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Abstract

We study a dynamic model of coordination with timing frictions and payoff heterogeneity. Flow
payoffs depend on a stochastic fundamental, on others’ behavior and on idiosyncratic preferences.
Agents get opportunities to revise their behavior according to a Poisson clock. The unique equilibrium
is characterized by a threshold that determines the choices for each type of agent. We provide
analytical solutions for a particular case with linear preferences and very slow moving fundamentals.
A lot of conformity emerges: despite payoff heterogeneity, agents’ thresholds partially coincide as
long as there exists a set of beliefs that would make this coincidence possible – though they never
fully coincide. Moreover, agents’ choices are more similar when there is more heterogeneity in their
behavior (determined by previous choices). Conformity is not inefficient. The efficient solution would
have agents following others even more often and giving less importance to the fundamental.
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Jel Classification: C73, D84.

1 Introduction

Strategic complementarities arise in many dynamic settings. Profitability of investment
decisions might depend on future demand, which depends on whether others will invest as
well. Adopting a new technology may not be the best decision if others in the production
chain will keep working with an old technology. Likewise, choosing a Betamax VCR is
not a good idea if everyone else plans to buy a VHS VCR. The payoff from joining a social
network depends on whether others are expected to join it (or leave it) in the near future.
Other examples include bank runs, currency speculation, riots and political upheavals.
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Frankel and Pauzner (2000) provide a dynamic framework that captures some essencial
features of these economic problems. Agents make a binary choice between two actions
(say joining Facebook or not). The payoff from their decision depends on an exogenously
moving fundamental (say the quality of Facebook) and on how many others are on Face-
book. Agents get an opportunity to change behavior (join or leave Facebook) according to
a Poisson clock, which captures in a simple way the idea that consumers are not thinking
about it at every point in time (likewise, people are not buying VCRs, thinking about the
financial situation of commercial banks or making choices on investment at every point
in time).1

All those models assume (ex-ante) identical agents. In consequence, at a point in
time, all agents are making the same decision. However, some important questions in
those settings are related to the interaction between payoff heterogeneity and dynamic
coordination motives. For example, we cannot use this model of technology adoption
to talk about early adopters and snowball effects. A model where the fraction of firms
willing to invest at a given point in times is either 0 or 1 has little hope of matching the
data on investment. Likewise, a model where the fraction of people choosing Facebook
over Google+ at a given point in time is either 0 or 1 will not be able to say much about
the dynamics of agents’ behavior.

The contribution of this paper is the extension of the Frankel-Pauzner model to a setup
with heterogeneous agents. First, we show there is a unique rationalizable equilibrium,
agents of a given type play according to a threshold that depends on the total number of
agents in a network and on the exogenous fundamental. We then provide an analytical
characterization for the equilibrium threshold in a tractable case with two types, linear
utility and vanishing shocks. Last, we solve the planner’s problem to understand the
inefficiencies that arise in equilibrium.

Each type of agent joins the network if the exogenous fundamental (θ) is larger than a
threshold that is a function of the fraction of agents in the network (n). In the tractable
case with vanishing shocks, a lot of conformity arises: different types will always play
the same strategy for some values on n unless their preferences are so heterogeneous that
there is no set of beliefs that would induce them to play according to the same threshold.
Another interesting result is that agents’ choices are more similar for intermediate values
of n, when there is more heterogeneity in their behavior.

1Frankel and Pauzner (2000) base their analysis on a model of sectorial choice (along the lines of Matsuyama (1991)),
but their framework has been used to analyse location choices (Frankel and Pauzner (2002)), carry trades and speculation
(Plantin and Shin (2006)), speculative attacks (Daniëls (2009)) and investment and business cycles (Frankel and Burdzy
(2005), Guimaraes and Machado (2014)). The model of currency attacks in Guimaraes (2006) and the model of debt runs
in He and Xiong (2012) employ similar timing frictions.
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We then compare the solution to the central planner’s problem and to the decentralized
equilibrium. The planner also acts according to thresholds that are specific to each type
of agent. For the case with 2 types, linear utility and vanishing shocks, we provide an
analytical characterization of the planners’ threshold.

The planner chooses even more conformity in behavior than the agents. The range
where idiosyncratic tastes are relevant for the planner is smaller than the analogous range
for agents in the decentralized equilibrium. The reason is that the planner internalizes
the externalities on others, which are the same for all agents.

Interestingly, the planner also gives less importance to the exogenous fundamental than
the agents. In a problem of two-sided network externalities, that means the planner will
give less importance to the intrinsic quality of each good than the agents. For example,
agents tend to follow the crowd and choose, say, VHS over Betamax because everybody
else has a VHS VCR, even if Betamax is better in terms of its intrinsic quality. The planner
would be even more inclined towards VHS. Intuitively, the planner cares about everything
the agents care about plus the externalities on others. That depends fundamentally on
the amount of people in each network (current and expected). The effect of the intrinsic
quality of the good is internalized by the agents.

In a symmetric example with two-sided externalities, the planner’s solution and the
decentralized equilibrium only coincide when there is no heterogeneity in tastes and timing
frictions vanish (the frequency agents get to choose which network to join goes to infinity).
Asymmetries add another source of inefficiency.

The paper is related to the literature on coordination in games with strategic comple-
mentarities. With complete information and no shocks, multiple self-fulfilling equilibria
might arise in those settings. Carlsson and Van Damme (1993) and Morris and Shin
(1998) have shown that a unique equilibrium arise in a static environment in which fun-
damentals are not common knowledge and agents have some idiosyncratic information
about them. Frankel and Pauzner (2000) and Burdzy et al. (2001) show that a small
amount of shocks in a dynamic model (with no private information) yields similar results.
The relation between both literatures is discussed in Morris (2014).2 In a related con-
tribution, Herrendorf et al. (2000) show that if there is enough heterogeneity, there is a
unique equilibrium even in a static setting with complete information.

The paper is also related to literature on network externalities, in which strategic com-
plementarities arise from consumption externalities.3 Agents’ optimal choices typically
depend on what they expect others will do. However, most of this literature makes ad-hoc

2See also Morris and Shin (2003).
3This literature has started with Katz and Shapiro (1985) and Katz and Shapiro (1986). See Shy (2011) for a survey.
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assumptions on how agents coordinate.4. One important exception in Argenziano (2008).
She studies welfare in a model with differentiated networks in a static global-game model
and highlights two sources of inefficiencies: agents give too much importance to their
own idiosyncratic tastes and firms with the larger network charge a higher price. Both
effects contribute to make the network “too balanced”. Our work complements her work
by pointing out inefficiencies coming from the dynamic interaction among agents.5

The efficiency results here contrast with those in models with information externalities
that generate herd behavior (e.g., Bikhchandani et al. (1992)). In those models, agents
follow others too much from a social point of view. Here, conformity of behavior arises
because of preferences, not through learning, and they follow others too little.

2 The model with heterogeneous preferences

There is a continuum of agents indexed by i ∈ [0, 1] who must choose between two actions,
A and B. The payoff an agent get from choosing either action depends on fundamentals,
on the actions of others,6 and on the agents’ own type (players have heterogeneous pref-
erences). Time is continuous. Agents discount the future at a rate ρ and receive chances
to revise their actions according to a Poisson process with arrival rate δ.

There are Q types of players. We denote agent i’s relative payoff of choosing B by
πq(i)(θ, n), where θ ∈ R denotes the fundamentals of the economy, n is the fraction of
agents currently commited to action B and q(i) ∈ {1, ..., Q} is agent i’s type. π(.) is
continuous and strictly increasing in both arguments. Let αq denote the mass of type-q
agents in the population and nq the proportion of type-q agents currently on B. Thus,
n = ∑Q

q=1 αqnq.
An agent who receive a chance revise her choice at time τ will pick B whenever

E
ˆ ∞
τ

e−(ρ+δ)(t−τ)πq(i)(θt, nt)dt ≥ 0

and will pick A otherwise.
We further assume that payoff functions πq(.) are such that there are dominance regions

for all types of agents. For each type, there is a region in the R×[0, 1] space where choosing
A is a dominant action, and a region in which choosing B is a dominant action. In words,

4For instance, Katz and Shapiro (1986) assume that whenever there are multiple equilibria in the model, agents manage
to coordinate their decisions in order to achieve the Pareto-superior outcome

5See also Ambrus and Argenziano (2009).
6Strategic complementarities can arise owing to either one-sided externalities or two-sided externalities. It can be the

case that the payoff of choosing action A is independent of the amount of agents making the same choice, but the payoff of
choosing B is increasing in this amount, or it can be the case that both actions become more appealing the larger is the
proportion of agents taking them.
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there is a sufficient low level of the fundamentals for which an agent prefers to play A even
if all other agents are playing B, and there is a sufficient high level of the fundamentals
such that it is preferable to play B even if no one else is expected to do it.

Let Pq be the boundary of the upper dominance region of a type-q agent, i.e., the curve
on which such agent is indifferent between the two actions if she believes everyone after
her will choose A (P stands for pessimistic about the proportion of agents playing B in
the future). These boundaries are downward sloping: since πq(θ, n) is increasing in θ and
n, a higher n today means that the θ needed to make agents indifferent between the two
actions is smaller. At the other extreme, let Oq be the boundary of the lower dominance
region for a type-q player, that is, the curve on which this type of agent is indifferent
between the two actions under the belief that everyone will choose B when they get the
chance (O stands for optimistic). These boundaries are also downward sloping.

Figure 1: Dominance regions: an example

θ

n = 1

n = 0

O1O3 O2 P1P2P3

2.1 Unique equilibrium

Proposition 1. If θ is constant over time, there may be multiple equilibria.

Proof. See Appendix.

Of course, when θ lies either to the right of all upper dominance regions boundaries, or
to the left of all lower dominance regions boundaries, the equilibrium is unique. However,
when θ is such that neither action is dominant for some agents, multiplicity may arise,
depending on the amount of heterogeneity.7

When the fundamental changes stochastically, however, the equilibrium is unique for
any amount of heterogeneity. Theorem 1 states this result. The following lemma is key
for the demonstration.

7Herrendorf et al. (2000) show that, in a similar environment with no shocks, if there is a sufficient amount of heterogeneity
multiplicity is ruled out.
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Lemma 1. For any strategy profile, the dynamics of n depends only on (θt, nt). It does
not depend on each nq,t, q ∈ Q.

Proof. Fix a strategy profile
{
sq(i)

}
q∈{1,...,Q}

. Denote by Bt the set of types playing B at
time t. Notice that the path of nq is given by the following differential equation:

∂nq,t
∂t

=

δ(1− nq,t) if q ∈ Bt
−δnq,t if q /∈ Bt

(1)

Equation 1 means that, every type-q agent whose strategy prescribes playing B and
who is not already on B and receives a chance to revise her choice at time t will switch
to B (there are 1− nq,t such agents). On the contrary, every type-q agent whose strategy
prescribes playing A and who has previously chosen B will leave it at her first opportunity.
Using the fact that n = ∑Q

q=1 αqnq,t, we have that ∂nt
∂t

is given by:

∂nt
∂t

=
Q∑
q=1

(
αq
∂nq,t
∂t

)

=
∑
q∈Bt

αqδ(1− nq,t) +
∑
q /∈Bt

αq (−δnq,t)

= δ

∑
q∈Bt

αq −
Q∑
q=1

αqnq,t



⇐⇒ ∂nt
∂t

= δ

∑
q∈Bt

αq − nt



Lemma 1 allows us to deal with this problem in a two-dimensional space: agents need
only to look at the fundamentals (θt) and at the aggregate mass of agents currently on B
in order to understand the dynamics of the system. One could expect this dynamics to
depend on the proportion of each type of agent currently on each option, but due to the
assumption of a Poisson process for the arrival of opportunities to switch actions, that is
not true. It suffices to know the aggregate nt and each type’s choices to compute ∂nt/∂t.

Theorem 1. Suppose θ follows a Brownian motion with drift µ and variance σ2 > 0.
There is an unique equilibrium characterized by thresholds

(
Z∗q
)
q∈{1,...,Q}

in the R× [0, 1]
space. Each agent i plays B when to the right and A when to the left of Z∗q(i) .

Proof. The proof follows the same reasoning as in the case of identical individuals (Frankel
and Pauzner (2000)). The existence of dominance regions give us a starting point to a
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iterated elimination of strictly dominated strategies procedure. Consider a type-q agent
at some point on Pq. She is indifferent between A and B under the belief that everyone
choosing networks while she is committed to her choice will pick A under any circum-
stances. But when θ moves stochastically, there is always the possibility that it will spend
some time to the right of some players’ dominance region boundaries. Notice that even if
q is such that Pq is the leftmost upper boundary (say P3 in figure (1)), she cannot expect
every other player to choose A under any circumstances while she is commited to her
choice. If θ moves slightly to the right, it will be strictly dominant for type-q agents to
pick B, and thus a fraction αq of the agents that get the chance will not choose A. The
most pessimistic (to network B) belief that agents can hold consistent with the dominance
regions is that each type-q agent plays B when to the right of Pq , and A when to the left
of it. In other words, agents do not play strictly dominated strategies. Under this (more
optimistic) new belief, the agent on Pq is not indifferent anymore, but strictly preferring
to join B. To make her indifferent, we must lower θ. We can then construct for each type
q a new boundary P 2

q (to the left of Pq), to the right of which a type-q player chooses
B when she expects all other agents to play according to (Pq)q∈{1,...,Q}. This procedure
can be repeated ad infinitum. At each round, we look for the curve P k

q on which a type-
q player has zero discounted payoff when assuming that other agents play according to(
P k−1
q

)
q∈{1,...,Q}

. Denote the limit of this sequence by
(
P∞q

)
q∈{1,...,Q}

. Notice that each
agent i playing according to P∞q(i) is, in fact, an equilibrium: if she expects others to play
according to

(
P∞q

)
q∈{1,...,Q}

, her best response is to play according to P∞q(i).

Figure 2: Iterative deletion of strictly dominated strategies from the upper dominance region

θ

n = 1

n = 0

P1PQ P 2
1P 2

Q

...

P∞
1P∞

Q

We now turn to a different iterative process from the lower dominance regions. Let(
P λ0
q

)
q∈{1,...,Q}

be translations of the curves P∞q to the left by an amount λ0. Fix λ0 as the
smaller distance such that all translations lie completely on the lower dominance region
of each corresponding type. Figure (3) below exemplifies this step.

Now, construct for each type a new curve P λ1
q as the rightmost translation of P λ0

q to
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Figure 3: Translations of P∞q

θ

n = 1

n = 0

PQ
∞ P1

∞
O1

λ0

OQ

the left of which each type-q agent must play A if they expect others to play according to(
P λ0
q

)
q∈{1,...,Q}

.8 Let P λ∞
q be the limit of this sequence, for each q. There is at least one

point in some P λ∞
q curve on which a type-q agent is indifferent between the two networks,

otherwise iterations would not have stopped. Without loss of generality, suppose there
is a point of indifference in P λ∞

1 and name it p. Let p′ denote the point on P∞1 at the
same height as p. If we establish that p and p′ coincide, we show that the whole curves
coincide and, since we have translated all curves by the same λ’s, P λ∞

q = P∞q ∀q, that is,
the equilibrium is unique.

Figure 4: Equilibrium uniqueness

θ

n = 1

n = 0

PQ
∞ P1

∞

λ∞

P1
λ∞PQ

λ∞

p p′

Lets compare two type-1 players, one receiving an opportunity to choose a network
on p (expecting others to play according to the limit translations), and the other on p′

(expecting others to play according to
(
P∞q

)
q∈{1,...,Q}

). Lets name those players p and p′,
respectively. We know that both players expect changes in the fundamentals relative to
its starting point to have the same distribution. Also, since the original curves and their
translations have the same shape and the pairwise distances between P λ∞

q ’s are the same
as the distances between P∞q ’s (each round, we have translated all curves by the same
λ), we know by Lemma 1 that, for a given path of the fundamental, they both expect

8Note that what we are doing is eliminating strictly dominated strategies once again, but we are not necessarily elimi-
nating all dominated strategies each round.
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the same dynamics for nt. If λ∞ > 0, we get a contradiction: the two players expect
the same relative dynamics for the (θt, nt) system and the θ that p′ expects at all times
exceeds the θ that the agent on p expects, thus they cannot both have zero payoff. Then,
λ∞ = 0, that is, the points p and p′ must coincide. The equilibrium is unique and it is
characterized by threshold

(
Z∗q
)
q∈{1,...,Q}

, where Z∗q ≡ P∞q .

Figure 5 below exemplifies the dynamics around the equilibrium for the case of three
types of agents. ∂nt/∂t is computed as in Lemma 1.

Figure 5: Dynamics (Q = 3)

θ

n = 1

n = 0

ṅ = δ(1− n)

ṅ = −δn
ṅ = δ(α1 − n)

α1 + α2

Z∗
1 Z∗

2 Z∗
3

α1

ṅ = δ(α1 + α2 − n)

3 A tractable particular case

Although we can prove existence and uniqueness of equilibrium, we cannot easily compute
the equilibrium thresholds for each type of agent analitically in this general case. For this
reason, hereafter we will focus on the limit as µ→ 0 and σ → 0, that is, the case in which
shocks to the fundamentals vanishes. Also, for the sake of simplicity, we will restrict our
attention to a linear functional form for π(θ, n) and analyze the case where Q = 2. Hence,
the payoff from choosing B is given by:

πi(θt, nt) = θt + γnt + εi.

with

εi =

ε ∀i ∈ [0, α]

ε ∀i ∈ (α, 1]
,

that is, there are two types of agents: a proportion α with preference parameter ε and
a proportion 1 − α with preference parameter ε, ε > ε. We will divide the analysis into
cases, each one corresponding to a different amount of heterogeneity, which is measured
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here by the distance between ε and ε.

Very Large heterogeneity First we consider the case in which

ε− ε > γδ

ρ+ 2δ (2)

This condition ensures that the curve at which a high-type agent with pessimistic beliefs
about n is indifferent between A and B is located to the left of the curve at which a low-
type agent with optimistic beliefs is indifferent between the two networks. Put differently,
P < O and thus the intersection between the region on which neither action is dominant
for a high-type agent and the region with no dominant action for a low-type agent is
empty. Figure (6) exemplifies this situation.

Figure 6: Dominance regions when ε− ε > γδ
ρ+2δ

n = 1

θ

O PP O

n = 0

If the condition in (2) holds, then there is no set of beliefs that could induce different
agents to play according to the same threshold Z∗(n) for any value of n. Even with
the most pessimistic beliefs (nobody will ever choose B) type-ε agents would still be
more inclined to choose B than type-ε agents believing that everybody else would always
choose B. Naturally, whenever this condition is satisfied, the equilibrium in the limit as
µ, σ → 0 will be such that type-ε and type-ε agents play according to thresholds that do
not intersect. Proposition 2 characterizes the equilibrium in this case.

Proposition 2. Suppose ε − ε > γδ
ρ+2δ . In the limit as µ → 0 and σ → 0, an agent i

called upon choosing a network at time t plays B whenever θt > Z∗i (nt) and A otherwise,
where Z∗i ’s are computed as follows:

(To ease notation, let Z∗i ≡ Z ∀i ∈ [0, α] and Z∗i ≡ Z ∀i ∈ (α, 1].)

If ε− ε ≥ γ(δ+ρα)
ρ+2δ ,
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Z =

−ε−
γ(ρ+δ)
ρ+2δ n if n ≥ α

−ε− αγδ
ρ+2δ −

γρ
ρ+2δn if n < α

. (3)

If ε− ε < γ(δ+ρα)
ρ+2δ , Z is given by equation (3) above ∀n ≥ n̂ and otherwise it satisfies

(α− n)
α


ˆ t

t=0
e−(ρ+δ)t

[
Z + ε+ γ

(
α− (α− n)e−δt

)]
dt+

ˆ ∞
t=t

e−(ρ+δ)t (ε− ε) dt


+ n

α

ˆ ∞
t=0

e−(ρ+δ)t
[
Z + ε+ γne−δt

]
dt = 0, (4)

where t = −1
δ

ln α+[(Z+ε)(ρ+2δ)+γδ]/γ(ρ+δ)
α−n and n̂ = α− (ρ+2δ)(ε−ε)−γδ

γρ
.

If ε− ε ≥ γ[δ+ρ(1−α)]
ρ+2δ ,

Z =

−ε−
γδ(1+α)
ρ+2δ −

γρ
ρ+2δn if n > α

−ε− γδ
ρ+2δ −

γ(ρ+δ)
ρ+2δ n if n ≤ α

. (5)

If ε− ε < γ[δ+ρ(1−α)]
ρ+2δ , Z is given by (5) ∀n ≤ ˆ̂n and otherwise it satisfies

(1− n)
1− α

ˆ ∞
t=0

e−(ρ+δ)t
[
Z + ε+ γ

(
1− (1− n)e−δt

)]
dt

+(n− α)
1− α

{ˆ t

t=0
e−(ρ+δ)t

[
Z + ε+ γ

(
α + (n− α)e−δt

)]
−
ˆ ∞
t=t

e−(ρ+δ)t (ε− ε) dt
}

= 0,

(6)

where t = −1
δ

ln −α−(Z+ε)(ρ+2δ)/γ(ρ+2δ)
n0−α and ˆ̂n = α + (ρ+2δ)(ε−ε)−γδ

γρ
.

Proof. See Appendix.

Figure (7) depicts the equilibrium in the case that ε−ε ≥ γ(δ+ρα)
ρ+2δ (graphically, it means

that p1 < p2) and ε − ε ≥ γ(δ+ρ(1−α))
ρ+2δ . That is, the case in which if the economy starts

at one threshold, it will never cross the other one, so that the equilibrium is given by
equations (3) and (5).
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Figure 7: Proposition 2, case ε− ε ≥ γδ+γρmax{α,1−α}
ρ+2δ

1

θ

Z Z

α

0

ṅ = −δn ṅ = δ(1− n)

ṅ = δ(α− n)

p1 p2

Consider a type-ε agent at some point on her threshold. Anywhere above α she knows
that, with probability one, n will fall until it reaches zero. Small shocks leading θ either
slightly to the left or to the right will both drive n downwards. Therefore, this part
of the equilibrium threshold coincides with the upper dominance region for high-type
agents. Now, consider that such agent is at some point on her threshold anywhere below
α. Although a tiny shock moving θ to the left will lead to a drop in n, a shock to the right
will make n bifurcates up until it reaches α. Thus, for a given decrease in n, the increase
in θ that such agent needs to keep her indifferent between both networks is smaller, since
her belief over n is a bit more optimistic. That is why the slope of the threshold is different
below and above α.

An analogous reasoning applies for a type-ε agent that is called upon revising her choice
at any point on her threshold. Below α, the only belief she can hold on the limiting case
of vanishing shocks is that n will grow with probability one. Then, this part of the
threshold coincides with the lower dominance region (O). Above α, her belief is a little
more pessimistic, since there is the possibility of n bifurcating down towards α.

The next figure depicts the equilibrium when there is less, but still a large amount of
heterogeneity. There is a range of n (n is sufficient low) such that a type-ε agent on her
threshold knows that, if the system bifurcates up, it will cross the other type’s threshold
at some point, and thereafter n will grow at a higher rate. Then, the quality an agent
demands to be indifferent between the two networks is a little lower, i.e., the threshold is
steeper. The same reasoning applies for a type-ε agent on her threshold. For n sufficiently
large, she knows that if the system bifurcates down, n will eventually fall enough to cross
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the higher type’s threshold, and thereafter the size of network B will decrease at a higher
rate until it reaches zero.

Figure 8: Proposition 2 - γδ
ρ+2δ < ε− ε < γδ+γρmin{α,1−α}

ρ+2δ

1

θ

Z Z

α

0

ṅ = −δn ṅ = δ(1− n)

ṅ = δ(α− n)

Not so large heterogeneity Now, lets analyze the case in which the condition in (2) does
not hold. In terms of dominance regions, we have that P ≥ O, that is, agents who prefer
B the most and are pessimistic about the size of that network demand a higher θ to
be indifferent between A and B than agents who prefer A the most and are optimistic
about the size of network B. In other words, the intersection between the ’non-dominant
regions’ of the two types is not empty, so there exist beliefs that would make them playing
according to the same threshold. Surprisingly, whenever that is the case, there is a range
of n such that different types of agents play exactly the same strategy.

Proposition 3. Suppose ε − ε ≤ γδ
ρ+2δ . For all n between n1and n2, the two types of

agents play according to the same (downward sloping) threshold. For all n ≤ n1,

Z = −ε− γδ

ρ+ 2δ −
γ(ρ+ δ)
ρ+ 2δ n

and Z satisfies (4). For all n ≥ n2,

Z = −ε− γ(ρ+ δ)
ρ+ 2δ n
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and Z satisfies (6). The bounds n1 and n2 are given by

n1 = α
(ε− ε)(ρ+ 2δ)

γδ
,

n2 = 1− (1− α)(ε− ε)(ρ+ 2δ)
γδ

.

Proof. See Appendix.

The equilibrium in this case is as depicted in figure 9 below.

Figure 9: Proposition 2 - ε− ε < γδ
ρ+2δ

1

θ

Z Z

α

0

ṅ = −δn ṅ = δ(1− n)

n2

n1

1

θ

Z Z

0
OO P P

This result can be explained with the aid of Figure 7. If the agents’ thresholds do not
intersect each other, whenever n > α, the type-ε agent knows everyone will be choosing
A in the future, and whenever n < α, the type-ε knows everyone will be choosing B in
the future. Hence their equilibrium threshold coincide with the dominance bound that
is closer to the other type’s threshold. However, in case dominant regions intersect each
other, if agents were to choose according to different threhsolds, then when n is in a
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neighborhood of α, the threshold Z(n) would be to the left of Z(n). But that cannot
happen – and would anyway generate a different set of beliefs.

Therefore, the intuition for conformity is related to the intuition for why some agents
have extreme beliefs whenever each type is playing differently. When n is small, that
comes from the movement of n being determined by the choice of type-ε agents: they will
choose B and since n is small, that is enough to ensure n will go up regardless of what
type-ε agents do. So n immediately goes up, which leads type-ε agents to choose B as
well. That implies type-ε agents know that when n is small, at the threshold where they
are indifferent, n goes up with probability one. Hence their threshold coincides with the
dominance bound closer to type-ε agents’ threshold.

Intuitively, the existence of type-ε agents increase incentives for type-ε to choose B,
while the existence of type-ε agents reduces incentives for type-ε to choose A, which makes
them behave in a more similar way. That is particularly true when n is in an intermediate
range so that the path of the economy will be decided by the actions of both groups.

4 The planner’s problem with two-sided externalities

Agents are facing the choice between two networks, A and B. Suppose the flow utility
agent i derives from being at network B is given by uBi (θBt , nt) = θBt + νBnt + εBi , and the
flow utility from being at A is given by uAi (θAt , nt) = θAt + νA(1 − nt) + εAi . Hence nt is
the mass of agents currently on network B, νj > 0 is a parameter measuring the relative
importance of the network effect in network j (the importance of strategic complemen-
tarities), θjt represents the quality of network j at time t, and εji captures an idiosyncratic
preference for network j, j ∈ {A,B}.9

4.1 The case with ex-ante identical agents

In the case with ex-ante identical agents, εji = 0 for j ∈ {A,B}. Hence the relative payoff
function can be written as

πi(θt, nt) = θt + γnt ∀i,

where θ ≡ θB − θA − νA and γ ≡ νA + νB.
The planner’s problem at time zero is to maximize

W =E
ˆ ∞
t=0

e−ρt
[
ntu

B
t + (1− nt)uAt

]
dt.

9If either νAor νB were equal to zero, we would have one sided externalities. The results here also apply for this case.
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After a bit of algebra, one can see that this is equivalent to

maxE
ˆ ∞
t=0

e−ρt
[
nt
(
θt − νA

)
+ γn2

t

]
dt.

If the planner increases n0 in dn0, this increase depreciates at a rate δ, so the effect in
nt is given by dnt = dn0e

−δt. The optimality condition for the planner is

E
ˆ ∞

0

∂
[
e−ρt

(
nt(θt − νA) + γn2

t

)]
∂nt

∂nt
∂n0

dt = 0,

that is,
E
ˆ ∞
t=0

e(ρ+δ)t
[
θt − νA + 2γnt

]
dt = 0 (7)

In order satisfy (7), the planner would make agents play according to a downward
sloping threshold. Notice that this is very similar to the agent’s problem: the agent is
indifferent between A and B when E

´∞
t=0 e

(ρ+δ)t [θ + γnt] dt = 0. Proposition 2 relates the
planner’s solution to the decentralized solution.

Proposition 4. Suppose there is a single type of agent in the economy. The decentralized
equilibrium prescribes playing B whenever θt > Z∗(nt) and A otherwise, where Z∗ is given
by

Z∗ = − γδ

ρ+ 2δ −
γρ

ρ+ 2δn. (8)

The planner’s solution prescribes playing B whenever θt > ZP (nt) and A otherwise,
where ZP is given by

ZP = νA − 2γδ
ρ+ 2δ −

2γρ
ρ+ 2δn.

In the case of symmetric network effects, that is, νA = νB, the planner’s solution
becomes

ZP = − γδ

(ρ+ 2δ) + γρ

2(ρ+ 2δ) −
2γρ
ρ+ 2δn. (9)

Proof. See Appendix.

Notice that the planner gives twice as much weight to the current size of the networks
than the agent does. Our intuition could lead us to think that the planner would push
the agents towards the higher quality network, but it is not what happens here. The
planner plays more against the fundamentals than the agents, since it takes into account
the externality agents fail to internalize.
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Figure (10) depicts the results in Proposition 4 when νA = νB. The planner rotates
the threshold, so that the slope of its threshold is half the slope of the equilibrium one.

Figure 10: Planner’s Problem: identical agents
n = 1

θ
n = 0

Z∗ZP

1
2

When the network effect is asymmetric, that is, νA 6= νB, the planner not only rotate
the threshold around n = 0.5, but it also shifts the threshold in order to enlarge the region
in which agents choose the network that generates more externalities. Figures (11) and
(12) depicts the planner’s solution when νB > νA.

Figure 11: Planner’s solution under asymmetric network effects
(
νB

νA < ρ+δ
δ

)
n = 1

θ
n = 0

Z∗ZP

ñ = νA

(νA+νB)
+ δ

ρ

(
νA−νB

νA+νB

)ñ

Notice that when the externality in one network is large enough in comparison to
the other, the planner prescribes that a strictly dominated strategy must be played (the
planner’s threshold in figure (12) lies completely on the agents’ lower dominance region).
There is no belief an agent could hold at that region that would make her play B. However,
the planner prescribes doing so. To see why, consider for example the case in which n
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Figure 12: Planner’s solution under asymmetric network effects
(
νB

νA > ρ+δ
δ

)
n = 1

θ
n = 0

Z∗ZP

is large. The planner takes into account that a lot of agents are stuck in network B

(due to the timing frictions) and would benefit from the network effects generated by an
additional increase in n.

4.2 The case with two types of agents

Proposition 4 shows that differences between νA and νB only add a constant to the
planner’s threshold. In this section, we extend the model for two types of agents and
focus on the case in which νA = νB = ν, for simplicity. The planner’s problem in this
case can be written as

maxEα
ˆ ∞

0
e−ρt

{
nt
[
θB + νnt + εB

]
+ (1− nt)

[
θA + ν(1− nt) + εA

]}
dt

+ (1− α)
ˆ ∞

0
e−ρt

{
nt
[
θB + νnt + εB

]
+ (1− nt)

[
θA + ν(1− nt) + εA

]}
dt,

which is equivalent to

maxE
ˆ ∞

0
e−ρt

{
nt

[
θ − γ

2 + γnt)
]

+ αntε+ (1− α)ntε
}
dt

Following the same reasoning as in the case of identical agents, we find that the opti-
mality conditions for the planner are given by

(i)
E
ˆ ∞

0
e−(ρ+δ)t

(
θ + ε− γ

2 + 2γnt
)
dt = 0
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(ii)
E
ˆ ∞

0
e−(ρ+δ)t

(
θ + ε− γ

2 + 2γnt
)
dt = 0

The next proposition characterizes the planner’s solution.

Proposition 5. Consider the model with two types of agents and linear payoff functions.
The planner’s solution is characterized by thresholds ZPand ZP as follows:
(i) High-type planner:

If ε− ε > 2γ(δ+ρα)
ρ+2δ :

Z
P =

−ε+ γ
2 −

2γ(ρ+δ)
ρ+2δ n if n ≥ α

−ε+ γ
2 −

2αγδ
ρ+2δ −

2γρ
ρ+2δn if n < α

. (10)

If 2γδ
ρ+2δ < ε− ε ≤ 2γ(δ+αρ)

ρ+2δ :

For all n ≥ n̂p ≡ α− (ε−ε)(ρ+2δ)−2γδ
2γρ , ZP is given by equation (10), and otherwise it satisfies

α− n
α


ˆ tP

0
e−(ρ+δ)t

[
Z
P − γ

2 + ε+ 2γ
(
α− (α− n)e−δt

)]
dt+

ˆ ∞
tP

e−(ρ+δ)t (ε− ε) dt


+ n

α

ˆ ∞
0

e−(ρ+δ)t
[
Z
P − γ

2 + ε+ 2γne−δt
]
dt = 0,

where tP = 1
δ

ln
α+[
(
Z
P−γ/2+ε

)
(ρ+2δ)+2γδ]/2γ(ρ+δ)

α−n .

If ε− ε ≤ 2γδ
ρ+2δ :

∀n ≤ nP1 ≡ α (ε−ε)(ρ+2δ)
2γδ , Z satisfies (10) and ∀n ≥ nP2 ≡ 1 − (1 − α) (ε−ε)(ρ+2δ)

γδ
, ZP =

−ε+ γ
2 −

2γ(ρ+δ)
ρ+2δ n.

(ii) Low-type planner:

If ε− ε > 2γ(δ+ρ(1−α))
ρ+2δ ,

ZP =

−ε+ γ
2 −

2γδ(1+α)
ρ+2δ −

2γρ
ρ+2δn if n > α

−ε+ γ
2 −

2γδ
ρ+2δ −

2γ(ρ+δ)
ρ+2δ n if n ≤ α

. (11)

If 2γδ
ρ+2δ < ε− ε ≤ 2γ(δ+ρ(1−α))

ρ+2δ :

For all n ≤ ˆ̂np = α+ (ε−ε)(ρ+2δ)−2γδ
2γρ ,ZP is given by equation (11), and otherwise it satisfies
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(1− n)
1− α

ˆ ∞
t=0

e−(ρ+δ)t
[
θP − γ

2 + ε+ 2γ
(
1− (1− n)e−δt

)]
dt

+(n− α)
1− α

{ˆ tP

t=0
e−(ρ+δ)t

[
θP − γ

2 + ε+ 2γ
(
α + (n− α)e−δt

)]
−
ˆ ∞
t=tP

e−(ρ+δ)t (ε− ε) dt
}

= 0,

where tP = −1
δ

ln −(θP− γ2 +ε)(ρ+2δ)/2γ(ρ+2δ)−α
n−α .

If ε− ε ≤ 2γδ
ρ+2δ :

∀n ≤ nP1 ≡ α (ε−ε)(ρ+2δ)
2γδ , ZP = −ε + γ

2 −
2γδ
ρ+2δ −

2γ(ρ+δ)
ρ+2δ n, and ∀n ≥ nP2 ≡ 1 − (1 −

α) (ε−ε)(ρ+2δ)
γδ

, ZP satisfies (11).

Proof. See Appendix.

The planner’s solution has some interesting properties. The threshold is always flatter
than the agents’, meaning that the planner sacrifices quality in order to explore strategic
complementarities. Moreover, the region in which the planner prescribes that the same
strategy must be played by different types is always larger, showing that the planner
cares less about idiosyncratic preferences. In case the equilibrium threshold of both types
coincide for some values of n, the range of values for n where agents choose different
actions is twice as big as the analogous region for the planner. Figures (13) to (15)
depicts the planner’s solutions for several ranges of heterogeneity in comparison to the
decentralized solution.

5 Final remarks

TBW

A Proofs

A.1 Proof of Proposition 1

TBW

A.2 Proof of Proposition 2

Suppose that µ, σ → 0 and that ε − ε > γδ
ρ+2δ . The following lemma, based on Theorem

2 in Burdzy et al. (1998), helps us compute the equilibrium.
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ṅ = −δn ṅ = δ(1− n)

ṅ = δ(α− n)

Z
P
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Figure 13: Planner’s solution when ε− ε > 2γ(δ+ρmax{α,(1−α)})
ρ+2δ

1

θ

Z Z

α

0

Z
P

ZP

n1
P

n2
P

Figure 14: Planner’s solution when 2γδ
ρ+2δ < ε− ε ≤ 2γ(δ+ρmax{α,(1−α)})

ρ+2δ
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α
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n2
P

n1
P

n1

Figure 15: Planner’s solution when ε− ε ≤ 2γδ
ρ+2δ

Lemma 2. Suppose each type of agent plays according to a distinct threshold, that is,
Z(n) < Z(n)∀n. Consider a point (θ, n) with θ = Z∗i (n). As µ, σ → 0, the time it takes
for the system to bifurcate either up or down converges to zero. Moreover, the probabilities
of as upward or a downward bifurcation are computed as follows:

(i) Consider a point (θ, n) with θ = Z(n).

P (up) =

0 if n ≥ α

1− n
α

if n < α

and P (down) = 1− P (up).
(ii) Consider a point (θ, n) eith θ = Z(n).

P (up) =


1−n
1−α if n ≥ α

1 if n < α

and P (down) = 1− P (up).

Proof. The proof follows imediatelly from Burdzy et al. (1998). The dynamics around Z
is given by

ṅt =

δ(α− nt) if θt > Z(nt)

−δnt if θt < Z(nt)
,
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Figure 16: Bifurcation probabilities

θ

n = 1

n = 0

α

Z(n) Z(n)

P (down) = 1

P (up) = 1P (down) = n
α

P (up) = 1− n
α

P (down) = n−α
1−α P (up) = 1−n

1−α

ṅ = δ(α− n) ṅ = δ(1− n)ṅ = −δn

p1 p2

which can be rewritten as

ṅt = αẋt =

δα(1− xt) if θt > Z(nt)

−δαxt if θt < Z(nt)
,

where xt = nt/α, in order to apply Theorem 2 in Burdzy et al. (1998) directly. The
dynamics around Z can also be rewritten in order to fit in that Theorem.

Figure (16) below shows the bifurcation probabilities along the thresholds. The intu-
ition is that the probability of n going up or down depends on the rate at which it goes
each direction (in case it does), and once it has headed off in one direction, it does not
revert to Z∗i . Using these bifurcation probabilities, we can compute the equilibrium by
equating the expected payoff of agents to zero on their thresholds.

Type-ε threshold: For now, lets assume that the equilibrium is such that the distance
between the thresholds of the two types of agents is big enough so that, in the limit as
µ, σ → 0, if the economy starts at some point on Z, it will never cross Z. Geometrically,
it is equivalent to assuming that p1 is located to the left of p2 in figure (16). We will show
that it is the case whenever ε− ε > γ(δ+ρα)

ρ+2δ .
We know that, on the equilibrium threshold, each type of agent is indifferent between

the two networks if they expect others to play according to their thresholds. Consider an
agent i ∈ [0, α] at some point (θ0, n0) with θ0 = Z(n0), i.e., at some point on her threshold.
If n ≥ α, we know by Lemma 2 that she expects n to decrease with probability one. Thus,
the size of network B that such agent expects for future dates is given by nt = n0e

−δt.
That is, she expects that only the ones that were initially at network B and did not get
the chance to leave it until time t will still be at that network. If n0 < α, with some
probability n will bifurcate down towars zero, but with some probability it will bifurcate
up towars α, in which case the expect n for future dates will be nt = α − (α − n0)e−δt.
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We proceed by dividing the computation of each threshold in two parts, since the beliefs
agents hold are different above and below n0 = α.

Solving the equation below for Z gives us the first line of equation (3), the case in
which n0 ≥ α.

ˆ ∞
t=0

e−(ρ+δ)t
[
Z + ε+ γn0e

−δt
]
dt = 0

This part of agent i’s threshold, i ∈ [0, α], coincides with the upper dominance region,
P , in which such agents hold the most pessismistic belief (everyone who gets the chance
to choose a network will play B). The second part of equation (3), for the case n0 < α,
is obtained by solving the following equation for Z:

α− n0

α︸ ︷︷ ︸
P (up)

ˆ ∞
t=0

e−(ρ+δ)t
[
Z + ε+ γ

(
α− (α− n0)e−δt

)]
dt+ n0

α︸︷︷︸
P (down)

ˆ ∞
t=0

e−(ρ+δ)t
[
Z + ε+ γn0e

−δt
]

= 0.

The first term of the sum is the probability of an upward bifurcation times the dis-
counted payoff when the agent expects nt to grow until it approaches α. The second one
is the probability of a downward bifurcation times the discounted payoff when the agent
expects nt to decrease towards zero.

We still need to check the condition under which the path of a system starting at any
point (θ0, n0) with θ0 = Z(n0) does not ever cross the other threshold, Z. It suffices to
find a condition that guarantees that Z(0) < Z(α) , that is,

−ε− αγδ

ρ+ 2δ < −ε−
γδ

ρ+ 2δ −
γα(ρ+ δ)
ρ+ 2δ

⇐⇒ ε− ε > γ(δ + ρα)
ρ+ 2δ .

Now, assume that the condition above does not hold. Instead, we have that γ(δ+ρα)
ρ+2δ ≥

ε− ε > γδ
ρ+2δ . In that case, an individual making a choice at some point on her threshold

needs to take into account the possibility that, depending on the initial state (θ0, n0),
the system may bifurcate up but not only towards nt = α . The size of network B may
increase at a lower rate until it crosses the other agents’ threshold, and then continue to
grow towards n = 1. The figure below exemplifies this case.
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Figure 17: Intermediate range of heterogeneity

θ

n = 1

n = 0

α

Z(n) Z(n)

ˆ̂n

n̂

Define n̂ ≡ Z
−1 (Z(α)) = α− (ρ+2δ)(ε−ε)−γδ

γρ
. For all n0 > n̂, the threshold Z is given by

equation (3). But when n0 ≤ n̂, the agent takes into account that, if the system bifurcates
up, nt will grow at a rate δ(α − nt) until it reaches n̂, and then it will grow at a higher
rate, δ(1− nt), since the system will have crossed the threshold of all other agents in the
economy. Thus, the equation expressing indifference between networks A and B of an
agent i ∈ [0, α] choosing at a point (θ0, n0) with θ0 = Z(n0), n0 ≤ n̂, is

(α− n0)
α︸ ︷︷ ︸

P (up)


ˆ t

t=0
e−(ρ+δ)t

Z + ε+ γ
(
α− (α− n0)e−δt

)
︸ ︷︷ ︸
nt growing at rate δ(α−n)

 dt+
ˆ ∞
t=t

e−(ρ+δ)t

Z + ε+ γ
(
1− (1− n0)e−δt

)
︸ ︷︷ ︸
nt growing at rate δ(1−n)

 dt


+ n0

α︸︷︷︸
P (down)

ˆ ∞
t=0

Z + ε+ γ n0e
−δt︸ ︷︷ ︸

nt falling

 dt = 0,

where t = −1
δ

ln α−Z−1(Z(n0))
α−n0

= −1
δ

ln α+[(Z+ε)(ρ+2δ)+γδ]/γ(ρ+2δ)
α−n0

is the time at which the
system crossesZ in the case it bifurcates up.10 Solving for Z gives us the last piece of the
equilibrium threshold for type-ε agents. Notice that the second integral in the first line is
equivalent to

´∞
t=t e

-(ρ+δ)t (ε− ε) dt, which is the difference between a type-ε agent’s payoff
and a type-ε agent’s payoff at that point (the latter has zero payoff since at t the system
is exactly on her threshold).

Type-ε threshold: The same reasoning applies for an agent i ∈ (α, 1]. Consider that
such agent receives a chance to revise her network choice at some point (θ0, n0) on her
threshold, θ0 = Z(n0). First, suppose that the distance between the thresholds is such

10The Z used to compute t is given by the second line of equation (5), since n̂ < α.
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that whenever the economy starts at some point on Z, it will never cross Z (we will find
the condition that guarantees that later). By Lemma 2, whenever α ≤ n, the system goes
up with probability one. Whenever α > n, the probabilities of bifurcating up (towards
n = 1) or down (towards n = α) are (1 − n)/(1 − α) and (n − α)/(1 − α), respectively.
We can then compute the threshold. The first part of equation (5) is obtained by solving

(1− n0)
1− α︸ ︷︷ ︸
P (up)

ˆ ∞
t=0

e−(ρ+δ)t
[
Z + ε+ γ

(
1− (1− n0)e−δt

)]
dt+(n0 − α)

1− α︸ ︷︷ ︸
P (down)

ˆ ∞
t=0

e−(ρ+δ)t
[
Z + ε+ γ

(
α + (n0 − α)e−δt

)]
dt = 0

for Z, and the second one, by solving
ˆ ∞
t=0

e−(ρ+δ)t
[
Z + ε+ γ

(
1− (1− n0)e−δt

)]
dt = 0.

The last equation shows that this part of the equilibrium threshold coincides with the
lower dominance region, O, in which such agents expect all others to play B in the future.
Now, lets check the condition under which a system starting at any point (θ0, n0) with
θ0 = Z(n0) will never reach the threshold Z. It suffices to check whether Z(α) < Z(1),
which is true whenever

−ε− γα(ρ+ δ)
ρ+ 2δ < −ε− γδ(1 + α)

ρ+ 2δ − γρ

ρ+ 2δ

⇐⇒ ε− ε > γ [δ + ρ(1− α)]
ρ+ 2δ .

Now, assume instead that γ[δ+ρ(1−α)]
ρ+2δ ≥ ε − ε > γδ

ρ+2δ . Define ˆ̂n ≡ Z−1
(
Z(α)

)
=

α + (ρ+2δ)(ε−ε)−γδ
γρ

. For all n0 < ˆ̂n, the threshold of type-ε
agents is still given by equation (5), but if n0 ≥ ˆ̂n, Z satisfies

(1− n0)
1− α︸ ︷︷ ︸
P (up)

ˆ ∞
t=0

e−(ρ+δ)t

Z + ε+ γ
(
1− (1− n0)e−δt

)
︸ ︷︷ ︸
nt growing towards 1

 dt

+(n0 − α)
1− α︸ ︷︷ ︸
P (down)


ˆ t

t=0
e−(ρ+δ)t

Z + ε+ γ
(
α + (n0 − α)e−δt

)
︸ ︷︷ ︸
nt falling at rate δ(n−α)

+
ˆ ∞
t=t

e−(ρ+δ)t

Z + ε+ γ
(
1− (1− n)e−δt

)
︸ ︷︷ ︸
nt falling at rate δn

 dt
 = 0,
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where t = −1
δ

ln Z
−1(Z(n0))−α

n0−α = −1
δ

ln −α−(Z+ε)(ρ+2δ)/γ(ρ+2δ)
n0−α . 11 The last term of the sum

can be substituted by −
´∞
t=t e

−(ρ+δ)t (ε− ε) dt, which is the difference between the payoffs
of the two types of agents since at t the system is exactly on type-ε’s threshold.

A.3 Proof of Proposition 3

Suppose ε− ε ≤ γδ
ρ+2δ and that Z(n) 6= Z(n) for all n ∈ (n1, n2). Then, we have that, for

each n, either (i) Z(n) > Z(n) or (ii) Z(n) < Z(n).
(i) To show that this cannot be the case, lets look at the dynamics of n implied by

Z(n) > Z(n) in figure (18). Notice that, for all n ≥ 1 − α, a type-ε agent at any point
in Z expects n to fall with probability one, while a type-ε agent at Z expects n to grow
with some probability. Besides having a higher idiosyncratic preference for network B,
the type-ε agent at Z faces a higher θ and has a better belief about n than a type-ε agent
at Z. Then, they cannot both be indifferent between A and B. Likewise, for all n < 1−α,
a type-ε agent on Z expects n to go up with probability one, while a type-ε agent at Z
expects n to fall with some probability. Since the θ, the expected n and the parameter
ε are higher for the type-ε agent, they cannot both be indifferent. Thus, @n such that
Z(n) > Z(n).

Figure 18: Proof of Proposition 3

θ

n = 1

n = 0

1− α

Z(n)Z(n)

ṅ = δ(1− α− n) ṅ = δ(1− n)ṅ = −δn
p1 p2

n2

n2

n1

(ii) Notice that if Z(α) < Z(α), we have that Z(α) = O(α) and Z(α) = P (α).
Then, O(α) > P (α) ⇒ ε − ε > γδ

ρ+2δ . Contradiction. Thus, at n = α, all agents
must play the same strategy. Moreover, given that ε − ε ≤ γδ

ρ+2δ , we have that n̂ =
α − (ρ+2δ)(ε−ε)−γδ

γρ
≥ α and ˆ̂n = α + (ρ+2δ)(ε−ε)−γδ

γρ
≤ α. Thus, under the assumption

that Z(n) < Z(n), by Proposition 2 we have that, ∀n < α, Z is given by equation (4)
and Z = O = −ε − γδ

ρ+2δ −
γ(ρ+δ)
ρ+2δ n. Also, ∀n > α, Z is given by equation (6) and

11The Z used to compute t is given by the firs line of equation (3), since ˆ̂n > α.
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Z = P = −ε− γ(ρ+δ)
ρ+2δ n. However, one can verify that the two thresholds cross at n = n1

and at n = n2, and ∀n ∈ (n1, n2) we have that Z(n) > Z(n). Contradiction. The two
types cannot play different strategies if n ∈ (n1, n2).

A.4 Proof of Proposition 4

The proof of Proposition 4 is equivalent to the proof of Proposition 2 if we substitute the
flow playoff of the agent, π(.), by ZtP − γ

2 + 2γnt .

A.5 Proof of Proposition 5

The proof of Proposition 5 is equivalent to the proof of Proposition 2 if we substitute the
flow playoff of the agent, π(.), by ZtP + ε− γ

2 + 2γnt and by Zt
P + ε− γ

2 + 2γnt.
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