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Abstract

A new estimation procedure of dynamic panel data models with fixed effects is

proposed. To improve upon existing estimators, we propose to apply the pairwise-

difference data transformation to the generalized method of moments based estimators.

A particular focus is given to the long difference (LD) estimation procedure of Hahn

et al. (2007), which was proved to retain strong moment conditions even when data are

persistent without imposing further assumptions. The bias and asymptotic distribution

of the original LD estimator and its proposed extensions are derived. A simulation study

is conducted to assess the finite-sample properties of the estimators.
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Keywords: asymptotic distribution, dynamic panel data, generalized method of moments,
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1 Introduction

The estimation of the dynamic panel data model with fixed effects has been extensively

studied in last decades. It is well known that the least square dummy variable (LSDV)

estimator is inconsistent when applied to dynamic panels with a small fixed number of
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time periods (Nickell, 1981). As a consequence, the majority of research has focused on

the generalized method of moments (GMM) procedures and estimation methods based on

instrumental variable (IV) methods (e.g., Anderson and Hsiao, 1982; Holtz-Eakin et al.,

1988; Arellano and Bond, 1991; Arellano and Bover, 1995; Blundell and Bond, 1998). How-

ever, some of these estimators have been found to suffer heavily from various sources of

bias. Models in the first differences with instruments in levels can be substantially biased,

in particular when the autoregressive parameter is close to unity. Models in levels with in-

strument in the first differences, specifically designed for persistent series, rely crucially on

the stationarity assumption (see Hahn, 1999). As an alternative approach, bias-reduction

methods for the LSDV and maximum likelihood estimators have been proposed, see Kiviet

(1995), Hahn and Kuersteiner (2002), Bun and Carree (2005), and Gouriéroux et al. (2010).

To improve the estimation when the autoregressive parameter is close to the unit circle,

Hahn et al. (2007) suggest to employ the longest difference (LD) of the model, that is, the

differences between the last and the first observation for each individual. Using the local-

to-unity asymptotics for the autoregressive parameter, the moment conditions defining the

LD estimator of Hahn et al. (2007) are chosen from the asymptotically relevant moment

condition in order to minimize the estimator’s bias. Additionally, to circumvent the non-

linearity of the proposed moment conditions, the instruments – being regression residuals

– are estimated using an initial consistent estimate.

Although the LD estimator provides a method with a small finite-sample bias without

imposing the stationarity assumption, there are two important deficiencies of the method

from the practical point of view. First, by using the longest difference of the panel data, the

differenced data always contain only one observation for each individual unit irrespective

of the number of time periods. Next, the practically applicable asymptotic distribution

and variance of the LD estimator is not provided. This is especially important due to the

reliance of the LD moment conditions on initially estimated instruments and thus on the

properties of the initial estimator.

To rectify these problems and make LD a practically relevant alternative to the GMM
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estimators such as the one by Blundell and Bond (1998), two steps are necessary. First, we

propose to extend the LD estimator by taking more longer differences than just the longest

one and show that new estimators have smaller variances while keeping the bias proper-

ties almost unchanged. The proposed estimators improve upon the original LD especially

for small values autoregressive parameter or larger numbers of time periods. Second, we

derive the practically applicable asymptotic-distribution expression for a general class of

long-difference estimators — including the original LD estimator — under strong instru-

ment asymptotics. Practical choices and recommendations for the GMM weight matrix

are extensively discussed as well. Finally, the theoretical findings are confirmed in finite

samples by means of simulation studies.

The rest of the paper is organized as follows. In Section 2, we introduce the dynamic

panel data model and the LD estimator. The new estimators are presented in Section 3,

where we also study their bias properties. The asymptotic distribution for a finite number

of time periods is derived in Section 4. Further, Section 5 contains the results of the Monte

Carlo experiments. Finally, Section 6 concludes. The proofs are provided in the Appendix.

2 Long difference estimation of dynamic panels

For a fixed T ≥ 3 and n ∈ N, consider the simple dynamic panel data model

yit = αyit−1 + ηi + εit (t = 1, . . . , T ; i = 1, . . . , n), (1)

where the response variable yit depends on its lagged value yit−1 through the unknown

autoregressive parameter α, |α| < 1, on the unobserved individual fixed effect ηi, and on

an idiosyncratic error εit. Model (1) will be used to describe the estimation concepts, but

it can and will be further generalized by including additional explanatory variables; see

Section 4.

As the individual effects ηi are not observed, several filtering data transformations

have been used in the literature. Many of those rely on the sth difference transformation

3



generically defined as ∆svt = vt − vt−s (see Aquaro and Čı́žek, 2010). More specifically,

subtracting (1) at time t− s from its level at time t yields

∆syit = α∆syit−1 +∆sεit (t = s+ 1, . . . , T ; i = 1, . . . , n), (2)

where the order of the difference s generally ranges from 1 to T −1: the Arellano and Bond

(1991) use s = 1, whereas Hahn et al. (2007) employ s = T −1. Aggregating across all time

periods and using a vector notation, a more compact notation isDsyi = αDsyi(−1)+Dsεi,

where Ds is the (T − s) × T sth difference-operator matrix (Ds = (IT−s,0) − (0, IT−s)),

yi = (yi1, . . . , yiT )
′, yi(−1) = (yi0, . . . , yi(T−1))

′, and εi = (εi1, . . . , εiT )
′.

Hahn et al. (2007) propose to estimate α in (1) by using the long (T − 1)th difference

technique of Griliches and Hausman (1986). The model (2) then becomes

∆T−1yiT = yiT − yi1 = α(yi(T−1) − yi0) + εiT − εi1 = α∆T−1yi(T−1) +∆T−1εiT (3)

for i = 1, . . . , n. The long difference (LD) estimator itself is based on the following T − 1

moment conditions, T ≥ 3:

E[yi0∆
T−1εiT ] = E[yi0(εiT − εi1)] = 0, (4a)

E[uir∆
T−1εiT ] = E [uir(εiT − εi1)] = 0 (r = 2, . . . , T − 1), (4b)

where uir = yir − αyir−1 = ηi + εir (if T = 2, only moment condition (4a) makes sense

and LD corresponds to the Arellano and Bond (1991) estimator). The operational moment

conditions are then obtained by substituting for ∆T−1εiT from (3). The moment conditions

however contain also unobservable residuals uir. To produce moment conditions linear in

α, a preliminary consistent estimator α̂0
n of α has to be used to compute and substitute

estimates ûir = yir − α̂0
nyir−1 into (4b). Hahn et al. (2007) studied the GMM estimator

based on the moment conditions (4) under the local-to-unity asymptotics, that is, assuming

αn → 1 as n → +∞, to confirm that these moment conditions do not rely on weak
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instruments in this limit case.

3 A class of long difference estimators

Apart for a more complicated asymptotic distribution of the LD estimator caused by esti-

mating some instruments (see Section 4), an important disadvantage of the LD estimator

is that, independently of the number T of time periods available, only a single observation

per individual can be used after that data have been transformed by the long difference (3).

This drawback is particularly problematic for data with a larger number T of time periods

and a small or moderately large number n of individuals. As a remedy, we propose to

extend the LD estimator by using multiple pairwise differences.

3.1 Pairwise-difference long-difference estimator

Let S denote the shortest difference considered in estimation, 2 ≤ S ≤ T − 1. To estimate

α in (1), we propose to use the moment conditions of the LD estimator obtained by taking

the longest difference ∆T−1, the second longest differences ∆T−2, and so on down to the

differences ∆S . This leads to T ∗ = (T − S)(T − S + 1)/2 differenced equations consisting

of all pairwise differences of lengths greater or equal to S:

s = T − 1 : ∆T−1yiT = α∆T−1yi(T−1) +∆T−1εiT , (5)

s = T − 2 : ∆T−2yiT = α∆T−2yi(T−1) +∆T−2εiT , (6)

∆T−2yi(T−1) = α∆T−2yi(T−2) +∆T−2εi(T−1), (7)

...
...

s = S : ∆SyiT = α∆Syi(T−1) +∆SεiT , (8)

...

∆Syi(S+1) = α∆SyiS +∆Sεi(S+1). (9)
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Obviously, if S = T − 1, this system of differenced equations reduces to the original LD

equation (3). In general, the shortest difference S < T − 1 should be chosen so that the

number of equations T ∗ ≤ (T − 1), which implies that S > T −
√
2T . If T ∗ > (T − 1), some

of the moment equations implied by the model could be written as a linear combination of

the other ones and would not contribute new information to the system (e.g., in the extreme

case of S = 1, any sth difference equation could be written as a sum of the consecutive

first-differenced equations). This observations is a special case of the equivalence statement

in Arellano and Bover (1995).

Using the instruments (4) for each of the above stated equations, s = S, . . . , T −1, leads

to the set of the following moment conditions defining the infeasible pairwise-difference

long-difference (PD-LD) estimator:

E[yi(t−s−1)∆
sεit] = E[yi(t−s−1)(εit − εi(t−s))] = 0, (10)

E[ui(t−1)∆
sεit] = E[ui(t−1)(εit − εi(t−s))] = 0, (11)

...

E[ui(t−s+1)∆
sεit] = E[ui(t−s+1)(εit − εi(t−s))] = 0, (12)

where t = s+ 1, . . . , T and s = S, . . . , T − 1.

To express the PD-LD estimator explicitly as a GMM estimator, let us first write the

moment conditions (10)–(12) for a single equation in a more compact form as

E(zits∆
sεit) = 0 (t = s+ 1, . . . , T ; s = S, . . . , T − 1), (13)

where zits is a s × 1 vector zits = (yi(t−s−1), ui(t−1), . . . , ui(t−s+1))
′. Furthermore, writing

the equations (5)–(9) in the matrix form, the PD-LD estimator is based on the following

differenced equations

Dyi = αDyi(−1) +Dεi (i = 1, . . . , n), (14)
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where D is a T ∗ × T partitioned matrix, D = (D′
S , . . . ,D

′
T−1)

′. Hence, the complete set

of the PD-LD moment conditions can be expressed in the matrix form as E[Z ′
iDεi] = 0,

where Zi = diag({z′its}(t,s)∈T ), T = {(t, s) : t = s + 1, . . . , T ; s = S, . . . , T − 1}, denotes a

block-diagonal matrix with T ∗ blocks z′its indexed by t = s+1, . . . , T and s = S, . . . , T − 1.

As zits in (13) is only partially observable, this PD-LD estimator is infeasible and

a preliminary consistent estimator is needed to construct instruments. Let α̂0
n denote a

preliminary consistent estimator of α (e.g., the Arellano-Bond estimator). The feasible

instruments to be used in PD-LD are then ẑits = (yi(t−1−s), ûi(t−1), . . . , ûi(t+1−s))
′, where

ûir = yir − α̂0
nyi(r−1); the corresponding feasible matrix representation will be denoted Ẑi.

Denoting the inverse weight matrix V̂n, the feasible PD-LD estimator – being a standard

GMM estimator with linear moment conditions – can be then defined as follows:

α̂PD-LD
n =

(

y∗−1
′
ẐV̂ −1

n Ẑ ′y∗−1

)−1
y∗−1

′
ẐV̂ −1

n Ẑ ′y∗, (15)

where y∗ = ([Dy1]
′, . . . , [Dyn]′)′ and y∗−1 = ([Dy1(−1)]

′, . . . , [Dyn(−1)]
′)′ are the differenced

variables and Ẑ = (Ẑ ′
1, . . . , Ẑ

′
n)

′ is an estimate of Z = (Z ′
1, . . . ,Z

′
n)

′. In other words,

Ẑy∗ =
∑n

i=1 Ẑiy
∗
i and Ẑy∗−1 =

∑n
i=1 Ẑiy

∗
i(−1), where y

∗
i =Dyi and y

∗
i(−1) =Dyi(−1).

By using α̂PD-LD
n to re-estimate ẑits, one can iterate to another LD estimator, which

will be referred to as PD-LD1. Eventually, the procedure can be further iterated, yielding

PD-LD2, PD-LD3, and so on.

3.2 Mixed-distance long-difference estimator

Loosely speaking, the idea of taking the longest differences is based on the fact that moment

conditions based on such a data transformation do not become weak when α approaches

one (Hahn et al., 2007). Considering its pairwise-difference extensions, there are other

alternative choices of T − 1 differenced equations than just (5)–(9). For instance, one could

make use of all possible pairwise differences from the shortest one S = 2 to the longest one

T − 1 and take only one equation for each s, S ≤ s ≤ T − 1, in order to fulfill the condition
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Table 1: Asymptotic bias and variance

Limited # Unlimited #
Estimator of instruments of instruments

AB O(n−1T−1) O(n−1)
LD O(n−1|α|T ) O(n−1T |α|T )
MD-LD O(n−1T−1) O(n−1T−1)

PD-LD O(n−1|α|T−
√
2T ) O(n−1T |α|T−

√
2T )

Note: AB refers to the Arellano-Bond estimator with the model in forward
orthogonal deviations derived by Bun and Kiviet (2006).

that the number of employed equations T ∗ ≤ T − 1. As a reference example, let α̂MD-LD
n

be the GMM estimator based on the following (T − 2)(T − 1)/2 moment conditions:

E(zits∆
sεit) = 0 (t = s+ 1; s = 2, . . . , T − 1). (16)

This estimator will be referred to as the mixed-difference long-difference estimator (MD-

LD) as it relies both on short and long differences. It will be shown that including shorter

differences affects unfavourably the bias of the estimator, at least for a large T .

3.3 Finite sample bias

To compare the LD, PD-LD, and MD-LD estimators, we first derive the leading terms

of their finite sample biases. For the sake of simplicity, we compare the methods in the

infeasible setting. In this section, we also use the two-stage least squares weight matrix for

all estimators (e.g., the inverse weight matrix for the PD-LD in (15) will be V̂n = Vn =

∑

iZ
′
iZi instead of a general one), which happens to be the optimal weight matrix for the

infeasible LD estimator. Other (asymptotic) properties are studied under more general

assumptions in Section 4.

To derive the biases of the long-difference estimators, we need to impose the following

conditions (using one high-level assumption for simplicity):

B.1 For all i ∈ N and t ∈ N, idiosyncratic shocks εit are mutually independent, have finite

second moments, and E(εit|yi(t−1), . . . , yi0, ηi) = 0 and σ2
ε = var(εit).
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B.2 Let individual effects ηi be independently distributed across individuals with finite

second moments.

B.3 Denoting qnT ∗ = y∗′−1ZV
−1
n Z ′y∗−1, let p-lim qnT ∗/(nT ∗) = q̄ > 0 for nT ∗ → ∞, where

T ∗ ≤ T − 1; in particular, T ∗ = 1 in the case of the LD estimator.

Theorem 1. Let yit be generated by (1) with 0 < |α| < 1 and let α̂LD

nT , α̂
PD-LD

nT , and α̂MD-LD

nT

be the infeasible two-stage least squares estimators based on moment conditions (4), (13),

and (16), respectively. Additionally, suppose that Assumptions B.1–B.3 hold. When all

possible instruments are included, the finite-sample biases of each estimator in the LD class

are given by

BLD = O((nT ∗
LD)

−1) ·
(

−σ2
ε

α2
(T − 1)αT

)

= O(n−1T |α|T ), (17)

BMD-LD = O((nT ∗
MD)

−1) ·
[

−σ2
ε

α

(

α2 − αT

(1− α)2
− (T − 1)αT − α2

1− α

)]

= O(n−1T−1),

(18)

BPD-LD = O((nT ∗
PD)

−1) ·
{

−σ2
ε

α

[

T

(

αS − αT

(1− α)2
+

(S − 1)αS − (T − 1)αT

1− α

)

− 2
αS − αT

(1 − α)3
+

[2T − 3]αT − [2S − 3]αS

(1− α)2
+
(T − 1)2αT − (S − 1)2αS

1− α

]}

= O(n−1T |α|T−
√
2T ), (19)

where the leading terms in bounds O(·) are determined for n → ∞ or T → ∞ and T ∗
LD = 1

in the case of LD, T ∗
MD = T − 2 in the case of ML-LD, and S = ⌈T −

√
2T ⌉ and T ∗

PD =

(T − S)(T − S + 1)/2 in the case of PD-LD.

Similarly, when the number of instruments used for each moment equation is limited to
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be at most m̄ ∈ N, the finite-sample biases are bounded by

|BLD| ≤ O((nT ∗
LD)

−1) · σ2
εm̄αT−2 = O(n−1|α|T ), (20)

|BMD−LD| ≤ O((nT ∗
MD)

−1) · σ
2
εm̄

|α| · |α|
2 − |α|T
1− |α| = O(n−1T−1), (21)

|BPD−LD| ≤ O((nT ∗
PD)

−1)× (22)

× σ2
εm̄

|α|

(

T
|α|S − |α|T
1− |α| +

|α|S − |α|T
(1− |α|)2 +

|(S − 1)|α|S − (T − 1)|α|T |
1− |α|

)

= O(n−1|α|T−
√
2T ). (23)

Results concerning the leading terms are summarized in Table 1 (the order of bias of the

Arellano-Bond estimator as derived in Bun and Kiviet (2006) is also reported). In general,

the orders of biases are smaller when the number of employed instruments is limited, but the

ranking of methods is not affected by the number of instruments. Taking into account (18),

the infeasible LD and PD-LD methods exhibit the smallest biases, especially if T is large

or α is small. The relatively small increase in bias of PD-LD relative to LD is substantially

compensated by the fact that PD-LD uses nT ∗ ≈ n(T − 1) observations compared to n

observations used by LD (see also Section 4), which will complement the bias properties of

PD-LD by a smaller variance of estimates compared to LD.

4 Asymptotic distribution

4.1 Asymptotic normality

In this section, the asymptotic distribution for the class of the long-difference estimators is

derived. Although the asymptotic distribution of the LD estimator is derived in Hahn et al.

(2007), its given there only for the limit case of α → 1, without any exogenous variables,

and in a form difficult for practical use.

For deriving the asymptotic distribution of different LD estimators, it is useful to gener-

alize and derive this result for a model with exogenous variables. Let xit = (xit1, . . . , xitK)′
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be a set of K exogenous or predetermined variables. Assume T ≥ 3 is fixed and yit follows

yit = αyit−1 + x
′
itβ + ηi + εit,

= w′
itθ + ηi + εit,

(t = 1, . . . , T ; i = 1, . . . , n), (24)

where wit = (witk)
K+1
k=1 = (yi(t−1),x

′
it)

′ and the parameter of interest is θ = (α,β′)′ with the

true value θ0. LetWi denote the T×(K+1) matrixWi = (wi1, . . . ,wiT )
′. The assumptions

concerning the data-generating process (24), which is allowed to be heterogeneous across

individuals i, follow.

A.1 Let {yi,Wi, ηi}ni=1 be a sequence of independently distributed random vectors with

uniformly bounded finite (2 + δ)th moments for some δ > 0.

A.2 For all i and t, E(εit|wit, . . . ,wi1, ηi) = 0.

Next, the initial estimator θ̂0n will be assumed to be a consistent GMM estimator of θ0

based on moment conditions E[ψ(yi,Wi,θ)] = E[ψi(θ)] = 0, where ψ is a F × 1 vector of

functions, F ≥ K+1. The sample counterpart of these moment conditions will be denoted

fn(θ) = 1/n
∑n

i=1ψi(θ). We thus assume that

A.3 Estimator θ̂0n is
√
n-consistent and asymptotically normal for a fixed T and n → ∞;

in particular, θ̂0n
p→ θ0 in probability and

√
n(θ̂0n − θ0) = Op(1).

The instruments used in this class of the LD estimators can be generically denoted as

ẑits = zits − Wits(θ̂
0
n − θ), where explanatory variables W its = (0,wit, · · · ,wi(t+1−s))

′

with 0 being an appropriately sized matrix of zeros, the initial estimator is assumed to be

asymptotically linear in its moment conditions,

√
n(θ̂0n − θ0) = Λ ·

√
nfn(θ

0) + op(1) = Λ · 1√
n

n
∑

i=1

ψi(θ
0) + op(1), (25)

and Λ is the result of the stochastic expansion of the initial estimator (see for example

Arellano, 2003, p. 187).1

1Suppose the Arellano-Bond estimator is chosen as preliminary estimator. Let ZAB
i and An denote the
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Next, let E[τi(θ)] = 0 be a general expression for the R moment conditions implied by

the method, R ≥ K + 1: after substituting for ∆sεit from model (24), it consists of (4)

for LD, (13) for PD-LD, or (16) for MD-LD, respectively, and additionally, of moment

conditions implied by x’s variables (in general, these depend on whether each xitk is weakly

or strictly exogenous or predetermined). Further, the combined vector of moment conditions

for the initial and chosen LD-type estimators will be denoted ρi(θ) = (τi(θ)
′,ψi(θ)′)′. By

Assumption A.1, ρ1(θ), . . . ,ρn(θ) are n independent random vectors. We however have to

impose additional assumptions, again taking into account the individual heterogeneity.

A.4 The moment conditions ρi(θ
0) at θ0 have uniformly bounded finite (2 + δ)th mo-

ments for some δ > 0. Moreover, E[ρi(θ
0)] = 0 and the variance matrix Σ =

limn→∞
∑n

i=1 var[ρi(θ
0)]/n exists and is a finite positive definite matrix.

A.5 (a) Let ωtsk = limn→∞
∑n

i=1 E(zits∆
switk)/n exist and be finite for all t, s, and k, and

additionally, let ωk = (ω′
(S+1)Sk, . . . ,ω

′
T (T−1)k)

′ be the kth column of the full-rank

matrix Ω = (ω1, . . . ,ωK+1).

(b) Similarly, let Pts = limn→∞
∑n

i=1 E(W its∆
sεit)/n exist and be finite for all t and

s and let P = (P ′
(S+1)S , . . . ,P

′
T (T−1))

′ have a full rank.

(c) Matrix Λ has a full rank.

(d) Finally,
∑n

i=1 E(W its∆
switk)/n is assumed to exist and to be uniformly bounded

in n ∈ N for all s, t, and k.

A.6 Let V̂n be a dim(τ ) × dim(τ ) inverse weight matrix such that V̂n
p→ V as n → ∞,

where V is a positive definite matrix.

If the standard, but stronger assumption that random variables in Assumption A.1 are

independent and identically distributed is used, the above mentioned assumptions would

corresponding matrix of instruments and the weight matrix, respectively. Then, the matrix Λ will be the
probability limit of

Λn = −n

[

n
∑

i=1

(ZAB′
i D1Wi)

′
An

n
∑

i=1

(ZAB′
i D1Wi)

]−1 n
∑

i=1

(ZAB′
i D1Wi)

′
An,

where D1 is the (T − 1)× T first difference-operator matrix.
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simplify: for example, the moment conditions ρi(θ
0) would have to possess only finite

second moments and their variance matrix would be defined simply as Σ = var[ρi(θ
0)].

Under the above stated assumptions, the asymptotic distribution of the feasible LD,

MD-LD, and PD-LD estimators can be derived.

Theorem 2. Suppose that Assumptions A.1–A.6 hold. Then for a fixed T and n → ∞, θ̂n

is consistent and asymptotically normal:

√
n(θ̂n − θ0) d−→ N(0,Ξ), (26)

where Ξ = (Ω′V −1Ω)−1Ω′V −1MΣM ′V −1Ω(Ω′V −1Ω)−1 and M = (IR,−PΛ).

4.2 Estimating the asymptotic variance

According to the standard GMM theory, an optimal choice of the inverse weight matrix Vn

is a consistent estimate of the covariance matrix of the moment conditions Σ. Assuming

for simplicity that data are independent and identically distributed across individuals, this

covariance matrix can be written as

Σ =







Στ Στψ

Σψτ Σψ






, (27)

where Στ = var[τi(θ
0)], Σψ = var[ψi(θ

0)], and Στψ = cov[τi(θ
0),ψi(θ

0)] (recall that τ

and ψ refer to the moment conditions of the (PD-)LD and initial estimators, respectively).

Since the instruments are estimated rather than given, Theorem 2 implies that Vopt will be

equal to

Vopt =MΣM ′ = Στ − PΛΣψτ − (PΛΣψτ )
′ + PΛΣψΛ

′P ′. (28)

Considering the partΣτ , which corresponds to the variance of the moment conditions of the

infeasible estimator, note that, because of the complex structure of PD-LD, the covariance
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matrix Στ = E(Z ′
iDεiε

′
iD

′Zi) may be singular. In other words, for a sufficiently large

T and number of included instruments in PD-LD, some moment conditions are redundant

and Στ is not invertible.

To overcome this problem in computing Vopt, several solutions are available. First, one

could try to keep all the moment conditions corresponding to Στ . This however requires

dealing with many linearly dependent moment conditions, which would have to be done as

in Carrasco and Florens (2000), for instance. A simple alternative solution – also used in

this paper – is to limit the number of instruments in τi(θ) = Z
′
iD(yi−Wiθ), which equals

τi(θ
0) = Z ′

iDεi at θ
0.2 Denoting τ †

i (θ) the vector of moment conditions corresponding to

selected instruments and Z†
i the corresponding matrix of instruments, the optimal inverse

weight matrix will be a consistent estimate V̂nΥ of (28), where

Σ̂nτ =

n
∑

i=1

Ẑ
†′
i Υ̂iẐ

†
i (31)

with Υ̂i = Dε̂iε̂
′
iD

′ and Ẑ†
i being computed by using a preliminary consistent estimator

(Λ, P , and other terms in (28) can be estimated by the respective sample averages).

For several reasons, we do not pay more attention to the estimation of the optimal

weights Vopt. It is well known that a part of the bias of GMM estimators stems from a

poorly estimated weight matrix (Newey and Smith, 2004). For either small values of n

or large number of instruments (which depends on T when all instruments are included),

weights in V̂nΥ may be highly imprecise. A simple alternative to (31) is to employ the

2Clearly, there are more ways to do so. To prevent the linear dependence of the PD-LD moment conditions
and instruments thereof are selected here in the following way:

E(yi(t−s−1)∆
s
εit) = 0 (t = s+ 1, . . . , T ; s = S, . . . , T − 1) (29)

and for all t = s+ 1, . . . , T , s = S, . . . , T − 1:



























E(ui(t−1)∆
sεit) = 0 if s > S;

E

















ui(t−1)

...

ui(t−s+1)









∆sεit









= 0 if s = S.
(30)

.
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weights of the standard two-stage least squares and use instead

V̂nI =

n
∑

i=1

Ẑ ′
iIẐi. (32)

There are a couple of advantages of this weighting matrix V̂nI : (i) it can be computed

directly based on the initial estimate, (ii) it does not impose constrains on the number of

instruments (the full proposed matrix Zi can be used), and finally, (iii) finite sample results

for weighting matrix (32) are rather close to or even better than the ones for weighting

matrix (31), especially as the sample size increases. See Section 5 for more details.

5 Monte Carlo simulation

5.1 Design

In this section, the finite sample performance of the proposed estimators is evaluated by

Monte Carlo simulations. The data-generating proces for yit follows model (1) with α =

0.1, 0.5, 0.9, n = 25, 50, 100, 400, 1600, 3200, T = 6, 12, 24, ηi ∼ N(0, σ2
η), and εit ∼ N(0, 1).

In order to measure the sensitivity of the estimators to the stationarity assumption, the

initial observations at time t = 0 are generated by

yi0 ∼ N

(

ηi
1− αJ

,
σ2
ε

1− α2

)

, (33)

which leads to mean-stationary series yit if αJ = α and to non-stationary sequences if

αJ 6= α. Each model is evaluated using 1000 replications.

Results are reported for the LD estimator and for the proposed estimators MD-LD,

PD-LD, and PD-LD1, where the last one denotes the iterated PD-LD estimator based

on PD-LD used as the preliminary estimator. The Arellano and Bond (AB, 1991) two-
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step GMM estimator3 and the system Blundell and Bond (BB, 1998) estimator4 are also

reported, serving as reference estimators as well as preliminary estimators for LD, MD-LD,

and PD-LD. All methods are compared by means of the root mean squared errors (RMSE)

unless stated otherwise.

5.2 Weight matrix

Before presenting a full comparison of estimators, we will briefly revisit the choice of the

GMM weight matrix. As mentioned in Section 4.2, the finite sample performance of a GMM

estimator can be heavily affected by the choice of the weight matrix. The difference between

using weights (31) and (32) is documented in Table 2 for various models with σ2
η = 1. Let

PD-LD-I and PD-LD1-I denote the PD-LD estimators when the inverse weight matrix (32)

is used and let PD-LD-Υ̂ and PD-LD1-Υ̂ denote PD-LD when weights (31) are in use.

As shown in Table 2, PD-LD-Υ̂ seems to perform only slightly better than PD-LD-I

and only for small values of n (the main exception is the case of n = 25, T = 6, and

α = 0.9). More specifically, PD-LD-Υ̂ can perform slightly better than PD-LD-I if the

initial estimator is reliable, but PD-LD-Υ̂ can perform much worse than PD-LD-I if the

initial estimator is imprecise. Consequently, it seems that using weights (32) is a more

robust strategy, which – in the cases when it is worse than PD-LD-Υ̂ – matches the optimally

weighted alternative once the sample size is sufficiently large. We therefore recommend and

use in further simulations the PD-LD estimator based on the weighting matrix V̂nI defined

in (32).

3The (optimal) inverse weight matrix is
∑

i
Z

AB′
i HZ

AB
i , where Z

AB
i is the matrix of instruments and

H is a (T − 1)× (T − 1) tridiagonal matrix with 2 on the main diagonal, −1 on the first two sub-diagonals,
and zeros elsewhere (see Arellano and Bond, 1991, p. 279).

4The inverse weight matrix is
∑

i
Z

BB′
i GZ

BB
i , where Z

BB
i is the matrix of instruments and G is a

partitioned matrix, G = diag(H, I), where H is as in Arellano-Bond and I is the identity matrix (see
Kiviet, 2007, Eq. (38)).
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Table 2: The root mean squared errors of the PD-LD estimators using the two-stage least-
squares weighting matrix and the asymptotically optimal weighting matrix. The three
sections of the table represent results for α = 0.1, 0.5, and 0.9.

n 25 100 400 1600 3200 25 100 25 100

T 6 12 24

α = 0.1
AB* 0.141 0.071 0.035 0.017 0.012 0.092 0.041 0.063 0.028
PD-LD 0.138 0.067 0.034 0.016 0.012 0.095 0.047 0.076 0.039
PD-LD-V 0.135 0.063 0.032 0.016 0.011 0.095 0.042 0.076 0.039
PD-LD1 0.141 0.067 0.034 0.017 0.012 0.095 0.047 0.076 0.039
PD-LD1-V 0.157 0.076 0.038 0.018 0.013 0.095 0.053 0.076 0.039

BB* 0.127 0.067 0.035 0.017 0.013 0.100 0.046 0.157 0.052
PD-LD 0.138 0.065 0.033 0.017 0.012 0.093 0.048 0.075 0.038
PD-LD-V 0.127 0.062 0.031 0.016 0.012 0.093 0.046 0.075 0.038
PD-LD1 0.141 0.066 0.033 0.017 0.012 0.093 0.048 0.075 0.038
PD-LD1-V 0.153 0.074 0.037 0.018 0.013 0.093 0.057 0.075 0.038

α = 0.5
AB* 0.232 0.108 0.051 0.025 0.018 0.133 0.055 0.080 0.033
PD-LD 0.136 0.072 0.035 0.018 0.013 0.090 0.045 0.069 0.037
PD-LD-V 0.187 0.076 0.034 0.017 0.012 0.090 0.047 0.069 0.037
PD-LD1 0.155 0.082 0.040 0.020 0.014 0.092 0.046 0.069 0.037
PD-LD1-V 0.183 0.084 0.040 0.020 0.014 0.092 0.053 0.069 0.037

BB* 0.139 0.081 0.044 0.021 0.016 0.118 0.058 0.186 0.074
PD-LD 0.135 0.069 0.034 0.017 0.012 0.087 0.045 0.070 0.035
PD-LD-V 0.131 0.067 0.033 0.017 0.012 0.087 0.049 0.070 0.035
PD-LD1 0.157 0.080 0.039 0.019 0.014 0.088 0.046 0.070 0.035
PD-LD1-V 0.152 0.078 0.039 0.020 0.014 0.088 0.054 0.070 0.035

α = 0.9
AB* 0.570 0.444 0.241 0.102 0.069 0.292 0.202 0.146 0.089
PD-LD 0.202 0.160 0.120 0.072 0.050 0.093 0.064 0.049 0.026
PD-LD-V 0.439 0.268 0.128 0.065 0.046 0.093 0.155 0.049 0.026
PD-LD1 0.186 0.127 0.097 0.072 0.044 0.089 0.050 0.049 0.026
PD-LD1-V 0.389 0.205 0.099 0.063 0.043 0.089 0.129 0.049 0.026

BB* 0.082 0.073 0.051 0.030 0.021 0.054 0.048 0.043 0.029
PD-LD 0.124 0.085 0.052 0.028 0.019 0.067 0.042 0.047 0.023
PD-LD-V 0.109 0.081 0.053 0.029 0.020 0.067 0.043 0.047 0.023
PD-LD1 0.207 0.129 0.067 0.033 0.022 0.091 0.052 0.050 0.027
PD-LD1-V 0.161 0.111 0.063 0.032 0.021 0.091 0.046 0.050 0.027

Note: The symbol ‘*’ denotes the preliminary estimator for PD-LD.
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Table 3: The root mean squared errors of all estimator for different sample sizes using
σ2
η = 1. The three sections of the table represent results for α = 0.1, 0.5, and 0.9.

n 25 50 100

T 6 12 24 6 12 24 6 12 24

α = 0.1
AB* 0.143 0.089 0.064 0.097 0.058 0.041 0.070 0.041 0.027
LD 0.206 0.209 0.206 0.134 0.148 0.141 0.099 0.103 0.100
MD-LD 0.145 0.120 0.110 0.100 0.081 0.078 0.072 0.059 0.052
PD-LD 0.136 0.094 0.074 0.093 0.067 0.053 0.070 0.047 0.037
PD-LD1 0.139 0.094 0.074 0.094 0.067 0.053 0.071 0.047 0.037

BB* 0.129 0.102 0.157 0.095 0.067 0.091 0.068 0.046 0.050
LD 0.206 0.209 0.206 0.134 0.148 0.141 0.099 0.103 0.100
MD-LD 0.145 0.119 0.110 0.099 0.081 0.078 0.071 0.059 0.052
PD-LD 0.136 0.094 0.074 0.093 0.067 0.053 0.070 0.047 0.037
PD-LD1 0.139 0.094 0.074 0.094 0.067 0.053 0.071 0.047 0.037

α = 0.5
AB* 0.231 0.129 0.083 0.152 0.083 0.053 0.107 0.053 0.033
LD 0.188 0.184 0.174 0.124 0.127 0.121 0.091 0.087 0.086
MD-LD 0.155 0.112 0.099 0.112 0.076 0.069 0.079 0.054 0.046
PD-LD 0.138 0.088 0.070 0.098 0.064 0.049 0.072 0.043 0.035
PD-LD1 0.160 0.090 0.070 0.109 0.065 0.049 0.083 0.044 0.035

BB* 0.148 0.119 0.184 0.113 0.084 0.127 0.082 0.057 0.074
LD 0.191 0.184 0.174 0.123 0.127 0.121 0.091 0.087 0.086
MD-LD 0.154 0.112 0.099 0.107 0.076 0.069 0.076 0.054 0.046
PD-LD 0.141 0.088 0.070 0.095 0.064 0.049 0.072 0.043 0.035
PD-LD1 0.165 0.090 0.070 0.109 0.065 0.049 0.084 0.044 0.035

α = 0.9
AB* 0.579 0.296 0.146 0.516 0.256 0.122 0.447 0.201 0.089
LD 0.197 0.119 0.096 0.169 0.088 0.066 0.146 0.066 0.045
MD-LD 0.233 0.125 0.073 0.207 0.099 0.056 0.182 0.082 0.040
PD-LD 0.201 0.093 0.047 0.180 0.076 0.035 0.158 0.063 0.026
PD-LD1 0.189 0.089 0.048 0.152 0.068 0.037 0.124 0.051 0.026

BB* 0.086 0.053 0.041 0.079 0.052 0.036 0.070 0.047 0.029
LD 0.171 0.114 0.096 0.120 0.084 0.065 0.095 0.059 0.045
MD-LD 0.142 0.085 0.065 0.108 0.065 0.047 0.085 0.053 0.034
PD-LD 0.130 0.064 0.045 0.094 0.052 0.032 0.080 0.041 0.022
PD-LD1 0.212 0.088 0.048 0.154 0.073 0.037 0.121 0.052 0.026

Note: The symbol ‘*’ denotes the preliminary estimator for LD, MD-LD and PD-LD.
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Table 4: The root mean squared errors of all estimator for low and high values of the
variance of the individual effects, σ2

η = 0.25, 1, 4. The three sections of the table represent
results for α = 0.1, 0.5, and 0.9.

(n, T ) (100, 6) (50, 12) (25, 24)

σ2
η/σ

2
ε 1/4 1 4 1/4 1 4 1/4 1 4

α = 0.1
AB* 0.062 0.070 0.076 0.053 0.062 0.062 0.063 0.062 0.064
LD 0.097 0.104 0.101 0.145 0.148 0.144 0.213 0.208 0.211
MD-LD 0.070 0.071 0.069 0.082 0.084 0.082 0.106 0.109 0.107
PD-LD 0.066 0.069 0.068 0.066 0.066 0.066 0.070 0.075 0.074
PD-LD1 0.066 0.070 0.069 0.066 0.066 0.066 0.070 0.075 0.074

BB* 0.060 0.068 0.081 0.074 0.069 0.071 0.176 0.159 0.091
LD 0.100 0.102 0.100 0.145 0.141 0.138 0.201 0.200 0.203
MD-LD 0.069 0.069 0.070 0.084 0.080 0.083 0.104 0.107 0.108
PD-LD 0.067 0.067 0.065 0.065 0.065 0.065 0.073 0.075 0.075
PD-LD1 0.068 0.068 0.066 0.065 0.065 0.065 0.073 0.075 0.075

α = 0.5
AB* 0.086 0.108 0.122 0.071 0.087 0.092 0.080 0.082 0.085
LD 0.089 0.093 0.091 0.127 0.128 0.123 0.183 0.175 0.178
MD-LD 0.079 0.079 0.077 0.079 0.078 0.078 0.094 0.095 0.096
PD-LD 0.069 0.070 0.069 0.063 0.061 0.062 0.067 0.071 0.070
PD-LD1 0.078 0.078 0.080 0.064 0.062 0.064 0.067 0.071 0.070

BB* 0.076 0.083 0.118 0.107 0.087 0.104 0.236 0.187 0.083
LD 0.094 0.092 0.098 0.128 0.123 0.120 0.175 0.176 0.175
MD-LD 0.077 0.077 0.089 0.080 0.075 0.081 0.095 0.098 0.096
PD-LD 0.070 0.069 0.077 0.060 0.061 0.061 0.069 0.071 0.071
PD-LD1 0.081 0.080 0.083 0.062 0.062 0.062 0.069 0.071 0.071

α = 0.9
AB* 0.345 0.470 0.494 0.221 0.257 0.270 0.139 0.147 0.148
LD 0.139 0.151 0.152 0.088 0.089 0.086 0.092 0.094 0.098
MD-LD 0.165 0.186 0.192 0.098 0.101 0.103 0.072 0.074 0.075
PD-LD 0.146 0.163 0.166 0.076 0.076 0.076 0.045 0.048 0.048
PD-LD1 0.130 0.146 0.129 0.068 0.067 0.067 0.046 0.049 0.049

BB* 0.076 0.071 0.088 0.086 0.051 0.081 0.154 0.044 0.066
LD 0.095 0.097 0.114 0.083 0.081 0.093 0.100 0.093 0.092
MD-LD 0.089 0.089 0.104 0.074 0.064 0.083 0.076 0.066 0.062
PD-LD 0.082 0.082 0.098 0.057 0.048 0.064 0.048 0.047 0.044
PD-LD1 0.118 0.127 0.152 0.065 0.066 0.078 0.049 0.050 0.050

Note: The symbol ‘*’ denotes the preliminary estimator for LD, MD-LD and PD-LD.
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Table 5: The biases and root mean squared errors of all estimator under the non-stationarity
of the initial condition; σ2

η = 1 and αJ = 0.3 are used. The three sections of the table
represent results for α = 0.1, 0.5, and 0.9.

(n, T ) (100, 6) (50, 12) (25, 24)

RMSE Bias RMSE Bias RMSE Bias

α = 0.1
AB* 0.064 -0.019 0.059 -0.027 0.062 -0.044
LD 0.096 -0.002 0.142 0.001 0.198 0.010
MD-LD 0.072 -0.007 0.083 -0.004 0.103 0.002
PD-LD 0.065 -0.003 0.066 -0.001 0.075 0.003
PD-LD1 0.066 -0.003 0.066 -0.001 0.075 0.003

BB* 0.065 -0.018 0.070 -0.042 0.158 -0.150
LD 0.096 0.006 0.147 0.001 0.205 -0.013
MD-LD 0.065 -0.002 0.082 -0.004 0.103 -0.005
PD-LD 0.065 0.001 0.068 -0.003 0.072 -0.002
PD-LD1 0.065 0.002 0.068 -0.003 0.072 -0.002

α = 0.5
AB* 0.139 -0.071 0.094 -0.067 0.088 -0.076
LD 0.087 -0.008 0.117 -0.004 0.170 0.002
MD-LD 0.077 -0.019 0.073 -0.013 0.094 -0.005
PD-LD 0.068 -0.013 0.059 -0.008 0.070 -0.006
PD-LD1 0.076 -0.006 0.061 -0.008 0.070 -0.006

BB* 0.125 0.094 0.070 -0.015 0.174 -0.164
LD 0.090 0.024 0.115 -0.006 0.170 -0.004
MD-LD 0.085 0.040 0.074 -0.008 0.097 -0.007
PD-LD 0.076 0.030 0.058 -0.005 0.071 -0.005
PD-LD1 0.077 0.007 0.059 -0.005 0.071 -0.005

α = 0.9
AB* 0.072 -0.029 0.052 -0.034 0.056 -0.048
LD 0.044 -0.007 0.032 -0.004 0.035 -0.000
MD-LD 0.042 -0.007 0.030 -0.006 0.031 -0.003
PD-LD 0.041 -0.008 0.024 -0.006 0.020 -0.003
PD-LD1 0.039 -0.004 0.023 -0.004 0.020 -0.003

BB* 0.208 0.207 0.146 0.145 0.072 0.063
LD 0.081 0.069 0.041 0.025 0.035 -0.001
MD-LD 0.086 0.075 0.043 0.030 0.031 0.001
PD-LD 0.082 0.073 0.038 0.030 0.019 -0.002
PD-LD1 0.046 0.018 0.024 0.001 0.020 -0.003

Note: The symbol ‘*’ denotes the preliminary estimator for LD, MD-LD and PD-LD.

The initial observations are generated by yi0 ∼ N( ηi
1−0.3

,
σ2

ε

1−α2
).
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5.3 Simulation results

First, an overview of the behaviour of all estimators is given for many different sample

sizes and σ2
η/σ

2
ε = 1, see Table 3. By taking only the difference between the last and the

first observation per individual, the LD estimator yields almost no benefit from a larger

number T of time periods, unless α = 0.9 (then there are more available informative

instruments as T increases). In particular, LD performs poorly when α is close to zero.

These weaknesses are amended by the proposed estimators. Among these, PD-LD has an

overall good performance for all combinations of n and T : (i) it always performs better

than LD and MD-LD; (ii) it exhibits smaller RMSEs than AB for α ≥ 0.5 and is rather

close to AB for α = 0.1; and (iii) it outperforms BB for α ≤ 0.5 and – if BB is the initial

estimator – PD-LD has similar or smaller RMSE compared to BB for α = 0.9 except for the

smallest sample size n = 25 and T = 6. Finally, it is interesting to note that the precision

of the PD-LD estimates does not depend much on the initial estimator except for α = 0.9,

where AB gets very imprecise and substantially biased.

Further, the estimators in the LD class also do not seem to be affected by different ratios

of σ2
η/σ

2
ε . This is documented in Table 4. In the performed experiments, the AB estimator

is not substantially influenced by variations in the ratio σ2
η/σ

2
ε either. On the contrary, the

BB estimator is the most sensitive, in particular when T is large.

Finally, we examine the sensitivity of the estimators to misspecification of the initial

condition assumption; Table 5 summarizes now both the RMSE and biases for all estimates.

The initial observations yi0 are defined as in (33) and αJ = 0.3 for all α ∈ {0.1, 0.5, 0.9}. It

is well known that the BB estimator loses its predominant source of information when yit

is mean-nonstationary (see Hahn, 1999). On the contrary, all estimators in the LD class

are not substantially affected by different assumptions about yi0. In particular, the biases

of LD estimators are almost zero if AB is used as the initial estimator. (Note that the AB

estimator actually benefits from mean-nonstationarity, especially when α is close to one,

as documented in Hayakawa (2009).) In the other case of the initial BB estimator, LD

and PD-LD substantially reduce the bias of the initial estimator, and surprisingly, PD-LD1
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even manages to eliminate the bias almost completely (i.e., despite a sizeable upward bias

of BB for α = 0.9). Finally, note that PD-LD and PD-LD1 exhibit the smallest RMSE of

all estimators if α ≥ 0.5.

Altogether, the PD-LD estimator performs equally well or better than existing methods

in the majority of simulated models. The reported experiments show that these results are

not overly sensitive to the values of the autoregressive parameter, to the variance of errors,

or to the specification of initial observations.

6 Conclusion

To our knowledge, the idea of applying multiple pairwise differences to dynamic linear

panel data models is new. This data transformation is presented and applied here to the

long-difference estimator of Hahn et al. (2007) to improve its behavior for data with many

time periods and for the values of the autoregressive coefficient far from one. We derive the

finite-sample bias of the method and the asymptotic distribution of the proposed estimators.

Our results indicate that the PD-LD estimator has a smaller variance than the original

LD estimator, while preserving its very small bias. In finite samples, simulation results

confirm that the proposed pairwise-difference transformation improves the LD estimator in

all simulation settings, and in particular, when the time span increases or when α is small.

Compared to the existing IV/GMM type of estimator, PD-LD seems to be very competitive

without imposing additional restrictive assumptions.

A Appendix

A.1 Finite sample bias

Let us first state and prove the following lemma, which will be used for evaluating of the

bias expressions.
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Lemma 1. Let J ∈ N and |γ| < 1. Then it holds for 1 ≤ K < L,K ∈ N, L ∈ N, that

L
∑

j=K

jγj =
γK − γL+1

(1− γ)2
− LγL+1 − (K − 1)γK

1− γ
, (34)

L
∑

j=K

j2γj = 2
γK − γL+1

(1− γ)3
− (2L− 1)γL+1 − (2K − 3)γK

(1− γ)2
− L2γL+1 − (K − 1)2γK

1− γ
.

(35)

Proof. The proof follows directly from (1− γ)
∑J

j=0 γ = 1− γJ+1:

J
∑

j=0

jγj =

J
∑

j=1

J
∑

l=j

γl =

J
∑

j=1

γj
1− γJ−j+1

1− γ
=

1

1− γ





J
∑

j=0

γj − 1− JγJ+1





=
1− γJ+1

(1− γ)2
− JγJ+1 + 1

1− γ
,

and using the above result,

J
∑

j=0

j2γj =

J
∑

j=1

[

j
∑

l=1

(2l − 1)]γl =

J
∑

j=1

(2j − 1)

J
∑

l=j

γl =
1

1− γ





J
∑

j=1

(2j − 1)γj − J2γJ+1





= 2
1− γJ+1

(1− γ)3
− (2J − 1)γJ+1 + γ + 1

(1− γ)2
− J2γJ+1

1− γ
.

Writing now sums
∑L

j=K aj as
∑L

j=0 aj −
∑K−1

j=0 aj implies the results of the lemma.

Proof of Theorem 1. In this proof we follow Bun and Kiviet (2006, Appendix A). Results

are fully derived for the infeasible PD-LD estimator only. For LD and MD-LD, the proof

develops identically except for the final evaluation of the biases as functions of the au-

toregressive parameter α. We thus proceed with the proof for PD-LD and only the final

evaluation is done for each estimator separately.

The estimation error of the unfeasible PD-LD estimator in (15) (obtained after substi-
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tuting from the model equations (14)) is given by

α̂nT − α =
y∗′−1ZV

−1
n Z ′ε∗

y∗′−1ZV
−1
n Z ′y∗−1

=
g′nT ∗ε∗

qnT ∗
, (36)

where ε∗ = ([Dε1]
′, . . . , [Dεn]′)′. Suppose that E(g′nT ∗ε∗) = O(N∗), where N∗ is some

function of n and/or T ∗ to be derived yet. Assuming that either or both n and T ∗ can get

large, Bun and Kiviet (2006, Eq. (31)–(33)) showed that the first-order bias approximation

of α̂nT is given by

E(α̂nT − α) =
E(g′nT ∗ε∗)

q̄
+O(N∗(nT ∗)−3/2) = B +O(N∗(nT ∗)−3/2), (37)

where B = E(g′nT ∗ε∗)/q̄ = O(N∗(nT ∗)−1) is the leading term of the bias. Note that the

term (nT ∗)−1 in the previous expressions follows from Assumption B.3 as qnT ∗/(nT ∗) →

q̄ > 0 in probability and qnT ∗ = O((nT ∗)−1) for nT ∗ → ∞.

Next, let us deriveN∗. First, we can rewrite (36) in a more convenient form. LetG be an

nT ∗×nT ∗ permutation matrix which changes the order of the rows of Z, y∗−1, y
∗ such that

observations are organized by individuals first (i = 1, . . . , n), then by pairwise differences

(s = S, . . . , T − 1), and last by time periods (t = s+1, . . . T ). As Zi is block diagonal, G′Z

will be block diagonal as well with blocks Z(S+1)S ,. . . ,ZT (T−1), where Zts = ((zits)
n
i=1)

′ is

n×mts and mts denotes the number of instruments. The inverse weight matrix used here

is Vn = Z ′Z and is thus also block diagonal. Given that

(Z ′Z)−1 = (Z ′G′GZ)−1 = diag
(

(Z ′
(S+1)SZ(S+1)S)

−1, . . . , (Z ′
T (T−1)ZT (T−1))

−1
)

, (38)

we can rewrite (36) as

α̂nT − α =
g′nT ∗ε∗

qnT ∗
=

T−1
∑

s=S

T
∑

t=s+1

y∗′(t−1)sZts(Z
′
tsZts)

−1Z ′
tsε

∗
ts

T−1
∑

s=S

T
∑

t=s+1

y∗′(t−1)sZts(Z
′
tsZts)

−1Z ′
tsy

∗
(t−1)s

, (39)
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where y∗(t−1)s = (y∗1(t−1)s, . . . , y
∗
n(t−1)s)

′ and ε∗ts = (ε∗1ts, . . . , ε
∗
nts)

′ using y∗i(t−1)s = ∆syi(t−1) =

yi(t−1) − yi(t−1−s) and ε∗its = ∆sεit = εit − εi(t−s). We now have to analyze the expectation

of the nominator of (39),

E(g′nT ∗ε∗) = E

(

T−1
∑

s=S

T
∑

t=s+1

y∗′(t−1)sMtsε
∗
ts

)

=

T−1
∑

s=S

T
∑

t=s+1

E(y∗′(t−1)sMtsε
∗
ts), (40)

where Mts = Zts(Z
′
tsZts)

−1Z ′
ts, with tr(Mts) = tr(Imts

) = mts. Next,

E(y∗′(t−1)sMtsε
∗
ts) = E

[

tr(y∗′(t−1)sMtsε
∗
ts)
]

= E
[

tr(Mtsε
∗
tsy

∗′
(t−1)s)

]

= E
{

E
[

tr(Mtsε
∗
tsy

∗′
(t−1)s)

∣

∣

∣
It−1

]}

,

(41)

where E(·|It−1) denotes the expectation conditional on the information known up to t− 1.

Note that Zts and thus Mts contain only relevant stochastic elements that have been

observed prior to t. Hence

E
{

E
[

tr(Mtsε
∗
tsy

∗′
(t−1)s)

∣

∣

∣It−1

]}

= E
{

tr
[

Mts E
(

ε∗tsy
∗′
(t−1)s

∣

∣

∣It−1

)]}

= E
{

tr
[

MtsIn E
(

ε∗itsy
∗
i(t−1)s

∣

∣

∣It−1

)]}

= E
[

tr (Mts) E
(

ε∗itsy
∗
i(t−1)s

∣

∣

∣ It−1

)]

= mts E
[

E
(

ε∗itsy
∗
i(t−1)s

∣

∣

∣
It−1

)]

,

(42)

provided that the conditional expections are independent of index i. Under Assump-

tions B.1–B.3, this however follows from the definition of the transformed variables y∗i(t−1)s

and ε∗its:

E
[

E
(

ε∗itsy
∗
i(t−1)s

∣

∣

∣
It−1

)]

= E
[

E
(

∆sεit∆
syi(t−1)

∣

∣ It−1

)]

= −E
(

εi(t−s)yi(t−1)

)

= −E

{

εi(t−s)

[(

t−2
∑

k=0

αk

)

ηi + αt−1yi0 +

t−2
∑

k=0

αkεi(t−1−k)

]}

= −αs−1σ2
ε , (43)
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where σ2
ε = var(εit) for all i and t. This implies for equation (40) that

T−1
∑

s=S

T
∑

t=s+1

E(y∗′(t−1)sMtsε
∗
ts) = −σ2

ε

T−1
∑

s=S

T
∑

t=s+1

mtsα
s−1. (44)

Note that derivations in (41)–(43) hold for both LD and MD-LD as well – only the bounds

of the sums in equations (40) and (44) will differ (depending on the equations used).

To evaluate the biases of the estimators, we consider first the case with all possible

instruments included: mts = s for all t > s. For PD-LD, we obtain by Lemma 1 that

E(g′nT ∗ε∗) = −σ2
ε

T−1
∑

s=S

T
∑

t=s+1

sαs−1 = −σ2
ε

T−1
∑

s=S

(T − s)sαs−1

= −σ2
ε

α

[

T

(

αS − αT

(1− α)2
− (T − 1)αT − (S − 1)αS

1− α

)

− 2
αS − αT

(1− α)3
+

[2T − 3]αT − [2S − 3]αS

(1− α)2

+
(T − 1)2αT − (S − 1)2αS

1− α

]

, (45)

which is of order O(T 2αT−
√
2T ) for T → ∞ as S > T −

√
2T . Similarly for MD-LD, it holds

E(g′nT ∗ε∗) = −σ2
ε

T−1
∑

s=2

s+1
∑

t=s+1

sαs−1 =

[

−σ2
ε

α

(

α2 − αT

(1− α)2
− (T − 1)αT − α2

1− α

)]

, (46)

which is of order O(1) when T → ∞. Finally, we have for LD

E(g′nT ∗ε∗) = −σ2
ε

T−1
∑

s=T−1

T
∑

t=T

sαs−1 = −σ2
ε(T − 1)αT−2 = O(TαT ). (47)

Next, the case of a bounded number of instruments is considered: suppose mts =

26



max(s, m̄) for all t > s. For PD-LD we have again by Lemma 1

|E(g′nT ∗ε∗)| =
∣

∣

∣

∣

∣

−σ2
ε

T−1
∑

s=S

T
∑

t=s+1

mtsα
s−1

∣

∣

∣

∣

∣

≤ σ2
εm̄

T−1
∑

s=S

(T − s)|α|s−1

=
σ2
εm̄

|α|

(

T
|α|S − |α|T
1− |α| +

|α|S − |α|T
(1− |α|)2 +

|(S − 1)|α|S − (T − 1)|α|T |
1− |α|

)

,

(48)

which is of order O(T |α|T−
√
2T ) when T → ∞. Similarly, it holds for MD-LD that

|E(g′nT ∗ε∗)| =
∣

∣

∣

∣

∣

σ2
ε

T−1
∑

s=2

s+1
∑

t=s+1

mtsα
s−1

∣

∣

∣

∣

∣

≤ σ2
εm̄

T−1
∑

s=2

s+1
∑

t=s+1

|α|s−1

=
σ2
εm̄

|α|
1− |α|T
|α|2 − |α| , (49)

which is of order O(1) when T → ∞. Finally, we can write for LD

|E(g′nT ∗ε∗)| =
∣

∣

∣

∣

∣

σ2
ε

T−1
∑

s=T−1

T
∑

t=T

mtsα
s−1

∣

∣

∣

∣

∣

≤ σ2
εm̄

T−1
∑

s=T−1

T
∑

t=T

|α|s−1 = σ2
εm̄|α|T−2

= O(|α|T ). (50)

A.2 Asymptotic distribution

The common notation will be discussed first. The proof of Theorem 2 is identical for LD,

MD-LD, and PD-LD except for the dimensions of the instrument and data matrices used.

Similarly to y∗ in (15), let W ∗ = ([DW1]
′, . . . , [DWn]

′)′ and W ∗
i = DWi, i = 1, . . . , n,

where D is the difference-operator matrix corresponding to the analyzed estimator. The

instrument matrices Z and Zi are also assumed to be corresponding to the estimator of

interest (LD, MD-LD, or PD-LD). We will generically refer to θ̂n as one of the estimator
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in this class, which can be now expressed as

θ̂n =
(

W ∗′ẐV̂ −1
n Ẑ ′W ∗

)−1
W ∗′ẐV̂ −1

n Ẑ ′y∗, (51)

where Ẑ ′W ∗ =
∑n

i=1 Ẑ
′
iW

∗
i , Ẑ

′y∗ =
∑n

i=1 Ẑ
′
iy

∗
i , and the instrument matrix Ẑi refers

to the feasible counterpart of Zi. Given that the T ∗ × R matrix Ẑi is block diagonal,

Ẑi = diag(ẑ′its), the R × (K + 1) matrix Ẑ ′
iW

∗
i can be conveniently partitioned in vectors

in the following way

Ẑ ′
iW

∗
i = (ẑitsw

∗
itsk)(t,s)∈T ,k=1,...,K+1, (52)

where (t, s) ∈ T is the running row-index with values depending on the type of estimator,

TLD = {(t, s) : t = T ; s = T − 1} ,

TMD-LD = {(t, s) : t = s+ 1; s = 2, . . . , T − 1} ,

TPD-LD = {(t, s) : t = s+ 1, . . . , T ; s = S, . . . , T − 1} ,

(53)

and k = 1, . . . ,K + 1 is the column index.

The following lemmas will now analyze individual terms of

√
n(θ̂n − θ0) =

(

W ∗′Ẑ

n
V̂ −1
n

Ẑ ′W ∗

n

)−1
W ∗′Ẑ

n
V̂ −1
n

Ẑ ′ε∗√
n

, (54)

which is obtained by substituting for y∗ in (51) from model (24) and where the notation

ε∗ = ([Dε1]
′, . . . , [Dεn]′)′ is used.

Lemma 2. Suppose Assumptions A.1–A.5 hold for a fixed T and n → ∞. Then

1

n
Ẑ ′W ∗ p→ Ω. (55)
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Proof. We use the decomposition

1

n
Ẑ ′W ∗ =

1

n

n
∑

i=1

Ẑ ′
iW

∗
i =

1

n

n
∑

i=1

(ẑitsw
∗
itsk)(t,s)∈T ;k=1,...,K+1 , (56)

where (t, s) and k are the row and column indices, respectively, of the matrix ẐiW
∗
i . Next,

let us analyze the generic vector

1

n

n
∑

i=1

ẑitsw
∗
itsk =

1

n

n
∑

i=1

(

zits −Wits(θ̂
0
n − θ0)

)

w∗
itsk

=
1

n

n
∑

i=1

zitsw
∗
itsk −

[

1

n

n
∑

i=1

(W itsw
∗
itsk)

]

(θ̂0n − θ0).
(57)

First, note that
∑n

i=1 zitsw
∗
itsk/n → ωtsk = E(zitsw

∗
itsk) in probability as n → ∞

by the law of large numbers (Davidson, 1994, Theorem 20.8) and Assumptions A.1 and

A.5. The same argument applies to
∑n

i=1(W itsw
∗
itsk)/n. Finally, θ̂0n − θ0 = op(1) follows

from the consistency of the preliminary estimator θ̂0n (see Assumption A.3). Consequently,

∑n
i=1 ẑitsw

∗
itsk/n → ωtsk in probability as n → ∞ for any t, s, and k and we can rewrite (56)

as

1

n
Ẑ ′W ∗ =

1

n

n
∑

i=1

(ẑitsw
∗
itsk)ts,k = Ω + op(1). (58)

Lemma 3. Suppose Assumptions A.1–A.5 hold for a fixed T and n → ∞. Then

1√
n
Ẑ ′ε∗

d−→ N(0,MΣM ′). (59)

Proof. We use again the decomposition

1√
n
Ẑ ′ε∗ =

1√
n

n
∑

i=1

Ẑ ′
iε

∗
i =

1√
n

n
∑

i=1

(ẑitsε
∗
its)(t,s)∈T . (60)
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Next, let us analyze the generic vector and substitute for the initial estimator from (25):

1√
n

n
∑

i=1

ẑitsε
∗
its =

1√
n

n
∑

i=1

(

zits −
1√
n
W its

√
n(θ̂0n − θ0)

)

ε∗its

=
1√
n

n
∑

i=1

zitsε
∗
its −

1

n

n
∑

i=1

[

W its

(

Λ
√
nfn(θ

0) + op(1)
)

ε∗its
]

=
1√
n

n
∑

i=1

zitsε
∗
its −

(

1

n

n
∑

i=1

W itsε
∗
its

)

Λ
√
nfn(θ

0) + op(1).

(61)

The law of large numbers (Davidson, 1994, Theorem 20.8) and Assumptions A.1 and A.5

imply that
∑n

i=1W itsε
∗
its/n → Pts = E(W itsε

∗
its) for each t and s.

As P = (P ′
(S+1)S , . . . ,P

′
T (T−1))

′, we can rewrite (60) as

1√
n
Ẑ ′ε∗ =

1√
n

n
∑

i=1

(ẑitsε
∗
its)(t,s)∈T

=
1√
n

n
∑

i=1

(zitsε
∗
its)(t,s)∈T − (Pts)(t,s)∈T Λ

√
nfn(θ

0) + op(1)

=
1√
n

n
∑

i=1

Z ′
iε

∗
i − PΛ

√
nfn(θ

0) + op(1)

=
1√
n

n
∑

i=1

τi(θ
0)− PΛ 1√

n

n
∑

i=1

ψi(θ
0) + op(1)

=M
1√
n

n
∑

i=1

ρi(θ
0) + op(1),

(62)

whereM = (IR,−PΛ) and τi(θ0) = Z ′
iε

∗
i = Z

′
iDεi denotes the moment conditions of the

LD-type estimator at θ0.

By Assumption A.1 and A.4, ρi(θ
0) are independent random vectors satisfying E[ρi(θ

0)] =

0. As the second and higher moments exist by Assumptions A.4, the central limit theorem

(Davidson, 1994, Theorem 23.12 and 25.6) imply

1√
n
Ẑ ′ε∗ =M

1√
n

n
∑

i=1

ρi(θ
0)

d−→ N(0,MΣM ′). (63)
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Proof of Theorem 2. Let θ̂n be either LD, PD-LD or MD-LD in (51). By (54), it can be

written as

√
n
(

θ̂n − θ
)

=

[(

W ∗′Ẑ

n

)

V̂ −1
n

(

Ẑ ′W ∗

n

)]−1(

W ∗′Ẑ

n

)

V̂ −1
n

(

Ẑ ′ε∗√
n

)

.

By Assumption A.6 and Lemma 2, it follows for n → ∞

√
n
(

θ̂n − θ
)

=
(

[

Ω′V Ω
]−1

Ω′V + op(1)
)

(

Ẑ ′ε∗√
n

)

.

The claim of the theorem now follows from Lemma 3.
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