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Abstract. This paper investigates the evolutionary foundation for our capacity

to attribute preferences to others. This ability is intrinsic to game theory, and

is a key component of “Theory of Mind” (ToM ), perhaps the capstone of social

cognition. We argue here that this component of theory of mind allows organisms

to efficiently modify their behavior in strategic environments with a persistent

element of novelty. In particular, we consider an evolutionary environment in

which players interact with one another while the set of games that they might

face becomes larger and larger with time. We then compare two types of agents—

a naive type that adapts to each particular game through repeated exposure to

it—as in reinforcement learning—and a ToM type that knows his opponents have

preferences and can infer these from observed behavior. We show that ToM

yields a sharp and unambiguous advantage over naivete when novel games are

introduced at an intermediate rate. The edge to ToM arises because a ToM type

can acquire opponent preferences by observing behavior in previous games and can

then use this knowledge to make the correct choice in novel circumstances, while

the naive type requires direct exposure to each new game. In related experiments,

we demonstrate that there is a highly significant tendency for subjects to learn

preferences of opponents, rather than to learn the game. That is, we provide strong

evidence for the presence of ToM in the sense of our model. Moreover, scores on

standard measures of autism-spectrum behaviors are significant determinants of

individual speed of learning, indicating that our notion of ToM is correlated with

ToM as it is understood in psychology.
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1. Introduction

An individual with theory of mind has the ability to conceive of himself, and

of others, as having agency, and so to attribute to himself and others mental

states such as belief, desire, knowledge, and intent. It is generally accepted in

psychology that human beings beyond early infancy possess theory of mind.1

More specifically, it is conventional in game theory to make the crucial assump-

tion, without much apology, that agents have theory of mind in the sense of

imputing preferences to others.

The present paper considers theory of mind in greater depth by addressing

the question: Why and how might this ability to impute preferences to others

have evolved? In what types of environments would this ability yield a distinct

advantage over alternative, less sophisticated, approaches to strategic interac-

tion? In general terms, the answer we propose is that this aspect of theory of

mind is an evolutionary adaptation for dealing with strategic environments that

have a persistent element of novelty.

The argument made here in favor of theory of mind is a substantial gener-

alization and reformulation of the argument in Robson (2001) concerning the
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advantage of having an own utility function in a non-strategic setting. In that

paper, an own utility function permits an optimal response to novelty. Suppose

an agent has experienced all of the possible outcomes, but has not experienced

and does not know the probabilities with which these are combined. This latter

element introduces the requisite novelty. If the agent has the biologically ap-

propriate utility function, she can learn the correct gamble to take; conversely,

if she acts correctly over a sufficiently rich set of gambles, she must possess,

although perhaps only implicitly, the appropriate utility function.

We shift attention here to a dynamic model in which players repeatedly in-

teract with one another but in which novelty is repeatedly introduced. More

precisely, although the game tree is fixed, the outcomes needed to complete the

game are randomly drawn in each period from an outcome set that grows over

time. We presume individuals have an appropriate own utility function, but

do not know the utility functions of their opponents. The focus is then on the

advantage to an agent of conceiving of her opponents as also being agents—in

particular, understanding that they act optimally in the light of their preferences

and so endeavoring to learn these. Having a template into which the preferences

of an opponent can be fitted enables a player to better deal with the innovation

that arises from new outcomes than can a “naive type” that adapts to each

game as a distinct set of circumstances. In other words, the edge to theory of

mind derives from a capacity to extrapolate to novel circumstances information

that was learned about others’ preferences in a previous situation.

This outlines our dynamic interpretation of the aspect of theory of mind con-

cerning the preferences of others. Our interpretation is in the spirit of revealed

preference in that the implications of knowledge of others’ preferences are ob-

servable. This interpretation exploits the concept of theory of mind more fully

and fruitfully than might a static interpretation. Throughout the paper, we refer

to our dynamic interpretation of theory of mind, for simplicity, just as ToM.

The distinction between the ToM and naive types might be illustrated with

reference to the following observations of vervet monkeys (Cheney and Seyfarth

1990, p. 213). If two groups are involved in a skirmish, sometimes a member

of the losing side is observed to make a warning cry used by vervets to signal

the approach of a leopard. All the vervets will then urgently disperse, saving

the day for the losing combatants. The issue is: What is the genesis of this
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deceptive behavior? One possibility, corresponding to our ToM type, is that

the deceptive vervet appreciates what the effect of such a cry would be on

the others, understands that is, that they are averse to a leopard attack and

exploits this aversion deliberately. The other polar extreme corresponds to our

naive reinforcement learners. Such a type has no model whatever of the other

monkeys’ preferences and beliefs. His alarm cry behavior conditions simply on

the circumstance that he is losing a fight. By accident perhaps, he once made

the leopard warning in such a circumstance, and it had a favorable outcome.

Subsequent reapplication of this strategem continued to be met with success,

reinforcing the behavior.2

Consider the argument in greater detail. We begin by fixing a game tree

with perfect information, with stages i � 1 , . . . , I. There are I equally large

populations, one for each of the associated “player roles.” In each period, a

large number of random matches are made, with each match having one player

in each role i � 1 , . . . , I. The outcomes needed to complete the game are

drawn randomly and uniformly in each period from the finite outcome set that

is available then. Players have preference orderings over the set of outcomes

that are ever possible, and so preferences over the finite subset of these that is

available in each period. Each player is fully aware of his own ordering but does

not directly know the preference ordering of his opponents.

Occasionally, a new outcome is added to the set of potential outcomes, where

each new outcome is drawn independently from a given distribution. The num-

ber of outcomes available grows to infinity at a parametric rate. The crucial

aspect of this model is the introduction of novelty, rather than the growing com-

plexity that is also generated. That is, in a model in which outcomes were also

dropped, so the outcome set remained of constant size, similar results obtain,

but in a slightly more awkward fashion. We view our strategic environment as

a convenient test-bed on which we can derive the speeds with which the various

types can learn. The basic results do not seem specific to this particular environ-

ment, so these differences in relative learning speeds would likely be manifested

in many alternative models.

2 It is plausibly the capacity for such that naive learning that is subject to natural selection

rather than the precise strategem itself.
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All players see the complete history of the games played—the outcomes that

were chosen to complete the game, the choices that were made by all player

roles, but not the payoffs of others. The types of players here differ with respect

to the extent and the manner of utilization of this information. We compare

two main categories of types of players—naive and theory of mind (ToM ) types.

The naive types’ behavior is inspired by reinforcement learning, as implicit in

evolutionary game theory, where they treat each new game as an unfamiliar

set of circumstances. The ToM types are disposed to learn others’ preferences.

They apply the information provided by the history available in each period to

build up a detailed picture of the preferences of the other roles. All types are as-

sumed to avail themselves of a dominant choice, whenever this is available. This

assumption is in the spirit of focussing on the learning the preferences of others

rather than considering the implications of knowing one’s own preferences.

The crucial feature of naive types is that they make a (possibly mixed) choice

that is the same for all new games. (This assumption can be relaxed as long as

naive types behave inappropriately in some positive fraction of new games.) This

characterization of naive types is in line with “evolutionary game theory,” which

was inspired, in turn, by the psychological theory of reinforcement learning. It is

not crucial otherwise how naive players behave. Indeed, even if the naive types

apply a fully Bayesian rational strategy the second time a game is played, they

will still lose the evolutionary race here to the SPE-ToM type. More reasonable

assumptions on the rate of learning for the naive types would only strengthen

our results. Furthermore, the results favoring the SPE-ToM type hold even if

the ToM types have a sufficiently small extra fixed cost.

The crucial aspect of ToM behavior is that, in the long run, once the history

of the game has revealed the preferences of all subsequent players, ToM types

map these preferences to an action. There is a particular ToM type, the SPE-

ToM type, that maps these preferences to the SPE choice for the subgame,

when this is unique. This SPE-ToM type is shown to evolutionarily dominate

the population, in the long run. In the short run, the ToM types understand

enough about the game that they can learn the preferences of other player

roles. For example, it is common knowledge among all ToM types that all

players use dominant actions, if available. It is not crucial otherwise how the

ToM types behave—they could even minimize their payoffs according to a fully
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accurate posterior distribution over all the relevant aspects of the game, when

the preferences of all subsequent players are not known.

We do not assume that the ToM types use the transitivity of opponents’

preferences. (Indeed, the results here would apply even if preferences were not

transitive.) The ToM types build up a description of others’ preferences only

by observing all the pairwise choices. Generalizing this assumption would only

strengthen our results by increasing ToM types’ learning speed.

Theorem 1 is the basic theoretical result here—in an intermediate range of

growth rates of the outcome set, the ToM types will learn opponents’ preferences

with a probability that converges to one, while the naive types see a familiar

game with a probability that converges to zero. The greater adaptation of the

ToM type simply reflects that there are vastly more possible games that can be

generated from a given number of outcomes than there are outcome pairs.

There are various ways the ToM types might exploit this greater knowledge

at the expense of the naive types. We have set up the model to favor a simple

and salient possibility, as expressed in the main conceptual result—Theorem 2—

that eventually a unique SPE is attained, with the SPE-ToM type ultimately

evolutionarily dominant, over all other ToM types, as well as over all the naive

types.

A key result is then that it is better to be “smart”—a ToM —than it is to

be a naive player. Indeed, our results hold if the ToM s incur a fixed cost, as

long as this cost is small enough. This is important since the previous literature

has tended to find an advantage to (lucky and) less smart players over smarter

players—see, as a key example, Stahl (1993). The underlying reason for the

reverse (and more plausible) result here is that we force individuals to address

novel games. More particularly, the assumption that naive players use the same

strategy in any novel game disallows a full range of naive types that adopt a

full range of strategies conditional on every game. If a full spectrum of such

strategies existed, that is, a suitable naive but lucky type would be unbeatable

in the long run, and would beat the ToMs too, if these involved a cost. But the

existence of such a full range of strategies covering novel games does not seem

plausible.

After stating the theoretical results, we present experiments on theory of mind

that buttress the current approach by allowing us to observe 1) the presence and



7

extent of our revealed preference version of theory of mind in human subjects

and 2) the degree to which this dynamic revealed preference interpretation of

ToM corresponds to theory of mind as it is understood by psychologists. We

construct an environment similar to that in the model, but simpler, in which

ToM yields a distinct strategic advantage, and observe the extent to which our

subjects exploit this advantage.

In the experiments, subjects play a sequence of two-player extensive form

games where each player role has two moves at each decision node. In each

repetition, a game is constructed by drawing outcomes without replacement from

a finite set. All players in a given role had the same (induced) preferences, but

these players knew only their own payoff at each outcome and not that of their

opponent, as is the crucial feature of the theoretical model. We randomly and

anonymously paired subjects in each of 90 repetitions to observe the ability of

players 1 to learn (and to exploit their knowledge of) the preferences of players 2.

As reflects the theoretical model, many games in later periods that would appear

novel to a naive reinforcement learner could be understood by an agent with

ToM who had observed previous choices in the subgames. The rate at which

subjects achieve subgame perfect equilibrium outcomes measures the extent to

which individuals exhibit ToM by learning their opponents’ preferences.

At the end of each experimental session, we collected two measures of theory

of mind that are commonly used in psychology. Specifically, we asked the stu-

dents to complete two short Likert scale surveys measuring the extent of autism

spectrum behaviors. One was the Autism-Spectrum Quotient (AQ) survey due

to Baron-Cohen et al. (2001); the other was the Broad Autism Phenotype

Questionnaire (BAP), due to Hurley et al. (2007).

There were two striking results of the experiments that corroborate the present

approach. First, we observed highly significant learning of player 2’s preferences

by players 1, but no such significant learning of specific games. That is, iron-clad

support for the formal model of the paper is expressed in real-world behavior.

Individuals do behave as if they ascribe preferences to opponents and endeavor to

learn these, given that it is advantageous. Not surprisingly, this ability is present

in real-world individuals to varying degrees. Second, there is strong evidence

that this attribute is an aspect of theory of mind, as this term is understood in

psychology: player 1’s who report fewer autism-spectrum behaviors (i.e. have
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lower AQ and BAP scores) have a statistically significant tendency to learn

player 2’s preferences faster.

2. The Theoretical Model

2.1. The Environment.

We begin by defining the underlying games. The extensive game form is a

fixed tree with perfect information and a finite number of stages, I ¥ 2 and

actions, A, at each decision node.3

There is one “player role” for each such stage, i � 1 , . . . , I, in the game. (In

a reversal of the usual convention, the first player role to move is I and the

last to move is 1 . This simplifies the notation used in the proof.) Each player

role is represented by an equally large population of agents. These agents will

have different “types”, that differ in their choice of strategy, but not in their

payoff function. These types will be described precisely below, but they will be

grouped into two broad “categories”—ToM and naive.

Independently in each period, all players are randomly and uniformly matched

with exactly one player for each role in each of the resulting large number of

games.4

All that is left to complete the description of the basic game, is the payoff

for each player role—the mapping from outcomes to expected offspring. There

is a fixed overall set of outcomes, each with consequences for the reproductive

success of the I player roles. Player role i � 1 , . . . , I is then characterized by a

function mapping outcomes to expected numbers of offspring. A fundamental

novelty is that, although each player role knows its own payoff at each outcome,

it does not know the payoff for the other player roles.

For notational simplicity, however, we finesse consideration of explicit out-

comes and payoff functions from outcomes to expected offspring. Given a fixed

tree structure with T terminal nodes, we instead simply identify each outcome

3 The restriction that each node induce the same number of actions, A, can readily be relaxed

by allowing equivalent moves, in which case A can be interpreted as the maximum number of

actions available at any node in the entire tree. Indeed, it is possible to allow the game tree to

be randomly chosen. This would not fundamentally change the nature of our results but would

considerably add to the notation required.
4 Uniform matching is not crucial to our results but chosen in the interest of simplicity.
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with a payoff vector and each game with a particular set of such payoff vectors

assigned to the terminal nodes. We assume that all expected offspring payoffs

lie in the compact interval rm,M s, for M ¡ m ¡ 0 . The upper bound M is

merely a technical convenience; the lower bound m ensures that no type would

go extinct if it is temporarily outdone by another type.

A1: The set of all games is represented by Q � rm,M sTI , for M ¡ m ¡ 0 .

That is, each outcome is a payoff vector in Z � rm,M sI , with one component

for each player role, and there are T such outcomes comprising each game.

Let t � 1 , 2 , . . . , denote successive time periods. At date t, there is available a

set of outcomes Zt � Z, determined in the following way. There is an initial finite

set of outcomes Z1 � Z where each of these outcomes is drawn independently

from Z according to a cumulative distribution function F as follows.5

A2: The cdf over outcomes F has a continuous probability density f that is

strictly positive on Z.

There is then a subsequence of time periods ttku
8
k�1

. At date tk, k � 1 , 2 , . . . ,

a k-th outcome is added to the existing ones by drawing it independently from

Z according to F .6 In between arrival dates the set of outcomes is fixed, and

once an outcome is introduced it is available thereafter. The available set of

outcomes in period t is then Z1

�
tz1 , . . . , zku , whenever tk ¤ t   tk�1 , where

zk P Z denotes the introduced outcome at arrival date tk. Figure 1 is a schematic

representation of the game.

We parameterize the rate at which the environment becomes increasingly

complex in a fashion that yields a straightforward connection between this rate

and the advantages to theory of mind.

5 The assumption that the initial set is drawn from F can readily be relaxed.
6 This abbreviated way of modeling outcomes introduces the apparent complication that the

same payoff for role i might be associated with multiple possible payoffs for the remaining

players. Knowing your own payoff does not then imply knowing the outcome. This issue could

be addressed by supposing that there is a unique label attached to each payoff vector, and that

each player role observes this label, as well as his payoff. However, with the current set-up,

when the cdf F is continuous, the probability of any role’s payoff arising more than once is zero.

Each player i can then safely assume that a given payoff is associated to a unique outcome and

a unique vector of other roles’ payoffs. We then adopt this simpler set-up.

We do not consider how ToM types might update beliefs about opponents’ payoffs in the light

of their own observed payoff. All that we rely on is that, if history establishes another player

role’s preference between two outcomes for sure, then the ToM types learn. All that we rely on

concerning the naive types is that they can only learn from repeated exposure to a given game.
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A3: Fix α ¥ 0 . The arrival date sequence ttku satisfies, for each k � 1 , 2 , . . . ,

that tk � t|Ztk |
αu � tp|Z1 | � kqαu.7

If the parameter α is low, the spacing between successive tk’s is low and the rate

of arrival of novelty is high; if α is high, on the other hand, the rate of arrival of

novelty is low. More particularly, if α   2 , we will show that the rate of arrival

of novel outcomes is too fast for the ToM types to keep up, given that they must

see each opponent make a choice between each pair of outcomes. If α   T , on

the other hand, we will show that the rate of arrival of novel outcomes is too

fast for the naive types to keep up, given they must see each new game at least

once.8

Consider now a convenient formal description of the set of games available at

each date.

Definition 1: At date t, the empirical cdf based on sampling, with equal prob-

abilities, from the outcomes that are actually available at date t, is denoted by

the random function Ftpzq where z P rm,M sI . The set of games at date t is the

T -times product of Zt. This is denoted Qt. The empirical cdf of games at date

t derives from T -fold independent sampling of outcomes according to Ft and is

denoted by Gtpqq, where q P Q � rm,M sIT .9

We suppose that, at each date t, an extensive form game denoted qt is drawn

according to Gt independently of history. The players in each match then play

qt. Players of each strategic type within a given player role are constrained to

use the same strategy. For simplicity, indeed, the ToM types are ultimately

constrained to use pure strategies.10

The cdf’s Ft and Gt are well-behaved in the limit. This result is elegant and

so warrants inclusion here. First note that the distribution of games implied

7 Here t�u denotes the floor function. It seems more plausible, perhaps, that these arrival dates

would be random. This makes the analysis mathematically more complex, but does not seem to

fundamentally change the results. The present assumption is then in the interests of simplicity.
8 Even if the ToM types used transitivity of opponents’ preferences, α   1 is certainly too

fast an arrival rate for the ToM types to keep up, even under the most favorable sequence of

pairings of the new outcome with the old outcomes.
9 Note that Ft and Gt are random variables measurable with respect to the information available

at date t, in particular the set of available outcomes Zt.
10 That is, the ToM types use pure strategies when they know the preferences of all the sub-

sequent players. This is a harmless simplification, since the ToM type that will prevail in the

long run is a pure strategy in these circumstances. Naive types are assumed to mix uniformly

when the game is new.
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by the cdf on outcomes, F , is given by G, say, which is the cdf on the payoff

space rm,M sIT generated by T independent choices of outcomes distributed

according to F . Clearly, G also has a continuous pdf g that is strictly positive

on rm,M sIT . These cdf’s are then the limits of the cdf’s Ft and Gt—

Lemma 1: It follows that Ftpzq Ñ F pzq and Gtpqq Ñ Gpqq with probability

one, and uniformly in z P rm,M sI , or in q P rm,M sIT , respectively.

Proof. This follows directly from the Glivenko-Cantelli Theorem. (See Billings-

ley 1968, p. 275, and Elker, Pollard and Stute 1979, p. 825, for its extension to

many dimensions). �

The evolutionary bottom line is then as follows—each I-tuple playing each

game generate children according to the outcome obtained. The current gener-

ation then dies and their offspring become the next generation of players. The

offspring of each type of i player become i players of the same type in the follow-

ing period. We normalize the number of children born to each type of i player

by dividing this number by the total number of offspring produced by all players

in role i.11

Role 1

Role 2

Role 3

1z 2z

ktoutcome introduced att: game at datetq

tZ Z

naive

naive

ToM

ToM

tpopulation at date

..

.

..

.

F

3z 4z

Figure 1: A Schematic Representation of the Key Elements of the Model.

We turn now to the specification of the “strategic types” within each player

role.

11 The assumption that each generation plays the game just once can be straightforwardly

generalized so that individual dies and reproduces in each period, with a constant probability

for each possibility. The expected number of times each individual plays the game could then

be arbitrary.
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2.2. Strategic Types.

We allow a finite number of different “strategic types” within each role, i �

1 , . . . , I. When making a choice at date t every player of any type is informed

of a publicly observed history Ht � tZt, pq1 , π1q, . . . , pqt�1 , πt�1qu, and the game

qt drawn in the current period. The history records the outcomes available at

date t, the randomly drawn games up to the previous period, and the empirical

distributions of choices made by previous generations. Although each player

observes the outcomes assigned to each terminal node, as revealed by the payoff

she is assigned at that node, it should be emphasized that she does not observe

other roles’ payoffs directly. In particular, for each player role i decision-node

h that is reached by a positive fraction of players in period τ , πτphq P ∆pAq

records the aggregate behavior of date τ i player roles at h. Let Ht be the

set of date t histories, and H �
�
t¥1 Ht. Recall that in each period t, every

extensive form in Qt shares the same underlying game tree. Then, let Σi denote

the set of strategies available to the player role i’s of any given date.

We partition each player role population into strategic types. Specifically, for

each i � 1 , . . . , I, there is a finite set of functions Ci � tc :H �Q ÝÑ Σiu .

These are the i player strategic types. Each i player is associated with a c P Ci,

which determines his choice of strategy.12 Moreover, we assume these types are

inheritable. Specifically, an individual in period t with strategic type c chooses

the strategy cpHt, qtq in game qt, his children choose cpHt�1 , qt�1q in qt�1 , his

grandchildren choose cpHt�2 , qt�2q, and so on. Variation in strategic types allows

for different levels of sophistication within each player role. Some of these types

are players who see others as having agency; other types do not see this.

As part of the specification of the map c, we assume that all individuals

choose a strictly dominant action in the subgame they initiate, whenever such

an action is available. For example, the player at the last stage of the game

always chooses the outcome that she strictly prefers. This general assumption

is in the spirit of focussing upon the implications of other players’ payoffs rather

than the implications of one’s own payoffs. This assumption incorporates an

element of sequential rationality, since such a dominant strategy is conditional

12 It is not required that ToM types remember the entire history. What is needed is that they

update their beliefs about other players’ preferences using the aggregate choices made in each

period. It is not important whether naive players remember the entire history or not.
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upon having reached the node in question, that is, conditional on the previous

history of the game.13

To be more precise, the assumption is—

A4: Consider any i player role, and an i player subgame q. The action a at q

is dominant for i if for every action a1 � a, for every outcome z available in the

continuation game after i’s choice of a in q, and every outcome z1 available in the

continuation game after i’s choice of a1 in q, zi ¡ z1i. For each i � 1 , . . . , I, every

strategic type in Ci always chooses any such dominant action. When indifferent

between several such dominant actions, a player mixes evenly between these

actions.

It is useful to summarize the taxonomy of agents here. Each player role

corresponds to a stage i � 1 , . . . , I in the game of perfect information. There

is an equal and large number of players within each role, which population is

divided into a finite number of types, where each type has the same payoff

function, but differs in strategy. The final element of the taxonomy is that there

are two main “categories” of types of players—

2.2.1. Naive Players. We adopt a relaxed concept of naivete, which serves

to make the ultimate results stronger—

Definition 2: Each map c for a naive type requires that she must choose a

fixed arbitrary strategy whenever the game is novel. For specificity, suppose she

then mixes uniformly over all available actions. Naive players also choose any

strictly dominant action in the remaining subgame, as in A4.

The assumption that the strategy used in novel games is fixed is in the spirit

that naive players start as blank slates in such situations. However, our results

would still hold, despite some extra complication, if, in any novel game, the

naive players chose a best response to opponents’ strategies that mix uniformly

over all their available actions. Such a choice by the naive players would be

Bayesian optimal initially, if all players’ payoffs were independently distributed.

This choice would be the actual true SPE choice for a positive fraction of new

13 Given suitable noise, this element of sequential rationality is assured, and this property can

be made a result rather than an assumption. That is, a strategy that did not use a dominant

choice would be driven to extinction under any plausible evolutionary dynamic. We omit this

proof for conciseness.
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games, but not for all of them. The key property of any relaxed version of the

assumption is that it should ensure that the naive players make inappropriate

choices in a positive fraction of new games in the long run.

If the game is not new, the strategy of each type of naive player is uncon-

strained. Although it makes an implausible combination, the naive players could

then be fully Bayesian rational with respect to all of the relevant characteristics

of the game—not merely updating the full distribution of opponents’ payoffs,

but updating the distribution for all opponents’ types. Nevertheless, the so-

phisticated ToM players will out-compete them, given only the naive players’

inability to adapt fully to a new game. To the extent that naive players fail to

attain such Bayesian rationality in games that are not new, our results would

simply be strengthened.

2.2.2. Theory of Mind Players. Consider now a category of theory of mind

strategic types. Intuitively, these types conceive of opponents as making choices

according to well defined preferences and beliefs. All of the ToM types know

there are some preferences influencing player role j’s choices in every period,

and they learn what these preference are.

Definition 3: The important long run aspect of the behavior of ToM types is

that, if the history of the game has revealed the preferences of all subsequent

players, these ToM types map these preferences into an action. In particular, in

every role, there is a positive fraction of a special type of ToM called SPE-ToM

which plays a subgame perfect equilibrium action, given these known preferences

of subsequent players and that the SPE is unique. Recall that, as part of the map

c, ToM players choose any strictly dominant action in the remaining subgame,

as in A4. In the short run, all the ToM players know that all other players also

use dominant actions if available, as in A4; further, this is common knowledge

among the ToM players. The presence of some ToM players in every role is also

common knowledge among all the ToM types.

The assumptions here on the ToM types seem reasonable. In particular, the

assumption that ToM types have common knowledge that all types choose a

dominant action is in the spirit of focussing here on the implications of the

preferences of others, while presuming full use of one’s own preferences. Note

also that it is merely for expositional clarity that we describe the short run

learning behavior of the ToM types in terms of common knowledge. The entire
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description can be recast in pure “revealed preference” terms. How this can be

done is discussed after the statement of Theorem 1.

It should be emphasized that we place only weak restrictions on all types—

naive or ToM, so the results are thereby strengthened. As long as the naive

types make the same mixed choice in all novel games, their behavior is otherwise

unrestricted and might be highly sophisticated. Similarly, when the ToM types

have not ascertained the preferences of all subsequent players, their behavior is

arbitrary and might be highly suboptimal. For example, they might minimize

their expected payoff given a fully Bayesian view of their situation. It is not the

case then that the ToMs strategically dominate the naive types—naive players

might do much better than the ToM players in the short-run. In the long

run, however, the assumption that there is a SPE-ToM ensures this type must

evolutionarily dominate all the naive types and for that matter all the other

ToM types.

Figure 1 is a schematic representation of the model.

2.3. The Theoretical Results.

There are two main theoretical results. The first shows that the ToM types

learn the preferences of other roles, so these become common knowledge among

all ToM types in all roles. The second shows how the ToMs might exploit this

knowledge by playing the SPE of the game.

Definition 4: Suppose A4 holds. The history Ht reveals players in role i

strictly prefer z to z1 if and only if, whenever Ht occurs, it becomes common

knowledge among ToMs that zi ¡ z1i.

It is established in the course of the proof of Theorem 1 that any such strict

preference for player i can be revealed by some suitable possible history.

Now, for each i � 1 , . . . , I, let Lit denote the fraction of pairs pz, z1q P Zt �

Zt where Ht reveals i’s favored outcome between tz, z1u.14 To evaluate the

performance of the naive players, let γt be the fraction of games (of those in Qt)

14 For simplicity, assume that players mix whenever indifferent and that this too is common

knowledge among the ToM types. The large population in each player role i means that such

indifference would then be evident to ToM players in other roles. Although such indifference

does arise given that each finite outcome set is chosen with replacement, the probability of such

indifference tends to 0 in the limit.
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that have been played previously at date t. Let T ¥ 4 be the number of terminal

nodes in the fixed game tree.15 We then have the following key theoretical result

that sets the stage for establishing the evolutionary dominance of the SPE-ToM s

over all other players—

Theorem 1: Suppose assumptions A1-A4 all hold. If α   2 , then Lit surely

converges to zero, i � 1 , . . . , I; if α ¡ 2 , however, then Lit converges to 1 in

probability. That is, if the rate of arrival of novelty is sufficiently high, then the

fraction of pairs of outcomes for which i’s preferences have been revealed tends

to 0 ; otherwise this fraction tends to 1 , in probability. Similarly, if α   T , then

γt surely converges to zero; if α ¡ T , then γt converges to 1 in probability. That

is, if the rate of arrival of novelty is sufficiently high, then the fraction of games

that have been played before tends to 0 ; otherwise this fraction tends to 1 , in

probability.16

This is proved in the Appendix. This result says that if α ¡ 2 , and, in

particular, if all types adopt strictly dominant acts, whenever these are available,

where the ToMs have common knowledge that this is true, then all preferences

are revealed in the limit to the ToM s. This is the crucial result here, since

if, at the same time, α   T , all the naive players see new games essentially

always and mix uniformly, in a way that is generally inappropriate, with the

most important exception of games in which they have a dominant action.

An intuitive description of how the ToM types learn preferences is useful.

Consider a ToM type in a particular player role j ¡ 1 . The argument that this

type can obtain the preferences of subsequent player roles proceeds by backwards

induction on these subsequent roles. Players in the last role choose a preferred

action and this is revealed in the choices that j ¡ 1 sees. A player in role j

also knows that all ToM types in all roles now know this as well. Eventually a

complete picture of player 1 ’s preference can be built up as common knowledge

among all the ToM types. As the induction hypothesis, suppose the preferences

of i � 2 , . . . , 1 for i ¤ j have been established as common knowledge among

the ToM types. We need to show that j can similarly obtain the preferences of

i� 1 . Suppose then that a game is drawn in which player role i� 1 in fact has

a dominant action, a, say, after which i� 2 has a dominant action, after which

15 If the I player roles have A actions each, then T � AI .
16 It is difficult to analyze the case that α � 2 or α � T , but these are non-generic.
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i � 3 has a dominant action, after which... We refer to this as the subgame

starting with i� 1 as being “forward dominance solvable.” Furthermore, there

is another action, a1, say, that i � 1 could take, after which again i � 2 has a

dominant action, after which... Player j knows the situation faced by i�2 , ..., 1 .

Since, in fact, players in role i � 1 have a dominant action, all types take this.

Player j can see that all i � 1 ’s have made the same choice, so that the ToMs

there who made this choice must then prefer the outcome induced by a to the

outcome induced by a1. Eventually, ToM j ¥ i can build up a complete picture

of the preferences of the role i� 1 .

This description of learning shows how the common knowledge assumptions

concerning the ToM types can be stripped to their bare revealed preference

essentials. It is unimportant, that is, what or whether the ToM types think, in

any literal sense. All that matters is that it is as if the ToMs in roles i, ..., I add

to their knowledge of role i � 1 ’s preferences in the circumstances considered

above. Once a ToM type in role i, for example, has experienced all of role i� 1

binary choices being put to the test like this, given that this is already true for

roles i � 2 , ..., 1 , this role i ToM type can map the preferences for subsequent

players to an action.

All that remains then, to complete the argument, is to show that the ToM

types will do better than the naive types by exploiting their knowledge of

all other players’ preferences, while the naive types are overwhelmed by novel

games. This will be true in a variety of circumstances; for simplicity, we focus

on assumptions that yield the SPE.17

For simplicity, we impose the following restriction on the alternative ToM

types—

A5: Every ToM alternative to the SPE-ToM differs from the SPE-ToM at every

reached decision node in a set of games that arises with positive probability

under the distribution F .

We now have the main conceptual result—

Theorem 2: Suppose assumptions A1-A4 and A5 all hold. Suppose that there

are a finite number of types—naive and ToM, one of which is the SPE-ToM. If

17 This SPE is unique with probability that converges to 1 .
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α P p2 , T q, then the proportion of SPE-ToM in role i, Rit, say, tends to 1 in

probability, i � 2 , ..., I.

The proof of this is also relegated to the appendix.

We focus here on the case that α P p2 , T q. If α ¡ T , so the rate of introduction

of novelty is slow, the relative performance of the two types depends on the

detailed long run behavior of the naive players. If the naive players play a

Bayesian rational strategy the second time they encounter a given game, they

would tie the ToM s. There are less stringent conditions under which this would

remain true. It is, in any case, not intuitively surprising that a clear advantage to

ToM relies upon there being at least a minimum rate of introduction of novelty.

In the case that α   2 , the ToM players are overwhelmed with novelty, as are

the naive players. The outcome then hinges on the short run behavior of the

various types. As long as the naive players are not given a more sophisticated

short run strategy than the ToM s, the naive types can, at best, match the

ToM s. For example, if the naive types mix uniformly over all their choices in

any new game, and the ToM s do this whenever they do not know subsequent

players’ preferences, the naive types cannot beat the ToM s.

We close this subsection with a number of additional remarks.

1) The key issue here is how ToM deals with novelty—the arrival of new

outcomes—rather than with complexity—the unbounded growth of the outcome

set. Indeed, the model could be recast to display this as follows. Suppose that a

randomly chosen outcome is dropped whenever a new outcome is added, so the

size of the outcome set is fixed, despite such updating events. There will then

be a critical value such that, if the interval between successive updating events

is less than this critical value, the naive types will be mechanically unable to

keep up with the flow of new games. There will also be an analogous but lower

critical value for the ToM types. If the fixed interval between updating events

is chosen to lie between these two critical values, the naive types will usually

be faced with novel games; the ToM types will do better, with a stochastic but

usually positive fraction of games in which the choices of role 2 players can all

be predicted. This provides a version of the current results, although one that

is noisier than the current approach.18

18 The need in the current model for the interval between updating events to grow with time is

a reflection of the fact that each new outcome produces a larger number of novel games when

there is already a larger number of outcomes.
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2) It is straightforward to show that the ascendancy of the SPE-ToM type is

robust to the introduction of a sufficiently small fixed cost for all ToM types,

so these results stand in sharp contrast to Stahl (1993), for example. It is not

unreasonable that there should be a higher fixed cost of ToM, since, for example,

it might require the maintenance of a more complex brain. However, this is not

the only potential source of cost, and in fact, the memory demands of the naive

types here are certainly greater than the memory demands of ToM. The naive

types need to remember each game; the ToMs need only remember preferences

over each pairwise choice for opponents, and if memory is costly then these costs

would be lower for the ToMs in any case. In this sense, consideration of all costs

might well reinforce the advantage of the ToM s.

3) Suppose, hypothetically, that the naive types have all been eliminated.

The eventual ascendancy of each SPE-ToM type over the other ToM types is

not a matter of strategic dominance but relies on the previous ascendancy of

SPE-ToM types at all subsequent stages. That is, given a particular pattern

of subsequent ToM roles, there may be a ToM that outdoes the SPE-ToM.

It is only once SPE behavior has been established for subsequent players, by

backwards induction, that the SPE choices become optimal.19

4) The ascendancy of SPE-ToM at each stage relies on the assumption that

there is a large population in the corresponding role. Even though a non-SPE

choice might benefit the player role in question since it could advantageously

modify the optimal choice of previous roles, this benefit is analogous to a public

good. That is, the optimal choice by a small measure of players in the role in

question must be sequentially rational.

5) Consideration of a long run equilibrium, as in the above two results, is

simpler analytically than direct consideration of the speed of learning of the

various types. More importantly, it also permits the use of weak restrictions

on the naive and ToM types, as is desirable in this evolutionary context. As a

related matter, learning by the ToM types relies on rather improbable events

and so seems likely to be slow. That is, it might seem that this method of proof

would produce weaker results than actually hold. However, the current method

19 This is perhaps analogous to the difficulty that the Connecticut Yankee has at King Arthur’s

Court, according to Mark Twain. That is, to his consternation, the choice made by Twain’s

hero often fails to be optimal because the choice by his opponents is non-optimal.
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suffices to show that complete learning by the ToMs occurs whenever α ¡ 2 .

Since it is mechanically impossible to learn others’ preferences when α   2 , a

more sophisticated method of proof cannot significantly improve the result.

6) Our results show how an increase in the rate of introduction of novelty

might precipitate a transition from a regime in which there is no advantage to

theory of mind to one in which a clear such advantage is evident. This is con-

sistent with theory and evidence from other disciplines concerning the evolution

of intelligence. For example, it is argued that the increase in human intelli-

gence was in part due to the increasing novelty of the savannah environment

into which they were thrust after we exited our previous arboreal niche. (For a

discussion of the intense demands of a terrestrial hunter-gatherer lifestyle, see,

for example, Robson and Kaplan, 2003.)

2.4. Related Theoretical Literature.

We outline here a few related theoretical papers in economics. The most

abstract and general perspective on theory of mind involves a hierarchy of pref-

erences, beliefs about others’ preferences, beliefs about others’ beliefs about

beliefs about preferences, and so on. (Robalino and Robson, 2012, provide a

summary of this approach.) Harsanyi (1967/68) provides the classic solution

that short circuits the full generality of the hierarchical description.

A strand of literature is concerned to model individuals’ beliefs in a more re-

alistic fashion than does the general abstract approach. The first paper in this

strand is Stahl (1993) who considers a hierarchy of more and more sophisticated

strategies analogous to iterated rationalizability. A smartn player understands

that no smartn�1 player would use a strategy that is not pn � 1 q-level ratio-

nalizable. A key aim of Stahl is to examine the evolution of intelligence in this

framework. He obtains negative results—the smart0 players who are right in

their choice of strategy cannot be driven out by smarter players in a wide variety

of plausible circumstances. Mohlin (2012) provides a recent substantial gener-

alization of the closely related level-k approach that allows for multiple games,

learning, and partial observability of type. Nevertheless, it remains true that

lower types coexist with higher types in the long-run. This is not to deny that

the level-k approach might work well in fitting observations. For example, Craw-

ford and Iriberri (2007) provide an explanation for anomalies in private-value

auctions based on this approach.
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Our model fits only loosely in this context. Our setup sidesteps nontriv-

ial higher order beliefs by making revelation of preferences common knowledge

among the sophisticated players. A player role that needs to learn the prefer-

ences of a larger number of subsequent player roles then faces a problem only

of greater breadth rather than one of greater depth.20 At the same time, our

approach demonstrates how apparently rather weaker assumptions than com-

mon knowledge of rationality and preferences suffice to generate the full revealed

preference predictions for a game with perfect information. That is, play here

evolves towards subgame perfect equilibrium in each of a sequence of different

games, despite the continual introduction of novelty.

The line that we draw between smarter and less smart players separates the

naive players who learn to play each game separately (as in evolutionary game

theory) and the ToM players who infer others’ preferences from their choices

and eventually use these inferred preferences to choose optimally in novel games.

In contrast to the level-k approach, we obtain a positive result concerning the

evolution of intelligence. We consider a large and growing set of games, but,

more particularly, the reason for the difference is that naive players are con-

strained to use the same strategy in every novel game. There is no type in our

framework that is minimally smart but lucky enough to use the right strategy

in every game. Indeed, the existence of such a type in our framework seems

far-fetched.

There is by now a fairly large literature that examines varieties of, and al-

ternatives to, adaptive learning. Camerer, Ho and Chong (2002), for example,

extend a model of adaptive, experience-weighted learning (EWA) to allow for

best-responding to predictions of others’ behavior, and even for farsighted be-

havior that involves teaching other players. They show this generalized model

outperforms the basic EWA model empirically, a result that is broadly con-

sistent with our experimental findings. Bhatt and Camerer (2005) find neural

correlates of choices, beliefs, and 2nd-order beliefs (what you think that others

think that you will do). These correlates are suggestive of the need to tran-

scend simple adaptive learning. Finally, Knoepfle, Camerer and Wang (2009)

apply eye-tracking technology to infer what individuals pay attention to before

20 Such greater breadth might nevertheless rapidly overwhelm real-world players, as the number

of stages increases; indeed, this is an important question for future research.
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choosing. Since individuals actually examine others’ payoffs carefully, this too

casts doubt on any simple model of adaptive learning. We show experimentally

that people go further, actively seeking to learn others’ payoffs when these are

initially hidden.

3. Experiments on Theory of Mind

3.1. Experimental Design.

We report here the results of experiments that are simplified versions of the

theoretical model. These test the ability of individuals to learn the preferences

of others through repeated interaction and to use that information strategically

to their advantage. The game tree is a two-stage extensive form where each

player has two choices at each decision node.

There are then two player roles, 1 and 2.21 Player roles differ in their position

in the game tree and their (induced) preferences, but all players of a given role

have identical preferences. In each period, each role 1 participant is randomly

and anonymously matched with a single role 2 participant to play a two-stage

extensive form game, as depicted in Figure C1, in Appendix C. We employ this

matching scheme to at least diminish the likelihood of supergame effects. In each

game, role 1 players always move first, choosing one of two intermediate nodes

(displayed in the figure as blue circles), and then based on that decision, the role

2 player chooses a terminal node that determines payoffs for each participant

(displayed in the figure as a pair of boxes).

When making their decisions, participants observe only their own payoff at

each outcome and are originally uninformed of the payoff for the other partic-

ipant.22 Instead, they know only that payoff pairs are consistent over time.

That is, whenever the payoff for role 1 is X, the payoff to role 2 will always be

the same number Y. In Figure C1, which is shown from the perspective of a role

1 participant, his own payoff at each terminal node is shown in the orange box,

21 Here we revert to the usual convention that role 1 moves before role 2.
22 Note that payoff privacy has the added benefit of mitigating the effects of non-standard

preferences on individual choice; since individuals are unaware of exactly how their choices

impact others’ payoffs, altruistic and reciprocal actions, which may depend on the relative effect

on own and other’s payoffs (as in Charness and Rabin, 2002, for example), will be controlled.

Indeed, it has long been known that payoff privacy encourages the achievement of equilibrium

outcomes in market settings (Smith 1982).
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while his counterpart’s payoff is displayed as a “?” in the blue box. Similarly,

when role 2 players make their decisions, they only observe their own payoffs

and see a “?” for their counterpart (see figure C2).

In each period, the payoffs at each terminal node are drawn without replace-

ment randomly from a finite set of V payoff pairs.23 Each element in each pair

of payoffs is unique, guaranteeing a strict preference ordering over outcomes.

This set is fixed in the experiments in contrast to its growth in the theoretical

model. We do not then attempt to study the theoretical long run in the exper-

iments, but content ourselves with observing the rate of learning of opponents’

preferences. Allowing for the strategic equivalence of games in which the two

payoff pairs at a given terminal node are presented in reverse order, there are�
V
2

��
V�2
2

�
{2 strategically distinct games that can be generated from V payoff

pairs, each of which has a unique subgame perfect equilibrium.

Thus, as in the theoretical model, despite their initial ignorance of their coun-

terpart’s preferences, role 1 players can learn about these preferences over time,

by observing how role 2 players respond to various choices presented to them. If

role 1 players correctly learn role 2 players’ preferences, they can increase their

own payoff by choosing the SPE action. On the face of it, role 1 players will

have then developed a theory of a role 2 player’s mind.

This suggests investigating whether role 1 players choose in a manner that is

increasingly consistent with the SPE. Initial pilot sessions revealed two issues

with this strategy: 1) many of the randomly generated games include dominant

strategies for player 1, which are not informative for inferring capacity to learn

the preferences of others, as indeed reflected in the theoretical model, and 2)

more subtly, there is a simple “highest mean” rule of thumb that also often gen-

erates SPE play. Consider a player 1 who is initially uncertain about player 2’s

preferences. From the point of view of player 1, given independence of player 2’s

preferences, player 2 is equally likely to choose each terminal node, given player

1’s choice. The expected payoff maximizing strategy is to choose the intermedi-

ate node at which the average of potential terminal payoffs is highest. Indeed,

23 We sample with replacement in the theoretical model, although this assumption is merely a

minor convenience. We do not allow replacement here to make the most of our experimental

resources of time and money.
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our pilot sessions suggested that many participants followed this strategy, which

was relatively successful.

For these reasons, we used a 3x1 within-subjects experimental design that,

over the course of an experimental session, pares down the game set to exclude

the games in which choice is too simple to be informative. Specifically, each ses-

sion included games drawn from 7 payoff pairs (so there are 105 possible games).

In eighteen of our sessions, payoff possibilities for each participant consisted of

integers between 1 and 7, and in two sessions the set was {1,2,3,4,8,9,10}. This

variation was intended to reduce noise by more strongly discouraging player 2

from choosing a dominated option, but observed player 2 choices in these ses-

sions are comparable to those in other sessions, so we pool the data for analysis

below. Each session lasted for 90 periods in which, in the first 15 periods, the

game set included 15 randomly chosen games from the set of possible games, Q̄,

say. Finally, starting in the 16th period, we eliminate all games in which player

1 has a dominant strategy, and the next 15 periods consist of games randomly

drawn from this subset of Q̄. Finally, starting in the 31st period, we also elimi-

nate all games in which the optimal strategy under the “highest mean” rule of

thumb corresponds to the SPE of the game, and our final 60 periods consist

of randomly drawn games from this smaller subset. Thus, our final 60 peri-

ods make it harder for player 1 to achieve high payoffs, since the only effective

strategy is to learn the preferences of the role 2 players.

Learning by role 1 players here would be disrupted by the presence of any role

2 player who fails to choose his dominant action. For this reason, we considered

automating the role 2 player. However, on reflection, this design choice seems

untenable. In the instructions, we would need to explain that algorithmic players

2 maximize their payoffs in each stage, which would finesse much of the inference

problem faced by player 1—in essence the instructions would be providing a key

part of the theory of mind. It is also conceivable that individuals would behave

differently towards a computer program than they would towards a human agent.

A second potential issue is that foregone payoffs (due to role 1 player’s choice)

may lead to non-myopic behavior by some player 2s. Such behavior involves role

2 players solving a difficult inference problem. A spiteful (or altruistic) player

2, who wanted to punish (or reward) player 1 on the basis of player 2’s foregone

payoffs, first must infer that player 1 has learned player 2’s preferences and then
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infer player 1’s own preferences on the basis of this assumption. Player 2 could

then, given his options, choose the higher or lower of the two payoffs for player 1

as either punishment or reward. However, players 2 chose their dominant action

roughly 90% of the time, which suggests that these sources of error were not a

prominent feature of our experiment.

We relate our results directly to theory of mind as in psychology, as mea-

sured by two short survey instruments. At the conclusion of the experiment,

participants completed the Autism-Spectrum Quotient (AQ) survey designed

by Baron-Cohen et al. (2001), since autism spectrum reflects varying degrees of

inability to “read” others’ minds. This short survey has been shown to corre-

late with clinical diagnoses of autism spectrum disorders, but it is not used for

clinical purposes. The instrument was designed for use on adults of normal intel-

ligence to identify the extent of autism spectrum behaviors in that population.

Participants also completed the Broad Autism Phenotype Questionnaire (BAP)

due to Hurley et al. (2007), which provides a similar measure of autism spec-

trum behavior and is highly correlated with the AQ. With this additional data

we will be able to evaluate how each participant’s ability to perform as player 1

in our experiments correlates with two other well-known ToM metrics.24 Copies

of the questionnaires are available in Appendices D and E.25

We report data from 20 experimental sessions with a total of 174 participants

(87 in each role). Each experimental session consisted of 6, 8 or 10 partici-

pants, recruited from the students of Simon Fraser University between April

and October 2013. Participants entered the lab and were seated at visually

isolated computer terminals where they privately read self-paced instructions.

24 One might be concerned that any differences we observe in behavior that are correlated with

AQ are actually driven by differences in intelligence. Indeed, it is well-known that extreme

autistics tend to have low IQs. Crucially, however, within the normal range of AQ scores

(those surveyed who had not been diagnosed with an autism spectrum disorder), the survey

measure is uncorrelated with intelligence (Baron-Cohen et al., 2001). Our sample consists of

undergraduates none of whom (to our knowledge) are diagnosed with any autism spectrum

disorder. Thus any relationship we observe between AQ and performance is unlikely to be due

to differences in intelligence.
25 In the first wave of these experiments performed in April and June 2013 (76 subjects total),

we conducted the AQ questionnaire with a 5-point Likert scale that allowed for indifference

rather than the standard 4-point scale which requires participants to either agree or disagree

with each statement. The AQ questionnaire is scored by assigning 1 or 0 to each response and

summing. In our data analysis below, we assign indifferent responses a score of 0.5.
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A researcher was available to privately answer any questions about the instruc-

tions. After reading the instructions, if there were no additional questions, the

experiment began. Instructions are available in Appendix B.

Each experimental session took between 90 and 120 minutes. At the con-

clusion of each session, participants were paid privately in cash equal to their

payoffs from two randomly chosen periods. We use this protocol to increase the

salience of each individual decision, thereby inducing participants to treat each

game as payoff-relevant. For each chosen period, the payoff from that period

was multiplied by 2 or 3 (depending on the session) and converted to CAD.

Average salient experimental earnings were $25.00, with a maximum of $42.00

and a minimum of $6.00. In addition to their earnings from the two randomly

chosen periods, participants also received $7 for arriving to the experiment on

time. Upon receiving payment, participants were dismissed.

3.2. Experimental Results.

Since the decision problem is trivial for player 2, our analysis focuses en-

tirely on decisions by player 1. We focus on the probability with which player 1

chooses an action consistent with the SPE of the game. For a fixed game, and

with repeated play with fixed matching and private information about individual

payoffs, pairs frequently converge to non-cooperative equilibrium outcomes over

time (McCabe et al., 1998).26 This is not surprising since, in their environment

an individual merely need learn her counterpart’s preferences over two pairwise

comparisons. However, since these experiments employ static repetition of the

same game, the data do not clearly distinguish theory of mind from reinforce-

ment learning. Our experiment is the first (that we know of) to test theory of

mind capacity in a dynamic setting in which inferences drawn from the play

of one game may be employed to predict play in novel, future games. In this

sense our setting is more strategically complex than those previously studied,

and hence we are able to both distinguish ToM from reinforcement learning and

observe heterogeneity in ToM capabilities, which we can exploit in our data

analysis.

First, we describe overall learning trends, and we show that individuals’ per-

formance as players 1 depends on how much information they have acquired

26 See also Fouraker and Siegel (1963) and Oechssler and Schipper (2003).
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about the preferences of players 2. This suggests that our players 1 exhibit ToM

in the sense of the theoretical model. Finally, we compare our measure of ToM

to measures from psychology and show that the learning speed of players 1 is

significantly correlated with survey responses, suggesting that our theoretical

concept of ToM corresponds, at least to some extent, with theory of mind as

understood by psychologists.

3.2.1. Learning Others’ Preferences.

Figure 2 displays a time series of the probability that player 1 chose an action

consistent with knowledge of player 2’s preferences (i.e. consistent with SPE )

over the 90 periods of the experiment. After 15 periods, the game set no longer

included instances where player 1 had a dominant strategy. After 30 periods,

the game set no longer included instances where player 1 would choose correctly

by following the “highest mean” rule of thumb. At period 31, when subjects

enter the NoDominant/NoHeuristic treatment, there is a significant downtick in

player 1’s performance, but afterwards there is a notable upward trend in the

probability of player 1 choosing optimally.27 Despite the fact that individuals

tend to learn player 2’s preferences over time on average, we observe substantial

heterogeneity in rates of learning, which we exploit in the next section.

To provide statistical support for these observations, Table 1 reports logistic

regressions where the dependent variable takes a value of 1 if player 1 chooses

an action consistent with the SPE of the game and 0 otherwise. We include

treatment dummies for periods 1-15 and periods 16-30 to control for the game

set. To identify the impact of feedback quality from player 2 choices on the

likelihood of SPE choices, column (2) also includes two variables that control

for the proportion of dominant choices made by players 2 in previous periods.

Specifically, let Wi,t be an indicator variable that takes a value of 1 when player

i’s partner chose the dominant action in the randomly chosen game qt. Then

we compute the lagged proportion of dominant choices observed by player i as
°t�1
s�1 Wis

t�1 . Observing dominant choices by all players 2 is also informative, so

we compute a second measure for each period of each session that measures the

27 Table F1 in Appendix F also reports summary statistics for each experimental session. Figure

F1 displays a histogram of the individual rates of SPE consistent choices over all informative

games—those in which the rule of thumb did not lead to SPE-consistent choice.
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Figure 2: Time Series of Learning Opponent’s Preferences.

lagged proportion of dominant choices made by all players 2. To test for naive

reinforcement learning, as in the theoretical model, column (3) also includes a

variable that counts the number of times participants have played the randomly

chosen game at time t in the past. Finally to test for ToM learning, as in the

model, column (4) includes two additional variables that measure the amount

of information player 1 has at a given time about player 2’s preferences. Specif-

ically, let qt be a feasible subgame in period t and Ipqtq be an indicator function

that takes a value of 1 if any player 2 is observed making a choice in that subgame

in period t (or in the mirror image subgame).28 In a given period, there are two

feasible subgames q1t and q2t , say. We then measure the previous exposure to

player 2’s preferences in game qt by computing: mint
°t�1
s�1 Ipq

1
s q,
°t�1
s�1 Ipq

2
s qu.

This provides a rough measure of what player 1’s should know about player

2’s preferences. It is a function of the total number of times that player 2 has

chosen between each of the two relevant outcome pairs. These two totals are

then aggregated using the function min for simplicity. As with the variables we

introduced in column (2), we also construct an analogous measure that includes

28 Recall that players 1 receive aggregated information about the choices of all players 1 and 2

in their session at the end of each period. See Figure C3 in the appendix.
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only those choices made by the person with whom player 1 was paired. We also

include both session and individual fixed effects.

P1 Chose SPE (1) (2) (3) (4)

Period 0.009��� 0.009��� 0.009��� 0.002
(0.002) (0.002) (0.002) (0.003)

No Dominant Options 0.811��� 0.808��� 0.805��� 0.842���

(0.096) (0.096) (0.098) (0.098)
All Treatments 1.415��� 1.430��� 1.425��� 1.444���

(0.119) (0.120) (0.124) (0.124)
Cumulative Fraction My Partner Chose Dominantt�1 1.226��� 1.226��� 1.237���

(0.440) (0.440) (0.441)
Cumulative Fraction All P2s Chose Dominantt�1 -0.265 -0.264 -0.187

(0.819) (0.819) (0.822)
# of Times Played Previously 0.009 0.013

(0.051) (0.051)
# of Previous Choices Observed My Partner -0.010

(0.022)
# of Previous Choices Observed All P2s 0.080���

(0.019)
Constant -0.497�� -1.293� -1.286� -1.329��

(0.241) (0.660) (0.661) (0.663)

Observations 7830 7743 7743 7743
Session Fixed Effects Y Y Y Y
Individual Fixed Effects Y Y Y Y

Standard errors in parentheses.
* p   0 .10 , ** p   0 .05 , *** p   0 .01

Table 1: Logistic Regression Analysis of Learning.

The positive and significant estimated coefficient on Period in column (1)

indicates that participants are increasingly likely to choose optimally over time.

This is consistent with the evidence in Figure 2. In column (2), when we include

two variables measuring the fraction of previous dominant choices by players 2,

we find a significant effect only of dominant choices made by partnered player

2s, but not by all players 2. Player 1s who have observed more a greater share

of dominant actions by their partners are more likely to choose optimally in

later periods.29 Column (3) tests for naive reinforcement learning as in the

theoretical model. We find no evidence of a significant effect of repetition of the

29 If player 1s were Bayesian rational, they would treat the observations on all player 2’s as

equally informative. It is plausible psychologically, however, that they pay particular attention

to their partnered player 2, especially since this partner’s behavior affects the current payoff
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same game on the probability of choosing correctly. This is driven in part by

the fact that our games were drawn from a relatively large set, which reduces

the potential for repetition. Finally, column (4) includes our measures of the

amount of information players 1 had about the preferences of player 2. A highly

significant and positive coefficient on the variable measuring the information

that could be gleaned from all previous choices by other players 2 implies that

players 1 improve their performance by applying what they have learned about

the preferences of players 2 in the past. That is, they exhibit ToM in the sense

of our model. In contrast to our findings from column (2), we find that the

total previous number of choices made by all players 2 is a better determinant

of learning than those made by their partner, as would be Bayesian rational.

Importantly, when we include these variables, the coefficient on Period is no

longer statistically significant, suggesting that the significant estimated trend

in columns (1) - (3) was actually capturing the effects of ToM. Thus, even in

this complex setting, individuals are able to learn the preferences of others. We

summarize these observations below:

Finding 1: On average, there is a significant increase in understanding of

others’ preferences over time, despite individual variation.

Finding 2: The increase is driven by observation of player 2’s preferences

(ToM ) rather than naive reinforcement learning, as is consistent with the theo-

retical results.

3.2.2. Comparing Measures of ToM.

Table 1 provides evidence that increases in the rate of SPE choices result from

ToM. However, our data reveal clear heterogeneity across individuals. Thus, we

exploit this heterogeneity to ask whether our measure of ToM correlates with

previous survey measures of theory of mind from psychology. Specifically, we

examine correlations between subjects’ AQ and BAP scores and the rate at

which players learn the preferences of others.

We estimate learning rates separately for each player 1 with logistic regressions

where the dependent variable takes a value of 1 when the player chose a node

for player 1. Indeed, this finding is consistent with evidence that individuals overweight private

information; see, for example, Goeree et al., (2007).
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consistent with SPE and 0 otherwise, and the independent variables are our

measure of the information available about player 2’s preferences from previous

choices (as described above), the lagged proportion of dominant choices made by

their partners, and a constant term. The β coefficient on the first independent

variable provides an estimate of each individual’s rate of learning.30 In both

computations, we restrict attention only to choices that are informative for

inferences about ToM by excluding games with dominant strategies for players

1 and games in which the “highest mean” heuristic corresponds to the SPE.31

We then compute simple correlation coefficients between estimated learning

rates and measures of theory of mind from the AQ and BAP questionnaires.

Recall that on both instruments, a higher score indicates increased presence of

autism spectrum behaviors. Thus, negative correlations will indicate that our

concept of ToM is analogous to the information in the AQ and BAP surveys,

while the absence of correlation or positive correlations will indicate otherwise.

Learning Rate
BAP -0.22**

BAP Rigid -0.02
BAP Aloof -0.27***
BAP Prag -0.17*

AQ -0.28***
AQ Social -0.28***

AQ Switch -0.14*
AQ Detail 0.02

AQ Commun -0.23**
AQ Imagin -0.14*

��� p   0.01, �� p   0.05, � p   0.1.

Table 2: Correlations between Autism Spectrum Measures and Individ-
ual Learning Rates. BAP and AQ are overall scores from each instrument. Other
variables are individual scores on subscales of each instrument. BAP Rigid � Rigid-
ity, BAP Aloof � Aloofness, BAP Prag � Pragmatic Language Deficit, AQ Social �
Social Skills, AQ Switch � Attention Switching, AQ Detail � Attention to Detail,
AQ Commun � Communication Skills, and AQ Imagin � Imagination.

30 The data reported here exclude one extreme outlier from our 20th session who chose the

SPE -consistent action in 87/90 periods and whose estimated β was more than 12 times greater

(18.64) than the next fastest-learning subject (1.46).
31 Note that this regression equation is derived from the findings from column 4 of Table 1 in

that we include only those independent variables that were statistically significant.
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Table 2 report these simple correlations between measures from our experi-

ment and survey measures of autism spectrum intensity.32 From the table, we

can see that learning rates are significantly negatively correlated with both the

AQ and BAP scores as well as most of the subscales.33 Taken together this

provides solid evidence that our games measure theory of mind as it is con-

ceived by psychologists. Reading through the questionnaires, this correlation

agrees with intuition. For example, consider the finding that our measure of

ToM is highly significantly correlated with the two subscales that emphasize

social skills : AQ Social and BAP Aloof. We highlight these subscales because

they are explicitly designed to measure capacity for and enjoyment of social

interaction, which is particularly reliant on theory of mind. One particularly

telling item on the AQ Social subscale asks individuals how strongly they agree

with the statement:

“I find it difficult to work out people’s intentions.”

This is consistent with our notion of ToM in a strategic setting. We also

observe that learning is correlated with the AQ Commun and AQ Imagin sub-

scales. The latter measures “imagination” by asking respondents to what degree

they enjoy/understand fiction and fictional characters. One question asks about

the ability to impute motives to fictional characters, which suggests some overlap

with the AQ Social subscale.

Interestingly, the one AQ subscale that exhibits a non-negative correlation

(AQ Detail) emphasizes precision in individual habits and attention to detail.

In a strategic setting such as ours, these traits might be expected to partly

counteract the negative effects of other typical theory of mind deficits, perhaps

accounting for the lack of significant correlation.

Importantly, our survey data exhibit scores in the normal range. Thus, dif-

ferences in the strategic aspects of theory of mind vary significantly across in-

dividuals in the normal range of social intelligence.34

32 Figure F2 displays these correlations for the AQ and BAP scores.
33 Following convention, the BAP score is the mean of the three BAP subscale scores, and the

AQ score is the sum of the five AQ subscale scores.
34 Figure F3 in the online appendix displays histograms of our participants’ AQ and BAP scores

over the range of feasible scores.
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Finding 3: Our dynamic measure of ToM based on observed learning is signif-

icantly correlated with survey measures of theory of mind.

4. Conclusions

This paper presents a theoretical model of the evolution of theory of mind.

The model demonstrates the advantages to learning opponents’ behavior in sim-

ple games of perfect information. A departure from standard game theory is to

allow the outcomes used in the game to be randomly selected from a growing

outcome set. We show how sophisticated individuals who recognize agency in

others can build up a picture of others’ preferences while naive players who react

only to the complete game remain in the dark. We impose plausible conditions

under which sophisticated individuals who choose the SPE action will dominate

all other types of individual, sophisticated or naive, in the long run.

We then perform experiments measuring the ability of real-world individuals

to learn the preferences of others in a strategic setting. The experiments im-

plement a simplified version of the theoretical model, using a two-stage game

where each decision node involves two choices. We find 1) evidence of highly

significant learning of opponents’ preferences over time, but not of complete

games, and 2) significant correlations between behavior in these experiments

and responses to two well-known survey instruments measuring theory of mind

from psychology. This validates the use of the term “theory of mind” in the

present context. Indeed, the experiments here raise the interesting possibility

of developing a test for autism that is behavioral rather than purely verbal.

In economics, theory of mind is implicated, in particular, as driving behavior

in social settings involving reciprocity and mutualistic gains from exchange (see,

for example, McCabe et al., 2003, and Izuma et al. 2011). Theory of mind is

crucial here because individuals condition their behavior on others’ beliefs and

intentions, and impute preferences to those others.

We show that the essential capacity to attribute preferences to others is the-

oretically evolutionarily plausible and actually present in the population to a

varying degree. Other social phenomena that assume the presence of theory of

mind then gain firmer footing, and so an indirect contribution of our work is to

set the stage for future research on such phenomena.
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Appendices (for online publication)

A. Proofs of the Theorems

A1-A4 are assumed throughout this appendix.

A.1. Proof of Theorem 1.

The first result here is Lemma 2, which verifies the claims of Theorem 1

regarding cases where either Lit or γt converge to zero.

Lemma 2: Each of the following is true.

i) Suppose α P r0 , 2 q. Then Lit ÝÑ 0 surely for each player role i � 1 , . . . , I.

ii) Suppose the extensive form has T terminal nodes. If α P r0 , T q, then

γt ÝÑ 0 surely.

Proof. Clearly Lit ¤ p|Zt|�t �2T q{|Zt|
2 everywhere, since the maximal number

of binary preference orderings that can be revealed for any player at any date

is bounded above by 2T . Similarly, since only one game is played in each

period, γt ¤ t{|Zt|
T surely. Since |Zt| � |Z1 | � k whenever tp|Z1 | � kqαu ¤ t  

tp|Z1 | � k � 1 qαu, it follows that t   p|Zt| � 1 qα . Hence,

Lit   1 {|Zt| � 2T � r|Zt| � 1 sα{|Zt|
2 and γt   r|Zt| � 1 sα{|Zt|

T .

Surely |Zt| ÝÑ 8. This completes the proof as the previous indented expression

then implies that if α   2 , then Lit ÝÑ 0 surely, for instance. �

In order to complete the proof of Theorem 1 it will next be proved that if

α ¡ 2 , then all players’ preferences are revealed in the limit, i.e., Lit ÝÑ 1 , for

each i � 1 , . . . , I. (The proof that γt converges to one when α ¡ T proceeds

along similar lines, and is thus omitted.) First a required notation—

Definition 5: Let the random variable Kit denote the number of pairs of out-

comes pz, z1q P Zt � Zt such that i’s preferences over tzi, z
1
iu have been revealed

to the ToMs along Ht. Let Kit range from zero to |Zt|
2 , the total number of

pairs of outcomes available at date t. Hence Lit � Kit{|Zt|
2 .

Note that, given |Zt| outcomes, there are |Zt|p|Zt| � 1 |q{2 pairs of distinct

outcomes available. This is the actual number of binary choices to be learned

for each i P I. For convenience, however, we define Kit to count all of the |Zt|
2
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possible pairs. This generates a more concise expression for Lit, with |Zt|
2 in

the divisor, rather than |Zt|p|Zt| � 1 |q{2 . It is harmless provided we assume—

as we will throughout—that Kit automatically includes all elements along the

diagonal of Zt�Zt, and that each revelation of a role i preference increases the

count Kit by two (since the mirror image of each pair pz, z1q P Zt �Zt is also in

Zt � Zt).

The desired result is established by induction using the following two re-

sults.

Lemma 3: Suppose α ¡ 2 . Consider the player role i ¥ 1 . In case i ¡ 1

suppose that Ljt converges to one in probability for each j   i. Then, for

each ξ P r0 , 1 s there is a sequence of random variables tθitpξqu, non-increasing

between arrival dates, such that

EpKit�1 |Htq �Kit ¥ rξ � p1 � Lit � θitpξqqs
AI�i ,where 1 � Lit � θitpξq ¥ 0 ,

for all t ¥ 1 . Furthermore, there is a non-random function θipξq ¥ 0 , which

converges to zero as ξ tends to zero, such that P tθitpξq � θipξq ¡ εu ÝÑ 0 as t

tends to infinity, for each ξ P r0 , 1 s and each ε ¡ 0 .

That is, in the limit, the probability of revealing new information about role 1

preferences is small only if the fraction of extant knowledge about 1 preferences,

L1t, is close to one. Similarly for role i ¡ 1 , provided Ljt converges to one for

each j   i ¤ I.35

Lemma 4: Consider the i P I player role. Suppose α ¡ 2 . Suppose further that

for each ξ P r0 , 1 s there is a sequence of random variables tθitpξqu such that

EpKit�1 |Htq �Kit ¥ rξ � p1 � Lit � θitpξqqs
AI�i

for all t ¥ 1 , where each random process tθitpξqu is as is stated in Lemma 3.

Then, Lit converges in probability to one.

Proofs of Lemmas 3 and 4 are given below (in sections A.1.1 and A.1.2,

respectively).

35 Indeed, the probability of revealing new information about i is clearly small whenever 1 �Lit
is small. The converse is not as obviously true. Lemma 3, however, provides an appropriate

bound. It decomposes EpKit�1 |Htq�Kit into a factor of 1�Lit, which accounts for information

yet to be revealed about i preferences, and a residual θitpξq. The residual arises, for example,

from i-type subgames in which i player choice does not reveal information because it is unclear

what i players believe about the remaining players’ choices.
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To see now that Lemmas 3 and 4 deliver the desired result proceed by induc-

tion. Recall the manner in which the player roles here are enumerated. The

I players move first, then the I � 1 role players, and so on, with the 1 role

players moving last. Suppose α ¡ 2 . Fix an i ¡ 1 , and suppose Ljt ÝÑ 1 in

probability, for each j   i. Lemmas 3 and 4 together imply that Lit ÝÑ 1 . The

result then follows by reapplying the same two lemmas in the case i � 1 to give

that L1t converges to one in probability.

A.1.1. Proof of Lemma 3.

The proof here is given for the cases in which i ¡ 1 . The proof of the result

for i � 1 follows with minor adjustments to the notation used here and will

thus be omitted.

Fix a player role i ¡ 1 . In establishing Lemma 3 we will keep track of

some of the forward dominance-solvable i player subgames. Recall that each

player role i subgame shares the same underlying tree, one in which i has A

moves at his information set, i� 1 has A moves at each of his information sets,

and so on. With that in mind, fix two end-nodes of this i role subtree and

consider subgames in which particular outcomes are available at these nodes. In

particular, enumerate the terminal nodes of the i subtree as follows. Fix distinct

actions a1 , a2 P A. Name “one” an end-node reachable after i chooses a1 , and

label “two” one of the end-nodes reachable after i chooses a2 . Enumerate the

remaining end-nodes “3 ” through “Ai” in some arbitrary way. This enumeration

of the terminal nodes of the i role subtree will be implicit throughout this section.

Definition 6: Let Qipz, z
1q be the set of i player subgames, in the full space

of i role subgames ZAi , with outcome z at end-node “one”, and z1 at end-node

“two” that satisfy additionally the following. For each game in Qipz, z
1q the

i� 1 player subgames following i’s choice of a1 and a2 are forward dominance-

solvable (uniquely) resulting in z, and z1, respectively, and moreover one of the

actions a1 , a2 is uniquely dominant for the i players themselves. 36

Definition 7: Let Qit denote all the i player subgames possible at date t,37

and denote by Q�

it � Qit the subgames for which all the relevant 1 , . . . , i � 1

player preferences have been revealed along Ht.

36 In proving Lemma 3 for i � 1 , define Q1pz, z
1q as the 1 player subgames with z available at

a1 and z1 at a2 , with player 1’s are not indifferent between z and z1.
37 Recall that Qit can be identified with the Ai times product of Zt.
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Definition 8: Let Nit denote the pairs of outcomes pz, z1q available in period

t such that i’s favored outcome among z and z1 has not been revealed along Ht.

The following describes events that are sure to deliver revelations about i

player preferences. Suppose a subgame q P Qipz, z
1q X Q�

it is reached where

pz, z1q P Nit. All ToMs will then make the same prediction regarding the out-

comes obtained in the subgames of q after i players choose either a1 or a2 . Every

ToM knows this, knows that every ToM knows, and so on. Suppose, for the

sake of argument, that zi ¡ z1i. By A4 every i player reaching q will there choose

a1 . ToM players will then infer that zi ¡ z1i, since if it were the case that zi ¤ z1i,

a positive fraction of the ToMs in role i would have chosen some a � a1 rather

than a1 .

By the above discussion it follows that the fraction of i subgames, among

those in Qit, at which i players are sure to reveal new information about their

preferences is bounded below by
°
Nit |Qipz, z

1q XQ�

it|{|Qit|. The set of games

at date t is just the T -times product of Zt, and each game is drawn uniformly

from this set. The empirical distribution over games realized at date t can then

be replicated by drawing AI�i i player subgames uniformly and independently

from Qit. Therefore,

EpKit�1 �Kit |Htq ¥

�
� ¸
pz,z1qPNit

��Qipz, z1q XQ�

it

��
|Qit|

�


AI�i

. (1)

The bound is conservative, obtained by considering the case in which i players

reveal new information at every i information set.

Consider now some additional required notation.

Definition 9: Let Z, and Zt denote the rAi�2 s-times products of Z, and Zt,

respectively. Write Etpz, z
1q � |Qipz, z

1q XQit|{|Zt|. This is the date t probabil-

ity of drawing from Qit an i role subgame that belongs to Qipz, z
1q, conditional

on the subgame having z at end-node “one” and z1 at end-node “two”. Denote

by Epz, z1q the probability of drawing from ZA
i

—according to the distribution

fA
i

—an i player subgame that belongs to Qipz, z
1q, conditional on the subgame

having z at “one” and z1 at “two”.

The following result will be needed.
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Claim 1: Etpz, z
1q almost surely converges uniformly to Epz, z1q. That is, al-

most surely suppz,z1qPZ�Z |Etpz, z
1q � Epz, z1q| ÝÑ 0 .

Proof. Theorem 3.1 from Potscher and Prucha (1994) states that if Et almost

surely converges pointwise to E on Z�Z, if E is continuous, and if the sequence

Et is almost surely asymptotically uniformly equicontinuous on Z �Z, then Et

almost surely converges uniformly to E on Z�Z. The equicontinuity condition

(from Potscher and Prucha 1994) is

lim sup
tÝÑ8

sup
pz,z1qPZ�Z

#
sup

px,x1qPBpz,z1,ηq
|Etpz, z

1q � Etpx, x
1q|

+
ÝÑ 0 a.s. as η ÝÑ 0 ,

where Bpz, z1, ηq denotes the open ball with radius η centered at pz, z1q. Lemma

1 delivers the required pointwise convergence of Etpz, z
1q to Epz, z1q. A2 gives

that Epz, z1q is continuous. The proof is then completed by verifying the above

equicontinuity condition.

Let Npz, z1, ηq denote the set of outcome profiles x P Z such that for every

coordinate, y � py1 , . . . , yiq, of x, and for each j ¤ i, |yj�zj| ¡ η and |yj�z
1
j| ¡ η.

Consider px, x1q P Bpz, z1, ηq and x P Npz, z1, ηq. For each coordinate y of x, role

j ¤ i prefers zj to yj if and only if he prefers xj to yj (similarly for the z1 and x1

outcomes). It follows that the subgame pz, z1,xq satisfies the forward dominance-

solvability conditions characterizing subgames in Qipz, z
1q if and only if px, x1,xq

satisfies the dominance-solvability conditions of subgames in Qipx, x
1q. (We

use the fact that every subgame in Qipz, z
1q can be uniquely identified with a

profile of payoffs, pz, z1,xq, for some x P Z.) It then follows that |Qipz, z
1q X

Npz, z1, ηq| � |Qipx, x
1q X Npz, z1, ηq| whenever px, x1q P Bpz, z1, ηq. Now recall

that Etpz, z
1q � |Qipz, z

1q XQit|{|Zt|. Then, writing Qipz, z
1q in this expression

as the union of the disjoint sets Qipz, z
1qXNpz, z1, ηq and Qipz, z

1q zNpz, z1, ηq38

yields the following bound for each pz, z1q P Z � Z, and η ¡ 0 ,

sup
px,x1qPBpz,z1,ηq

|Etpz, z
1q � Etpx, x

1q| ¤ |Zt zNpz, z
1, ηq|{|Zt|.

Lemma 1 and A2 deliver the desired equicontinuity since together they imply

that |Zt zNpz, z
1, ηq|{|Zt| almost surely converges to zero as η tends to zero,

uniformly in pz, z1q. �

38 and, for Etpx, x
1q, expressing Qipx, x

1q as the union of Qipx, x
1q X Npz, z1, ηq and

Qipx, x
1q zNpz, z1, ηq)
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Now recall the lower bound obtained in (1)—in particular the summand in

the parentheses there. Keeping in mind the terms defined in Definition 7 we

obtain,

��Qipz, z1q XQ�

it

��
|Zt|

�

|Qipz, z
1q XQit|

|Zt|
�
|Qipz, z

1q XQit zQ
�

it|

|Zt|
� Epz, z1q � φtpz, z

1q,

(2)

where we have defined,

φtpz, z
1q � Epz, z1q � Etpz, z

1q �

��Qipz, z1q XQit zQ
�

it

��
|Zt|

.

Write Spξq � tpz, z1q P Z � Z : Epz, z1q   ξu . Equation (2) gives—we use

here the fact that |Qit| � |Zt|
2 � |Zt|, and also that Epz, z1q � φtpz, z

1q ¥ 0 —

¸
pz,z1qPNit

��Qipz, z1q XQ�

it

��
|Qit|

¥
1

|Zt|2

¸
Nit zSpξq

�
Epz, z1q � φtpz, z

1q
�

¥ ξ �

�
� |Nit zSpξq|

|Zt|2
�

1

ξ
�
¸

Nit zSpξq

φtpz, z
1q

|Zt|2

�



� ξ �

�
� |Nit|

|Zt|2
�
|Nit X Spξq|

|Zt|2
�

1

ξ
�
¸

Nit zSpξq

φtpz, z
1q

|Zt|2

�

.
(3)

Define θitpξq as in the statement of the result as

θitpξq �
|Nit X Spξq|

|Zt|2
�

1

ξ
�
¸

Nit zSpξq

φtpz, z
1q

|Zt|2
.

Next, observe that |Nit|{|Zt|
2 � 1 � Lit. Going back then to equation (1), and

using (3), delivers

EpKi,t�1 |Htq �Kit ¥ rξ � p1 � Lit � θitpξqqs
AI�i .

Note here that 1 � Lit � θitpξq ¥ 0 as the expression is obtained by summing

the terms Epz, z1q � φtpz, z
1q, which are non-negative, over the set Nit zSpξq.

It remains now to show that θitpξq satisfies the properties given in the state-

ment of the lemma. With that in mind, first observe that Epz, z1q and Etpz, z
1q

are constant in between arrival dates, and that the set Qit zQ
�

it is non-increasing
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between arrival dates. For each pz, z1q, φtpz, z
1q is then non-increasing between

arrival dates. The set Nit is also non-increasing at these dates. It follows then

that θitpξq is non-increasing between arrival dates as required.

Next, observe that if Ljt ÝÑ 1 in probability for each j   i, then Claim 1

implies that θitpξq� |NitXSpξq|{|Zt|
2 converges in probability to 0 .39 Let θipξq

from the statement of the lemma be
³
Spξq fpzqfpz

1qdzdz1. Clearly, θipξq ¥ 0

for each ξ P r0 , 1 s. A2 gives that θipξq converges to zero as ξ tends to zero.

In order to see that P tθitpξq � θipξq ¡ εu tends to zero for each ε ¡ 0 , as

required, note that |NitXSpξq| ¤ | tZt � ZtuXSpξq|, and that Lemma 1 implies

| tZt � Ztu X Spξq|{|Zt|
2 almost surely converges to θipξq.

A.1.2. Proof of Lemma 4.

Fix a player role i P I and assume the hypotheses of Lemma 4. In the

remainder we suppress the i subscripts whenever it is possible to do so without

confusion.

The proof is given in two parts. The first shows that Lt converges in proba-

bility to a random variable L. The second establishes that L equals one a.e. In

order to prove the convergence of Lt we show that when α ¡ 2 these processes

belongs to a class of generalized sub-martingales with the sub-martingale con-

vergence property. In particular, we use the following definition and result in

this connection (Egghe, 1984, Definition VIII.1.3 and Theorem VIII.1.22).

w-submil Convergence: The adapted process pLt, Htq is a weak sub-

martingale in the limit (w-submil) if almost surely, for each η ¡ 0 , there

is a n such that τ ¥ t ¥ n implies P tEpLτ |Htq � Lt ¥ �ηu ¡ 1 � η. If Lt is an

integrable w-submil, then there exists a random variable L such that Lt ÝÑ L

in probability.

Part 1: Lt converges in probability to a random variable L. In view of the

w-submil convergence result, as a first step, we prove that the arrival date sub-

sequence tLtku is a w-submil under the hypotheses of the lemma. Toward that

end, consider consecutive arrival dates t�, τ�, with τ� ¡ t�. By the definition of

39 That is, we have
���
°
Nit zSpξq

φtpz,z
1q

|Zt|2

��� ¤
°
Zt�Zt

|φtpz,z
1q|

|Zt|2
¤

°
Zt�Zt

|Etpz,z
1q�Epz,z1q|
|Zt|2

�

|Qit zQ
�

it|
|Qit|

. The summation on the RHS converges to zero by Claim 1. The second term on

the RHS converges to zero in probability as long as Ljt ÝÑ 1 in probability for each j   i.
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Kt (Definition 5),

Lτ� � Lt� �
1

|Zτ� |2

τ��1̧

t�t�

rKt�1 �Kts �
|Zτ� |

2 � |Zt� |
2

|Zτ� |2
� Lt� . (4)

Then, by the hypotheses of the claim being proved, for each ξ P r0 , 1 s,

τ��1̧

t�t�

EpKt�1 �Kt |Ht�q ¥
τ��1̧

t�t�

rξ � Ep1 � Lt � θitpξq |Ht�qs
AI�i

¡ rτ� � t�s � rξ � Ep1 � Lτ��1 � θit�pξq |Ht�qs
AI�i .

(5)

The first line uses Jensen’s inequality. The second uses the fact that Lt is

non-decreasing between arrival dates and that θitpξq is non-increasing between

arrival dates (see the definition of θitpξq in the statement of Lemma 3).

Combining equations (4) and (5) (after taking the conditional expectation in

(4)) yields

EpLτ� |Ht�q � Lt�   0 ùñ

rξ � Ep1 � Lτ��1 � θit�pξq |Ht�qs
AI�i  

|Zτ� |
2

τ� � t�
�
|Zτ� |

2 � |Zt� |
2

|Zτ� |2
� Lt� .

Solving for EpLτ��1 |Ht�q in the last indented inequality, and then using the

fact that surely EpLτ� |Ht�q ¥ EpLτ��1 |Ht�q � |Zt� |
2{|Zτ� |

2 gives—

EpLτ� |Ht�q � Lt�   0 ùñ

EpLτ� |Ht�q ¡
|Zt� |

2

|Zτ� |2

�
1 � θit�pξq �

1

ξ
�

�
|Zτ� |

2 � |Zt� |
2

τ� � t�


 1
AI�i

�
� 1 � At�pξq.

(6)

Note here that we have implicitly defined the new variable Atpξq.

In the remainder hatted variables will be used to denote variables sampled at

arrival dates, e.g., L̂k � Ltk .

We next use (6) to establish the w-submil condition: For each η ¡ 0 there

exists an N such that for all arrival dates tm, tn, such that n ¡ m ¥ N ,

P tEpL̂n | Ĥmq � L̂m ¥ �ηu ¡ 1 � η. (7)
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To that end, suppose EpL̂n | Ĥmq   L̂m for some integers m and n such that

n ¡ m. Since

EpL̂n | Ĥmq � L̂m �
n�1̧

k�m

EpEpL̂k�1 | Ĥkq � L̂k | Ĥmq,

there is at least one k, with m ¤ k   n � 1 , such that EpL̂k�1 | Ĥmq  

EpL̂k | Ĥmq. Let r be the largest integer in tm, , . . . , n� 1 u for which this is

the case, i.e., EpL̂k�1 | Ĥmq ¥ EpL̂k | Ĥmq, for each k � r�1 , . . . , n�1 . Accord-

ing to (6), EpL̂r�1 | Ĥmq ¡ 1 � EpÂrpξq | Ĥmq. Hence, since Lt is everywhere

bounded above by one it follows that

EpL̂n | Ĥmq � L̂m ¡ �EpÂrpξq | Ĥmq.

Recall now the hypothesis, P tθitpξq � θipξq ¡ εu ÝÑ 0 , for all ξ P r0 , 1 s and

ε ¡ 0 , where θipξq is as in the statement of the lemma. Consider this in the

following form: P t�θitpξq ¥ �θipξq � εu ÝÑ 1 , for each ε ¡ 0 . We can replace

the random variable θitpξq with Atpξq in this limit since θitpξq�Atpξq converges

surely to zero for each ξ P r0 , 1 s. To see this (referring to (6) where Atpξq is

defined) first note that |Zt� |
2{|Zτ� |

2 converges surely to one. Then, recall that

t� and τ� are consecutive arrival dates, and observe that

|Ẑk�1 |
2 � |Ẑk|

2

tk�1 � tk
�

p|Z1 | � k � 1 q2 � p|Z1 | � kq2

tp|Z1 | � k � 1 qαu� tp|Z1 | � kqαu
,

which converges surely to zero as k tends to infinity whenever α ¡ 2 .

Now, given that P t�Atpξq ¥ �θipξq � εu ÝÑ 1 , for each ε ¡ 0 , we can

choose an arrival Npξq large enough so that

P t�EpÂkpξq | Ĥmq ¥ �2 � θipξqu ¡ 1 � 2 � θipξq

for all k and m with k ¡ m ¥ Npξq, and thus for k ¡ m ¥ Npξq,

P tEpL̂n | Ĥmq � L̂m ¡ �2 � θipξqu ¡ 1 � 2 � θipξq.

By assumption, θipξq converges to zero as ξ approaches zero. Hence (7) can be

obtained by choosing ξ in the previous indented equation so that θipξq   η{2

establishing that the sequence tL̂ku is a w-submil.

Having shown that tL̂ku is a w-submil, it remains to verify that tLtu is also

a w-submil. With that in mind, consider any dates t and τ where t   τ. Let t�
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denote the first arrival date after t and let τ� denote the greatest arrival date

less than or equal to τ. Then, Lt ¤ Lt� � r|Zt| � 1 s2{|Zt|
2 everywhere, and thus

Lτ � Lt ¥ Lτ� � Lt� � r|Zt| � 1 s2{|Zt|
2

everywhere. The w-submil convergence result implies Lτ� � Lt� ÝÑ 0 in prob-

ability. Furthermore, r|Zt| � 1 s2{|Zt|
2 ÝÑ 1 surely. Hence the right-hand side

of the last indented expression converges to zero in probability establishing that

tLtu is a w-submil.

Part 2: Lt converges to one in probability. Let L denote the limit, in prob-

ability, of Lt. By the hypotheses of Lemma 4 (defining here K0 � 0 , and

invoking Jensen’s inequality),

EpLtq �
τ�1̧

t�0

E pKt�1 �Ktq {|Zτ |
2

¥
ξA

I�i
� τ

|Zτ |2
�

1

τ

τ�1̧

t�1

�E p1 � Lit � θitpξqq
AI�i .

(8)

Recall that τ{|Zτ |
2 ÝÑ 8 whenever α ¡ 2 .40 Since Lt is everywhere bounded by

one, and since 1 �Lit� θitpξq ¥ 0 , equation (8) implies that for each ξ P p0 , 1 s,

lim
τÝÑ8

1

τ
�
τ�1̧

t�1

E p1 � Lit � θitpξqq
AI�i � 0 .

By the hypotheses of the lemma being proved each Ep1�Lit�θitpξqq term can be

made arbitrarily close to Ep1�Litq by choosing ξ ¡ 0 appropriately. But Ep1�

Litq converges to Ep1 � Lq. Thus the limit in the previous indented equation

implies that Ep1 � Lq � 0 , and hence L must equal one almost everywhere.

A.2. Proof of Theorem 2.

Recall A2 describing the cdf F on the payoff space rm,M sI and the implied

cdf for games given by G, on the payoff space rm,M sIT .

Definition 10: Let µ denote the measure on games induced by F . In par-

ticular, for each measurable S � Q, µpSq �
³
qPS dGpqq. Let µt denote the

corresponding empirical measure. That is, µtpSq � |S XQt|{|Qt|.

40 Recall that |Zt| � |Z1 | � k whenever tp|Z1 | � kqαu ¤ t   tp|Z1 | � k� 1 qαu therefore t{|Zt|
2 ¥

|Zt|
α{|Zt|

2 .
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We establish the result of Theorem 2 by showing that the ratio of the pop-

ulation of any alternative type to that of the SPE-ToM type tends to zero in

probability.41 If the alternative type is a ToM type that differs from SPE-ToM

only a set of µ measure zero, it should simply be identified with SPE-ToM. It

also follows that µpS̄q ¡ 0 where S̄ is the set of games for which player role

i has no dominant choice at any node.42 However, the set of games for which

player role i has a dominant choice at some but not all nodes also has positive

µ measure. For simplicity, we then rule out the possibility that the alternative

ToM type differs from SPE-ToM with positive probability only on this set and

agrees with it with probability one on S̄.

We recall a key hypothesis of Theorem 2—

A6: For each i ¡ 1 , every alternative i ToM type differs from the SPE-ToM at

every i decision node in a set of games S with positive µ measure.

That is, in the limit, the alternative type will differ from the SPE-ToM on a set

of games that occur with positive probability. What about the naive alternative

types? Any such naive type differs from the SPE-ToM type on S̄ given that

the game is new. That the game is new will be assured with probability that

tends to one, so we effectively assign S � S̄ in this conditional sense.

For the remainder fix a player role i   1 and fix one alternative type to the

SPE-ToM in role i.

Definition 11: Let the random variable Rit be the fraction of the population

in player role i that is SPE-ToM.

The proof of Theorem 2 is by induction on i. It follows from A4 that R1 t � 1 is

satisfied vacuously. The result is then established by proving that if Rjt ÝÑ 1 ,

in probability, j � 1 , ..., i�1 , then Rit converges in probability to one. Assume

then in what follows that Rjt ÝÑ 1 , in probability, j � 1 , ..., i� 1 .

Consider some prerequisites.

Definition 12: The random variable Itpδq P t0 , 1 u is such that Itpδq � 1 if

and only if the game drawn at date t belongs to the set Qδ, where Qδ is the set of

41 Recall there is a finite number of types.
42 This follows since any game with a dominant choice at some node for i can be mapped to a

game for which this is not true by swapping an outcome in the dominant set of outcomes with

an outcome that is not in this set.
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games where the minimum absolute payoff difference for any pair of outcomes,

for any player is greater than δ ¥ 0 .

Definition 13: Define the random variable Dt P t0 , 1 u such that it satisfies

the following. If the alternative is a naive type, then Dt � 1 if and only if

the game drawn at date t is new, and is such that the game has no dominant

strategy at any i decision node. If the alternative is a ToM type, then Dt � 1 if

and only if at date t the alternative type behaves differently from the SPE-ToM

at every i role information set.

The restrictions that define Qδ are measurable, so Qδ itself is measurable. It

is an immediate consequence of Lemma 1 that P tItpδq � 1 |Htu almost surely

converges to µpQδq. Similarly, Lemma 1 implies if the alternative type is a ToM

type, then P tDt � 1 |Htu almost surely converges to µpSq.

Definition 14: The random variable Jtpεq P t0 , 1 u is such that Jtpεq � 1 if

and only if 1) all 1 , . . . , i � 1 player preferences in the game drawn at t have

been revealed to the ToM types; and 2) at each role i�1 decision node that can

be reached by role i, the fraction of resulting play that reaches an SPE outcome

in that subgame is at least 1 � ε.

As a key ingredient in the proof consider the following result.

Claim 2: For each sufficiently small δ ¡ 0 and ε ¡ 0 the following results hold

given that Jtpεq � 1 throughout. i) If the alternative type is a ToM type, given

Itpδq � 1 and Dt � 1 as well, then the ratio of the expected payoff of the

alternative type to that of the SPE-ToM is at most 1 � ε
1�ε

M
m � δ

M . ii) If the

alternative type is naive, given Itpδq � 1 and Dt � 1 as well, then the ratio of

the expected payoff of the alternative type to that of the SPE-ToM is at most

1 � ε
1�ε

M
m �

�
1 � 1

A

�
δ
M . iii) Whenever Itp0 q � 1 , the ratio of the expected

payoff of the alternative type—ToM or naive—to that of the SPE-ToM is at

most 1 � ε
1�ε

M
m .

Proof. Fix a date t. Assume Itp0 q � 1 , since this is required in each of the

three claims. Let zphq then be the unique SPE payoff in the continuation game

defined by the i role information set h, at date t. Let mphq be the measure of

players that reach the i role information set h at date t.

Consider i). Since Jtpεq � 1 , at most a fraction ε of any i player cognitive type

is matched with remaining players that do not behave as in the unique pure SPE.



49

When matched with these non-SPE remaining players, the alternative type’s

expected payoff is at most M . Since Dt � 1 , by assumption, the alternative

type chooses differently from the SPE-ToM at every i information set. The

ratio of the expected payoff of the alternative type to that of the SPE-ToM is

then at most�
p1 � εq

¸
h

mphq pzphq � δq � ε �M

�O
p1 � εq

¸
h

mphqzphq .

Since zphq P rm,M s, i) follows. The proof of ii) relies on a similar argument, the

factor 1 � 1 {A arising from naive mixed choice. To establish iii) observe that

an alternative type cannot do better than the SPE-ToM when matched with

remaining players that act as in the unique SPE—i.e., set δ in the expression

above to zero. �

From this point on, we focus on the case that the alternative type is ToM .

(The detailed argument for a naive alternative is nearly identical.) Consider the

realized one period growth rate of the alternative ToM type relative to that of

the SPE-ToM at date t. In view of Claim 2, this rate is bounded above by

ItpδqJtpεqDt � ln

�
1 �

ε

1 � ε

M

m
�

δ

M




� Itp0 qp1 � ItpδqqJtpεq � ln

�
1 �

ε

1 � ε

M

m




� p1 � Itp0 q � 1 � Jtpεqq � lnpM{mq.

(9)

To see that the indicator functions here exhaust all possible cases, note first

that the first two terms of the expression apply for every case in which Jtpεq � 1 ,

and Itp0 q � 1 , x in the light of Claim 2. Then observe that the last term covers

cases when either Jtpεq � 0 or Itp0 q � 0 . The lnpM{mq factor arising in the

cases not covered by Claim 2 yields an upper bound given that the maximum

ratio of expected offspring for any two types is M{m   8.

By Claim 2, (9) holds for each sufficiently small δ ¡ 0 , and ε ¡ 0 . For the

reminder, fix these numbers so that ε
1�ε

M
m � δ

M   0 .

For any indicator functions A,B, and C, ABC ¥ A�B � C � 2 . Moreover,

Itp0 qJtpεq ¤ 1 . Thus, the quantity expressed in (9) is bounded above by
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∆tpδ, εq � pDt � Jtpεq � 1 q � ln

�
1 �

ε

1 � ε

M

m
�

δ

M




� p1 � Itpδqq � ln

��
1 �

ε

1 � ε

M

m

�N�
1 �

ε

1 � ε

M

m
�

δ

M

� 


� p1 � Itp0 q � 1 � Jtpεqq � lnpM{mq.

(10)

The ratio of the population of the alternative type to that of the SPE-

ToM at date τ is then bounded above by the random variable r0 � rτ , where

ln rτ ¤
°τ
t�1 ∆tpδ, εq. The result is established by showing that

°τ
t�1 ∆tpδ, εq{τ

converges in probability to a negative constant for suitably chosen δ ¡ 0 and

ε ¡ 0 satisfying ε
1�ε

M
m � δ

M   0 .

We rely on the following claims.

Claim 3: Suppose α ¡ 2 . If Rjt ÝÑ 1 in probability, j � 1 , ..., i � 1 , then
1
τ

°τ
t�1 Jtpεq converges in probability to one, for each ε ¡ 0 .

Proof. Fix ε P p0 , 1 s. If α ¡ 2 , then Theorem 1 applies. Under the hypotheses

of the claim Jtpεq ÝÑ 1 in probability. Thus EpJtpεqq tends to one. Then

Ep1τ
°τ
t�1 Jtpεqq ÝÑ 1 . Since Jtpεq ¤ 1 everywhere it follows that 1

τ

°τ
t�1 Jtpεq

converges to one in probability. �

Claim 4: i) 1
τ

°τ
t�1 Itpδq almost surely converges to µpQδq. ii) Assume A6.

Given the alternative is a ToM, then 1
τ

°τ
t�1 Dt almost surely converges to

µpSq ¡ 0 , where S is as described in A6.

Proof. Consider i). Lemma 1 implies EpItpδq|Z8q converges to µpQδq for al-

most every realized outcome set Z8. Hence, 1
τ

°τ
t�1 EpItpδq|Z8q ÝÑ µpQδq

almost surely and for almost every Z8. The random variables pItpδq|Z8q are

independent, and the sequence satisfies Kolmogorov’s criterion. The strong law

of large numbers implies 1
τ

°τ
t�1 rpItpδq|Z8q�EpItpδq|Z8qs ÝÑ 0 , almost surely,

for almost every Z8. Hence 1
τ

°τ
t�1 pItpδq|Z8q ÝÑ µpQδq, almost surely and for

almost every Z8, so that 1
τ

°τ
t�1 Itpδq ÝÑ µpQδq, almost surely. This completes

the proof of i). A similar proof establishes ii).43 �

43 If the alternative is naive, and α   T , then 1
τ

°τ
t�1 Dt converges in probability to µ�, where

µ� is the measure of games where i has no dominant action at any node. The proof is worth

sketching since it diverges from the proof for the ToM alternative. Define the random variable

At such that At � 1 if the game drawn at date t is new, and let At � 0 otherwise. Let Bt
equal one if the game realized at t has no dominant strategy for role i at any i information set;
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Claims 3 and 4 (using also (10) and the fact that µpQδq converges to one as

δ tends to zero) then give that

1

τ

τ̧

t�1

∆tpδ, εq ÝÑ µpSq � ln

�
1 �

ε

1 � ε

M

m
�

δ

M




� p1 � µpQδqq � ln

��
1 �

ε

1 � ε

M

m

�N�
1 �

ε

1 � ε

M

m
�

δ

M

� 

,

(12)

in probability.

We can choose ε ¡ 0 and δ ¡ 0 so that ε
1�ε

M
m � δ

M   0 , and simultaneously

the limiting value in (12) is negative. That is, choose a δ such that µpSq � lnp1 �
δ
M q � p1 � µpQδqq � lnp1 {r1 �

δ
M sq   0 , and then choose a sufficiently small but

positive ε. This completes the proof of Theorem 2 since for such ε and δ, we

have shown ln rτ
τ is bounded above, in the limit, in probability, by a negative

constant. Hence rτ ÝÑ 0 , in probability.

let Bt be one otherwise. For any indicator functions A and B, A� B � 1 ¤ AB ¤ B. Hence,

surely

1

τ

τ̧

t�1

pAt � 1 q �
1

τ

τ̧

t�1

Bt ¤
1

τ

τ̧

t�1

Dt ¤
1

τ

τ̧

t�1

Bt. (11)

EpAtq is just Ep1 � γtq, where γt is the fraction of games played previously among those

available at date t. Whenever α   T , γt surely converges to zero (Theorem 1). Clearly then,

Ep1τ
°τ
t�1 Atq ÝÑ 1 , whenever α   T . Since At is surely bounded above by one, it follows that

1
τ

°τ
t�1 At ÝÑ 1 , in probability, whenever α   T . In light of the above indented equation it

then suffices to show that 1
τ

°τ
t�1 Bt tends to µ�. To see this is in fact the case note first that

Lemma 1 implies that EpBt|Z8q converges to µ� almost surely and for almost every sequence

of realized outcome sets Z8. Then note that the random variables pBt|Z8q are independent,

for each Z8, and that the sequence satisfies Kolmogorov’s criterion. Thus, 1
τ

°τ
t�1 rpBt|Z8q �

EpBt|Z8qs ÝÑ 0 , almost surely and for almost every Z8, so that 1
τ

°τ
t�1 pBt|Z8q ÝÑ µ�, so

1
τ

°τ
t�1 Bt ÝÑ µ�, almost surely.
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B. Experiment Instructions (for online publication)

Page 1

In this experiment you will participate in a series of two person decision problems. The
experiment will last for a number of rounds. Each round you will be randomly paired with
another individual. The joint decisions made by you and the other person will determine how
much money you will earn in that round.

Your earnings will be paid to you in cash at the end of the experiment. We will not tell
anyone else your earnings. We ask that you do not discuss your earnings with anyone else.

If you have a question at any time, please raise your hand.

Page 2

You will see a diagram similar to one on your screen at the beginning of the experiment.
You and another person will participate in a decision problem shown in the diagram.

One of you will be Person 1 (orange). The other person will be Person 2 (blue). In the
upper left corner, you will see whether you are Person 1 or Person 2.

You will be either a Person 1 or a Person 2 for the entire experiment.

Page 3

Notice the four pairs of squares with numbers in them; each pair consists of two earnings
boxes. The earnings boxes show the different earnings you and the other person will make,
denoted in Experimental Dollars. There are two numbers, Person 1 will earn what is in the
orange box, and Person 2 will earn what is in the blue box if that decision is reached.

In this experiment, you can only see the earnings in your own box. That is, if you are
Person 1 you will only see the earnings in the orange boxes, and if you are Person 2 you will
only see the earnings in the blue boxes. Both boxes will be visible, but the number in the
other person’s box will be replaced with a “?”.

However, for each amount that you earn, the amount the other person earns is fixed. In
other words, for each amount that Person 1 sees, there is a corresponding, unique amount
that will always be shown to Person 2.

For example, suppose Person 1 sees an earnings box containing “12” in round 1. In the
same pair, suppose Person 2 sees “7”. Then, at any later round, anytime Person 1 sees “12”,
Person 2 will see “7”.

Together, you and the other person will choose a path through the diagram to an earnings
box. We will describe how you make choices next.

Page 4
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A node, displayed as a circle and identified by a letter, is a point at which a person makes
a decision. Notice that the nodes are color coded to indicate whether Person 1 or Person 2
will be making that decision. You will always have two options.

If you are you Person 1 you will always choose either “Right” or “Down”, which will select
a node at which Person 2 will make a decision.

If you are Person 2 you will also choose either “Right” or “Down” which will select a pair
of earnings boxes for you and Person 1.

Once a pair of earnings boxes is chosen, the round ends, and each of you will be able to
review the decisions made in that round.

Page 5

In each round all pairs will choose a path through the same set of nodes and earnings boxes.
This is important because at the end of each round, in addition to your own outcome, you
will be able to see how many pairs ended up at each other possible outcome.

While you review your own results from a round, a miniature figure showing all possible
paths through nodes and to earnings boxes will be displayed on the right hand side of the
screen.

The figure will show how many pairs chose a path to each set of earnings boxes.

The Payoff History table will update to display your payoff from the current period.

Page 6

We have provided you with a pencil and a piece of paper on which you may write down
any information you deem relevant for your decisions. At the end of the experiment, please
return the paper and pencil to the experimenter.

At the end of the experiment, we will randomly choose 2 rounds for payment, and your
earnings from those rounds will be summed and converted to $CAD at a rate of 1 Experimental
Dollar = $2.

Important points:

You will be either a Person 1 or a Person 2 for the entire experiment.

Each round you will be randomly paired with another person for that round.

Person 1 always makes the first decision in a round.

Person 1’s payoff is in the orange earnings box and Person 2’s in the blue earnings box.

Each person will only be able to see the numbers in their own earnings box.

Earnings always come in unique pairs so that for each amount observed by Person 1,
the number observed by Person 2 will be fixed.

In a given round, all pairs will choose a path through the same set of nodes and earnings
boxes.
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After each round you will be able to see how many pairs ended up at each outcome.

We will choose 2 randomly selected periods for payment at the end of the experiment.

Any questions?
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C. Screenshots (for online publication)

Figure C1: Screenshot for Player 1. This figure shows the screen as player 1
sees it prior to submitting his choice of action. The yellow highlighted node indicates
that player 1 has provisionally chosen the corresponding action, but the decision is not
final until the submit button is clicked. While waiting for player 1 to choose, player 2
sees the same screen except that she is unable to make a decision, provisional choices
by player 1 are not observable, and the “Submit” button is invisible.
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Figure C2: Screenshot for Player 2. This figure shows the screen as player 2
sees it after player 1 has chosen an action. Here, player 1 chose to move down, so the
upper right portion of the game tree is no longer visible. While player 2 is making a
decision, player 1 sees an identical screen except that he is unable to make a decision
and the “Submit” button is invisible.
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Figure C3: Screenshot of Post-Decision Review. This figure shows the final
screen subjects see in each period after both player 1 and player 2 have made their
decisions. The smaller game tree in the upper right portion of the figure displays
information about how many pairs ended up at each outcome. For the purposes of
the screenshot, the software was run with only one pair, but in a typical experiment,
subjects learned about the decisions of 4 pairs (3 other than their own).
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D. Autism-Spectrum Quotient Questionnaire (for online
publication)

1. I prefer to do things with others rather than on my own. [1] [2] [3] [4]

2. I prefer to do things the same way over and over again. [1] [2] [3] [4]

3. If I try to imagine something, I find it very easy to create a picture in my mind. [1] [2] [3] [4]
4. I frequently get so absorbed in one thing that I lose sight of other things. [1] [2] [3] [4]

5. I often notice small sounds when others do not. [1] [2] [3] [4]

6. I usually notice car number plates of similar strings of information. [1] [2] [3] [4]
7. Other people frequently tell me that what I’ve said is impolite, even though I think it is polite. [1] [2] [3] [4]

8. When I’m reading a story, I can easily imagine what the characters might look like. [1] [2] [3] [4]

9. I am fascinated by dates. [1] [2] [3] [4]
10. In a social group, I can easily keep track of several different people’s conversations. [1] [2] [3] [4]

11. I find social situations easy. [1] [2] [3] [4]
12. I tend to notice details that others do not. [1] [2] [3] [4]

13. I would rather go to a library than a party. [1] [2] [3] [4]

14. I find making up stories easy. [1] [2] [3] [4]
15. I find myself drawn more strongly to people than to things. [1] [2] [3] [4]

16. I tend to have very strong interests, which I get upset about if I can’t pursue. [1] [2] [3] [4]

17. I enjoy social chit-chat. [1] [2] [3] [4]
18. When I talk, it isn’t always easy for others to get a word in edgeways. [1] [2] [3] [4]

19. I am fascinated by numbers. [1] [2] [3] [4]

20. When I’m reading a story I find it difficult to work out the characters’ intentions. [1] [2] [3] [4]
21. I don’t particularly enjoy reading fiction. [1] [2] [3] [4]

22. I find it hard to make new friends. [1] [2] [3] [4]

23. I notice patterns in things all the time. [1] [2] [3] [4]
24. I would rather go to the theatre than a museum. [1] [2] [3] [4]

25. It does not upset me if my daily routine is disturbed. [1] [2] [3] [4]
26. I frequently find that I don’t know how to keep a conversation going. [1] [2] [3] [4]

27. I find it easy to “read between the lines” when someone is talking to me. [1] [2] [3] [4]

28. I usually concentrate more on the whole picture, rather than the small details. [1] [2] [3] [4]
29. I am not very good at remembering phone numbers. [1] [2] [3] [4]

30. I don’t usually notice small changes in a situation, or a person’s appearance. [1] [2] [3] [4]

31. I know how to tell if someone listening to me is getting bored. [1] [2] [3] [4]
32. I find it easy to do more than one thing at once. [1] [2] [3] [4]

33. When I talk on the phone, I’m not sure when it’s my turn to speak. [1] [2] [3] [4]

34. I enjoy doing things spontaneously. [1] [2] [3] [4]
35. I am often the last to understand the point of a joke. [1] [2] [3] [4]

36. I find it easy to work out what someone else is thinking or feeling just by looking at their face. [1] [2] [3] [4]

37. If there is an interruption, I can switch back to what I was doing very quickly. [1] [2] [3] [4]
38. I am good at social chit-chat. [1] [2] [3] [4]

39. People often tell me that I keep going on and on about the same thing. [1] [2] [3] [4]
40. When I was young, I used to enjoy playing games involving pretending with other children. [1] [2] [3] [4]

41. I like to collect information about categories of things (e.g. types of car, types of bird, [1] [2] [3] [4]

types of train, types of plant, etc.
42. I find it difficult to imagine what it would be like to be someone else. [1] [2] [3] [4]

43. I like to plan any activities I participate in carefully. [1] [2] [3] [4]
44. I enjoy social occasions. [1] [2] [3] [4]
45. I find it difficult to work out people’s intentions. [1] [2] [3] [4]

46. New situations make me anxious. [1] [2] [3] [4]

47. I enjoy meeting new people. [1] [2] [3] [4]
48. I am a good diplomat. [1] [2] [3] [4]

49. I am not very good at remembering people’s date of birth. [1] [2] [3] [4]
50. I find it very easy to play games with children that involve pretending. [1] [2] [3] [4]

1 � definitely agree, 2 � slightly agree, 3 � slightly disagree, 4 � definitely disagree
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E. Broad Autism Phenotype Questionnaire (for online
publication)

1  I like being around other people. 1 2 3 4 5 6

2  I find it hard to get my words out smoothly. 1 2 3 4 5 6

3  I am comfortable with unexpected changes in plans. 1 2 3 4 5 6

4  It’s hard for me to avoid getting sidetracked in conversation. 1 2 3 4 5 6

5  I would rather talk to people to get information than to socialize. 1 2 3 4 5 6

6 People have to talk me into trying something new. 1 2 3 4 5 6

7 I am “in-tune” with the other person during conversation.* 1 2 3 4 5 6

8 I have to warm myself up to the idea of visiting an unfamiliar place. 1 2 3 4 5 6

9 I enjoy being in social situations. 1 2 3 4 5 6

10 My voice has a flat or monotone sound to it. 1 2 3 4 5 6

11 I feel disconnected or “out of sync” in conversations with others.* 1 2 3 4 5 6

12 People find it easy to approach me.* 1 2 3 4 5 6

13 I feel a strong need for sameness from day to day. 1 2 3 4 5 6

14 People ask me to repeat things I’ve said because they don’t understand. 1 2 3 4 5 6

15 I am flexible about how things should be done. 1 2 3 4 5 6

16 I look forward to situations where I can meet new people. 1 2 3 4 5 6

17 I have been told that I talk too much about certain topics. 1 2 3 4 5 6

18 When I make conversation it is just to be polite.* 1 2 3 4 5 6

19 I look forward to trying new things. 1 2 3 4 5 6

20 I speak too loudly or softly. 1 2 3 4 5 6

21 I can tell when someone is not interested in what I am saying.* 1 2 3 4 5 6

22 I have a hard time dealing with changes in my routine. 1 2 3 4 5 6

23 I am good at making small talk.* 1 2 3 4 5 6

24 I act very set in my ways. 1 2 3 4 5 6

25 I feel like I am really connecting with other people. 1 2 3 4 5 6

26 People get frustrated by my unwillingness to bend. 1 2 3 4 5 6

27 Conversation bores me.* 1 2 3 4 5 6

28 I am warm and friendly in my interactions with others.* 1 2 3 4 5 6

29 I leave long pauses in conversation. 1 2 3 4 5 6

30 I alter my daily routine by trying something different. 1 2 3 4 5 6

31 I prefer to be alone rather than with others. 1 2 3 4 5 6

32 I lose track of my original point when talking to people. 1 2 3 4 5 6

33 I like to closely follow a routine while working. 1 2 3 4 5 6

34 I can tell when it is time to change topics in conversation.* 1 2 3 4 5 6

35 I keep doing things the way I know, even if another way might be better. 1 2 3 4 5 6

36 I enjoy chatting with people. 1 2 3 4 5 6

You are about to fill out a series of statements related to personality and lifestyle. For each question, circle 
that answer that best describes how often that statement applies to you. Many of these questions ask 
about your interactions with other people. Please think about the way you are with most people, rather 
than special relationships you may have with spouses or significant others, children, siblings, and parents. 
Everyone changes over time, which can make it hard to fill out questions about personality. Think about 
the way you have been the majority of your adult life, rather than the way you were as a teenager, or times 
you may have felt different than normal. You must answer each question, and give only one answer per 
question. If you are confused, please give it your best guess.

1—very rarely

2—rarely

3—occasionally 

4—somewhat often  

5—often 

6—very often

BAPQ

*Casual interaction with acquaintances, rather than special relationships such as with close friends and family members
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F. Additional Tables and Figures (for online publication)

means 8-1 8-2 10-1 10-2 8-3 6-1 8-4 10-3 8-5* 10-3* 10-4 10-5 8-6 10-6 8-7 8-8 8-9 8-10 10-7 8-11

Pairs SPE 0 .68 0 .54 0 .62 0 .61 0 .63 0 .44 0 .51 0 .46 0 .68 0 .50 0 .32 0 .66 0 .53 0 .38 0 .54 0 .52 0 .57 0 .64 0 .25 0 .71
P1 SPE 0 .72 0 .59 0 .64 0 .71 0 .67 0 .54 0 .61 0 .54 0 .70 0 .59 0 .50 0 .72 0 .64 0 .50 0 .67 0 .61 0 .63 0 .70 0 .36 0 .72

P2 SPE | P1 SPE 0 .94 0 .91 0 .98 0 .87 0 .94 0 .83 0 .84 0 .86 0 .96 0 .85 0 .63 0 .92 0 .83 0 .77 0 .80 0 .85 0 .91 0 .92 0 .71 0 .98

P1 Heur 0 .36 0 .40 0 .42 0 .38 0 .42 0 .45 0 .34 0 .55 0 .43 0 .43 0 .55 0 .38 0 .46 0 .47 0 .44 0 .52 0 .49 0 .45 0 .59 0 .34
P1 SPE | heur � SPE 0 .64 0 .52 0 .55 0 .58 0 .55 0 .36 0 .49 0 .37 0 .64 0 .45 0 .25 0 .64 0 .44 0 .31 0 .46 0 .43 0 .51 0 .58 0 .21 0 .68

P1 SPE | heur � SPE 0 .81 0 .60 0 .86 0 .74 0 .88 0 .71 0 .58 0 .75 0 .78 0 .73 0 .57 0 .70 0 .73 0 .59 0 .75 0 .77 0 .78 0 .82 0 .52 0 .88

P1 SPE | No Heur 0 .71 0 .69 0 .65 0 .72 0 .70 0 .49 0 .56 0 .57 0 .74 0 .66 0 .63 0 .79 0 .60 0 .51 0 .73 0 .78 0 .73 0 .78 0 .52 0 .81
P2 Dom 0 .94 0 .90 0 .98 0 .86 0 .94 0 .84 0 .85 0 .82 0 .97 0 .87 0 .63 0 .93 0 .86 0 .78 0 .80 0 .83 0 .91 0 .93 0 .66 0 .98

Table F1: Observed Probability of Outcomes by Session.

Each entry is a probability that we observed a particular outcome in a particular session. Pairs SPE refers to the probability that a pair
ended at the SPE. P1 SPE is the probability that player 1’s choice was consistent with the SPE. P1 Heur is the probability that Player 1 chose
in a manner consistent with the “highest mean” rule of thumb (heuristic). P1 SPE | heur � SPE is the probability that player one followed
the SPE when it did not correspond to the “highest mean” rule of thumb. P1 SPE | heur � SPE is the probability that player one followed
the SPE when it did correspond to the “highest mean” rule of thumb. P1 SPE | No Heur is the probability that player 1 followed the SPE
when the rule of thumb was inapplicable (i.e. equal means). P2 Dom is the probability that player 2 chose the dominant strategy. P2 SPE |
P1 SPE is the conditional probability of player 2 choosing the dominant strategy given that player 1 followed the SPE. Sessions are labeled in
the format # of Subjects – Session ID so that 10-2 corresponds to the 2nd session with 10 subjects. * indicates sessions in which the payoff set
was {1,2,3,4,8,9,10}, rather than {1,2,3,4,5,6,7}.
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Percent of SPE-Consistent Choices

R
e

la
ti
v
e

 F
re

q
u

e
n

c
y

0.0 0.2 0.4 0.6 0.8 1.0

0
0
.0
5

0
.1

0
.1
5

Figure F1: Histogram of the Individual Rates of SPE-consistent Choices.
The figure excludes all periods in which the player had a dominant strategy and in
which choice under the rule of thumb corresponded to the SPE.
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Figure F2: Scatterplots Comparing Learning Rates to Theory of Mind
Measures from Psychology. The solid lines plot OLS fits of the data.
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(a) Autism-Spectrum Quotient
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Figure F3: Histograms of AQ and BAP Scores. Each panel includes the entire
range of feasible scores.
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