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Abstract

I study two-way effects between financial markets and contractual agreements, such as
compensation packages within a firm, or mortgages and loans. I construct a model with many
Units, in each of which one of the contracting individuals, the Agent, has private information,
while the uninformed individual, the Principal, has the opportunity to trade with the Principals
in other Units. I give general conditions under which financial markets induce a transfer of risk
from Agents to Principals. These conditions can be reduced to a limited degree of correlation
among Units’ returns. I show, under the same conditions, that markets induce a transfer of
welfare from the best Agents to Principals. Conversely, the information asymmetry within
Units leads to excessive aggregate risk in the asset market. However, this problem vanishes in
a large economy.

1 Introduction

Risk sharing obtains in different ways. For example, by trading assets on financial markets,
or by contractual arrangements among individuals. I study the interaction between these
institutions.

These interactions are relevant in a modern economy. Consider how labor compensation
is arguably the most relevant expense for a corporation. In the US, for example, more than
60% of the payment to factors group in the 2009 GDP in US was to labor.1 Since the stock
of a company is a claim to its profits, the firm’s decisions on workers’ compensation affect
the returns of its stock. In the aggregate this affects financial markets. On the other hand,
diversification opportunities offered by markets influence the design of compensation packages.

Another interesting case of the interaction of these two modes of risk sharing is the securiti-
zation of individual contracts, like insurance policies and mortgage loans. In the past decades,
these contracts have been increasingly often pooled together and sold as financial assets. The
recent financial crisis taught us that this evolution of financial markets can and will affect
non-market risk sharing agreements such as mortgages,2 and that these changes can at times
feedback into financial markets with spectacular consequences.
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In both cases, it is important for the firm, the insurer or the loan issuer, to assess certain
qualities of the counterparty, in order to maximize their profits. The way to screen individuals
is to offer them different contracts to choose from. This paper shows how, under some general
conditions, financial markets change the tradeoffs involved in designing contracts. This results
in risk and being shifted from all non-trading individuals to their trading counterparts, and, at
the same time. Welfare is also redistributed, from the non trading individuals of higher qualty,
to trading individuals.

To study the interactions between contracting and financial markets, I construct a model
with private information in which all individuals are paired into Units generating returns, which
are shared by means of a contract. In each Unit, one of the contracting individuals, the Agent,
has private information, while the uninformed individual, the Principal, has the opportunity
to trade with those in the other Units. In the context of firms, Principals and Agents would
be Investors and Employees. In the context of securitization, Agents are individuals taking
out a loan or an insurance contract, Principals are the financial institutions securitizing those
contracts. This generates two-way effects from markets to Units, and vice versa.

I use this model to answer two questions.

1. How does the existence of asset markets affect risk sharing agreements within individual
Units?

2. How does asymmetric information in these agreements affect asset markets?

First, since financial markets help diversify risk, one expects that it would make Principals
act as if they were less risk averse. This changes the terms of risk sharing and make contracts
less risky for Agents, the “Insurance Effect”. Several examples show that this intuitive prop-
erty need not hold (even in the simple case of symmetric information, in which Agents’ types
are common knowledge). I give sufficient conditions which rule out these unexpected effects of
markets. Roughly speaking, these conditions boil down to markets providing enough diversifi-
cation opportunities. This is always the case if there is a large number of Units with a limited
level of correlation across them. These are fairly general assumptions, which correspond to
features of real financial markets.

Second, Principals solve the screening problem they face inside Units by designing contracts
offering different levels of risk, to different types of Agents. The need to screen distorts risk
sharing within Units. This translates to an inefficiently high level of risk held by Principals,
which they consequently trade on asset markets. Excess market risk is hence a byproduct of
asymmetric information in agency relationships within Units.

Conclusions can also be drawn for welfare. A large market, offering enough diversification
possibilities, reduces informational inefficiencies within Units. However, and perhaps more
interestingly, some of the individuals who do not access markets will bear a cost. All Agents
will see their utility pushed to the reservation level, even if they enjoyed some information rent
in absence of markets, or in presence of a less developed market. In particular, those who will
lose will be the “better” Agents. Going back to the applications discussed earlier, this last
result means that introducing financial markets decreases the reward to a good worker, or to
a safe loan applicant.

While markets naturally increase the welfare of Principals’, by allowing them to adjust their
portfolios, they also improve their ability to extract welfare from Agents.

While these are new results, the study of financial markets as means to share risk in relation
to other types of risk sharing, and their effects on each other has been touched upon by the
economic and financial literature in different ways.

I do not study the effects of asymmetric information in markets, but rather the effects that
asymmetric information resolved elsewhere has on markets. This marks the first difference
from the General Equilibrium works on insurance markets, starting from the seminal paper of
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Rothschild and Stiglitz. Another important difference is that, in those papers, the fact that
some individuals are risk neutral and act as firms is usually an assumption (An exception is
Dubey and Geneakoplos, 2002), where individuals endogenously form pools to share risk. In
this paper there are many risk averse investors, who access financial markets to trade away part
of the risk they are exposed to. Traditionally, the assumption of risk neutrality of a principal
is motivated by the existence of diversification opportunities. The present work also enquires
when the usual motivation, the opportunity to trade risks on a financial market, really provides
a justification for the risk neutrality assumption and its implications.

A strand of the finance literature looks at asset pricing in the presence of delegated portfolio
management (for a survey, see Stracca, 2003, for a more recent example, see Ou Yang, 2005).
These studies look at the effect on prices and returns of the classical informational asymmetry
problems. There are studies on moral hazard and hidden type problems, studied in a CAPM
or APT setting, in which a representative principal delegates his investing decisions to an
agent. In this literature inefficiencies take the form of deviations from the non-delegated case
equilibrium which take the form of changes in asset prices and optimal portfolio composition.
Besides the different object of interest, the perspective in these works is in a sense opposite of
the one taken here. There we have informed parties trading, whereas in the present work it is
the uninformed parties who access markets.

This paper fits best in spirit with other works making less general assumptions to reach
more specific conclusions. Legros and Newman (1996) analyze the internal organization of
firms, in relation to the distribution of wealth in the economy and the imperfections of credit
markets. Legros and Newman (2008) use markets to show how shocks to individual firms
can cause restructuring in a sector. Similarly, in this paper the internal agreements in a firm
impact those in other firms, but the channel is here that of financial markets. Gibbons, Holden,
and Powell (2010) take firms formation as exogenous, as in the present work, but they focus
on the interaction of market and non-market modes of information acquisition rather than
risk sharing, as a determinant of firms’ internal structure. Legros and Newman (2007) use
endogenous matching as market mechanism to analyze efficiency within a pair and within an
economy and apply their results to risk sharing problems.

Finally, the works by Magill and Quinzii (2005) and Parlour and Walden (2009), bear
similarities to this one. They also take firm formation as an exogenous process, abstracting
from labor market considerations, and they allow for contracts inside firms and financial markets
across firms. However they use their model to study economies with hidden action. Magill and
Quinzii study how available securities affect economic incentives, whereas Parlour and Walden
consider effort in the moral hazard problem a human capital investment, and use their model
to derive testable implications (for example on size effect) on the cross of section returns. I
address the problem of moral hazard in a separate paper (Maretto, 2010), in which I focus on
economic performance and volatility.

2 The Model

To capture the feedback between contracting and trading on financial markets, I construct a
model where risk sharing obtains both through one-to-one contracting and through the ex-
change of assets on a competitive market.

2.1 Primitives

There are 2N individuals with identical expected utility preferences U (X) = E [u (X)], with
quadratic utility function u (x) = x− b

2
x2, where b is small enough that utility is increasing.
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N individuals are Principals, and N are Agents. Principals are all identical. An Agent can
be of type t ∈ {L,H}, which is his private information and influences the Agent’s performance.
Types are drawn from a commonly known distribution F on {L,H}N .

There are N Units, each unit n is formed by a Principal Pn and an Agent An, whose
type is t (n). Unit n generates random binary returns X (t (n)), whose distribution is common
knowledge and depends on the Agent’s type. Any pattern of correlation between Units’ is
admissible.

Principals are entitled to the returns generated by the unit. Agents obtain a reservation
utility of u if they do not participate in production, while Principals obtain zero.

2.2 Contracting

Within each Unit, sharing of surplus takes place through contracts. A contract Cn = (αn, βn)
consists of a cash transfer αn and a fraction of output βn. I will call C a vector of N contracts
{Cn}Nn=1.

A contract leaves Principal Pn holding the random variable αn + βnX (t (n)) , and Agent
An holding −αn + (1− βn)X (t (n))).

Each Principal Pn offers to agentAn a menu of contractsMn = [CnH , C
n
L] = [(αnH , β

n
H) , (αnL, β

n
L)].

An picks his preferred contract, or decides to not partecipate and obtain his reservation utility
u. Without loss of generality, we can restrict attention to Incentive Compatible menus, such
that Agents of type H would pick Ct

E [u (−αt + (1− βt)Xt)] ≥ E [u (−αs + (1− βs)Xt)] , ∀s, t ∈ [L,H]

Let M = M1, ...Mn be the menus of all Units. Let cn (Mn) be the contract Cn chosen by
Agent An out of menu Mn. Denoting with c = [c1 (·) . . . cN (·)] the vector of Agents’ choices,
and with with , we have that c (M) is the vector of contracts chosen by agents facing menus
M.

2.3 Market

Principals can access a market for financial assets. Principals are endowed with their claims
to profits αnt(n) + βnt(n)X (t (n)). These claims are the assets available for trade at price qn,

together with a riskless asset available in zero net supply at price q0. A portfolio of financial
assets is denoted by θ = (θ0|θ1, ..., θN ). θ0 is the position an investor holds in the riskless asset.
θ1, ..., θN are the holdings of securities of each of the N Units. The solution concept used here
is the classic Arrow-Debreu competitive equilibrium. All Principals choose a porfolio θn they
can afford to maximize their expected utility, taking prices as given. Equilibrium prices will be
such that all markets clear.

2.4 Timeline

The model plays out as follows

• Time 0 Nature randomly draws the types of each Agent t = t (1) ...t (N) from distribution
F.

• Time 1 Each Principal makes a take-it-or-leave-it offer to Agent he is matched with in
the form of a menu of Incentive Compatible Contracts.

• Time 2 Each Agent An chooses a contract from the menu he is offered, or his resservation
utility.

4



• Time 3 Principals trade on the asset market.

Finally, uncertainty is realized and contracts pay off.
When Principals design contracts at time 1, they are also designing their endowment for

the market at time 3. Conversely, the asset market equilibrium is determined by risk sharing
within units. These effects create the feedback between markets and contracts.

3 Equilibrium

Given the sequential nature of the model, it is useful to describe payoffs (and then the equilib-
rium concept) working backwards from the final stage.

Asset Market

The Principal’s utility from a portfolio θ, a type realization t, and contracts C, is given by

U3
Pn (θ,C, t) = E

[
u
(
θ0 + ΣNm=1θm [αm + βmX (t (m))]

)]
Principals maximize their expected utility from their portfolio given prices, and markets clear.
Since securities payoffs are determined by contracts C and by agents’ skills t, the equilibrium
portfolios θ∗ and prices q∗ = q1∗, . . . q

n
∗ will be a function (θ∗, q∗) (C, t).

Contracting, Agents’ turn

Agent An pick a contract out of the menu they are offered, maximizing their utility.

U2
An (Cn, t (n)) = E [u (−αn + (1− βn)X (t (n)))]

Contracting, Principals’ turn

At time 1 the expected utility of a Principal holding portfolio θ, when menus are M, Agents
choose contracts c (M) is

U1
Pn (M, c (·) , θ) = Et

[
U3
Pn (θ, c (M) , t)

]
Each principal offers a menu, without knowing the Agents’ types. They can correctly

foresee the strategies of each agent, and the outcome of asset markets, for any possible menu.
In other words, they can forecast the equilibrium path for all possible offered menus M and
realizations of types t. Principals at this stage are playing a game against each other. Their
mixed strategies are lotteries on menus.3 For Principal Pn, M̃n ∈ ∆ (Mn).

Based on this timeline we can write the utility in the first stage in this form:

V n
(
M̃n|M̃−n

)
= EM̃

[
U1
Pn

(
M̃n|M̃−n, c

(
M̃n|M̃−n, t̃

)
, θ
(
c
(
M̃n|M̃−n, t̃

)))]
(1)

3Allowing for mixed strategy is necessary, as the space of Incentive Compatible Menus is not convex. However,
in the less general economy discussed in Section 4, there is a unique equilibrium in pure strategies. The proof is
available upon request.
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3.1 Definition

An Equilibrium consists of

• Portfolios θn∗ (C, t) for each Principal Pn and prices q∗ (C, t) ∈ RN+1 such that [θ∗, q∗] (C, t)
is an Arrow-Debreu Equilibrium for the symmetric information asset market taking place
after contracting. Each principal is endowed with one unit of her asset so that the en-
dowment of principal n is wn = [0, 0, ..., 1, ..., 0, 0] with 1 being in the nth position, and
its value qn∗ .

θn∗ (C, t) ∈ arg max
θ∈RN+1

+

U3
Pn (θ,C, t)

s.t.

q∗ (C, t) · θ (C, t) ≤ qn∗ (C, t)∑
n∈N

θn∗0 = 0

∑
n∈N

θn∗m = 1, ∀m = 1, ..., N

• For each agent An a strategy cn∗ (M, t) such that

cn∗ (Mn
∗ , t (n)) ∈ arg max

C∈Cn
U2
An (C, t (n))

• For each principal Pn, a lottery M̃n
∗ of menus such that

supp
[
M̃n
∗

]
⊆ arg max

Mn∈M
V n(Mn|M−n

∗ )

3.2 Existence

Theorem 1. There is an equilibrium.

The proof, in the appendix, follows the traditional pattern of using the maximum theorem
to guarantee that individuals’ best responses are well behaved enough to apply a fixed point
theorem. There are two tricky steps in the process of applying the maximum theorem. For
Principals’ payoffs to be continuous in their own strategies (menus), it has then to be the
case that (i) The contracts chosen by Agents change continuously with the menus offered and
(ii) The Equilibrium correspondence of the asset market stage is a continuous function of the
prevailing contracts. The first is achieved by noting that the economy has the same equilibria if
we restrict Principals to offering Incentive Compatible Menus. The second point is trickier, as
the Walrasian Equilibrium correspondence is in general neither continuous, nor single-valued.

However, the assumptions on preferences and the existence of a riskless asset assure that,
for a given distribution of returns, the asset market equilibrium exhibits the properties of a
Capital Asset Pricing Model (CAPM) equilibrium, which are

• Portfolio Separation. Every individual in the economy holds a fraction of the same
portfolio of risky assets, the “Market Portfolio”. In this case, all traders have the same
preferences, and will hence be holding the same fraction of the Market Portfolio. Dif-
ferences in initial wealth are accounted for by a short or long position in the riskless
asset.
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• “Beta” Pricing. The price of a financial asset is a linear function of its expected payoff
and the sum of its variance plus its correlation with the market portfolio.

Because of these two properties, all final holdings are uniquely determined as a continuous
function of endowments. As endowments are determined by contracts, and final holdings
determine utilities, the maximum theorem can be applied.

4 Markets and Contracts with Diversifiable Risk

For the remainder of the paper, I will require type H to be “better” than type L. The Single
Crossing Property provides a natural way of ranking individuals.

Definition 1. An economy satisfies Single Crossing Property if and only if

∂E[u(−α+(1−β)XH )]
∂(1−β)

∂E[u(−α+(1−β)XH )]
∂(−α)

>

∂E[u(−α+(1−β)XL)]
∂(1−β)

∂E[u(−α+(1−β)XL)]
∂(−α)

, ∀α, β

Assumption 1. Single Crossing Property is satisfied.

To substantiate the claim that SCP amounts to H being better than L, the following fact
(proven in the appendix) shows that a few reasonable notions of “better” are encompassed by
SCP.

Fact 1. With quadratic utility the following cases imply SCP :

1. Both types generate the same mean returns but H does so with lower variance. σ2
H < σ2

L

2. Both types generate the same variance of returns, but H provides higher mean returns.
µH > µL

3. Both types can generate the same two outcomes, but H has a higher probability of the best
outcome.

4.1 Insurance

Having estabilished existence of equilibrium in the model, we can now turn to the relationship
between financial markets and contracting. If Principals can diversify some of their risk through
the asset markets, they will be in a position to take on more risk at the contracting stage. In this
model, this amounts to Principals retaining a larger share of the Unit’s return β. Conversely,
Agents end up with less risk, when markets are present, even though they have no direct access
to diversification by means of trading.

To guarantee enough diversification, for now I restrict attention to economies, in which
Units’ returns are not correlated.

Assumption 2. Units’ returns are stochastically independent.
∀m,n ≤ N X (t (n)) and X (t (m)) are independently distributed.

This implies that for a large number of Units risk can be entirely diversified away.
Let Mn (N) be the equilibrium menu in unit n, in an economy with N Units. M (1) is

hence the optimal menu of contracts for an economy with a single Unit (this is also the optimal
menu in any economy when Principals do not trade).

M (N) = [Mn (N)]Nn=1 = [CnH (N) CnL (N)]Nn=1 = [(αnH (N) , βnH (N)) (αnL (N) , βnL (N))]Nn=1
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Lemma 1. Under Assumptions 2, and 1,

• βnH (N) < 1, βnL (N) ≤ 1

• limN→∞ β
n
t (N) = 1,∀n,∀t

• ∃Ns.t.βnL (N) = 1, ∀N ≥ N
Lemma 1 establishes the convergence of any economy to full insurance for all types. As a

consequence we can conclude that adding enough Units, and hence securities, creates diversi-
fication opportunities for Principals to “insure” Agents.

Theorem 2. Under Assumptions 2 and 1, increasing the number of Units in an economy,
eventually induces Principals to retain more risk at the contracting stage.

∀N,∃N : βnt
(
N ′
)
≥ βnt (N) , ∀n,∀t ∈ {L,H} , ∀N ′ ≥ N

This seemingly natural “Insurance Effect” is not a foregone conclusion. The previous the-
orem shows that Agents are always “insured” by markets in economies with a large number
of units, with independent returns. In the appendix I extend this result in various directions
and in the next discussion discuss the effects of dropping the assumption of independence,
whose role is making sure that markets provide enough diversification opportunities to make
Principals almost risk neutral in a large but finite economy. So that the complicated expression
found in Equation 1 gets closer and closer to the expected value of the Menu offered by that
particular Principal.

lim
N→∞

V n
(
Mn|M̃−n

)
→ Et [Mn]

Assumption 1 makes sure that the problem of a Principal is well behaved,4 and that con-
vergence of the utility function leads to convergence of the solution.

4.2 Diversification and Welfare

The previous result highlights how markets change equilibrium contracts. This change has
implications for the efficiency of Units’ and for welfare distribution.

The natural efficiency benchmark is to be found among economies where Agents’ types
are common knowledge. Let M̂ (N) be the first best menu, arising as an equilibrium of such
economies.5

M̂ (N) =
[
ĈH (N) , ĈL (N)

]
=
[(
α̂H (N) , β̂H (N)

)
,
(
α̂L (N) , β̂L (N)

)]
The conclusions of Theorem 2 apply also to this symmetric information case.

Lemma 2. Under Assumption 1

• β̂nt (N) < 1

• limN→∞ β̂
n
t (N) = 1, ∀n,∀t

Theorem 3. Increasing the number of Units in an economy, eventually induces Principals to
retain more risk at the contracting stage.

∀N,∃N : β̂nt
(
N ′
)
≥ β̂nt (N) , ∀n,∀t ∈ {L,H} , ∀N ′ ≥ N

4The proof uses techniques, similar to those of in Maskin and Riley (1984)
5Existence of an equilibrium in the symmetric information economy is guaranteed by identical arguments as those

necessary to prove Theorem 1.
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Both the first and second best economy converge to an identical equilibrium, in which both
types are offered the same full insurance contract (α, 1) with α such that u (−α) = u . However,
there are some important differences.

Single Crossing Property impliesthat type H values a marginal increase of his fraction of
the Unit (1− β), more than type L does

Agents’ obtain the same utility only for full insurance contracts, consisting only of a cash
transfer (β = 1). For any given contract with β < 1, H obtains more utility. CL guarantees L
a utility of u. The positive difference ∆u = E [u (−αL + (1− βL)XH)]− u is the “information
rent” of type H. CH has to guarantee type H at least u+ ∆u, otherwise it will not be chosen
over type CL. Naturally this contract leaves the principal worse off than the first best contract
ĈH , which pushed H to his reservation utility.

To avoid giving up too much utility when the Agent is of type H, the Principal distorts
CL to make it less palatable for type H, while yielding the same utility to type L. Distortion
takes the form of overinsuring type L, by giving him more cash and less of the Unit’s return.

However, distortion also reduces Principal’s utility, when the Agent is of type L. The
optimal contract strikes the right balance between two extremes. A contract accepted by both
types, with minimum distortion for Agent L and maximum rent for Agent H, and a menu
in which L is fully insured, so that H can be pushed to his reservation utility. We will see
below that markets make these two extremes closer, allowing a more favorable tradeoff for the
Principal.

The discussion above suggests that equilibrium contracts are in general different from the
first best ones, and less efficient.

Proposition 1. Asymmetric information Equilibria are weakly Pareto Dominated

The proof amounts to solving a modified first best problem in which type H is guar-
anteed the same utility he obtains in an identical economy with asymmetric information

E [u (−αH + (1− βH)XH)] = u + ∆u. The resulting contracts
ˆ̂
M =

(
ˆ̂
CH ,

ˆ̂
CL
)

(weakly)

Pareto dominate the equilibrium contracts.
The loss of efficiency is due to the distortion in the allocation of type L, who is insured

more than he would be at the optimum.
Conversely Principals’ take on more risk than they would without incentive compatibil-

ity considerations. Because this risk is then poured onto the market, we can conclude that
asymmetric information within units generates excess aggregate risk on the security market.

Proposition 2. Aggregate Risk on markets is higher than in the symmetric information Pareto
Optimal economy.

N∑
1=1

(
βnt(n)

)2
σ2
t(n) ≥

N∑
1=1

(
ˆ̂
βnt(n)

)2
σ2
t(n), ∀t ∈ [L,H]T

Having established the existence and nature of inefficiency, we can now assess the effects
of the size of markets on this problem. Lemma 1 and 4 show that the information structure
change the dynamics of convergence for the contract of type L. βL reaches 1 (full insurance)
at a finite number of units N , whereas in the first best economy none of the two types is ever
fully insured.

Using the distortion with respect to the Pareto dominating contracts ∆t (N) = βt (N) −
ˆ̂
βt (N) as a measure of inefficiency,6 the following result shows that financial markets have a
beneficial effect on contracting within Units.

6This result would hold true if we choose to measure inefficiency with βt (N) − β̂t (N).
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Proposition 3. Increasing the number of units in an economy, eventually makes contracts
more efficient.

∀N,∃N : ∀N ′ ≥ N,∆t

(
N ′
)
< ∆t (N)

This result relies on the convergence of all contracts to full insurance for agents of type H.
and the monotonicity condition βH < βL implied by Single Crossing Property. These together

force the convergence of equilibrium contracts to the Pareto Optimal contracts
ˆ̂
C.

Diversification opportunities make Principals’ behave as if they were less risk averse. As a
result they can better exploit Agents’ own risk aversion to screen them. It is hence possible for

a Principal to achieve a more efficient outcome, by offering a menu closer to
ˆ̂
M . This efficiency

need not coincide with a Pareto Improvement. In fact, while Principals are naturally made
better off by the extra opportunities provided by markets, and Agents of type L see no change
in their utility level (u), Agents’ of type H can be made worse off.

We have seen that H Agents enjoy a non negative rent ∆u. The following result shows that
this rent is zero for a large enough market.

Proposition 4. With large enough markets, no agent enjoys an information rent.

∃N : ∀N ≥ N,U (Ct (N) , t) = u,∀t

To optimally screen types, a Principal faces a trade off between the loss of utility due to the
distortion of the contract of type L, and the loss of utility in favor of type H (the information
rent). In a large market where also first best contracts get approximately close to (α, 1), the
cost of distorting is very small, and the Principal will optimally offer a full insurance contract
to type L (βL = 1). This contract leaves both types at their reservation utility, so that the
Incentive Compatibility constraint of type H is binding exactly where his Individual Rationality
constraint binds, and no rents are possible in equilibrium.

The result is significant because someone is made worse off by financial markets, but also
that it is the “best” among those who do not access markets (Agents), who pay the price of
the benefits reaped by those who trade (Principals).

5 Markets and Contracts with Undiversifiable Risk

One of the key motives behind financial markets is the pooling and diversification of risk.
Naturally this is a reason for trading only if risks are not perfectly correlated. It should not
come as a surprise that a certain degree of independence and a certain number of Units is
needed for Principals to be able to diversify away enough risk to act as if they were less risk
averse. What is less expected is that enough positive correlation can generate the “opposite”
effect to that of Theorem 1, as the following example shows.

Considering an economy with two Units, and the following parameters.(
µH , σ

2
H

) (
µL, σ

2
L

)
r u ρ

(3, 0.1) (3, 1) 0.1 0.3 0.9

The equilibrium contracts without markets will be

−αH + (1− βH)X = −1.4068 + 0.5711X

−αL + (1− βL)X = −1.3866 + 0.5693X
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Those with markets will be

−αMH +
(

1− βMH
)
X = −1.4451 + 0.5838X

−αML +
(

1− βML
)
X = −1.1569 + 0.4913X

This is not a violation of Theorem 1, which is a limiting statement. So one would hope
that adding enough units is enough to restore the expected insurance effect, by bringing about
more diversification. However, it need not be the case. The graph shows in blue 1−βL, and in
red 1−βH as functions of N . The sensitivity to returns and hence the variance of the contract
of Agent H actually increases with the size of markets.
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Why does increasing markets make the variance of contract H higher? The existence of
non diversifiable risk, modeled as positive correlation ρ between Units returns, creates a strong
incentive to issue securities which get as close as possible to hedging returns when the economy
does bad.

To get an intuition, it is useful to think in terms of underlying states. Units’s returns are
binary XH ∈ {xH , xH} and XL ∈ {xL, xL}, with µH = µL and σ2

H < σ2
L, so that xL < xH <

xH < xL . Suppose ρ is equal to one, so that a space S = {s, s} with 2 states is sufficient to
represent the economy.

Xt (s) = xt

Xt (s) = xt

Whenever an L unit returns xL all other L units will do the same, and H units will return
xH .

In absence of markets both Principals and Agents have the same risk attitude and the
optimal contracts will strike some balance of risk sharing. Now suppose trading is possible.
When Principals designs CH she knows, that when she is matched with H she will then trade
with some L and some H units, and end up holding a portfolio of these. She also knows, as
an H unit, she has an advantage in providing returns in state s, since xL < xH . Units H can
hedge returns in s, The markets provides them with the incentives to do so, by making returns
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in that state particularly valuable. On the other side, the cost she bears by giving less returns
to Agent in s, in the form of a higher 1−βH and a lower −αH is not changed by markets. The
optimal contract will reflect this and put more risk in the hands of type H Agents.

The extent of this effect hence depends on the difference between xL < xH and of course
on ρ. We can however conclude that for small enough levels of correlation the insurance effect
still holds. Under the assumption of independence (Theorem 1) we saw how many Principals
acted as if they were risk neutral as N got large. In general this need not be true, because
correlation across Units generates undiversifiable risk. What is always true is that in a large
economy, Principals’ behave as if they were maximizing the price of their Unit q.

lim
N→∞

V n
(
Mn|M̃−n

)
→ Et [qn]

If returns are independent, it is the case that the price of an asset coincides with its expected
value. The next result puts a bound on correlation to control the difference |Et [qn]−Et

[
MN

]
|

and reach the same conclusion as Theorem 1.

Proposition 5. Suppose Assumption 1 holds, then there is a ρ, such that, if ρmnst < ρ for
all m,n, s, t, increasing the number of Units in an economy, eventually induces Principals to
retain more risk at the contracting stage.

∀N,∃N : βnt
(
N ′
)
≥ βnt (N) , ∀n,∀t ∈ {L,H} , ∀N ′ ≥ N

Furthermore, ∃Ns.t.βnL (N) = 1,∀N ≥ N
All results from Section 4.2 apply. In particular, the last point implies that Proposition 9

carries through as well.

6 Conclusions

This paper tackles the question of how financial markets interacts with other forms of risk
sharing. In particular risk sharing problems with asymmetric information problems which are
dealt with outside the markets. To do so I integrate a model of principal-agent interaction with
hidden type with asset markets. A Unit is formed by a Principal and an Agent. Each pair
produces random returns, whose distribution is known only to the agent at the contracting
stage. What marks the difference from the standard contracting model is that Principals have
access to an asset market on which they trade their shares of returns, and a riskless asset.

I present a general framework and define a notion of equilibrium, for which I prove ex-
istence.Under standard assumptions of contract theory, I study the interactions of financial
markets on contracts. The existence of markets, can have an Insurance Effect, inducing less
risky compensation for agents. However I show how this seemingly natural effect need not
obtain, and how high level of undiversifiable risk, might induce the opposite effect for some
types of Agents.

For contracts to exhibit less variance, two ingredients must be present in the economy.
A large number of traders, and little systemic risk. As soon as one of these assumptions is
dropped, counterexamples can be constructed.

In the case of asymmetric information, one must also add a generalization of the familiar
condition of Single Crossing Property to the case of many Units.

Equilibria are inefficient, and it will be the case that contracting inside Units induces ex-
cessive aggregate risk in markets. The size of inefficiency is small when markets are large.
However, Agents might bear a cost with the introduction of markets. Large markets will of
course increase the utility of Principals, who access them, but will push all Agents, including
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those who enjoyed an information rent when Units exist in isolation or when markets are small.
Introducing markets in some economies, does not result in a Pareto Improvement, and it is the
“better” Agents who will be worse off.

Two potential extensions seem particularly relevant. One is the study of the effects of
non diversifiable risk besides the example presented. A more challenging one is studying the
interactions between labor market and financial markets in a similar framework. The negative
welfare effects in this paper indicate that this is a direction worth pursuing.

7 Appendix

7.1 The General Model

The model of Section 2 can be extended to a larger type space T can be of arbitrary finite size
T , rather than two, and to the case of heterogenous Principals.

To accomodate for the added generality, we need some extra notation. As Units are now
different, I will denote the returns and contracts of Unit n when Agent is of type t by Xn

t and
Cnt = (αnt , β

n
t ).

Requiring the same ranking of types in all Units would be both unnecessary and unrealistic,
so I adapt Single Crossing Property to get around this undesirable restriction.

Let τ (n) (t) ∈ {1, .., T} be the position occupied by type t in a permutation of T , τ (n).

Definition 2. An economy satisfies Single Crossing Property in Every Unit (SCP2) if and
only if there is a function τ , as defined above such that

∀t : τ(n)(t) ≤ T − 1,∀n,
∂E
[
u
(
−α+(1−β)Xnτ(n)(t)

)]
∂(1−β)

∂E
[
u
(
−α+(1−β)Xn

τ(n)(t)

)]
∂(−α)

>

∂E
[
u
(
−α+(1−β)Xnτ(n)(t)+1

)]
∂(1−β)

∂E
[
u
(
−α+(1−β)Xn

τ(n)(t)+1

)]
∂(−α)

,

∀α, β

Assumption 3. Single Crossing Property in Every Unit (SCP2) is satisfied.

Finally, we can turn to the distribution of returns. Since Units’ returns are binary, a single
coefficient ρm,ns,t ∈ [−1, 1] describes all covariation between Units m and n with agents of type
t(m) = s and t(n) = t. Covariance is

Cov (Xm
s , X

n
t ) = ρm,ns,t σ

m
s σ

n
t

7.1.1 Some implications of Single Crossing Property

Fact 2. In the case of quadratic utility, SCP amounts to

µt −
bσ2
t (1− β)

1− b (−α)− bµt (1− β)
> µt+1 −

bσ2
t+1 (1− β)

1− b (−α)− bµt+1 (1− β)

Proof. The claim follows by differentiating the quadratic utility functions of Agents, and taking
the ratios.

The following two implications of SCP will be useful in the proof Theorem 2

Fact 3. ∀t, (α, β) , U (−α, 1− β|t) > U (−α, 1− β|t+ 1)
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Fact 4. ∀t < s,∀ (α, β) , (α′, β′) : β ≤ β′

U (−α, (1− β)| t)− U
(
−α′,

(
1− β′

)∣∣ t) > U (−α, (1− β)| s)− U
(
−α′,

(
1− β′

)∣∣ s)
Fact 5. SCP implies that µt ≥ µt+1

Proof. The claim follows immediately by setting β = 1 in the expression of SCP for quadratic
utility .

This is the proof of Fact 1

Proof. 1. µt = µt+1, σ
2
t < σ2

t+1. As all identical parts cancel from the condition above, we
are left with −σ2

t > −σ2
t+1. Multiplying both sides by −1 concludes the proof of 1.

2. µt > µt+1, σ
2
t = σ2

t+1.

U2, the derivative with respect to (1− β) is given by

µ+ bαµ− b (1− β)µ2 − b (1− β)σ2

we want to show that U2 (·|t) > U2 (·|t+ 1), that is

µt + bαµt − b (1− β)µ2
t − b (1− β)σ2 > µt+1 + bαµt+1 − b (1− β)µ2

t+1 − b (1− β)σ2

µt (1 + bα− b (1− β)µt) > µt+1 (1 + bα− b (1− β)µt+1)

We have left to show that U1 (·|t+ 1) > U1 (·|t). To see this note how U1 amounts to

1 + bα− b (1− β)µ.

Inspection shows that if µt > µt+1, we have that U1 (·|t+ 1) > U1 (·|t), which concludes
the proof of 2.

3. Without loss of generality suppose that the outcome can be either 0 or 1, and let pt be
the probability of success of an agent of type t with, and consider pt > pt+1. The returns
from employing agent t , will have mean pt and variance pt (1− pt). Again, let’s start by
proving that U2 (·|t) > U2 (·|t+ 1). That is

pt+bαpt−b (1− β) p2t−b (1− β) pt (1− pt) > pt+1+bαpt+1−b (1− β) p2t+1−b (1− β) pt+1 (1− pt+1)

which readily simplifies to

pt + bαpt − b (1− β) pt > pt+1 + bαpt+1 − b (1− β) pt+1

and finally (pt − pt+1) (1 + bα− b (1− β)) > 0.

This has to be true, as pt > pt+1 by assumption and the second term in brackets cannot
be negative, otherwise individual utility x − b

2
x2 would be decreasing for x = 1, which

violates the assumption of monotonicity of preferences.

The proof that U1 (·|t) < U1 (·|t+ 1) is identical to the one of case 2, since µ = p and
pt > pt+1.

7.2 Mean and Variance

As previously noted, the assumptions on preferences and availability of a riskless asset, pay off
in terms of tractability. First let’s note that quadratic expected utility preferences on random
varaiables can be equivalently represented as preferences over mean and variance of random
variables.

E [u (X)] =

E [X]− b

2
E
[
X2] =

E [X]− b

2
E [X]2 − b

2
V ar [X]
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I will call the Mean-Variance representation F
(
µX , σ

2
X

)
, where the first argument is the

mean of X and the second argument its variance.
Linear contracts also allow a handy representation in terms of Mean and Variance.

µα+βX = α+ βµX

σ2
α+βX = β2σ2

X

7.3 CAPM

To study the problem, we need to incorporate the outcome of markets in the Principals’ ob-
jective functions. The final holdings are in equilibrium can be expressed analytically, because
our assumptions imply the existence of a CAPM equilibrium in the asset market.7

Every individual will hold the same risky portfolio, an equal fraction 1
N

of the aggregate
endowment, and will spend the rest on the riskless asset (or short it if their remaining endow-
ment is negative). With this in mind the mean and variance of the portfolio held by the agent
is readily computed as a function of contracts. For a general principal n we have that

• The holding of riskless asset is qn − 1
N

∑N
m=1 q

m

• The mean of the risky portfolio is 1
N

∑N
m=1 (αm + βmµm)

• The variance of the risky portfolio is 1
N2

∑N
m=1

(
β2
mσ

m2 +
∑
k 6=m ρ

mkβmβkσmσk
)

Since qn = αn + βnµn − b
N
βn2σn2

∑
m 6=n ρ

mnβmβnσmσn, we have that the mean of Pn’s
holdings simplifies to

αn + βnµn − b

N

βn2σn2 +
∑
m 6=n

ρmnβnβmσnσm

+
b

N2

N∑
m=1

βm2σm2 +
∑
k 6=m

ρmkβmβkσmσk


and the variance is of course the variance of the risky part 1

N2

∑N
m=1

(
β2
mσ

m2 +
∑
k 6=m ρ

mkβmβkσmσk
)

7.4 The Objective Function

If V (αn, βn) = F
(
αn + βnµn, βn2σn2

)
is the utility a Principal obtains from contract α, β

when no markets are available, markets will change this into

VM (αn, βn) =

FM
(
αn + βnµn, βn2σn2

)
=

F

αn + βnµn − b

N

βn2σn2 +
∑
m 6=n

ρnmβnβmσnσm

+
b

N2

∑
m∈N

βm2σm2 +
∑
k 6=m

ρmkβmβkσmσk


,

1

N2

∑
m∈N

βm2σm2 +
∑
k 6=m

ρmkβmβkσmσk


It is useful for the following proof to explicitly write the partial derivatives of VM with

respect

7See the proof of Theorem 3
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∂VM
∂αn

(αn, βn) = Fµ (·, ·)

∂VM
∂βn

(αn, βn) = Fµn (·, ·)

µn − b

N

2σn2βn +
∑
m 6=n

ρnmσnσmβm

+
b

N2

2σn2βn + 2
∑
m 6=n

ρnmσnσmβm


+Fσ2 (·, ·)

 1

N2

2σn2βn + 2
∑
m 6=n

ρnmσnσmβm


When principals are allowed to trade their claims, they will act at the first stage, as if their

utility functions were

EtVM (αnt β
n
t ) =

EtF
M (αnt + βnt µ

n
t , β

n2σn2
)

=

EtF

αnt + βnt µ
n
t −

b

N

βn2t σn2t +
∑
m 6=n

ρnmtt(m)β
n
t β

m
t(m)σ

n
t σ

m
(m)


+

b

N2

∑
m∈N

βm2
t(m)σ

m2
t(m) +

∑
k 6=m

ρmkt(k)t(m)β
m
t(m)β

k
t(k)σ

m
t(m)σ

k
t(k)


,

1

N2

∑
m∈N

βm2
t(m)σ

m2
t(m) +

∑
k 6=m

ρmkt(m)t(k)β
m
t(m)β

k
t(k)σ

m
t(m)σ

k
t(k)


7.5 Existence in the General Model

Like in the two-type symmetric economy, monotonicity of preferences is enough for existence
of an equilibrium. However, allowing for an arbitrary type distribution, heterogenous Units’
returns, and correlation between Units, does not allow to rule out mixed equilibria.

Theorem 4. There is an equilibrium.

Proof. I am going to use a well known fixed point result by Glicksberg (1952) to show that
there is an equilibrium in the first stage of the game, given that the asset market develops as
predicted by the CAPM model.

I need to show that

1. The strategy space of each Principal ∆(Mn) is a convex, compact subset of a locally
convex Hausdorff space.

2. The best response correspondence of all principals is upper hemi-continuous, convex val-
ued, and nonempty.

For the first part note that the space of Incentive Compatible menus Mn is a subset of a
Euclidean space. It is closed because it is defined by a finite number of weak inequalities, and it
is bounded because it is included in the larger set of feasible contracts, which is also bounded.
Hence it is compact.

The space of lotteries (identified with Borel probability measures) over these Menus is of
course convex. It is also compact with respect to the weak* topology. This space of probabilities
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is a subset of the space of continuous functions C (Mn), which is locally convex (and Hausdorff)
with respect to the weak* topology.8

For the second part, convexity of the best response correspondence follows from preferences
on random variables being represented by expected utility. I will use Berge’s Maximum theorem
to show that it is non empty, compact-valued and upper hemi-continous.

To apply the maximum theorem to individuals’ best response, it has to be that constraints
vary continuously with other principals’ strategies, and that the payoff function is continuous
in one’s own actions.

First note how the constraints correspondence is constant with respect to other principals
strategies, and is therefore continuous. Also note how the constraints correspondence maps to
the space of Borel probability measures on menus, which is a Hausdorff space as noted above.

We also need to make sure that the payoff function of a principal is continuous in menus.
To do this we need to show that

1. Payoffs at the market stage are a continuous function of the contracts chosen by agents.

2. The contracts chosen by agents are a continuous function of the menus offered.

Claim 1 By Lemma 4, if the preferences are monotonic for (µ,Ω), they are going to be
monotonic for the asset markets resulting from all possible contracts C. Under the present
assumptions a CAPM equilibrium exists once contracts are chosen.9 Because in equilibrium
the price of a security can be expressed as qn = αn+βnµn− b

N

(
βn2σn2 + Σm 6=nρ

mnβmβnσmσn
)

The indirect utility from a contract profile in the CAPM function is continuous in contracts.
Claim 2 Without loss of generality, we can restrict attention to Incentive Compatible menus,

from the set Mn
IC . If a principal makes a small change to the menu he offers while remaining

in this set, every type of agent t , will still find it optimal to pick the contract intended for
him, Ct. Hence any small change, will correspond to a small change in the contract picked by
each type of agent.

We can conclude that the indirect utility for a principal facing type t is a continuous function
of the menus offered.

Taking expectation with respect to F over these indirect utilities yields a continuous func-
tional on the domain of lotteries on IC menus ∆ (Mn

IC).
By the maximum theorem the best response correspondence of each player is now UHC and

compact valued, which implies that the game best response is as well.
By Glicksberg’s theorem there is a fixed point, which is an equilibrium by construction.

7.6 Insurance and Welfare

The results of Section 4 extend to this setting provided the economy satisfies SCP2 and the
level of correlation is limited.

Lemma 3. Under Assumption 3, there is a ρ, such that, if ρ < ρ

• βn1 (N) < 1, βnt (N) ≤ 1,∀t ∈ {2, ..., T}
• limN→∞ β

n
t (N) = 1,∀n,∀t

• ∃Ns.t. βnt (N) = 1,∀t ∈ {2, ..., T} , ∀N ≥ N
8For a treatment of these and other results on weak topologies, and also to see the theorems of Berge and

Glicksberg, see Aliprantis, Border (2005)
9In the literature briefly reviewed by Nielsen (1990), one can find many sufficient conditions for the existence of a

CAPM equilibrium, most of them deal with the possibility of satiation of preferences. Things are particularly simple
when returns are bounded (which includes this model): monotonicity and local non satiation are guaranteed by a
low enough risk aversion.
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Proof.

max
(αt,βt)

T
t=1

EtV
M (αt, βt|t)

s.t. U (−αt, 1− βt|t) ≥ u, ∀t ∈ {1, ...T} (IR t)

U (−αt, 1− βt|t) ≥ U (−αt′ , 1− βt′ |t) , ∀t, t′ ∈ {1, ..., T} (IC t t’)

SCP and IC constraints imply by usual arguments that yield that

(1− β∗s ) ≥ (1− β∗t ) , ∀s < t ∈ {1, ...T} (2)

Note how this implies that β1 ≤ βt,∀t
Now we have to solve for the contract of type 1. To do this I show that the IC12 constraint

will always be binding, and that this is enough to attain the desired result.
The first thing to do is to reduce the set of relevant constraints.
Fact 3 implies that

U (−αt, 1− βt|t) ≥ U (−αt, 1− βt|T )

This together with IR holding for type T and IC holding for type t with respect to the
contracts of type T, implies that IR holds for type t.

In other words, if

U (−αT , 1− βT |T ) ≥ u
U (−αt, 1− βt|t) ≥ U (−αT , 1− βT |t)

we will also have that

U (−αt, 1− βt|t) ≥ u

We can hence solve the problem without worrying about any of the IR constraints except
that of type T .

We can also infer that ICt−1,t will be binding at an optimum for any t. Suppose that it
were not binding,

U (−αt−1, 1− βt−1|t− 1) > U (−αt, 1− βt|t− 1)

Since we are at an optimum it has to be that the IC constraints are satisfied

U (−αt, 1− βt|t) ≥ U (−αk, 1− βk|t) , ∀k

By Fact 4 it has to be that

U (−αt, 1− βt|s) > U (−αk, 1− βk|s) , ∀k ≥ t,∀s < t

Consider an alternative incentive scheme {α′t, β′t}
T
t=1 , which gives a smaller fixed payment

less transfer −α′s < αs to all types s lower t. Because their IC constraints for contracts Ck,
with k > t ( ICs,k ) are not binding, we are increasing the maximand while remaining in
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the admissible set of contracts, which contradicts the original scheme {αt, βt}Tt=1 being an
optimum.

This and SCP imply that constraints ICt,t−1 will not be binding.
It also implies that no other IC constraint will bind at the optimum. Fact 3, ICt−1,t, and

ICt,t+1 imply that ICt−1,t+1 is satisfied with a strict inequality.
This means that the only relevant constraints for determining the optimal β1 are in the

form

U (−α1, 1− β1|1) = U (−α2, 1− β2|1)

I now have to solve a simpler problem

max
(αt,βt)

T
t=1

EtV
M (αt, βt|t)

s.t. U (−αT , 1− βT |t) = u (IR T)

U (−αt, 1− βt|t) = U (−αt+1, 1− βt+1|t) , ∀t ∈ {1, ..., T − 1} (IC t, t+1)

The only first order conditions involving α1 and β1 are given by

F (t|t(n) = 1)Vα − λ1U−α = 0

F (t|t(n) = 1)Vβ − λ1U(1−β) = 0

Dividing both sides of each equation by F (t|t(n) = 1), and solving for λ1
F(t|t(n)=1)

(where
λ1 is the Lagrange Multiplier associated with IC12 yields

Vα
U−α

=
Vβ

U(1−β)

Et|t(n)=1

{
FMµ

(
α1 + β1µ1, β

2
1σ

2
1

)}
Fµ
(
−α1 + (1− β1)µ1, (1− β1)2 σ2

1

) =

Et|t(n)=1

{
(µ1 − bR (N))FMµ

(
α1 + β1µ1, β

2
1σ

2
1

)
+ bS (N)FMσ2

}
µ1Fµ

(
−α1 + (1− β1)µ1, (1− β1)2 σ2

1

)
− b (1− β1)σ2

1

where

R (N) =
1

N

2σn2βn +
∑
m 6=n

ρnmσnσmβm

− 1

N2

2σn2βn + 2
∑
m 6=n

ρnmσnσmβm


S (N) =

1

N2

2σn2βn + 2
∑
m 6=n

ρnmσnσmβm


Solving above for β1 we have
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β1(N) =
[
2σ2

1Fσ2 − Fµ
(
−α1 + (1− β1)µ1, (1− β1)2 σ2

1

)
FMσ2 bR(N)+

Fµ
(
−α1 + (1− β1)µ1, (1− β1)2 σ2

1

)
FMµ

(
α1 + β1µ1, β

2
1σ

2
1

)
S(N)

]
/

2σ2
1Fσ2FMµ

(
α1 + β1µ1, β

2
1σ

2
1

)
As N gets large, this converges to

1− lim
N→∞

R (N)Fµ
(
−α1 + (1− β1)µ1, (1− β1)2 σ2

1

)
Letting ρ1 ≡ maxm,n,s,t, ρ

mn
st , and observing that Fµ is always strictly smaller than one, we

can solve the following inequality to find a bound for ρ1.

β1(M) < 1− ρ1σ1 lim
∑
m 6=1

σm
N

Which is satisfied whenever ρ1 < 1−β1(N)

σ1 lim
∑
m6=1

σm
N

= ρ1. Whenever all correlations are

bounded above, we have the desired result for type 1.
To conclude that every contract is less risky, I need to rule out the case in which some βMt

goes from 1 to some number in
(
βM1 , 1

)
, and then converges to 1, without hitting 1 in a finite

time).
Consider the simplified optimization problem with markets described above. Consider the

contract of some type t greater than 1. Let λt be the Lagrange multiplier of the downward
Incentive Compatibility constraint of type t, ICt,t+1 . That is that type t prefers the contract
designed for him over that designed for type t + 1. Let λt−1 be the Lagrange multiplier
associated with the downward Incentive Compatibility constraint of type t − 1, ICt−1,t. The
first order conditions determining the contract of type t .

Et|t(n)=t

{
F (t)FMµ

(
αt + βtµt, β

2
t σ

2
t

)}
+

−λtFµ
(
−αt + (1− βt)µt, (1− βt)2 σ2

t

)
+

+λt−1Fµ
(
−αt + (1− βt)µt−1, (1− βt)2 σ2

t−1

)
= 0

Et|t(n)=t

{
F (t)

[
(µt −R (N))FMµ

(
αt + βtµt, β

2
t σ

2
t

)
+ S (N)FMσ2

]}
−λt

[
µtFµ

(
−αt + (1− βt)µt, (1− βt)2 σ2

t

)
− b (1− βt)σ2

t

]
+λt−1

[
µt−1Fµ

(
−αt + (1− βt)µt−1, (1− βt)2 σ2

t−1

)
− b (1− βt)σ2

t−1

]
= 0

Solving for λt we obtain

Et|t(n)=t

{
F (t)FMµ

(
αt + βtµt, β

2
t σ

2
t

)}
+λt−1Fµ

(
−αt + (1− βt)µt−1, (1− βt)2 σ2

t−1

)
/

Fµ
(
−αt + (1− βt)µt, (1− βt)2 σ2

t

)
=

Et|t(n)=t

{
F (t)

[
(µt − bR (N))FMµ

(
αt + βtµt, β

2
t σ

2
t

)
+ S (N)FMσ2

]}
+λt−1

[
µt−1Fµ

(
−αt + (1− βt)µt−1, (1− βt)2 σ2

t−1

)
− b (1− βt)σ2

t−1

]
/

µtFµ
(
−αt + (1− βt)µt, (1− βt)2 σ2

t

)
− b (1− βt)σ2

t
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Solving for βt we obtain

β∗t =

1+[
λt−1Fµ

(
−αt + (1− βt)µt, (1− βt)2 σ2

t

)
Fµ
(
−αt + (1− βt)µt−1, (1− βt)2 σ2

t−1

)
(µt−1 − µt)−

Fµ
(
−αt + (1− βt)µt, (1− βt)2 σ2

t

)
Et|t(n)=t

{
F (t) bR (N)FMµ M

(
αt + βtµt, β

2
t σ

2
t

)
µt + F (t)S (N)Fσ2

}]
/ (B)

where

B ≡

b
[
Et|t(n)=t

{
F (t)FMµ

(
αt + βtµt, β

2
t σ

2
t

)
σ2
t

}
+

λt−1

(
Fµ
(
−αt + (1− βt)µt−1, (1− βt)2 σ2

t−1

)
σ2
t − Fµ

(
−αt + (1− βt)µt, (1− βt)2 σ2

t

)
σ2
t−1

)]
≥ 0

By Fact 5 The second addend in the numerator is positive. Since FMσ2 is negative, the second
addend in the denominator is also positive, butit will go to zero in a large enough market, and
β∗t will converge to

1 +
[
λt−1Fµ

(
−αt + (1− βt)µt, (1− βt)2 σ2

t

)
Fµ
(
−αt + (1− βt)µt−1, (1− βt)2 σ2

t−1

)
(µt−1 − µt)

(3)

−Et|t(n)=t

{
F (t)µtR (N)Fµ

(
−αt + (1− βt)µt, (1− βt)2 σ2

t

)
FMµ

(
αt + βtµt, β

2
t σ

2
t

)}]
/B

By putting a bound on correlation ρnmst we can arbitrarily bound limR(N), to the point in
which this solution is greater than 1, which cannot be. It has to be that β∗t (N) = 1. Since
t was arbitrarily chosen between 1 and T , there is a N such that β∗t (N) ,∀N ≥ N and types
t > 1 will receive a contract with zero variance. Let this bound be called ρt.

By letting ρ = min{1,...T} ρt, we found a bound for correlation for which all conclusions
hold. This concludes the proof.

The other results follow from the construction of the optimal contracts in the previous
proof.

The first best equilibrium menus in the more general economy are

M̂n (N) =
[
Ĉnt (N)

]T
t=1

=
[(
α̂t (N) , β̂t (N)

)]T
t=1

Lemma 4. Under Assumption 3, there is a ρ, such that, if ρmnst < ρ for all m,n, s, t

• β̂nt (N) < 1

• limN→∞ β̂
n
t (N) = 1,∀n,∀t

Theorem 5. Increasing the number of Units in an economy, eventually induces Principals to
retain more risk at the contracting stage.

∀N,∃N : β̂nt
(
N ′
)
≥ β̂nt (N) , ∀n,∀t ∈ {L,H} , ∀N ′ ≥ N

Proposition 6. Asymmetric information Equilibria are weakly Pareto Dominated
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Proof. While the contract of type 1 is efficient by construction, the contracts of type t > 1 are
all inefficient and can be improved upon. In fact every agent can be left at the same utility ut
while the principal utility can be improved upon by issuing a first contract solving separated
problems

max
(αt,βt)

UM (αt, βt|t)

s.t. U (−αt, 1− βt|t) ≥ ut

The resulting Contracts
{

ˆ̂
Mn

}N
n=1

=

{[
ˆ̂
Cnt

]T
t=1

}N
n=1

are Pareto Efficient by construction, and

give at least the same utility to Principals, and exactly the same to Agents.

Proposition 7. Aggregate Risk on markets is higher than under the Pareto Optimal contracts
described in the proof of Proposition 6.

N∑
1=1

(
βnt(n)

)2
σ2
t(n) ≥

N∑
1=1

(
ˆ̂
βnt(n)

)2
σ2
t(n), ∀t ∈ [L,H]T

Proof. The contract (and hence the security) of a Unit n employing its “best” possible agent
(t : τ(n)(1) = 1) is optimal, so the claim is trivially true. For types t : t(n) = 2, ...T the claim
follows from Equation 3.

Proposition 8. Increasing the number of Units in an economy, eventually makes contracts

more efficient. Letting ∆n
t (N) = |βnt (N)− ˆ̂

βnt (N)|.

∀n,∀N, ∃N : ∀N ′ ≥ N,∆n
t

(
N ′
)
< ∆n

t (N)

Proof. The proof leverages on the fact that both first and second best contracts are arbitrarily
close to 1 for large enough markets. The claim is trivially satisfied for βn1 (N) (the second
best solution, with markets), since it is a Pareto Efficient Contract by construction. For

βnt (N) , t > 1, note how βnt (N) and
ˆ̂
βt (N) both go to one as N gets large, there must be a N

such that ∆n
t (N) < ∆n

t (1) for all N > N .

Proposition 9. With large enough markets, no agent enjoys an information rent.

∃N : ∀N ≥ N,U (Ct (N) , t) = u,∀t

Proof. For a given economy consider an N ′ which makes βnt (N) = 1,∀t > 1, in every Unit,
as per Equation 3. The contracts for these types t, will be identical for all types t > 1, in
the form Cnt = (αu, 1) where αu is such that −αu − b

2
(−αu)2 = u . This contract leaves all

types, including 1 at their participation constraint. This implies immediately that all types
2, ..., T will be at their reservation utility. Furthermore the optimal contract for type 1 now will
also yield him only his reservation utility, because that’s the most he can obtain by mimicking
another type.

7.7 Counterexamples

These two examples, combined with the correlation example in Section 5 show that the as-
sumptions (independence of returns and ordering of types), and conclusions of Theorem 1 are
“tight”.
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7.7.1 A Type Space violating SCP

Consider the following set of parameters(
µH , σ

2
H

) (
µL, σ

2
L

)
b u

(2.1, 1) (2, 0.1) 0.1 0.3

−αH + (1− βH)X = −0.9301 + 0.6163X

−αL + (1− βL)X = 0.3122

Those with markets will be

−αMH +
(

1− βMH
)
X = 0.3083 + 0.0018X

−αML +
(

1− βML
)
X = −0.9301 + 0.4913X

We can see that the contract of type L becomes riskier as markets are introduced. This is
because in this example SCP fails, so that there is not a “better” type. The “better” type
depends on which part of the contract space we are looking at. The diversification possibilities
available to the Principal, change the portion relevant in equilibrium.

7.7.2 Small Market

The insurance results are formulated as convergence results rather than Comparative Statics
result. The following example shows that a stronger comparaatives statics would not be true.
Adding a Unit does not necessarily induce insurance for Agents.

Consider the set of parameters.(
µH , σ

2
H

) (
µL, σ

2
L

)
r u

(3, 0.3) (2, 1) .01 .5

The equilibrium contracts without markets will be

−αH + (1− βH)X = −0.2483 + 0.2499X

−αL + (1− βL)X = −0.5368 + 0.5197X

Those with markets will be

−αMH +
(

1− βMH
)
X = −0.7713 + 0.4243X

−αML +
(

1− βML
)
X = −0.3529 + 0.4275X

In this economy, the contract of type H is now riskier, when markets are present.
To have an intuition for what is going on, compare the parameters with those from the

previous example and note that now

• Risk Aversion is very low. Markets do not change much the risk taking attitude, as
Principals are close to being risk neutral.
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• The distributions of returns are very different. Entering the market amounts to selling
half of a Unit to buy a fraction of the other, plus/minus a transfer of riskless asset. This
introduce a big change in the risk held by a principal.

In this example, the Principal owning the safer Unit ends up holding more risk than her
agent does, when the possibility of trading is introduced. She is of course compensated with
a transfer of riskless asset, but at the contracting stage she acts as if her risk attitude has
increased

Consider what happens to the contracts when markets are present. If we consider a replica
economy with 10 Units, we will have that

−αMH +
(

1− βMH
)
X = 0.0279 + 0.1578X

−αML +
(

1− βML
)
X = 0.1835 + 0.1589X

Theorem 1 starts biting and both contracts are again less risky than they would have been
without markets. This is because the large number of Units makes diversification and the
ensuing change in risk aversion enough to countervail the effect of selling part of the less risky
endowment.
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