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Abstract. We study the extent to which self-referential adaptive learning can explain

stylized asset pricing facts in a general equilibrium framework. In particular, we analyze

the e¤ects of recursive least squares and constant gain algorithms in a production economy

and a Lucas type endowment economy. We �nd that recursive least squares learning has

almost no e¤ects on asset price behavior, since the algorithm converges relatively fast to

rational expectations. On the other hand, constant gain learning may contribute towards

explaining the stock price and return volatility as well as the predictability of excess returns

in the endowment economy. In the production economy, however, the e¤ects of constant

gain learning are mitigated by the persistence induced by capital accumulation. We conclude

that, contrary to popular belief, standard self-referential learning cannot fully resolve the

asset pricing puzzles observed in the data.
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1. Introduction

It is often argued informally that adaptive learning should be able to generate statistics that

can match stylized facts, in models where the traditional rational expectations paradigm fails.

The aim of the present paper is to examine whether and to what extent this assertion is true for

asset pricing facts in a general equilibrium framework. We focus on three groups of asset pricing

facts, namely �rst and second asset return moments, the predictability of future excess returns

and the volatility of equity prices. Our work is both of qualitative and quantitative nature: we

discuss how adaptive learning can help the relevant statistics move towards the right direction

and whether it can generate statistics that are close to those observed in the data. At the same

time we are interested in examining if and how much better adaptive learning can do relative

to rational expectations.

Why would we expect adaptive learning to perform better than rational expectations in an

asset pricing framework? Consider �rst the volatility of equity prices. Under rational expec-

tations, this volatility depends in a direct way on the volatility of the underlying exogenous

process that drives the uncertainty in the economy. On the other hand, adaptive learning may

introduce an extra source of volatility due to the fact that certain parameters (that are known

under rational expectations) are estimated via some statistical rule. Next consider the asset

return moments, and in particular the equity premium and its volatility. If the equity price is
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more volatile under adaptive learning, then the asset is perceived as being riskier than under

rational expectations. This is because dividends are either exogenous or depend positively on

equity prices. In turn, this results in a higher equity return and thus a higher equity premium.

Finally, consider the predictability of future excess returns. If the equity price is below its

long run average value, the future dividend yields and capital gains will be higher, leading

to higher future returns. This mechanism generates a negative correlation between the current

price-to-dividend ratio and future excess returns. If the equity price is more volatile under adap-

tive learning than under rational expectations, this negative correlation is magni�ed, therefore

improving predictability.

We study the quantitative e¤ects of adaptive learning on equity prices by incorporating two

popular adaptive learning algorithms, namely recursive least squares and constant gain, into

two workhorse asset pricing models. The �rst is a production economy that mimics the behavior

of the stochastic growth model. The second is an endowment economy of which the reduced

form resembles the standard Lucas Tree model. In particular, we consider log-linear versions

of these general equilibrium models, with self-referential learning on the endogenous variables,

under the assumption of a stationary dividend process. We deliberately restrict attention to

standard modelling frameworks and learning algorithms. In this way, we are able to isolate the

pure e¤ects of standard self-referential adaptive learning and examine whether such departures

from rational expectations can help explain stylized facts on equity prices and returns.

We start by presenting in more detail mechanisms through which recursive least squares

or constant gain learning may do better than rational expectations in explaining the observed

stylized facts. We also explain why the success of these mechanisms ultimately depends on the

parameterization and the numerical speci�cations for adaptive learning.

Next, we evaluate the e¤ects of the di¤erent learning algorithms by running numerical ex-

periments based on standard calibrations for both models. First, we �nd that overall recursive

least squares learning generates very little to almost no improvement of the statistics for nei-

ther of the two models. This is because recursive least squares is an algorithm that converges

point wise to the rational expectations equilibrium and convergence is relatively fast; therefore

its dynamics di¤er little from the rational expectations dynamics. Second, we �nd that con-

stant gain learning may be able to drive certain asset statistics towards the correct direction.

While the improvement of the statistics relative to those under rational expectations can be

quite sizeable, the absolute magnitude of most of these improvements is generally too small to

consider interesting. In more detail, for the benchmark parameterization, we �nd essentially

no improvements with respect to the asset return statistics in the production economy. As

in the fully rational model, this model performs very poorly under learning with respect to

equity price behavior. On the other hand, we �nd a moderate e¤ect of adaptive learning on

the equity premium in the endowment economy. Moreover, constant gain learning can generate

higher equity price volatility in both models, but the relative improvement in the production

economy is much smaller. We attribute this di¤erence between the two models to the fact

that in the production economy there is an additional source of endogenous persistence (due

to capital accumulation) that smooths out equity prices. Finally, constant gain learning can

generate the predictability of future excess returns that we observe in the data in the context
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of the endowment economy. This is not surprising, since predictability is a relative feature that

only requires a strong negative correlation between the price-to-dividend ratio and future excess

returns rather than dependence on the absolute sizes of these.

Finally, we perform an extensive sensitivity analysis with respect to various parameters of

the two models, as well as features that have to do with the speci�cations of the adaptive

learning algorithms, such as initial conditions, length of simulations, etc. Regarding the latter,

we �nd that our results can be quite sensitive to the initial conditions of the learning algorithm,

given that the benchmark length of the simulations (corresponding to the length of the data

time series) is relatively short. Furthermore, we �nd that the results are sensitive to the size of

the gain when using constant gain learning. Speci�cally, we �nd that the improvements under

learning relative to rational expectations become smaller the longer the memory of the constant

gain algorithm is. This is because as the memory of the learning algorithm becomes longer, the

equity price becomes less volatile, resulting in a smaller equity premium and weaker negative

correlation between the price-to-dividend ratio and future excess returns.

Regarding the sensitivity of the results with respect to various parameters of the models,

we �rst �nd (not surprisingly) that a higher coe¢ cient of relative risk aversion improves the

adaptive learning results on the volatility and the equity premium in absolute terms; however

the relative improvements compared to the results under rational expectations are identical

irrespective of the coe¢ cient of relative risk aversion. As the coe¢ cient of relative risk aversion

increases, we also see that the results on predictability improve, since more volatile prices imply

stronger negative correlation between the price-to-dividend ratio and future excess returns.

Second, we �nd that the relative improvement in the equity price volatility under adaptive

learning does not depend on the variance of the shocks in the two economies. Moreover, as

the variance increases, the relative improvement in the equity premium is unchanged for the

endowment economy but only increases slightly for the production economy. A higher variance

also improves predictability for both models. Last, we perform sensitivity analysis with respect

to the persistence of the exogenous shock and we �nd that as the persistence decreases, the

system dynamics are less sensitive to the speci�cations of learning. This is because if there is

an estimate that is very bad (e.g. very far from RE) then this will feed into the dynamics for

many periods if the persistence is high, while it will disappear more quickly if the persistence

is low.

In summary, we conclude that self-referential linear adaptive learning under the assumption

of a stationary dividend process may provide some qualitative improvements relative to rational

expectations. Overall, however, it does not seem to provide satisfactory explanations for the

magnitude of various asset pricing statistics that we observe in the data. This is especially

prevalent in models with capital accumulation.

Our �ndings are in contrast to the results in the well known work of Timmermann (1994,

1996). The three main di¤erences with Timmermann�s work are the following. First, his analy-

sis is carried out in partial equilibrium while we study general equilibrium models. Note that

his setting with constant rates of return can be interpreted as a general equilibrium framework

only if utility is linear in consumption. Second, he assumes two di¤erent speci�cations for the

dividend process, but both include a drift and a trend. We do not allow for any of the last
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two. Instead, we assume that the dividend process is stationary. Third, and most importantly,

Timmermann considers two types of learning, which he calls present value learning and self-

referential learning. The �rst is essentially standard OLS estimation written in recursive form.

There is no self-referential element in this speci�cation, since the estimation is on the (exoge-

nous) dividend process. The second type of learning is self-referential, but it di¤ers from ours,

since it also allows for estimation of the exogenous dividend process. Instead, we assume that

exogenous state variables are completely known. Moreover, self-referential learning may con-

tain lags of the price in our production economy, while his estimates depend only on dividends.

This lag induces endogenous persistence that reduces the volatility of equity prices and the

predictability of the price-to-dividend ratio for future returns considerably.

The literature addressing asset pricing facts is very large and a detailed review of it is

beyond the scope of this paper. Kocherlakota (1996), Shiller (1981) and Campbell, Lo and

MacKinlay (1997) provide extensive surveys on these topics. Our work is closely related to

the part of the literature that attempts to explain asset pricing facts in the context of learning

and bounded rationality. Apart from the work of Timmermann (1994, 1996), this literature

includes the papers of Brock and Hommes (1998), Cecchetti, Lam and Mark (2000), Brennan

and Xia (2001), Bullard and Du¤y (2001), Honkapohja and Mitra (2003), and more recently

Adam, Marcet and Nicollini (2006) and Kim (2006).

The work of Brennan and Xia (2001) focuses on explaining the equity premium puzzle in a

general equilibrium pure exchange economy where non-observability of the exogenous dividend

growth process induces extra volatility. Brock and Hommes (1998) consider the same present

discounted value asset pricing model with heterogenous beliefs and show how chaotic dynamics

induce endogenous price �uctuations. Cecchetti et al. (2000) consider a standard Lucas asset

pricing model where agents are assumed to be boundedly rational and have misspeci�ed beliefs.

Adam, Marcet and Nicollini (2006) and Kim (2006) both analyze the e¤ects of adaptive learning

in the context of the Lucas Tree model. The former emphasize the relationship between adaptive

learning and stock market crashes, while the latter work focuses on the combination of adaptive

learning with structural shifts.

Our work di¤ers from the previous papers in several important ways. First, we only consider

self-referential learning, i.e. learning on the endogenous variable, so that agents�forecasts a¤ect

the realization of the variable. In addition, we assume that agents�expectations about prices

are correctly speci�ed, in the sense that all relevant variables are taken into account when

forecasting, and that agents learn about deviations from a steady state. In particular, we do

not allow for learning on the growth rate of dividends. Apart from the fact that we want to

focus on self-referential learning, the reason is that this would involve introducing some type of

structural learning in the production economy, where the dividends are endogenous. Given this,

our �ndings can be considered as a lower bound of what adaptive learning can explain, since

any of these additional features can only help to improve our results. In this sense, our work

is closest to that of Bullard and Du¤y (2001), who study the e¤ects of self-referential recursive

least squares learning in the context of a life cycle general equilibrium model. In contrast to this,

we study standard asset pricing models with in�nitely lived agents. Finally, our work is also

closely related to the work of Honkapohja and Mitra (2003), who show that bounded memory
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adaptive learning can induce extra volatility in the economy. Here, however, we study constant

gain learning, which is considered to be a variant of bounded memory adaptive learning, in the

context of richer reduced form models.

The paper is organized as follows. Section 1 presents the stylized facts. Section 2 presents

the model economies and section 3 discusses the calculation of the rational expectations and

adaptive learning equilibria, as well as the mechanisms at work when studying the dynamics

of adaptive learning. Section 4 presents the numerical results, section 5 presents the sensitivity

analysis and section 6 concludes.

2. Stylized Facts

Table 1 presents the stylized asset pricing facts that we focus on and will use to compare the

di¤erent models under rational expectations and adaptive learning. The numbers have been

calculated using the data set in Campbell (2002).1 The quarterly stock returns and the quarterly

dividend series are obtained from the nominal CRSP NYSE/AMEX Value Weighted Indices.

Following Campbell (2002), the price-to-dividend ratio is constructed as the stock price index

associated with returns excluding dividends, divided by the total dividends paid during the last

four quarters. The nominal risk-free rate corresponds to the three-month quarterly T-Bill rate.

The nominal stock return is de�ated using current in�ation and the nominal risk-free rate is

de�ated using the in�ation next period. Finally, the consumption series corresponds to real per

capita consumption of non-durables and services.

< TABLE 1 HERE >

The �rst part of table 1 reports our estimates for the quarterly mean and standard deviation

of stock returns, the risk-free rate and the equity premium in percentage terms. The stock

return has been around 2.3% per quarter against a risk-free rate of 0.2%, leading to a quarterly

premium of around 2% during the postwar period. We also see a much higher volatility for the

equity return and equity premium of around 7.6%, in contrast to the volatility of around 1%

for the risk-free rate. Replicating the �rst and second asset moments still represents a challenge

for standard rational expectations models.2

The second panel of table 1 reports results from regressions of the k = 1; 2; 4 year ahead

equity premium on the current log price-to-dividend ratio divided by its standard deviation.

Thus, the slope coe¢ cients re�ect the e¤ect of a one standard deviation change in the log

price-to-dividend ratio on the cumulative excess returns in natural units. The table reports the

regression slopes, the adjusted R2 and the t-statistic, adjusted for heteroskedasticity and serial

correlation with the Newey-West method.3 As re�ected by the table, the predictive regressions

exhibit the familiar pattern of an increasing R2 and coe¢ cient slope for longer horizons. The
1The dataset is available at the author�s website.
2Several authors have argued that the US equity premium has declined considerably during the last three

decades (see e.g. Jaganathan et all (2000)). However, generating a positive premium still poses a challenge
for standard rational expectation models, particularly in the presence of a production sector (see for example
Rouwenhorst (1995), Jermann (1998), Boldrin, Christiano and Fisher (2001) or Lettau (2003)).

3For the truncation lag, we follow Campbell, Lo and MacKinlay (1997), who use q = 2 (k � 1). The results
are very similar if we use q = k � 1 or the default value of q = floor

�
4(T=100)2=9

�
suggested to Eviews by

Newey and West. Similar qualitative results can be obtained by regressing the k-period ahead stock returns on
the current log price dividend ratio.
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fact that the log price-to-dividend ratio may predict future excess returns was �rst documented

by Fama and French (1988) and Campbell and Shiller (1988) and it still poses a puzzle for

standard rational expectations models.4

Finally, since the price-to-dividend ratio is a crucial variable for addressing the predictabil-

ity puzzle, the third panel of the table displays its mean, standard deviation and �rst order

autocorrelation in levels. The last panel reports the standard deviation of consumption and

dividend growth.

3. The Environment

This section describes two standard general equilibrium asset pricing models. The �rst model,

which we call the production economy, allows for capital accumulation, so that the model mimics

the features of the neoclassical growth model. The second model, which we call the endowment

economy, does not allow for capital accumulation or depreciation of capital and its dynamics

can be viewed as a special case of the �rst by assuming constant capital over time.

For both economies, we will analyze the adaptive learning dynamics and compare them to

rational expectation dynamics using log-linear approximations of the equilibrium conditions.

This follows Jermann (1998), Lettau (2003) and Carceles-Poveda (2005) among others. Log-

linear approximations may not always be very accurate, however they are known to perform

reasonably well in general equilibrium models of the type studied here. Moreover, the log-linear

framework provides a convenient platform for studying adaptive learning dynamics, since many

more theoretical results have been developed for linear models than for non-linear ones. Besides,

here we are mainly interested in relatively small deviations of variables from their stationary

long-run averages, therefore a log-linear framework should be relatively accurate. Also, to

avoid losing second order information when calculating the risk premium, we use the approach

described in Jermann (1998) and Lettau (2003), which essentially corrects the log-linear asset

pricing equations for Jensen terms.

3.1. The Production Economy. The economy is populated by a large number of identical

and in�nitely lived households and �rms. Each period, the representative household maximizes

his expected lifetime utility subject to a sequential budget constraint

max Et

1X
j=0

�ju(Ct+j) (1)

s.t.

Ct + Pt�t + P
b
t Bt = (Pt +Dt)�t�1 +Bt�1 +WtNt; (2)

where

u(C) =

(
C1�

1� if  > 1

lnC if  = 1
: (3)

The parameters  � 1 and � 2 (0; 1) represent the household risk aversion and time discount
factor respectively. The variables �t and Bt are the holdings of equity shares and risk-free one

4Recent literature on the issue of predictability of future stock returns shows that the t� statistics reported
from such regressions might be misleading, due to the high autocorrelation of the price dividend ratio (Campbell
and Yogo, 2005). However we report these to make the analysis comparable to existing literature.
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period bonds, Pt and P bt represent the equity and bond prices and Dt represents the equity

dividends. The supply of equity is assumed to be constant and is normalized to one, and bonds

are assumed to be in zero net supply.

Apart from their asset income, households receive labor income, equal to the aggregate

wage rate Wt times their labor supply Nt. Investors are endowed with one unit of productive

time, which they can allocate to leisure or labor. Given that leisure does not enter the utility

function, however, the entire time endowment is allocated to labor and Nt is therefore equal

to one. The �rst order conditions for the household�s problem give the usual Euler equations,

which determine asset prices

Pt = Et[Mt;t+1(Pt+1 +Dt+1)]; (4)

P bt = Et[Mt;t+1]; (5)

where Mt;t+j = �j(Ct+j=Ct)
� . Alternatively, we can rewrite the equations in terms of the

gross asset returns as

1 = Et[Mt;t+1Rt+1]; where Rt+1 =
Dt+1 + Pt+1

Pt
; (6)

1 = Et[R
f
t+1]; where R

f
t+1 =

1

P bt
: (7)

Each period, the representative �rm combines the aggregate capital stock Kt�1 with the

labor input from the households to produce a single good Yt according to the following constant

returns to scale technology5

Yt = ZtK
�
t�1N

1��
t ; (8)

where Zt is a random productivity shock assumed to follow the stationary process

logZt = � logZt�1 + "t; (9)

where "t � iid(0; �2") and � 2 (0; 1). Investment It is entirely �nanced by retained earnings or
gross pro�ts Xt = Yt �WtNt and the residual of gross pro�ts and investment is paid out as

dividends to the �rm�s owners. Thus, Dt = Xt�It. Furthermore, capital accumulates according
to

Kt = It + (1� �)Kt�1; (10)

where 0 < � < 1 is the capital depreciation rate. The representative �rm maximizes the value of

the �rm to its owners, equal to the present discounted value of its nets cash �ows or dividends

Dt = Xt � It, subject to (8), (9) and (10)

max Et

1X
j=0

Mt;t+jDt+j : (11)

5The timing t�1 in the index of capital is conventional and does not a¤ect the analysis that follows. Following
a large amount of real business cycle literature, we use Kt�1 instead of Kt in order to denote more clearly that
capital is a state variable.
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The �rst-order conditions are

Wt = (1� �)Yt; (12)

1 = Et
�
Mt;t+1

�
�Zt+1K

��1
t N1��

t+1 + (1� �)
�	
: (13)

Finally, market clearing implies that

Yt = Ct +Kt � (1� �)Kt�1; (14)

Bt = 0; �t = 1: (15)

To derive the system of equations that describe the equilibrium, we substitute for Nt = 1,

Bt = 0, �t = 1 and Wt = (1� �)Yt. Moreover, we can omit the the resource constraint by
Walras law, as well as the capital Euler equation (13), since Kt = Pt in equilibrium. Finally,

letting xt = log(Xt= �X) for any variable Xt, where �X represents its steady state value, the

original system of equations can be approximated by the following system of linear equations:

zt+1 = �zt + "t+1; (16a)

yt = zt + �kt�1; (16b)

ct =
1� � (1� �)

1� � (1� �)� ���yt +
(1� �)��

1� � (1� �)� ���kt�1 �
��

1� � (1� �)� ���kt; (16c)

dt =
1� � (1� �)

1� � yt +
�(1� �)
1� � kt�1 �

�

1� �kt; (16d)

pt = Et [� (ct+1 � ct) + (1� �)dt+1 + �pt+1] ; (16e)

pbt = Et [� (ct+1 � ct)] ; (16f)

kt = pt: (16g)

This model is along the lines of well known general equilibrium asset pricing models with

production (e.g. see Brock, 1982, Rouwenhorst, 1995 and Lettau, 2003).

3.2. The Endowment Economy. In the endowment economy capital is constant and does

not depreciate over time. Therefore, the log-linear system of equilibrium equations can be

obtained by setting kt = 0 and � = 0 in the system of equations (16a) - (16g), resulting in the

following log-linear model:

zt+1 = �zt + "t+1 (17a)

ct = dt = yt = zt (17b)

pt = Et [� (dt+1 � dt) + (1� �)dt+1 + �pt+1] (17c)

pbt = Et [� (dt+1 � dt)] (17d)

This economy can be viewed as an economy where a centralized technology or tree produces a

single good Yt using a constant amount of capital K and the labor supply from the households.

Labor is paid its marginal product. Furthermore, households can decide how much labor to

supply and how much to invest in the tree and in risk-free one period bonds, while the owners
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of the tree receive as dividend payments the total output net of labor payments.

Note that the system of equations in (17a)-(17d) corresponds to the log-linear system of

equations of a standard Lucas Tree model with equity and risk free one period bonds, where

log-linearized consumption is equal to the log-linearized dividend payments of the tree, and the

log-linearized dividends follow the same law of motion as the AR(1) process zt. To see this,

note that the equilibrium consumption of a standard Lucas Tree model is given by Ct = Dt,

and the �rst-order conditions imply that the asset prices are equal to

Pt = �Et
D�
t+1

D�
t

(Dt+1 + Pt+1) (18)

P bt = �Et
D�
t+1

D�
t

: (19)

Moreover, if we assume an AR(1) speci�cation for the dividends of the form logDt = � logDt�1+

"t, where "t � iid
�
0; �2"

�
and � 2 (0; 1), the log-linear system of the equations that describes

the Lucas model is given by:

dt+1 = �dt + "t+1; (20a)

ct = dt; (20b)

pt = �Etpt+1 + (1� � � )Etdt+1 + dt (20c)

pbt = Et [� (dt+1 � dt)] : (20d)

4. Rational Expectations and Adaptive Learning

In order to calculate the rational expectations equilibria of the production economy, we �rst

rewrite the system (16a)-(16g) in reduced form by eliminating all variables but the state variables

kt and zt in the Euler equation

pt = a1Etpt+1 + a2pt�1 + bzt; (21)

zt = �zt�1 + "t; (22)

where the coe¢ cients a1; a2 and b are given by

a1 =
�

 (�2 + � � � ) + (� �  ) (1 + � (� � 1� �2 )) ; (23a)

a2 =
 (� � 1� � )

 (�2 + � � � ) + (� �  ) (1 + � (� � 1� �2 )) ; (23b)

b =
 ( (�� 1) + �� (� �  ) �)

 (�2 + � � � ) + (� �  ) (1 + � (� � 1� �2 )) ; (23c)

where  = (1� � + ��) =(��).
Similarly, the reduced form for the endowment model is given by

pt = aEtpt+1 + bdt; (24)

dt = �dt�1 + "t; (25)
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where

a = �; (26)

b = (1� � � ) �+ : (27)

4.1. Rational Expectations Equilibrium. With the equilibrium conditions in place, we

next solve for the rational expectations equilibria of the models using the method of undeter-

mined coe¢ cients. For the production economy, the (unique stationary) rational expectations

equilibrium is given by

pt = ��ppt�1 + ��zzt�1 + �t; (28)

where �t is some white noise shock and
6

��p =
1

2a1

�
1�

p
1� 4a1a2

�
; (29)

��z =
b

1� a1(�+ ��p)
�: (30)

For the endowment economy, the rational expectations equilibrium is given by

pt = ��dt�1 + �t; (31)

where �t is a white noise shock and

� =
(1� � � ) �+ 

1� �� �: (32)

Some points are worth noting. First, if we compare the models under rational expectations,

the solution for the production economy (28) contains a lag of the price, while the solution of

the endowment economy (31) does not. This means that, for an identical parametrization of

the exogenous shock, the price series in the production economy has an additional source of

persistence due to the lag. Second, it can easily be shown that the elasticity with respect to the

shock ��z in the production economy is smaller than the one in the endowment model for the

same parametrization. These observations imply that under rational expectations, the amount

of exogenous volatility that is injected into the price series of the production economy can be

considerably smaller than that in the endowment economy. This is a well-known result which is

attributed to the fact that a production economy induces additional consumption smoothing via

capital accumulation (see the discussion in Rouwenhorst, 1995). Therefore, there seems to be

a better chance of matching the stylized facts of asset prices under rational expectations in the

endowment economy. These observations will prove to be useful later on. Third, the equilibrium

consumption and dividend processes turn out to be equal in the endowment economy. Therefore

when attempting to calibrate the model to match the data, we will only be able to match the

6The log-linear system for the production economy has two solutions, corresponding to the so-called minimum
state variable (MSV) solutions. Moreover, it is known that this reduced form model is regular, i.e. it has a unique
stationary solution, if and only if ja1 + a2j < 1. In the present model, and given the parameter restrictions, it
can be veri�ed that a1, a2 2 (0; 1) and that b > 0. It can further be shown that ja1 + a2j < 1. Therefore, the
solution with the minus is the unique stationary solution (see Evans and Honkapohja, 2001).
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behavior of one of these two variables at a time. Fourth, the equity price turns out to be equal

to the capital stock in the production economy. This implies that we will not be able to increase

the volatility of the equity price without compromising the volatility of capital, which is much

lower than the volatility of the equity price in the data.

4.2. Adaptive Learning. Next, we make a small deviation from rational expectations by

assuming that agents form expectations about future prices based on econometric forecasts.

We should point out that under rational expectations, the only source of uncertainty in the

two economies is the exogenous stochastic process. The rest of the parameters and laws of

motions of variables are completely known. Thus, when households have to make consumption

and savings decisions, they optimize conditional on the realizations of these exogenous shocks.

In other words, under rational expectations, agents�forecasts are on average correct, since the

only unknown element is the realization of the exogenous noise.

In contrast, adaptive learning it is implicitly assumed that the average forecasts of agents

are not necessarily correct. This can be due to various reasons, but we will focus on the scenario

where, although agents know the deep parameters of the model (e.g. preference parameters),

they do not know in what way these parameters determine the evolution of prices variables

over time. Moreover, the type of learning we analyze here is self-referential in the sense that

agents� forecasts in�uence the laws of motion of the economic variables, which in turn then

in�uence the subsequent future forecasts and so on. In this sense, adaptive learning introduces

an additional source of uncertainty in the model that is eventually re�ected in the dynamics of

the economies: imprecise forecasts are used when agents and �rms make decisions, leading to

potentially non-optimal temporary equilibria.

Given this background and since we want to keep the economies as close as possible to the

rational expectations framework, we make the following assumptions:

A1. Agents know the correct speci�cations of the models; in other words, they are aware that

they are estimating deviations from a steady state and they know which variables are

relevant for forecasting prices (no omission or inclusion of extra variables).

A2. Agents know the true parameters that characterize the exogenous shock, i.e. they know

� and �2".

By making these assumptions, we aim in isolating the e¤ects of self-referential learning on

the asset pricing statistics and examining if this type of learning alone can provide a better

match for the stylized facts. An interesting direction that is beyond of the scope of the present

paper would be to relax A1 (i.e. to introduce model misspeci�cation). Moreover, we conjecture

that relaxing A2, i.e. allowing agents to estimate parameters � and �2, will not alter the

results signi�cantly. Such an extension would probably improve the results somewhat, since it

would feed some extra volatility into the system. However, these parameters characterize an

exogenous variable, implying that any econometric learning or estimation procedure in search

of the true values would converge relatively fast without signi�cantly a¤ecting the evolution

of the endogenous variables. Moreover, since we want to study types of learning that are the

closest possible to rational expectations, we abstract from learning on the exogenous variable

parameters.
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Given these assumptions, agents�expectations for both models are formed according to

E�t pt+1 = x0t�t; (33)

where xt is the vector of state variables, i.e. xt = (pt; zt)
0 for the production economy and

xt = dt for the endowment economy. The vector �t is now an estimate of the true coe¢ cients

which is obtained by the recursive algorithm7(
R1 = S0 + x0x

0
0

�1 = �0 +R
�1
1 x0(k1 � x00�0)

, (34a)(
Rt = Rt�1 + gt

�
xt�1x0t�1 �Rt�1

�
�t = �t�1 + gtR

�1
t xt�1

�
pt � x0t�1�t�1

� for t 2 f2; 3; :::g ; (34b)

S0 and �0 given.

The sequence fgtg is known as the gain and represents the weight of the forecasting errors when
updating the estimates. We consider two standard and broadly used speci�cations for the gain,

namely gt = 1=t and gt = g, 0 < g < 1. The former is a recursive least squares (RLS) algorithm,

whereas the latter is known as a tracking or constant gain (CG) algorithm.

A �rst di¤erence between the two algorithms is that, when written in a non-recursive way,

RLS assigns equal weights to all past forecasting errors, while CG assigns weights that decrease

geometrically. As a consequence, RLS learning can be interpreted as the forecasting method

that is used when the econometrician believes that all past information is equally important for

forecasting future prices. On the other hand, CG learning can be interpreted as the method

that is used when the econometrician believes that recent realizations of the equity price are

more important in forecasting next period�s price.

Another di¤erence between the two algorithms is their asymptotic behavior. First, conver-

gence of the RLS algorithm is in the "almost surely" sense. It is global for the endowment

economy and local of the production economy, whenever the E-stability conditions are satis�ed

(these are always satis�ed for reasonable parameter ranges of the two models). Furthermore, to

ensure local convergence for the production economy, a projection facility needs to be invoked

(e.g. a restriction ensuring that the estimates �t imply a stationary endogenous state variable).

This has interesting implications for the numerical results, as will become clearer later. Second,

convergence of the CG algorithm is in the "distribution" sense, that is, CG learning converges

to some distribution, for small positive gains.8 In particular, since 1=t ! 0 as t ! 1, the
contribution of the forecasting error in the estimate of � under RLS disappears in the limit and

the forecasting algorithm eventually converges to the rational expectations equilibrium ��. In

contrast, the CG algorithm implies that there is always some non-zero correction of the esti-

mate (perpetual learning) which prevents the algorithm from converging to a constant. Instead,

the estimate from the CG algorithm converges to some stationary distribution that �uctuates

around the rational expectations long-run average solution.

7See Carceles-Poveda and Giannitsarou (2007) for a derivation.
8More details on convergence issues and on the derivations of these conditions can be found in Evans and

Honkapohja (2001), as well as in Carceles-Poveda and Giannitsarou (2007).
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Note that initial conditions that are away from the REE are less important for the speed of

convergence under CG learning than under RLS learning. This is because the CG algorithm is by

de�nition much better at tracking large jumps of the estimates away from the long run average

(such as structural shifts) than RLS: since more weight is assigned to recent observations, even

if the initial condition is far from the REE, its e¤ect will become less and less important over

time and will eventually disappear much faster than if we used RLS.

Finally, we want to point out that we do not wish to provide a formal argument in favor of

one algorithm over the other. Such an exercise would involve working out the optimal learning

algorithm, in some appropriately de�ned sense of optimality. Instead, our aim is to compare

the behavior of equity prices under various speci�cations of the two algorithms.

The rest of the section is devoted to describing mechanisms through which the adaptive

learning algorithms we consider may or may not generate improved asset pricing statistics. We

argue that the behavior of the statistics and facts that we are interested in depends crucially

on the variance of the equity price under adaptive learning both in absolute terms and relative

to the variance of equity prices under rational expectations. To see what this the case, note

�rst that the volatility of equity prices under rational expectations depends in a direct way on

the volatility of the underlying exogenous process that drives the uncertainty in the economy.

At the other end, adaptive learning may introduce an extra source of variation in prices due

to the fact that certain parameters are now estimated via some statistical rule. Moreover, the

variance of the equity prices changes over time and may be higher or lower than the constant

(rational expectations) variance.

To see how this would a¤ect the other statistics of interest, consider �rst the asset return

moments and in particular the equity premium and its variability. In general, if the equity

price is more volatile under adaptive learning, then the asset is perceived as being riskier than

under rational expectations. This is because dividends are either exogenous or they depend

positively on the equity price. In turn, this will result in a higher equity return and thus a

higher equity premium and premium variability. If on the other hand the equity price varies

less under learning, then the asset is perceived as being safer than under rational expectations,

resulting in a lower equity premium and premium variability.

Second, consider the predictability of future excess returns. If the equity price is below its

long run average value, this will result in both a higher dividend yield and in higher future

capital gains when the price adjusts upwards, leading to higher future returns. This mechanism

generates a negative correlation between the current price-to-dividend ratio and future excess

returns. Moreover, the correlation will be magni�ed if the equity price is more volatile under

adaptive learning than under rational expectations, improving the predictability of the price

to dividend ratio. The opposite will happen if the equity price is less volatile under adaptive

learning. In conclusion, to understand how adaptive learning in our models can contribute

towards explaining asset pricing statistics, it is very important to understand the learning

dynamics of the variation of the equity price.

It should also be clear that the extent to which RLS can explain asset pricing facts within

these two models depends on the initial values and the speed at which the algorithm converges

to the rational expectations equilibrium. If for example the priors of the agents are close to
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the REE and the algorithm converges quickly, we should not expect to see any signi�cant

improvement in the results relative to rational expectations. On the other hand, since CG

learning implies perpetual learning and does not converge point-wise to the REE, the initial

values should not matter that much, and we may expect to see more interesting dynamics than

under RLS.

With the preceding discussion in mind, we can now go deeper into the mechanisms that

generate equity price volatility under adaptive learning. Due to the relative simplicity of the
reduced form model for the endowment economy, we can go quite far analytically in this case.

However, the reduced form of the production economy includes a lag of the endogenous state

variable (i.e. the equity price), making the dynamics under learning too complicated to study

analytically in a meaningful way. For the latter model, we will therefore be able to see clearer

results through numerical experiments that are presented in the next section. For this reason,

we focus on the endowment economy and we conjecture that one can apply loosely similar

arguments for the production economy.

Consider �rst the dynamics of the equity price in the endowment economy. Under rational

expectations, this is given by:

pREt = h(��)dt; (35)

where h(�) = a�+ b = ��+ (1� � � ) �+ , so that the variance of the equity price is

V ar
�
pREt

�
= h(��)2�2d: (36)

The variance of the equity price under adaptive learning at a given period t is

V ar
�
pALt

�
= V ar

�
h
�
�t�1

�
dt
�
: (37)

Furthermore, given our assumption of normal noise shocks and since E (dt) = 0, the variance

of this product can be expressed as follows (see Bacon, 1980)

V ar
�
pALt

�
= V ar

�
h
�
�t�1

�
dt
�
=
�
m2
h;t +

�
1 + r2t

�
�2h;t

�
�2d; (38)

where

mh;t = E
�
h
�
�t�1

��
= aE

�
�t�1

�
+ b; (39)

�2h;t = V ar
�
h
�
�t�1

��
= a2V ar

�
�t�1

�
; (40)

rt = Corr
�
h
�
�t�1

�
; dt
�
= aCorr

�
�t�1; dt

�
: (41)

Using (38), we can make the following observations. First, the variance of the equity price

under adaptive learning depends positively on the variance of the exogenous shock (here the

dividend). In other words, whenever the variance of the shock is higher, we should expect a

more volatile equity price under learning. In addition, the variance at time t depends positively

on the average estimate �t�1, the variance of the estimate and the correlation of the estimate

dated t� 1 with the exogenous shock at t.
To gain further insights, we de�ne the relative variance of the equity price at time t as the
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variance of the equity price under adaptive learning over the variance of the equity price under

rational expectations, i.e.:

�t =
V ar

�
pALt

�
V ar

�
pREt

� = m2
h;t +

�
1 + r2t

�
�2h;t

h(��)2
: (42)

If we use �t as a measure of the change in variance of the equity price under adaptive learning

relative to the variance under rational expectations, we now see that any relative improvement

in the volatility of equity prices under learning does not depend on the variance of the exogenous

shock. If �t is larger than one, then the equity price will have a higher variance under adaptive

learning than under rational expectations. In turn, since the dividends are exogenous and

taken the same under both assumptions (there is no "learning" of the dividend process), a

higher equity price variance under learning will imply that the equity is perceived as being

riskier. Since the risk free rate is the same under both learning and rational expectations, this

will in turn lead to a higher premium and to a higher premium volatility.

Regarding the predictability of excess returns, this will improve if �2h;t and rt are high.

The reason is the following. For a given dividend process, if �t�1 is lower than average, then

h
�
�t�1

�
will be lower than average and pALt will be smaller than pREt . In turn, this will imply

that the current price-to-dividend ratio under learning will be lower than the one under rational

expectations. Moreover, future returns will tend to be higher than under rational expectations

due to the current high dividend yield and the future upward adjustment of the price to its

long run average, generating capital gains. This mechanism will be reinforced if �t�1 is more

volatile, since this will lead to a more volatile h
�
�t�1

�
and to a more volatile price. In addition,

if rt is higher, these e¤ects will be ampli�ed even more, since a higher than average estimate

combined with a higher shock will lead to an even higher price volatility.

What remains to be determined is how the variance of the equity price and the relative

variance �t behave for given parametrizations and learning speci�cations and, in particular,

which of the three elements m2
h;t, �

2
h;t and �

2
h;tr

2
t is most important for determining the size of

�t. It is worth noting here that the last term �2h;tr
2
t will be sizeable only if both rt and �

2
h;t are

quite high. In the next two sections we will explore these relations in more detail by performing

various illuminating numerical experiments.

Finally, with regards to the production economy, it is not so straightforward to do a similar

analysis. In this case, the equity price volatility under rational expectations is given by the

following expression:9

V ar(pREt ) =
2(1 + ���p)

(1� a1�� a1��p)2(1� ���p)(1� ��
2
p)
: (43)

This variance is a constant that depends on the parameters of the model. However, under

adaptive learning, we have that

V ar
�
pALt

�
= V ar

�
�
�
�t�1

�
pt�1 + h

�
�t�1

�
dt
�

= V ar
�
�
�
�t�1

�
pt�1

�
+ V ar

�
h
�
�t�1

�
dt
�
+ 2Cov

�
�
�
�t�1

�
pt�1; h

�
�t�1

�
dt
�
;(44)

9See Giannitsarou (2005) for a derivation.
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where

�(�) =
a2

1� a1�p
and h(�) =

a1�z + b

1� a1�p
(45)

Unfortunately, this expression is too complicated to work with analytically and get meaningful

conclusions. Nevertheless, we can use the breakdown in (44) when we do our numerical analysis

to gain some insights about the importance of the di¤erent terms in determining the equity

price volatility and its relationship with the other statistics.

5. Numerical Results

This section presents the numerical results for the two models under rational expectations

and adaptive learning. For each of the two models, we calculate the same statistics as the

ones reported in table 1. Additionally, we report the ratio of the standard deviation of the price

under learning over the standard deviation under rational expectations (i.e. the average relative

deviations under learning), as a proxy for the equity price volatility generated by adaptive

learning relative to rational expectations.

We begin by describing the computing speci�cations and the calibrations. To implement the

simulations we have used the adaptive learning toolbox for Matlab that accompanies Carceles-

Poveda and Giannitsarou (2007). For each model, we run experiments with a number of T = 211

periods, corresponding to the number of quarters available in the data set. The statistics

reported are the average statistics from replicating the experiments N = 3000 times. To make

all results comparable, shocks are generated from normal distributions with the same state value

for the Matlab pseudorandom number generator, which was set to 98.

As shown in Carceles-Poveda and Giannitsarou (2007), the initialization of adaptive learning

algorithms can have important e¤ects on the model dynamics. We therefore use two di¤erent

initializations. In the �rst, the initial elasticities are �0 are drawn from a distribution around

the rational expectations equilibrium ��, with a variance which approximates the variance of

an OLS estimator of � based on �fty observations (the larger the number of observations the

closer the initial condition is to the REE). In the second, �0 is set at an ad-hoc value that is

below or above the rational expectations value. These two values correspond to di¤erent initial

priors of the households about the e¤ects of the state variables on the current equity price. Note

that one way to interpret initial conditions that are relatively far from the REE is that agents

learn a new equilibrium after a structural change in the economy. Although we do not address

structural shifts explicitly, such an interpretation is an interesting starting point for how such

an assumption may, for example, explain the equity premium puzzle. A more thorough analysis

of this assumption and its consequences for asset pricing statistics under learning is done by

Kim (2006) in the context of the Lucas tree model. Finally, for each set of experiments, we

simulate series under RLS learning and CG learning.

Turning to the parametrization of the gain, we use values of g = 0:02, g = 0:2 and g = 0:4.

The size of the gain may be determined in various ways. For example, it may be estimated, so

that it matches stylized facts, or it can be determined so that it gives the smallest possible mean

squared forecasting error. Here, our choice of the gain values is based on the basic interpretation

of CG learning. As explained earlier, the CG algorithm assigns geometrically decreasing weights

to observations across time, so that recent observations matter a lot for the current estimate,
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even in the limit.10 In this sense, we can interpret the constant gain algorithm as the tool of

an econometrician that believes that recent observations are more relevant for forecasting than

observations that date very far back. Speci�cally, an observation that dates i periods back is

assigned a weight equal to (1� g)i�1.
The size of the gain g corresponding to a weight of approximately zero for observations that

date more than i quarters back is displayed in table 2.11 The table also reports the half-life decay

for these gains in quarters. For example, if the econometrician believes that only observations

that date at most i = 15 years back are important for the forecast, the corresponding gain is

g = 0:46, or if i = 20 years, then g = 0:37. Since professional forecasters typically use rather

short and recent data series from the stock markets, we believe that a relatively high gain

coe¢ cient may be a more appropriate modeling framework for asset pricing forecasting. Given

this, we have calculated our results with gain values of 0.2 and 0.4, corresponding approximately

to using data from the last 20 to 50 years.

Note that the numbers for the gain turn out to be quite high due to the fact that we assume

that the data are in quarterly frequency. It is true that forecasters in the �nancial sector use

high frequency data (weekly, daily or even minute by minute), which would translate into a

lower gain when considering 20 years of data; however, here we are working with quarterly data

not only for comparability to existing work, but also because we care about the behavior of the

aggregate macroeconomic variables. Finally, to get a sense of how our results depend on the

size of the gain, we have also calculated the results with a gain of g = 0:02, corresponding to

approximately using data from the last 400 years to make the forecasts.

< TABLE 2 HERE >

The rest of the parameters are calibrated as follows. The risk aversion coe¢ cient is set to

 = 1 in both models.12 For the production economy, we have used the standard parametrization

for US quarterly data, that is, the capital depreciation, the discount factor and the capital

share are set to � = 0:025, � = 0:99 and � = 0:36 respectively. Furthermore, the baseline

parametrization for the productivity shock is �" = 0:00712 and � = 0:95, as is usual in the real

business cycle literature.

In the endowment economy, we again set  = 1 and � = 0:99. As for the dividend process,

the benchmark calibration assumes that � = 0:95 and �" = 0:06, corresponding to the estimated

slope coe¢ cient and error standard deviation of regressing the log of the seasonally adjusted

real quarterly dividend series in the data on its �rst lag. In addition, we repeat the experiments

with � = 0:95 and �" = 0:00712 in order to make the �ndings comparable to those from the

production economy. It turns out that this last calibration approximately replicates the behavior

of logged consumption growth in the data.

10The constant gain algorithm is some type of weighted least squares estimator. However, it does not necessarily
follow the usual rule of assigning larger weight to observation points with smaller variance.
11To calculate the gains, we have used the default tolerance level of Matlab, as an approximation of zero.
12As is well known, a high parameter  improves the performance of rational expectations asset pricing models,

such as consumption based models like our endowment economy. Although, it would help improve the results
under learning as well, we prefer a low  for our benchmark, since it has been documented empirically that values
of  larger than around 5 are implausible (e.g. see Hall, 1988).
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We �rst present the results for the endowment economy and then discuss the results for the

production economy. Moreover, we also present a sensitivity analysis for each economy with

respect to the key model parameters.

5.1. The Endowment Economy. Tables 3A-3C contain the results for the calibration with

the lower variance (�" = 0:00712), whereas tables 3D-3F report the same results for the higher

shock variance (�" = 0:06). Tables 3A and 3D contain the �rst and second asset moments.

Tables 3B and 3E contain (a) the standard deviation of the equity price under learning over

the standard deviation of the equity price under rational expectations, (b) the average price-to-

dividend ratio, its standard deviation and its �rst autocorrelation, (c) the standard deviation of

consumption growth and (d) the standard deviation of dividend growth. Finally, tables 3C and

3F report the results for predictability. To obtain these, we run the same regressions as with

the true data. The table reports the average estimated slope coe¢ cients, the average adjusted

R2 and the percentage of estimated coe¢ cients that are negative and signi�cant out of 3000

replications of the experiment.

The �rst two rows of the tables display the numbers in the data and under rational expecta-

tions. Furthermore, the last six rows display the results under learning when the algorithms are

initialized (a) from a distribution (DIS) as explained earlier, (b) below the REE, with elasticities

set to 0:9� �� (AH-B), or (c) above the REE, with an elasticity set to 1:035� �� (AH-A).13 For
each initialization, we report the results for the recursive least squares (RLS) and constant gain

(CG) algorithms with gains of g = 0:2 and g = 0:4. The case with g = 0:02 is omitted, since

the results are almost identical to the ones under RLS.

< TABLES 3A - 3F HERE>

Starting with the results under RE, we see that the model performs very poorly in all dimen-

sions. With the lower shock variance, the premium is only around 0.002 percent, while it only

increases to approximately 0.4 percent with the higher benchmark shock variance. Furthermore,

the standard deviation and the autocorrelation of the price-to-dividend ratio are far from the

data, and this variable generates absolutely no predictability for the excess stock returns. This

is not surprising, since it is well documented in the literature that the Lucas tree model with a

low risk aversion parameter value is unsuccessful in reproducing the asset pricing moments in

the data.

Turning to the results under adaptive learning, the �rst important observation is that the

di¤erent initializations do not seem to have an overall very signi�cant e¤ect on the outcomes.

However, we do observe interesting di¤erences across the di¤erent learning algorithms and

parametrizations. We discuss the results with each algorithm in turn.

Starting with RLS learning, we see that the asset return moments are very close to those

generated by rational expectations. As discussed earlier, the reason why RLS cannot generate

any signi�cant improvements in the predictions of the model is that the algorithm converges

relatively fast to the rational expectations equilibrium. Therefore, any di¤erences between the

13The percentage 1:035 above the REE has been chosen for both models, so that the stationarity condition
j�0j < 1 is satis�ed for the production economy. Although such a restriction is not necessary for the endowment
economy, we use the same number to keep the results comparable.
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dynamics under RLS and rational expectations disappear quickly. This observation is also clear

from tables 3B and 3E, where we can see that the relative variability of the equity price is close

to one with both parametrizations of the variance �2". Furthermore, Tables 3A and 3D illustrate

that the asset return moments are almost identical to the rational expectation values.

We also note that the relative price variability is less than one and the equity premium

under learning is below the one under RE when the initial condition is below the REE value,

and vice versa when the initial condition is above the REE. When the initial condition is drawn

from a distribution (i.e. close to the REE), both the relative variability is close to one and

the equity premium is close to the one of RE. Finally, Tables 3C and 3F illustrate that the

model under RLS also performs poorly regarding predictability. The coe¢ cients have the right

sign and are higher in absolute value than the ones under rational expectations, but they are

still very far from the data under both variance calibrations. In addition, the percentage of

signi�cant estimates is relative small.

With this discussion in mind, it should now be clear that any improvements in the predictions

of the model can only come from some type of learning algorithm that does not converge to

the rational expectations equilibrium. Constant gain learning is such an algorithm, since its

dynamics �uctuate perpetually around the rational expectations equilibrium and the size of the

�uctuations depends positively on the size of the gain function. Indeed, turning to the results

generated by CG learning, the results appear to be quite di¤erent from those under RLS and

rational expectations.

Regarding the average asset returns, Table 3D illustrates that CG learning with the bench-

mark parameterization and the higher gain can generate an average stock return that is 20%

higher than its rational expectations value, leading to a premium that is twice as high as its

value under rational expectations. However, since the average risk free rate generated is too

high compared to its value in the data, the average equity premium is still relatively small.14

On the other hand, we see a considerable improvement regarding the volatility and pre-

dictability. Tables 3B and 3E re�ect that the equity price under CG learning can be more

volatile than under rational expectations. In addition, with the benchmark parameterization

and the higher gain, the model matches the standard deviation of the logged dividend growth

and of the stock return and equity premium, whereas the standard deviation of the price-

dividend ratio is just about half of the one observed in the data. In addition, Tables 3C and 3F

re�ect that the model performs much better than under rational expectations regarding pre-

dictability. As we see, the average slope coe¢ cients, the percentage of signi�cant and negative

estimates and the R2 display the increasing pattern with a longer horizon that we see in the

data. Furthermore, the slope coe¢ cients are very close to the ones in the data when the model

is calibrated to dividend behavior (� = 0:06) and the gain is equal to 0:4. In this case, the

number of signi�cant estimates ranges from approximately 40% to 70%, a large improvement

compared to the results under RLS and rational expectations.

Finally, we note that these improvements are smaller when the model is calibrated to con-

14To lower the risk free rate, we can either recalibrate the discount factor or choose a di¤erent initial value for
the price of the bond. However, this also lowers the risk free rate under rational expectations, generating the
same di¤erences with respect to the rational expectations statistics. Since our aim is to compare the performance
of learning with respect to rational expectations, we opt for using the current calibration.
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sumption behavior (� = 0:00712). In this case, the model does not generate the right behavior

for the dividend growth or the price-to-dividend ratio. Furthermore, although this calibration

leads to a higher equity return and equity price volatility and generates a much higher pre-

dictability under learning than under rational expectations, the slope coe¢ cients with a gain of

0:4 do not provide a satisfactory match with the data.

In what follows, we provide some intuitive comments to help understand our �ndings. We

�rst consider the volatility of the equity price. As explained earlier, whether equity prices are

more volatile under learning than under rational expectations depends on the behavior of three

terms: m2
h;t =

�
aE
�
�t�1

�
+ b
�2, �2h;t = a2V ar

�
�t�1

�
and r2t �

2
h;t = aCorr

�
�t�1; dt

�
�2h;t. Under

RLS learning, our numerical results show that the estimated coe¢ cient �t�1 is very close to

the REE value, while the variance and correlation terms are relatively small. As a result, the

relative price variability �t is very close to one, and the equity return is not perceived as being

riskier under learning. This explains why the equity premia are very close to those under REE.

As noted before, we see an e¤ect of the initial conditions on the relative price variability �t,

which is below (above) one when we initialize the coe¢ cient below (above) the REE value. This

is due to the fact that m2
h;t is one average below (above) the REE value when we initialize below

(above), generating premia that follow the same pattern. However, since the RLS algorithm

converges relatively fast, the di¤erences are very small.

Consider now the case of CG learning. First, we see that the initialization does not seem to

matter in this case. This is due to the fact that m2
h;t is much less important than �

2
h;t and r

2
t �
2
h;t

for determining the relative price variability �t. In particular, our numerical results show that

�2h;t is approximately 20 times higher than under RLS with CG learning and a gain of 0:4, while

r2t �
2
h;t is also considerably bigger. In turn, this leads to a higher price variability �t than under

RLS learning, generating a higher premium. Moreover, the higher price variability, combined

with a higher correlation of the estimate with the exogenous shock process, improves on the

predictability of excess returns through the mechanisms explained earlier.

To illustrate how the three terms m2
h;t; �

2
h;t and r

2
t �
2
h;t contribute to the relative variability

of the equity price, we present as an example how these evolve on average for the cases of RLS

and CG learning with g = 0:4, using the initial condition that is set below the REE. These are

shown in Figures 1 and 2. The panels in the Figures show these three terms, as well as �t.

Note that the term r2t �
2
h;t is essentially insigni�cant for both cases. In the case of CG learning

where r2t �
2
h;t is larger than under RLS learning, this term is of order of magnitude of 10

�3. This

is because, even in this case with high variance and gain, the maximum correlation between

beliefs �t�1 and the exogenous state dt is very small, at around 5%.

< FIGURES 1 - 2 HERE >

Con�rming our earlier derivations, the relative variability of the equity price is independent
of the variance of the exogenous shock process. Thus, while the absolute value of the equity pre-

mium is higher as the shock variance increases, the relative improvement of the equity premium

under learning is the same as with the low variance. In contrast, the model does perform much

better regarding the predictability of excess returns with the higher shock variance. This is

because predictability only requires a strong negative correlation between the price-to-dividend
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ratio and the future excess returns. While the relative improvement in equity price volatility is

the same for both variances, both the absolute volatility of the equity price and the correlation

of the estimates with the dividends increase as the variance increases, generating a stronger

negative correlation between the price-to-dividend ratio and future excess returns.

To summarize, RLS learning generates results that are very close to their rational expecta-

tions counterparts and the initialization seems to matter somewhat. CG learning can generate

some extra volatility of the equity price with a high gain, leading to a higher equity premium

and premium variability. The initial conditions matter less than under RLS, as expected, and

they matter even less as the gain increases (i.e. as the learning memory reduces).15 However,

the values are still too small compared to the data. We therefore conclude that standard adap-

tive learning cannot fully explain the mean equity premium in the endowment economy model.

On the other hand, our numerical results con�rm that adaptive learning is able to generate the

excess return predictability that we see in the data.

5.2. The Production Economy. Tables 4A-4C report the results for the benchmark pa-

rameterization of the production economy, organized in the same way as the results for the

endowment economy. Table 4A contains asset moments, table 4B contains various statistics

and table 4C reports the results for predictability.

< TABLES 4A - 4C HERE >

As with the endowment economy, the tables indicate that the rational production econ-

omy performs very poorly in explaining the �rst and second asset moments (see for example

Rouwenhorst, 1995, or Lettau, 2003). The implied equity premium is approximately 0.002 per-

cent, whereas the asset variabilities are very similar across the two assets and very far from

their counterparts in the data. Furthermore, the standard deviation of the price-to-dividend

ratio is much lower than the one in the data, and it does not have any predictive power for the

excess stock returns.

Turning to the results under learning, we see that in general it has a relatively small e¤ect

on the di¤erent asset moments regardless of the algorithm. The equity premium only increases

from 0.0027 up to 0.0154 percent and its variability only increases from 0.007 to 0.023 percent.

In addition, although learning improves the behavior of the price-to-dividend ratio, the average

regression coe¢ cients are practically zero and rarely signi�cant for all the horizons considered,

as can be seen from table 4C. These �ndings suggest that, with a standard calibration, adap-

tive learning does not seem to provide an explanation for the behavior of asset returns in the

production economy.

An interesting observation is that the results depend on the di¤erent initializations of the

learning algorithms, much more than for the endowment economy. In particular, starting above

the rational expectations value generates a premium that is ten times higher than if we start

below rational expectations under RLS learning. In addition, Table 4B re�ects that the relative

variability of the equity price can be considerably lower than under rational expectations if

the initial coe¢ cient is set below its rational expectations value, while it can be considerably

15This is not so easy to see from the two sets of numbers we report here based on g = 0:2 and 0:4, but the
pattern is pretty clear once one starts experimenting with a wider range for the gain.
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higher if we start above. Thus, contrary to the common view that learning can only generate

higher volatility, we �nd that the size of the volatility actually depends on the initialization of

the algorithm in the stochastic growth model and may very well be below the one generated

by rational expectations. Finally, while the di¤erences are still bigger than in the endowment

economy with a gain of 0:2, the results exhibit a non-monotonic behavior when the gain becomes

larger.

Next, we provide some further insights that will help us understand these results. As al-

ready noted in the previous section, the relative equity price variability �t cannot be decomposed

nicely as in the endowment economy. However, we can decompose it into three terms: the vari-

ance of the term h
�
�t�1

�
zt, the variance of the term �

�
�t�1

�
pt�1, and the covariance of these

two terms. Our numerical results (not reported here) illustrate that the term V ar
�
�
�
�t�1

�
pt�1

�
is the one that mostly drives the behavior of the equity price variance. This is partly due to

the fact that the elasticity of the price with respect to the exogenous shock zt is much smaller

than that in the endowment economy, both under REE and under learning. Moreover, the term

�
�
�t�1

�
only depends on the estimate �p;t�1, and this therefore the estimated coe¢ cient that

is key for determining the behavior of the statistics of interest.

We �rst consider how learning a¤ects the equity price volatility. Using similar arguments to

those in the endowment economy, it is easy to see that the term V ar
�
�
�
�t�1

�
pt�1

�
will increase

if the estimate �p;t�1 is more variable and if it remains well above the rational expectations value
��p for a large number of periods, while the opposite will happen if the estimated coe¢ cient is

less variable and if it remains well below the rational expectations value ��p for a large number

of periods.

If we initialize the algorithm using a distribution, RLS implies that these coe¢ cients will

be relatively close to the REE, leading to a very similar variance between the two cases. In

fact, Table 4B re�ects that the relative price variability is only slightly above one. Furthermore,

a gain of 0.2 makes the coe¢ cients more volatile, so that they are more often above but also

below the REE. As a result, the di¤erence between the relative price volatilities is even smaller.

Note that increasing the gain coe¢ cient above 0:2 also implies that the coe¢ cients violate

the stationarity condition
���p;t�1�� < 1 very often, since the long-run average value ��p is very

close to 1. Since it would not be sensible to allow the elasticity to be larger than one, the

learning algorithm is augmented with a projection facility, which simply resets � to its last

value when this condition is violated. In this case, the projection facility generates a downward

bias that reduces the price volatility when increasing the gain from 0.2 to 0.4, explaining the non-

monotonicity in the results that is seen in the tables. Finally, when we initialize the algorithm

above or below the REE, the estimated coe¢ cients will remain on average above or below the

REE respectively, for many periods. This happens because of endogenous persistence, which is

due to the presence of a lag in the law of motion of the equity price. This explains why the

di¤erent initializations generate di¤erent results in the production economy, while they matter

much less in the endowment economy.

As in the endowment economy, the results reported here re�ect a strong relationship between

the relative price variability and the equity premium. In the present model, a higher price

volatility under AL will generate a higher premium for two reasons. For a given dividend



23

process, higher equity price volatility implies more risk. Moreover, the higher price volatility

will feed back into the dividend process, since the dividend is a function of the equity price as

well, inducing more volatility and thus more risk. In fact, Tables 4A and 4B re�ect that the

model can generate a premium of up to �ve times larger than the one under REE with the

initialization that starts above the REE. Nevertheless, the premium is still very far from the

data in all the cases considered.

Regarding the predictability of excess returns, we �rst note that the arguments that we

have used in the endowment economy to explain the negative correlation between the price to

dividend ratio and the future excess returns do not necessarily apply here. First, the elasticity

of the price with respect to the shock is much smaller than that in the endowment economy

and the term that generated the predictability results before does not play a role, at least with

a low shock variance. Suppose now that the coe¢ cient �p is higher than average, leading to a

higher than average price. This will feed back into the current and future dividend payments

and it will not necessarily lead to a low future dividend yield. In addition, the adjustment of

the price to its long run average is likely to be slower than in the endowment economy. Given

this, the correlation between the future excess returns and the current price-to-dividend ratio

will be weak and not necessarily negative. As we see, this translates into a behavior that is very

similar to the one under rational expectations in terms of the predictability of excess returns.

To summarize, with the bechmark parameterization, the production economy is not able to

generate any excess return predictability. Regarding the equity premium, the initial conditions

matter more than in the endowment economy, generating a higher premium when we initialize

the coe¢ cients above their RE value. On the other hand, the magnitude of the premium and

its variability are still very far from the data.

6. Sensitivity Analysis

This �nal section presents some sensitivity analysis of our numerical results with respect to three

key parameters of the two models, namely the coe¢ cient of relative risk aversion , the variance

�2" and the persistence � of the exogenous shocks. The sensitivity results for the two models

are displayed in tables 5A-5B and 6A-6C respectively. The numbers are based on experiments

that have the same speci�cations as our baseline analysis, with 3000 replications. The Tables

display the mean and standard deviation of the equity premium and the price-to-dividend ratio,

as well as the coe¢ cients of the regressions of the price-to-dividend ratio on the future excess

returns. We only report the results for the ad-hoc initializations starting below and above the

REE value under RLS and CG learning, with g = 0:2. For comparison, the tables contain also

the results with our benchmark parametrizations. Finally, we have not included a separate

table for sensitivity with respect to �2" for the endowment economy, since this case is covered

extensively in tables 3A-3F.

6.1. Endowment Economy. Table 5A displays the results for levels of risk aversion of

 = 1 and  = 3. The �rst important observation is that the relative price variability is the

same both risk aversion values. In a way, this is not surprising: altering the deep preference

parameters of the models (such as the relative risk aversion) does not alter the learning dynamics

relative to rational expectations dynamics, because such parameters are not directly relevant
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for the determination of the learning dynamics. As in the baseline case, we see that the relative

price variability is higher under CG learning, which generates an equity premium that is very

close to the one we see in the data. Note, however, that the relative improvement with respect to

the REE value is approximately the same as with a risk aversion of 1. In addition, the premium

volatility is twice as high as in the data, indicating that the model is not able to match the

�rst and second moments simultaneously. In contrast, a higher risk aversion does lead to a

considerable improvement with respect to the predictability of excess returns. The regression

coe¢ cients generated by the CG algorithm now match the coe¢ cients in the data with a gain of

0:2 and a risk aversion of  = 3. The reason why this happens is the same as when we increase

the variance of the shock: while the relative price variability with a higher risk aversion is the

same, the variability of the equity price and the correlation of the estimated coe¢ cient with the

dividends is higher in absolute terms, generating a stronger negative correlation between the

price-to-dividend ratio and the future excess returns.

< TABLES 5A - 5B HERE >

Table 5B displays the results with levels of the shock persistence of � = 0:1, � = 0:5 and

� = 0:95. This table reveals a clear pattern: as the persistence of the shock decreases, the relative

variability and consequently all the rest of the statistics of interest are much less sensitive to the

variations in the speci�cations of learning, e.g. the initial conditions or the learning algorithm.

The intuition of why this happens is the following. As the persistence becomes smaller, the

e¤ects of learning cannot propagate or remain in the dynamics of the system for too long. If

for example there is an estimate (under learning) that is very bad, i.e. very far from REE, then

this will feed into the dynamics for many periods if the persistence is high, while its e¤ects will

disappear more quickly if the persistence is low.

In sum, increasing the risk aversion does not improve the results relative to rational expec-

tations, while a lower persistence tends to make the dynamics more robust to changes in the

learning speci�cations.

6.2. Production Economy. Table 6A displays the results for shock standard deviations

of �" = 0:00712, �" = 0:02 and �" = 0:04. As in the endowment economy, we �nd that the

relative price variability does not depend on the variance of the exogenous shock process. On

the other hand, we do see that the equity premium and its variability improve more than under

REE with a higher shock variance. In particular, with the AH-A initialization, when the shock

variance increases from 0.00712 to 0.04, the premium increases from 0.002 to 0.0907 under REE,

whereas it increases from 0.0113 to 1.8277 under CG and from 0.154 to 0.7252 under RLS.

The more than proportional improvement of the premium when we increase the shock vari-

ance is due to the fact that in the production economy there are several e¤ects that reinforce

each other. On one hand, if the exogenous shock is more volatile, the price will be more volatile

due to a more volatile term �(�t�1)pt�1 and to a higher feedback of the estimate of �z;t�1 into

the price through a more volatile second term h(�t�1)zt. In addition, this will lead to more

volatile dividends that will in turn feed into the price. These e¤ects can be substantial, and the

model generates an equity premium that approximately matches the data with CG learning,
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�2" = 0:04 and the AH-A initialization. With high variance we also observe that the produc-

tion economy can generate the negative correlation between current price-to-dividend ratio and

future excess returns that is needed to produce some predictability results.

< TABLES 6A - 6C >

Table 6B displays the results for levels of risk aversion of  = 1 and  = 3. As in the

endowment economy, increasing the risk aversion does lead to a higher premium in absolute

value. However, the improvement of the results relative to rational expectations is again very

similar to the one with  = 1, while there is no improvement regarding the predictability of

excess returns. Finally, Table 6C displays the results for persistence levels of � = 0:95, � = 0:5

and � = 0:1. As in the endowment economy, we �nd that the results are much less sensitive

to the learning speci�cations with a lower shock persistence and this can be explained using

similar arguments to the ones in the endowment economy.

In sum, the performance of the production economy regarding the asset return statistics

can only be improved by increasing the variance of the exogenous shock. The model can

generate statistics that are much closer to the data when the variance is high. Of course, any

improvements come at the expense of unrealistically high values for the moments of the price-

to-dividend ratio and of the real aggregate macroeconomic variables. Given this, we conclude

that learning in the presence of capital accumulation does not provide a satisfactory explanation

for most asset pricing puzzles.

7. Conclusion

We studied the e¤ects of self-referential adaptive learning on asset returns in the framework

of standard general equilibrium asset pricing models. In particular, we have considered recur-

sive least squares and constant gain learning, with a variety of speci�cations, in a production

economy and a Lucas type exchange economy. Both models were evaluated with respect to the

�rst and second equity premium moments, the predictability of excess returns and the volatil-

ity of equity prices. The main conclusions from our results are the following. For reasonable

parametrizations, (a) constant gain adaptive learning does better in generating a higher equity

return, a higher equity price volatility and predictability in the endowment economy, when the

gain coe¢ cient is relatively high, (b) constant gain learning does not generate any interesting

improvements in the production economy framework and (c) recursive least squares learning

does not generate any improvements for any of the two models.

In general, standard adaptive learning has less potential for explaining the mean excess

returns in the data than for generating volatility and predictability. This is due to the fact that

the average estimated coe¢ cients from the law of motion of the equity price typically �uctuates

around the rational expectations equilibrium, which is known to fail in generating a sizeable

premium for reasonable parametrizations. As to the equity price volatility and predictability of

excess returns, we �nd important di¤erences across models and across learning algorithms. In

particular, recursive least squares learning has relatively small e¤ect on the equity price volatility

and it generates no predictability in the production economy and almost no predictability in

the endowment economy. The e¤ects of constant gain learning with a relatively small gain

are very similar. Nevertheless, a higher gain coe¢ cient, re�ecting the fact that forecasters
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give more importance to recent observations, generates a higher equity return and considerably

more volatility and predictability in the endowment economy, especially when it is calibrated

to match the dividend behavior in the data.

We also investigate the sensitivity of the results with respect to key parameter values. We

�nd that changing the risk aversion or the shock of the variance does not alter the relative

improvements in equity price volatility and equity premium when switching from rational ex-

pectations to adaptive learning (except when we increase the variance in the production econ-

omy). However, we �nd that lower persistence of the exogenous shock implies less sensitivity

of the results to the various characteristics of adaptive learning, such as the algorithm, initial

conditions, etc.

In general, our �ndings suggest that tracking algorithms such as CG are more likely to

explain asset pricing facts than RLS in models where there is no inherent persistence in the

equity price, such as our endowment economy. On the other hand, in the presence of capital

accumulation, where the endogenous variables exhibit more persistence and where consumption

smoothing plays an important role, adaptive learning only has a chance of generating asset

statistics that are closer to the data at the expense of an unreasonable behavior for the macro-

economic variables. We can moreover generally claim that more model persistence (either in the

form of endogenous persistence as in the production economy or in the form of the exogenous

shock persistence �) makes the dynamics much more sensitive to how we set up adaptive learn-

ing, i.e. learning algorithms, initial conditions, gain, etc. than when there is less persistence

(e.g. endowment economy and/or low �).

Overall, we conclude that self-referential adaptive learning, while moving the results towards

the right direction, is not su¢ cient to generate most of the basic asset pricing stylized facts.

We conjecture however that adaptive learning may be part of a story that explains equity price

dynamics, if combined with more elaborate model ingredients, such as learning on the exogenous

shock process, learning on the growth of dividend or consumption, model misspeci�cation, etc.

As a �nal comment, our paper also provides a contribution to the literature of general use of

adaptive learning for quantitative analysis in a macroeconomic framework. In Carceles-Poveda

and Giannitsarou (2007), we show how the initial conditions for a learning algorithm may or

may not matter (in terms of dynamics and speed of convergence) in the context of reduced form

linear or linearized models like the ones we used here. In this paper, we provide a more thorough

quantitative exploration of this issue; we illustrate via our extensive sensitivity analysis that

one really needs to turn to the quantitative model before concluding whether initial conditions

matter a lot or not for the learning dynamics.
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Figure 1: Decomposition of Relative Variance �t with RLS. Endowment Economy, initial
conditions AH-B. Results based on experiments of 3000 simulations of 211 periods, with �"
= 0:06.
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Figure 2: Decomposition of Relative Variance �t with CG. Endowment Economy, initial
conditions AH-B. Results based on experiments of 3000 simulations of 211 periods, with �"
= 0:06.
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Asset Moments
Mean Std:

re 2.3447 7.7287
rf 0.2268 0.8719

re � rf 2.0335 7.6214

Predictability
Horizon Slope R2 t� statistic
1 -0.0534 0.0928 -2.3317
2 -0.1076 0.2052 -2.5135
4 -0.1858 0.3687 -3.2161

Moments for P/D
Mean Std: Autocor:
28.3117 9.0578 0.9656

Moments for �c and �d
Std(�d) Std(�c)
6.0300 0.5362

Table 1: Asset pricing facts 1947.2-1998.4. Standard deviations, asset returns and the risk
premium are in percentage terms.

Gain 0.02 0.04 0.09 0.17 0.31 0.37 0.46 0.60 0.85

Full Decay (Quarters) 1600 800 400 200 100 80 60 40 20
Half Life Decay (Quarters) 34.30 17.00 7.34 3.72 1.86 1.50 1.12 0.75 0.36

Table 2: Gains for the CG algorithm.
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  Equity Return Risk Free Rate Equity Premium 

 σ  = 0.00712 Mean St. Dev. Mean St. Dev. Mean St. Dev. 
Data  2.3447 7.7287 0.2268 0.8719 2.0335 7.6214 
RE  1.0128 0.7285 1.0103 0.1015 0.0026 0.7542 
DIS RLS 1.0129 0.7241 1.0103 0.1015 0.0027 0.7506 

 CG, g = 0.2  1.0134 0.7639 1.0103 0.1015 0.0032 0.7921 
 CG, g = 0.4 1.0149 0.8729 1.0103 0.1015 0.0047 0.9008 

AH-B RLS 1.0125 0.6705 1.0103 0.1015 0.0023 0.6977 
 CG, g = 0.2 1.0131 0.7361 1.0103 0.1015 0.0029 0.7647 
 CG, g = 0.4 1.0147 0.8546 1.0103 0.1015 0.0045 0.8826 

AH-A RLS 1.0130 0.7437 1.0103 0.1015 0.0029 0.7699 
 CG, g = 0.2 1.0135 0.7741 1.0103 0.1015 0.0033 0.8022 
 CG, g = 0.4 1.0150 0.8797 1.0103 0.1015 0.0048 0.9075 

Table 3A: Endowment Economy, Statistics for Returns. Results based on experiments of 3000 simulations of 211 periods, with σ = 
0.00712. RE stands for rational expectations. DIS is for simulations with an initial condition for learning that is drawn from an appropriate 
distribution around the REE. AH-B is for simulations with an initial condition for learning that is below the REE (φ0 = 0.9*REE) and AH-A is for 
simulations with an initial condition for learning that is above the REE (φ0 = 1.035*REE). RLS is for recursive least squares, CG stands for constant 
gain and g is the corresponding gain. The standard deviations, returns and the equity premia are in percentage terms. 

 
 

 σ  = 0.00712 sd(pAL)/sd(pRE) Mean(P/D) STD(P/D) Corr(P/D) STD(Δc) STD(Δd) 
Data   28.3117 9.0578 0.9656 0.5362 6.0300 
RE   24.7502 0.1632 0.5378 0.7212 0.7212 
DIS RLS 1.0002 24.7503 0.1922 0.6431 0.7212 0.7212 

 CG, g = 0.2  1.1846 24.7505 0.2806 0.7910 0.7212 0.7212 
 CG, g = 0.4 1.4391 24.7576 0.4330 0.8664 0.7212 0.7212 

AH-B RLS 0.9262 24.7505 0.1809 0.6575 0.7212 0.7212 
 CG, g = 0.2 1.1438 24.7506 0.2659 0.7887 0.7212 0.7212 
 CG, g = 0.4 1.4104 24.7571 0.4198 0.8654 0.7212 0.7212 

AH-A RLS 1.0272 24.7507 0.1966 0.6384 0.7212 0.7212 
 CG, g = 0.2 1.1995 24.7506 0.2861 0.7919 0.7212 0.7212 
 CG, g = 0.4 1.4495 24.7576 0.4379 0.8666 0.7212 0.7212 

Table 3B: Endowment Economy, Statistics for Price Dividend Ratio, Consumption and Dividend Growth. Results based on 
experiments of 3000 simulations of 211 periods, with σ = 0.00712. RE stands for rational expectations. DIS is for simulations with an initial condition 
for learning that is drawn from an appropriate distribution around the REE. AH-B is for simulations with an initial condition for learning that is below 
the REE (φ0 = 0.9*REE) and AH-A is for simulations with an initial condition for learning that is above the REE (φ0 = 1.035*REE). RLS is for 
recursive least squares, CG stands for constant gain and g is the corresponding gain. The third column in boldface letters shows the ratio of the st. 
deviation of the equity price under learning over the st. deviation of the price under RE. The standard deviations are in percentage terms. 
 
 

  BETAS R-SQUARE 
 σ  = 0.00712 1 year 2 years 4 years 1 year 2 years 4 years 

Data  -0.0534 -0.1076 -0.1858 0.0928 0.2052 0.3687 
  Aver. % Sig. Aver. % Sig. Aver. % Sig.    

RE  -0.0001 7.2 -0.0001 9.5 -0.0002 13.8 0.0048 0.0036 0.0055 
DIS RLS -0.0006 9.6 -0.0011 14.4 -0.0019 20.8 0.0077 0.0133 0.0222 

 CG, g = 0.2  -0.0024 20.2 -0.0046 34.6 -0.0080 44.9 0.0218 0.0437 0.0724 
 CG, g = 0.4 -0.0049 43.4 -0.0091 58.6 -0.0146 64.1 0.0562 0.0986 0.1414 

AH-B RLS -0.0003 7.2 -0.0006 10.2 -0.0009 15.3 0.0070 0.0117 0.0186 
 CG, g = 0.2  -0.0021 18.7 -0.0042 31.3 -0.0073 41.5 0.0200 0.0403 0.0667 
 CG, g = 0.4 -0.0047 42.8 -0.0088 57.3 -0.0141 62.5 0.0546 0.0957 0.1367 

AH-A RLS -0.0007 10.3 -0.0013 15.5 -0.0022 22.9 0.0080 0.0140 0.0236 
 CG, g = 0.2  -0.0024 20.6 -0.0048 35.3 -0.0082 46.0 0.0225 0.0450 0.0744 
 CG, g = 0.4 -0.0049 43.5 -0.0092 59.2 -0.0148 64.6 0.0568 0.0997 0.1431 

Table 3C: Endowment Economy, Predictability of Excess Returns. Results based on experiments of 3000 simulations of 211 periods, 
with σ = 0.00712. RE stands for rational expectations. DIS is for simulations with an initial condition for learning that is drawn from an appropriate 
distribution around the REE. AH-B is for simulations with an initial condition for learning that is below the REE (φ0 = 0.9*REE) and AH-A is for 
simulations with an initial condition for learning that is above the REE (φ0 = 1.035*REE). RLS is for recursive least squares, CG stands for constant 
gain and g is the corresponding gain. Columns 3-8 show average slopes from regressions of 1, 2, or 4 year ahead excess returns on the current 
log(P/D), divided by its standard deviation, as well as the percentage of these regressions for which the estimated slope is significant.  
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  Equity Return Risk Free Rate Equity Premium 

 σ  = 0.06 Mean St. Dev. Mean St. Dev. Mean St. Dev. 
Data  2.3447 7.7287 0.2268 0.8719 2.0335 7.6214 
RE  1.1969 6.1561 1.0155 0.8560 0.1829 6.3721 
DIS RLS 1.2055 6.1216 1.0155 0.8560 0.1914 6.3445 

 CG, g = 0.2 1.2421 6.4746 1.0155 0.8560 0.2277 6.7120 
 CG, g = 0.4 1.3634 7.5067 1.0155 0.8560 0.3489 7.7356 

AH-B RLS 1.1770 5.6654 1.0155 0.8560 0.1629 5.8946 
 CG, g = 0.2 1.2245 6.2368 1.0155 0.8560 0.2102 6.4771 
 CG, g = 0.4 1.3453 7.3325 1.0155 0.8560 0.3308 7.5671 

AH-A RLS 1.2159 6.2881 1.0155 0.8560 0.2019 6.5086 
 CG, g = 0.2 1.2486 6.5623 1.0155 0.8560 0.2343 6.7986 
 CG, g = 0.4 1.3694 7.5635 1.0155 0.8560 0.3550 7.7957 

Table 3D: Endowment Economy, Statistics for Returns. Results based on experiments of 3000 simulations of 211 periods, with σ = 0.06. 
RE stands for rational expectations. DIS is for simulations with an initial condition for learning that is drawn from an appropriate distribution around 
the REE. AH-B is for simulations with an initial condition for learning that is below the REE (φ0 = 0.9*REE) and AH-A is for simulations with an 
initial condition for learning that is above the REE (φ0 = 1.035*REE). RLS is for recursive least squares, CG stands for constant gain and g is the 
corresponding gain. The standard deviations, returns and the equity premia are in percentage terms. 

 
 

 σ  = 0.06 sd(pAL)/sd(pRE) Mean(P/D) STD(P/D) Corr(P/D) STD(Δc) STD(Δd) 
Data   28.3117 9.0578 0.9656 0.5362 6.0300 
RE   24.7610 1.3751 0.5373 6.0782 6.0782 
DIS RLS 1.0002 24.7839 1.6237 0.6427 6.0782 6.0782 

 CG, g = 0.2 1.1846 24.8861 2.4284 0.7899 6.0782 6.0782 
 CG, g = 0.4 1.4391 25.3400 4.4524 0.8624 6.0782 6.0782 

AH-B RLS 0.9262 24.7767 1.5263 0.6572 6.0782 6.0782 
 CG, g = 0.2 1.1438 24.8679 2.2931 0.7877 6.0782 6.0782 
 CG, g = 0.4 1.4104 25.2917 4.2492 0.8618 6.0782 6.0782 

AH-A RLS 1.0272 24.7898 1.6617 0.6379 6.0782 6.0782 
 CG, g = 0.2 1.1995 24.8942 2.4705 0.7907 6.0782 6.0782 
 CG, g = 0.4 1.4495 25.3557 4.5201 0.8626 6.0782 6.0782 

Table 3E: Endowment Economy, Statistics for Price Dividend Ratio, Consumption and Dividend Growth. Results based on 
experiments of 3000 simulations of 211 periods, with σ = 0.06. RE stands for rational expectations. DIS is for simulations with an initial condition for 
learning that is drawn from an appropriate distribution around the REE. AH-B is for simulations with an initial condition for learning that is below the 
REE (φ0 = 0.9*REE) and AH-A is for simulations with an initial condition for learning that is above the REE (φ0 = 1.035*REE). RLS is for recursive 
least squares, CG stands for constant gain and g is the corresponding gain. The third column in boldface letters shows the ratio of the st. deviation of 
the equity price under learning over the st. deviation of the price under RE. The standard deviations are in percentage terms. 
 

 
  BETAS R-SQUARE 
 σ  = 0.06 1 year 2 years 4 years 1 year 2 years 4 years 

Data  -0.0534 -0.1076 -0.1858 0.0928 0.2052 0.3687 
  Average % Sig. Average % Sig. Average % 

Sig. 
   

RE  -0.0009 7.3 -0.0010 9.6 -0.0018 13.7 0.0048 0.0056 0.0055 
DIS RLS -0.0052 9.7 -0.0095 14.3 -0.0160 20.9 0.0077 0.0133 0.0222 

 CG, g = 0.2 -0.0202 20.6 -0.0396 34.6 -0.0677 45.2 0.0219 0.0439 0.0726 
 CG, g = 0.4 -0.0422 43.8 -0.0784 59.1 -0.1256 64.7 0.0572 0.1000 0.1432 

AH-B RLS -0.0029 7.1 -0.0050 10.2 -0.0076 15.1 0.0070 0.0117 0.0186 
 CG, g = 0.2 -0.0184 18.6 -0.0362 31.2 -0.0617 41.7 0.0201 0.0404 0.0669 
 CG, g = 0.4 -0.0407 43.3 -0.0757 57.5 -0.1211 62.8 0.0555 0.0970 0.1383 

AH-A RLS -0.0061 10.3 -0.0112 15.5 -0.0192 23.1 0.0080 0.0140 0.0236 
 CG, g = 0.2 -0.0209 20.6 -0.0409 35.2 -0.0700 46.2 0.0226 0.0452 0.0747 
 CG, g = 0.4 -0.0427 44.2 -0.0794 59.6 -0.1271 65.1 0.0578 0.1011 0.1449 

Table 3F: Endowment Economy, Predictability of Excess Returns. Results based on experiments of 3000 simulations of 211 periods, 
with σ = 0.06. RE stands for rational expectations. DIS is for simulations with an initial condition for learning that is drawn from an appropriate 
distribution around the REE. AH-B is for simulations with an initial condition for learning that is below the REE (φ0 = 0.9*REE) and AH-A is for 
simulations with an initial condition for learning that is above the REE (φ0 = 1.035*REE). RLS is for recursive least squares, CG stands for constant 
gain and g is the corresponding gain. Columns 3-8 show average slopes from regressions of 1, 2, or 4 year ahead excess returns on the current 
log(P/D), divided by its standard deviation, as well as the percentage of these regressions for which the estimated slope is significant. 
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 σ  = 0.00712 Mean St. Dev. Mean St. Dev. Mean St. Dev. 
Data Data 2.3447 7.7287 0.2268 0.8719 2.0335 7.6214 
RE RE 1.0131 0.0618 1.0103 0.0564 0.0027 0.0070 
DIS RLS 1.0159 0.0686 1.0112 0.0632 0.0048 0.0089 

 CG, g = 0.2  1.0182 0.0694 1.0103 0.0621 0.0078 0.0167 
 CG, g = 0.4 1.0157 0.0660 1.0100 0.0570 0.0057 0.0178 

AH-B RLS 1.0114 0.0583 1.0101 0.0533 0.0013 0.0051 
 CG, g = 0.2 1.0143 0.0676 1.0101 0.0617 0.0043 0.0112 
 CG, g = 0.4 1.0143 0.0652 1.0099 0.0576 0.0043 0.0143 

AH-A RLS 1.0275 0.0929 1.0121 0.0863 0.0154 0.0198 
 CG, g = 0.2 1.0218 0.0727 1.0105 0.0634 0.0113 0.0229 
 CG, g = 0.4 1.0182 0.0686 1.0103 0.0566 0.0079 0.0239 

Table 4A: Production Economy, Statistics for Returns. Results based on experiments of 3000 simulations of 211 periods, with σ = 
0.00712. RE stands for rational expectations. DIS is for simulations with an initial condition for learning that is drawn from an appropriate 
distribution around the REE. AH-B is for simulations with an initial condition for learning that is below the REE (φ0 = 0.9*REE) and AH-A is for 
simulations with an initial condition for learning that is above the REE (φ0 = 1.035*REE). RLS is for recursive least squares, CG stands for constant 
gain and g is the corresponding gain. The standard deviations, returns and the equity premia are in percentage terms. 

 
 

 σ  = 0.00712 sd(pAL)/sd(pRE) Mean(P/D) STD(P/D) Corr(P/D) STD(Δc) STD(Δd) 
Data   28.311 9.0578 0.9656 0.5362 6.0300 
RE RE  24.810 1.7209 0.9762 0.2246 2.9272 
DIS RLS 1.0546 24.830 1.9020 0.9769 0.2851 2.9126 

 CG, g = 0.2  1.0317 24.912 2.5494 0.9693 0.5460 3.7855 
 CG, g = 0.4 0.7139 24.864 2.1178 0.9499 0.7837 4.3781 

AH-B RLS 0.3877 24.779 1.0914 0.9795 0.4309 1.6975 
 CG, g = 0.2 0.8467 24.859 1.8321 0.9698 0.5550 2.7111 
 CG, g = 0.4 0.6515 24.836 1.8223 0.9528 0.7540 3.7712 

AH-A RLS 1.6990 25.056 3.4067 0.9824 0.1832 4.4266 
 CG, g = 0.2 1.1575 24.986 3.1258 0.9691 0.5700 4.6448 
 CG, g = 0.4 0.7804 24.887 2.5231 0.9488 0.8368 5.2190 

Table 4B: Production Economy, Statistics for Price Dividend Ratio, Consumption and Dividend Growth. Results based on 
experiments of 3000 simulations of 211 periods, with σ = 0.00712. RE stands for rational expectations. DIS is for simulations with an initial condition 
for learning that is drawn from an appropriate distribution around the REE. AH-B is for simulations with an initial condition for learning that is below 
the REE (φ0 = 0.9*REE) and AH-A is for simulations with an initial condition for learning that is above the REE (φ0 = 1.035*REE). RLS is for 
recursive least squares, CG stands for constant gain and g is the corresponding gain. The third column in boldface letters shows the ratio of the st. 
deviation of the equity price under learning over the st. deviation of the price under RE. The standard deviations are in percentage terms. 

 
 

σ  = 0.00712  BETAS R-SQUARE 
  1 year 2 years 4 years 1 year 2 years 4 years 

Data Data -0.0534 -0.1076 -0.1858 0.0928 0.2052 0.3687 
  Aver. % Sig. Aver. % Sig. Aver. % Sig.    

RE RE 0.0001 0.0 0.0003 0.0 0.0004 0.0 0.4768 0.3898 0.2618 
DIS RLS 0.0001 4.4 0.0002 6.3 0.0003 5.7 0.3794 0.3072 0.2086 

 CG, g = 0.2  0.0000 6.3 0.0001 6.3 0.0002 8 0.1824 0.1537 0.1196 
 CG, g = 0.4 0.0000 6.6 0.0000 7.3 0.0001 9.6 0.0984 0.0880 0.0780 

AH-B RLS 0.0000 11.1 0.0000 6.4 0.0000 4.6 0.0946 0.0927 0.0945 
 CG, g = 0.2 0.0000 6.3 0.0001 6.4 0.0002 7.9 0.1835 0.1524 0.1192 
 CG, g = 0.4 0.0000 9 0.0000 9.2 0.0001 9.6 0.1005 0.0871 0.0752 

AH-A RLS 0.0001 16.8 0.0002 16.4 0.0002 18.4 0.3053 0.2639 0.2024 
 CG, g = 0.2 0.0000 6.9 0.0001 7.4 0.0001 9.4 0.1664 0.1426 0.1144 
 CG, g = 0.4 0.0000 2.9 0.0000 4.6 0.0000 6.8 0.0962 0.0888 0.0817 

Table 4C: Production Economy, Predictability of Excess Returns. Results based on experiments of 3000 simulations of 211 periods, with 
σ = 0.00712. RE stands for rational expectations. DIS is for simulations with an initial condition for learning that is drawn from an appropriate 
distribution around the REE. AH-B is for simulations with an initial condition for learning that is below the REE (φ0 = 0.9*REE) and AH-A is for 
simulations with an initial condition for learning that is above the REE (φ0 = 1.035*REE). RLS is for recursive least squares, CG stands for constant 
gain and g is the corresponding gain. Columns 3-8 show average slopes from regressions of 1, 2, or 4 year ahead excess returns on the current 
log(P/D), divided by its standard deviation, as well as the percentage of these regressions for which the estimated slope is significant. 
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  sd(pAL)/sd(pRE) m(ep) std(ep) m(P/D) std(P/D) β (1 year) β (2 years) β (4 years) 
 DATA  2.0335 7.6214 28.3117 9.0578 -0.0534 -0.1076 -0.1858 
γ  = 1 REE  0.1829 6.3721 24.7610 1.3751 -0.0009 -0.0010 -0.0018 
 AH-B, RLS 0.9262 0.1629 5.8946 24.7767 1.5263 -0.0029 -0.0050 -0.0076 
 AH-B, CG 1.1438 0.2102 6.4771 24.8679 2.2931 -0.0184 -0.0362 -0.0617 
 AH-A, RLS 1.0272 0.2019 6.5086 24.7898 1.6617 -0.0061 -0.0112 -0.0192 
 AH-A, CG 1.1995 0.2343 6.7986 24.8942 2.4705 -0.0209 -0.0409 -0.0700 
γ  = 3 REE  1.3531 17.3536 26.1659 8.1821 -0.0306 -0.0584 -0.1088 
 AH-B, RLS 0.9262 1.2050 16.0521 26.1598 7.6641 -0.0233 -0.0466 -0.0915 
 AH-B, CG 1.1438 1.6284 17.9733 28.6879 15.3138 -0.0553 -0.1131 -0.2078 
 AH-A, RLS 1.0272 1.5065 17.7966 26.6942 9.2123 -0.0365 -0.0702 -0.1298 
 AH-A, CG 1.1995 1.8241 18.9458 29.3614 17.2583 -0.0639 -0.1283 -0.2319 

Table 5A. Endowment economy, sensitivity analysis with respect to risk aversion. Results based on experiments of 3000 simulations 
of 211 periods. The abbreviations in the second column are the same as in tables 3 and 4. For CG learning we used g = 0.2. The third column gives 
the ratio of the st. deviation of the equity price under learning over the st. deviation of the price under RE. The fourth and fifth column show mean and 
st. deviation of the equity premium. The sixth and seventh columns give the mean and standard deviation of the price dividend ratio. The last three 
columns give estimated average slopes from regressions of 1, 2, or 4 year ahead excess returns on the current log(P/D), divided by its standard 
deviation. Standard deviations, returns and the equity premia are in percentage terms.  

 
  sd(pAL)/sd(pRE) m(ep) std(ep) m(P/D) std(P/D) β (1 year) β (2 years) β (4 years) 
 DATA  2.0335 7.6214 28.3117 9.0578 -0.0534 -0.1076 -0.1858 
ρ  = 0.95 REE  0.1829 6.3721 24.7610 1.3751 -0.0009 -0.0010 -0.0018 
 AH-B, RLS 0.9262 0.1629 5.8946 24.7767 1.5263 -0.0029 -0.0050 -0.0076 
 AH-B, CG 1.1438 0.2102 6.4771 24.8679 2.2931 -0.0184 -0.0362 -0.0617 
 AH-A, RLS 1.0272 0.2019 6.5086 24.7898 1.6617 -0.0061 -0.0112 -0.0192 
 AH-A, CG 1.1995 0.2343 6.7986 24.8942 2.4705 -0.0209 -0.0409 -0.0700 
ρ  = 0.5 REE  0.1835 9.2813 24.7556 1.3027 -0.0230 -0.0241 -0.0243 
 AH-B, RLS 0.9835 0.1844 9.1968 24.7564 1.2996 -0.0230 -0.0242 -0.0241 
 AH-B, CG 1.0520 0.1933 9.3679 24.7581 1.3449 -0.0286 -0.0319 -0.0329 
 AH-A, RLS 0.9944 0.1899 9.2645 24.7573 1.3126 -0.0237 -0.0250 -0.0249 
 AH-A, CG 1.0560 0.1948 9.3876 24.7584 1.3489 -0.0289 -0.0321 -0.0332 
ρ  = 0.1 REE  0.1835 12.5717 24.7510 1.2792 -0.0461 -0.0458 -0.0458 
 AH-B, RLS 1.0000 0.1876 12.5858 24.7515 1.2847 -0.0464 -0.0462 -0.0461 
 AH-B, CG 1.0350 0.2107 12.7812 24.7544 1.3428 -0.0492 -0.0491 -0.0492 
 AH-A, RLS 1.0012 0.1879 12.5897 24.7516 1.2853 -0.0464 -0.0462 -0.0462 
 AH-A, CG 1.0355 0.2109 12.7833 24.7544 1.3432 -0.0492 -0.0491 -0.0492 

Table 5B. Endowment economy, sensitivity analysis with respect to exogenous shock persistence. Results based on experiments of 
3000 simulations of 211 periods. The abbreviations in the second column are the same as in tables 3 and 4. For CG learning we used g = 0.2. The 
third column gives the ratio of the st. deviation of the equity price under learning over the st. deviation of the price under RE. The fourth and fifth 
column show mean and st. deviation of the equity premium. The sixth and seventh columns give the mean and standard deviation of the price 
dividend ratio. The last three columns give estimated average slopes from regressions of 1, 2, or 4 year ahead excess returns on the current log(P/D), 
divided by its standard deviation. Standard deviations, returns and the equity premia are in percentage terms. 
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  sd(pAL)/sd(pRE) m(ep) std(ep) m(P/D) std(P/D) β (1 year) β (2 years) β (4 years) 
      DATA  2.0335 7.6214 28.3117 9.0578 -0.0534 -0.1076 -0.1858 
σ=0.007 REE    0.0027 0.0069 24.810 1.7209 0.0001 0.0030 0.0004 
 AH-B, RLS 0.3877 0.0013 0.0051 24.779 1.0914 0.0000 0.0000 0.0000 
 AH-B, CG 0.8467 0.0043 0.0112 24.859 1.8321 0.0000 0.0000 0.0002 
 AH-A, RLS 1.6990 0.0154 0.0198 25.056 3.4067 0.0001 0.0001 0.0001 
 AH-A, CG 1.1575 0.0113 0.0229 24.989 0.1738 0.0000 0.0001 0.0001 
σ = 0.02 REE       0.0219 0.0320 25.218 4.9448 0.0004 0.0006 0.0010 
 AH-B, RLS 0.3877 0.0104 0.0196 24.973 3.0994 0.0000 0.0000 0.0001 
 AH-B, CG 0.8467 0.0374 0.0888 25.580 5.7938 -0.0004 -0.0006 -0.0005 
 AH-A, RLS 1.6989 0.1328 0.1710 27.575 10.974 -0.0013 -0.0025 -0.0042 
 AH-A, CG 1.1575 0.1050 0.2546 26.841 10.998 -0.0019 -0.0028 -0.0032 
σ = 0.04 REE       0.0907 0.1239 26.670 10.670 0.0000 0.0001 0.0004 
 AH-B, RLS 0.3877 0.0425 0.0644 25.648 6.4406 -0.0002 -0.0002 -0.0002 
 AH-B, CG 0.8467 0.2383 0.9168 29.209 20.430 -0.0070 -0.0108 -0.0123 
 AH-A, RLS 1.6989 0.7252 1.1820 39.624 35.961 -0.0177 -0.0318 -0.0512 
 AH-A, CG 1.1575 1.8277 11.160 40.259 71.014 -0.0235 -0.03505 -0.0405 

Table 6A. Production economy, sensitivity analysis with respect to innovation variance. Results based on experiments of 3000 
simulations of 211 periods. The abbreviations in the second column are the same as in tables 3 and 4. For CG learning we used g = 0.2. The third 
column gives the ratio of the st. deviation of the equity price under learning over the st. deviation of the price under RE. The fourth and fifth column 
show mean and st. deviation of the equity premium. The sixth and seventh columns give the mean and standard deviation of the price dividend ratio. 
The last three columns give estimated average slopes from regressions of 1, 2, or 4 year ahead excess returns on the current log(P/D), divided by its 
standard deviation. Standard deviations, returns and the equity premia are in percentage terms. 

 
 

  sd(pAL)/sd(pRE) m(ep) std(ep) m(P/D) std(P/D) β (1 year) β (2 years) β (4 years) 
 DATA  2.0335 7.6214 28.3117 9.0578 -0.0534 -0.1076 -0.1858 
γ  = 1 REE  0.0027 0.0070 24.810 1.7209 0.0001 0.0003 0.0004 
 AH-B, RLS 0.3877 0.0013 0.0051 24.779 1.0914 0.0000 0.0000 0.0000 
 AH-B, CG 0.8467 0.0043 0.0112 24.859 1.8321 0.0000 0.0001 0.0002 
 AH-A, RLS 1.6990 0.0154 0.0198 25.056 3.4067 0.0001 0.0002 0.0002 
 AH-A, CG 1.1575 0.0113 0.0229 24.986 3.1258 0.0000 0.0001 0.0001 
γ  = 3 REE  0.0042 0.0079 24.8424 1.9218 0.0001 0.0002 0.0004 
 AH-B, RLS 0.3124 0.0011 0.0051 24.7780 1.0389 0.0000 0.0000 0.0000 
 AH-B, CG 0.6236 0.0032 0.0090 24.8378 1.5022 0.0000 0.0001 0.0001 
 AH-A, RLS 1.4979 0.0198 0.0221 25.1751 3.2769 0.0000 0.0000 0.0000 
 AH-A, CG 0.9463 0.0107 0.0208 24.9759 2.8686 0.0000 0.0001 0.0001 

Table 6B. Production economy, sensitivity analysis with respect to risk aversion. Results based on experiments of 3000 simulations of 
211 periods. The abbreviations in the second column are the same as in tables 3 and 4. For CG learning we used g = 0.2. The third column gives the 
ratio of the st. deviation of the equity price under learning over the st. deviation of the price under RE. The fourth and fifth column show mean and st. 
deviation of the equity premium. The sixth and seventh columns give the mean and standard deviation of the price dividend ratio. The last three 
columns give estimated average slopes from regressions of 1, 2, or 4 year ahead excess returns on the current log(P/D), divided by its standard 
deviation. Standard deviations, returns and the equity premia are in percentage terms. 
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  sd(pAL)/sd(pRE) m(ep) std(ep) m(P/D) std(P/D) β (1 year) β (2 years) β (4 years) 
 DATA  2.0335 7.6214 28.3117 9.0578 -0.0534 -0.1076 -0.1858 
ρ  = 0.95 REE  0.0027 0.0070 24.810 1.7209 0.0001 0.0003 0.0004 
 AH-B, RLS 0.3877 0.0013 0.0051 24.779 1.0914 0.0000 0.0000 0.0000 
 AH-B, CG 0.8467 0.0043 0.0112 24.859 1.8321 0.0000 0.0001 0.0002 
 AH-A, RLS 1.6990 0.0154 0.0198 25.056 3.4067 0.0001 0.0002 0.0002 
 AH-A, CG 1.1575 0.0113 0.0229 24.986 3.1258 0.0000 0.0001 0.0001 
ρ  = 0.5 REE  0.0010 0.0159 24.7505 0.8164 0.0000 0.0000 0.0000 
 AH-B, RLS 0.6508 0.0007 0.0157 24.7465 0.6435 0.0000 0.0000 0.0000 
 AH-B, CG 0.6289 0.0007 0.0156 24.7495 0.6618 0.0000 0.0000 0.0000 
 AH-A, RLS 0.9087 0.0011 0.0159 24.7476 0.8156 0.0000 0.0000 0.0000 
 AH-A, CG 0.7036 0.0008 0.0157 24.7499 0.7237 0.0000 0.0000 0.0000 
ρ  = 0.1 REE  0.0008 0.0256 24.7412 0.5541 0.0000 0.0000 0.0000 
 AH-B, RLS 0.6351 0.0007 0.0253 24.7401 0.4627 0.0000 0.0000 0.0000 
 AH-B, CG 0.5112 0.0005 0.0237 24.7428 0.4095 0.0000 0.0000 0.0000 
 AH-A, RLS 0.7556 0.0007 0.0239 24.7401 0.5030 0.0000 0.0000 0.0000 
 AH-A, CG 0.5601 0.0006 0.0237 24.7424 0.4260 0.0000 0.0000 0.0000 

Table 6C. Production economy, sensitivity analysis with respect to exogenous shock persistence. Results based on experiments of 
3000 simulations of 211 periods. The abbreviations in the second column are the same as in tables 3 and 4. For CG learning we used g = 0.2. The 
third column gives the ratio of the st. deviation of the equity price under learning over the st. deviation of the price under RE. The fourth and fifth 
column show mean and st. deviation of the equity premium. The sixth and seventh columns give the mean and standard deviation of the price 
dividend ratio. The last three columns give estimated average slopes from regressions of 1, 2, or 4 year ahead excess returns on the current log(P/D), 
divided by its standard deviation. Standard deviations, returns and the equity premia are in percentage terms. 


