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Standard game theoretic modelling starts with the definition of a specific
game, and it ends with the computation of equilibrium strategies. The general
view expressed in this paper is that the equilibrium strategies we derive are
often implausible.
The definition of a game generally includes the description of a specific in-

formation structure, a specific timing of observations and moves by each player,
and specific payoffs associated with the possible moves. Most interactions we
analyze involve a rich information structure, in the sense that the set of possible
signals or observations that an agent may receive or make is huge. In standard
models, this rich information structure translates into a huge strategy space,
with each player attempting to pin down the optimal way to adjust his decision
as a function of the signals he receives or observations that he makes.
We have several objections to the standard approach.
First, we find implausible that players would manage to pin down an optimal

response. It could be through introspection. It would then have be based on
some a priori knowledge of distributions over observations others make or over
signals that others receive, and over payoffs that others get, but where then
would this a priori knowledge, if not faith, come from? It could also be through
learning. But how can this be achieved if the strategy space is huge? At the
very least, the standard approach is silent about that.
Second, we find implausible that players would attempt to find it. The situa-

tions one faces vary, and rather than trying to look for a strategy that is optimal
under a specific circumstance, with no guarantee that it will perform well once
the situation changes slightly, one should better attempt to find strategies that
perform well in a variety of circumstances.
Finally, as modelers, we run two risks: that of finding ‘insights’ that would

only be valid in this limit of arbitrarily sophisticated players; that of spending
much effort on second order effects, and of overlooking first order ones.

Our approach is different, and we shall attempt to illustrate it using various
applications. A crucial aspect of our approach is that among the many strategies
that a player could use, he only evaluates and compares a limited number of
alternative strategies. This subset of alternatives allows the agent to adjust
behavior when the circumstances change. Which subset of alternatives he uses
will have some importance, as it will affect how the games he faces are eventually
played.
Our model can be interpreted as a hierarchical or two-tier model of behav-

ior, whereby not all dimensions of a strategy are endogenized simultaneously:
which strategy within the subset is played is subject to quick adjustment, and
depends on the particular game being played; which subset is used is subject to
slow evolution, and this evolution, if any, is driven by the distribution over the
problems he faces.
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Once the strategy restrictions are made, analysis becomes relatively easy.
One immediate benefit of our approach will thus lie in providing simple models
to address issues usually thought to be difficult to handle.
But we aim for more than just a simpler tool. Our model provides a way to

deal with less sophisticated agents,1 and as such, a tool to check whether the
insights that we derive in standard models are robust to lesser sophistication.
From a methodological perspective, several comments are worth making: for
the insights that are robust, the highly sophisticated agent case points to effects
that seem second order, and it is not clear that those second order effects should
receive special attention, as there is a plentiful of alternative routes to look
for second order effects; for the insights that are not robust, we ought to be
suspicious of those; finally, the power of the explanations we propose lies in the
parsimony of the models we use: how well standard models fare in this respect
is not clear.
As said earlier, once the strategy restrictions are made, analysis becomes rel-

atively easy. One challenge will be to motivate and derive appropriate strategy
restrictions. Depending on the nature of the strategic interaction, or depending
on the nature of the problem that the agent thinks he is facing, different strat-
egy restrictions will be relevant. It is the purpose of the following sections to
suggest plausible strategy restrictions for various strategic interactions.

1 Reputation
An agent’s reputation refers to the assessment(s) that others’ make about that
agent’s abilities, possibly his moral qualities such as honesty, or about the gen-
eral way he handles particular situations or behaves in particular circumstances.
These assessments are based on past observations, and, because one views that
the qualities one attributes to a reputed agent have a good chance to last for a
while, these assessments can be used to predict what to expect from an interac-
tion, hence to determine whether such an interaction is worthwhile: one prefers
to deal with a reputed agent and avoid interactions with non-reputed ones. This
discrimination between reputed and non-reputed agents has one consequence:
it creates an incentive to behave according to standards that promotes one’s
reputation, even if this comes with a short run cost.
We are interested in building a simple model with precisely these ingredients:

on one side, an agent (say a seller, or the Agent — which we will refer to as
player 2) attempting to build or preserve a reputation for good conduct (say,
providing quality goods), and concerned about the possibility that he loses his
reputation if he does not meet the other side’s standard; on the other side,
another agent (say a buyer, or the Principal — which we will refer to as player
1) attempting to discriminate between good and bad conduct, and having the
option to stop buying for a while if he becomes convinced that the prospects
from the interaction are currently not good enough (i.e. that he currently faces
a buyer who tends to provide poor quality products).

1We will discuss how it compares to some alternative approaches, in particular Crawford.

2



Before describing a full model of the interaction, we start by describing the
class of decision problem that player 1 typically faces in such interactions.

1.1 Optimal learning versus Limited learning

In essence, player 1 is facing a two-arm bandit problem. One arm is safe (not
interacting) with payoff normalized to 0. The other arm is risky, as the benefit
from the interaction is uncertain. And in each stage where he interacts, he
receives a signal correlated with the current benefit from the interaction, say he
is satisfied (y = ȳ) or not satisfied (y = y).
To be more precise, we assume that there is an underlying stochastic process

that determines at any given stage the benefit from the risky arm as well as the
probability to receive the good signal (y = ȳ). Formally, there is a state space
Θ, where θ ∈ Θ determines the expected benefit vθ from the risky arm and the
probability pθ to receive a good signal, and there is stochastic process ω over
θ that defines the law of motion of θ over time, and which we assume to be
Markovian.
Ideally, the agent would like to interact if and only if vθ is positive. But

the agent does not observe θ. Yet the signals y that he observes provide him
with information on θ. Following the standard approach, a learning strategy
σ for the agent determines a decision to interact as a function of the history
of observations made so far. The logic of the standard approach would be as
follows: a stochastic process ω defines a particular problem that the agent faces;
call P the set of problems that the agent might face, then for any given ω ∈ P,
one can compute the optimal learning strategy σω.
Our view is that it is implausible that the agent would know the stochastic

process ω that he currently faces. The traditional response is that the difficulty
can be bypassed if one assume that the agent can assess which strategy σ per-
forms best. If that can be done, then by picking the strategy that performs best,
the agent will behave as if he knew ω. However, the set of possible strategies
is huge, and it is implausible all these performance assessments can be done.
Our view is that these performance assessments can only be carried for a

limited number of alternative strategies, and our objective below is to suggest
such alternatives.
One simple alternative would be to decide to always trust and interact (I),

independently of the signal received. This strategy may be represented as a sin-
gle state automaton that always play I, and we will refer to it as rule rI . Another
alternative would be to always distrust and thus avoid interaction (A), again
independently of the signal received. Again this strategy may be represented as
a single state automaton, which this time always plays A (not interacting). We
refer to this alternative as rA.
For any given ω ∈ P, one can compute the long run value Eωvθ associated

with the alternative rI . If the set R of alternatives only consisted of these two
alternatives (i.e. R = {rI , rA}), then the set of problems P would be partitioned
in essentially two subsets depending on whether Eωvθ is positive or negative.
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In both of the above alternatives, the agent does not use past signals to
modify his decision to interact. We now suggest that the agent may be more
sophisticated and attempt to track the state θ using the signal y he just received.
As an illustration, assume that the agent may be in two possible mental states,
normal (N) or upset (S), and that he switches back and forth between those
two mental states as a function of the signal he receives:

N U

y

(λ)

(q)

Under that automaton, transition to U requires that y is received, and it then
occurs with probability q. Transition from U to N occurs with probability λ in
any period. Now define the rule rq,λ induced by the mental system above that
plays I at N and A at U .
For any given pair (q, λ), say (q0, λ0), the rule rq0,λ0 is still a crude one, and

it may be far from optimal for specific problems ω. However, there are problems
ω for which that rule is an improvement over both rI and rN . A collection of
rules that the agent might consider using is thus:

R = {rI , rN , rq0,λ0},

and as above, the set of environments/problems can now be partitioned into
three subsets. We are not saying that there ought to be only three rules, or that
given a three rule constraint, that would be the optimal one to pick.
We are saying that this is a good enough triplet of rules that the agent

could use. One could even argue that this particular triplet is optimal for some
distribution over problems, so assuming a specific collection of rules does not
seem more ad hoc and assuming a specific distribution over problems.
Maybe one point to emphasize is that our approach attempts to separate two

issues: which subset of strategies or collection of rules an agent considers using?
Which strategy within the subset the agent ought to pick? The first question
is related to the distribution over problems that the agent faces, or possibly to
some perception of the problem that he is facing. The second question is related
to the specific interaction that he is currently facing.

1.2 A reputation model.

So far, we have focused on the decision problem of an agent faced with a bandit
problem, and we have proposed a collection of rules that the agent could use
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for any such problem that he faces. The next step is to apply this collection of
rules to the study of a specific interaction.
Stage game. We assume that at any date where the agent interacts (i.e.

takes the risky arm), player 2 decides on an effort level e ∈ [0, 1]. Effort is
costly but it increases the probability that player 1 is satisfied. Whether player
is satisfied (y = ȳ) or dissatisfied (y = y) is private information to player 1. We
assume that

p ≡ p0 + (1− p0)αe,

where α ∈ (0, 1). In the buyer-seller case, α can be interpreted as a taste
parameter that reflects how the seller’s product matches with the buyer’s taste.
We also let v(p)denote the expected payoff that player 1 obtains when he has an
ex ante probability p of being satisfied, and we assume that v(p0) < 0 < v(1).
It will also be convenient to define p∗ as the probability for which the buyer is
indifferent between buying and not buying, that is v(p∗) = 0. Finally, we denote
by cβ(e) = βc(e) the cost of effort for player 2, where β is a cost parameter. In
summary, the stage game will be characterized by two parameters: α, a taste
parameter, and β, a cost parameter, and we let θ = (α, β)..We shall assume
that player 2 observes β, and that player 1 observes neither α nor β.

Dynamic game, strategies and definition of equilibrium.
Turning to the dynamic setting, we shall assume that θ follows a random

process taking values in some set Θ, characterized by a transition matrix ω :
Θ→ Θ.
We shall assume that the agent does not observe the state (nor ω), and that

as explained in the previous section, he restricts attention to a small set of rules
R1, independently of the process ω and of the actions taken by player 1.
As for player 2, we also assume that he restricts attention to a small set of

rules R2, independently of the process ω. Specifically, we assume that he picks
effort as a function of the cost parameter. In principle, player 2 could attempt
to track α by conditioning his effort choice on the current frequency with which
he gets to interact with player 1. We first choose to have him focus on the
information that is presumably most salient, i.e. the cost parameter. We shall
then investigate how enlarging his set of strategies would affect results.
Each pair of rules (r1, r2) ∈ R1 × R2 induces a long run distribution over

payoffs, to which we may thus associate a value vi(r1, r2) for each player i. A
pair of rules (r1, r2) is an equilibrium if for each i, player i has no profitable
deviation in Ri.2

Analysis.
We illustrate our approach through examples.

2Note that we often restrict attention to a finite set of rules, and that an equilibrium in
pure strategies is not guaranteed. With finite sets of rules, an equilibrium in mixed strategies
always exist. Our preferred interpretation of a mixed strategy equilibrium is as follows. Players
alternate between the various rules they consider, and they play each rule ri for a random
length of time that is in expectation increasing, say proportional, to how that rule fares
compared to others. The limit case where the coefficient of proportionality is large converge
to a (possibly mixed strategy) equilibrium
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We start with example 1, in which β remains constant throughout out the
interaction.

Example 1: β is constant and α follows a random process between
two values αH or αL. We let π = Pr(αt+1 = αL | αt = αH), and
π0 = Pr(αt+1 = αH | αt = αL).

In equilibrium, player 2 chooses an effort level e∗ which we are going to
determine. We distinguish several cases.
Case 1: R1 = {rI , rA}.
Player 1 may only use rI or rA, so play is independent of history. It follows

that player 2 has no incentives to make effort, and the probability that player 1
is satisfied when interacting is p0. Since v(p0) < 0, player 1’s optimal alternative
is rA. Hence there is a unique equilibrium: r1 = rA and e∗ = 0.
Case 2: R1 = {rI , rA, rq0,λ0}.
The above observation is still valid, so r1 = rA and e∗ = 0 remains an

equilibrium. We now check whether and when there exists an equilibrium where
player 1 uses rq0,λ0 .
The strategy rq0,λ0 has two roles.
- First it creates an incentive for player 2 to make an effort, because he

is rewarded with a higher frequency of interactions when he makes an effort.
Indeed, when he make an effort e, he generates a probability of satisfaction
equal to p(e, α) = p0 + αe(1 − p0), and a probability of satisfaction p in turn
generates a long run frequency of interactions equal to

φ(p) ≡ λ

λ+ q(1− p)

when α is constant. When α varies, the expression is more complicated, but
still increasing in p hence in the effort e. We can therefore deduce an optimal
value e∗ for the effort of player 2 when player uses rq0,λ0 .
- Second, using rq0,λ0 enables player 1 to track (imperfectly) how his taste

currently match with the product produced. For a given effort level e∗, there
are two possible values for the probability that player 1 is satisfied:

p̄ ≡ p0 + αHe∗(1− p0) and p ≡ p0 + αLe∗(1− p0).

If v(p̄) < 0, then it is always better to avoid interactions: rA is the best response
for player 1. If v(p) > 0, then it is always better to interact: rI is the best
response for player 1. If v(p) < 0 < v(p̄), then rq0,λ0 may be a best response.
The benefit of using rq0,λ0 lies in the fact that it permits player 1 to adjust
the frequency of interactions to p. Ideally, the agent would prefer to adjust
interactions so that he always interacts if p > p∗, and never interacts if p < p∗

— both constant rules rI and rA would then be dominated. Here, adjustment
to the value of p is not perfect and depending on parameter values, rq0,λ0 may
or may not be optimal. It will be optimal for example if v(p) and v(p̄) are
sufficiently far away from 0 (this will be the case if e∗ is not too small and if αH
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and αL are sufficiently far apart). If transition probabilities π and π0 are very
small for example, we have, letting ρ = π0

π+π0 :

v(rq0,λ0 , e∗) = ρφ(p̄)v(p̄) + (1− ρ)φ(p)v(p)

and the equilibrium condition is:

ρφ(p̄)v(p̄) + (1− ρ)φ(p)v(p) > max{0, ρv(p̄) + (1− ρ)v(p)}

Comment: In case v(p) > 0 or ρv(p̄) + (1 − ρ)v(p) > ρφ(p̄)v(p̄) + (1 −
ρ)φ(p)v(p) > 0, the strategy rq0,λ0 creates incentives to make effort that are
strong enough that the strategy rI that always interact becomes the best strat-
egy for player 1. This means that there cannot be an equilibrium in pure
strategy where interactions occur. However, there may exist an equilibrium in
mixed strategy, where player 1 plays rq0,λ0 with frequency, say η. A lower η
implies a smaller marginal effect of effort on the frequency of interactions, hence
a reduced incentive to make effort, thereby reducing both p̄ and p. A mixed
strategy equilibrium exists if for some effort level e∗, the equality

ρφ(p̄)v(p̄) + (1− ρ)φ(p)v(p) = max{0, ρv(p̄) + (1− ρ)v(p)}

holds.

We now move to example 2, in which α remains constant but β varies.

Example 2: α is constant and β follows a random process between
two values βH or βL. We let π = Pr(βt+1 = βL | βt = βH), and
π0 = Pr(βt+1 = βH | βt = βL).

The difference with the previous example is that player 2 may now adjust
his effort level to his cost, so his optimal strategy will be characterized by two
numbers e∗H and e∗L.
As above the case where R1 = {rI , rA} does not allow for reputation forma-

tion: there is a unique equilibrium, in which r1 = rA and e∗H = e∗L = 0.
The case where R1 = {rI , rA, rq0,λ0} is the more interesting one: while

(r1 = rA, e∗ = 0) remains an equilibrium, there may also be an equilibrium
involving rq0,λ0 . The logic is identical. The strategy rq0,λ0 has again two roles.
It creates an incentive for player 2 to make an effort, and since the cost of effort
varies, two distinct values e∗L and e∗H for the level of effort result, as a function
of β.
These distinct effort levels generate two distinct values for p, p̄ = p(e∗H , α)

and p = p(e∗L, α). For player 1, using r
q0,λ0 enables him to track (imperfectly)

how the cost hence the probability p varies, and, depending on parameter values,
this may turn out to be a better strategy than both rI and rA.
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Example 3: Same as example 2, but with βL < 0: player 2 then
strictly prefers to make highest possible effort, that is e∗L = 1 at all
times.

This example is in the spirit of the models studied in the literature, and
that have introduced behavioral types. We introduce it to make easier the
connections with the literature.
Player 2(L) continues to make effort whatever the strategy of player 1. The

consequence is that there may no longer be an equilibrium where player 1 always
avoid interactions.
In case R1 = {rI , rA}, player 2 (H) has no incentives to make an effort.

Letting p̄ = p(α, 1), the value from interacting for player 1 is thus ρv(p̄) + (1−
ρ)v(p0), and player 1 has an incentive to play rI if

ρv(p̄) + (1− ρ)v(p0) > 0,

that is if ρ is high enough. Of course, ρ has to be quite large for this to be true.
Consider now the case where R1 = {rI , rA, rq0,λ0}. The condition under

which ”not interacting” fails to be an equilibrium is weaker than before, as it is
enough that:

max(ρv(p̄) + (1− ρ)v(p0), ρφ(p̄)v(p̄) + (1− ρ)φ(p0)v(p0)) > 0

The condition is strictly weaker if α is large enough, because then p̄ gets close
to 1 hence φ(p̄) gets close to 1. When α = 1, the condition:

ρv(1) + (1− ρ)φ(p0)v(p0) > 0

ensures that player 1 uses rq0,λ0 in equilibrium, thereby creating an incentive
for player 2(H) to make some effort. For some rq0,λ0 , φ(p0) can be quite small
(this is the case when λ0/q0 is small), and the above inequality holds even when
ρ is small.
This latter observations explains why the presence of a behavioral make it

possible to avoid the ”no interaction equilibrium”. As more rules are available to
the agent, it becomes easier to find one for which φ(p0) is small and φ(p̄) is large,
then explaining why a small uncertainty may swamp out the ”no interaction”
equilibrium.
Now observe that the incentive to make effort for player 2(H) cannot be too

strong, because if it were, and if player 2(H) was induced to make some effort
e∗H such that p = p(α, e∗) > p∗, then there would no longer be incentives for
player 1 to use the rule rq0,λ0 that discriminates between states (H) and (L).
The consequence of the latter observation is that in equilibrium, if ρ is small,

then player 2 (H) must have incentives to choose effort close (and slightly below)
p∗. This is a (simpler) version of the usual Stackelberg result.

Summary:
The examples above share one key ingredient. There is an underlying state

not known to players and that has sufficient permanence. Examples 1 and 2
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are meant to suggest that the underlying state need not be confined to a cost
type for player 2 (the parameter β), but could also be related to how current
circumstances affect how well player 2’s effort matches player 1’s needs.
The uncertainty about the current state and its permanence creates an in-

centive to use rules of behavior that condition play on observations correlated
with the current state, because the signals can help track the current state.
This is precisely what player 1 does, creating an incentives for player 2 to make
effort.
We have focused on rules rλ,q that alternate between two possible mental

states. The approach can be generalized to rules that have more states, each
different state representing a different degree of trust in player 2’s behavior.
Example 3 is meant to capture the main working hypothesis of the standard

literature: the possibility that will small probability player 1 is facing a behav-
ioral type that plays in a specific way, and the conclusion that it induces the
rational type (here player 2(H)) to mimic the behavioral type (here, to make
higher effort).

Extensions.
Many signals. We have assumed that player 1 could either be satisfied or

dissatisfied. One interpretation is that he may only be receiving two signals.
Another interpretation consistent with our model is that there is a much reacher
set of signals that he may be receiving, say Y , and that he classifies or partitions
the signals into two categories. Once the set of signals Y is partitioned into two
subsets, say y and ȳ, with Y = y∪ȳ, then our analysis applies almost unchanged.
Assuming that there is an underlying distribution f(y | e, α) that describes how
signals are generated as a function of player 2’s effort level and some parameter
α, one can define:

p(e, α) =

Z
y∈ȳ

f(y | e, α)dy

and apply our analysis using this specific function.
Different partitions would generate different functions p(., .), thereby affect-

ing the possibility to generate a reputation mechanism in equilibrium. But qual-
itatively the same conclusions would remain, the joint possibility that player 1
finds optimal to use a sophisticated strategy and that player 2 has incentives to
make some effort.
Now which partition is reasonable is a legitimate question, as was the ques-

tion asking which subset of strategies should the agent consider. Endogenizing
which partitions would arise based on optimality criteria would have some the-
oretical appeal. However, as we have already emphasized, our view is that it
is implausible that an agent would be looking for a partition that would be
optimal in the space of all possible partitions (let alone the fact that optimality
would be specific to the particular distribution over signals chosen).
Rather our view is that the agent has a perception of the problem he is

facing, most plausibly an erroneous one, and that this perception could guide the
partition he consciously or unconsciously selects. As an illustration, we might
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assume that he has a perception that signals are either generated according toef(y | eH), or according to ef(y | eL), and that the (perceived) likelihood ratio
el(y) = ef(y | eH)ef(y | eL)

then determines, by comparing it to some threshold l∗, whether he is satisfied
or unsatisfied:

ȳ ≡ {y,el(y) > l∗} and y ≡ {y,el(y) < l∗}.
More sophisticated strategies. One could think of several ways by which a

rule of behavior could be more sophisticated than rλ,q. There could be more
states. There could also be more categories than ”satisfied” or ”unsatisfied”,
for example various degrees of satisfaction, generating different transition across
states.
More signals (continued). We have assumed that if he does not interact,

player 1 receives no signals. It is conceivable however that he would receive
signals from other sources. This would for example be the case if player 2 were
also interacting with other players, and if, in addition, he were to receive signals
z ∈ {z̄, z} correlated with other player’s satisfaction.3 A natural extension of
rλ,q would be to consider the automaton:

N U

y

(λ)

(q)

or z (k)

or z (h)

and have player 1 play I at N and A at U . In comparison with rλ,q, the above
automaton is characterized by three parameters (λ, q, h, k)), and it provides
player 1 with an additional chance (k) to transit back to N , in the event good
news (ȳ) has been received, and with an additional ”chance” (h) to transit from
N to U in the event y is received.4

To illustrate the kind of insight one could get, let us discuss two cases:
R1 = {rI , rA, rq0,λ0} and R2 = {rI , rA, rq0,λ0,h0,k0}.
If player 1 interacts very infrequently with player 2, then under R1, we

should not expect rq0,λ0 to be particularly useful. Now under R2, if satisfaction
for other players is poorly correlated with player 1’s satisfaction, then the rule
rq0,λ0,h0,k0 will induce a behavior that is not that different from a mixed strategy
uncorrelated with the true state, and for most parameters, that rule will not be
a best response for player 1. No reputation should emerge in this case.

3Think here of many player 1s, all interacting relatively unfrequently.
4That is, at the end of each period, Pr(U → N | y) = λ and Pr(U → N | ȳ) = λ+(1−λ)k.
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In other words, the possibility that player 1 uses rule rq0,λ0,h0,k0 may be
useful in context where player 1 interacts infrequently, and where other players’
tastes are correlated with player 1’s.
Discussion and comparison with the literature.
Standard approaches to reputation start with the possibility that (with small

probability) player 2 follows some pre-determined behavior (a crazy, or say hon-
est, type). The exercise then consists in endogenizing the behavior of the ratio-
nal (or non-crazy type) player 2, as well as player 1’s behavior and beliefs about
player 2’s honestly. One can interpret these beliefs as a measure of player 2’s
reputation. Deriving equilibrium behavior and beliefs is a relatively simple task
when behavior is observed perfectly, as reputation completely vanishes as soon
as observed behavior conflicts with that of an honest type. That task is much
more difficult when observations are noisy (and private), and results generally
take the form of a bound on equilibrium payoffs for arbitrarily patient players,
with little qualitative insights on how past observations concur to generate a
good (or bad) reputation.5

The simplicity of our approach lies in the fact that for the possible rules
considered, there are only few ”belief states” in which player 1 can be. Under
rI or rA, there is a single ”belief state”, and thus no hope for reputation effects.
Under rq0,λ0 , there are two beliefs states, as player 1 thinks either highly or
poorly of player 2, with changes from one belief state to the other being fixed
exogenously as a function of the signal received. With these two belief states,
one can hope for reputation effects, as player 2 can try to influence player 1’s
belief state through his actions. However there is no guarantee that player 1
will wish to use that rule, and our analysis is precisely aimed at finding the set
of parameters for which this will be the case.

2 Cooperation
Through the course of a relationship or partnership, incentives to invest vary:
at times we may be upset over the way the partnership goes, with poor expecta-
tions for sustained cooperation and little hope that making effort would increase
prospects; at other times, we feel good about prospects, ready to invest again
in the relationship and worried that decreasing effort would undermine coop-
eration. We are interested in building a simple model that explains conditions
under which cooperation (i.e. high effort level on both sides) can be sustained.
A partnership bears some resemblance with the strategic interaction just

studied. The basic stage game is essentially identical. A player chooses an effort
level, and this affects whether his partner will be satisfied or dissatisfied. There
is a difference however, as moral hazard is two sided, and sustained cooperation
requires that both sides make an effort. In the rest of this Section, we shall
assume that the stage game is played repeatedly, with one player choosing an

5Standard approaches also have a hard time dealing with settings where behavioral uncer-
tainty does not stem from the existence of crazy types but from cost or preference uncertainty.
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effort level, next the other player choosing an effort level. And so on indefinitely.6

From a given player’s perspective, an objective may be to attempt to dis-
criminate between instances where effort is worthwhile, and instances where
it is not, and discrimination can be based on the signals that the player gets
(i.e. whether he is satisfied or not). Discrimination is key, because as in the
reputation model, if such an attempt take place, this tends to create incentives
for the other side to make some effort.
But this cannot be the full story: if for the other side, the incentives to make

effort do not vary over time, and if effort therefore remains unchanged, there
won’t be incentives to discriminate in the first place. The objective of what
follows is to explain how this can be achieved.
As before, we start by describing the class of decision problem that each

player typically faces in such interactions.

2.1 The decision problem

In partnership games of the kind described above, the decision problem is more
complex than that studied before. Even if we limit ourselves to two possible
effort levels e ∈ {0, 1}, so that again we can think of a two arm bandit problem
(one arm for each effort level), a key difference is that the benefits from taking
a particular arm may now depend on his own previously chosen effort levels.
Formally, there is an underlying state space Θ, where θ ∈ Θ determines an
expected benefit vθ and the probability pθ to receive a good signal, and there
is stochastic process ω (assumed to be Markovian) that defines a transition
probabilities over states as a function of one’s current effort level.
Following the standard approach, a strategy σ would determine an effort

decision e as a function of the history of observations made so far, but as before,
we find implausible that an optimal strategy could be found.
Rather, we will focus on few rules or alternatives that an agent might con-

sider using.
One simple alternative would be to decide to always make effort, indepen-

dently of the signal received. This strategy may be represented as a single state
automaton that always play e = 1, and we will refer to it as rule rC . Another
alternative would be to never make effort, independently of the signal received.
Again this strategy may be represented as a single state automaton, which this
time always plays e = 0. We refer to this alternative as rD.
In both of the above alternatives, the agent does not use past signals to

modify his decision to interact. We now suggest that the agent may be more
sophisticated and attempt to track the state θ using the signal y he just received.
As an illustration, assume that the agent may be in two possible mental states,
normal (N) or upset (S), and that he switches back and forth between those

6Another difference with the reputation game is that stopping the interation for a while is
no longer an option.
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two mental states as a function of the signal he receives:

N U

y

(λ)

(h)

or y (k)

Under that automaton, transition to U requires that y is received, and it
then occurs with probability h. Transition from U to N occurs with probability
λ in any period, with an additional chance to transit back to N in case y = ȳ
has been received.7 Now define the rule rh,k,λ induced by the mental system
above that plays e = 1 at N and e = 0 at U .
For any given triplet (h0, k0, λ0), the rule rh0,k0,λ0 is still a crude one, and it

may be far from optimal for a specific problem ω. However, there are problems
ω for which that rule is an improvement over both rC and rD. A collection of
rules that the agent might consider using is thus:

R = {rC , rD, rh0,k0,λ0}.

2.2 A partnership game.

Given the class of problems that the agent faces, we have proposed a collection
of rules that the agent could use for any such problem that he faces. The next
step is to apply this collection of rules to the study of a specific partnership
model.
Stage game. There are two kinds of stage game, depending on who has the

option to make an effort. In stage game 1, player 1 decides on an effort level
e1 ∈ {0, 1}. Effort is costly but it increases the probability p(e) that player 2 is
satisfied. Whether player is satisfied (y = ȳ) or dissatisfied (y = y) is private
information to player 1. We let p0 ≡ p(0) and p1 ≡ p(1). We also let v(p)denote
the expected payoff that a player obtains when he has an ex ante probability
p of being satisfied, let v0 ≡ v(0) and v1 ≡ v(1) and we assume that v0 < v1.
Finally we denote by c the cost of effort. Stage game 2 is defined similarly, with
player 2 making effort.
In summary, the stage game is characterized by the vector of parameters

ξ = (p0, p1, v0, v1, c). For simplicity we shall assume that these parameters do
not vary overtime, but in principle they could.

Dynamic game, strategies and definition of equilibrium.
The stage game described above is repeated, with each player taking turn in

getting the option to make an effort, and as before, we assume that each player
restricts attention to a small set of rules Ri = {rC , rD, rh0,k0,λ0}.

7That is, at the end of each period, Pr(U → N | y) = λ and Pr(U → N | ȳ) = λ+(1−λ)k.
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Each pair of rules (r1, r2) ∈ R1 × R2 induces a long run distribution over
payoffs, to which we may thus associate a value vi(r1, r2) for each player i. A
pair of rules (r1, r2) is an equilibrium if for each i, player i has no profitable
deviation in Ri.

Result.

Proposition (Compte and Postlewaite 2010): (rD, rD) is al-
ways an equilibrium. But there also exist a non-trivial set of para-
meter values for which sustained cooperation (in which each player
follows rule rh0,k0,λ0) is an equilibrium. The condition h0 < k0 is a
necessary condition for existence of such an equilibrium.

In essence, the reason why a cooperative equilibrium exists is as follows.
The rule rh0,k0,λ0 induces play that depends on the history of signal received.
In contrast to the reputation example, uncertainty about the stage game para-
meters ξ is not be needed to provide players with incentives to use such a rule.
The mere fact that, say player 2 uses rule rh0,k0,λ0 creates endogenous strategic
uncertainty, and at least for a non trivial subset of parameter values h0, k0, λ0,
this fact alone may be sufficient to make optimal the choice of rule rh0,k0,λ0 . by
player 1.
It is not guaranteed however that rh0,k0,λ0 is always an equilibrium. If h0

is too small, then incentives to play rD will be strong. If k0 is smaller than
h0, then recoordination on cooperation is difficult, which makes the alternative
rC an attractive one because it avoids spending much time in phases where no
player makes effort.

3 Cautiousness
Limiting the strategy sets has proved helpful in providing simple intuitions and
insights on otherwise complex problems. We now wish to illustrate the con-
sequences of not limiting the strategy sets. Beyond the technical difficulties
that this creates, we bring up to two issues: (i) it prevents us from separating
between first order and second effects; (ii) it leads us to restrict attention or for-
mulate informational assumptions in ways that ensure the model can be solved,
with the consequence that it may sometimes shape our intuition in special ways.
This section mostly attempts to illustrate the first issue.
We are interested in building a simple model of cautiousness. We have in

mind that the decision problems we face vary a great deal, and that when faced
with a specific one, an agent is uncertain about the appropriate decision that he
ought to take. He may come up with some estimate of the appropriate decision,
but inevitably, and despite being aware of it, his estimate will incorporate errors.
How then should he behave? Common sense would call for cautiousness, that

is, not taking the estimate at face value. What cautiousness means varies across
problems. In one dimensional problems in which overshooting the decision is
more costly than undershooting it, caution would mean shading one’s estimate.
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And how cautious he ought to be should presumably depends on the magnitude
of the errors that he tends to make. We are interested in building a simple
model that captures these intuitions.

3.1 A simple class of decision problems.

For each decision problem that the agent may face, there is an appropriate
decision that he ought to take. We denote by s ∈ R that decision and refer
to it as the state. The agent however does not know the appropriate decision.
Rather, he forms a noisy estimate of the state, which we denote x. We assume
that

x = s+ αε.

where ε is an error term (independent of the state) drawn according to some
distribution h, α ≥ 0 parameterizes the magnitude of the error and is drawn
from g (independently of s and ε), and s is drawn according to some distribution
f . We let ω = (f, g, h) summarize the environment that the agent faces, and P
the set of possible environments. As usual, we assume that the agent does not
know the environment ω that is he facing.
We denote by u(a, s) the utility that the agent gets from taking action a

when the appropriate action is s. We define the difference u(s, s) − u(a, s) as
the loss function and assume below that it depends only the difference z = a−s.
We let L(z) denote the loss function.
Plausible alternatives. One (naive) alternative that the agent could follow

would be to take his estimate at face value:

r0(x) ≡ x

Other alternatives would have him pick an action that distorts, upward or down-
ward, his initial estimate. We define rule rγ as:

rγ(x) ≡ x− γ

We examine three cases:

Case 1: R1 = {r0, rγ0 , r−γ0}.
In that case, the set R1 is a relatively simple set of rules. The agent is unsure

as too whether his estimate is correct or not, and he learns from comparing the
relative performance of these rules whether he ought to be cautious, and distort
the decision he takes upward or downward. By doing so, and despite not knowing
the distribution over problems that he face nor the distribution over the errors
that he makes, he partitions the set of environments P into three classes, as a
function of whether EεL(αε), EεL(αε− γ) or EεL(αε+ γ) is largest.

Case 2: R = {rγ}γ∈R
This is a more sophisticated set of rules. The agent obtains EεL(γ + αε))

by following rule γ, so the optimal choice of γ is the value γ∗ that solves

EεL
0(αε+ γ∗) = 0.
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For example, with a quadratic loss function, the cost from overshooting
or undershooting the optimal decision is the same, and not surprisingly, one
obtains γ∗ = 0. With preferences that would generate a cost from overshooting
the decision, for example:

L(z) = −z2 if z ≤ 0
= −z2 − βz if z > 0,

the optimal decision is to choose γ∗ that solves:

γ∗ =
β

2
Pr(αε > γ∗),

that is, shading one’s estimate, with shading being stronger when αε is more
dispersed or when the cost parameter β is larger.

Case 3: no restrictions
This case corresponds to a standard model of decision under uncertainty,

with no limits put on the set of rules that the agent considers: any function
r(x) is a possible alternative for the agent (case 3). In general, computing the
optimal rule is difficult. To compute it in closed form, we turn to a special case,
assuming that the loss function is quadratic, that s and ε drawn from normal
distributions, say N (s0, σ) and N (0, σε), and that α is constant. The optimal
rule is then

r∗(x) ≡ x− γ∗(x)

where

γ∗(x) ≡ E[αε | x] = − α2σ2ε
α2σ2ε + σ2

(x− s0).

In other words, the agent ought to exercise caution and not take his estimate at
face value. Being aware that his estimate may be mistaken, he ought to correct
it by γ∗(x), taking into account the joint distribution over problems and errors
(this is regression to the mean, s0).

3.2 Discussion.

Tracking relevant aspects of ω. A central assumption of our approach is that
the agent does not know the specific environment he is facing ω. Going from
case 1 to case 3, one sees how enlarging the set of rules considered translates
into a fine dependence of γ∗ on the specific environment ω. Despite not knowing
ω, the set of rules that he evaluates allows him to track some aspects of ω that
are relevant to his decision problems. This tracking of ω is crude in case 1,
but it nevertheless permits to understand under which circumstances he should
(or should not) exert caution. Case 2 gives a more complete picture, as one
can derive the magnitude of the caution he should exert as a function of the
dispersion of his errors. Case 3 goes one step further, and our view is that
this step is questionable. The agent behaves as if he knew ω in fine details. In
particular, he behaves as if he was able to make inferences about the precision
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of his signals, or on the bias of his estimate, just based on the actual value of
the estimate he gets. Our view is that it not plausible that an agent would do
that, and that in most applications, this is at best a second order effect.

Signals about ω. We do not claim that an agent is unable to make some
assessment about the accuracy if his estimate. Depending on the type of problem
he faces, or the difficulty that he experiences in just coming up with an estimate,
an agent could have an assessment of the precision of his estimate that differs
across problems.
For example, if we are given one second to evaluate the square root of 4307,

then whatever the estimate we come up with, we will probably be less confident
about that estimate than if we are asked the square root of 10020. Besides, the
value of the estimate we get will probably not be that relevant to assessing its
accuracy.
Consistent with the example above, our view however is that this assessment

of accuracy should be modelled as a distinct signal, for example a signal ρ ∈
{h, l} correlated with α (say with h more likely when α is larger).
A rule would now be a function of x and ρ. For example one could define

rγ,µ as
rγ,µ(x,L) = x− γ and rγ,µ(x,H) = x− µ

and then
R = {rγ,µ}(γ;µ)∈{0,γ0,−γ0}2

thereby allowing the agent to assess when it is useful to take into account his
own perception of whether his estimate is accurate.

Diffuse priors. To conclude, let us mention some of the difficulties we point
out with case 3 can be bypassed if one assumes a diffuse prior over states. Under
that assumption, observing a particular estimate x does not provide information
about the estimation error (sign and size) one makes, and the corrective term
γ∗(x) corresponds to that which obtains in the limit where σ2 is infinite. As-
suming a diffuse prior can thus be viewed as a device that enable the modeler to
abstract from details which he thinks are irrelevant to the decision problem or
strategic interaction being considered. We will get back to this when we discuss
auctions.

3.3 Extension to choice problems.

We shall restrict attention to a class of choice problems between two alternatives,
one of which, labelled a, can be easily evaluated by the agent, the other, labelled
b, being not so easy to evaluate (by the agent).8 We associate to each alternative
k = {a, b} a state sk with the understanding that taking alternative k yields
utility u(sk) to the agent.9 If the agent knew the state s = (sa, sb), the optimal
decision would consist in choosing the alternative k ∈ {a, b} for which sk is
largest.

8Extension to more general cases is easy.
9 If k is lottery, sk would thus correspond to the certainty equivalent associated with k.
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However, the agent knows sa but does not know sb. Rather, he forms a noisy
estimate of the state sb.10 Accordingly, we let x = (xa, xb), and assume that
xa = sa and

xb = sb + αbεb.

where as before εb is an error term (independent of the state) drawn according
to some distribution h, αb ≥ 0 parameterizes the magnitude of the error and is
drawn from g (independently of s and εb), and s is drawn according to some
distribution f . We let ω = (f, g, h) summarize the environment that the agent
faces, and P the set of possible environments. As usual, we assume that the
agent does not know the environment ω that is he facing.

Plausible alternatives.
One (naive) alternative that the agent could follow would be to take his

estimate at face value and pick the alternative that maximize xk :

r0(x) ≡ argmax
k

xk

Other alternatives would have him first distort, upward or downward, his esti-
mate xb by γ. Letting γa = 0 and γb = γ, we thus define rule rγ as:

rγ(x) ≡ argmax
k

xk − γk

To the agent, the performance of a rule rγ is given by the expected utility he
obtains under ω when he follows rγ .11 We denote is v(rγ):

v(rγ) = Eωu(rγ(x))

We examine the case where R1 = {r0, rγ}.
The environment ω defines the size of the errors that the agent is making and

the agent’s risk aversion affects how costly these errors are. With sufficiently
large errors and risk aversion, rule rγ performs better, and the agent thus learns
to be cautious of his estimate xb. Otherwise, the agent prefers to take his
estimate at face value.

Cautiousness vs ambiguity aversion.
Whenever rγ is optimal with γ > 0, one could conclude that the agent

is subject to ambiguity aversion. This effect however just reflects the effect
of the agent’s uncertainty as to the accuracy of his estimate, and it results
from a standard notion of risk aversion combined with the noisiness of the
estimation. Two risk averse agents with different dispersion of estimation errors
but otherwise identical value estimate y and attitude toward risk would behave
differently. So there could be differences in behavior from these two agents,

10An alternative assumption would be to assume that he forms an estimate of the difference
z = sa − sb, as it may sometimes be easier to evaluate differences than each alternative
separately.
11This is not a computation that the agent performs. It should be interpreted as the average

utility that the agent experiences when confronted with ω for a long enough time.
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despite the fact that they have the same preferences and the same value estimate
y. Differences in behavior would be explained by differences in the strength or
accuracy of their estimates.

Illustration.
Examples meant to illustrate ambiguity aversion are usually made in a con-

text of choice between lotteries. The analysis applies to choice over lotteries, but
it also applies to choices over sure outcomes, as the following example illustrates.

Option a: you get $1M (for sure)

Option b: you get x times $1M (for sure), where x is computed in
the following way.

Define pn to be the nth prime number, and set x = 2pn+1−pnln pn
for

n = 1003.

Which option would you take?
For people who know Riemann’s hypothesis or the prime number theorem,

that is, asymptotically, there are lgn numbers less than n that are prime, option
b might look like a good bet, so that a reasonable estimate of x is 2. Of course,
for people who also happen to know the twin prime conjecture, which states
that there are infinitely many pairs of prime numbers whose difference is equal
to 2, option b might look a bit risky, unless they happen to be able to compute
p1003 fast.
So option a and b are two sure bets that do not call for the same decision as

n varies. Yet our guess is that most people would have answered in the same
way to that question, whatever the number n > 1003 would have be chosen to
describe option B, and that they might be more inclined to choose B if they
get to pick n (above 1003).

3.4 Summary

The underlying model of behavior proposed can be summarized as followed.
There is an underlying state s ∈ S that defines all what the agent would need
to know to take an appropriate decision. The decision maker gets data that we
summarize by a vector z ∈ Z. The process by which data is generated can be
summarized by a joint distribution ω over (z, s). That process however is not
known to the agent. He may form some ideas about the process that generates
it or the accuracy of the estimates he forms, but this is formalized as a signal
that is included in the description of z (see for example (x, ρ) in the discussion
section). Note that the data the agent gets may include the fact that he feels
unable to evaluate some alternatives, or to compare it with others.
Next the agent is endowed with a number of rules R. A rule r ∈ R maps

each z ∈ Z to a decision a. Defining u(a, s) as the utility that the agent derives
from taking a (possibly inappropriate) decision a when the state is s, one can
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define the performance v(r) associated with a rule r as Eωu(r(z), s). We assume
that the agent is able to pick the rule that has maximum performance:

r∗ = argmax
r∈R

v(r)

Looking at simple sets of rules, we easily obtain the insight that estimation
errors combined with risk aversion is a source of caution. Caution may take
different forms, depending on the class of problem the agent faces. In section
3.1, with larger costs from overshooting the caution will mean shading one’s
decision. In Section 3.2, caution means tilting the decision in favor of the one
for which we know we are not making estimation errors. It also implies that more
caution should be expected from less sophisticated agents (for whom estimation
errors are likely to be larger), or when alternatives are more complex to evaluate
or compare. (more abstract reasoning required, more complex computations,
compound lotteries...).
Looking at simple sets of rules is not crucial however. Similar insights would

obtain even if we did not restrict the set of rules. But they would be mixed
up with another one: as in case 3 in section 3.1., the optimal rule would also
take the joint distribution over (z, s) in a fine way, with the agent implicitly
modifying his estimating to take into account the distribution over problems
that he faces.
Beyond simplicity, the model of decision that we propose has an important

difference with standard decision models. In standard models, modelling uncer-
tainty proceeds exactly as above, with a joint distribution (ω) over signals (z)
and states (s). Poorly informed agent are then modelled as agents for whom z
is poorly correlated with s. These agents are poorly informed of s but yet they
have (or end up behaving as if they had) a precise knowledge of ω. If the agent
already finds is hard to figure what the state s is, it is presumably even harder
for the agent to figure what ω is within P , it seems odd to restrict our attention
to cases where the agent would know ω for sure.

4 Information transmission
When uncertain about what decision we should take, we may seek or get advice
or opinion from an external source. As a decision maker, we cannot be sure
however that the advice we get is reliable, and we have to decide whether, when
and how that advice should be taken into account. As an expert, we may have
a vested interest in the decision about to be taken, or we may wish that our
advice is followed, and these considerations may affect the advice we give.
These two strategic considerations are linked, as the extent to which an

expert bias his advice should affect the extent to which the agent trusts the
advice.
The seminal work on this issue is due to Crawford and Sobel, and the form

of the equilibria that they obtain has shaped our intuition about how expert’s
information is transmitted in this type of strategic environment (i.e. partition
equilibria).
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We provide here a simple model of information transmission that accounts
for the strategic issues described above. Our objective is twofold: (i) we wish
to illustrate how our approach can be applied to information transmission; (ii)
we wish to point out how tractability motives in the standard approach leads to
special informational assumptions, that in turn shapes our intuition in a special
way.

Before describing the strategic interaction, we start by describing the class
of decision problem that the decision maker typically faces in such interactions.

4.1 The decision problem

We consider a class of decision problems where (i) the agent is uncertain about
the appropriate decision he ought to take, and (ii) the agent receives additional
information from a possibly unreliable source. The agent’s initial uncertainty
will be modelled exactly as in previous Section, as a noisy estimate of an un-
derlying state. The additional information will be modelled as another possibly
noisy estimate of that same underlying state.
We now turn to the formal model.

Preferences. For each decision problem that the agent may face, there is an
appropriate decision that he ought to take. We denote by s ∈ R that decision
and refer to it as the state, and choosing a decision a different than s involves
a cost, which we assume to be quadratic: u(a, s) = −(a− s)2.

Initial uncertainty. We assume that the agent does not know the appropriate
decision. Rather, he forms a noisy estimate of the state, which we denote x. We
assume that

x = s+ αε.

where ε is an error term (independent of the state) drawn according to some
distribution h, α ≥ 0 parameterizes the magnitude of the error and is drawn
from g (independently of s and ε). We assume that s is drawn from a diffuse
prior on R.

Additional information. We assume that the agent obtains another estimate,
say y, of the appropriate decision. Such an estimate might come from an advice
given by some other agent, or from taking a fresh look at the problem. For the
sake of illustration, assume that

y = s+ α0ε0

where ε0 is drawn from the same distribution h as before (independently of s
and ε), and where α0 ≥ 0 is drawn from R+ according to some distribution g0.
Finally, we let ω = (g, g0, h) summarize the environment that the agent faces,

and P the set of possible environments. As usual, we assume that the agent
does not know the environment ω that is he facing.
In general the agent ought to take this new estimate into account, because

both x and y are informative of the true state. Exactly how he ought to take it
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in account may not be an easy task though. A fully rational agent who would
know ω would have to compute the function

φ(z) = E[ε | αε− α0ε0 = z].

The optimal decision would then consist in choosing

a∗ = x− φ(x− y)

Our view is that it is not plausible that a decision maker would know φ nor
is it plausible, even in this relatively simple strategic environment (only one
additional estimate y, no correlation across errors, both errors are unbiased)
that the decision maker would learn to play optimally, that is, that he would
find out the function a∗(x, y) that would maximize welfare among all possible
functions — a hopeless task.
Rather, we find it more plausible that an agent would try to look for an

optimal strategy among a limited number of alternatives, and our objective
below is to suggest such alternatives.

A minimal set of alternatives.
A simple rule of thumb that the agent might use would be to ignore the

additional estimate, hence choose a = x. Another one would be to trust it, hence
choose a = y. . We shall refer to these alternatives (or rules) as I (ignore) and T
(trust). We denote by v(r) the value associated with an alternative r(∈ {I, T}).
Letting σ2 = Eε2, we have:

v(I) = −Eα2 σ2, and
v(T ) = −Eα02 σ2

Equipped with this simple set of possible decision rules, the agent thus partitions
the set of environments into two subsets:

PT = {ω | Eα02 < Eα2} and PI = {ω | Eα02 > Eα2}.

That is, he ends up trusting the second estimate, or ignoring it, depending on
how Eα2 compares to Eα02.12

A larger set of alternatives.
Rather than being either fully trusting or fully distrusting, the agent might

try to discriminate between reliable and poorly reliable signals. Since a large
value for the difference | y−x |may be an indication that y is poorly informative,
one plausible rule of behavior is that the agent ignores the signal if | y − x |
is above a threshold, say k, and that he trusts the estimate y otherwise:13 We
shall call rk this threshold rule.
12One possible interpretation is that x coincides with first hand information on a particular

case, while y corresponds to aggregate data on similar cases. The agent ends up trusting more
x than y when y is noisier estimate of each specific case. This could account for the difficulty
that agents apparently face in taking into account aggregate data.
13What would determine the agent’s threashold is somewhat arbitrary. For an agent who has

a precise idea of the distribution h, these threashold could be parameterized by the probability
that | y − x | be consistent with y being a perfect estimate, i.e. the value of Pr{| ε |≥ k}.
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For a given k0 > 0, the rule rk0 is still a crude rule, but it may improve the
agent’s welfare over both I(= r0) and T (= r∞). A collection of rule that the
agent might consider using is thus

R = {rk}k∈{0,k0,∞},

and as above, for any ω, one can compute the value v(rk) associated with rule
or alternative k. The set of environment can thus be partitioned into three sets
{Pk}k∈{0,k0,∞} depending on which rule is optimal.

4.2 Strategic information transmission

We consider the usual strategic environment in which one agent makes an ob-
servation y0 = s and sends a signal y to the decision maker, and in which the
agent is biased compared to the decision maker: his preference are quadratic
with a bliss point at s+ b.
The decision maker has an initial estimate x = s+ ε of the true state, and

he receives the signal y sent by the agent. Based on these two estimates x and
y, he take a decision. The set of rules R that he considers is defined as above,
and we will illustrate our approach by considering two cases: R = {I, T} or
R = {I, T, rk0}.
From the perspective of the sender, a plausible rule is that he bias his es-

timate y0 by a constant amount ∆ when he makes a report, thus choosing
y = m∆(y0) where

m∆(y0) = y0 +∆.

We will study the case where the set of rules that the agent considers is:

M = {m∆}∆∈R.

A rule profile then consists of a pair (m∆, r) ∈ M × R. To each such pair, we
may associate values for each player, and for any given set of rules M and R,
we may define an equilibrium accordingly.

Example 1: R = {I, T}
There exists an equilibrium with no information transmission where ∆ is

large and r = I. So long as b2 < σ2 there also exists an equilibrium where the
agent chooses ∆ = b and r = T . In words, information can be transmitted so
long as the agent’s bias is not too large compared to the noisiness of the decision
maker’s signal.

Example 2: R = {I, T}, sender observes a noisy signal y = s+ αε0.
There exists an equilibrium with information transmission so long as α2σ2+

b2 < σ2. Information can thus be transmitted is the agent’s bias is not too
large, but the constraint is tighter because the agent’s signal is not that good.

Example 3: R = {I, T, rk0}
For a range of k0, there exist equilibria with information transmission where

the decision maker chooses rk0 and the sender chooses some ∆ ∈ (0, b). In
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equilibrium, the decision maker ignores the agent’s advice when the realization
of ε is too low (because then the difference y−x = ∆−ε is large), and the agent
chooses a bias lower than b because of the risk that his signal will be ignored.
This trade-off seems realistic: when we give some advice, we would like to

influence the decision in a particular way, yet we often feel that if our recom-
mendation is too extreme, it won’t be taken into account. When used in equi-
librium, rule rk0 , which attempts to discriminate between reliable and poorly
reliable signals, creates an incentive device that disciplines the agent (to some
extent).

Example 4: R = {I, T, rk0} and y = s+ αε0

For a range of k0, there also exist equilibria with information transmission
where the decision maker chooses rk0 . Compared to the previous example, the
sender chooses a less cautious strategy ∆0 > ∆. The reason is that he has lesser
control over the chance that his advice will be ignored.
One implication of this equilibrium is that more poorly informed senders

bias their reports to a greater extent.

4.3 Comparison with standard models.

We model uncertainty as a noisy signal x correlated with an underlying state s,
where x = s+ αε, with s drawn from a diffuse prior. A more poorly informed
agent corresponds to one for which the estimation error has larger variance.
In Crawford Sobel (CS), there is an underlying distribution, say f , over

states, and the decision maker is uninformed in the sense that he receives no
signals about the state. In principle, one could assume that the decision maker
receives a signal x correlated with the state. Within the standard approach,
this is a hard problem to solve (because the equilibrium strategy of the decision
maker can be a complex function of his signal x), and much attention has been
devoted to the case where the decision maker receives no signal.
These modelling choices have important consequences on the nature of in-

formational asymmetries, on the structure of the equilibria that are found, and
on the nature of communication that takes place.

Information asymmetries. In our approach, the agent is uncertain about the
estimation error that the agent makes, while in CS, both players know f so the
agent knows the exact way in which the decision maker is uncertain about the
true state. We find the latter to be a peculiar assumption, as the following jar
example illustrates:

Jar example. The state s refers the amount of money contained
in a jar, and a decision maker has τ seconds to provide an estimate
x of the amount of money contained in a jar, assuming a quadratic
loss function for the decision maker when x differs from s.

In this example, it seems reasonable to expect that lower values of τ will
induce noisier estimates from the decision maker. Taking the perspective of an
agent who would know s, we can speculate that lower values of τ will give rise
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to noisier estimates. However, reducing τ should not make it easier to predict
the decision marker’s estimate.
In CS, the prediction goes the other way around. When the decision maker

is "completely" uninformed, the agent has no difficulty predicting his decision.
The reason is that the decision maker is uninformed about the actual state, but
perfectly informed about the distribution over states.
Structure of equilibria and nature of communication.
In CS, equilibria take the form of partition equilibria: in equilibrium, the

agent sends one among a bounded number messages, and the decision maker
interpret the message according to some common grid of interpretation that pre-
exist to communication, and that is tailored to the particular distribution over
states and to the particular preferences of the agent and the decision maker.
Two features of these equilibria are implausible.
One feature is that the players would come up to the interaction with a

(common) grid of interpretation that pre-exists the interaction. Coming up with
an a priori notion of what high, low, very high or very low means requires some
reference point that the current state can be compared to, or some knowledge
of the distribution over problems that we are facing. In CS, common knowledge
of the distribution over state provides such a common reference point. There
are many instances however where we attempt to communicate our expertise
without knowing much about the distribution over problems of similar nature
that we might face, or when there is no obvious reference point to which the
current state can be compared to. When reporting information on the volume
of oil present in an oil field, there may not be an a priori notion of what high
very high, low or very low means, just because the types of oil field we face vary
and do not share the same characteristics. Yet meaningful communication is
possible, even if we believe that the expert has a small vested interest in our
bidding high for the oil field.
Another implausible feature is that the grid is finely tailored to the specific

strategic environment (distribution over states and preferences) that players
face. Rather common sense would suggest that interpretations follow general
rules, and that the strength of interpretation precisely comes from the fact that
they are useful even when the environment changes.
One could argue that the model should not be interpreted too literally, and

that it is not meant to be an actual description of how players behave in such
interactions. It would just capture the idea that the agent ought to be ambiguous
when communicating. We have two comments:
(i) That conclusion relies both on the agent’s perfect prediction of the de-

cision maker’s decision, and on the decision maker’s extreme ability to decode
the sender’s message; We already commented on the first aspect (see the Jar
example), and on the second one, one can think of many reasons as to why the
decision maker’s ability to decode the sender’s message would be limited, an
obvious one being that he is unsure about the environment ω that he is facing.
Our model captures that later aspect by assuming that decision maker only
attempts to compare few strategies (which of course limits his ability to decode
the sender’s message);
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(ii) Even when the decision maker has a high ability to decode the agent’s
message, the prediction that ambiguity would take the particular form of a par-
tition equilibrium is questionable. If one assumes that the agent only compares
two alternatives, say M = {m0,m∆}, there exist equilibria where the agent
randomizes between these two alternatives.

4.4 Extensions

One possible extension would be to consider a class of decision problems in
which the decision maker receives signals from two (possibly unreliable) sources
(in addition to own estimate x). Such an extension would then permit us to
deal with strategic situations where the decision maker has hired two experts.
For example, we could assume that in addition to x, the decision maker

receives signals y1 and y2. In the spirit of the alternative rules defined above,
plausible rules could be that: (i) the agent ignores both signals; (ii) the agent
trusts the signal that is closest to his own signal; (iii) the agent trust the signal
that is closest to his own signal only if the two signals are not too different.

The following strategic situations, involving two senders, could then be an-
alyzed:
- two senders having same bias,
- two senders, same bias but noisy estimate y1 and y2,
- two senders, opposite bias,
- two senders opposite bias and noisy estimates,

Other extensions involving only one sender could also be analyzed:
- one sender with multiple decision makers,
- one sender with a population of decision maker and a majority rule to take

a decision,
- one sender who has a cost of sending a message m that differs from y

(c(m, y) = γ | m− y |)

5 Auctions
When participating in a first price auction, one has to calculate how to shade
one’s bid. We expect that shading will be small when competition is tough, and
more substantial when competition is weaker. Ideally, we would like a simple
theory that captures what is meant by competition being tough or weak, and
that allows us to understand how bidding, welfare and seller revenue vary across
formats (first price and second price) as one introduces asymmetries between
bidders, signals about bidder’s comparative advantage, and uncertainty about
own valuation.
We provide here a simple model of auctions. Our objective is again twofold:

(i) we wish to illustrate how our approach can be applied to auctions; (ii) we
wish to point out how the standard approach has shaped our intuition in special
ways.
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The change in perspective that we propose can be summarized as follows:

I might go to an auction at Sotheby’s, see a painting and decide that
my value for a painting is $1100, but have little idea of where my
valuation stands in relation to the valuations of other bidders. That
is, I might think it equally likely that my valuation is the highest,
second highest, or lowest; in other words, my valuation gives me little
guidance in predicting my rank in the valuations. Had my value of
the painting been $1200 rather than $1100, would my prediction be
different?

We shall take the perspective that it is hard for an individual to sort out
whether the basis of his higher value was common to all bidders or was idio-
syncratic to him, and that a plausible model of auctions should reflect that
difficulty.
This is a change in perspective because standard auction theory implicitly

poses no limits on the agent’s ability disentangle common and idiosyncratic
elements.
The problem is similar to that explored in Section 3 (Cautiousness). In that

Section, the agent gets an estimate of the value of an alternative; say x = s+ ε.
Ideally, the agent would like to know his estimation error ε, but we should not
expect him to be able to make precise inferences about the size or sign of ε
based on the estimate x he forms. There too, we took the perspective that
a plausible model of decision making should reflect that difficulty, contrasting
with standard models of decision making that implicitly allow agents to use their
knowledge of the joint distribution over problems and errors to make inferences
about their current estimation errors.

5.1 The bidder’s decision problem

For each auction problem that the agent may face, we assume the agent has a
valuation vi for the object, and that he gets a possibly noisy estimate of that
valuation which we denote xi. We assume that

vi = s+ θi

and
xi = vi + αiεi.

s represents a component common to all bidders’ values and θi represents an
idiosyncratic component of i’s value (drawn from g independently of s). εi is
an error term (independent of vi) drawn according to some distribution h, and
αi ≥ 0 parameterizes the magnitude of the error.
In a first price auction, the agent bids a price which we denote bi, and he

wins vi−bi when bi exceeds some price p, and 0 otherwise. Letting ρ denote the
joint distribution over states and prices, we can characterize by ω = (ρ, g, h, αi)
the environment that the agent faces.
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Plausible bidding rules. The data that the agent gets is xi, and we consider
family of bidding rules based on xi. For any γ, we define rule rγ as:

rγ(x) ≡ x− γ.

Defining
φ(γ) ≡ Pr(xi − γ > p),

the expected payoff that the agent gets from using rule rγ is:

v(rγ) = γφ(γ)

If R is the set of rules that the agent considers, he thus picks the rule maximizes
v(rγ), that is he picks:

rγ∗ = arg max
rγ∈R

v(rγ)

Throughout most of this section, we shall assume that R = {rγ}γ∈R (but a
coarser set of rules could be considered).

Using signals about ω. Standard analysis would not restrict the set of
bid functions, and we would look for a bid function r∗(x) that fully exploits
the environment ω. We do not claim that an agent is unable to make some
assessment related to ω, for example about the size of vi − p. Depending on
the type of competitors he faces, or because he also forms a (noisy) estimate
of others’ valuations, he might come up with the idea that he is in a strong or
weak position.
Following our discussion in Section 3, our view is that this assessment of ω

should be modelled as a distinct signal, for example a signal ρ ∈ {h, l} correlated
with vi − p (say with h more likely when α is larger).
A rule would now be a function of x and ρ. For example, one could define

rγ,µ as
rγ,µ(x,L) = x− γ and rγ,µ(x,H) = x− µ

and then
R = {rγ,µ}(γ;µ)∈R2

thereby allowing the agent to assess when it is useful to take into account his
own perception of strength.

Optimal bidding rule.
Returning to the case where only x is observed and R = {rγ}γ∈R, the

optimal bidding rule is characterized by a single parameter γ∗ that measures
the extent of shading, and that is given by the following first order condition:

γ =
φ(γ)

−φ0(γ)
.

Shading is larger when the agent has higher chances of winning, or when the
distribution over xi − p is more dispersed (because then | φ0 | is then smaller).
Noisy estimates and the winner’s curse.

28



When estimates are noisy (positive α), the bidder runs the risk of getting
the object only because αεi was positive and high). The bidder should thus
exert some caution, which means shading one’s bid (increasing γ).
In other words, noisy estimates make a bidder subject to a winner’s curse,

and an optimal reaction to that possibility is cautiousness — or shading.

5.2 The strategic interaction

We now assume that there are n bidders and that each considers a set of bidding
rules Ri = {rγ}γ∈R. For any γ = (γ1, ..., γn), each rule profile rγ = (rγ1 , ..., rγn)
induces an expected payoff which we denote by vi(γ1, ..., γn). We have:

vi(γ) = γiϕ(γ) where ϕ(γ) ≡ Prω(xi − γi ≥ max
k 6=i

xk − γk)).

An equilibrium is then defined in the usual way. We illustrate the approach
with some equilibrium computation.

Case 1. Symmetric case, no noise (αi = 0).
We look for a symmetric equilibrium in which all bidders pick rule rγ∗ .

Define
φ(y) = Pr(θi −max

j 6=i
θj > y).

We have
vi(γi, γ

∗) = γiφ(γi − γ∗)

implying that γ∗ solves:

γ∗ =
φ(0)

−φ0(0)
=

1

−φ0(0)n
.

In other words, equilibrium shading is driven by the number of bidders (through
the expected chance of winning) and the dispersion of idiosyncratic terms.

Case 2. Symmetric case, no noise (αi = 0), information about ranking
Case 3. Asymmetric case (player 1 has a comparative advantage: vi =

s+ θi + µ)

Case 4. Symmetric case, noise (αi > 0).

5.3 Discussion.

In standard models, auctions are hard problems because one attempts to derive
an optimal bid function within the whole set of possible functions. In addition
to being hard problems, auction models assume that bidders can tailor their
bid functions to the specific environment (i.e., the joint distribution over values
and estimates, say ω) they face. Our view is that it is implausible that bidders
would do that.
Beyond complexity and implausibility, we wish to argue to these modelling

choices have either made it difficult to get intuition about the problems, or that
they have shaped intuition in questionable ways.
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Parsimony.
In standard models, bidders come to an auction knowing the joint distrib-

ution over values and estimates of their value, or they behave as if they knew
the distribution. Inevitably, this means that each distinct value estimate comes
with a distinct assessment of how their valuation compares to others, and in
the standard approach it also means that the agent will fully exploit these fine
assessments.
We have two objections, related to the two roles that we think theory should

accomplish: help us shape our intuition about relevant strategic issues; help us
predict how players behave in particular interactions.
To accomplish the first role, one would like a theory that enables us to

focus on first order effects, and this may be more easily accomplished in a
more parsimonious model that does not rely on highly sophisticated and correct
assessments of the environment one is facing.
To accomplish the second goal, one would like a theory that provides a

compelling picture of how bidders behave. Bidders get information about their
valuations, and possibly some information about the specific environment ω
they are facing: how then is bidding accomplished? How is information used
and/or combined? If one views (as we do) that signals about the environment
have greater chances of being noisier than signals about own valuation, then we
should not be surprised that agents disregard signals about the environment,
and we should study models that do not rely or hinge on a specific environment
or the precise knowledge of that environment.
The common/private values distinction.
The literature has used the private/common value distinction as a central di-

viding line in the study of auctions (and other mechanism design related issues).
With this division, the private value case is perceived as a simple environment,
while the common value case is perceived as a more elaborate strategic sit-
uation. We argue below that this perception is misleading: from a bidder’s
standpoint (as opposed to the modeler’s standpoint), an alternative dividing
line may instead be whether or not he gets an estimate related to his rank.
Consider an extension of our model in which in addition to xi, bidders each

receive a (possibly noisy) estimate of s, that we denote yi:

yi = s+ βiξi,

where ξi is a noise term drawn independently of s.
The standard approach would ask bidders to look for an optimal rule r(xi, yi)

within the set of all possible functions. To the modeler the limit case βi = 0 is
simpler because he can use the structural assumptions to figure that there is an
equilibrium where bidders use rules that are function of the difference xi − yi.
The private value case precisely corresponds to that case (with αi = 0).
As a participant in the auction however, determining how to use and/or

combine the two signals xi and yi is a more complex task than just determining
how to use a single signal xi. It does not necessarily mean that yi will be
ignored, but we would like a plausible way that yi could be taken into account.
The following example suggests one possibility.
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A class of plausible rules: The agent partitions signals into two
classes (ρi ∈ {h, l}), and views the event xi > yi as a good signal
about own rank (ρi = h) and the event xi < yi as bad signal about
rank (ρi = l). He then adjusts shading (γl or γh) to the signal ρi =
h, l that they receive. Though agents are unsure of the reliability of
yi, their optimal strategy (and the difference γh − γl) will reflect
how reliable signal yi is.

How does adding signal yi modify the strategic interaction? From the agent’s
perspective, the essential difference with our basic model (case 1 above) is that
he now gets a (noisy) signal about rank that he may wish to exploit, and the
class of rules proposed above suggest a way he can do that, thereby turning our
basic model (case 1) into a slightly more elaborate one (case 2 above).
In comparison, the standard private value model requires substantially greater

sophistication from the agent,14 as it assumes a fine understanding of how vari-
ations in yi − xi translate into variations in ranking and value differences.

Revenue ranking
How do auction formats (first and second price) compare? Revenue compar-

isons often begin with the following observation. Second price auctions do not
look like good mechanisms because they seem to give rents to winners. In first
price auctions however, bidders shade their bids in comparison to what they
would do in a second price auction, so the effect on revenues is unclear.
Revenue equivalence results have been obtained in the independent private

value case, and these results can be seen as a nice illustration of the above phe-
nomenon. It is not clear however that these results can be viewed as more than
an illustration. The complexity of the approach makes it difficult to get eco-
nomic intuition for these results, and the sophistication required by the agents
makes their relevance unclear. The same comment applies to more recent rev-
enue ranking results in correlated value settings.
In contrast, under our approach, everything that is relevant in the compar-

ison between the two auction formats is contained in the function φ (that is
derived from the distribution over the idiosyncratic elements) and revenue com-
parisons can be made based on the shape of that function: first price auctions
will yield greater (expected) revenue than second price auctions when φ exhibits
low dispersion at 0 (implying small shading) and a reasonably fat tail (implying
that substantial rents are given away in the second price auction).

Noisy/perfect estimates distinction
In terms of sophistication, we have seen that a relevant distinction is whether

the agent receives (and uses) information about rank. In terms of bidding
behavior, a relevant distinction is whether the agent receives noisy or perfect
estimates of valuations. As case 4 illustrates, noisy estimates induce cautious
behavior, and caution translates into increased shading, for fear that one tends
to win more often when valuation is overestimated.
14This is in addition to assuming that xi and yi are perfect estimates (i.e. αi = βi = 0).
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This effect is greater with more competition as the costs induced by over
and under estimation are asymmetric: underestimation is costly because you
may lose the object, but the cost is small when competition is fierce because
winning; in contrast, overestimation can be very costly.
In other words, estimation errors can lead to a winner’s curse, and cau-

tion is an appropriate response. As we pointed out in Section 5.1., this same
phenomenon arises even in a single bidder environment.

In comparison with the standard literature, our model provides intuition
about the winner’s curse in a different way. In auctions with common values,
our usual understanding is that winning conveys information about the common
value part of one’s valuation, and that to avoid the winners’ curse, bidders ought
to take into account that information. This is not true in our setting. Winning
conveys information about s because

E[s | xi] 6= E[s | xi, xi > maxxj ].
Yet that information is not used in bidding because xi = vi + αiεi so

E[vi | xi, xi > maxxj ] = xi −E[αiεi | xi > maxxj ].
This explains why in our setting, bidders in equilibrium only take into account
the information about the estimation error conveyed by winning (rather than
the information about the common component s).

Existence issues and asymmetric settings
As for revenue ranking, standard auction models provide little economic in-

tuition as to when existence of pure strategy equilibria fails, and few predictions
about the effect of asymmetries. These issues are more easily addressed in our
setting.

6 Beliefs
As decision makers, beliefs seem to matter. We forge an opinion about the
individuals with whom we are about to deal with, we get a conviction that a
person is guilty or innocent, though we may also express doubts, we get a sense
that a situation or an action is risky, thinking that there is a non trivial chance
that an unfortunate event arises, and we also get a sense of whether our answers
to a test were correct, or not.
How are these opinions forged? How are they used in decision making?
We forge opinions as a function of the observations we make, and our analysis

of reputation provides an example in this respect. In that example, we focused
on observations related to the satisfaction experienced in the interaction. But
other types of signals could be used, related for example to the behavior that
one observes. And although we do not observe the exact circumstances that led
to the behavior we observe, we often draw inferences from that observation, and
theses inferences in turn contribute to forging our opinions.
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Once formed, these opinions can be used as a guide to decision making,
as one may condition behavior on the opinion one gets. To the extent these
opinions do not end up being independant of the decision problem being faced,
they should help take better decisions.
We provide here a model of decision making where decisions are indeed

shaped or guided by the opinions we form, and where the opinions we form are
a product of the observations and inferences that we make.
Our objective is twofold: (i) we wish to illustrate how our approach can be

applied to more general decision problems; (ii) we also wish to point out that
the standard approach fails to provide a compelling theory of behavior.

We start by describing a class of decision problems that involves information
aggregation.

6.1 Decisions problems with information aggregation

We consider a class of decision problems in which an individual processes a
stream of informative signals before taking a decision.
Decision problem. For each problem considered, there are two possible states,

θ = 1, 2. The decision is a choice between two alternatives, a ∈ {1, 2}. Taking
action a = θ is the appropriate action when the state is θ, and it yields payoff
vθ. Taking an inappropriate action yields 0.
The signals received. The agent does not know the state, and before decid-

ing which action to take, the agent receives a random number of signals each
correlated with the true state. Formally the set of possible signals for this prob-
lem is denoted X, and a signal is denoted x. Signals are received over time, at
date t = 0, 1, ..., and the decision must be taken at some random date τ ≥ 1
drawn from some distribution g, and we denote by x = (x0, ..., xτ ) the stream
of signals received. The probability that the true state is θ is πθ, and given
state θ, the signals are drawn independently of one another, each from some
distribution f(. | θ). The environment that the agent faces is thus summarized
by ω0 = (v, π,X, f, g).
From a standard perspective, the agent’s objective is to use the signals he

gets optimally, that is, his task is to find the function r(x) that maximizes
expected utility accross all possible functions. One cannot imagine that an
agent could perform this task directly, but standard decision theory suggest an
indirect way: for any given ω0, the agent ought to use Bayes rule to compute the
belief βθ(x) ≡Prω0(θ | x), and then choose the action that maximize expected
utility given β.
As already emphasized, our view is that either way is highly implausible:

the agent cannot know ω0, and he cannot evaluate the performance of each
possible rule r(.). Rather our view that these performance assessments can only
be carried for a limited number of rules, and our objective below is to suggest
plausible rules.

Inferences
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The signals x are specific the problem considered, and we look for rules
that apply accross problems. So rules that take x as an argument are not good
candidates. Rather we shall assume that the agent use signals to form inferences
about which state holds. We shall later see how inferences can plausibly be used
to form opinions.
We assume that following each signal received x, the agent makes some

inference eθ ∈ {1, 2} as to whether the signal is evidence of state 1 or 2, and that
he also forms an estimate el of the strenght of the evidence. In other words, he
gets another signal ez = (eθ,el)
which we assume to be correlated with ω0 and x.
To fix ideas, we describe two cases, one in which the agent makes perfect

inferences, and one in which the agent makes noisy inferences. First define the
state θ(x) that has highest likelihood given x, namely:

θ(x) = argmax
θ

f(x | θ),

and the likelihood ratio l(x) defined by:

l(x) =
f(x | θ = θ(x))

f(x | θ 6= θ(x))
.

The state θ(x) is the state for which signal x provides support, and the likelihood
ratio l(x) provides a measure of the strength of the evidence in favor of θ(x).
We let z(x) = (θ(x), l(x))
Perfect inferences correspond to the case where ez(x) = z(x). An example of

noisy inferences is:

eθ(x) = θ(x) and el − 1 = eµ(x)(l(x)− 1)
where eµ(x) is a random variable. More generally, we let h denote the process
by which inferences are generated, and we let

ω = (ω0, h)

denote the environment that the agent faces.

Mental systems and plausible rules.
The agent makes a number of inferences (ez0, ..., ezτ ) and we wish to define

plausible rules that the agent could follow to take a decision. A naive plau-
sible rule would consist in ignoring these inferences, and choose an action a
independently of the inferences made.
A more sophisticated class of plausible rule would be to assume that the

agent has a limited number of states of mind, and that each inference the agent
makes (possibly) triggers a change in his state of mind. Formally a state of mind
is denoted s ∈ S, where S is a finite set. For any signal x received, changes
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in state of mind depend on the inference ez. We denote by T the transition
function:

s0 = T (s, ez).
The case where S is a singleton corresponds to the naive case. The case with
more states of mind correspond to that described informally in introduction,
where opinions are forged as a function inferences made.
We shall refer to the triplet

µ = (S, T, s0)

as a mental system: it consists of a set of states S, transitions T , and an initial
state s0. Given µ, a strategy σ ∈ AS can be defined as a function that maps
mental states to actions in A = {1, 2}, and it generates a plausible rule rµ,σ
that maps ez to {1, 2}. We denote by Rµ the family of plausible rules that are
induced in this way:

Rµ = {rµ,σ}σ∈AS

Example 1: (a simple mental system) The agent may be in one of
three states of mind {s0, s1, s−1}. His initial state is s0. Define A+0 as the
event {eθ = 1} (evidence in favor of state θ = 1), and A−0 as the event {eθ = 2}
(evidence in favor of θ = 2). Transitions are defined as follows:

s-1 s0 s1

A+
0A+

0

A-
0A-

0

Figure 2: Transition function

Casual beliefs and biased beliefs
As the above figure illustrates, if the agent finds himself in state s1 when he

is called upon to make his decision, there may be many histories that have led
to his being in state s1: the mental system µ is simply a device that generates a
particular pooling of the histories that the agent faces when making a decision.
The state the agent finds himself in upon taking a decision reflects the agent’s

current opinion or casual belief. In example 1 above state s1 reflects the agent
casual belief that state θ = 1 holds, while state s−1 reflects the agent’s casual
belief that state state θ = 2 holds. The belief is casual in the sense that no
particular posterior probability can be assigned to a particular state, as this
probability would depend on the environment ω that the agent actually faces
(which the agent does not know).
Given θ and ω, a mental system µ leads to a probability distribution over

the state that the agent is in upon taking a decision, and we denote by φθ,ω,µ
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that distribution. Calling S1 the set of mental states casually associated with
state θ = 1 (and similarly for state 2), an agent is said to hold correct casual
beliefs when s ∈ Sk whenever θ = k. A mental system is said to be unbiased if
the agent has more chance of holding correct casual belief, that is:

φ1,ω,µ(S1) > φ1,ω,µ(S2) and φ2,ω,µ(S2) > φ2,ω,µ(S1).

Welfare.
As for welfare, for any given (ω, µ),we can compute the expected utility

associated with each rule r, that is uω,µ(r), and let

vω(Rµ) = max
r∈Rµ

uω,µ(r)

6.2 Analysis

From the agent’s perspective, a mental system gives rise to a particular opinion
or casual belief. Two questions can be asked. Is a mental system helpful? Does
it give rise to biased beliefs?

Welfare. A mental system µ (with at least two states) provides a signal
correlated with the true state, so a mental system cannot hurt and it sometimes
help take better decisions: it improves welfare over the naive set of rules. As
the number of states increase, or as the accuracy of the inferences improves,
welfare may improve further. But if there are more states, this comes at the
cost of more difficulties in evaluating alternative rules.

When do we expect unbiased casual beliefs?
In what follows, we discuss the case where each signal x consists of a sample

of observations.

Large sample size.
If with high probability the sample size is large enough, then

p1 ≡ Pr(θ(x) = 1 | θ = 1) > 1/2 and p2 ≡ Pr(θ(x) = 2 | θ = 2) > 1/2 (1)

So to the extent that inferences are not too noisy (i.e. eθ(x) strongly correlated
with θ(x)), even a simple mental system such as that in example 1 will induce
unbiased casual beliefs.
If inferences are noisy in the sense that el(x) is poorly correlated l(x), then

a more sophisticated mental system may lead to both poorer performance and
biased beliefs

Small sample size.
Then a mental system will still improve welfare, but there is no guarantee

that inequalities (1) both hold, and even the simple mental system in example
1 then leads to biased beliefs

More than two states.
All our analysis extends to cases where there are more than two (true) states.

Define inferences as before, with θ(x) ≡ argmaxθ f(x | θ) and assume the agent
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makes correct inferences on the true state, i.e. eθ(x) = θ(x). Then, if sample
size is small, there are simple problems for which

pk = Pr(θ(x) = k | θ = k) = 0 for some k,

which implies that the agent never finds evidence in favor of state k.

6.3 Evolution of mental systems

For any mental system µ, and any given ω, we have defined the value associated
with the set of rules Rµ, and we denoted it vω(Rµ). Another mental system µ0

will in general induce another set of rule Rµ0 , and for a specific ω, that could
induce a higher welfare. However the task of tailoring µ (say, the transitions)
to a specific environment ω so as to maximize welfare seems misguided, as the
purpose of these mental system is to enable the agent to deal with a whole range
of environment.
Nevertheless, if there are modifications of the mental systems that increase

welfare accross many problems, then we may expect that evolution selects such
modifications. The main insight of Compte and Postlewaite (2010) is that ignor-
ing weak evidence is a modification that indeed improves welfare (across many
problems).
The formal result, which we describe below assuming perfect inferences, can

described as follows. For any mental system µ, we consider the modification of
µ in which all weak inferences (that is, inferences ez = (eθ,el) such that el < 1+β)
are ignored. We denote by µβ that modified mental system, and denote by A the
event where the two mental systems induce different transitions. We consider
distributions over environments κ ∈ ∆(P) that put weight on all realizations of
(v1, v2) in [0, 1]2. Our main result in Compte and Postlewaite (2010) is that for
any such distribution κ,

Eκvω(Rµβ )−Eκvω(Rµ0) ≥ aPrκ{A}[Eκvω(Rµ0)−Eκvω(R0)]

for some constant a that depends only µ0, where R0 is the set of naive rules
(single mental state)

6.4 Ignoring weak evidence and direction of bias

The previous section suggests a reason as to why agents may ignore weak evi-
dence. What are the consequences of ignoring weak evidence? To fix ideas we
consider the simple mental system of example 1.
A consequence is that with small sample size, it may be that most of the

evidence in favor of say θ = 2 is weak, and as a result casual beliefs will be
biased towards θ = 1.
Formally, for a given β, consider

Pβ
2 ≡ {ω,Prω(el > 1 + β | θ = 2) > 0 and Prω(eθ(x) = 2,el > 1 + β | θ = 2) = 0},

Any ω ∈ P2 leads to biased casual beliefs in favor of state 1.
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