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Abstract

I construct a dynamic economy in which agents are interconnected: the output

produced by one agent is the consumption good of another. I show that this economy

can generate recessions which resemble traffi c jams. At the micro level, each individual

agent waits for his own income to increase before he increases his spending. However,

his spending behavior affects the income of another agent. Thus, the spending behav-

ior of agents during recessions resembles the stop-and-go behavior of vehicles during

traffi c jams. Furthermore, these traffi c jam recessions are not caused by large aggre-

gate shocks. Instead, in certain parts of the parameter space, a small pertubation or

individual shock is amplified as its impact cascades from one agent to another. These

dynamics eventually result in a stable recessionary equilibrium in which aggregate out-

put, consumption, and employment remain low for many periods. Thus, much like in

traffi c james, agents cannot identify any large exogenous shock that caused the reces-

sion. Finally, I provide conditions under which these traffi c jam recessions are most

likely to occur.
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1 Introduction

Are recessions similar to traffi c jams? This paper puts forth the idea that these two phe-

nomena may resemble one another. Consider the following two observations.

First, driver behavior seems similar to that of economic agents. In traffi c jams, one often

gets the feeling that if all cars just drove forward at a slow but steady pace, we would all get

out of the traffi c jam. However, this takes coordination and it is in fact not a good description

of how drivers actually behave. Instead, in traffi c jams, we observe what is known as “stop-

and-go”behavior. An individual driver waits for the car in front to move forward before he

moves forward. This opens up space for the car behind him, in which case that car moves

forward. Hence, in traffi c jams, all cars are simply waiting for the space to open up ahead of

them before they move. One sees clearly that the actions of these drivers are not based on

the entire state of the highway1, but instead are based on their own very local conditions.

Similarly, in recessions we observe another form of “stop-and-go”behavior. Households wait

for their income to increase before they increase their consumption spending. Firms wait

for sales to pick up before they increase production or employ more workers. It seems as

though the actions of economic agents, too, are not based on the entire state of the aggregate

economy, but instead are based on their own individual situations or constraints. And again,

one gets the feeling that if all households simply spent more and if all firms simply employed

more workers, the recession would come to an end. Yet, this takes coordination; instead, for

each individual economic agent and for each individual driver, local interactions matter first

and foremost.

Second, traffi c jams, like recessions, do not seem to always be driven by large exogenous

shocks. Sometimes traffi c jams are caused by something fundamental—an obstruction on the

road or a car crash. However, more often than not traffi c jams seem to occur spontaneously, or

at least without any underlying cause—perhaps due to some slight, unobserved perturbation.2

The traffi c engineers call these “phantom jams”as drivers in the jam cannot seem to identify

any particular cause of the jam. Furthermore, these phantom jams seem more likely to occur

when traffi c dense.

Similiarly, the underlying causes of business cyles seem to be equally elusive. While the

standard approach to modelling business cycles is to build dynamic models of rational agents

and then to analyze the model’s equilibrium response to exogenous aggregate shocks, this

approach is in some ways unsatisfactory. As John Cochrane (1994) writes, “it is diffi cult to

1This could be due either to the fact that drivers don’t know what’s going on in the entire highway, or
the simple physical constraint that they can’t hit the car ahead of them.

2In fact, this has also been shown in some experiments.
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find large, identifiable, exogenous shocks” in the data. Modigliani (1977) and Hall (1980)

contend that standard equilibrium models may leave too much unexplained. Furthermore,

during and after actual recessions, it is not as if firm executives, consumers, central bankers,

or even economists are easily able to identify the large aggregate shocks driving each episode.3

Thus, although standard general equilibrium models rely on aggregate shocks as the main

drivers of fluctuations, it is diffi cult both through introspection and by observation of the data

to be fully satisfied with this modelling approach. Much like traffi c jams, macroeconomic

recessions are often “phantom”.

In this paper I construct a model in which recessions resemble traffi c jams in these two

respects. Agents are arranged in a network such that the output produced by one agent

is the consumption good of another. During normal times agents receive steady streams

of income and as a result their consumption is a steady flow. However, during recessions,

agents exhibit stop-and-go behavior: each agent i waits for his own income to increase before

increasing his spending. But, this implies that agent i − 1, who produces the consumption

good for agent i, is experiencing a drop in income, and hence also not spending. If agent

i − 1 isn’t spending, this affects the income of agent i − 2, and so on. Thus, agents are all

locally waiting for their prospects to improve, while their non-spending behavior is affecting

the income of others. Thus, the model in some way shares the same spirit of the earlier

literature on Keynesian coordination failures, but through a very different mechanism and

modeling technique.

Second, in this model recessions are driven not by large aggregate shocks, but instead

by small perturbations, or local shocks. These individual-specific or local shocks may have

reverberating effects so that the economy eventually finds itself in a recession. However,

these perturbations could be so small that they would not be identified as aggregate shocks

in the data, nor would all the agents in the model be aware of them. Furthermore, in this

model small perturbations do not always lead to recessions. Under certain conditions, these

perturbations die out and the equilibrium converges back to the “normal times”equilibrium.

Under certain other conditions, however, these perturbations are amplified, leading to pro-

longed traffi c jam recessions. Thus, in sharp contrast to standard equilibrium models, this

model could potentially identify conditions under which recessions are more likely to occur,

rather than simply attributing them to unpredictable exogenous shocks. Furthermore, this

model may allow for new policy insights designed to end the traffi c-jam recession and bring

3Sure, for certain recessions, such as the oil price recessions of the 70s or the Volcker recession in the early
80s, we have some idea of the large aggregate shocks behind these aggregate declines. However, I would
argue that for most business cyles fluctuations this is not the case. As Hall (1977) points out, only rarely
do we find obvious candidates such as the oil shocks in the 70s. Even if we consider the latest recession, the
fall in the value of the housing market was only a negligible fraction of total U.S. GDP.
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the economy back to the normal times regime.

Framework. First, I draw on the literature on traffi c flow in engineering. In this literature

one of the most successful and widely accepted models of simulating traffi c is called the

Optimal Velocity Model introduced by Bando et al (1995). This is a car-following model

in which N cars follow each other on a circular road of length L; car i follows car i + 1.

The bumper-to-bumper distance between car i and car i+ 1 is called car i’s “headway”. In

car-following models, cars are given a behavioral equation which dictates their acceleration

or speed as a function of nearest-neighbor stimuli (see survey of the literature by Orosz et

al 2006). The innovation in Bando et al (1995) is the introduction of a particular form for

this behavioral equation—it imposes that each car’s acceleration is an increasing function of

its headway. If a car’s headway is very large, the car speeds up, if it is too small, the car

slows down and potentially comes to a stop.

The results of this simple model are quite striking. This model can produce both uniform

traffi c flow as well as a stop-and-go waves which resemble traffi c jams. In the uniform-

flow equilibrium, all cars follow each other around the circle at equal velocity and at equal

speed. This equilibrium is unique and globally stable in a particular region of the parameter

space, implying that the effects of any small perturbation eventually die out and the system

converges back to uniform flow. The uniform flow equilibrium, however, loses stability when

a certain parameter is varied; at this point a Hopf bifurcation of the dynamical system occurs

meaning that an individual vehicle limit cycle becomes stable.4 Here, what emerges instead

are travelling waves which resemble the stop-and-go behavior in traffi c jams. Individual cars

converge to a limit cycle: cars oscillate between facing low headway and slowing down to a

stop (entering a traffi c jam), and facing large headway and speeding up (exiting the traffi c

jam). In this equilibrium, there are many cars sitting in the traffi c jam, waiting for their

headway to increase before moving forward, implying that aggregate velocity has decreased

relative to that in the uniform-flow. Furthermore, due to the instability of the uniform-

flow equilibrium and the stability of the stop-and-go solution, the transition path seems

compelling: small perturbations develop into large traffi c jams as their effects cascade down

the line of cars.

With this model in mind, I then build a similar model within an economic environment.

I construct a dynamic economy in which agents are inter-connected: the output produced by

one agent is the consumption good of another. I then show how this environment is similar

to that in the traffi c model. In this analogy, the expenditure of each agent is similar to their

velocity. Given this interpretation, I show that headway in the model is equal to cash-on-

4However, note that the aggregate behavior is not in a limit cycle. Only that of individual cars.
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hand at the beginning of the period. Thus, the resources an agent spends on consumption

in a given period becomes the income for the next agent (the producer of that good) the

following period. This increases the latter agent’s cash-on-hand in the following period,

which he may then choose to spend on consumption, therefore moving those resources to the

next agent. And so on. This is analagous to the idea that whenever a car moves forward,

this increases the headway for the car behind him, in which case that car may move forward.

Now, in the traffi c model there is a behavioral equation which dictates the behavior of

cars—cars are supposed to accelerate when headway is large, and decelerate when headway is

low. The next step in the economic model then is to see whether the behavior of the agents in

the model can match the behavior of cars in the traffi c model. Here, I take two approaches.

First, in the economic model I start by allowing for arbitrary consumption functions and then

derive under what conditions these functions can lead to traffi c jam recessions. To understand

this, note that in the traffi c model, depending on the parameters of the behavioral equation,

either the uniform flow equilibrium or the stop-and-go solution is stable. In particular, what

matters is the slope of the acceleration of the car with respect to the headway. When this

slope is suffi ciently low, uniform flow is stable; when this slope is suffi ciently high, uniform

flow loses stability and the traffi c jam occurs. This slope is analogous in the economic

model to the marginal propensity to consume out of current cash-in-hand. I formalize this

condition, and show that when the marginal propensity to consume out of cash-in-hand is

very high, the economy can fall into a traffi c jam recession. I then simulate the economy and

analyze the transitional paths. I find this preliminar exercise useful—once one understands

the general properties consumption functions must have in order to generate traffi c jams

recessions, I can then provide guidance as to what conditions in terms of microfoundations:

preferences, information, constraints, etc. would allow for policy functions of this shape as

an optimal response to the household’s problem.

Second, I then attempt to construct from micro-foundations optimal household policy

functions such that the consumption function satisfies these properties. The starting point

is a model without any credit or borrowing constraints. I show that with permanent income

consumers, one can acheive a policy function which is similar to the behavior equation in the

traffi c model. This is because whenever an agent observes an income shock, if he believes

income is a random walk, his consumption will also increase as an optimal response to the

increase in his permanent income. As in Hall (1977), under certain preferences, this implies

that his own consumption follows a random walk, which therefore implies that the income of

the following agent is a random walk. In this model, however, the slope of this consumpion

policy function is not high enough to generate traffi c jams. In order to generate traffi c jams, a

higher marginal propensity to consume is needed. I thus explore the case of quasi-hyperbolic
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agents. In this case, I show that depending upon parameters, one can obtain a high enough

marginal propensity to consume such that a traffi c jam recession occurs.

Finally, I consider a variant with borrowing constraints. In my opinion, this is the most

natural microfoundation, as we well know that this leads to high marginal propensities to

consume when agents are close to their borrowing constraints. The model here is similar to a

consumption savings model with idiosyncratic income (labor) risk, as in Aiyagari, Huggett,

Bewley. However, in contrast to these papers, the income risk here is endogenous—the income

of one agent depends on the consumption behavior of another. In this version of the model

the state space unfortunately blows up as agents are trying to forecast the shocks of all other

agents and must keep track of entire distributions. Hence, in order to simplify the problem,

I assume that agents have a constrained information capacity as in Sims (2003), Gabaix

(2011), Woodford (2012). Households thus cannot keep track of entire state of the world,

and instead can only keep track and form expectations over a finite number of moments.

I thus define an approximate equilibrium as in Krussell-Smith () and then simulate the

economy with borrowing constraints. I show that this environment can easily lead to traffi c

jam recessions.

Related literature. This paper is firstly related to the engineering literature on traffi c

flow. Finally, in terms of the traffi c literature, I borrow the models of Traffi c Bando et. al.

(1995). This model has been used extensively throught that literature. See, e.g. Gasser

et. al. (2004), Orosz Stepan (2006), Orosz et. al. (2009) In car-following models, discrete

entities move in continuous time and continuous space5

In economics, my paper is most closely related to Jovanovic (1987 and working pa-

per 1983) and the “sandpile” models Scheinkman and Woodford (1994) and Bak, Chen,

Scheinkman, Woodford (1993). In fact, in his 1983 working paper version, Jovanovic ex-

plores an environoment very similar to this one: agents are arranged in a circle and each

agent consumes the good produced by the agent to his left. Jovanovic shows that with in-

dependent agent-specific preference shocks and without any aid of aggregate shocks, in this

economy he can produce aggregate fluctuations!

This paper is also related to the self-organized criticality literature. The “Sandpile Model”

of Scheinkman and Woodford (1994) and Bak, Chen, Scheinkman, Woodford (1993). In

these models there is some low frequency movement that takes you into the Bifurcation

range. Stresses the importance of supply chain linkages.

Furthermore, the results of this model have the flavor of Keynesian Coordination Failures;

it thus complements the literature on multiple equilibria and sunspot fluctuations. See, e.g.
5There is another literature called continuum or macroscopic models. These models characterize traffi c

in terms of density and velocity fields use partial differential equations.

5



Shell (1977), Azariadis (1981), Azariadis and Guesnerie (1986), Benhabib and Farmer (1994,

1999), Cass and Shell (1983), Cooper and John (1988), Farmer (1993), Farmer and Woodford

(1997), and Woodford (1991). The results of the traffi c model can be interpreted as a

coordination failure: the network structure and decentralized trading prevents households

from coordinating on spending more and generating more income. However, unlike this

previous literature, the coordination failure does not originate from any of the familiar sources

(externalities and non-convexities), nor is there ever more than one stable equilibria.

Furthermore, the methodology used in this paper is that of dynamical systems, limit

cycles and Hopf Bifurcations; it is thus partly related to an older literature in dynamic general

equilibrium theory, studying whether rational behavior can give rise to endogenous aggregate

fluctuations. See, for example, Magill (1979), Boldrin and Montrucchio (1986), Scheinkman

(1984) Boldrin and Deneckere (1987). Turnpike theorem. This work is surveyed in Boldrin

and Woodford (1990). These papers look at representative agent growth models with a

unique perfect-foresight equilbrium. They find that deterministic dynamical systems can

generate both periodic limit cycles as well as chaotic dynamics that can look very irregular.

In this model, rather, on the aggregate there are no endogenous fluctuations—there are limit

cycles only at the individual level.

Finally, in this paper fluctuations are driven by small shocks to individual agents, rather

than aggregate shocks. In this sense, this paper shares the spirit of the early literature on

real business cycles and the role of intersectoral linkages and sectoral shocks. Beginning

with Long and Plosser’s (1983) multi-sectoral model of real business cycles, a debate then

ensued between Horvath (1998, 2000) and Dupor (1999) over whether sectoral shocks could

lead to strong observable aggregate TFP shocks. More recently, this work has been extended

and generalized by Acemoglu et al. (2011), for arbitrary production networks. Finally, the

results of the Acemoglu et. al. paper are related to that of Gabaix (2011), who shows that

firm level shocks may translate into aggregate fluctuations when the firm size distribution

is power law distributed, i.e. suffi ciently heavy-tailed. La’O and Bigio (2013) build on the

production network literature and show how financial frictions within firms affect other firms

within the network. Finally, there is the Credit Chains model of kiyotaki moore.

Layout. This paper is organized as follows. Section 2 first introduces the basic workhorse

traffi c model from the traffi c literature. Section 3 then sets up the economic environment

with the goal of reproducing traffi c-jam recessions. Section 4 partially characterizes the

competitive equilibrium within this environment. Section 5 relates the economic model to the

traffi c model and explores the implications of an exogenously imposed behavioral equation

on households. Section 6 considers a variant of the model with borrowing constraints and
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demonstrates how one may obtain expenditure policy functions for individual households in

this environment. Section 7 then concludes. All proofs are in the Appendix.

2 The Traffi c Model

In this section I present the simple traffi c model that can produce both uniform flow and

stop-and-go traffi c. There are two general approaches to modeling traffi c. One is continous

models in which traffi c is described via a continuous density distribution and a continuous

velocity distribution over location and time.6 The other method of modelling traffi c is to

consider a car-following model. In car-following models, discrete entities move in continuous

time and continuous space. I follow the latter approach. The rest of this section mirrors the

exposition on car-following models found in Orosz et al (2006, 2009).

Consider a model of N cars indexed by i ∈ {1, 2, . . . , N}. Here, car i follows car i + 1.

Let xi,t denote the position of car i at time t, let vi,t denote the velocity of car i at time t

and let v̇i,t denote the acceleration of car i at time t. Finally, let hi,t be bumper-to-bumper

distance between car i and car i+ 1, also calle dthe headway:

hi,t = xi+1,t − xi,t − l

where l is length of car. For simplicity and without loss of generality, we take l → 0. See

Figure 1.

hi

xi

vi

xi+1

i i+1
vi+1

l

Figure 1: Diagram of Car-Following Model

One must also specify boundary conditions. For simplicity, we place these N cars on a

circular road of length L. This yields the following equation
∑N

i=1 hi,t = L.

Finally, to complete the model we need a car-following rule, that is, the velocity or the

acceleration of each car has to be given as the function of stimuli—these are usually headway,

6See, e.g. Lighthill & Whitham (1955).
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the velocity difference, or the vehicle’s own velocity. As economists, we can think of this as

simply a behavioral equation for each car. Here, I will follow a class of models that has been

extensively studied and widely accepted in the traffi c literature called the “Optimal Velocity

Model”(Bando et. al, 1995). See (Bando et al. 1998, Gasser et al 2004, Orosz et al. 2004)

In this class of models, the acceleration of vehicle i is given by

v̇i,t = α (V (hi,t)− vi,t) (1)

where α > 0 is a constant, and V is a continuous, monotonically increasing function of

vehicle i’s headway hi,t.7 This equation was proposed by Bando et al (1995) and has proved

quite successful. Despite its simplicity, this model can produce qualitatively almost all kinds

of traffi c behaviour, including uniform traffi c flow as well as stop-and-go waves.

Equation (1) deserves some comment. First, the assumption here is that the acceleration

of vehicle i is a function only of nearby stimuli—the vehicle’s own velocity and its headway

(its distance to the nearest car). These are called nearest-neighbor interactions. That is,

each car’s individual state is strictly smaller than the aggregate state.8

Next, this model is entitled the optimal velocitiy model (OVM) and V (·) is called the
optimal velocity function. However, note that in the usual economic sense, there is nothing

necessarily “optimal”about it. That is, equation (1) is not the result of any optimization

problem on the part of the agents nor a planner; instead, this behavior is simply imposed.

The reason one might call it optimal is that V (hi,t) can be thought of as the “optimal

velocity”a driver would like to have given its current headway hi,t. If this optimal velocity

V (hi,t) is greater than the car’s current velocity vi,t, the car speeds up. Conversely, if V (hi,t)

is less than the car’s current velocity vi,t, the car slows down. Finally, α > 0 is called the

relaxation parameter; it dictates how sensitive the driver’s acceleration is to this difference

in optimal and current velocity.

Finally, the optimal velocity function V satisfies the following properties: (i) it is con-

tiuous, non-negative, and monotonically increasing, (ii) it approaches a maximum velocity

for large headway limh→∞ V (h) = v0 where v0 acts as a desired speed limit, and (iii) it is

zero for small headway. A simple example of the optimal velocity function is given by the

7A more general version often studied is given by v̇i,t = α (V (hi,t)− vi,t) + W
(
ḣi,t

)
. Here, I follow

Bando et. al. 1995 and Gasser et al. 2004 and set W = 0.
8There exist extensions in which stimuli also include next-nearest neighbour interactions (Wilson et al

2004). In multi-look-ahead models, drivers respond to the motion of more than one vehicle ahead. These
can increase the linear stability of the uniform flow.
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following specification, used in Orosz et. al (2009)

V (h) =


0 if h ∈ [0, 1)

(h−1)3

1+(h−1)3 if h ∈ [1,∞)

This is rescaled by v0. Figure 2 plots this function and its first derivative. Note that the

rescaled speed limit is 1.

ods from dynamical systems theory �normal form calcula-
tions and numerical continuation� have also been applied to
investigate traffic dynamics �9,20–23�. The advantage of
these methods is that both stable and unstable solutions can
be studied. Indeed, unstable motions can hardly be observed
in the physical system but they can influence the emergent
behavior by “separating” qualitatively different stable mo-
tions. In this paper, we apply numerical continuation tech-
niques �24� to reveal the intricate microscopic dynamics un-
derlying jam formation and to extract macroscopic flow
properties.

The layout of the paper is the following: We introduce the
car-following model in Sec. II and review the bifurcation
analysis of the uniform flow in Sec. III. Numerical continu-
ation techniques are introduced in Sec. IV. They are applied
to the traffic model in Sec. V where the fundamental dynami-
cal principles behind excitability are explained. The limit of
infinitely many vehicles is discussed in Sec. V A and the
spatial motion of waves is studied in Sec. V B. The full
nonlinear dynamics is presented in Sec. VI and we conclude
our research and discuss future directions in Sec. VII.

II. CAR-FOLLOWING MODELS WITH REACTION TIME
DELAY

Here, we discuss general modeling issues and introduce
the specific model analyzed in this paper. Assuming identical
vehicles and nearest neighbor interactions, the acceleration
of the i-th vehicle is given by

v̇i�t� = f„hi�t − �1�, ḣi�t − �2�,vi�t − �3�… , �1�

where the dot stands for differentiation with respect to time t,
vi is the velocity of the i-th vehicle while hi is the bumper-
to-bumper distance between the i-th and the i+1-st vehicles
also called the headway; see Fig. 1�a�. The reaction time
delays �1 , �2 , �3�0 are generally different, but sometimes,
for the sake of simplicity, they are considered to be equal to
each other or to be zero. In this paper, we focus on the effects
of �1. Figure 1�a� shows that the headway can be defined as

hi�t� = xi+1�t� − xi�t� − � , �2�

where xi is the position of the front bumper of the i-th ve-
hicle and � is the vehicles’ length. Taking the time derivative
one obtains the velocity difference

ḣi�t� = vi+1�t� − vi�t� , �3�

and this kinematic condition completes system Eq. �1�.
One also has to specify boundary conditions. For simplic-

ity we assume periodic boundary conditions: N vehicles are
placed on a circular road of length L+N� that yields the
algebraic equation

�
i=1

N

hi�t� = L , �4�

where L is called the effective ring length. Using this equa-
tion one may express one headway �for example, hN� as a
functions of the others and so reduce the number of dynami-
cal variables by one. That is, system �Eqs. �1�, �3�, and �4��
can be written as a system of 2N−1 DDEs. Notice that the
vehicle length � does not appear in the dynamical equations.
The role of this parameter will be clarified in Sec.V B. Note
that one may also study the system on semi-infinite roads
where similar patterns can develop as on the ring road for
large L and N, but convective instabilities may also need to
be handled �25�.

In previous studies, the case of arbitrarily many vehicles
with weak nonlinearities was studied by performing normal
form calculations �23� and the case of few vehicles with
strong nonlinearities was investigated by numerical continu-
ation �21,22�. Here, we analyze the case of large number of
vehicles with strong nonlinearities. The results are presented
for N=33, which is low enough to represent the detailed
microscopic dynamics but high enough to compare the re-
sults to the case N→�. Note that N is increased such that
L /N is kept constant. We remark that when reproducing the
results for larger number of vehicles �e.g., N=99�, no signifi-
cant deviations are found but the illustrations become more
elaborate and so less instructive.

To determine the function f in Eq. �1� one needs to take
into account some general modeling principles; see �13� for
details. In this paper we consider a simple, yet widely ac-
cepted model, the so called optimal velocity �OV� model
�4,6,9,21� where

f�h, ḣ,v� =
1

T
�V�h� − v� . �5�

In spite of its simplicity, �e.g., it does not depend on the

velocity difference ḣ� this model is able to reproduce uni-
form flow as well as stop-and-go waves.

The parameter T is called the relaxation time �and 1 /T is
called the sensitivity�. Note that T differs from the reaction
times �1 , �2 , �3: the finite relaxation time represent the fact
that vehicles have inertia while the reaction times are explicit
time delays in the system. In this paper, we consider �1�0
and �3=0 to model the human behavior that drivers react to

0 1 3 5 7
0

0.5

1

0 1 3 5 7
0

0.5

1

vi vi+1

xi xi+1

hi �

h

V

h

V �

(a)

(b) (c)

FIG. 1. �Color online� A sketch of two vehicles following each
other is displayed in panel �a� while the optimal velocity function
Eq. �6� and its first derivative are shown in panels �b� and �c�,
respectively.

OROSZ et al. PHYSICAL REVIEW E 80, 046205 �2009�

046205-2

Figure 2: Optimal Velocity Function

Therefore, equilibrium of this traffi c model is given by the following set of ODEs

hi,t = xi−1,t − xi,t, ∀i ∈ {1, . . . N} (2)

vi,t = ẋi,t (3)

v̇i,t = α [V (hi,t)− vi,t] , ∀i ∈ {1, . . . N} (4)

where
∑N

i=1 hi,t = L. The first equation simply describes the relation between positions and

headway, the second condition gives us periodic boundary conditions, and the third equation

are the behavioral equations for the cars. Finally, as mentioned before This behavioral

equation is useful as it can produce both uniform flow and stop-and-go traffi c, which I will

describe next.

Uniform Flow Equilibrium. This system admits a uniform flow equilibrium. The de-

finition of the uniform flow equilibrium is an equilibrium which satisfies (2)-(4) in which

the velocities and the headways of all cars are constant (time-independent): hi,t = h∗ and

vit = v∗,∀i ∈ {1, . . . N}. In this equilibrium, all cars travel at same velocity, equally spaced.
Characterizing the uniform flow is quite simple. If all cars are equally spaced, then h∗ = L/N .

Furthermore, in order for all cars to be travelling at constant velocity, in order for equation

(4) to hold, we must have that 0 = V (h∗) − v∗. Thus, the uniform flow equilibrium is
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characterized by

hi,t = h∗ = L/N, vit = v∗ = V (L/N) , ∀i ∈ {1, . . . N}

As will be discussed next, the uniform flow equilibrium is unique and globally stable in part

of parameter space. This implies that one may start cars in any position and at any velocity,

and as long as they behave according to the optimal velocity equation, over time these cars

will converge to the uniform flow equilibrium. This is convergence is demonstrated in Figure

3.
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Figure 3: Convergence to the Uniform Flow Equilibrium

Bifurcations of the Uniform Flow. We now consider the stability of the uniform flow

equilibrium. We find that the uniform flow equilibrium is stable in part of parameter space,

however the uniform equilibrium may lose stability when the parameter h∗ is varied. In order

to see this, one needs to linearize the system around uniform-flow equilibrium and consider

the eigenvalues λ ∈ C. To conserve on space, the linear stability analysis is restricted to the
appendix; here, I will simply present the result.

Proposition 1. The uniform flow equilibrium is stable if and only if

V ′ (h∗) <
1

2
α

The proof is in the Appendix. In the terminology of dynamical systems, when crossing

the stability curve at V ′ (h∗) = 1
2
α, a (subcritical) Hopf bifurcation takes place. At this

point a pair of complex conjugate eigenvalues cross the imaginary axis, λ = iω. Once this

10



occurs, the uniform flow becomes unstable and instead, travelling waves with frequency ω

appear. That is, the stable equilibrium is a the limit cycle for each vehicle.

Figure 4 summarizes this information by ploting the linear stability diagrams. Figure

4 plots the stability diagram in terms of the (V ′ (h∗) , α) space. The domain in which the

uniform flow is linearly stable ìs shaded. When V ′ (h∗) < 1
2
α the uniform flow equilibrium

loses stability and a Hopf bifurcation occurs; the arrows represent the increase in wave

number k. Using the derivative of the optimal velocity function, one may transform the

V’(h)

α

Figure 4: Bifurcation Diagram

stability diagrams from the (V ′ (h∗) , α) plane to the (h∗, α) plane, thus Figure 5 plots the

linear stability in terms of the (h∗, α) space. From this, we see that when traffi c is suffi ciently

dense, i.e. when h∗ is low enough (approaching from above), the uniform flow equilibrium

loses stability.

Stop-and-Go Waves. Thus, when V ′ (h∗) is suffi ciently high relative to α, the uniform

flow equilibrium loses its stability. When this occurs, what emerges instead are travelling

waves which resemble the stop-and-go behavior in traffi c jams. Individual cars converge

to a limit cycle, an oscillatory solution. See Figure 6. Cars oscillate between facing low

headway and slowing down to a very low speed or to a stop, sitting in a traffi c jam waiting

for their headway to increase, and then facing large headway and speeding up until they hit

the traffi c jam again. Furthermore, this limit cycle is stable in this region, hence any small

perturbation thus takes cars into the oscillatory solution.

Finally Figure 7 plots the trajectories of multiple vehicles. The y-axis is the position of

each vehicle, plotted as a function of time t. Each blue line is the trajectory of an individual

vehicle. The vehicle enters the traffi c jam, is stuck there for a while, and then when its

headway opens up, the car speeds up. The red line indicates the stop-front of the jam and

11
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Figure 5: Bifurcation Diagram

The bifurcation diagrams show that there exist three
qualitatively different behaviors:

�i� In the regimes to the left of the left fold point and to
the right of the right fold point the only linearly stable state
is the uniform flow solution and consequently this state is
globally stable.

�ii� In the regime between the two Hopf points the uni-
form flow is linearly unstable and the only linearly stable
state is the large-amplitude oscillatory solution that is conse-
quently globally stable.

�iii� In the regimes between Hopf and fold points both the
uniform flow and the large-amplitude oscillatory solutions
are linearly stable and they are separated by an unstable os-
cillatory solution. This means that the system is bistable:
depending on the initial conditions either the uniform flow or
the oscillatory solution is approached. Observe that the
bistable regimes become much more pronounced in the de-
layed case; the delay makes this behavior very robust. In
fact, for certain OV functions �that differ from Eq. �6�� the

bistability may disappear for �=0 but it always exists for
large enough �; see �23�.

To reveal the details of the nonlinear dynamics we marked
the points A-E along the oscillatory branch in Fig. 3�b�.
Points A, B are in the bistable regime on the right �h�=2.9�,
point C is in the regime where the uniform flow is linearly
unstable �h�=2.0� and points D,E are in the bistable regime
on the left �h�=1.1�. Figures 4�a�–4�e� shows the corre-
sponding time profiles for velocity �solid curve� and head-
way �dashed-dotted curve� for the first vehicle, while panels
�f–h� depict the periodic orbits in state space. These solutions
preserve the travelling wave features: the time profiles of the
other vehicles can be obtained by shifting the oscillations
with Tp /N where Tp is the period of oscillations.

The small-amplitude unstable oscillations in panel �a�
consists of a plateau of constant velocity that is interrupted
by a “ditch” where the velocity is reduced for a short time
�the driver taps the brake shortly�. The velocity along the
plateau is close to �but slightly higher than� the velocity of
the uniform flow Eq. �9�. This can be observed in panel �f�
where the “corner” of the small-amplitude periodic orbit cor-
responds to the plateau while the dot at �h� ,v�� represents the
uniform flow. �The ‘‘corner’’ and the dot are very close and
the dot is located ‘‘inside’’ the limit cycle.� The unstable
periodic orbit is similar to a homoclinic orbit and for N
→� this becomes a homoclinic orbit since the length of the
plateau goes to infinity. Moving point A along the unstable
oscillatory branch in Fig. 3�b� �from left to right� the velocity
is reduced more and more during the ‘‘ditch’’ reaching zero
at the fold point.

The small-amplitude unstable oscillations in panel �e� are
similar to those in panel �a� but here the velocity plateau is
interrupted by a “hump” where the velocity is increased for a
short period of time. Again, the velocity along the plateau is
close to the values of the uniform flow Eq. �9� and the un-
stable periodic orbit is close to a homoclinic orbit as dis-
played in panel �h�. Moving point E along the unstable os-
cillatory branch in Fig. 3�b� �from right to left� the velocity
increases more and more during the “hump.”

The large-amplitude stable oscillations shown in panels
�b–d� consist of a high-velocity plateau and a low-velocity
plateau that are connected by a ‘‘stop-front’’ �where vehicles
decelerate� and a “go-front” �where cars accelerate�. The cor-
responding travelling wave is a stop-and-go wave. The oscil-
lations are shown in state space in panels �f–h� where the
“corners” of the large-amplitude periodic orbits correspond
to the velocity plateaux. The stable periodic orbit is similar
to a heteroclinic orbit and for N→� it becomes a hetero-
clinic orbit since the length of the plateaux become infinite.
Observe that the period of oscillations does not change sig-
nificantly between panels �a–e�.

Moving along the stable oscillatory branch in Fig. 3�b�
�from right to left� the velocity along the plateaux and the
shape of the fronts do not change significantly but the frac-
tion of time spent in the low-velocity state increases. To
quantify this change we introduce Tjam, the time interval cor-
responding to vi�t��1 /3. Thus one can define the flux
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FIG. 4. Oscillations for wave number k=1 corresponding to the
black dots A-E in Figs. 3�b� and 3�d�. In panels �a – e� the velocity
of the first vehicle is shown as a solid curve �scaled on the left�
while the headway of the first vehicle is shown as a dashed-dotted
curve �scaled on the right�. Panels �f – h� show the oscillations in
state space. Notice that the small-amplitude unstable oscillations
�a,e� are similar to homoclinic orbits, while the large-amplitude
stable oscillations �b – d� are similar to heteroclinic orbits.

OROSZ et al. PHYSICAL REVIEW E 80, 046205 �2009�

046205-6

Figure 6: Limit Cycle of the Traffi c Jam

the green line indicates the go-front of the jam.

To summarize, when V ′ (h∗) is suffi ciently high, or when traffi c is suffi ciently dense, a

traffi c jam can emerge. At the micro level, individual cars enter a traffi c jam in which they

wait for their headway to increase before moving. At the macro level, aggregate velocity and

headway have fallen relative to the uniform flow equilibrium. Furthermore, small perturba-

tions develop into large traffi c jams; “tiny fluctuations may develop into stop-and-go waves

as they cascade back along the highway, i.e. ‘tiny actions have large effects’”(Orosz et al,

2009). The traffi c engineering literature describes these as “phantom jams”in the sense that

drivers cannot see any cause of the jam even after they’ve left the congested region.

12



velocity of a vehicle drops below 1/3 and this gives the stop-
front in space �lower curve, highlighted as red�. We also
detect when the velocity of a vehicle exceeds 1/3 and this
gives the go-front in space �upper curve, highlighted as
green�. These fronts separate the congested regime �where
the velocity is below 1/3� and the free-flow regime in space.
Detecting these velocity crossings provides us with discrete
points in space time but these are lined up to visualize the
front motion. The time evolution of the stop-and-go wave
can be described through the motion of the corresponding
fronts.

As the wave develops there exist two different stop-
and-go regimes with different front behavior and wave

speed. For 100� t�200 the stop-front and the go-front
propagate upstream with different velocities such that they
move away from each other, i.e., the congested region ex-
tends. For t�200 the fronts propagate with the same velocity
and the system reaches the state corresponding to Figs. 4�b�
and 4�f�. The regime where the velocity is below 1/3 in Fig.
4�b� corresponds to the congested regime in Fig. 7�d�. In
fact, at a given moment in time most vehicles are either at
the congested state �h− ,v−� or at the free-flow state �h+ ,v+�
and only a few cars travel with velocity between v− and v+ as
shown by the zoom in Fig. 8�a�, where the trajectories of all
vehicles are displayed.

In the regime t�200, the front velocities are well ap-
proximated by

c =
h+v− − h−v+

h+ − h− � 0, �27�

that is obtained from kinetic theory of nonlinear waves �29�.
For the parameters considered here we have c=−0.0567 that
fits very well to Fig. 7�d�.

So far we only considered vehicles of zero length, i.e.,
�=0 in Eq. �2�. For nonzero � the qualitative dynamics do
not change since the dynamical system �Eqs. �3�, �4�, and
�8�� does not contain this parameter. However, the parameter
� alters the spatial wave propagation speed of the stop-go-
wave significantly according to

c� = c	1 +
�

h−
 . �28�

This is demonstrated in Fig. 8�b� where the same spatiotem-
poral plot is shown as in Fig. 8�a� but for �=0.35. This
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FIG. 7. �Color online� Demonstration of bistability in space-
time. In panels �a,b� the velocities of every third vehicle are shown
while panels �c,d� display the corresponding positions. The trajec-
tory of the first vehicle is emphasized as black. Observe that the
small difference in initial conditions between �a,c� and �b,d� leads to
large differences in the emergent state. In panel �d� the stop-front
�lower curve� and the go-front �upper curve� are highlighted as red
and green, respectively; see Fig. 8�a� for zoom-in. Notice the dif-
ferent spatial wave speed of the developing and the fully developed
stop-and-go wave.
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FIG. 8. �Color online� Zoom of Fig. 8�d� is shown in panel �a�
when all trajectories are displayed. Panel �b� shows the same situ-
ation but with nonzero vehicle length ��0. The bottom and the top
of a “fat trajectory” correspond to the motion of the front and rear
bumper of a vehicle. The stop-front �lower curve� and the go-front
�upper curve� are highlighted as red and green, respectively. Ob-
serve that the vehicle length alters the wave propagation speed
significantly.
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Figure 7: Trajectories of Cars in Traffi c Jam

3 The Economic Model

In this paper I build an economic model in which recessions can resemble traffi c jams. With

the traffi c model presented above in mind, in this section I attempt to construct a similar

model within an economic environment. In this economy, agents are inter-connected: the

output produced by one agent becomes the consumption good of another. In this way, the

actions and incentives of agents are very much connected in a way similar to that in the

traffi c model.

The Model. Time is discrete and indexed by t.

Geography. There are N households indexed by i ∈ {1, . . . , N}. These households live
on N islands and each household is composed of a consumer and a producer. While the

consumer of household i lives and consumes on island i, the producer of household i lives

and produces on island i + 1. This implies that for any island i, consumer i and producer

i − 1 co-habitate on this island. In particular, the good produced by household i − 1 is

consumed by household i. These households are therefore arranged in a circular network

such that household i consumes the output produced by household i− 1.9

Commodity Space. There are N + 1 consumption goods. First, there are the N different

commodities which the N households consume and produce. Consumer i consumes the

commodity produced by household i − 1. Furthermore, these commodities are perishable—

they cannot be stored over periods.

There is also a numeraire good, which I call corn. Corn can either be planted as seed

corn, consumed, or used to buy the commodities. Corn is consumed by all households. Corn

facilitates trade among islands—that is it can be used to purchase goods.

Each household is endowed at time 0 with some amount of corn. Corn can be used for
9And household 1 consumes the output of household N .
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food or for seed. A farmer can split the corn yt into consumable sweet corn qit and seed corn

ait for next period. If it plants ait seeds of corn this period, it gets (1 + r) ait seeds next

period. To simplify, I set the interest rate r = 0.

Timing. At the beginning of each period, each household receives revenues from its

producer from the previous period. Once each household receives last period’s revenues, the

goods market on each island takes place. The consumer makes consumption and savings

decisions, the producer on that island works and produces the consumption good, and prices

adjust so as to clear markets within each island. The household pays the producer for the

consumption good in units of corn and the producer on each island plants the corn, to be

used by his own consumer at the beginning of next period. This corn gains an interest rate

as they are transfered to the following period.

Household Preferences, Budgets, and Technology. The utility of household i is given by

E0
∞∑
t=0

βt [u (cit)− χnit]

where β is the household’s discount factor and u (c) is a strictly increasing, concave, one-

period utility function satisfying the Inada conditions. Consumption cit is a composite

consumption basket given by

cit = yθi−1,tq
1−θ
it

composed of its consumption of the output of household i − 1 at time t, yi−1,t, and the

numeraire good, which is denoted qit. The household’s budget constraint (in terms of the

numeraire) is given by

pi−1,tyi−1,t + qit + ai,t = (1 + ρ) pi,t−1yi,t−1 + ait−1 (5)

The left hand side is expenditure on both consumption goods and savings in seed corn, where

pi−1,t is the price of the good produced by producer i− 1 at time t and ait are its savings in

seed corn. The right hand side is composed of are the revenues the household receives from

its producer from last period pi,t−1yi,t−1, which is transformed into corn at rate (1 + ρ) as

well as corn seed from the previous period, which is transformed into corn one-for-one.

Producer i’s production function linear and given by

yit = Anit

where nit is the labor it employs.
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Market clearing. The consumption of any commodity must be equal to the amount

produced yi−1,t since there is no storage.

Remarks. Consumption of household i is set equal to production of household i− 1. This

implies that the consumption and investment goods are different in order for islands to

produce different amounts. To understand this, suppose the opposite: that production can

be used either as consumption or investment. Now consider the following. Island i produces

yi. Island i+ 1 buys this production yi and uses it either for consumption or investment. If

island i+ 1 has its own income and its own saved goods, all of that is spent on consumption

and investment. That is, suppose whatever cash-in-hand i+1 is hi+1 = (1 + r) (yi+1 + ai+1).

Then household i+ 1 can spend this cash-on-hand on either either on c or a

c+ a = (1 + r) (y + a)

c+ (a− (1 + r)a) = y

c+ x = y

Household i + 1 purchases c + x from household i. But this implies that household i must

have produced yi too. So in the end, all households produce the same amount y. This is

why I disconnect the consumption and investment goods from one another and therefore

introduce another good used for trade—the numeraire (corn).

Next, why do I need a numeraire good. I need some good which can be used to facilitate

trade across all households. Rather than complicate matters with money an nominal price

determination, I opted for a numeraire good which all households consume.

Finally, another question is about why income comes a period later. Otherwise, all

markets clear instantaneously.

4 Equilibrium Characterization

Although I have not introduced any shocks or imperfect information in this economy, I will

give a more general definition for equilibrium that allows for household and firm expectations.

I define an equilibrium as follows.

Definition 1. A competitive equilibrium is a collection of allocation and price functions such
that

(i) given current prices and expectations of future prices and income, allocations are

optimal for consumers and workers.
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(ii) prices clear all markets

I now characterize the equilibrium of this economy. The household’s intratemporal con-

dition for consumption over both goods is given by

pi−1,t =
uy (cit)

uq (cit)
=

θ

1− θ
qit
yi−1,t

(6)

The household’s Euler Equation is given by

λit
cit
qit

= βEitλi,t+1
cit+1
qit+1

where λit is the Lagrange multiplier on the household’s budget constraint.

Next, consider the producer. The producer’s optimality condition is given by

χ = Eitβλt+1 (1 + ρ) pi,tA

Using the Euler equation, this can be reduced to

χ = λit (1 + ρ) pitA

Therefore, the price must satisfy:

pit =
1

1 + ρ

χ

Aλit

Finally, substituting in for λit we get that

pi,t =
1

1 + ρ

χ

Au′ (cit) (1− θ)
qit
cit

We conclude that a set of allocations and prices constitute an equilibrium if and only if

the following hold

pi−1,t =
θ

1− θ
qit
yi−1,t

(7)

u′ (cit)
cit
qit

= Eitβu′ (cit+1)
cit+1
qit+1

(8)

pi,t =
1

1 + ρ

χ

Au′ (cit) (1− θ)
qit
cit

(9)

along with the resource constraints.

One may reduce these conditions further and state the equilibrium in terms of allocations
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alone. For simplicity let us assume that u (c) = log c. In this case, the Euler equation (8)

reduces to

q−1it = Eitβq−1it+1

And equation () becomes

pi,t =
1

1 + ρ

χ

A (1− θ)qit

Let expenditure be denoted by zit = pi−1,tyi−1,t + qit of household i on consumption in

period t. Then, using the optimality condition over consumption goods () it is straightforward

to show that

zit = pi−1,tyi−1,t + qit =
1

1− θqit

Since consumption of household i is equal to output of household i− 1, we have that

pi−1,tyi−1,t = θzit and qit = (1− θ) zit

this implies that

pi,tyi,t = θzi+1,t

Therefore, the budget constraint can be re-written as

zit + ai,t = (1 + ρ) θzi+1,t−1 + ait−1

Using the fact that qi,t = (1− θ) zit, one may rewrite the Euler equation as

z−1it = βEitz−1it+1

We can thus condense the equilibrium characterization to the following

Proposition 2. Let zi,t = pi−1,tyi−1,t + qi,t denote household i’s time t expenditure on the

consumption basket. The equilibrium expenditure in this economy is the fixed point to the

following two equations: (i) the Euler Equation of each circle household

z−1it = βEitz−1it+1 (10)

and (ii) the budget constraint of each circle household

zit + ai,t = (1 + ρ) θzi+1,t−1 + ait−1 (11)
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(iii) the amount consumed on each good is given by

pi−1,tyi−1,t = θzit and qit = (1− θ) zit

where

pi,t =
1

1 + ρ

χ

A
zit

Given equilibrium expenditure one can then easily back out the individual components

of consumption qit and yit.Proposition 4 represents the equilibrium as a fixed point in the

expenditure of each household zit in terms of each household’s Euler Equation and the

household’s budget constraint. The budget constraint is simply a physical constraint which

cannot be violated. The Euler equation, however, describes the optimal behavior or the

household in terms of its consumption, or expenditure, path. given it’s expectations of

future expenditure. This obviously interacts with the budget constraint, as both current

and future expenditure must

Therefore this economy reduces to an economy which looks very similar to conventional

consumption-savings models. However, the main difference is that the expenditure of one

agent becomes the income of another. This is apparent from the budget constraint (11); the

expenditure of household i+ 1 at time t− 1 becomes the income of household i at time t.

Finally, I assume that

(1 + ρ) θ = 1

So that the budget constraint becomes

zit + ai,t = zi+1,t−1 + ait−1

5 Relation to the Traffi c Model

I now show how this economic environment is similar in many ways to the traffi c model

environment presented in Section 2. In this analogy, the expenditure of each circle consumer

is similar to the velocity of each car. Thus, the resources any agent spends on consumption

in a given period becomes the income for the next agent (the producer of that good) the

following period. This increases the latter agent’s cash-on-hand in the following period,

which he may then choose to spend on consumption, therefore transfering this wealth to

the next agent. And so on. Thus, the transferal of resources or wealth from one agent to

another is analagous to the idea that whenever a car moves forward it gives space to the car

behind it. this increases the headway for the car behind him, in which case that car may
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move forward.

Here, I will now make these ideas more concrete and show how closely these ideas are

aligned. how the economic model outlined above is similar to the traffi c model

Position, Velocity, and Acceleration. Let xit denote the value of all expenditure up

through period t

xit ≡
t∑

j=0

zi,t−j +

i−1∑
k=1

ak,−1 (12)

where, as before, zit = pi−1,tyi−1,t + qi,t denotes the expenditure on household i’s composite

consumption basket. Thus, I say that xit denotes the “position”of household i at end of

period t. One can think of this as the amount of numeraire the consumer has used. We can

think of this position as if agents hold pieces of numeraire. Each unit of numeraire has a

number on it, so as a household receives more income, it holds a higher numbered piece of

the numeraire.

I define a discounted time-derivative operator as follows

∆ ≡ 1− L

where L is the lag operator. It is straight-forward to show that the velocity of agent i at

time t, or the first (discounted) time-derivative of xit, is equal to expenditure this period.

vit ≡ ∆xi,t = xit − xi,t−1 = zi,t

This is shown in the appendix. Furthermore, the acceleration of household i is simply just

the household’s change in expenditure: ∆zit = zit − zit−1.

Headway. I now consider the analog of headway, the bumper-to-bumper distance between

cars in the traffi c model. In the traffi c model headway of car i was defined as the difference

in position between car i and car i + 1. In the economic model, I define the headway of

household i at time t as a particular difference in position (distance) between that household

and the household in front of it. This difference is defined as follows.

hit ≡ xi+1,t − xi,t

Given this definition along with the sequence of budget constraints in (11), we may obtain

the following characterization of headway
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Lemma 1. Headway at the beginning of the period is equal to the household’s resources before
consuming or investing

hi,t−1 = zi+1,t−1 + ai,t−1

Headway is thereby the household’s income and assets at the beginning of the period,

before making consumption and investment decisions. This implies that one can rewrite the

sequence of budget constraints as follows

zit + ai,t = hi,t−1 (13)

The intuition for this is fairly simple. Suppose household i starts out with assets at time

0. When household 1 buys some goods from household 0, household 1 transfers resources to

household 0. Thus, at the beginning of the following period, household 0 can consume using

its assets and its income from the previous period.

Boundary Condition. In the traffi c model, there was a boundary condition given by∑
i∈I hi,t = L. The cars were arranged on a circle of fixed length L. Thus, the aggregate

amount of headway remained constant—the length of the circle never shrank nor expanded.

In the economic model, the circle is also closed (since household N purchases goods from

producer 1) so that a boundary condition must exist in every period. However, aggregate

headway can change over time. Headway grows due to interest made on assets, and shrinks

as the numeraire leaves the system and is transferred to the mainland worker sector. First,

I define the aggregate headway at time t as the sum over all households’headways.

Ht =
∑
i∈I

hi,t =
∑
i∈I

(zi+1,t + ai,t)

It is then easy to obtain a law of motion for aggregate headway. Plugging in for ai,t from

the budget constraint (13), ai,t = (1 + r)hi,t−1 − zit, we obtain

Ht =
∑
i∈I

(zi+1,t + hi,t−1 − zit)

Letting Zt =
∑

i∈I zi,t be aggregate expenditure, this leads to the following characterization

of aggregate headway

Lemma 2. Aggregate headway evolves according to the following law of motion

Ht = Ht−1 (14)
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where Zt =
∑

i∈I zi,t is aggregate expenditure and initial headway given by H−1 =
∑

i∈I hi,−1.

Thus, the aggregate amount of headway is changing over time, according to the above

law of motion. Aggregate headway grows because the amount of wealth held within the

circle increases over time due to the fact that the value of bonds increases at the rate of

interest.

Transforming equations to continuous time. In discrete time, the equilibrium is described

by the following equations

zi,t = xit − xi,t−1
hi,t = xi+1,t − xi,t
Ht = Ht−1

These equations closely correspond to those in a discrete-time version of the traffi c model.10

Here, instead velocity is interpreted as expenditure, vi,t = zi,t, and headway as equivalent to

numeraire-on-hand at the beginning of the period, hi,t−1 = zi+1,t−1 + ai,t−1.11

I now transform these equations into continuous time such that expenditure is the usual

time derivative of position. And hence, taking the limit as the time increment between

periods approaches zero, we get the following continuous-time analog of these equations ()

ẑi (t) =
.

x̂i (t)

ḣi (t) = x̂i+1 (t)− x̂i (t)
.

Ḣ (t) = 0

What remains missing from this system is the policy function.

The next steps in my analysis. I have described the equilibrium as a fixed point of two

sets of equations: the set of Euler equations for the circle households, and the set of budget

constraints. In the analysis thus far, I have only used the set of budget constraints. There

are two equations that must coincide with each other. The only equation I have not used

yet is the Euler Equation. The Euler equation must give a policy function as in (15). In

order to find this convergence, there are two avenues I pursue.

10See for example the discretized traffi c version of the optimal velocity model in Tadaki et al. (1997)
11In fact, one may consider the hypothetical limit in which r → 0, and αθ → 1. In this case, there is

no discounting of time by the mainland household, and both the specialized good share of the consumption
basket and the capital share of output approach one. In this limit, we have that ∆ = 1 − L, which implies
that ∆zi,t = zit − zit−1, hit = xi+1,t − xi,t, and aggregate Ht is constant. Therefore, in this limit, the
equations describing the economy converge exactly to those in a discrete-time version of the traffi c model.
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5.1 Reduced-Form Expenditure Policy Functions

Imposing a Policy Function. The optimal velocity equation in the traffi c jam model is given

by
.
vi (t) = α (V (hi (t))− vi (t))

The goal is to obtain a policy function similar to this in the economic model from first

principles. That is, one would ideally want a function governing expenditure behavior that

looks like the following
.

żi (t) = G
(
ĥi (t) , zi (t)

)
(15)

with ∂G/∂h > 0 and ∂G/∂z < 0.12 Thus, I want expenditure to be increasing in cash-on-

hand. This is related to the household’s marginal propensity to consume. This is similar to

the state variables that we often see in many economic problems.

For now, I simply impose a policy function as in (15). In this sense, I just throw away

the Euler equation, and exogenously impose a policy function, and I then derive what I need

in terms of G in order to obtain traffi c jams. One may think of this as a reduced form

expression for the behavior of agents. This is what follows in this section I find this simple

exercise useful as it gives some guidance as to what the policy function must look like and

what properties it must have in order to produce traffi c jams.

Equilibrium For now, let’s just impose this function (15) exogenously. Then, the equilib-

rium of this economy is described by the following equations.

Lemma 3. Imposing a policy function as in (15), an equilibrium of the system is given by

ẑi (t) =
.

x̂i (t)
.

ẑi (t) = G
(
ĥi (t) , ẑi (t)

)
ĥi (t) = x̂i+1 (t)− x̂i (t)
.

Ĥ (t) = 0

This system is almost the same as the equations describing the traffi c system, with the

only difference given by the change in headway.

Uniform Flow Equilibrium. I can now derive what one would consider the uniform flow

equilibrium.13 Let me first define the uniform flow equilibrium. Suppose ẑi (t) = z̄ and

ĥi (t) = h̄ = H̄/N . This implies
.

ẑ (t) = 0.

12This is where I apply the so-called want operator.
13Suppose we define the uniform flow equilibrium as follows,

.

ẑi (t) = 0, ∀i, t. But, plugging this in, we
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Finally, the policy function must also hold. One can linearize around 15 and get that.

.

ẑi (t) = Ghĥi (t)−Gz ẑi (t) (16)

Thus, in the uniform flow, it must be the case that

0 = Ghh̄−Gz z̄

(Note that ln (1 + r) ' r. This corresponds to the uniform flow-equilibrium in discrete time.)

Proposition 3. In the uniform flow equilibrium, the transformed expenditure and headway

are given by

ẑ (t) = z̄, and ĥ (t) = h̄ = H̄/N

where

z̄ =
Gh

Gz

h̄

This describes the uniform flow equilibrium.

Stability. I now consider stability of the uniform flow equilibrium. I obtain the following

result

Proposition 4. The uniform flow equilibrium is stable if and only if

Gh <
1

2
G2z

The proof of this is in the Appendix. Thus, for Gh low enough, the uniform flow equilib-

rium is stable. Otherwise, it is unstable.

5.2 Simulations

I do some simulations with this exogenously imposed consumption function. For simplicity,

in these simulations I set N = 10, r = 0

zi,t − zi,t−1 = α (V (hi,t−1)− zi,t−1)

with α = .8 and a V function shown in Figure 8

get that 0 = Ghĥ
∗ −Gz ẑ∗ therefore

ẑ∗ =
Gh
Gz

ĥ∗

but this implies that ĥ is constant. but this cannot be true since aggregate headway is growing.

23



1 2 3 4 5
h

0.5

1.0

1.5

2.0

Figure 8: V Function 1

The results of these simulations are presented in Figures 9 and 10. Figure 9 plots ag-

gregate expenditure over time at various levels of aggregate assets. The beginning part of

this plot is just allowing the economy to converge. Figure 10 gives the same information,

but once the economy has converged. As one can see, for low levels of headway, aggregate

expenditure (and hence consumption) falls sharply when aggregate asset holdings becomes

low.
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Figure 9: Simulations

Furthermore, I exogenously decrease and increase the amount of aggregate assets in the

economy. Given this experiment, Figure 11 plots the time series of aggregate consumption.

As one can see, it falls sharply at low levels of aggregate assets, and takes some time to recover

before reaching its original level. Figure 12 plots the time series of cross-sectional variation in

consumption. When the economy gets into the traffi c-jam equilibrium, consumption variance

jumps up! Thus, the model endogenously produces consumption variance. and

In summary, from these simulations we see non-linear effects of decreasing cash-on-hand.

Furthermore, when average cash-in-hand is low enough, the economic recession looks like

traffi c jam. Moreover, consumption variance increases.
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Therefore, small perturbations can potentially lead to recessions. These recessions would

be ones in which agents cannot identify any large aggregate shock. Furthermore, from the

the traffi c model presented in Section 2, we see that the theory predicts that traffi c jams

are more likely to occur under certain conditions—conditions which take us to the other part

of the parameter space. Thus, building an economic model may have implications for when

recessions are more likely to occur.

Next Steps. The next route obviously then is a question of how to microfound a policy

function as in (15) as the result of optimizing behavior of households. The behavior given

by agents is the consumer’s Euler Equation (10). I look at this more seriously in Section 6.

Agents care only about local interactions. Could optimizing agents follow a similar

behavioral rule? If so, perhaps the economy could generate behavior at the micro level that

resembles stop-and-go traffi c. A decrease in velocity is similar to a decrease in spending.

Finally, waiting for headway to increase would be equivalent to waiting for income to increase.

6 Borrowing Constraints Model

I now attempt to provide microfoundations for the type of policy functions considered in the

previous section. The goal is to derive a policy function for expenditure that resembles (15),

such that it is an increasing function of current headway, but as also a result of optimizing

behavior on the behalf of rational consumers. This will depend on the interaction between

the household’s Euler Equation and its budget constraint.

I consider a variant of the model with idiosyncratic incomes shocks, incomplete markets,

and borrowing constraints. This seems to be one of the most natural microfoundations
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Figure 11: Time Series of Consumption

for an expenditure policy function which has a high marginal propensity to consume when

agents are close to their borrowing constraint. I assume that the household faces borrowing

constraint a borrowing constraint as follows

ait ≥ −φ (17)

where φ is a known constant. One can also think of this as a simple cash-in-hand constraint if

φ = 0. From a large and extensive literature on consumption-savings models with borrowing

constraints, we know that this type of simple constraint leads to increasing and concave

consumption/expenditure policy functions as well as high marginal propensities to consume

when agents are close to their borrowing constraints. Thus, the model here is similar to a

consumption savings model with idiosyncratic income (labor) risk, as in Aiyagari, Huggett,

Bewley. However, in contrast to these papers, the income risk here is endogenous—the income

of one agent is derived from the consumption behavior of another.

With the added borrowing constraint (5), solving the model becomes a bit intractable.

In particular, the state space of each agent’s problem blows up. Agents must forecast the

shocks of all other agents and hence keep track of entire distribution of individual states.

Intuitively, imagine each agent’s individual state space is composed of his asset holdings,
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Figure 12: Time Series of Consumption Variance

his income from this producer, and his idiosyncratic income shock. This determines his

expenditure. However, in order for him to determine his income next period, he must know

the expenditure on the island next to him the current period. But that depend’s on agent

i + 1’s current asset holdings, income, and idiosyncratic income shock. Hence, he needs to

keep track of that. But in order for him to understand what the income is of agent i + 1,

he must try to understand the state on island i+ 2, and so on... Hence, each agent tries to

keep track of all individual states of all islands in the economy. This is clearly an intractable

problem, not only for the economist trying to model the economy, but most likely for the

agent itself.

Hence, in order to simplify the problem and preserve tractability, I assume that each

consumer perceives income zi+1,t as Markov as follows

zi+1,t+1 = ψ (zi+1,t)

This is clearly a stark assumption. However, it has some underlying economic intuition. That

is, suppose agents have constrained information capacity. A growing literature has tried to

understand limited information capacity as a constraint on agent’s ability to process all in-

formation. Sims (2003) models this as a constraint on the conditional entropy, Woodford
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(2012) introduces a variant with reference-dependent choice which closely matches exper-

imental evidence on agent’s attention, while Gabaix (2011) allows agents to have sparse

information sets so that they only keep track of a finite number of state variables. Thus, it

seems likely that households cannot keep track of entire state of the world, and instead can

only keep track and form expectations over a finite number of moments.

Admittedly, I am not solving the ex-ante problem of what agents would pay attention to

with limited information capacity. I am just taking it as given that they only pay attention

to their own income, which seems the most relevant for their own consumption choices.

I thus re-define an approximate equilibrium as in Krussell-Smith () as follows.

Definition 2. A competitive approximate equilibrium is a collection of allocation and price

functions such that

(i) given current prices and expectations of future prices and income, allocations are

optimal for households and firms

(ii) prices clear all markets

(iii) household expectations are based on perceived Markov process

z′i+1 = ψ (zi+1)

where ψ is the best approximation of the true process

Part (iii) is similar to Krusell-Smith. One needs to define “best approximation”.

The circle household’s consumption-savings problem thus becomes similar to Bewley

economy

V (zi+1,−1, ai, ωi) = max
zi,a′i

(1− αθ) log zi + βEiV (zi+1, a
′
i, ω
′
i)

subject to

zi + a′i = (1 + r) (αθzi+1,−1 + ai + ωi)

ai ≥ −φ

and where zi+1 evolves according to the law of motion

zi+1 = ψ (zi+1,−1)

Next, I simulate the economy with borrowing constraints. I obtain policy functions for
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asset holdings and expenditure given by the following

a′i = d (zi+1,−1, ai, ωi)

zi = g (zi+1,−1, ai, ωi)

where zi increasing in zi+1,−1, ai, and ωi.

The parameter values I use for this simple numerical simulationm are as follows. I set

β = .9, φ = 0. The interest rate is set at r = .02. I first allow for exogenous beliefs about

income

z′i+1 = ρzi+1 + ε, ε ∼ N (0, σ2ε)

numerically approximated with 8 states, ρ = .2, σε = .5

Consumption is increasing in assets and income. I thus obtain the following expenditure

policy functions. The equilibrium expenditure of household i is given by

a′i = D (zi+1,−1; ai;Ai−1)

zi = G (zi+1,−1; ai;Ai−1)

Hence, expenditure is increasing in assets and income; see Figure 13.
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Figure 13: Expenditure Functions

I thus solve for the general equilibrium fixed point as follows
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• start at non-stochastic equilibrium.

• compute equilibrium with shocks to ωit

• approximate true process for zit with some Markov process ψ

• use ψ for beliefs in next iteration

• iterate until ψ is “close to”true z process

Comments. I can also follow Kimball and Caroll () and obtain this type of function

without a borrowing constraint.

7 Conclusion

I construct a model in which recessions resemble traffi c jams. The next steps in this project

are clearly two fold. First, one should check the robustness of this in terms of different

network structures. Clearly the world is not a circle. At the same time, the world is not

a representative household or a representative firm. Third, it would be important to think

about effi ciency and policy.

Empirical Implications. What are some of the empirical implications of this model?

First, more Hand-to-Mouth behavior imply that Recessions more likely. Furthermore, when

Agents close to borrowing constraint → Recessions more likely. This would potentially be a

nice thing to test.

Which recessions could this model potentially apply to? The subprime, The 1907 reces-

sion was presumably caused by one trader trying to corner the gold market.

Furthermore, there is evidence... Reinhart Rogoff. Alan Taylor has recently shown that

this extends to many recessions.

In the Survey of Consumer Finances, the reason for the household’s savings is Liquidity.

Finally, I would like to find data on local interactions and see how to get a flux-like

diagram like that in the traffi c literature. This would give some empirical evidence for this

mechanism.
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Appendix

Proof of Equilibrium Characterization in Economic Model Household

maxE0
∞∑
t=0

βt
[
u
(
yθi−1,tq

1−θ
it

)
− χnit

]
subject to

pi−1,tyi−1,t + qit + ai,t = (1 + ρ) pi,t−1Ani,t−1 + (1 + r) ait−1 (18)

FOCs with respect to yi−1,t, qit, nit, ait, respectively, are given by

βtu′ (c) θ
cit
yi−1,t

− βtλitpi−1,t = 0

βtu′ (c) (1− θ) cit
qit
− βtλit = 0

−βtχ+ βt+1λi,t+1 (1 + ρ) pi,tA = 0

−βtλit + βt+1 (1 + r)λi,t+1 = 0

euler equation

λit = β (1 + r)λi,t+1

Proof of Proposition 1 Suppose the vehicle policy function is given more generally by

v̇i (t) = f
(
hi (t) , ḣi (t) , vi (t)

)
(19)

where vi (t) = ẋi (t), hi (t) = xi+1 (t)− xi (t), and ḣi (t) = vi+1 (t)− vi (t) = ẋi+1 (t)− ẋi (t).
The uniform flow equilibrium is defined as an allocation of headways and velocities for

each car in which both are time independent. That is

hi (t) = h∗, vi (t) = v∗, ḣi (t) = 0, v̇i (t) = f (h∗, 0, v∗)

To analyze the stability of the uniform flow equilibrium, we linearize (19) about the uniform

flow equilibrium. We then have

˙̃vi (t) = Fh̃i (t) +G ˙̃hi (t)−Hṽi (t)

where

F = ∂hf (h∗, 0, v∗) , G = ∂ḣf (h∗, 0, v∗) , H = −∂vf (h∗, 0, v∗)
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are all assumed to be positive.

Substituting in vi (t) = ẋi (t), hi (t) = xi+1 (t)− xi (t), and ḣi (t) = ẋi+1 (t)− ẋi (t) we get
that for every i,

¨̃xi (t) = F (x̃i+1 (t)− x̃i (t)) +G
(

˙̃xi+1 (t)− ˙̃xi (t)
)
−H ˙̃xi (t)

Bringing all i on the left side, and i+ 1 on the right side, we get tthe following second order

system
¨̃xi (t) + (G+H) ˙̃xi (t) + Fx̃i (t) = G ˙̃xi+1 (t) + Fx̃i+1 (t)

A standard way to approach the second order system is to define a new variable ṽi (t) =

˙̃xi (t). we can thus rewrite this as

˙̃vi (t) + (G+H) ṽi (t) + Fx̃i (t) = Gṽi+1 (t) + Fx̃i+1 (t)

Let

x̃ =


x̃1

x̃2
...

x̃N

 , ṽ =


ṽ1

ṽ2
...

ṽN

 , ˙̃x =


˙̃x1
˙̃x2
...

˙̃xN

 , ˙̃v =


˙̃v1
˙̃v2
...

˙̃vN


We now have a linear system of 2N equations with[

˙̃x

˙̃v

]
= M

[
x̃

ṽ

]

For example, suppose N = 2. where M is some matrix that looks like14
˙̃x1
˙̃x2
˙̃v1
˙̃v2

 =


0 0 1 0

0 0 0 1

−F F − (G+H) G

F −F G − (G+H)



x̃1

x̃2

ṽ1

ṽ2


14For N = 3, then A is given by

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−F F 0 − (G+H) G 0
0 −F F 0 − (G+H) G
F 0 −F G 0 − (G+H)
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Thus we conjecture a particular solution to the system x̃i = Aie
λt


x̃1

x̃2

ṽ1

ṽ2

 =


A1e

λt

A2e
λt

A1λe
λt

A2λe
λt


Therefore, we can plug the trial solution x̃i = Aie

λt into equation (), which gives us the

following N equations

A1
(
λ2 + (G+H)λ+ F

)
= A2 (Gλ+ F )

A2
(
λ2 + (G+H)λ+ F

)
= A3 (Gλ+ F )

...

AN
(
λ2 + (G+H)λ+ F

)
= A1 (Gλ+ F )

Iteratively substituting for Ai we have the following equation(
λ2 + (G+H)λ+ F

)N
= (Gλ+ F )N

Taking N -th roots of Equation (), we have the following

λ2 + (G+H)λ+ F = (Gλ+ F ) eiθ

where θ = k
N

2π for k = 1, 2, . . . , N 15

Now, by substituting

λ = iω for ω ∈ R+

into equation (),

−ω2 + (G+H) iω + F = (Giω + F ) (cos θ + i sin θ)

or

−ω2 + F + (G+H) iω = −Gω sin θ + F cos θ + (Gω cos θ + F sin θ) i

Separating the real and imaginary parts and eliminating ω. The real parts imply

− ω2 + F = −Gω sin θ + F cos θ (20)

15because note that eiθ = cos θ + i sin θ, so that ei2π = cos 2π + i sin 2π = 1
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while the imaginary parts imply

(G+H)ω = Gω cos θ + F sin θ (21)

Solving (21) for ω, we get that

ω =
F sin θ

G+H −G cos θ

Substituting this into (20) we get that

−
(

F sin θ

G+H −G cos θ

)2
+ F = − F sin θ

G+H −G cos θ
G sin θ + F cos θ

Therefore, we have an expression only in terms of F,G,H, θ. Rearranging yields

F = (1− cos θ)

(
G+H −G cos θ

sin θ

)2
+G (G+H −G cos θ)

Let α = θ/2, and using some trigonometric identities, one may determine that stability

changes (Hopf bifurcations) occur for

F =
1

2
(2G+H)

(
(2G+H) tan2 α +H

)
where α = θ/2. Thus α = k

N
π for k = 1, 2, . . . , N .

The stability condition becomes

F <
1

2
(2G+H)H (22)

We now apply this general stability condition to the optimal velocity model. Here, the

acceleration policy function is given by

.
vi (t) = α (V (hi (t))− vi (t))

Linearizing about the uniform flow equilibrium, we obtain equation () with

F = ∂hf (h∗, 0, v∗) = αV ′ (h)

G = ∂ḣf (h∗, 0, v∗) = 0

H = −∂vf (h∗, 0, v∗) = α

34



Plugging these values into (22), the stability condition becomes

V ′ (h) <
1

2
α

QED.

Proof of 2 First, consider the mainland household. The mainland household maximizes

utility

E0
∞∑
t=0

β̃
t
[
u (q̃t)− χñt − h̃t

]
subject to its budget constraint.

q̃t + ãt = wtñt + h̃t + (1 + rt) ãt−1

Let βtµt be the Lagrange multiplier on the budget constraint. The FOCs of this problem

with respect to c̃t, ñt, h̃t, b̃t are

u′ (q̃t)− µt = 0

−χ+ µtwt = 0

−1 + µt = 0

−β̃tµt + Et (1 + rt) β̃
t+1
µt+1 = 0

The consumer i’s problem is to maximize utility

maxE
∞∑
t=0

βtu (cit)

where cit = yθi−1tq
1−θ
it subject to the household’s budget constraint.

pi−1,tyi−1,t + qit + ai,t = (1 + rt) (πi,t−1 + ait−1)

Letting βtλi,t be the Lagrange multiplier on the budget constraint of household i at time

t. The FOCs are given by

uy (cit)− λitpi−1,t = 0

uq (cit)− λit = 0

−βtλi,t + Et (1 + r) βt+1λi,t+1 = 0
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Proof of Lemma 1 The household budget constraint is given by

zit + ai,t = (1 + r) (αθzi+1,t−1 + ait−1)

definition of position

xit ≡
t∑

j=0

(1 + r)j zi,t−j

First, velocity is given by vit ≡ xi,t − (1 + r)xi,t−1

vit =

(
zi,t + (1 + r)

∞∑
j=0

(1 + r)j zi+1,t−1−j

)
− (1 + r)

∞∑
j=0

(1 + r)j zi,t−1−j

= zi,t

The position of agent i+ 1 at time t is given by

xi+1,t = zi+1,t + (1 + r)
∞∑
j=0

(1 + r)j zi+1,t−1−j

Multiplying this by αθ we have that

αθxi+1,t = αθzi+1,t +
∞∑
j=0

(1 + r)j (1 + r)αθzi+1,t−1−j

Next, rearranging the budget constraint,

zit−j + ai,t−j = (1 + r)αθzi+1,t−j−1 + (1 + r) ai,t−j−1

we obtain the following

(1 + r)αθzi+1,t−1−j = zi,t−j + ai,t−j − (1 + r) ai,t−j−1

Plugging this into () we get that

αθxi+1,t = αθzi+1,t +
∞∑
j=0

(1 + r)j (zi,t−j + ai,t−j − (1 + r) ai,t−j−1)
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Now, if we write out the position of agent i at time t, this is given by

xi,t =
t∑

j=0

(1 + r)j zi,t−j

Substituting () and () into our definition of headway,

hit ≡ αθxi+1,t − xi,t

we have that

hit = αθzi+1,t +

∞∑
j=0

(1 + r)j (zi,t−j + ai,t−j − (1 + r) ai,t−j−1)−
t∑

j=0

(1 + r)j zi,t−j

Thus,

hit = αθzi+1,t +
∞∑
j=0

(1 + r)j (ai,t−j − (1 + r) ai,t−j−1)

Expanding the terms in this summation, we have that headway satisfies

hit = αθzi+1,t + (ai,t − (1 + r) ai,t−1)

+ (1 + r) (ai,t−1 − (1 + r) ai,t−2)

+ (1 + r)2 (ai,t−2 − (1 + r) ai,t−3) + · · ·

All of the ai,t−j cancel out except for j = 0. Thus, we have that

hit = αθzi+1,t + ai,t

Rewriting this for hi,t−1 we have that

hi,t−1 = αθzi+1,t−1 + ai,t−1

Therefore, headway is equal to wealth-on-hand at the beginning of the period. QED.

Proof of Lemma 2 Follows from the main text.

Proof of Lemma 3 Follows from the main text.

Proof of Proposition 3 Follows from the main text.
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Proof of Proposition 4 The proof of this follows closely that of Proposition 1. The

economic system is described by the following four equations

ẑi (t) =
.

x̂i (t)
.

ẑi (t) = f (hi (t) , zi (t))

ĥi (t) = αθx̂i+1 (t)− x̂i (t)
.

Ĥ (t) = − (1− αθ) Ẑ (t)

Suppose the vehicle policy function is given more generally by

.

ẑi (t) = f
(
hi (t) , ḣi (t) , vi (t)

)
where zi (t) = ẋi (t), ĥi (t) = αθx̂i+1 (t)− x̂i (t), and ḣi (t) = αθẋi+1 (t)− ẋi (t).
The uniform flow equilibrium is defined as an allocation of headways and velocities for

each car in which both are time independent. [need to fix] That is,

hi (t) = h∗, zi (t) = v∗, ḣi (t) = 0, v̇i (t) = f (h∗, 0, v∗)

To analyze the stability of the uniform flow equilibrium, we linearize () about the uniform

flow equilibrium. We then have

˙̃zi (t) = Fh̃i (t) +G ˙̃hi (t)−Hz̃i (t)

where

F = ∂hf (h∗, 0, v∗) , G = ∂ḣf (h∗, 0, v∗) , H = −∂vf (h∗, 0, v∗)

are all assumed to be positive.

Substituting in z̃i (t) = ˙̃xi (t), h̃i (t) = αθx̃i+1 (t) − x̃i (t), and ˙̃hi (t) = αθ ˙̃xi+1 (t) − ˙̃xi (t)

we get that for every i,

¨̃xi (t) = F (αθx̃i+1 (t)− x̃i (t)) +G
(
αθ ˙̃xi+1 (t)− ˙̃xi (t)

)
−H ˙̃xi (t)

Bringing all i terms to the left-hand side, and i+ 1 terms to the right-hand side, we get the

following second order system

¨̃xi (t) + (G+H) ˙̃xi (t) + Fx̃i (t) = Gαθ ˙̃xi+1 (t) + Fαθx̃i+1 (t)
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A standard way to approach the second order system is to define a new variable z̃i (t) =

˙̃xi (t). we can thus rewrite this as

˙̃zi (t) + (G+H) z̃i (t) + Fx̃i (t) = Gαθz̃i+1 (t) + Fαθx̃i+1 (t)

Let

x̃ =


x̃1

x̃2
...

x̃N

 , z̃ =


z̃1

z̃2
...

z̃N

 , ˙̃x =


˙̃x1
˙̃x2
...

˙̃xN

 , ˙̃z =


˙̃z1
˙̃z2
...
˙̃zN


We now have a linear system of 2N equations with[

˙̃x

˙̃z

]
= M

[
x̃

z̃

]

For example, suppose N = 2. where M is some matrix that looks like16
˙̃x1
˙̃x2
˙̃z1
˙̃z2

 =


0 0 1 0

0 0 0 1

−F Fαθ − (G+H) Gαθ

Fαθ −F Gαθ − (G+H)



x̃1

x̃2

z̃1

z̃2


Thus we conjecture a particular solution to the system x̃i = Aie

λt


x̃1

x̃2

ṽ1

ṽ2

 =


A1e

λt

A2e
λt

A1λe
λt

A2λe
λt


Therefore, we can plug the trial solution x̃i = Aie

λt into equation (), which gives us the

16For N = 3, then A is given by

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−F F 0 − (G+H) G 0
0 −F F 0 − (G+H) G
F 0 −F G 0 − (G+H)
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following N equations

A1
(
λ2 + (G+H)λ+ F

)
= A2αθ (Gλ+ F )

A2
(
λ2 + (G+H)λ+ F

)
= A3αθ (Gλ+ F )

...

AN
(
λ2 + (G+H)λ+ F

)
= A1αθ (Gλ+ F )

Iteratively substituting for Ai we have the following equation(
λ2 + (G+H)λ+ F

)N
= (αθ (Gλ+ F ))N

Taking N -th roots of Equation (), we have the following

λ2 + (G+H)λ+ F = αθ (Gλ+ F ) eiθ

where φ = k
N

2π for k = 1, 2, . . . , N 17

Now, by substituting

λ = iω for ω ∈ R+

into equation (),

−ω2 + (G+H) iω + F = αθ (Giω + F ) (cosφ+ i sinφ)

or

−ω2 + F + (G+H) iω = −αθGω sinφ+ αθF cosφ+ (αθGω cosφ+ αθF sinφ) i

Separating the real and imaginary parts and eliminating ω. The real parts imply

− ω2 + F = −αθGω sinφ+ αθF cosφ (23)

while the imaginary parts imply

(G+H)ω = αθGω cosφ+ αθF sinφ (24)

17because note that eiθ = cos θ + i sin θ, so that ei2π = cos 2π + i sin 2π = 1

40



Solving () for ω, we get that

ω =
αθF sinφ

G+H − αθG cosφ

Substituting this into () we get that

−
(

αθF sinφ

G+H − αθG cosφ

)2
+ F = − αθF sinφ

G+H − αθG cosφ
αθG sinφ+ αθF cosφ (25)

Therefore, we have an expression only in terms of F,G,H, α, θ, φ. Rearranging yields

F = (1− αθ cosφ)

(
G+H − αθG cosφ

αθ sinφ

)2
+G (G+H − αθG cosφ)

Let β = θ/2, and using some trigonometric identities, one may determine that stability

changes (Hopf bifurcations) occur for

F =
1

2
((1 + αθ)G+H)

(
((1 + αθ)G+H) tan2 β +H

)
where β = θ/2. Thus β = k

N
π for k = 1, 2, . . . , N .

The stability condition becomes

F <
1

1 + αθ
((1 + αθ)G+H)H

Now, let’s apply this to the economic model. Here, the expenditure policy function is

given by
.
vi (t) = α (V (hi (t))− vi (t))

Linearizing about the uniform flow equilibrium, we obtain equation () with

F = ∂hf (h∗, 0, v∗) = Gh

G = ∂ḣf (h∗, 0, v∗) = 0

H = −∂vf (h∗, 0, v∗) = Gz

Plugging these values into (), the stability condition becomes

Gh <
1

1 + αθ
G2z

QED.
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Proof of Proposition ?? budget constraints

zit + ai,t = (1 + r) (αθzi+1,t−1 + ait−1)

zit+1 + ai,t+1 = (1 + r) (αθzi+1,t + ait)

imply

ait =
1

1 + r
(zit+1 + ai,t+1)− (1− α) θzi+1,t

Iterating the budget constraint forward, we get that..

zi0 +
1

(1 + r)
zi1 +

1

(1 + r)2
zi2 + · · · = (1 + r) [αθzi+1,−1 + ai,−1] + αθzi+1,0 +

1

1 + r
αθzi+1,1

∞∑
j=0

(
1

1 + r

)j
zi,j = (1 + r)h0 +

∞∑
j=0

(
1

1 + r

)j
(1− α) θzi+1,j

therefore

1

1− 1
1+r

z̄i =
1

1− 1
1+r

αθz̄i+1 + (1 + r)hi,−1

z̄i = αθz̄i+1 + rhi,−1

z̄i = αθz̄i+1 + rαθzi+1,−1 + rait−1

z̄i = (1 + r)αθz̄i+1 + rait−1

Follows from the main text. QED.

Proof of Proposition ?? The the budget constraint is given by

∞∑
t=0

∑
st

φt
(
st
)
zit
(
st
)

= φ0
(
st
)

(1 + r)hi,−1 +
∞∑
t=1

∑
st

φt
(
st
)

((1 + r)αθzi+1,t−1 + ωit)

let γit denote income every period. Then

γi,0 = (1 + r)hi,−1

γi,t = (1 + r)αθzi+1,t−1 + ωit

Thus, we can write this as

∞∑
t=0

∑
st

φt
(
st
)
zit
(
st
)

=
∞∑
t=0

∑
st

φt
(
st
)
γit
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or, written in terms of q

∞∑
t=0

∑
st

φ0t
(
st
) 1

1− θqit
(
st
)

=

∞∑
t=0

∑
st

φ0t
(
st
)
γit

The foc from this problem is

βtuq
(
ci
(
st
))
πt
(
st
)
− µiφ0t

(
st
) 1

1− θ = 0

this implies that
uq (ci (s

t))

µi
=
uq (cj (st))

µj

for all pairs (i, j). This implies that consumption only depends on the aggregate∑
i

γit =
∑
i

((1 + r)αθzi+1,t−1 + ωit) = (1 + r)αθZt

Then zit is constant over time and across histories for all i. Thus the equilibrium satisfies

zit = z̄i. Then

βtuq (c̄i) πt
(
st
)

= µiφ
0
t

(
st
) 1

1− θ
this implies

φ0t
(
st
)

=
βtuq (c̄i) πt (st)

µi
1
1−θ

Therefore we take the budget constraint

∞∑
t=0

∑
st

φ0t
(
st
) (
zit
(
st
)
− γit

(
st
))

= 0

plug in for φ0t (st),
∞∑
t=0

∑
st

βtuq (c̄i)πt (st)

µi
1
1−θ

(
zit
(
st
)
− γit

(
st
))

= 0

thus
∞∑
t=0

∑
st

βtπt
(
st
) (
z̄i − γit

(
st
))

= 0
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thus

∞∑
t=0

∑
st

βtπt
(
st
)
z̄i =

∞∑
t=0

∑
st

βtπt
(
st
)
γit
(
st
)

∞∑
t=0

βtz̄i = (1 + r)hi,−1 +

∞∑
t=1

βt (1 + r)αθz̄i+1 +

∞∑
t=1

∑
st

βtπt
(
st
)
ωit

∞∑
t=0

βtz̄i = (1 + r)hi,−1 +

∞∑
t=1

βt (1 + r)αθz̄i+1

1

1− β z̄i = (1 + r)hi,−1 +
β

1− β (1 + r)αθz̄i+1

As before, let’s assume that

β (1 + r) = 1

hence

z̄i = (1− β) (1 + r)hi,−1 + αθz̄i+1

therefore we get the same thing. QED.

Proof of Proposition ?? Then

zit + ai,t = (1 + r) (αθzi+1,t−1 + ait−1)

and

ait =
1

1 + r
(zit+1 + ai,t+1)− αθzi+1,t

Iterating the budget constraint forward, we get that..

zit +
1

(1 + r)
zit+1 +

1

(1 + r)2
zit+2 + · · · = (1 + r)hi,t−1 + Eitαθzi+1,t +

1

1 + r
αθEitzi+1,t+1 + · · ·

∞∑
j=0

(
1

1 + r

)j
zi,t+j = (1 + r)hi,t−1 +

∞∑
j=0

(
1

1 + r

)j
αθEitzi+1,t+j

thus
1

1− 1
1+r

zi,t =
1

1− 1
1+r

αθEitzi+1,t + (1 + r)hi,t−1

or

zi,t = αθEitzi+1,t + rhi,t−1
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But this is equal to

zi,t = αθEitzi+1,t + r

(
αθzi+1,t−1 + ait−1 +

1

1 + r
ωit

)
my best expectation of tomorrow’s income is

Eitzi+1,t = zi+1,t−1

therefore

zi,t = (1 + r)αθzi+1,t−1 +
r

1 + r
((1 + r) ait−1 + ωit)

Proof of Transforming state space Follows from the Main Text.

zi,t = (1 + r)

(
hi,t−1 − ait−1 −

1

1 + r
ωit

)
+

r

1 + r
((1 + r) ait−1 + ωit)

= (1 + r)hi,t−1 + (r − (1 + r))

(
ait−1 +

1

1 + r
ωit

)
= (1 + r)hi,t−1 −

(
ait−1 +

1

1 + r
ωit

)
note that

zit−1 + ait−1 = (1 + r)hi,t−2

thus

zi,t = (1 + r)hi,t−1 −
(

(1 + r)hi,t−2 − zit−1 +
1

1 + r
ωit

)
zi,t = (1 + r) (hi,t−1 − hi,t−2) + zit−1 −

1

1 + r
ωit

Therefore

zi,t − (1 + r) zit−1 = (1 + r) (hi,t−1 − hi,t−2)− rzit−1 −
1

1 + r
ωit

= hi,t−1 − (1 + r)hi,t−2 + rhi,t−1 − rzit−1 −
1

1 + r
ωit

Proof of Proposition Stability Permanent Income Follows from the main text.
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0 = (ht−1 − (1 + r)ht−2) + rht−1

−rht−1 = (ht−1 − (1 + r)ht−2)

Therefore,

Ht − (1 + r)Ht−1 = − (1− αθ)Zt
−rHt−1 = − (1− αθ)Zt

−rht−1 = − (1− αθ) zt

therefore

zt = z̄ =
r

1− αθht−1

intractability of general problem not markov.

The household’s general problem is thus given by

Vit (zi+1;ωi,t) = max
ci,a′i

(1− αθ) log zi + θEi,tVi,t+1 (zi+1;ω
′
i)

subject to

zi + ai = (1 + r) (αθzi+1,t−1 + ai,t−1 + ωi)

ai ≥ −φ

where

zi+1 = zi+1 ∪ zi,t
zi+1,t = ψ (zi+2; ai,t)

This is a very general formulation of the household’s problem. From here it is easy to see

how this problem becomes intractable. The main problem here is that agents must keep

track of entire state.
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