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Abstract

This paper examines how the distribution of gasoline prices (the minimum, median and
maximum prices, as well as other quantiles) changes with the number of competitors in
the market. Using data from the Netherlands we �nd that as competition increases, the
distribution of prices spreads out: the low prices go down while the high prices go up,
on average. As a result, competition has an asymmetric e¤ect on prices. These �ndings,
which are consistent with theoretical models where consumers di¤er in the information
they have about prices, imply that consumers�gains from competition depend on their
shopping behavior. In our data, all consumers, irrespective of the number of prices they
are informed about, would bene�t from an increase in the number of gas stations. The
magnitude of the welfare gain, however, would be greater for those consumers that are
aware of more prices. We conclude that an increase in the number of gas stations has a
positive but unequal e¤ect on the welfare of consumers in the Netherlands.



1 Introduction

Economists have dedicated a signi�cant amount of e¤ort to analyzing the relationship

between the number of �rms and prices. Standard oligopoly models assume consumers

are perfectly informed about all prices in the market and predict that an increase in

the number of �rms will lower the equilibrium price. Alternative and more realistic

models depart from the assumption that all consumers have the same information and

describe equilibria characterized by non-degenerate price distributions.1 In markets with

price dispersion the question of what happens to �the�price when the number of �rms

changes is not even well de�ned. An increase in the number of �rms usually a¤ects the

sellers�pricing strategies and this alters the whole distribution of equilibrium prices.

Empirical research of markets with price dispersion has usually proceeded by esti-

mating the impact of competition on the mean and variance of prices.2 In this paper we

take a broader view and study how the distribution of prices changes with the number of

competitors in the market. We examine how the minimum, median and maximum prices,

as well as other quantiles of the price distribution, vary with the extent of competition

as measured by the number of �rms operating in a market. Speci�cally, we analyze the

case of gasoline prices in the Netherlands.

We think this broader approach is important for at least two reasons. First, the

class of theoretical models based on imperfect consumer information and search costs

often predict that the e¤ect of competition on �high� prices di¤ers from its e¤ect on

�low�prices.3 These models imply that the probability of observing relatively low and

high prices increases with the number of �rms operating in the market. Although this

is a known theoretical result, to the best of our knowledge, it has not been veri�ed

empirically. This is surprising because, if empirically valid, this result has important

welfare implications. Analyzing these implications constitutes the second motivation for

1See Baye et al. (2006) for a recent survey of models that rationalize price dispersion.

2See, for example, Borenstein and Rose (1994), Barron, Taylor and Umbeck (2004), Baye et al.
(2004), and Lewis (2008).

3See, for example, Varian (1980), Stahl (1989) and Janssen and Moraga-González (2004). In these
models some consumers know all the prices in the market while others only know one or two prices.
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this paper. In markets exhibiting a single price in equilibrium, an increase in the number

of �rms reduces price and this unambiguously increases welfare for all consumers. When

price dispersion is prevalent, di¤erent consumers may experience distinct welfare e¤ects

depending on how di¤erent parts of the price distribution respond to changes in the

number of competitors. If, as these models predict, the frequency of low and high

prices increases with competition then whether consumers are successful in paying the

lower prices depends on their shopping behavior. Increased competition is likely to favor

more those consumers sampling or observing several prices because they may end up

paying one of the lower prices. By the same token, increased competition may even hurt

consumers that observe very few prices (e.g., only one price) because they may end up

paying one of the higher prices. Theoretically, price changes originating from an increase

in the number of �rms can result in welfare gains for some consumers and at the same

time in welfare losses for others. Analyzing the e¤ects of entry-promoting policies just

on the mean and dispersion of prices cannot capture these distinct welfare e¤ects.

We use daily Euro 95 price data posted by about 3100 gas stations in the Nether-

lands during May 2006.4 For a given gas station, the relevant market is de�ned as the

municipality where the gas station is located. For each of such 423 markets, we compute

the minimum, median and maximum price, as well as other quantiles of the price distri-

bution. We then regress these statistics on the number of gas stations in the market as

well as on municipality characteristics to control for common determinants of prices and

the number of stations. We also use population size and local taxes as instruments for

the (endogenous) number of stations.

The empirical �ndings suggest that as competition increases the distribution of

prices spreads out; therefore competition has asymmetric e¤ects on prices. Speci�cally,

as the number of gas stations in a market increases, the low prices decrease while the

high prices increase, on average. Adding 4 additional gas stations to a single-station

market would, on average, lower the minimum price of a liter of Euro 95 by 0.93 cents

and increase the maximum price by 0.83 cents. These are small changes relative to the

4The results also hold for Diesel (see Section 5.1).
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mean price of 142 cents, but these changes are quantitatively signi�cant relative to the

dispersion in (residual) prices which is about 1 cent. This characterization of the e¤ect

of competition on prices accords in part with the theoretical predictions of models where

some consumers have imperfect information about prices and observe (perhaps through

search) di¤erent number of prices.

In addition, we estimate the gains from increased competition to consumers ob-

serving di¤erent numbers of prices. In our data, all types of consumers bene�t from an

increase in the number of stations. The magnitude of the welfare improvement due to

price changes depends, however, on their shopping behavior and is larger for those con-

sumers that observe more prices. The decline in the expected price paid by consumers

that observe 4 or 5 prices is about twice as large as that for consumers that observe only

2 prices.

We believe the message of this paper goes beyond the present application to the

gasoline market in the Netherlands. Since imperfect price information is prevalent in

many markets (telecommunications, health, gas, electricity, etc.), the price e¤ects of

competition-enhancing policies (industry deregulation, trade liberalization, etc.) might

not be as straightforward as those implied by standard models. Moreover, since increased

competition can potentially have unequal e¤ects among consumers, distributional issues

become a central part of the welfare assessment of these policies. This advocates the

importance of taking a broader view where the interaction between competition and

consumer policy is taken into consideration (Armstrong, 2008; Waterson, 2003).

In the next section we present a Varian-style model of the distribution of prices in

an oligopolistic market where consumers di¤er in the amount of prices they are exposed

to. The model delivers implications on the e¤ect of the number of �rms on the price

distribution (minimum, maximum and mean price, as well as other quantiles), and on

the price paid by various consumer types. The model also makes clear that increased

competition has an e¤ect on prices only when it increases the amount of information

consumers have. Section 3 describes the gasoline price data for the Netherlands and

explains how markets are de�ned for the empirical analysis. We present evidence that gas

stations in our data appear to be using mixed pricing strategies as implied by Varian-style
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models. We also show preliminary graphical evidence on the relationship between the

number of gas stations and the minimum and maximum price. Our empirical strategy is

outlined in Section 4, while the empirical results are presented in Section 5. An empirical

assessment of the welfare implications of increased competition is presented in Section

6. Conclusions close the paper.

2 A model of the distribution of prices

The market for gasoline is a good example of a homogenous good market where price

dispersion is observed.5 Many consumers are informed about a few prices only, and this

gives monopoly power to the gas stations. In many instances, consumers run out of fuel

and have no option but to �ll their gas tanks at the �rst gas station they encounter and

this also gives market power to the gas stations. Prices change quite frequently and it

is not trivial to tell which gas station is the cheapest in a given market. The model we

consider below, an extension of Varian�s (1980) model of sales, has these characteristics.

Suppose we have a market where there are N � 2 identical �rms that compete in

prices to sell a homogeneous good to a large number L of consumers. We assume �rms�

unit selling costs, c; are the same across all �rms.6 Each consumer wishes to purchase

at most a single unit of the good (e.g., a full tank). The maximum willingness to pay for

the good is common across consumers and is denoted by v > 0: The entire population of

consumers L can be divided into various groups or types, each group consisting of all the

consumers with similar exposure to price information. In particular, we assume that a

fraction �s of the consumers is informed about s prices in the market, with s = 1; 2; :::; S:

The rationale behind this assumption is that the typical consumer is exposed to a number

of prices that depends on the number of gas stations he/she observes while driving to

work.

5Price dispersion in gasoline markets has been widely documented. Recent papers on this topic are,
for example, Barron, Taylor and Umbeck (2004), Chandra and Tappata (2008), Hosken et al. (2008),
and Lewis (2008).

6We therefore abstract from cost di¤erences across �rms as an explanation for price dispersion in
gasoline markets. In the empirical part, however, we control for station-speci�c unobserved e¤ects.
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We shall assume that S � N: In small markets where there are up to, say, 6-8 gas

stations it is reasonable to expect that S be equal to N: However, in cities where there

is a very large number of gas stations (Rotterdam, for example, has 80 gas stations), it

is unrealistic to assume the existence of consumers that are aware of all prices in the

market as done, for example, by Varian (1980). In those markets S will typically be

much smaller than N: As it will become clear later, it is S and not N that determines

the extent of competition in the market.

Moreover, we believe that search in this market is �passive� in the sense that

consumers do not deliberately drive to various gas stations to observe their prices. Nev-

ertheless, we will refer to the di¤erent consumer types as consumers exhibiting di¤erent

�shopping�behavior.7 In addition, as we will see later, this assumption serves to pro-

duce empirically plausible price densities. It will be convenient to denote the fraction of

consumers observing exactly S prices as ; then by construction  = 1�
PS�1

s=1 �s:

Firms play a simultaneous-moves Bertrand game. An individual �rm i chooses a

price pi taking the prices of the rival �rms as given. To rule out pure-strategy equilibria,

we shall assume 1 > �1 > 0 (as in Varian, 1980).
8 The intuition is as follows. Consider

the position of a �rm i and suppose all its rivals were charging a price ep; with c � ep � v.
There are two forces that a¤ect the price-setting decision of �rm i. First, there is a desire

to steal business from competitors and this pushes this �rm to undercut the rivals�prices.

This desire arises because there exist consumers who are exposed to various prices and

choose the cheapest gas station to tank (i.e., �s > 0 for at least one s; 2 � s � S):

Second, the possibility of extracting surplus from consumers who do not compare prices

prompts �rm i to set higher prices than the rivals. This desire arises because there exist

consumers (in particular a fraction �1=N > 0) who have no other option but to tank

at �rm i. It is easy to see that either of these deviations destabilizes any such price ep:
7We therefore do not model the consumer�s decision of how many prices to observe. For models of

this kind where there are two types of consumers see Stahl (1989) and Janssen and Moraga-González
(2004).

8If �1 = 1; then pi = v for all i is a pure-strategy equilibrium. If �1 = 0; then pi = c for all i is a
pure-strategy equilibrium.
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Therefore a single price cannot accommodate these two incentives.

Denote the mixed pricing strategy of a �rm i by a distribution of prices Fi:We shall

only study symmetric equilibria, i.e., equilibria where Fi = F for all i = 1; 2; : : : ; N:9

To calculate the expected pro�t to �rm i from charging a price p when its rivals choose

a random pricing strategy according to the cumulative distribution F; we �rst consider

the chance that �rm i sells to a consumer of type s; i.e., to a consumer that observes s

prices in the market. The chance that such a consumer observes the price of �rm i is

s=N and, conditional on this, the probability that �rm i sells to this consumer at price

p is (1� F (p))s�1 : Therefore, the pro�ts to �rm i from all types of consumers is

�i(p;F ) = L(p� c)
"
S�1X
s=1

s�s
N
(1� F (p))s�1 + S

N
(1� F (p))S�1

#
(1)

In equilibrium, a �rmmust be indi¤erent between charging any price in the support

of F and charging the upper bound p. Therefore, any price in the support of F must

satisfy �i(p;F ) = �i(p;F ). Since �i(p;F ) is monotonically increasing in p, it must be

the case that p = v. As a result, equilibrium pricing requires

(p� c)
"
S�1X
s=1

s�s(1� F (p))s�1 + S(1� F (p))S�1
#
= (v � c)�1 (2)

This equation cannot be solved explicitly for F; except in special cases. However,

the existence of a equilibrium price distribution F can be easily proven. This symmetric

equilibrium is unique.10

We are interested in how the pricing strategy of the �rms changes with the number

of �rms N . For this, we need to distinguish markets with many �rms (N > S) from

markets with a few �rms (N = S). In the former case, an increase in the number of

�rms would have no e¤ect on pricing behavior. This is because consumers would observe

at most S prices and so increasing the number of stations would not a¤ect consumers�

9It is easy to see that the support of F must be a convex set and that F cannot have atoms.

10To prove that F exists, rewrite equation (2) as
PS�1

s=1 s�s(1�F (p))s�1+S(1�F (p))S�1 =
�1(v�c)
p�c :

Since F 2 [0; 1]; the LHS of this equation is positive and decreases in F ; by contrast, the RHS is a positive
constant. At F = 0; the LHS equals

PS�1
s=1 s�s + S > 0, while at F = 1 it takes on value �1. As a

result, for every p 2 (p; v); there is a unique solution to equation (2) satisfying F 2 [0; 1] and F increases
in p:
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information �equation (2) does not depend on N: Of course, �rms�pro�tability would

be a¤ected by N but not �rms�pricing strategies.

Consider the more interesting case of a market with few gas stations, i.e., where

S = N: In this case there are always consumers who are informed about all the prices

in the market. Let FN be the equilibrium price distribution that solves equation (2) (we

index F by N to indicate that the pricing strategy does indeed depend on the number

of competitors in the market). The lowest price charged in the market, denoted p
N
, can

be found by setting F (p
N
) = 0 in equation (2) and solving for

p
N
= c+

(v � c)�1PS�1
s=1 s�s + N

(3)

Since our equilibrium satis�es equation (2), the comparative statics of the price

distribution with respect to the number of �rms can be obtained by applying the implicit

function theorem to that equation (treating N as a continuous variable for simplicity)

dFN(p)

dN
=

(1� FN(p))N�1 [1 +N ln[1� FN(p)]]PS�1
s=1 s(s� 1)�s(1� FN(p))s�2 + N(N � 1)(1� FN(p))N�2

(4)

The denominator of this expression is clearly positive. Therefore

sign

�
dFN(p)

dN

�
= sign [1 +N ln[1� FN(p)]] (5)

We now make some observations on the expression 1 + N ln[1 � FN(p)]: This ex-

pression is monotonically decreasing in p: When p ! p
N
; we have FN(p) ! 0 and the

sign of (4) is positive. By contrast, when p ! v; we have FN(p) ! 1 so the sign of (4)

is negative. Therefore there exists a unique price bpN , such that dFN(p)=dN � 0 for all

p < bpN and dFN(p)=dN � 0 for all p > bpN : In fact, bpN satis�es F (bpN) = 1� exp[�1=N ]:
The implication of this result is that an increase in the number of competitors

results in an increase in the probability with which low and high prices are charged and,

therefore, in a decrease in the probability with which intermediate prices are charged.

This can clearly be seen in Figure 1 where we have plotted the equilibrium price distrib-

utions for markets with 2 �rms (thick solid curve); 4 �rms (thin solid curve) and 6 �rms

(dashed curve), for given parameters.11

11The parameters are �1 = 0:5; �2 = 0:4 and  = 0:1; the rest of the ��s and the marginal cost c are
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In order to understand the intuition behind these e¤ects, recall that the distribution

of prices of a �rm is chosen to maximize the pro�ts accruing from the various groups

of consumers, given other �rms�strategies. These pro�ts, as shown is equation (2), are

constant at all prices chosen with positive probability. Note also that the elasticity

of the expected demand of the consumers observing s < N prices is equal to p(s �

1)fN(p)=(1�FN(p)):12 Thus, keeping rivals�strategies �xed, this elasticity is independent

of N: By contrast, the elasticity of the expected demand of consumers observing N prices

is p(N � 1)fN(p)=(1 � FN(p)); which increases in N: Therefore, if the number of �rms

increases, and keeping the rivals� strategies �xed, only the elasticity of the expected

demand of the fully informed consumers changes. Consider a �rm contemplating how

to change its strategy in response to entry. This �rm knows that the expected demand

from the fully informed consumers becomes more elastic as N increases; it therefore

has an incentive to o¤er even lower prices when N increases. Thus, in this model, the

competitive e¤ect of an increase in N is to prompt �rms to o¤er �lowest ever�prices by

shifting some probability mass from initially low prices to even lower prices (prices that

had zero density before the increase in N). This e¤ect is clearly visible in Figure 1 where

it is seen that the lowest price in the support of the price distribution, p
N
; decreases with

N:

At the same time, it becomes disproportionately more di¢ cult to sell to fully-

informed consumers because there are more competitors in the market. Thus, �rms

tend to �give up�on selling to the fully-informed consumers in favor of selling to the

less-informed consumers. The latter�s lack of full information on prices allows �rms to

increase the frequency at which they charge high prices..This e¤ect is also visible in

Figure 1 where it is seen that the slope of FN near the upper bound v increases with N:

In sum, a change in N induces non-trivial changes in the equilibrium price distribu-

set equal to zero, while v = 1. Therefore, when N = 2 , half of the consumers observe one price, and
the other half (�2+) compare two prices. In the N = 4 case, we have again that half of the consumers
observe one price, 40 percent observe two prices and 10 percent of the consumers observe four prices.

12Every consumer demands at most a single unit so individual demands are inelastic. However, given
the strategies of the rival �rms, the expected number of units sold by a �rm increases as the �rm reduces
its price.
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tion since it comprises changes in the support of the price distribution as well as changes

in the price frequencies. Overall, however, pricing strategies become more extreme and,

as we state next, the mean price increases with N (the proof is in the Appendix).

Proposition 1 Consider the case of a market where the number of �rms is relatively

small, i.e., S = N: Then the following results hold:

(A) Let pN be distributed according to the equilibrium price cdf FN(p); likewise, let

pN+1 follow the distribution FN+1(p): Then E[pN+1] > E[pN ]:

(B) Let yN = min fp1; p2; :::; pNg where where p1; p2; :::; pN are i.i.d. random vari-

ables drawn from FN(p); likewise, let yN+1 = min fp1; p2; :::; pN+1g where p1; p2; :::; pN+1
are i.i.d. random variables drawn from FN+1(p): Then, there exists a number (N) such

that E[yN ] > E[yN+1] for all  < (N):

(C) Let zN = max fp1; p2; :::; pNg where where p1; p2; :::; pN are i.i.d. random vari-

ables drawn from FN(p); likewise, let zN+1 = max fp1; p2; :::; pN+1g where p1; p2; :::; pN+1
are i.i.d. random variables drawn from FN+1(p): Then, there exists a number b(N) such
that E[zN+1] > E[zN ] for all  > b(N):

If, instead, the market has a relatively large number of �rms, i.e., S < N; then an

increase in the number of �rms has no e¤ect on the price strategies of the �rms.

It is important to remark that the conditions in Proposition 1are su¢ cient but not

necessary. A large number of simulations indicate that it is always the case that the

expected minimum price decreases with N while the expected maximum price increases

with N: In other words, we �nd that for all sensible values of  Proposition 1 holds

unconditionally.

The e¤ect of the number of competitors on the price distribution constitute the �rst

set of implications of the model that we will test using gasoline prices in the Netherlands.

A comment is in order here. The results in Proposition 1 have been derived assum-

ing consumer behavior is �xed. By �consumer behavior�we mean that the distribution

of the partially-informed consumers, that is � = (�1; �2; :::; �S�1) does not change with

N: This implies that when we move from a market with N �rms to a market with N +1
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�rms the only thing that changes is that the fully-informed consumers move from ob-

serving N prices to observing N + 1 prices.13 It is precisely because some consumers

observe all the prices in the market that an increase in the number of �rms has an e¤ect

on prices. If the number of �rms were to increase but no consumers observe all the

N +1 prices, then increased competition would have no e¤ect on prices. Thus, increased

competition has an e¤ect on prices only when it increases the amount of information

consumers have.

A second, but not less important, issue is the evaluation of the welfare e¤ects of

increased competition implied by the model. In other words, what happens to the prices

actually paid by the di¤erent consumers when N increases?

Proposition 1 above already provides a partial answer to this question. Consumers

that observe only one price pay, on average, the mean price E[p]: This price increases

with N so these consumers are, on average, worse-o¤.14 Consumers that observe all N

prices pay, on average, E[yN ] which turns out to decrease with N: Other consumers,

those observing 1 < s � S prices, pay ys =Min fp1; p2; :::; psg each time they purchase,

where p1; p2; :::; ps are i.i.d. random variables drawn from FN : On average, they pay

E[ys] = E [Min fp1; p2; :::; psg] ; where the expectation is taken over the distribution FN :

It turns out that E[ys] can increase or decrease with N depending on parameters. It

therefore becomes an empirical matter whether these consumers pay a lower or higher

price after the number of competitors increases.

Figure 2 illustrates the relationship between the expected prices paid and N using

the same parameters as in Figure 1. In this simulation we set S = 7 and it becomes

apparent that prices do not change when N increases beyond 7. Inspection of the graph

reveals that consumers who are typically informed about two prices pay on average

13Admittedly this is a simpli�cation. In an endogenous search model, an increase in the number of
�rms will in general lead to an overall change in the shares of consumers observing s prices. As shown
in Janssen and Moraga-González (2004) this may cause a price statistic to behave non-monotonically
with respect to the number of �rms.

14This tendency to raise prices on average was �rst shown by Stahl (1989) in a model with two
consumer types (shoppers, who observe all the prices in the market, and non-shoppers, who just ob-
serve one). In his model, search is endogenous and the price distribution converges to a distribution
degenerated at the monopoly price as the number of �rms operating in the market goes to in�nity.
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E[y2] = E[minfp1; p2g]; which, for this con�guration of parameters, increases slightly

with the number of �rms. The graph also reveals that the mean price also increases

while the average price paid by the fully-informed consumers goes down.

The welfare e¤ects of an increase in the number of �rms are therefore complex.

While some consumers bene�t others may lose. This ambiguous e¤ect is a direct result

of the way the equilibrium price distributions change with N (i.e., the distributions with

N and N + 1 �rms cannot be ranked according to �rst-order stochastic dominance). It

is therefore di¢ cult to evaluate the change in aggregate welfare without making assump-

tions on the importance of the gains relative to the losses from increased competition.

2.1 Price densities

The equilibrium price densities corresponding to the cumulative density functions in

Figure 1 are depicted in Figure 3. It can be seen that the model allows for bell-shaped

density functions. This is a desirable implication of the model because bell-shaped

densities are a typical feature of real-world price data. In particular, Figure 4 shows that

the density of gas prices in the Netherlands is bell-shaped. Other studies have also found

bell-shaped price density functions for various products (e.g., Lach, 2002, Hosken et al.,

2008).

Varian�s (1980) model corresponds to the case where there are only two types of

consumers: fully-informed consumers  and uninformed consumers �1 = 1� :15 In this

case, the price density is either decreasing or U-shaped (see e.g. Figure 2 in Varian

(1980)). Thus, because empirical price densities are usually bell-shaped, the simple

Varian model is inconsistent with the data. Assuming additional consumer heterogeneity

in the form of additional consumer types, besides being a more realistic assumption,

15Under these assumptions we can solve explicitly for FN (p); namely,

FN (p) = 1�
�
(1� )(v � p)
N (p� c)

� 1
N�1

with support

c+
(1� )(v � c)
(1� ) +N � p � v
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allows for bell-shaped price density distributions to arise in equilibrium.

2.2 Exogenous changes in N

In equilibrium, the number of competitors N is likely to be determined in part by factors

that also a¤ect prices, such as income (which determines v) and the distribution of

consumer types. For example, if we compare two markets with di¤erent willingness to

pay, v; then the market with higher v is likely to have both a higher N and higher prices

thereby generating a positive relationship between prices and the number of stations.

This relationship, however, would not be a causal one if the e¤ect of v on both N and

prices is not accounted for, which is likely to be the case since v is inherently unobserved.

If we want to know the causal e¤ect of a change in N on the distribution of

prices, we need to ensure that changes in N are not accompanied by changes in other

determinants of FN(p): The existence of such exogenous variation in N is crucial for

interpreting the e¤ect of a change in the number of �rms on prices. In this context,

it is important to recall that the e¤ect of a change in N works through the additional

information that the fully-informed consumers have when they become aware of more

prices. That is, what we refer to as the causal e¤ect of N can only arise when it induces

a change in the information consumers have.

Economic theory is very clear on the determinants of the number of �rms N:

Namely, in a long-run market equilibrium with free entry, the number of stations is

determined by a zero-pro�t condition, where pro�ts are net of entry costs. Let � =

(�1; : : : ; �S�1): From equation (1) we see that the pro�ts of a �rm are determined by

c; �;N; v and L: But, from (2), we have that the equilibrium price distribution FN is itself

determined by c; �;N and v: It is therefore only when N changes because of changes in

L (and/or, as seen below, in entry costs) that the variation in N is exogenous to prices in

the sense that nothing else a¤ecting the price distribution changes when such a change

in N occurs.16

More formally, if we denote expected pro�ts per consumer by � and express � as

16The assumption of constant returns to scale in selling gasoline is important here. Otherwise retail
costs would depend on the number of consumers L.
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a function of N and the exogenous variables in the model, the zero pro�t condition is

L�(N; c; v; �)� E = 0 (6)

where E denotes entry costs.

Thus, L and E are the natural instruments for N since they help in determining

the number of �rms but do not a¤ect prices. Changes in L or in E (or in both), create

exogenous variation in N which will allow us to estimate its causal e¤ect on prices.

3 The price data, mixed strategies and preliminary
evidence

We have daily prices for Euro 95 gasoline in a large sample of gas stations in the Nether-

lands.17 The price data were obtained from Athlon Car Lease Nederland B.V., the largest

private car leasing company in the Netherlands with over 129.000 cars as of the end of

2008 (www.athloncarlease.com). The typical contract between Athlon and its lessees

stipulates that Athlon pays for the gasoline consumed (up to a limit) as well as for car

maintenance, insurance, etc. In order to do this, the lessees submit their gas receipts to

Athlon and it is from these receipts that the gasoline prices are retrieved. These prices

are therefore actual prices paid by drivers at the pump. It should be remarked that all

gas stations are self-service, that there are no discount prices for Athlon�s lessees and

that lessees have no incentives to search for and �ll up at the station o¤ering the lowest

price. This last point is important because it allows us to view the sample of prices as

randomly drawn.

Prices were obtained from 3,300 gas stations for the period May 5�26 2006, except

for May 10 and May 17, for a total of 20 days. 217 stations located in highways were

deleted from the sample because the model guiding our empirical analysis is not relevant

to these stations, leaving us with price data from 3,083 gas stations. Because the price

information arrives directly from the lessees, not all stations are sampled every day,

17We also have data for Diesel. We use these data in Section 5.1 to show that our results also hold
for a di¤erent gas product.
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which results in an unbalanced panel data of gas stations.18 There are 32,348 station-

day observations on Euro 95 prices.

The location of each station is given by a 4-digit zip code. It is clear that identifying

a market by the area in a single 4-digit zip code is too narrow since it is likely that many

people cross several 4-digit zip code areas while commuting to work and observe prices in

di¤erent zip codes. We therefore expand the geographic coverage and de�ne a market to

be the area comprised by a municipality. A municipality is a group of 1 or more 4-digit

zip code areas sharing common borders. There are 440 municipalities in the Netherlands

for which we have gasoline price data. About 13 percent of the municipalities cover

exactly one zip code area, while 54 percent are comprised of up to three zip code areas.19

The majority of the municipalities are quite small in terms of population: 55 percent

have less than 25,000 inhabitants, and the population in 91 percent of the 440 markets

is under 75,000.

This de�nition of the market is clearly not perfect as it ignores stations that may be

geographically close (or in the way to work) but located in di¤erent municipalities. This

may not constitute much of a problem in our model where the measure of competition is

S; the maximal number of prices consumers in the market observe. What is important

is that every gas station in a given municipality factors the same number of competitors

S into its pricing strategy�it is not necessary for these S stations to be located in the

given municipality. In the empirical work we proxy S by N; the actual number of gas

stations in the municipality, to estimate how changes in N a¤ect the price distribution.

In any case, we examine the robustness of our �ndings to the inclusion of the number of

gas stations in neighboring municipalities in Section 5.1.

More importantly, another reason for choosing to work at the municipality level is

that we have economic, geographic and demographic data for almost each municipality,

18We have one price of Euro 95 per station per day. The number of days or, equivalently, the number
of price quotations per gas station in the sample ranges from 1 to 17 days with an average of 10.5 days
and a median of 12 days.

19On average, a municipality covers 4.4 4-digit zip code areas. The largest municipalities (in terms of
number of 4-digit zip codes covered) are Amsterdam, Rotterdam, and �s-Gravenhage with, respectively,
44, 41 and 28 4-digit zip code areas.
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while not all this information is available at the zip code level.20 This is very convenient

for our purposes since we will be able to control for common determinants of the number

of stations and prices.

We obtained a list of all the gas stations and their addresses operating in the

Netherlands in August 2007. These stations were assigned to municipalities according to

their addresses. This allows us to know the number Nm of gas stations operating in a

market m: We do not have price data on all Nm stations and therefore Nm is at least

as large as the number of stations with price data in the sample.21 The mean number

of stations by market is 8.2, respectively, and there is a lot of variation across markets

� the standard deviation is almost as large as the mean, 7.6 stations. This variation

is better seen in Table 1 where the distribution of the number of stations per market

(municipality) is tabulated. Nm ranges between 1 to 80 (Amsterdam has 59 stations and

Rotterdam has 80). Sixty percent of the markets have 7 or less stations.

As an illustrative device, the left panel in Figure 4 displays a kernel estimate of the

density function of prices. The average price of Euro 95 gas in our sample is 142.04 cents

and the standard deviation is 3.37 cents. The lowest price is 119 cents while the highest

price in the sample is 167.22 Not surprisingly, there is dispersion in gasoline prices but, as

evidenced by the coe¢ cient of variation, it is not very large. However, the daily variation

in the total cost of �lling-up a 50 liter tank �the di¤erence in cost between buying at

the highest-priced and lowest-priced station in a given day �is between 8.5 and 24 euros

which is not a trivial amount.23

Because price di¤erentials among stations are likely to be driven by time-invariant

20Data obtained from Statistics Netherlands (www.cbs.nl).

21This is because we observe gas prices only from Athlon�s lessees who do not patronize all the gas
stations.

22The 119 price is an outlier; the second lowest price is 129 cents. However, we do no think this is a
typo since the very same gas station is also charging a very low price for Diesel on a di¤erent day (78
cents when the average is 108 cents).

23On May 11, the maximum and minimum price were 1.49 and 1.32 euros per liter. This 17 cent
di¤erence translates into a 8.5 euros saving for a full 50 liter tank. On May 14, the maximum and
minimum price were 1.19 and 1.67 euros per liter.
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factors (e.g., brand, location, availability of a convenience store, additional services,

etc.), it is problematic to compare prices of di¤erent gas stations, even within the same

market. The same is true when comparing gas prices in di¤erent days. We therefore

remove day and station-speci�c e¤ects from actual (raw) prices to obtain a residual price

which is more comparable across days and stations.24 These residual prices are obtained

by regressing prices on station-speci�c dummies and on a cubic trend, separately for each

municipality.25 Residual prices are therefore detrended prices net of station-level e¤ects.

The mean residual price for each station (and for each municipality) is then zero. The

implicit assumption here is that station and day e¤ects a¤ect only the mean price charged

by a gas station. By removing these e¤ects, we �homogenize�stations within markets

so that we can treat residual prices in a market as coming from the same distribution

of prices FN : Of course, the distribution of residual prices varies across markets due to

di¤erences in consumer shopping behavior and in the number of �rms, as well as in v

and c.26

We will use the residual prices in our empirical analysis; their distribution is plotted

in the right panel of Figure 4. As expected, the standard deviation in residual prices,

1.07, is lower than that in the raw data. Nevertheless, as can be seen in the graph,

residual prices still exhibit considerable variation.27

24As done, for example, by Lach (2002), Hosken et al. (2008), and Lewis (2008). A similar approach
is taken when estimating auction data in order to generate �homogenized bids� or �normalized bids�
which are comparable across auctions. See, for example, Haile, Hong, and Shum (2003) and Hu and
Shum (2008).

25We do not use day dummies because in 5.4 percent of the observations there is only one station
per day per municipality. Moreover, in one municipality (Reiderland) we only have one observation and
therefore residual prices cannot be computed, leaving us with residual prices in 439 municipalities.

26Note, however, that the theoretical model in Section 2 implies that proportional changes in v and c
a¤ect only the location of FN : In any case, removing store e¤ects also removes the e¤ect of market-level
factors a¤ecting the location of FN :

27The longer left tail of the distribution is due to the outlier price mentioned in footnote 21. Removing
this station makes the density much more symmetric and lowers the standard deviation to 1.06.
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3.1 Evidence on mixed strategies

Before we examine the relationship between the number of stations and the distribution

of prices we present empirical evidence on the use of mixed strategies by gas stations.

This issue has been examined by Lach (2002), Wildenbeest (2008) and Hosken et al.

(2008), for various products. All these studies found evidence in support of the use of

mixed pricing strategies in di¤erent product markets. The Hosken et al. (2008) study

is most relevant for our purposes because it examines the pricing behavior of 272 gas

stations in the suburbs of Washington DC.

In this section we check whether gas stations vary their relative position in the

cross-sectional distribution of prices over time, as implied by the use of mixed strategies.

Simply put, the use of mixed strategies implies that we should not observe gas stations

always selling at high prices or always selling at low prices.

We observe the residual price posted by gas station i on day t and we locate this

residual price within the price distribution observed in the gas station�s market for day t:

We can then track the relative position of the station�s residual price over time.28 There

are a number of ways of doing this.

We start by computing the number of days that a gas station was in the qth quartile

of the cross-sectional price distribution. We denote this statistic by Tq; q = 1; 2; 3; 4: Tq is

expressed as a percentage of the total number of days a station appears in the sample.29

For example, if the station was never in the �rst quartile of the distribution then T1 = 0;

whereas if the station was always in the �rst quartile then T1 = 1: Clearly, for each gas

station, T1 + T2 + T3 + T4 = 1: Figure 5 plots the histograms of T1 � T4.

If many stations always remain in the same quartile of the (residual) price distri-

bution we should observe a large number of �rms with Tq = 1: Figure 5 indicates that

this is not the case. 2.15 percent of the stations were always in the �rst quartile and,

28Recall that the time horizon is the 20 days in May 2006 but no station appears in the sample for
more than 17 days.

29Note that the cross-sectional distribution in day t is de�ned for the stations which quoted prices in
day t: Therefore the number of stations, and their identity, may change from day to day. The statistics
were computed in all markets and days where the number of stations was at least 4.
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for higher quartiles, this percentage is even lower. The low number of stations always

selling in the same quartile of the price distribution is consistent with the use of mixed

strategies.30

We also observe in the top-left graph of Figure 5 that 14 percent of the stations

were never in the �rst quartile of the price distribution (T1 = 0). This means that about

84 percent (100�14�2:15) of the stations were part (but not all) of their time in the �rst

quartile of the distribution and the remaining time in other quartiles. Similarly, 77, 81

and 75 percent of the stations were part (but not all) of their time in the second, third

and fourth quartile of the distribution, respectively, and the remaining time in other

quartiles.31 Although this is evidence that a sizable number of stations moves around

the cross-sectional price distribution, the histograms of T1�T4 do not reveal how long a

particular gas station stayed in each quartile of the price distribution. We examine this

in Figure 6.

Figure 6 graphs, for 50 randomly selected gas stations, the percentage of days each

of these stations was in the �rst, second, third and fourth quarter of the cross-sectional

distribution of prices.32 The changing bar colors indicate that only two stations remained

in the same quartile during all the days they appear in the sample (stations number 2

and 9).33

These �gures still do not reveal how gas stations �travel�across the quartiles of

the price distribution over time, i.e., the extent of intra-distribution dynamics. The

transition process from one cross-sectional distribution to another can be modelled by

assuming that this transition is done in a Markovian fashion through a 4� 4 transition

30When using the actual prices, 20 percent of the stations always charge prices in the �rst quartile of
the distribution (T1 = 1), 1.7 percent always in the second quartile (T2 = 1), 3.4 percent always in the
third quartile (T3 = 1), and 7 percent always in the fourth quartile (T4 = 1). These �gures are higher
because actual prices re�ect store-speci�c factors (e.g., location) that are �xed over time.

31The corresponding percentages for the actual price data are 42, 54, 47 and 33 percent.

32We plot only 50 stations that were randomly sampled from the 2472 gas stations appearing in
markets and days where the number of stations was at least 4. Plotting all the stations generates graphs
that are too cluttered to be readable.

33Using the actual rpice data, 62 percent of the stations (31 stations) do move between 2 or more
quartiles of the price distribution.
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matrix whose (i; j)th entry gives the probability that a gas station in the ith quartile in

day t moves to the jth quartile in day t0 > t. Consistent estimates of these probabilities

are the sample proportions of stations moving from one quartile to another. Assuming

a time-invariant transition matrix, the estimated transition matrices for each day t can

be averaged to produce a single (estimated) transition matrix.

Table 2 presents estimates of 1�week (t0 = t + 7) transition probabilities.34 Ex-

amination of the transition matrix gives a good idea on the extent of intra-distribution

mobility. If stations keep their positions over time �lack of mobility �then the matrix

should have �large�diagonal entries. If there is a lot of mobility across the quartiles of

the distribution this would be re�ected in �large�o¤-diagonal probabilities. The proba-

bility of remaining in the �rst quartile is 33 percent, which means that the probability

that a low-price station will be selling at a higher price a week ahead is 67 percent.35

Overall, the diagonal entries do not appear to be large relative to the o¤-diagonal terms.

This is indicative of signi�cant intra-distribution dynamics. Similar conclusions were

reached by Hosken et al. (2008) for gasoline prices in the U.S., by Lach (2002) for other

products in Israel, and by Wildenbeest (2008) for groceries in the UK.

3.2 Preliminary evidence on prices and N

One of our goals in this paper is to study the relationship between the number of gas

stations (N) and the distribution of prices in a market. In particular, the model presented

in Section 2 implies that the minimum price should decline with N , whereas the mean

and maximum price should increase.

We now present graphical evidence on the relationship between the minimum and

maximum prices and N; while in the next sections we present the econometric evidence.

For each market, we compute the minimum and maximum residual price observed in all

stations and over all days. Recall that residual prices are detrended so that we can pool

34The entries are weighted averages of the estimated transition probabilities for each day with weights
equal to the proportion of observations in each cell.

35Using the actual price data we obtain probabilities of remaining in the same quartile a week ahead
equal to .76, .47, .51 and .69 for the �rst, second, third and fourth quartile, respectively.
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observations from di¤erent days. However, since residual prices add up to zero for each

station and market by construction, their mean price by market is identically zero and,

therefore, we cannot study how the mean price varies with N:

In Figure 7 we plot the minimum and maximum residual price against N: Each

point represents a market. The plot suggests that the minimum price decreases with

the number of stations in the market, while the maximum price increases with N: To

get a quantitative feeling for the magnitude of these e¤ects, we regressed the minimum

and maximum residual price on ln(N) over all the municipalities. The estimated slope

parameters are �0:51 and 0:37 with robust standard errors 0:052 and 0:034: These are

signi�cant e¤ects. The semi-log speci�cation implies that the marginal e¤ect of N de-

creases with N; which seems appropriate for these data. The predicted values of these

regressions are plotted by the solid lines in Figure 7.

In Table 3 we tabulate the averages of the minimum and maximum residual prices

(the points in Figure 7) over all markets having the same N , as well as the average

of other quantiles in the residual price distribution of each market. We observe that,

indeed, the minimum price declines with the number of stations whereas the maximum

price increases with N . This is also true of the 10th and 90th quantiles, but perhaps

less noticeable in other regions of the support of the residual price distribution. The

magnitudes of these changes may not seem large �at most 4 cents and usually fractions

of one cent�but this magnitude should be evaluated against the relatively small price

dispersion of gasoline prices, which amounts to 1.07 cent for residual prices (see Figure

4).

Of course, these average statistics cannot be used to infer the e¤ect of changes

in N on the distribution of prices. The minimum and maximum prices, being order

statistics, tend to decrease and increase, respectively, with the sample size. This implies

that there is a built-in tendency for the extreme prices to vary systematically with N

(which is highly correlated with, but not equal to, the sample size). In addition, there

are many factors that a¤ect both N and prices and, if these are not controlled for, part

of their e¤ect is attributed to changes in N: Income, for example, a¤ects the number

of stations and prices through the relationship between income and willingness to pay
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and/or shopping behavior. One would expect the number of stations and prices to be

higher in markets with higher incomes inducing a spurious positive relationship between

prices and N . In order to control for the e¤ect of sample size and of other confounding

factors we proceed to a multivariate regression analysis of the data.

4 Empirical strategy

Let wm = (vm; �m; cm) where �m = (�1m; �2m; : : : ; �S�1m) gathers information on con-

sumers��shopping behavior�in market m. As explained in Section 2, both wm and Nm

determine the equilibrium price distribution. We use residual prices in our analysis so

that we now let pit refer to the residual price of station i in day t: In each market m; we

have nm (station-day) observations on residual prices pit. Suppose we observe market

characteristics (Nm; wm): We assume that the sample of residual prices in market m is

randomly drawn from the same distribution FNm(p) = F (pjNm; wm). This accords with

the way in which prices were collected. Let qm(�) be the � th quantile of residual price pit

in market m: qm(�) is a function of (Nm; wm); the determinants of the price distribution.

By analyzing how N a¤ects qm(�) at di¤erent values of � ; we learn about the e¤ect of

changing N on the distribution of prices.

In order to do this we �rst estimate qm(�) by the [nm� ]th smallest value among all

nm observations in market m. We denote this estimator by bqm(�): This estimator has
an asymptotic normal distribution with expected value qm(�) and variance

�(1��)
nmfNm (qm(�))

2 ;

where fNm is the conditional density of pit given (Nm; wm). In a second step we regressbqm(�) on Nm and (proxies for) wm using the municipality-level data. This provides us
with an estimate of the e¤ect of the number of stations on prices. We run a separate

regression for each chosen value of � :36

An alternative estimator of the e¤ect of the number of stations on prices could

be obtained by estimating the quantile functions directly with the station-level price

data pit using a standard �quantile-regression�procedure. One should note, however,

that although the two estimators are not numerically identical in �nite samples, they

36See Chamberlain (1994) and Bassett, Tam and Knight (2002) for examples of this 2-step approach.
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are �rst-order asymptotically equivalent.37 We do not adopt the quantile regression

approach for a number of reasons. First, the regressors (N;w) vary only at the level of

the municipality, and this procedure might underestimate standard errors, even if the

standard errors were clustered at the municipality level. Because market-level regressions

are based on a much smaller number of observations (about 440 observations) than

station-level regressions (about 31,000 observations), the former procedure generates

more conservative standard errors.38 Second, the procedure based on station-level data

gives more weight to the largest municipalities because the number of sample observations

(nm) increases with the number of stations (Nm): If the e¤ect of the number of stations

is weaker in the largest municipalities where N > S; procedures based on station-level

data might underestimate the e¤ect of competition on prices. We want to give equal

weights to all markets so as to be able to interpret the estimated coe¢ cient as the

e¤ect of changing N on the price distribution of a market chosen at random.39 Finally,

it is known than the normal approximation is not adequate for extreme quantiles and

extreme values (e.g., the minimum and maximum) and this can therefore a¤ect the

asymptotic distribution of the estimators based on station-level data. With market-level

data, however, we are estimating an average of the extreme values across markets so that

a normal approximation applies when the number of markets is large. We therefore use

unweighted market-level data to estimate the mean quantiles.

Regarding functional form, we make a separability assumption on the conditional

expectation function between N and w and specify the N part in natural logs, i.e.,

E [bqm(�)jNm; wm] = �0 + �N lnNm + h(wm)
37If the function being estimated is the mean then a weighted regression of market level data produces

the same estimates as those obtained from station level data. But this is not the case for quantiles.
In our data, the store-level and weighted market level estimates are quite close to each other (i.e., well
within 1 standard deviation of each other), when the weights are the number of observations in each
market. This was also observed by Basset, Tam and Knight (2002) in their study of ACT scores by
school. See also Knight (2002) for the asymptotic equivalence results and for a comparison of both
estimators using simulated data.

38An argument made by Guryan and Charles (2008).

39The station-level estimates can be interpreted as the e¤ect of changing N on the price distribution
faced by a consumer chosen at random. Although this is of interest and certainly important for welfare
analysis, it is not the focus of our paper.
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The justi�cation for the logarithm speci�cation is that the marginal e¤ect of N on

a price quantile is decreasing in N: That is, the e¤ect of N is stronger when N is small

than when N is large. This accords with the model outlined in Section 2 (see Figure 2)

and with the preliminary empirical evidence presented in Figure 7. The log speci�cation

is a parsimonious way of achieving this. In any case, we will check the robustness of our

conclusions to alternative functional forms.

The most important econometric problem is that w is unobserved and likely to be

correlated with N because w is one of the determinants of N via the zero-pro�t condition

(6). Thus, ignoring the term h(w) and treating it as error will bias our estimates of �N :

We approach this problem in two ways. First, we use an array of covariates x to proxy

for w and, secondly, we use instruments for N to deal with the remaining correlation.

Speci�cally, we take a linear projection of h(w) on x;

h(w) = x� + r with Cov(r; x) = 0

which results in

E [bqm(�)jNm; xm; rm] = �0 + �N lnNm + xm� + rm (7)

The problem with using proxies for h(w) is that there is no guarantee that ln(N)

will be uncorrelated with the unobserved r in equation (7). The correlation between

ln(N) and the residual heterogeneity r; however, need not be strong if x includes the main

determinants of w: That is, controlling for su¢ cient municipality-level characteristics can

potentially ameliorate this endogeneity problem. This is the reason why the availability

of economic, geographic and demographic data at the municipality level strongly favors

identifying markets with municipalities.

Nevertheless, because the proxies are not perfect, the omitted variable bias is never

completely eliminated. It is therefore important to generate exogenous variation in N in

order to be able to consistently estimate its causal e¤ect on y: Economic theory is useful

here because it readily suggests an appropriate instrument for N: As shown in (6), in

the long-run market equilibrium with free entry, the number of stations is determined

by L;E and w so that, as discussed in Section 2.2, L and E are natural instruments for
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N: We need to assume, however, that E and L are exogenous variables in equation (7)

in the sense that they are mean-independent of r; conditional on x; i.e.,

E(rjE;L; x) = 0 (8)

This identifying assumption says that among markets with the same observed

characteristics x; variations in population size and entry costs are not associated with w;

i.e., with the willingness to pay for gasoline and with shopping behavior. If, for example,

more a uent municipalities have higher willingness to pay, higher entry costs and lower

population then this assumption would be violated if we do not include measures of

income or wealth among the controls x: As usual, the strength of this assumption depends

on what is included in x:

For the number of consumers L to be a good instrument, the marginal cost must

be independent of market size. In connection with this, we note that variable costs

in gasoline retailing are mostly driven by the cost of gasoline. The typical brand in

the Netherlands buys its gasoline from the Amsterdam-Rotterdam-Antwerp (ARA) spot

market (this is true even for Shell which sells much more gasoline than it produces). The

ARA market is a centralized marketplace where price discrimination mechanisms such

as quantity discounts are unfeasible due to the anonymity of the traders. Therefore,

it is reasonably safe to assume that most gas stations in the Netherlands face similar

wholesale gasoline prices irrespective of the population level or density in the areas where

the stations are located. As will be seen in the next section, our overidenti�cation tests

con�rm this assumption.

The standard errors of the estimators need to account for the heteroskedasticity

induced by the sampling error in estimating the quantiles, �(1��)
nmfm(qm(�))2

: Instead of esti-

mating the density function we use (White) standard errors that are robust to arbitrary

heterogeneity.40

40As a check we also bootstrapped the standard errors of the 2SLS regressions by resampling from
the (bqm(�); Nm; wm) data. These bootstrapped standard errors, based on 1000 replications, are between
8 and 20 percent (15 percent on average) higher than the White standard errors. We chose to use the
latter because they are easier to compute and do not alter any of our conclusions regarding statistical
signi�cance.
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Regarding estimation of the e¤ect of N on the minimum and maximum price we

proceed in the same way as we did for the quantiles except that we add nm to the list

of regressors. We do this because the sample minimum and maximum are monotonic

functions of the sample size nm; while nm is correlated with the number of stations in the

market (the simple correlation between nm and ln(Nm) is 0.72). In this way we ensure

that the estimate of �N does not re�ect the built-in correlation between extreme prices

and sample size.41

5 Empirical Results

Table 4 presents estimates of several variants of equation (7). The regressions for each

price statistic are run separately since there are no e¢ ciency gains to joint estimation

when the regressors are the same across equations. Panel A presents OLS estimates of

regressing a price statistic on ln(N) only. These regressions are based on 439 observations

(municipalities) because residual prices could not be computed for one municipality (Rei-

derland) where only one station has prices in only one day. The e¤ect of N is negative for

the lower price statistics and positive for the higher ones, as predicted by the theoretical

model. The more extreme the price statistics, the more signi�cant are the e¤ects of N:

The median price also decreases with N but this e¤ect is marginally signi�cant. As N

increases, say from 1 to 2 stations, the minimum price is estimated to decrease by 0.35

cents (�0:508� log 2); while the maximum price is estimated to increase by 0.26 cents.

These are not small changes relative to the standard deviation in residual prices (1.07

cent).

In Panel B we add 39 provincial dummies to control for unobserved time-invariant

e¤ects at the regional level.42 These regional e¤ects are always jointly signi�cant at the

1 percent level (also in panels C and D). The estimated coe¢ cients of ln(N) increase

41Recall that the sample size nm depends on the number of stations sampled and on the number of
days each station appears in the sample, while Nm is the total number of stations in market m and
comes from a di¤erent data source.

42There are 40 regional areas (known as COROP areas) in the Netherlands. Each regional area
comprises several municipalities.
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somewhat, particularly for prices in the middle of the distribution.

In Panel C we add proxies for consumers�reservation values and for shopping be-

havior. We do not directly proxy for c because, as mentioned above, variable production

costs are quite similar across markets. The regressions in panel C and D are estimated on

423 markets because of missing data on some of the covariates. The reasons for missing

covariate data are unrelated to the price of gasoline and therefore there is no risk of sam-

ple selection bias. Indeed, Panel B was reestimated for the sample of 423 observations

used in Panel C and D and the estimated coe¢ cients are very similar to those reported

in the table.

Perhaps among the main determinants of the willingness to pay and of shopping

behavior for gasoline is income. We therefore include average household income among

the proxies for both v and �: Because of income and substitution e¤ects we expect this

variable to be positively correlated with the willingness to pay, and negatively correlated

with the proportion of fully-informed consumers: Thus, income should positively a¤ect

prices. We also include the share of cars registered to business (out of total cars in the

municipality), which should be positively correlated with the willingness to pay for gas

and therefore also a¤ect prices positively.

An additional set of controls is related to the geographic characteristics of mar-

kets. The distribution of consumer types may vary with the geography of the market.

Consumers�shopping behavior may be di¤erent in a geographically small, interconnected

municipality than in a large, spatially-spread municipality. We therefore add controls for

the total area of the municipality (in km2); the area that is land (also in km2); the share

of land that is built (urbanized) and the share that is agrarian (the remainder is land for

recreation and forests), and the kilometers of roads within the municipality borders.43

We also add the sample size nm in each market to all the regressions in panel C,

not only to the minimum and maximum price regressions. In this way we control for

possible sample size e¤ects on the estimation of the quantiles. In practice, however, the

coe¢ cient of nm is not signi�cantly di¤erent from zero, and excluding the sample size

43We would also like to have a measure of the distance between stations in a municipality but unfor-
tunately we do not have these data.
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from the quantile regressions does not a¤ect the estimates of �N :

The e¤ect of adding these additional regressors is to lower the estimates of �N ,

particularly for the lower prices. In addition, the precision of the estimates decreases

because of the additional estimated parameters, rendering most of the estimated �N�s,

except in the minimum and maximum price regressions, not signi�cantly di¤erent from

zero.

Our �nal set of regressions in panel D uses 2SLS to eliminate potential biases from

unobserved common determinants of prices and of N: An additional reason for using

2SLS is that the number of stations is likely to be measured with error because our data

for N correspond to stations operating during August 2007, while our price data were

collected in May 2006.

Free entry and a zero pro�t condition predict a positive relationship between the

number of stations in the market and population size L, and a negative relationship

between N and entry costs: We do not have data on market-speci�c entry costs but

we have data on the level of municipality taxes imposed on business real estate and

use these as a measure of E:44 First-stage regression results appear in Table 5. In

columns (1) we regress the number of stations (in logs) on population and the tax rate

(both in logs), while in column (2) we add 39 provincial dummies.45 Both instruments

have coe¢ cients with the predicted sign and are signi�cantly correlated with ln(N):

As controls are added to the regression, in columns (3) and (4), the e¤ect of taxes is

halved and loses it statistical signi�cance. Nevertheless, in all regressions, the F-test for

joint signi�cance of population and taxes is very high indicating that these are strong

instruments. Column (4) corresponds to the �rst-stage in the 2SLS procedure used in

Table 4.46

Panel D in Table 4 reports the 2SLS estimates of �N using the same speci�cation

44Tax rates vary between 1.5 and 18 percent across municipalities with an average of 7.1 percent.

45Using the tax rate in levels instead of logs works equally well. We treat L and E symmetrically as
it would be suggested by a logarithmic approximation to the zero pro�t condition (6).

46There are 424 municipalities with data on all covariates but one of them (Reiderland) does not have
residual price data. Thus, the total number of observations used in the price regressions in Table 4 is
423.
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as in panel C. The 2SLS results are in line with the previous estimates but they are larger

in absolute value than the OLS estimates in panel C; these di¤erences are quantitatively

important. On the one hand, because unobserved determinants of prices are likely to

be positively correlated with the number of stations, using 2SLS should increase the

absolute value of the negative estimates of � in the minimum and low price regressions

and decrease the positive estimates of � in the maximum and high price regressions.

On the other hand, in the presence of measurement errors in N; OLS estimators are

biased towards zero in all the regressions. Since 2SLS also removes the correlation with

the measurement error, 2SLS estimates of the coe¢ cient in the lower price regressions

should be, on both accounts, more negative than the OLS estimates. This is indeed what

we observe in panel D. For the higher price regressions, the biases in OLS due to omitted

variables and to measurement error work in opposite directions and it is therefore not

possible to predict in which direction the estimates should change with 2SLS.

The marginal e¤ects of an increase in the number of stations from N to N + 1 is

�N ln

�
N + 1

N

�
These marginal e¤ects are plotted in Figure 8 for all the 7 price statistics for N =

1; : : : ; 50; along with a 2 standard deviation band. We observe that for small values of

N; the marginal e¤ects are indeed positive for the higher prices and negative for the

smaller prices. These e¤ects are also signi�cantly di¤erent from zero. The logarithmic

speci�cation implies that marginal e¤ects converge to zero as N increases.

Using these estimates we �nd, for example, that adding 4 additional gas stations

to a single-station market would lower the minimum price of a liter of Euro 95 by 0.93

cents (�0:58 � log 5) and increase the maximum price by 0.83 cents. Recall that the

standard deviation in the residual price distribution is 1.07 cents and therefore these

estimated e¤ects are quantitatively signi�cant relative to the dispersion in prices.

The e¤ect of the covariates would be identically zero if we were estimating the

mean residual price. Since we are estimating the extremes and quantiles of the price

distribution these e¤ects need not be zero. Nevertheless, the estimated coe¢ cients of

the control variables (not reported) are usually not signi�cantly di¤erent for zero (in-
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dividually and jointly). This is driven in part by the inclusion of regional dummies in

the regression which correlate with the municipality-level characteristics. Indeed, if the

provincial dummies are removed from the regressions in panel D, the controls are jointly

signi�cant in four of the seven regressions (while the estimates of �N are virtually unaf-

fected). Moreover, as we will see later, when the actual instead of the residual prices are

used to compute the extreme prices and the quantiles, the controls are signi�cant in all

regressions (see bottom panel in Table 6 ).

In sum, the empirical �ndings suggest that as the number of stations in the market

increases, the low prices tend to decrease while the high prices tend to increase. This

characterization of the e¤ect of competition on prices accords with most of the theoretical

predictions of the model presented in Section 2.47 Although we cannot check what

happens to the mean price as N increases, we found that the median price is lower in

markets with more stations. If the mean and median do not di¤er much, then this is a

result that is at odds with the theoretical prediction of Claim 1. This asymmetric e¤ect

of a change in the number of �rms may have been remarked theoretically but, to the best

of our knowledge, has not been analyzed empirically. The welfare implications of such

asymmetry will be studied in Section 6. We �rst perform a set of robustness checks.

5.1 Robustness checks

Underlying the results in Table 4 are a series of speci�cation assumptions which, if

incorrect, could lead to biased estimates of �N : We now examine these assumptions in

greater detail and verify that our 2SLS results in Table 4 are robust to departures from

our baseline speci�cation.

First, we note that the absolute value of the estimated coe¢ cients �N in both

extreme price regressions � -0.58 and 0.52 � are an order of magnitude larger than

the corresponding estimates in the quantile regressions. We are concerned that this

may re�ect our poor attempt to control of the e¤ect of sample size on extreme prices.

Although this e¤ect is highly non-linear, we just used nm linearly in the regressions.

47And, more generally, with models where some consumers have imperfect information about prices
and observe (perhaps through search) di¤erent number of prices.
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However, adding a quadratic of the sample size, n2m; does not a¤ect the estimated results

�in fact, it makes them slightly stronger (results not reported).48 We can gain further

understanding of how the improper control of sample size may bias our estimates by

estimating �N for quantiles closer to the extreme prices, namely, the 1, 2,98 and 99

quantiles. These quantiles are not that sensitive to sample size as the minimum and

maximum prices are. Thus, assuming that the �0Ns are the same in the extreme prices

and nearby quantiles regressions, the di¤erence in their estimated coe¢ cients is indicative

of the e¤ect of sample size on the estimates. The estimated �0Ns for the 1
st and 2nd

quantiles are, respectively, -0.59 and -0.32, while for the 99th and 98th quantiles they

are, respectively, 0.45 and 0.32. In all cases these estimates are highly signi�cant. Thus,

although we cannot rule out some bias due to sample size, fully accounting for this bias

is not likely to alter our qualitative conclusions.

We next address functional form issues. Although entering the number of stations

in log form is parsimonious as well as theoretically appealing �the model implies that

there is no e¤ect of N on prices when N > S �it may be practically restrictive. We

allowed the coe¢ cient of logN to change for N � N0; for various levels of N0 (N0 =

2; : : : ; 11), but the interaction term was never signi�cantly di¤erent from zero. We also

added the square of ln(N) to the regression to allow for more �exibility in the marginal

e¤ect but this term was never signi�cantly di¤erent from zero (its p-value ranged between

0.34 and 0.99) except in the maximum price regression (p-value 0.06).49 Adding (ln(N))2

made the coe¢ cient of ln(N) also insigni�cant. This is not surprising because ln(N) and

(ln(N))2 are highly correlated; their simple correlation coe¢ cient is 0.95. Although

the individual parameters cannot be precisely estimated, the marginal e¤ects track very

closely the marginal e¤ects estimated from the regression in panel D of Table 4 except,

perhaps, for those of the 75th quantile price (see Figure 9).

We could avoid making strong functional form assumptions if we allow for the

e¤ect of N to vary non-parametrically with N: This can be achieved by using dummy

48We did not enter nm in logs because of the even higher collinearity with ln(N) �simple correlation
coe¢ cient of 0.89.

49We added the squares of log population and log tax to the list of instruments.

30



variables for each value of N: The problem here is that N takes on 36 distinct values

and the corresponding dummies would still be endogenous. Even if we had the large

number of instruments required (or use a control function approach), this approach is

not practical with the sample size we have. We therefore group the number of stations

into 4 size groups and add dummies corresponding to these groups. The four groups

are de�ned as markets with 1 and 2 stations �the baseline group �, markets with 3-6

stations, markets with 7-10 stations and markets with more that 11 stations. In order

to address the endogeneity of these group dummies we follow the procedure suggested

by Wooldridge (2002, p. 623) and �rst estimate a probit equation for the probability

that the number of stations in a market is in a given size group. We run a separate

regression for each size group and compute the predicted probability of belonging to a

size group. In this regression we include the same regressors as in the �rst stage of the

2SLS estimator in panel D of Table 4. We then run the regressions as in panel D using

the predicted probabilities as instruments for the endogenous group dummies.50

Results of this two-stage 2SLS estimation are presented in the top panel of Table

6, where the coe¢ cients represent the change in price in a given group size relative to the

preceding group size. We see that markets with 3-6 stations have lower low prices but

higher high prices than markets with 1-2 stations. Markets with 7-10 stations exhibit

the same pattern, relative to markets with 3-6 stations, but the e¤ects are of lower

magnitude and less signi�cant. Finally, the estimates indicate that prices in markets

with 11 or more stations are not signi�cantly di¤erent from prices in markets with 7-10

stations. These �ndings accord, at least in a qualitative sense, with the marginal e¤ects

depicted in Figure 8. In sum, altering the simple functional form used in Table 4 would

not change our conclusions regarding the asymmetric e¤ect of competition.

Next, we examine what happens to our estimates of �N when the dependent vari-

ables are based on the actual (raw) prices and not on the prices net of station and day

e¤ects. We do not pool observations over time because the wholesale price may be chang-

50Wooldridge (2002, p. 623) shows that the �rst-stage probit regressions need not be correctly speci-
�ed, and that inference based on the standard errors of the 2SLS procedure is correct even though the
instruments are generated in a previous step.
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ing over the sample period and therefore compute the minimum, mean, maximum and

other quantiles of the price distribution for each market and for each day. We cannot

control for unobserved station-level e¤ects because doing so wipes out all market-level

regressors, including ln(N): We now have 7091 market-day observations. We estimate

the same model as in panel D of Table 4.51 The results using raw prices, which now

include a regression for the mean price, are in the bottom panel of Table 6. The mean

and median price do not appear to be signi�cantly a¤ected by the number of stations in

the market but the low and high prices are. The estimated parameters follow the same

pattern as in Table 4 but are much stronger than the estimates based on residual prices.

This is to be expected simply because the extreme prices and quantiles based on raw

prices are larger than those based on residual prices. Because the stronger coe¢ cients in

the raw price regressions re�ect a scaling e¤ect it is important to base our analysis on

prices net of station-speci�c components.

In contrast to the regressions in Table 4 where the dependent variables were based

on residual prices, the covariates are now jointly signi�cantly di¤erent from zero in all

regressions. The sample size variable is negative and signi�cant in the minimum price

and the 10thquantile regressions while it is positive and signi�cant in the 90th quantile

and the maximum price regressions; it is not signi�cantly di¤erent from zero in the other

regressions. Average household income and the share of cars registered to business always

have positive coe¢ cients but only the latter are signi�cant. The geographic controls are

signi�cant in four of the seven regressions.

The number of stations in the market is de�ned as the number of stations in the

municipality. It may well be that the �relevant� number of stations a¤ecting prices

in a market includes the stations in neighboring municipalities. In order to examine

this possibility we computed, for each market m, the number of stations in all the

municipalities sharing a border with market m and added the log of this variable to the

51The only di¤erences with the speci�cation in Table 4 are that the dependent variable and the sample
size regressor change over days, and that we added day dummies to control for the e¤ect of the day in
the month. The other regressors are constant over time. Standard errors were clustered at the market
level to allow for arbitrary serial correlation and heteroskedasticity.
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basic model. The results appear in the top panel of Table 7. We drop 3 municipalities

that are islands and therefore have no neighbors. Essentially, the number of gas stations

in neighboring markets has a much smaller e¤ect on prices that the own number of

neighbors and, in all cases, this e¤ect is not signi�cantly di¤erent from zero. Importantly,

the estimated �N�s are almost una¤ected by the inclusion of the number of neighboring

stations in the regression.52

We also re-run the regression excluding the four largest markets in the Netherlands

(Amsterdam, Rotterdam, �s-Gravenhage, and Utrecht). Since these cities represent only

4 observations we do not expect to obtain very di¤erent results. And, indeed, the esti-

mated coe¢ cients based on restricted sample of smaller cities are very similar to those in

panel D of Table 4.53 In this vein, recall that the theoretical model presented in Section

2 does not examine markets with a single station: There are 16 municipalities where

N = 1: Removing these observations from the regressions makes each of the estimated

coe¢ cients even stronger.54

Finally, our �ndings are not restricted to a particular gas product (Euro 95). The

other popular product in gas stations is, of course, Diesel. The bottom panel in Table 7

replicates the regression in panel D of Table 4 for residual Diesel prices. The estimated

coe¢ cients are remarkably similar to those from the Euro 95 regressions.

6 Welfare implications

The evidence presented above points to signi�cant di¤erences in the way increased compe-

tition �increased number of gas stations �a¤ects di¤erent parts of the price distribution.

Whether consumers are successful in paying the lower prices depends on their shopping

behavior. Increased competition is likely to favor those consumers observing many prices

52Because provincial dummies pick up regional e¤ects, we treat the number of neighboring stations
as exogenous in the price regressions. The overidenti�cation tests support this assumption.

53These new estimates, in the order in which they appear in Table 4, are: -0.669 (0.231), -0.131
(0.0595), -0.0435 (0.0395), -0.0568 (0.0337), 0.0276 (0.0569), 0.105 (0.0721) 0.523 (0.145).

54The estimated coe¢ cients, in the order appearing in Table 4, are -0.712, -0.099, -0.0766, -0.0641,
0.0900, 0.1472, 0.5473 and are slightly more signi�cant as those in panel D of Table 4.

33



but may hurt those observing only a few prices. It is therefore not obvious �in contrast

to the full-information model �that all consumers bene�t from more competition. In

this section we study this issue in detail and quantify the welfare gains from increased

competition for di¤erent group of consumers.

As explained in Section 2, consumers observing 1 � s � N prices, pay ys �

Min fp1; p2; :::; psg each time they purchase, where p1; p2; :::; ps are i.i.d. random draws

from FN . On average, these consumers pay

E[ys] = E [Min fp1; p2; :::; psg]

where the expectation is taken using FN ; the equilibrium price distribution in a market

with N stations.55

We estimate E[ys] for each market as follows. We draw s residual prices with re-

placement from the sample of nm residual prices observed in each municipality (pooled

over gas stations and days).56 We take the minimum of the s prices and store it. We

repeat this 10,000 times and compute the average of the 10,000 stored minimum prices.

This average is our estimate of E[ys] for each s = 1; 2; : : : ; N in each market (character-

ized by a givenN). That is, we obtainN estimates of E(ys) in each market corresponding

to the expected price paid by di¤erent consumers observing, respectively, s = 1; : : : ; N

prices.

There are two dimensions of these estimates that are of interest. First, as consumers

observe more prices in a given market, the price they end up paying should be lower on

average. That is, broader price exposure should result in lower prices paid. We clearly

see this in Figure 10 where we plot the estimates of E[ys] in each market against s; as

well as the predicted value of a locally weighted regression of the estimate of E[ys] on

s: The gains from being better informed � the di¤erence in expected price paid as s

increases by 1� are positive in 99.4 percent of the observations.

55That is, E[ys] =
R
ps(1� FN (p))s�1fN (p)dp:

56We report estimates based on prices drawn with replacement because sample sizes are relatively
small. Since, in reality, consumers do not sample with replacement we also replicated our calculations
when prices are drawn without replacement; the results are practically identical.
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Although the path of expected prices paid in each market declines with s, Figure

10 points out that there is substantial heterogeneity in the price paid for given s across

markets. This heterogeneity is a re�ection of the di¤erent price distributions across

markets having di¤erent number of stations. This is precisely the other issue of interest

�and the focus of this Section � namely, the relationship between N and the price paid,

E[ys]; for given s:

To address this issue, we regress our estimate of E[ys] on ln(N) and on the other

controls used in the previous regressions. We run a separate 2SLS regression for various

values of s: Note that when s = 1 the estimate of E(y1) is the mean price in the market

which is zero by construction. We therefore present, in Table 8, the estimated e¤ect

of ln(N) on E(ys) for s = 2; : : : ; 7; i.e., for consumers that observe up to 7 prices.

Note also that as s increases, the number of observations declines because there are

fewer municipalities with N above s (see Table 1) and the parameters are not precisely

estimated for s � 5.

Two results in Table 8 are noteworthy. First, the estimates are all negative. A

negative coe¢ cient means that the prices paid by consumers decrease as the number

of competitors increases. Although, as shown in Section 2, it is theoretically plausible

that some consumers may be worse o¤ when competition increases, in this application

all types of consumers bene�t from increasing the number of gas stations. Second, this

negative e¤ect of N increases with s up to, and including, s = 4 but stabilizes thereafter.

This means that the gains from increased competition �in terms of price reduction �are

maximal for consumers observing 4 prices. Entry of additional stations does not result

in gains for consumers who observe 5 or more prices. In other words, the magnitude of

the welfare improvement depends on shopping behavior and is larger for those consumers

that observe more prices.

In Figure 11, we use the estimates in Table 8 to plot the marginal e¤ect of N on

the expected price paid for s = 2; : : : ; 7 and for N � 15 (marginal e¤ects are not di¤erent

from zero for larger values of N). We observe that as competition increases the price

paid by all types of consumers declines in markets with up to 6-8 gas stations; thereafter

the expected price paid remains constant. The decline, however, is about twice as large
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for consumers that observe 4-5 prices than for consumers that observe only 2 prices.

Finally, we note that the welfare analysis was based on residual prices. It is con-

ceivable that the stations�characteristics and/or their productivity also respond to com-

petition and that this response is re�ected in the stations�mean prices. By focusing on

the residual prices we may be missing some important e¤ects of competition. This does

not happen to be the case in our data since the results in the bottom panel of Table 6

point to non-signi�cant e¤ects of the number of stations on the mean price of gasoline.

7 Conclusions

In markets where the amount of price information varies across consumers, prices are

typically dispersed in equilibrium. An increase in the number of �rms usually a¤ects each

seller�s pricing strategy and this in turn alters the entire distribution of equilibrium prices.

Traditionally, empirical research has focused on estimating the impact of competition on

the mean and variance of prices.57 Although this is certainly useful, these statistics

are not su¢ cient to perform a detailed welfare analysis because competition can a¤ect

di¤erent parts of the price distribution in opposite directions.

This paper has tried to �ll this gap. We examined how the distribution of gasoline

prices (the minimum, median and maximum prices, as well as other quantiles) in the

Netherlands changes with the number of competitors in the market. We used population

size and local taxes as instruments for the number of gas stations. We found that as

competition �the number of gas stations �increases the distribution of prices spreads out,

with the low prices going down and the high prices going up. Consequently, competition

has an asymmetric e¤ect on prices.

This result has important welfare implications because when some prices increase

and others decline, the price actually paid by consumers will depend on their shopping

behavior. All (hypothetical) consumers in our data, irrespective of whether they are

informed about one or more prices, bene�t from an increase in the number of stations.

57In our data, the standard deviation of residual prices increases with the number of stores. The
2SLS coe¢ cient of ln(N) in a regression speci�cation similar to those in panel D of Table 4 is 0.086 (s.e.
0.033).
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The magnitude of the welfare gain, however, is greater for those consumers that observe

more prices. As a result, an increase in competition has a positive but unequal e¤ect on

the welfare of consumers.

Since price dispersion is prevalent in many markets, we believe the paper has a

general message that goes beyond the present application to the gasoline market in the

Netherlands. The price e¤ects of competition-enhancing policies (e.g., industry deregu-

lation, trade liberalization, etc.) are not as straightforward as one may be led to believe

based on standard oligopoly theory. As a result, welfare implications are not obvious

either. In fact, we have shown, theoretically and empirically, that increased competi-

tion can have unequal e¤ects among consumers; some consumers may even experience

declines in their welfare as a result of higher prices.

A complete welfare analysis, however, would require a mapping between shopping

behavior and socio-economic characteristics of interest and analyzing other dimensions

of consumer welfare. For example, if consumers that observe only a few prices are high-

income consumers (whose value of time is higher) then these consumers bene�t less from

competition than low-income consumers. These bene�ts refer only to price changes and

do not take into account other welfare e¤ects of competition such as increases in the

variety of goods o¤ered to consumers.

Lastly, although our empirical work is motivated by a particular theoretical frame-

work, we think the empirical �ndings reported in the paper are of interest on their

own right and, if veri�ed in other data sets, they should be taken into account when

formulating theoretical models of pricing in oligopolistic markets.
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Appendix
Proof of Proposition 1. (A) Let pN be a random variable with distribution FN(p);

likewise, let pN+1 be a random draw from FN+1(p): Then E[pN+1] > E[pN ]:

We �rst note that

E[pN ] =

Z v

p

pdFN(p) = v �
Z v

p

FN(p)dp =

Z 1

0

p(FN)dFN

Using equation (2) we have that

E[pN ] = c+

Z 1

0

(v � c)�1PS�1
s=1 s�sx

s�1 +NxN�1
dx

We are interested in the sign of E[pN+1]� E[pN ]: We can write:

E[pN+1]� E[pN ]
(v � c)�1

=

Z 1

0

 
1PS�1

s=1 s�sx
s�1 + (N + 1)xN

� 1PS�1
s=1 s�sx

s�1 +NxN�1

!
dx

=

Z 1

0

xN�1(N � (N + 1)x)�PS�1
s=1 s�sx

s�1 + (N + 1)xN
��PS�1

s=1 s�sx
s�1 +NxN�1

�dx
This last integral takes positive values only when x < N=(N + 1). Therefore we have

E[pN+1]� E[pN ]
(v � c)�1

=

Z N
N+1

0

xN�1(N � (N + 1)x)�PS�1
s=1 s�sx

s�1 + (N + 1)xN
��PS�1

s=1 s�sx
s�1 +NxN�1

�dx
�
Z 1

N
N+1

xN�1((N + 1)x�N)�PS�1
s=1 s�sx

s�1 + (N + 1)xN
��PS�1

s=1 s�sx
s�1 +NxN�1

�dx
Since the denominators of these last two integrals are monotonically increasing in x; we

can write:

E[pN+1]� E[pN ]
(v � c)�1

>

R N
N+1

0 xN�1(N � (N + 1)x)dx�PS�1
s=1 s�s

�
N
N+1

�s�1
+ (N + 1)

�
N
N+1

�N��PS�1
s=1 s�

s�1
s

�
N
N+1

�
+N

�
N
N+1

�N�1�
�

R 1
N

N+1
xN�1((N + 1)x�N)�PS�1

s=1 s�
s�1
s

�
N
N+1

�
+ (N + 1)

�
N
N+1

�N��PS�1
s=1 s�

s�1
s

�
N
N+1

�
+N

�
N
N+1

�N�1�
=

R 1
0
xN�1(N � (N + 1)x)�PS�1

s=1 s�sx
s�1 + (N + 1)xN

��PS�1
s=1 s�sx

s�1 +NxN�1
� = 0
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The proof of part (A) is now complete.

(B) Let yN = min fp1; p2; :::; pNg where where p1; p2; :::; pN are i.i.d. according to

FN(p): Then, there exists a number (N) such that E[yN ] is decreasing in N for all

 < (N):

Let G(yN) = 1� (1�F (yN))N denote the distribution of yN . We are interested in

E[yN ] =

Z v

p

yNdG(yN) = v �
Z v

p

G(yN)dyN =

Z 1

0

yN(G)dG

Since (1�G(yN))1=N = 1� F (yN); then using equation (2) we have that

(yN � c)
"
S�1X
s=1

s�s(1�G)
s�1
N + N(1�G)N�1N

#
= �1(v � c):

Therefore

E[yN ] =

Z 1

0

yN(G)dG = c+

Z 1

0

�1(v � c)PS�1
s=1 s�sx

s�1
N + Nx

N�1
N

dx

We want to prove that E[yN ]� E[yN+1] > 0 for small : We can then write:

E[yN ]� E[yN+1]
�1(v � c)

=

Z 1

0

 
1PS�1

s=1 s�sx
s�1
N + Nx

N�1
N

� 1PS�1
s=1 s�sx

s�1
N+1 + (N + 1)x

N
N+1

!
dx

=

Z 1

0

PS�1
s=1 s�sx

s�1
N+1 �

PS�1
s=1 s�sx

s�1
N + (N + 1)x

N
N+1 � NxN�1

N�PS�1
s=1 s�sx

s�1
N + Nx

N�1
N

��PS�1
s=1 s�sx

s�1
N+1 + (N + 1)x

N
N+1

�dx
=

Z 1

0

PS�1
s=1 s�sx

s�1
N

�
x�

s�1
N(N+1) � 1

�
+ x

N�1
N ((N + 1)x

1
N(N+1) �N)�PS�1

s=1 s�sx
s�1
N + Nx

N�1
N

��PS�1
s=1 s�sx

s�1
N+1 + (N + 1)x

N
N+1

�dx
For convenience, we now separate this last integral as follows:

E[yN ]� E[yN+1]
�1(v � c)

=

Z 1

0

PS�1
s=1 s�sx

s�1
N

�
x�

s�1
N(N+1) � 1

�
dx�PS�1

s=1 s�sx
s�1
N + Nx

N�1
N

��PS�1
s=1 s�sx

s�1
N+1 + (N + 1)x

N
N+1

�
+

Z 1

0

x
N�1
N ((N + 1)x

1
N(N+1) �N)dx�PS�1

s=1 s�sx
s�1
N + Nx

N�1
N

��PS�1
s=1 s�sx

s�1
N+1 + (N + 1)x

N
N+1

�
We note that the �rst integral in this expression is always positive, given that x

takes values on [0; 1]. Let us then analyze the sign of the last integral; for convenience,
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let us refer to it as integral I1. Note that I1 takes positive values only for values of x

above (N=(N + 1))N(N+1): Therefore we write:

I1 = �
Z ( N

N+1
)N(N+1)

0

x
N�1
N (N � (N + 1)x

1
N(N+1) )dx�PS�1

s=1 s�sx
s�1
N + Nx

N�1
N

��PS�1
s=1 s�sx

s�1
N+1 + (N + 1)x

N
N+1

�
+

Z 1

( N
N+1

)N(N+1)

x
N�1
N ((N + 1)x

1
N(N+1) �N)�PS�1

s=1 s�sx
s�1
N + Nx

N�1
N

��PS�1
s=1 s�sx

s�1
N+1 + (N + 1)x

N
N+1

�dx
Notice that the denominator of these integrals are strictly increasing in x: Therefore,

setting x = 0 in the denominator of the �rst integral and x = 1 in the denominator of

the second integral, we have:

I1 > �
Z ( N

N+1
)N(N+1)

0

x
N�1
N (N � (N + 1)x

1
N(N+1) )dx

�21

+

Z 1

( N
N+1

)N(N+1)

x
N�1
N ((N + 1)x

1
N(N+1) �N)dx�PS�1

s=1 s�s + N
��PS�1

s=1 s�s + (N + 1)
�

Integrating we obtain that

I > 
(N;�1; �2; :::; �N�1; )

where


(�) = � 
�21

(N + 1)( N
N+1

)N(2N+1)

(4N2 � 1) +
(N + 1)( N

N+1
)N(2N+1) + 2N2 � 1�PS�1

s=1 s�s + N
��PS�1

s=1 s�s + (N + 1)
�
(4N2 � 1)

Note that 
(�) is clearly positive for  su¢ ciently small; in fact for  ! 0 we just have

lim
!0


(�) =
(N + 1)( N

N+1
)N(2N+1) + 2N2 � 1�PS�1

s=1 s�s

�2
(4N2 � 1)

> 0:

This shows that E[minfp1; p2; :::; pNg] is decreasing in N for  close to zero. The critical

(N) is given by the solution to 
(�) = 0. Given this solution, E[minfp1; p2; :::; pNg]

decreases in N for all  < (N): The proof is now complete. We �nally note that this

is a su¢ cient condition but not necessary. In fact, numerical simulations of the model

show that the results holds for arbitrary : The proof of part (B) is now complete.

(C) Let zN = max fp1; p2; :::; pNg where where p1; p2; :::; pN are i.i.d. according to

FN(p): Then, there exists a number b(N) such that E[zN ] is increasing in N for all

 > b(N):
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Let H(zN) = F (zN)N denote the distribution of zN . We are interested in

E[zN ] =

Z v

p

zNdH(zN) = v �
Z v

p

H(zN)dz =

Z 1

0

zN(H)dH

Since F (zN) = H(zN)1=N ; using the equilibrium equation we have

(zN � c)
"
S�1X
s=1

s�s(1�H
1
N )s�1 + N(1�H 1

N )N�1

#
= �1(v � c):

Therefore we have

E[zN ] = c+

Z 1

0

�1(v � c)PS�1
s=1 s�s(1�H

1
N )s�1 + N(1�H 1

N )N�1
dH

Changing variables x = 1�H1=N ; we obtain

E[zN ] = c+

Z 1

0

�1(v � c)N(1� x)N�1PS�1
s=1 s�sx

s�1 + NxN�1
dx

We are interested in the sign of E[zN+1]� E[zN ]: Then we can write:

E[zN+1]� E[zN ]
�1(v � c)

=

Z 1

0

 
(N + 1)(1� x)NPS�1

s=1 s�sx
s�1 + (N + 1)xN

� N(1� x)N�1PS�1
s=1 s�sx

s�1 + NxN�1

!
dx

=

Z 1

0

(N + 1)(1� x)N
�PS�1

s=1 s�sx
s�1 + NxN�1

�
�PS�1

s=1 s�sx
s�1 + (N + 1)xN

��PS�1
s=1 s�sx

s�1 + NxN�1
�dx

�
Z 1

0

N(1� x)N�1
�PS�1

s=1 s�sx
s�1 + (N + 1)xN

�
�PS�1

s=1 s�sx
s�1 + (N + 1)xN

��PS�1
s=1 s�sx

s�1 + NxN�1
�dx

=

Z 1

0

�PS�1
s=1 s�sx

s�1
�
(1� x)N�1 (1� x(N + 1))�PS�1

s=1 s�sx
s�1 + (N + 1)xN

��PS�1
s=1 s�sx

s�1 + NxN�1
�dx

+

Z 1

0

N(N + 1)xN�1(1� x)N�1(1� 2x)�PS�1
s=1 s�sx

s�1 + (N + 1)xN
��PS�1

s=1 s�sx
s�1 + NxN�1

�dx
For convenience, let us refer to these two last integrals as I2 and I3; respectively.

We now note that I2 becomes arbitrarily close to zero when  ! 1 (in that casePS�1
s=1 s�sx

s�1 ! 0): Let us now consider integral I3: This integral takes on positive
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values only when x < 1=2: Therefore we have:

I3 =

Z 1=2

0

N(N + 1)xN�1(1� x)N�1(1� 2x)�PS�1
s=1 s�sx

s�1 + (N + 1)xN
��PS�1

s=1 s�sx
s�1 + NxN�1

�dx
�
Z 1

1
2

N(N + 1)xN�1(1� x)N�1(2x� 1)�PS�1
s=1 s�sx

s�1 + (N + 1)xN
��PS�1

s=1 s�sx
s�1 + NxN�1

�dx
Since the denominator of these integrals is monotonically increasing in x, we can write

I2 >

Z 1
N+1

0

N(N + 1)xN�1(1� x)N�1(1� 2x)�PS�1
s=1 s�

s�1
s

�
1

N+1

�
+ (N + 1)

�
1

N+1

�N��PS�1
s=1 s�

s�1
s

�
1

N+1

�
+ N

�
1

N+1

�N�1�dx
�
Z 1

1
N+1

N(N + 1)xN�1(1� x)N�1(2x� 1)�PS�1
s=1 s�s

�
1

N+1

�s�1
+ (N + 1)

�
1

N+1

�N��PS�1
s=1 s�

s�1
s

�
1

N+1

�
+ N

�
1

N+1

�N�1�dx
=

R 1
0
N(N + 1)xN�1(1� x)N�1(1� 2x)dx�PS�1

s=1 s�
s�1
s

�
1

N+1

�
+ (N + 1)

�
1

N+1

�N��PS�1
s=1 s�

s�1
s

�
1

N+1

�
+ N

�
1

N+1

�N�1� = 0:
Therefore we conclude that when  is su¢ ciently large then E[zN+1] � E[zN ] > 0: The

critical b(N) is given by the solution to I2+I3 = 0: Note that this is a su¢ cient condition
and therefore not necessary. In fact, numerical simulations of the model show that this

result holds for all : The proof of the Proposition is now complete. �
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Figure 1: FN(p) for N = 2; 4; 6:
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Figure 2: Expected price paid when observing s prices and the number of stores
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Figure 3: Density functions for N = 2; 4; 6:
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Table 1. Distribution of number of strores across markets

Number of
stores Frequency Percent Cumulative

1 16 3.6 3.6
2 35 8.0 11.6
3 45 10.2 21.8
4 48 10.9 32.7
5 56 12.7 45.5
6 36 8.2 53.6
7 26 5.9 59.6
8 30 6.8 66.4
9 24 5.5 71.8
10 21 4.8 76.6
11 19 4.3 80.9
12 17 3.9 84.8
13 8 1.8 86.6
14 10 2.3 88.9
15 8 1.8 90.7
16 6 1.4 92.1
17 2 0.5 92.5
18 7 1.6 94.1
19 3 0.7 94.8
21 1 0.2 95.0
22 2 0.5 95.5
23 2 0.5 95.9
24 1 0.2 96.1
25 2 0.5 96.6
26 1 0.2 96.8
27 3 0.7 97.5
29 1 0.2 97.7
30 1 0.2 98.0
31 1 0.2 98.2
32 1 0.2 98.4
33 1 0.2 98.6
37 2 0.5 99.1
39 1 0.2 99.3
47 1 0.2 99.6
59 1 0.2 99.8
80 1 0.2 100.0

Total 440 100



Table 2. One-week transtition matrix (percentages)

q1 q2 q3 q4

q1 33 22 22 22

t q2 27 27 27 18

q3 32 23 28 17

q4 27 22 31 20

A station enters the calulations only when it has data at t and at t+7. Entries in each are weighted averages of the week-specific transtition 
probabilities for each day t with weights equal to the share of observations in day t in the originating quartile out of the total number 
of observations for all days. Entries may not add up to 100 due to rounding.

t+7



Table 3. Residual price distribution by number of stores

Number of Minimum 10th 25th Median 75th 90th Maximum
stores price percentile percentile price percentile percentile price

1 -1.54 -1.23 -0.74 -0.13 0.81 1.4 1.88
2 -1.45 -1.12 -0.72 -0.17 0.64 1.39 1.92
3 -1.9 -1.22 -0.76 -0.16 0.8 1.48 2.25
4 -1.73 -1.18 -0.75 -0.17 0.75 1.47 2.38
5 -2.02 -1.21 -0.76 -0.16 0.7 1.49 2.44
6 -1.85 -1.19 -0.76 -0.19 0.72 1.53 2.38
7 -1.94 -1.23 -0.76 -0.19 0.74 1.54 2.51
8 -2.83 -1.26 -0.79 -0.18 0.79 1.54 2.77
9 -2.27 -1.23 -0.74 -0.22 0.74 1.52 2.8
10 -2.27 -1.23 -0.79 -0.19 0.74 1.52 2.65
11 -2.27 -1.22 -0.79 -0.18 0.81 1.51 2.59
12 -2.37 -1.23 -0.78 -0.18 0.75 1.53 2.75
13 -2.12 -1.15 -0.72 -0.16 0.68 1.44 2.29
14 -2.57 -1.24 -0.76 -0.16 0.72 1.59 2.65
15 -2.68 -1.24 -0.75 -0.15 0.73 1.44 2.83
16 -2.99 -1.16 -0.7 -0.15 0.71 1.41 2.59
17 -2.18 -1.32 -0.87 -0.2 0.9 1.58 2.67
18 -2.68 -1.24 -0.76 -0.18 0.74 1.54 3.11
19 -2.89 -1.25 -0.75 -0.21 0.81 1.49 2.64
21 -2.06 -1.2 -0.74 -0.27 0.74 1.49 2.41
22 -3.02 -1.36 -0.78 -0.1 0.88 1.47 2.73
23 -2.88 -1.16 -0.73 -0.14 0.67 1.43 2.76
24 -1.95 -1.31 -0.93 -0.18 0.86 1.79 2.61
25 -2.43 -1.19 -0.71 -0.2 0.68 1.45 2.64
26 -3.37 -1.32 -0.82 -0.19 0.8 1.54 2.72
27 -2.94 -1.25 -0.83 -0.21 0.75 1.53 2.88
29 -2.05 -1.34 -0.84 -0.14 0.71 1.4 2.47
30 -4.04 -1.24 -0.81 -0.19 0.85 1.58 4.16
31 -2.64 -1.24 -0.77 -0.18 0.72 1.46 2.53
32 -3.34 -1.18 -0.74 -0.19 0.8 1.37 2.89
33 -3.7 -1.17 -0.8 -0.17 0.52 1.45 3.14
37 -2.31 -1.22 -0.76 -0.26 0.75 1.55 3.4
39 -4.07 -1.28 -0.76 -0.09 0.76 1.64 3.43
47 -4.66 -1.26 -0.76 -0.23 0.73 1.61 3.23
59 -2.5 -1.25 -0.79 -0.18 0.78 1.45 2.8
80 -5.52 -1.28 -0.74 -0.25 0.75 1.54 3.32

Entries are weighted averages of each residual price statistic over all markets (municipalities)
where the weights are the municipality's share of observations. Unweighted results are very similar. 



Table 4. Effect of number of gas stations on the price distribution

minimum 10th 25th median 75th 90th maximum
price percentile percentile price  percentile percentile price

Log (number of stations) -0.508*** -0.0266 -0.0163* -0.0161* 0.00715 0.0438** 0.368***
(0.0523) (0.0175) (0.00958) (0.00897) (0.0138) (0.0173) (0.0341)

R-squared 0.11 0.01 0.01 0.01 0.00 0.01 0.16

Log (number of stations) -0.549*** -0.0285 -0.0209** -0.0239** 0.0165 0.0513*** 0.356***
(0.0606) (0.0194) (0.0106) (0.00960) (0.0164) (0.0196) (0.0408)

R-squared 0.17 0.09 0.11 0.17 0.12 0.14 0.25

Log (number of stations) -0.305*** -0.0168 -0.0248 -0.0227 -0.000228 0.0428 0.320***
(0.0886) (0.0337) (0.0196) (0.0189) (0.0312) (0.0373) (0.0640)

Tests:
Other controls zero (p-value) 0.00 0.98 0.65 0.33 0.95 0.14 0.64
R-squared 0.19 0.09 0.13 0.20 0.13 0.16 0.27

Log (number of stations) -0.580*** -0.101** -0.0487* -0.0507** 0.0403 0.102** 0.518***
(0.171) (0.0423) (0.0280) (0.0241) (0.0406) (0.0510) (0.0970)

Tests:
Other controls zero (p-value) 0.37 0.77 0.44 0.13 0.95 0.04 0.46
J-test (p-value) 0.99 0.90 0.70 0.40 0.60 0.29 0.59

R-squared 0.18 0.07 0.13 0.20 0.12 0.16 0.26

Other controls include: average income per household, share of business cars, area (km2), land area, urbanized and agrarian land shares, road length (km)
and the number of  sampled observations by market.
The top two panels are based on 439 observations. The bottom two panels are based on 423 observations; we loose 16 observations because 
of missing municipality-level data on the other controls. The instruments in the 2SLS panel are population size and local tax rates, both in logs.
Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1

Panel D: 2SLS with 39 provincial dummies and other controls

Panel A: OLS without controls 

Panel B: OLS with 39 provincial dummies

Panel C: OLS with 39 provincial dummies and other controls



(1) (2) (3) (4)

Log(population) 0.821*** 0.805*** 0.760*** 0.758***
(0.0255) (0.0251) (0.0633) (0.0637)

Log(municipal tax) -0.189*** -0.176*** -0.0850 -0.0811
(0.0663) (0.0668) (0.0659) (0.0666)

Average income per hh -- -- 0.00162 0.00121
(0.0112) (0.0112)

Share of business cars -- -- 1.515*** 1.514***
(0.543) (0.543)

Area -- -- 0.0000664 0.0000700
(0.000384) (0.000386)

Land area -- -- 0.00365*** 0.00366***
(0.000710) (0.000711)

Urbanized land share -- -- -0.00284 -0.00286
(0.00292) (0.00292)

Agragrian land share -- -- -0.00201 -0.00203
(0.00165) (0.00165)

Road length (km) -- -- -0.00128*** -0.00128***
(0.000265) (0.000265)

Sample size -- -- 0.00300*** 0.00301***
(0.000695) (0.000696)

F-test for significance of IV's 580.1 602.9 72.2 72.2

Provincial Effects No Yes Yes Yes
Observations 440 440 424 423
R-squared 0.72 0.81 0.84 0.84

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Table 5. Determinants of the Number of Stations

Dep. var.: log(number of stations)



Table 6. Robustness checks I

minimum 10th 25th median 75th 90th maximum
price percentile percentile price  percentile percentile price

3 - 6 Stations -0.4246*** -0.1440** -0.0939** -0.0629* 0.0801 0.2209*** 0.6927***
(.1649) (.0671) (.0435) (.0366) (.0619) (.0792) (.1223)

7 - 10 Stations -0.4154 -0.0370 -0.0098 -0.0501** 0.0106 0.0179 0.2410**
(.3464) (.0378) (.0265) (.0234) (.0388) (.0519) (.1146)

11+ Stations -0.3321 -0.0036 -0.0296 0.0193 0.0617 0.0779 0.0355
(.3229) (.0404) (.0279) (.0233) (.0396) (.0569) (.1584)

Tests:
Other controls zero (p-value) 0.03 0.99 0.49 0.32 0.88 0.08 0.50
R-squared 0.19 0.08 0.12 0.20 0.13 0.14 0.25

Other controls include: average income per household, share of business cars, area (km2), land area, urbanized and agrarian land shares, road length (km)
and the number of  sampled observations by market.
The instruments in the 2SLS regression are the predicted probabilities of belonging to a group size. The equation is just idenitifed. These predictions were obtained from a first-stage probit 
regression of  each size dummy on population size and local tax rates (both in logs) as well as on the other controls and provincial dummies. 
The number of observations in each regression is 423 municipalities. Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1

minimum 10th 25th mean median 75th 90th maximum
price percentile percentile price price percentile percentile price

Log (number of stations) -1.423*** -1.434*** -0.818** -0.184 -0.251 0.402 1.336*** 1.354***
(.376) (.373) (.387) (.384) (.421) (.432) (.415) (.414)

Tests:
Other controls zero (p-value) 0.00 0.00 0.02 0.05 0.02 0.07 0.01 0.00
J-test (p-value) 0.28 0.47 0.52 0.25 0.33 0.23 0.06 0.18

R-squared 0.47 0.45 0.41 0.44 0.42 0.38 0.38 0.41

Other controls include: average income per household, share of business cars, area (km2), land area, urbanized and agrarian land shares, road length (km)
and the number of sampled stations in each market-day. The instruments are population size and local tax rates, both in logs.
The number of market-day observations in each regression is 7091. Standard errors clustered at the municipality level in parentheses.  *** p<0.01, ** p<0.05, * p<0.1

4 Size Groups: Two-stage 2SLS with 39 provincial dummies and other controls

Raw prices:  2SLS with 39 provincial dummies and other controls



Table 7. Robustness checks II

minimum 10th 25th median 75th 90th maximum
price percentile percentile price percentile percentile price

Log (number of stations) -0.567*** -0.0950** -0.0422 -0.0493** 0.0272 0.0886* 0.502***
(0.176) (0.0430) (0.0292) (0.0235) (0.0414) (0.0520) (0.101)

Log (number of neighbouring stations) 0.0188 -0.00210 -0.00829 0.00587 0.0214 0.00466 0.00684
(0.0773) (0.0221) (0.0158) (0.0134) (0.0223) (0.0293) (0.0493)

Tests:
Other controls zero (p-value) 0.42 0.45 0.55 0.44 0.81 0.12 0.48
J-test (p-value) 0.99 0.90 0.70 0.40 0.60 0.29 0.59

R-squared 0.18 0.08 0.13 0.14 0.14 0.15 0.25
Other controls include: average income per household, share of business cars, area (km2), land area, urbanized and agrarian land shares, road length (km)
and the number of  sampled observations by market. The instruments are population size and local tax rates, both in logs.
Based on 420 observations corresponding to municipalities with non-zero number of neighbours. 
Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1

minimum 10th 25th median 75th 90th maximum
price percentile percentile price percentile percentile price

Log (number of stations) -0.474** -0.0791 -0.0736*** -0.0146 0.0738** 0.0910** 0.502***
(0.214) (0.0553) (0.0274) (0.0202) (0.0317) (0.0462) (0.101)

Tests:
Other controls zero (p-value) 0.20 0.16 0.18 0.23 0.41 0.44 0.21
J-test (p-value) 0.81 0.15 0.45 0.06 0.13 0.41 0.17

R-squared 0.16 0.16 0.17 0.10 0.14 0.12 0.29

Other controls include: average income per household, share of business cars, area (km2), land area, urbanized and agrarian land shares, road length (km)
and the number of  sampled observations by market. The instruments are population size and local tax rates, both in logs.
Based on 424 observations. Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1

Adding Neighbours : 2SLS with 39 provincial dummies and other controls

Diesel: 2SLS with 39 provincial dummies and other controls



Table 8. Expected price paid and the number of stations

Dep. Var: Expected price paid when observing s prices,  E[Min{p1,p2,...,ps}]

Number of observations (s) s = 2 s = 3 s = 4 s = 5 s = 6 s = 7

Log (number of stations) -0.0689*** -0.0924** -0.163*** -0.133* -0.136 -0.115
(0.0182) (0.0375) (0.0564) (0.0760) (0.0975) (0.127)

Tests:
Other controls zero (p-value) 0.08 0.15 0.15 0.14 0.22 0.15
J-test (p-value) 0.93 0.62 0.59 0.78 0.27 0.26

Number of observations 407 373 329 282 227 192
R-squared 0.041 0.012 0.007 0.021 0.058 0.068

Other controls include: average income per household, share of business cars, area (km2), land area, urbanized and agrarian land shares, road length (km)
and the number of  sampled observations by market.
The instruments are population size and local tax rates, both in logs.
Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1
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