last two inequalities hold since C > 1, noting that in that case

2Cα − 1 > Cα. Thus equation (63) establishes (62).

Lemmas 9 shows that parameter values exist so that ∂w(C)
∂C

∣∣∣
C=CE

< 0. while

Lemma 10 shows the existence of parameter values that ∂w(C)
∂C

∣∣∣
C=CE

> 0.

Lemma 9. Let aM
2

aF2 = r < 1. For a fixed α and r there exists an aF
2

low

enough that

r =
aM

2

aF 2 <
((2α− 2)Cα − (α− 2))2Cα

α2 (2Cα − 1)3C2

Proof. Since

CE =

√√√√√ 1− raF 2
(

α
α−2

α
α−1C

2
E

)2
1− aF 2

(
α
α−2

1
α−1

(
(α− 1) + 1

2CαE−1

))2
we have that

lim
aF2→0

CE

(
α, r, aF

2
)

= 1

thus

lim
aF2→0

((2α− 2)Cα − (α− 2))2Cα

α2 (2Cα − 1)3C2
= lim

aF2→0

((2α− 2)− (α− 2))2

α2
= 1 > r.

Lemma 10. Let aM
2

aF2 = r < 1. For a fixed aF
2

and r such that CE exists, there

is an α high enough that

r =
aM

2

aF 2 >
((2α− 2)Cα

E − (α− 2))2Cα
E

α2 (2Cα
E − 1)3C2

E

Proof. For a bounded CE

C ≡ lim
α→∞

C2
E = lim

aF2→0

1− raF 2
C4
E

1− aF 2
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Hence

raF
2

C4 +
(

1− aF 2
)
C2 − 1 = 0

and thus

C2 =
−
(

1− aF 2
)
±
√

(1− aF 2)
2

+ 4raF 2

2raF 2

Now since

lim
α→∞

((2α− 2)Cα
E − (α− 2))2Cα

E

α2 (2Cα
E − 1)3C2

E

= lim
α→∞

(2Cα − 1)2 α2Cα

α2 (2Cα − 1)3C2
=

1

2C2

In other words, we would like to show that for α high enough

C2 >
1

2r

or

−
(

1− aF 2
)

+

√
(1− aF 2)

2
+ 4raF 2

2raF 2 >
1

2r
(64)

√
(1− aF 2)

2
+ 4raF 2 > 1

aF
2
(
aF

2

+ 4r − 2
)

> 0

which requires r > 2−aF2

4
which is true for example if r > 1

2
.

Proposition 9 immediately follows from these Lemmas.

B Appendix B: Congestion

B.1 Proof of lemma 3

Proof. Under congestion, the welfare of the network F remains unchanged

while the welfare of network M is given by

WM
E (C) =

1

BFBM

∫ BF

0

∫ BM

CbFi

f
(
C, bMi

) bM2

i

2

(
1

1− aM2bM2
2

)
dbMi db

F
i (65)
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when the government induces efficient socialization and productive efforts

within a network and by

WM
P (C) =

1

BFBM

∫ BF

0

∫ BM

CbFi

f
(
C, bMi

)
2bM

2

i

(
4 + aM

2
bM2

2
)

(
4− aM2bM2

2
)2dbMi dbFi (66)

These expressions (65) and (66) can be decomposed in the welfare of those
member of M below bMi < CBF for whom congestion does not matter and
those above bMi ≥ CBF for whom congestion impinges. For the case where
the government induces efficient efforts

WM
E (C) =

1

BFBM

∫ BF

0

∫ CBF

CbFi

bM
2

i

2

(
1

1− aM2bM2
2

)
dbMi db

F
i

+
1

BFBM

∫ BF

0

∫ BM

CBF

((
C∗BF

)2
bM

2

i

+ (1− v (C))

(
1−

(
C∗BF

)2
bM

2

i

))
bM

2

i

2

(
1

1− aM2bM2
2

)
dbMi db

F
i

The second line captures welfare of those for whom congestion matters. After

some calculations this second line becomes(
C∗BF

)2
2

(
1

1− aM2bM2
2

) (
BM − CBF

)
BF

BFBM

+
(1− v (C))

BFBM

(∫ BF

0

∫ BM

CBF

bM
2

i

2

(
1

1− aM2bM2
2

)
dbMi db

F
i

−
(
BM − CBF

)
BF
(
C∗BF

)2
2

(
1

1− aM2bM2
2

))

which decomposes the welfare of people beyond the bMi ≥ C∗EB
F bound-

ary in two parts. First the welfare for types exactly at the boundary is
(CBF )

2

2

(
1

1−aM2bM2
2

)
times the fraction of people in that area is

(BM−CBF )BF
BFBM

,which

gives the first line. And the second line is the surplus welfare for those types,

in addition to what the boundary types get, and on which the congestion

impinges. Using (17) we can now write total welfare when the government
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induces efficient socialization and productive efforts as

wE(C) =
CBF 3

8BM

[(
1

1− aF 2bF 2
2

)
+ C2

(
1

1− aM2bM2
2

)]

+

(
1− C BF

BM

) (
CBF

)2
2

(
1

1− aM2bM2
2

)
+ (1− v (C))GE (C)

Welfare in absence of any government intervention wP (C) is derived in a par-

allel way.

B.2 Proof of lemma 4

Proof. We first show that it suffices to have 1 − aM
2 BM

4

9
≈ 0 (sufficiently

small), to have CE = ε ≈ 0 (very small). Observe that when CE ≈ 0

bM2 =
1

6

4BM3 − C3BF 3

2BM − CBF
' BM2

3
(67)

Hence

CE =

√√√√1− aM2bM2
2

1− aF 2bF 2
2 (68)

in which case CE small by having

C2
E '

1− aM2 BM
4

9

1− aF 2 BF4

4

(69)

and thus it suffices to have

1− aM2BM4

9
' ε2 (70)

small to have CE small.
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Next we show that Cp > 0 for these parameter values (70). Recall that

CP =

√√√√√√
(

4 + aF 2bF 2
2
)

(
4 + aM2bM2

2
)
(

4− aM2bM2
2
)2

(
4− aF 2bF 2

2
)2 (71)

Assume for contradiction that CP = ε ≈ 0. Since bM2 = 1
6
4BM

3−C3BF
3

2BM−CBF , in this

case bM2
2

= BM
4

9
. But using (70) we get

4− aM2BM4

9
= 3 + 1− aM2BM4

9︸ ︷︷ ︸
≈ε2

' 3

4 + aM
2

bM2
2

= 5−

1− aM2BM4

9︸ ︷︷ ︸
≈ε2

 ' 5

and so

CP =

√√√√√√
(

4 + aF 2bF 2
2
)

(
4 + aM2bM2

2
)
(

4− aM2bM2
2
)2

(
4− aF 2bF 2

2
)2 '

√√√√√√
(

4 + aF 2 BF4

4

)
(

4− aF 2 BF4

4

)2 9

5
> 0 (72)

which contradicts our assumption that CP = ε ≈ 0. Hence CP 6= 0.

Observe that rewriting (15) as

C2
E

1− aM2 BM4

9

' 1

1− aF 2 BF4

4

(73)

we can express welfare when optimal socialization and productive efforts are

induced in the network (Lemma 3) when (70) holds and hence CE is very small
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as

wE(CE) =
CBF 3

8BM

[(
1

1− aF 2 BF4

4

)
+

1

1− aF 2 BF4

4

]
+(

1− C BF

BM

)
BF 2

2

1

1− aF 2 BF4

4

+ (1− v (C))GE (C)

which reduces to

wE(CE ≈ 0) ≈ BF 2

2

1

1− aF 2 BF4

4

. (74)

To calculate welfare without any government intervention wP (CP ) recall that

CP 6= 0 and hence v (CP ) = 0. Hence

wP (CP ) =
CBF 3

2BM


(

4 + aF
2 BF

4

4

)
(

4− aF 2 BF4

4

)2 +

(
4 + aM

2
bM2

2
)

(
4− aM2bM2

2
)2C2


+2

(
1− C BF

BM

) (
4 + aM

2
bM2

2
)

(
4− aM2bM2

2
)2 (CBF

)2
+GP (C)

=
1

BFBM

4
(

4 + aF
2 BF

4

4

)
(

4− aF 2 BF4

4

)2 CPBF 4

8
+

4
(

4 + aM
2
bM2

2
)

(
4− aM2bM2

2
)2
(
BM3

BF

6
− C3B

F 4

24

)
which coincides with the expression for welfare without congestion. Indeed

v (CP ) = 0 is equivalent to no congestion in the network.

Note that

4
(

4 + aM
2
bM2

2
)

(
4− aM2bM2

2
)2 =

4

(
4 + aM

2
(

1
6
4BM

3−C3BF
3

2BM−CBF

)2)
(

4− aM2

(
1
6
4BM3−C3BF3

2BM−CBF

)2)2

is increasing in C so we can have a bound on that term by taking CP = 0 and

on C3BF
4

24
by taking CP = 1
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w(CP ) =
1

BFBM


4

(
4 + aF

2
bF

22
)

(
4 − aF

2
bF

22
)2

CPB
F4

8
+

4

(
4 + aM

2
(

1
6

4BM3
−C3BF3

2BM−CBF

)2)
(
4 − aM

2
(

1
6

4BM3−C3BF3

2BM−CBF

)2
)2

BM3
BF

6
− C

3
P

BF4

24




≥
1

BFBM


4

(
4 + aM

2
(

BM2

3

)2)
(
4 − aM

2
(

BM2

3

)2)2

BM3
BF

6
−
BF4

24




We know by (70) that aM
2
(
BM

2

3

)2
' 1, so then

w(CP ) ≥ 1

BFBM

[
20

9

(
BM3

BF

6
− BF 4

24

)]

Using (74)

w(CE)− w(CP ) ≤ 1

2
× BF 2

1− aF 2 BF4

4

− 1

BFBM

[
20

9

(
BM3

BF

6
− BF 4

24

)]

=
1

2

BF 2

1− aF 2 BF4

4

+
5

54

BF 4

BM
− 10

27
BM2

which is negative for BM big enough.

C Appendix C: Parental investment

Lemma 11. Equation (23) can be written as a function with at most two

branches:

E
[
max

[
2bF

2

i F, 2bM
2

i M
]]

=


2F

eF
3

pi

6eMpi

√
F
M

+ 2M
eM

2
pi

3
if eMpi >

√
F
M
eFpi

2M
eM

3
pi

6eFpi

√
M
F

+ 2F
eF

2
pi

3
if eMpi <

√
F
M
eFpi

(75)

where the two branches exist if the inequalities in (75) are non-empty.
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Proof. Under the assumption that

eMpi >

√
F

M
eFpi

E
[
max

[
2bF

2

i F, 2bM
2

i M
]]

becomes

E
[
max

[
2bF

2

i F, 2bM
2

i M
]]

=
1

eFpie
M
pi

(
2F

∫ eFpi

0

∫ bFi

√
F
M

0

bF
2

i dbMi db
F
i + 2M

∫ eFpi

0

∫ eMpi

bFi

√
F
M

bM
2

i dbMi db
F
i

)

=
1

eFpie
M
pi

(
2F

eF
4

pi

6

√
F

M
+ 2M

eM
3

pi
eFpi

3

)

so that

E
[
max

[
2bF

2

i F, 2bM
2

i M
]]

= 2F
eF

3

pi

6eMpi

√
F

M
+ 2M

eM
2

pi

3
(76)

Suppose instead that

eMpi <

√
F

M
eFpi

then

E
[
max

[
2bF

2

i F, 2bM
2

i M
]]

= 2M
eM

3

pi

6eFpi

√
M

F
+ 2F

eF
2

pi

3
(77)

Thus, for a parent who belongs to network F , xFpi +xMpi = K, eFpi = A+xFpi
and eMpi = A+K − xFpi . It immediately follows:

Lemma 12.

xFpi <
K +

(
A− A

√
F
M

)
1 +

√
F
M

if eMpi >
√

F
M
eFpi (78)

xFpi >
K +

(
A− A

√
F
M

)
1 +

√
F
M

if eMpi <
√

F
M
eFpi (79)
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Analogously, for a parent who belongs to network M , xFpi + xMpi = K,

eFpi = A+ xFpi and eMpi = A+K − xFpi . It immediately follows:

Lemma 13.

xFpi <
K +

(
A− A

√
F
M

)
1 +

√
F
M

if eMpi >
√

F
M
eFpi (80)

xFpi >
K +

(
A− A

√
F
M

)
1 +

√
F
M

if eMpi <
√

F
M
eFpi (81)

C.1 Convexity of g1

(
xFpi
)

Lemma 14. The function g1
(
xFpi
)

is convex.

Proof. For xFpi <
K+

(
A−A
√

F
M

)
1+
√

F
M

∂g1
(
xFpi
)

∂xFpi
= −4

3
M
(
A+K − xFpi

)
+ 6F

(
A+ xFpi

)2 √
F
M

6
(
A+K − xFpi

)
+12F

(
A+ xFpi

)3 √
F
M

6
(
A+K − xFpi

)2
Since

6F
(
A+ xFpi

)2 √
F
M

6
(
A+K − xFpi

) + 12F
(
A+ xFpi

)3 √
F
M

6
(
A+K − xFpi

)2
is increasing in xFpi this implies that

∂2g1
(
xFpi
)

∂xF 2

pi

> 0

so g1 (.) is convex.
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For xFpi >
K+

(
A−A
√

F
M

)
1+
√

F
M

∂g1
(
xFpi
)

∂xFpi
== 4F

(
A+ xFpi

)
3

−
√
M

F

(
M

(
A+K − xFpi

)2(
A+ xFpi

) + 2M

(
A+K − xFpi

)3(
A+ xFpi

)2
)

and since

(
M

(A+K−xFpi)
2

(A+xFpi)
+ 2M

(A+K−xFpi)
3

(A+xFpi)
2

)
is decreasing in xFpi it is easy to

see that
∂2g1

(
xFpi
)

∂xF 2

pi

> 0

C.2 Nonexistence of an interior solution

We need to compare the value of the parental objective functions at three

possible points. For F -parents we will need to establish whether either xFpi = 0

or xFpi =
K+

(
A−A
√

F
M

)
1+
√

F
M

are optimal in the range xFpi <
K+

(
A−A
√

F
M

)
1+
√

F
M

and

whether either xFpi = K or xFpi =
K+

(
A−A
√

F
M

)
1+
√

F
M

are optimal in the range

xFpi >
K+

(
A−A
√

F
M

)
1+
√

F
M

. Therefore the existence of an internal optimally global

solution implying that F -parents invest in both networks requires first that

these extreme points are defined, namely

K + A

A
>

√
F

M
>

A

K + A
(82)

and that
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g

K +
(
A− A

√
F
M

)
1 +

√
F
M

 > g (0) if eMpi >
√

F
M
eFpi

g

K +
(
A− A

√
F
M

)
1 +

√
F
M

 > g (K) if eMpi <
√

F
M
eFpi

Since,

g (0) = 2F
A

3

6 (A+K)

√
F

M
+ 2M

(A+K)2

3

g

K +
(
A− A

√
F
M

)
1 +

√
F
M

 = F

A+ A+K

1 +
√

F
M

2

g (K) = 2M
A3

6
(
A+K

)√M

F
+ 2F

(
A+K

)2
3

Thus, the conditions for optimality of an internal global solution when it

exists are:

F

A+ A+K

1 +
√

F
M

2

> 2F
A

3

6 (A+K)

√
F

M
+ 2M

(A+K)2

3
(83)

F

A+ A+K

1 +
√

F
M

2

> 2M
A3

6
(
A+K

)√M

F
+ 2F

(
A+K

)2
3

(84)

Or equivalently
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3
F

M

A+ A+K

1 +
√

F
M

2

>
F

M

A
3

(A+K)

√
F

M
+ 2 (A+K)2 (85)

3
F

M

A+ A+K

1 +
√

F
M

2

>
A3(

A+K
)√M

F
+ 2

F

M

(
A+K

)2
(86)

If either of these conditions does not hold, then parents will put all their

available effort in developing the abilities of one network only.

We now look when an interior solution for M -parents exists. To be defined

it requires that
K + A

A
>

1√
F
M

>
A

K + A
(87)

Moreover, the interior solution should maximize the parental objective

function which requires

3
F

M

A+ A+K

1 +
√

F
M

2

>
F

M

A3(
A+K

)√ F

M
+ 2

(
A+K

)2
(88)

3
F

M

A+ A+K

1 +
√

F
M

2

>
A

3

(A+K)

√
M

F
+ 2

F

M
(A+K)2 (89)

Proposition 10. An interior solution does not exist for A = 0

Proof. We will prove this for F-parents here (The proof for M-parents is anal-

ogous). Condition (85) tells us when the interior solution for F-parents is

better than no investment in F (full investment in M). Condition (86) tells us

when the interior solution for F-parents is better than full investment in F.

For the interior and the M corner solution to exist condition (82) is required.

The proof consists in showing that these conditions are incompatible. We first
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rewrite condition (85) as

3

1 + A+K

A

1 +
√

F
M

2

>
A

(A+K)

√
F

M
+

2
(
A+K

A

)2
F
M

(90)

Let y = A+K

A
and x = F

M
. Then conditions (90) and 82) become

3

(
1 + y

1 +
√
x

)2

>

√
x

y
+

2 (y)2

x
(91)

y >
√
x > 0forA = 0 (92)

Condition (91) can also be written as,

y2x+ 6yx+ 3x− 2y2 − 4y2
√
x

x (1 + 2
√
x+ x)

>

√
x

y
(93)

Let y = a
√
x. Then (93) becomes(
a3 − 1

)
x+

(
6a2 − 4a3 − 2

)√
x+ 3a− 2a3 − 1 > 0

Since 3a−2a3−1 < 0 for a > 1 and a3−1 > 0 the inequality can only be true

for sufficiently high x. The remainder of the proof consists in showing that

these high values of x are inconsistent with condition (86). We prove this for

the special case where A = 0 where condition (86) reduces to

3

2
>
(
1 +
√
x
)2

(94)

and therefore xmax =
(√

3
2
− 1
)2

. Hence

fa (xmax) =
(
a3 − 1

)(√3

2
− 1

)2

+
(
6a2 − 4a3 − 2

)(√3

2
− 1

)
+ 3a− 2a3 − 1

=

(
9

2
− 6

√
3

2

)
a3 + 6

(√
3

2
− 1

)
a2 + 3a− 2

(√
3

2
− 1

)
−

(√
3

2
− 1

)2

− 1
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fa=1 (xmax) =
9

2
− 6 + 5− 1− 5

2
= 2− 6 + 5− 1 = 0

∂fa (xmax)

∂a
= 3

(
9

2
− 6

√
3

2

)
a2 + 12

(√
3

2
− 1

)
a+ 3

∂fa (xmax)

∂a

∣∣∣∣
a=1

= −6

√
3

2
+

9

2
< 0

Since ∂fa (xmax) /∂a is a parabola ∂fa (xmax) /∂a|a=1 < 0 implies that it is

decreasing for all a > 1. Thus, ∂fa (xmax) /∂a < 0 for all a < 1. This implies

that fa=1 (xmax) < 0 for all a > 1. But this is a contradiction with the condition

(94) and the result follows.

Proposition 10 shows that when Al = 0 parents never invest in enhancing

the abilities of their children in both networks. This result holds in general

in the current setup. Notice that for Al > 0 we can express Al = tlAl where

tl > 0 . The required inequalities for an interior solution for F -parents in this

case are

3
F

M

1 + t+ K
A

1 +
√

F
M

2

>
F

M

t3(
1 + K

A

)√ F

M
+ 2

(
1 +

K

A

)2

(95)

3
F

M

1 + t+ K
A

1 +
√

F
M

2

>
1(

t+ K
A

)√
F
M

+ 2
F

M

(
t+

K

A

)2

(96)

K

A
+ 1 > t

√
F

M
(97)

K

A
+ t >

1√
F
M

(98)

We did not prove the non-existence of an interior solution analytically,

but rather by plotting these inequalities in a three-dimensional plot with axis

F/M,K/A and t in Mathematica which gives an empty intersection. Hence,

in the current setup no interior solution seems possible.
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C.3 Proof of Proposition 7

Let the proportion of parents in network M be m and of parents in network

F be (1−m). We prove the proposition for BM ≥ CBF .

(i) When everybody invests in the same network, let’s say network F ,38

then eFpiF = A + K while eFpiM = A + K and eMpiM = A and eMpiF = A. This

gives different distributions from which children’s talents are drawn for the

different parental traits unless A = A = A. We need to calculate bM2 and bF 2

given that the children coming from different networks face different uniform

distributions recalling that

bM2 = E
(
bM

2

i

∣∣bMi > CbFi

)
, bF 2 = E

(
bM

2

i

∣∣bMi < CbFi

)
For all F children in the entire society we have

bF 2 = m bF 2

∣∣∣
M

+ (1−m) bF 2

∣∣∣
F

where bF 2

∣∣∣
M

refers to the F children coming from M parents and bF 2

∣∣∣
F

refers

to the F children coming from F parents. Using (41) we can calculate

bF 2

∣∣∣
M

=
BF 2

2
=

(A+K)2

2
and bF 2

∣∣∣
F

=
BF 2

2
=

(
A+K

)2
2

Therefore for all F children in the whole society we get

bF 2 = m
(A+K)2

2
+ (1−m)

(
A+K

)2
2

(99)

Similarly, for all the M children in society

bF 2 = m bM2

∣∣∣
M

+ (1−m) bM2

∣∣∣
F

which after using (43) becomes

38The proof for everybody investing in network M is analogous.
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bM2 =
1

6

(
m

4A
3 − C3 (A+K)3

2A− C (A+K)
+ (1−m)

4A3 − C3
(
A+K

)3
2A− C

(
A+K

) ) (100)

Introducing these expression into the defining equation of CP given by (14)

and rearranging, we get

G (C) =

(
4− aF 2

(
m (A+K)2

2
+ (1−m)

(A+K)
2

2

)2
)2

(
4 + aF 2

(
m (A+K)2

2
+ (1−m)

(A+K)
2

2

)2
) C2

P

−

(
4− aM2

(
1
6

(
m4A

3−C3(A+K)3

2A−C(A+K)
+ (1−m)

4A3−C3(A+K)
3

2A−C(A+K)

))2
)2

(
4 + aM2

(
1
6

(
m4A

3−C3(A+K)3

2A−C(A+K)
+ (1−m)

4A3−C3(A+K)
3

2A−C(A+K)

))2
)

Since G (0) < 0 and limC→∞G (C)→∞ then G (.) has a fixed point.

(ii) When everybody invests in their own network, then for F parents

eFpiF = A+K and eMpiF = A while for M parents eFpiM = A and eMpiM = A+K.

Therefore

bF 2 = m
A2

2
+ (1−m)

(
A+K

)2
2

while

bM2 =
1

6

(
m

4
(
A+K

)3 − C3 (A)3

2
(
A+K

)
− CA

+ (1−m)
4A3 − C3

(
A+K

)3
2A− C

(
A+K

) )

Introducing these expression into the defining equation of CP given by (14) we

get
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G (C) =

(
4− aF 2

(
mA2

2
+ (1−m)

(A+K)
2

2

)2
)2

(
4 + aF 2

(
mA2

2
+ (1−m)

(A+K)
2

2

)2
) C2

P

−

(
4− aM2

(
1
6

(
m

4(A+K)
3
−C3(A)3

2(A+K)−CA
+ (1−m)

4A3−C3(A+K)
3

2A−C(A+K)

))2
)2

(
4 + aM2

(
1
6

(
m

4(A+K)
3
−C3(A)3

2(A+K)−CA
+ (1−m)

4A3−C3(A+K)
3

2A−C(A+K)

))2
)

Since G (0) < 0 and limC→∞G (C)→∞ then G (.) has a fixed point.

C.4 Proof of Proposition 8

Since an interior solution is impossible we have to check which of the corner

solution gives a higher utility which is done by comparing g(0) with g(K). It

is better to invest in the F network only when g(0) < g(K). Defining

x =
F

M
and y =

K

A

for both types of parents this is equivalent to

(1− x)

[
2
√
x (1 + y)2 +

1 + x

1 + y

]
> 0

Since the expression in the square bracket is always positive, parents want to

invest in F whenever 1 < x = F
M

hence when M < F and in M otherwise.
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