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The Monty Hail problem (or three-door problem) is a famous example of a “cognitive illusion.” often
used to demonstrate people’s resistance and deficiency in dealing with uncertainty. The authors formu-
lated the problem using manipulations in 4 cognitive aspects, namely, natural frequencies, mental
models, perspective change, and the less-is-more effect. These manipulations combined led to a
significant increase in the proportion of correct answers given by novice participants, largely because of
the synergy of frequency-based formulation and perspective change (Experiments 1, 2). In a training
study (Experiment 3) frequency formulation and mental models, but not Bayes’s rule training, showed
significant positive transfer in solving related problems.

For 28 years, Monty Hall hosted a game show on American
television called “Let’s Make a Deal.” Contestants on this show
were often confronted with a dilemma in which they had to decide
whether to stick with an initial choice or switch to an alternative.
What contestants should do in this situation sparked a heated
public debate in 1991, after a reader of Parade magazine asked the
following question (see vos Savant, 1997), today known as the
Monty Hall problem or the three-door problem:

Suppose you're on a game show and you’re given the choice of three
doors. Behind one door is a car; behind the others, goats. You pick a
door, say, Number 1, and the host, who knows what’s behind the
doors, opens another door, say Number 3, which has a goat. He then
says to you, “Do you want to switch to Door Number 27” Is it to your
advantage to switch your choice?'

In three of her weekly columns (vos Savant, 1990a, 1990b,
1991), vos Savant? attempted to convince readers that switching is
to the contestant’s advantage. First, she declared, “Yes, you should
switch. The first door has a 1/3 chance of winning, but the second
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door has a 2/3 chance.” Then she explained her statement by
asking readers to visualize one million doors: “Suppose there are
a million doors, and you pick number 1. Then the host, who knows
what’s behind the doors and will always avoid the one with the
prize, opens them all except door number 777,777. You'd switch
to that door pretty fast, wouldn’t you?”

Responses to these columns were numerous, passionate, and, in
some cases, vitriolic. Many of vos Savant’s disbelievers had
Ph.D.s and worked in the field of statistics. A Ph.D. from the
University of Florida wrote, “Your answer to the question is in
error. But if it is any consolation, many of our academic colleagues
have also been stumped by this problem.” A member of the U.S.
Army Research Institute responded thusly to her second attempt to
convince readers of the correct solution: “You made a mistake, but
look at the positive side. If all those Ph.D.s were wrong, the
country would be in some very serious trouble.” Some people even
offered to wager large sums of money (e.g., $20,000) on their
belief that switching has no advantage. In addressing these replies,
vos Savant wrote, “Gasp! If this controversy continues, even the
postman won’t be able to fit into the mailroom. I'm receiving
thousands of letters, nearly all insisting that I'm wrong, including
the Deputy Director of the Center for Defense Information and a
Research Mathematical Statistician from the National Institutes of

"In the following, we refer to this as the standard version of the
problem. In the real game show, Monty Hall played several variations of
this setting (see Friedman, 1998). But it is important to note that the
discussion about the problem started only after vos Savant’s columns
appeared in Parade. Readers there were explicitly referred to the version
posed by the inquisitive reader, and no mention was made of the real game
show.

2 Marilyn vos Savant's column in Parade magazine is called “Ask
Marilyn.” According to the Guinness Book of World Records of 1991
(Newport, 1991) she was, at the time of the controversy, said to be the

) person with the highest 1Q in the world (IQ: 228), and readers could ask her

whatever they wanted. In 1997, she summarized the exploding discussion
about the Monty Hall problem in her book The Power of Logical Thinking.
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Health! Of the letters from the general public, 92% are against our
answer, and of the letters from universities, 65% are against our
answer . ... But math answers aren’t determined by votes” (vos
Savant, 1997, p. 10). Vos Savant’s account of the public discussion
makes it clear that not only is it difficult to find the correct solution
to the problem, but that it is even more difficult to make people
accept this solution.

Previous Research

Although this seemingly simple problem had previously been
discussed in the statistical literature (Selvin, 1975a, 1975b), it was
only after vos Savant’s columns that it was discussed at length; for
example, in the Skeptical Inquirer (Frazier, 1992; Posner, 1991).
The New York Times also reported on the debate in a front-page
story (Tierney, 1991). These discussions have verified vos Sa-
vant’s conclusion that the mathematically correct solution is for
the contestant to switch, providing that the rules of the game show
are as follows: Monty Hall has in any case to reveal a goat after the
contestant’s first choice, and he cannot open the door chosen by
the contestant.

In von Randow’s (1993) book about the Monty Hall problem,
the German science journalist described how he shifted his interest
from mathematical to psychological issues after he realized that
switching is indeed better. He raised the following three questions
(p. 9): Why were so many people, even those who were highly
educated, deceived? Why are so many of them still convinced of
the wrong answer? Why are they so enraged?

Similarly, Piattelli-Palmarini (as cited in vos Savant, 1997, p.
15) remarked that “no other statistical puzzle comes so close to
fooling all the people all the time . . . . The phenomenon is partic-
ularly interesting precisely because of its specificity, its reproduc-
ibility, and its immunity to higher education.” He went on to say
“even Nobel physicists systematically give the wrong answer,
and ... insist on it, and are ready to berate in print those who
propose the right answer.” In his book Inevitable lllusions: How
Mistakes of Reason Rule Our Minds (1994), Piattelli-Palmarini
singled out the Monty Hall problem as the most expressive exam-
ple of the “cognitive illusions” or “mental tunnels” in which “even
the finest and best-trained minds get trapped” (p. 161).

Experimental psychologists have used the Monty Hall problem
to study various psychological aspects of human probabilistic
reasoning and decision making.? In fact, before the Monty Hall
problem became so well-known, Shimojo and Ichikawa (1989)
investigated a problem that is mathematically equivalent, namely,
the problem of the three prisoners (see Experiment 3). Shimojo-and
Ichikawa examined the beliefs of participants experimentally,
whereas Falk (1992), for instance, looked at the same issue theo-
retically. The main aim of both lines of work was to provide
explanations for people’s reasoning errors in this kind of problem.
Granberg and Brown (1995) later conducted the first comprehen-
sive experimental study of the Monty Hall problem. They pre-
sented participants with the standard version of the Monty Hall
problem with slight changes in wording and found that only 13%
of them correctly chose to switch doors.

Until now, all experimental studies have had similar results: The
vast majority of participants think that switching and staying are
equally good alternatives and decide to stay. Falk (1992) calls the
belief in the equiprobability of the two remaining alternatives

“uniformity belief” (p. 202). But if most participants see no reason
to favor one option over the other, why do a vast majority decide
to stick to their original choice? To answer this question, Granberg
and Brown (1995) gave a new group of participants hypothetical
histories of choices made by previous contestants (e.g., “contestant
switched and lost” or “contestant stayed and lost™) and asked how
they would feel in the described situations. Participants reported
that they would feel worse if they switched from a door with the
car behind it than if they stuck to a door with a goat behind it
because, in the first case, they had picked the winning door but
then decided against it. Gilovich, Medvec, and Chen (1995)
showed that people can be guided by a confident confederate to
either the stay or the switch decision in the Monty Hall problem.
This suggests that even though naive participants have a rather
strong tendency to stay when left to their own devices, this
tendency may be counteracted by introducing additional psycho-
logical components.

To date, efforts to encourage people to solve the Monty Hall
problem with mathematical insight have not been very successful.
Expressed in terms of the percentage of participants who switch.
even the most encouraging findings (e.g., Aaron & Spivey, 1998)
have not exceeded 30%.

Present Approach and Objectives

Most of the research on the Monty Hall problem has focused on
beliefs that might lead to the mathematically incorrect choice. We
are instead interested in the mental processes that lead to correct
reasoning. Despite the difficulties people have with the Monty Hall
problem, there are people who do find the correct solution intu-
itively. This naturally leads to two questions: Which reasoning
processes are used by these few successful problem solvers?
Providing we identify these mechanisms, how can we develop
appropriate ways to represent and explain the brain-teaser such as
to eliminate the typical resistance to the switch decision? In the
brain-storming phase preceding the experiments, we confronted
colleagues and students with the problem and later discussed their
intuitions with them. This led us to the insight that the reasoning
processes of successful problem solvers have a common denomi-
nator, the essence of which is expressed in Figure 1. Note that
Monty Hall’s behavior in Arrangement 3 of Figure 1 is not
specified (“no matter what Monty Hall does”). Most representa-
tions found in the literature consist of more than three single
arrangements and specify Monty Hall’s behavior in each arrange-
ment (see, for instance, Table 1). We will later demonstrate why
ignoring Monty Hall’s behavior in Arrangement 3 turns out to be
a crucial building block of an intuitive solution.

By performing a “mental simulation” of the three possible
arrangements (i.e., considering the whole sequence of actions
specified by each arrangement in Figure 1), one can see that in two

3 Generally, there are two kinds of experiments related to the Monty Hall
problem. First, one can present participants with a written version of the
problem and ask them to make (and justify) a decision on it. Second. one
can let people play the game repeatedly with feedback (e.g., against a
computer) and investigate how they change their behavior in response to
the outcome. In this article, we focus only on experiments of the first kind.
For experiments of the second kind see, for example, Friedman (1998) or
Granberg and Dorr (1998).
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door 1 door 2 door 3
Here the contestant wins
arangement 1: goat goat car by switching.
|
. then Monty
first choice gy gpens
Here the contestant wins
arrangement 2: goat car goat by switching.
]
first choice then Monty
Hall opens
Here the contestant wins
arrangement 3: car goat goat by staying, no matter
what Monty Hall does.
first choice

Figure 1.

Explanation of the solution to the Monty Hall problem: In two out of three possible car-goat

arrangements the contestant would win by switching; therefore she should switch.

out of three possible arrangements, the contestant would win the
car by switching (namely, in Arrangements 1 and 2). Let us
identify some interrelated features in Figure 1 and express them in
terms of psychological elements:

1. Rather than reasoning with probabilities, one has to count
and compare frequencies.

2. These frequencies correspond to possible arrangements
of goats and cars behind the doors. One has to compare
the number of arrangements in which the contestant
would win the car by switching to the number in which
she would win by staying.

Table 1
Mental Model Representation of the Monty Hall Problem
Mental Door 1 Door 2 Door 3
model (chosen door)
1 car open
2 car open
3 car open
4 car open
5 open car
6 open car
Note. Based on mental models from Johnson-Laird et al. (1999).

3. One has to consider the possible arrangements as they
would appear from behind the doors.

4. One has to ignore the last piece of information provided
in the standard version (Monty Hall opens Door 3).
Taking this information for granted would eliminate Ar-
rangement 1 in Figure 1, because the host will not open
a door concealing a car.

Item 4 demands some clarification: Although, semantically,
Door 3 in the standard version is named merely as an example
(“Monty Hall opens another door, say, number 3”), most partici-
pants take the opening of Door 3 for granted and base their
reasoning on this fact. In a pretest we gave participants (N = 40)
the standard version, asking them to illustrate their view of the
situation described by drawing a sketch. After excluding four
uninterpretable drawings, we saw that 35 out of the remaining 36
participants (97%) indeed drew an open Door 3, and only a single
participant (3%) indicated that other constellations also remain
possible according to the wording of the standard version. The
assumption that only Door 3 will open is further reinforced by the
question that follows: “Do you want to switch to Door Number 27"
Note that, once formed, this assumption prevents the problem
solver from gaining access to the intuitive solution illustrated in
Figure 1.

Each of the four features specified above has theoretical under-
pinnings eliciting correct responses from naive participants. In the
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following section, we discuss these four features in terms of four
psychological elements, namely, natural frequencies, mental mod-
els, perspective change, and the less-is-more effect.

Natural Frequencies

To find the correct solution to the Monty Hall problem, one
needs to consider the three arrangements in Figure 1 and to reason
in terms of frequencies. for example, “in one—or two—of three
arrangements . . .. One of the characteristics of intuitive proba-
bilistic reasoning seems to be that it is often done in terms of
frequencies rather than probabilities. Gigerenzer and Hoffrage
(1995) have shown experimentally that representing probabilistic
information in natural frequencies rather than in probabilities helps
participants to solve Bayesian reasoning problems. For instance,
they asked participants to assess the probability that a woman in
her 40s has breast cancer, given she has received a positive
mammography result. In one version, the relevant information was
given in probabilities (e.g., “the probability of a woman in her 40s
having breast cancer is .01”); in the other version, the same
information was expressed in frequencies (10 out of every 1,000
women in their 40s have breast cancer”). The results of Gigerenzer
and Hoffrage's study suggest that the format of information can
either facilitate or hinder reasoning. Currently, there is a lively
debate on frequency formats {for detailed discussion on their
theoretical underpinning and on the differences between normal-
ized frequencies and natural frequencies, see Evans, Handley,
Perham, Over, & Thompson, 2000; Girotto & Gonzales, 2001;
Hoffrage, Gigerenzer, Krauss, & Martignon, 2002).

Information format may also be an important factor affecting the
search for a mathematically correct solution to the Monty Hall
problem. Gigerenzer and Hoffrage’s (1995) proposal for improv-
ing probabilistic reasoning by translating single-event probabilities
(i.e., consider the case of a single woman) into natural frequencies
(i.e.. consider a whole sample of women) is readily applicable to
the Monty Hall problem. Aaron and Spivey (1998) presented the
Monty Hall problem in both probability and frequency versions to
different groups of participants.* In one of their experiments 12%
of participants given the probability version gave the correct
answer, whereas 29% of participants given the frequency version
did. This suggests an advantage of reasoning with frequencies
rather than probabilities. A disadvantage of Aaron and Spivey's
treatment is that the wording no longer has much in common with
the standard version of the problem. The participants in that study
were given a pictorial presentation of the problem and answered a
series of 11 questions that were posed in terms of either probabil-
ities or frequencies. In the frequency condition, for instance, the
participants were instructed to imagine 30,000 game shows and
asked frequency questions such as “Of the 30,000 rounds in which
the player chooses door 1, in how many of them is the car actually
behind door 177 Aaron and Spivey's formulation of all 11 ques-
tions is rather verbose, and their manipulation thus looks
heavy-handed.

In contrast to the frequency procedure used by Aaron and
Spivey (1998), the approach shown in Figure 1 does not involve
imagining multiple rounds. Instead, it uses the concept of frequen-
cies in the actual context of a single-shot game.

Mental Models

Following the diagram in Figure 1, one has to count and com-
pare conditional outcomes of possible arrangements (e.g., if the car
is actually behind Door 2, 1 would win by switching) for a single
game show. This sort of case-based mental simulation relates to
Johnson-Laird’s (1983) work on the dynamics of logical reason-
ing. According to his theory, people reason about logical problems,
for example, syllogisms, by constructing mental models. Recently,
Johnson-Laird, Legrenzi, Girotto, Legrenzi, and Caverni (1999)
extended this theory to probabilistic reasoning—including reason-
ing about the Monty Hall problem. In a section of their article,
entitled Pedagogy of Bayesian Reasoning, they suggested six
mental models, which are illustrated in Table 1, that people might
use to represent the Monty Hall problem in an intuitive way. In
Table I, the word open indicates the door that Monty Hall opens
after the contestant chooses door 1, and the word car indicates the
door behind which the car is actually located. The rows correspond
to the mental models, each of which represents a possible situation
of the Monty Hall problem, given that the contestant first chooses
Door 1. If the car actually is behind Door 1, Monty Hall can open
either Door 2 (Mental Model 1) or Door 3 (Mental Model 2).
Johnson-Laird et al.’s Mental Models 1 and 2 correspond to our
Arrangement 3 (Figure 1). Note that we get by with one arrange-
ment because we do not take Monty Hall’s behavior into account.
Because they do consider his behavior, Johnson-Laird et al. have
to construct two models for the case that the car is behind Door 1.
Because all car positions a priori are equally probable, Johnson-
Laird et al. also have to construct two mental models for each of
the other car—goat arrangements, though in these arrangements,
Monty Hall does not have to decide which door to open. According
to Johnson-Laird et al., once the six mental models have been
constructed, one can take into account the door actually opened by
Monty Hail: Assume Monty Hall has opened Door 3. This would
render Models 1, 5, and 6 impossible. Considering the remaining
models—2, 3, and 4—rveveals that switching would win in two of
the three models. Johnson-Laird et al. did not run an empirical
study on whether people actually use these mental models to solve
the Monty Hall problem. Although they admitted that the artificial
replication of models (Mode! 3 comresponds to Model 4 and
Model 5 corresponds to Model 6) might be difficult to grasp, they
proposed that these six mental models can serve as a means of
explaining the problem.

It is interesting that Marilyn vos Savant also used six mental
models in her second attempt to explain the Monty Hall problem
(vos Savant, 1997, p. 8). Her models had a 3 X 2 structure, in
which the dimensions were the three possible locations of the car
and the two possible choice strategies (i.e., stay vs. switch). Yet, as
we have learned, this approach did not convince her readers.

Both vos Savant (1997) and Johnson-Laird et al. (1999) sug-
gested six models to explain the Monty Hall problem. We argue
that the three-model representation of Figure ! is a more effective
way of presenting the problem.

4 Although the format of the standard version of the Monty Hall problem
is not obviously determined, it clearly does not ask for frequencies. The
question “Is it to your advantage to switch?” refers rather to a single-event
probability, that is, to the possible outcome of one specific game show.
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Perspective Change

The three mental models in Figure | are constructed as if one
were standing behind the doors and could see each possible ar-
rangement of goats and car. This perspective, which is that of the
game show host, makes it possible to imagine what the host would
have to do, contingent upon which door the car is behind. Taking
the contestant’s perspective, in contrast, may block participants’
“view” of the three possible arrangements behind the doors. The
idea of investigating the impact of changing perspective on human
reasoning has been applied with different aims and in different
reasoning tasks (e.g., Fiedler, Brinkmann, Betsch, & Wild, 2000;
Gigerenzer & Hug, 1992; Wang, 1996).

With respect to the Monty Hall problem, we suggest the fol-
lowing theoretical connection between a perspective change and
the structure of Bayes’s rule: Assuming that the contestant first
chooses Door 1 and that Monty then opens Door 3 (the standard
version), the probability that the car is behind Door 2 can be
expressed in terms of Bayes’s rule as follows:

p(M; | Cy) * p(Cs)
P(MJ | C) 'P(Cl) + P(M) I Cz) 'P(Cz) +P(MJ | Cy) ‘P(C:«) '

(L

where C; = car behind door i; i = 1, 2, 3; and M, = Monty opens
Door 3. Note that in the standard version, p(M5 | C;) = 0.

The theoretical connection between the perspective change and
the structure of Bayes's rule is apparent: When calculating a
conditional probability of an arbitrary event A given a condition B,
that is, p(A | B), Bayes’s rule stipulates that one has to consider
the inverse conditional probabilities p(B | A) and p(B | A). For the
Monty Hall problem, this means-that to judge p(C, | M,), one
has to insert the three conditional probabilities—p(M; | Cj),
pM; 1 Cy), and p(M; | C,)—into Bayes’s rule. The cognitive
process for assessing these three probabilities is independent of the
behavior of the contestant but relies on imagining Monty Hall’s
behavior in all three arrangements. Thus, a Bayesian solution of
the problem—whether a formal one based on Bayes’s rule or an
intuitive one based on Figure 1-—focuses on the behavior of the
host rather than on that of the contestant. Consequently, the change
from the contestant’s perspective. to Monty Hall's perspective
corresponds to a change from non-Bayesian to Bayesian thinking.

p(C; | M;) =

Less-Is-More Effect

A common question encountered by both users and providers of
information concerns the optimal amount of information that
should be used or provided. Goldstein and Gigerenzer (1999) have
reported empirical evidence indicating that sometimes “knowing
less is more.” A clear example provided by the authors is the use
of the recognition heuristic, which exploits the potential of recog-
nition to help people make inferences. When a situation requires
people to infer which of two objects has a higher value on some
criterion (e.g., which is faster, higher, stronger), the recognition
heuristic can be stated in the following simple terms: If one of the
two objects is recognized and the other is not, then infer that the
recognized object has a higher value. One of the surprising find-
ings presented by the-authors was that Germans were better able
than Americans to judge which of two cities in the United States
(e.g., San Diego and San Antonio) had the larger population. Why?

The German participants, many of whom did not know of San
Antonio, could use the recognition heuristic (e.g., infer that San
Diego has a larger population than San Antonio because they
recognized the former but not the latter). The recognition heuristic
is not only frugal in its use of information, it actually requires a
lack of knowledge to work. This research finding shows that,
under certain conditions, a counterintuitive less-is-more effect
emerges, in which a lack of knowledge is actually beneficial for
inference.

Regarding the door opened by Monty Hall, a participant solving
the three-door problem may have two possible states of knowl-
edge: First, she may merely know that after her first choice Monty
Hall will open another door revealing a goat, or, second, she may
already have learned the number of this door. Note that partici-
pants are only able to provide the intuitive solution (see Figure 1)
if the specific number of the door that Monty Hall actually opens
is not taken into account. The easiest way to make sure that
participants’ reasoning processes are not impeded by knowing
which door Monty Hall opens is simply not to give them this
information. The corresponding formulation would be “Monty
Hall now opens another door and reveals a goat.” Although the
cognitive situation here differs from that in the recognition heu-
ristic, the underlying principle is the same: Having less informa-
tion can be beneficial for inference.

The issue of “door information” is of great relevance for the
cognitive processes to solve the Monty Hall problem. Before
inserting the four psychological elements into the wording of the
problem, let us take a closer look at the different possible scenarios
of the problem based on different “door information.” Since we
learned from the pretest that the formulation “say, number 3™ is
interpreted psychologically as “Door 3 is open,” we will refer to
expressions such as that used in the standard version (“you pick a
door, say, number 1, and the host opens another door, say, number
3") as specifications of doors.

No-Door Scenario

If no door were specified in the formulation of the Monty Hall

‘problem (no-door scenario), that is, neither that chosen by the

contestant nor that chosen by Monty Hall, then there are no
restrictions on the participant’s mental simulation of the game
show. The contestant’s three possible choices and the three pos-
sible locations of the car would then yield a total of nine possible
arrangements. In Figure 2, which illustrates these arrangements,
we label the rows that denote the actual car location by numbers
and the columns that denote first choice by letters. For instance,
the arrangement in which the car is behind Door 3 and the
contestant first chooses Door 1 is labeled A3. Figure 2 illustrates
that a contestant would win the prize in six of the nine possible
arrangements by switching doors, but in only three of the nine
arrangements (A1, B2, and C3) by sticking with the door initially
chosen. Hence, switching affords a better chance of winning. Not
specifying a door in the wording would thus allow participants to
use an intuitive representation that is likely to lead to the correct
response. However, this may be suboptimal because it would be
difficult to simulate all nine scenarios mentally.
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A B Cc
door 1 door 2 door 3 door 1 door 2 door 3 door 1 door 2 door 3

1 car goat goat car goat goat car goat goat

first choice first choice first choice
2 goat car goat goat car goat goat car goat

first choice first choice first choice
3 goat goat car goat goat car goat goat car

first choice first choice first choice

Figure 2. The nine possible arrangements in a no-door scenario.

One-Door Scenarios

If the contestant’s first choice is specified (one-door scenario),
then only three arrangements remain possible. If, for instance, the
wording is such that the contestant chooses Door I, then only
arrangements Al, A2, and A3 remain (see left column of Figure 2).
By switching, the contestant would win in two of the three ar-
rangements (A2 and A3) and lose in only one arrangement (Al).

A second type of one-door scenario that may lead to a similar
path of intuitive thinking would entail specifying the location of
the car. The arrangements can then be illustrated by any row in
Figure 2. For example, the third row would represent the three
possible first choices of a contestant when the car is specified to be
behind Door 3. One can see that the contestant would win in two
of three arrangements by switching (A3 and B3), and in only one
arrangement by staying (C3). Thus, whether the door specified is
the contestant’s first choice or the car position, one-door scenarios
allow participants to use just one column or one row of Figure 2 to
gain an insight into the correct solution.

In a nutshell, both no-door and one-door scenarios allow unre-
stricted mental simulations, thereby making the counting and com-
parison of the frequency of wins possible, given that the contestant
switches or stays. Another crucial advantage of all no-door and
one-door scenarios is that one does not have to think about the
behavior of Monty Hall in the cases in which he can choose which
door to open: In a one-door scenario in which the contestant has
chosen Door 1 first, a correct and sufficient chain of reasoning
might take the following form:

If the car is actually behind Door 3, then Monty Hall must open
Door 2, and I win by switching (A3).

If the car is actually behind Door 2, then Monty Hall must open
Door 3, and [ win by switching (A2).

If the car is actually behind Door 1, then I win by sticking to my first
choice, no matter what Monty Hall does (Al).

In the single arrangements of a one-door scenario, Monty Hall’s
behavior is either predetermined (here: A3, A2) or irrelevant for
the decision (Al). The problem becomes cumbersome, however
when the door opened by Monty Hall is specified in addition to the
contestant’s first choice, as is the case in two-door scenarios.

Two-Door Scenarios

The additional specification of the door opened by Monty Hall
in the standard version of the problem leaves only two of the three
arrangements in the left column of Figure 2 (Al and A2). A3 is
impossible because Monty Hall cannot open the door concealing
the car. As a result, one cannot simply count and compare the
frequencies of winning, given that the contestant switches or stays;
instead, one has to reason in probability terms to reach the Bayes-
ian solution. That is, Monty Hall’s opening Door 3 has a lower
probability in Al than in A2, because in Al he could have opened
either Door 2 or Door 3, whereas in A2 he had to open Door 3.
Thus, one has to make assumptions about what Monty Hall would
do in Al and estimate the probability that Monty Hall would open
Door 3 rather than Door 2. Some authors have argued that partic-
ipants’ assumptions about Monty Hall’s strategy in Al may affect
their probability judgments, and that the lack of information about
this strategy in the standard version may therefore help to explain
participants’ poor performance on the problem (cf. von Randow,
1993).
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To illustrate this “strategy” argument, we use the standard
version, in which the contestant chooses Door 1. Taking the left
column of Figure 2, let us consider one arrangement after the
other. This means considering the three conditional probabilities
pM; | C,), p(M; | C,), and p(M, | C,) in accordance with Equation
1:

Arrangement A3: According to the wording “the
host . . . opens another door . . . which has a goat,” A3 is no
longer possible, which means that the probability p(M; | C;)
= 0.

Arrangement A2: It also follows from the wording that the
probability that Monty Hall opens Door 3, given the contes-
tant first chooses Door 1, is unity, that is, p(M; 1 C;) = 1.

Arrangement Al: Investigating arrangement Al reveals that
p(M; | C)) reflects Monty Hall’s strategy.

We now consider three different strategies that he might use
concerning arrangement Al:

First, if one assumes that Monty Hall’s strategy is to choose
randomly when he has a choice, then the probability of his opening
Door 3, p(M, | C,), equals 1/2. The probability of the contestant’s
winning by switching (to Door 2) can now be expressed in terms
of Bayes’s rule:

p(Cs l M;)

- p(M; | Cy) - p(Cy)
p(M; I Ci)-p(C) + p(M, I Cy) - p(Cy) + p(M; | C3) - p(C3)

1+ 2 @
T+ LeVat0-s 37

Thus, assuming Monty Hall uses this random strategy, the
probability of the contestant winning by switching is indeed equal
to what it is in the no-door and one-door scenarios, namely, 2/3.

Second, if one assumes that Monty Hall’s strategy is to open
Door 3 whenever possible, then p(M, | C;) equals 1, and the
probability of the contestant winning by switching changes to 1/2:

p(C, [ Mj)

_ p(M; I Cy) - p(Cy)
p(M; i Ci)-p(C) + p(M; I C,) - p(Cy) + p(M; | C3) - p(Cy)

~ 1-v5 1 3
1Y+ 1-s+0-Ys 27 (

Third, if one assumes that Monty Hall’s strategy is to open
Door 2 whenever possible, then p(M, | C,) is 0, and the probability
of the contestant winning by switching would become 1:

p(C, I M;)

= p(M; | C;) - p(Cy)
p(M, l C)) - p(C)) + p(M; | C,) - p(Cy) + p(M, | Cs) - p(Cy)

1V
= =1. @)
0-Vs+1-¥3+0-V

As demonstrated, different assumptions about Monty Hall's
strategy indeed lead to different Bayesian solutions. Note that
these different solutions are possible only in two-door scenarios
such as the standard version. Taking Monty Hall’s strategy into
account not only can lead to different solutions, but also forces one
to reason in terms of probabilities. Furthermore, there is no intu-
itive diagram that can reflect Monty Hall’s strategy appropriately.
The advantage of the no-door and one-door scenarios, in which
Monty Hall’s behavior is not specified, is that participants do not
need to consider the possible strategies that Monty Hall might use.

Are There Possible Effects of Incomplete Information?

After the Monty Hall problem became famous, many questions
on possible effects of incomplete information in the standard
version arose. Besides not mentioning Monty Hall’s strategy (1),
the standard version refers neither to the exact rules of the game
show (2) nor to the a priori probability distribution of car and goats
(3; cf. Mueser & Granberg, 1999; Nickerson, 1996; von Randow,
1993).

1. The standard version provides no information about Monty
Hall's strategy. Is the problem therefore mathematically under-
specified and insoluble? The answer is no, because the standard
version does not ask for a probability, but for a decision. The
general Bayes’s rule for the standard version of the Monty Hall
problem in the absence of information about Monty Hall’s strategy
is:

p(C, ] M;)

_ p(M, ] Cy) - p(Cy)
p(M; I C)) - p(C)) + p(M3 | C,) - p(C,) + p(M, ( C;) - p(Cs)

1-Y _ 1
—P(Malcl)"/3+l"/3+0 -5 pMg|CH+ 17

(5)

where p(M, | C,) is a “strategy” parameter that can vary between 0
and 1.

Because the strategy-dependent probability p(M; | C,) varies
between 0 and 1, the conditional probability p(C, | M;) can vary
only between 0.5 and 1 (see Equation 5). Therefore, whatever
strategy one assumes Monty Hall to use, the conclusion is that the
contestant should switch. Only if Monty Hall always opens
Door 3, that is, p(M, | C;) = 1 (an assumption for which the
wording of the problem does not provide the slightest support) do
staying and switching afford the contestant equal chances of win-
ning. Given all other assumptions about Monty Hall’s strategy (an
infinite set of possible strategies), switching is better than staying.
Thus, Equation 5 implies that switching is better even in two-door
scenarios, regardless of Monty Hall's strategy. Even after clarify-
ing this mathematical question, a psychological question remains:
Does the lack of information on Monty Hall’s strategy hinder
participants in choosing the right alternative? According to
Ichikawa (1989, p. 271), letting participants know Monty Hall's
strategy does not help them find the correct solution either.

2. The conditional probabilities p(M; | C)), p(M; | C,), and
p(M; | C;) describe Monty Hall’s behavior in different arrange-
ments. This behavior can be influenced either by his personal
strategy or by the official rules of the game show (in the standard
version, the implicit rule is “after the contestant chooses a door,
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Monty Hall has to open another door and reveal a goat”). If the rule
were, instead, that the host has to reveal a goat if the contestant
first chooses the “car door™ and should otherwise do nothing, then
pM; | C,) = 0, which makes the probability of winning by
switching O (see Equation 1). Nickerson (1996) writes that “with-
out information or an assumption about the host's behavior, the
situation is ambiguous, and the question of whether one should
switch is indeterminate” (p. 420). Consequently, most experimen-
tal psychologists insert the intended rule “Monty has to open
another door and reveal a goat” into the standard version to avoid
criticism about ambiguity in the wording. But this does not seem
to help participants: Although Granberg and Brown (1995)
stressed this rule, they observed only 13% switch decisions.

3. As we have seen, we cannot be sure of the values of the
conditional probabilities p(M; | C,), p(M; 1 C,), and p(M, | C;) in
the standard version, because we know neither the complete rules
of the show nor Monty Hall's personal strategies. What about the
remaining terms in Equation 2, namely, p(C,), p(C,), and p(C,)?
One may wonder whether the car was randomly placed behind one
of the three doors. In other words, is the assumption of an equal a
priori distribution p(C,) = p(C,) = p(C5) = 1/3 justified? Perhaps
the car is more likely to be placed behind Door 1 because it is
closest to the entrance of the stage.

A formulation of the Monty Hall problem providing all of this
missing information and avoiding possible ambiguities of the
expression “‘say, number 3 would look like this (mathematically
explicit version):

Suppose you're on a game show and you’re given the choice of three
doors. Behind one door is a car; behind the others, goats. The car and
the goats were placed randomly behind the doors before the show. The
rules of the game show are as follows: After you have chosen a door,
the door remains closed for the time being. The game show host,
Monty Hall, who knows what is behind the doors, now has to open
one of the two remaining doors, and the door he opens must have a
goat behind it. If both remaining doors have goats behind them, he
chooses one randomly. After Monty Hall opens a door with a goat, he
will ask you to decide whether you want to stay with your first choice
or to switch to the last remaining door. Imagine that you chose Door 1
and the host opens Door 3, which has a goat. He then asks you “Do
you want to switch to Door Number 27" Is it to your advantage to
change your choice?

Even though the Bayesian solution (Equation 2) is now wholly
justified, fleshing out the problem in this manner would fail to
foster insight into its mathematical structure. The problem is that
people still do not have access to an intuitive solution (such as that
illustrated as Figure 1). We argue that most of the criticisms of the
standard version regarding its unstated assumptions are mathemat-
ically relevant, but not psychologically relevant, because partici-
pants still assume the intended rules, even if those rules are not
stated explicitly.

Evidence supporting this claim comes from the observation that
the vast majority of people wrongly regard the stay and switch
choices as equally likely to result in winning. Let us give examples
of how assumptions different from the intended ones would make
this “uniformity belief” in the standard version impossible:

1. If participants assumed that Monty Hall’s strategy is to
always open the middle door whenever possible, they
would know that it was not possible for Monty Hall to

open the middle door because it had the car. Thus they
would not conclude equiprobability of the remaining
alternatives, but rather would switch to Door 2.

2. If participants assumed the game show rule is that Monty
Hall only reveals a goat when the first choice is a car,
they too would not follow the uniformity belief, but
rather have an obvious reason to stay.

3. If participants did not assume the a priori distribution
p(C)) = p(C,) = p(C,4) = 1/3, they again would not have
any reason to come up with an equiprobable a posteriori
distribution.

In sum, when solving the standard version, in which the required
assumptions are not made explicit, people seem to assume the
intended scenario anyway. Along the same lines, vos Savant
(1997) observed, “Virtually all of my critics understood the in-
tended scenario. I personally read nearly three thousand letters (out
of the many additional thousands that arrived) and found nearly
every one insisting simply that because two options remained (or
an equivalent error), the chances were even. Very few raised
questions about ambiguity, and the letters actually published in the
column were not among those few” (p. 15).

In short, people seem to struggle not with the ambiguity of the
standard version’s assumptions, but with the mathematical struc-
ture of the scenario. As we will see in the next section, what blocks
correct intuitive reasoning is not a lack of information, but a lack
of the right information representation.

Intuitive Versions of the Monty Hall Problem

To formulate wordings of the Monty Hall problem that should
elicit the correct solution, we take into consideration the four
psychological elements discussed earlier, as well as the discussion
on missing information. The four psychological elements were (1)
perspective change, (2) the less-is-more effect, (3) mental models,
and (4) natural frequencies. We incorporated these elements by
means of the following manipulations:

1. We manipulated perspective by asking participants to
“imagine you are the host of this game show” instead of
assigning them the role of the contestant.

2. We used a one-door scenario (this means not specifying
the number of the door opened by Monty Hall). Relative
to the two-door scenario in the standard version, this can
be considered an incorporation of a less-is-more effect.
The beneficial lack of information about the door opened
by Monty Hall would allow participants to make an
intuitive sketch (e.g., Figure 1) and to reason in terms of
frequencies instead of probabilities.

3.  We explicitly mentioned the three possible arrangements
of goats and car behind the doors to participants to prime
the relevant mental models (i.e., Al, A2, and A3).

4. We asked participants to state the frequencies with which
the contestant would win by switching and by staying:
“In how many of the three possible arrangements would
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the contestant win the car after the opening of a ‘goat-
door,””

if she stays with her first choice (Door 1)?
in ____ out of 3 cases
if she switches to the last remaining door?
In ____ out of 3 cases

Various versions of the Monty Hall problem can be constructed
by incorporating combinations of these manipulations. Note that
not all of the possible resulting versions are meaningful. For
example, without the less-is-more manipulation, none of the other
manipulations can work: In a two-door scenario, only two arrange-
ments are possible and—as we have seen—considering just two
arrangements can never lead to an intuitive, correct solution,
regardless of whether the right perspective is taken or an intuitive
frequency question is provided. Therefore, we consider the less-
is-more manipulation to be a “‘basic” manipulation that is required
before the others are implemented.

In two experiments (Experiments 1 and 2) we tested seven
meaningful and theoretically relevant versions. ‘All versions had
similar layouts (see Figures 3 and 4). Our prediction was that the
more manipulations are incorporated in the wording of the Monty
Hall problem, the better the performance of participants becomes.
Furthermore, we expected that, when all manipulations are incor-
porated (we call such a version a guided intuition version), the
mathematical structure will become accessible to humans’ reason-
ing and participants’ performance will be significantly improved.

As the control version (see Figure 3), we used an unambiguous
variant of the standard version. Note that our control version
contained the following additional features: We included the rules
of the game show to give total clarification of the intended sce-
nario and to guarantee comparability with other studies. Further-
more, to reduce variance in participants’ assumptions, we elimi-
nated the word say when specifying the door opened by Monty
Hall. To describe the scenario more vividly, we added a di:igram
of the three doors. Finally, because we were interested not only in
participants’ actual decisions, but also in how many participants
who switched had genuine mathematical insight into the problem,
we asked participants to justify their decisions. The impact of these
additional changes, which are not the four intended manipulations,
can be assessed by comparing participants’ performance in our
control version (see Figure 3) with that usually obtained with
standard versions.

Figure 4 illustrates a guided intuition version, which incorpo-
rates all four psychological elements into our control version. To
examine the impact of incorporating certain combinations of the
four manipulations on participants’ performance, we conducted
two experiments, one in Germany (Experiment 1) and one in the
United States (Experiment 2). Table 2 gives an overview of all
versions of the Monty Hall problem tested in Experiments 1 and 2.

Experiment 1

Method

In this experiment, we had three groups of participants. We compared
the German control (C-Ger) version (see Figure 3 for English translation)

with the German guided intuition (GI-Ger) version of the Monty Hall
problem (see Figure 4 for English translation). We also tested a version (1D
version) in which only the less-is-more manipulation was incorporated by
specifying only one door (see Appendix A). For the labels of each exper-
imental group in Experiment | and Experiment 2, see Table 2.

After excluding 14 participants who reported that they had already heard
of the Monty Hall problem, we were left with 135 students (47 men and 88
women) whose average age was 24.7 years. Participants were students of
different disciplines and were recruited from various universities in Berlin.
They were tested at the Max Planck Institute for Human Development in
small groups of up to 5 people. Each participant received only one version
of the Monty Hall problem. There were 67 participants in the control
condition and 34 participants in each of the other conditions. After the
experiment, every participant received a payment of 10 Deutsche Mark
(approximately $5).

To classify our participants’ justifications, we first divided participants
into “'stayers” and “switchers.” We then further classified the switchers into
the following three groups according to their justifications for switching:
(a) participants who gave correct justifications and exhibited full insight
into the mathematical structure; (b) participants who had the right intuition
but could not provide a mathematically correct proof; and (c) participants
who switched randomly, meaning that they regarded switching and staying
as equally good alternatives.

The criteria for correct justification were strict: We counted a response
as a correct justification only if the 2/3 probability of winning was both
reported and comprehensibly derived. This could. for instance. be fulfilled
by applying one of the algorithms reported above (Equation 1, Table I, or
Figure 1), or by any other procedure indicating that the participant had fully
understood the underlying mathematical structure of the problem. The right
intuition category contained all the switchers who believed that switching
was superior to staying but failed to provide proof for this.® Finally, a
participant was assigned to the “random switch” category if she thought it
made no difference if she switched or stayed. Participants’ protocols in this
latter category revealed the uniformity belief. yet were not followed by the
more popular choice of staying.

Interestingly, the stayers did not give differentiated justifications. None
of the stayers maintained that staying might be better from a mathematical
point of view.

As a check on the reliability of these classifications, a coder trained to
have a thorough understanding of the problem classified responses from 10
participants in each condition (stripped of information indicative of the
condition). The coder agreed with our initial classification of 93% of the
responses.

Results

The results of Experiment | are summarized in Table 3. A
Pearson’s chi-square test of the rate of switch choices indicated a
reliable difference between conditions, X2(2, N = 135) = 14.531,
p < .01. Follow-up comparisons indicated that the rate of switch-
ing was significantly lower in the control (C-Ger) group than in the
guided intuition (GI-Ger) group, x°(1, N = 101) = 14.529, p <
.01. The one-door (1D) group lay between the C-Ger group and the
GI-Ger group. However, the differences in the rate of switching
between the 1D group and the C-Ger group, x(1, N =
101) = 3.462, p < .07, and between the 1D group and the GI-Ger
group, x2(1, N = 68) = 2.885, p < .09, were not significant at the
alpha level of .05.

3 A prototypical response in this category, for instance, is “If I stay, the
probability of winning remains at .33; if 1 switch it increases to .50.
Somehow it seems that switching pays.”
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LET’S MAKE A DEAL
T};he rules (;xf ) There is 2 game show called “Let’s Make a Deal,” where a contestant is allowed to choose one of
the game show: three closed doors. Behind one door is the first prize, a new car; behind each of the other doors is a

goat. After the contestant has chosen a door, the door remains closed for the time being. According
to the rules of the game, the game show host, Monty Hall, who knows what is behind the doors,
now has to open one of the two unchosen doors and reveal a goat. After Monty Hall shows a goat
to the contestant, he asks the contestant to decide whether she or he wants to stay with the first
choice or to switch to the last remaining door.

Task:

Perspective of the
contestant: Imagine you are the contestant and you do not know which door the car is behind.
Specifying the first
choice: You now randomly choose a door, say, number 1.

Monty Hall
X
door 1 door 2 door 3
Diagram of three
doors: _ _ _
x
Specifying the contestant
door opened by
Monty Hall: In accordance with the rules of the game, Monty Hall then opens door 3 and shows you a goat.

Now he asks you whether you want to stay with your first choice (door 1) or to switch to door 2.
Asking just for a

decision: After Monty Hall has opened a “goat-door,” what should you do?
____stay __ switch
Asking for Important:
Jjustification: Please tell us in writing what went on in your head when you made your decision. You may use
sketches, etc., to explain your answer.
Please also tell us if you were already familiar with this game ___ (Yes) {(No) and knew what
the correct answer should be (Yes) (No).

Figure 3. Control version of the Monty Hall problem (the left column was not provided to participants).

More important than simply getting participants to switch rather control and one-door conditions), accompanied by Cohen’s effect
than stay is getting them to provide correct justifications for their size h for the difference of proportions (Cohen, 1988, pp. 179
decision to switch. Data on the rate of correct justifications for 213). According to Cohen, & = .20 denotes a small effect size, h =
switch choices were analyzed with pairwise Fisher exact proba- .50 a medium effect size, and & = .80 a large effect size. The
bility tests (due to the small number of correct responses in the tendency for correct justification to be given more often in the
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The rules of the
game show:

Perspective
change to the
perspective of
Monty Hall:

Specifying the
first choice:

Diagram of
three doors:

Not specifying
the door opened
by Monty Hall
(less-is-more
manipulation):

Motivating the
construction of
mental models:

Frequency
question:

Asking for
justification:

LET’S MAKE A DEAL

There is a game show called “Let’s Make a Deal,” where a contestant is allowed to choose
one of three closed doors. Behind one door is the first prize, a new car; behind each of the
other doors is a goat. After the contestant has chosen a door, the door remains closed for the
time being. According to the rules of the game, the game show host, Monty Hall, who knows
what is behind the doors, now has to open one of the two unchosen doors and reveal a goat.
After Monty Hall shows a goat to the contestant, he asks the contestant to decide whether she
or he wants to stay with the first choice or to switch to the last remaining door.

Task:
Imagine you are Monty Hall, the host of this game show, and you know which door the car is

behind.

The contestant chooses a door, say, number 1.

X Monty Hall
door 1 door 2 door 3
X
contestant

In accordance with the rules of the game, you then open another door and show the contestant
a goat. Now you ask him/her whether he/she wants to stay with the first choice (door 1) or to
switch to the last remaining door.

The car may be behind any of the three doors.

In how many of these three possible arrangements would the contestant win the car after you
open a “‘goat-door,”

- if she/he stays with the first choice (door 1)? in out of 3 cases
- if she/he switches to the last remaining door? in out of 3 cases
What should the contestant therefore do?

stay switch

Important:
Please tell us in writing what went on in your head when you gave your answers. You may use

sketches, etc., to explain your answers.
Please also tell us if you were already familiar with this game ___ (Yes) (No) and knew

what the correct answer should be (Yes) (No).

Figure 4.

Guided intuition version of the Monty Hall problem (the left column was not provided to

participants).

13
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Table 2

Versions of the Monty Hall Problem Tested in Experiments I and 2

Manipulation

No manipulation

No manipulation

Less-is-more

Less-is-more and frequency simulation

Less-is-more and perspective change

Full manipulation

Version

C-Ger (Control version in the German experiment;
Experiment 1)

C-US (Control version in the U.S. experiment;
Experiment 2)

ID (One-door version; Experiment 1)

ID + F  (One-door plus frequency version; Experiment 2)

ID + P (One-door plus Monty’s perspective version;
Experiment 2)

GI-Ger (Guided intuition version in the German experiment;
Experiment 1)

GI-US (Guided intuition version in the U.S. experiment;

Experiment 2)

Full manipulation

one-door condition than in the control condition was not statisti-
cally reliable (p = .10, one-tailed; & = .36). The rate of correct
Justifications in the guided intuition group was reliably greater
than that in the control condition (p = .0001, one-tailed; & = .98)
or the one-door condition (p = .01, one-tailed; & = .62). Thus, the
guided intuition manipulation significantly improved understand-
ing of the rationale for switching yielding large effect sizes.

Regarding the other two categories of switch choices, the rate of
random switch between the three experimental groups was not
significantly different (see Table 3). The rate of switching based on
the right intuition was significantly lower in the control condition
than in the one-door condition (p = .04, one-tailed) or the guided
intuition condition (p = .04, one-tailed).

Discussion

The percentage of switch choices in the guided intuition condi-
tion (59%), with 38% correct justifications, sets a new standard in
the literature on the Monty Hall problem. Most studies on the
Monty Hall problem report only the percentage of switch deci-
sions, which is usually around 10-15%. We expect that, given a
standard or similar version of the Monty Hall problem, the per-
centage of participants with the correct mathematical insight
would be much lower. This assumption is supported by the finding
that only 3% of participants in the control condition solved the
problem by mathematically correct reasoning.

Mueser and Granberg (1999) obtained more than 70% switch
decisions by offering participants an additional monetary in-
centive if they switched. Yet, their experiments did not aim to
qualify as an attempt to foster insight into the mathematical
structure of the problem. Hell and Heinrichs (2000) obtained
65% switch decisions by investigating a variant of the problem
with 30 doors, in which 28 doors were opened after the first
choice. Note that increasing the number of doors changes the
problem’s structure. That is, by opening all doors except 2 (e.g.,
the first chosen and Door Number 21) the probability of win-
ning by switching to Door 21 is now 97%. Burns and Wieth
(2002) demonstrated that participants reason better when the
problem is presented in a way that encourages the correct
representation of causality. By transforming the story of the
Monty Hall problem into a box-competition scenario, they
obtained 50% switch decisions, of which 15% revealed a full
understanding.

Studies using simulation of multiple trials also achieved a re-
markable improvement in performance after several rounds of
feedback (Friedman, 1998; Granberg & Brown, 1995). However,
in these repeated game settings, a good performance is possible
without insight into the mathematical structure of the Monty Hall
problem: The feedback provided in the first rounds might convince
participants that switching is better, yet, they may not necessarily
know why. Our approach, in contrast, is to increase performance

Table 3
Parameters for the Three Experimental Groups in Experiment 1, Including Percentages of Switch Choice
Parameter C-Ger 1D GI-Ger

Participants (V) 67 34 34
Less-is-more effect No Yes Yes
Specified door(s) First choice and door opened by Monty Hall First choice First choice
Perspective Contestant Contestant Monty Hall
Frequency question for mental models (“frequency simulation™) No No Yes
Switch choice (%)

Random switch 16 15 9

Right intuition 2 12 12

Correct justification 3 12 38

Total 21 38 59

Note.  C-Ger = control version (Germany), no manipulation; 1D = one-door version (less-is-more manipulation); GI-Ger = guided intuition with all four

manipulations.
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and insight in the notorious original problem, but not by changing
the number of doors or the number of rounds.

In Table 3, as in the following tables displaying empirical
results, the mental model and the frequency manipulations are
combined. The reason for this is that both elements are theoreti-
cally and practically connected to each other: On the one hand, the
frequency question alone automatically evokes the construction of
mental models, because these are the instances to be counted. On
the other hand, building mental models can only be half of the
process that leads to a problem’s solution. The correct answer can
be reached only if the mental models are then counted and com-
pared with respect to their outcomes. In the following, we refer to
this combined manipulation as frequency simulation. We choose
the word simularion instead of model because, as shown in Fig-
ure 1, just building the three models is not enough. Each model
first has to be “simulated” (i.e., considering the whole sequence of
actions specified by the model) until the outcome becomes appar-
ent. As we know, such a cognitive procedure within a model is not
intended in Johnson-Laird’s (1983) notion of menta! models.

The significant improvement observed when all elements are
applied together motivates the analysis of these underlying ele-
ments and their individual impact on participants’ performance.
For example, at first glance the frequency question seems to be
rather a heavy-handed hint on how to solve the problem. Yet, as
Experiment 2 will reveal, this seemingly powerful hint does not
work effectively if a certain perspective is not provided at the sam
time. .

Experiment 2

A key question concerning the findings of Experiment 1 is
whether we need all four conceptual manipulations to foster peo-
ple’s insight into the structure of the Monty Hall problem. Is any
one of the manipulations more crucial than the others? Are there
synergistic effects of the manipulations? In a second experiment
conducted in the United States (Experiment 2), we examined four
different versions that were designed to partition the effects of the
four crucial manipulations.

Method

Participants in Experiment 2 were students recruited from the University
of South Dakota. After excluding 2 participants who reported that they had

already heard of the Monty Hall problem, we were left with a total of 137
participants (96 women and 41 men) with an average age of 22.7 years.
Participants were randomly assigned to four different conditions and were
tested in a classroom with 10-30 students in each session. Each participant
received only one version of the Monty Hall problem. As in Experiment 1,
participants in Experiment 2 were asked to give a written justification for
their choices. Participants were rewarded with extra course credit. The four
groups received the following versions of the problem (see Table 2 for the
labels of these experimental groups).

1. Control (C-US): An English version of the C-Ger scenario used in
Experiment |.

2. One-door plus frequency simulation (1D + F): A one-door scenario
in which the first choice is specified (iess-is-more manipulation). The
participants were asked to take the contestant’s perspective and make the
stay—switch decision after answering the frequency question (frequency
simulation).

3. One-door plus perspective change (ID + P): A one-door scenario
(less-is-more manipulation) in which the position of the car is specified.
The participants were asked to take Monty Hall's perspective (perspective
change) and make the stay—switch decision without first having answered
the frequency question.

4. Guided intuition (GI-US): A one-door scenario (less-is-more manip-
ulation) in which the position of the car is specified. The participants were
asked to take Monty Hall’s perspective (perspective change) and make the
stay-switch decision after answering the frequency question (frequency
simulation). Because all four manipulations are incorporated in this ver-
sion, it constitutes a second version of the guided intuition condition
(parallel 10 GI-Ger).

Note that in the 1D + P and GI-US conditions, the one-door scenario is
incorporated by specifying the position of the car instead of the contes-
tant’s first choice. In reference to Figure 2, this specification requires the
participants to reason “row-wise,” and the frequency question now requires
them to imagine the three possible first choices of the contestant, rather
than the three different car—goat arrangements.

The procedure and criteria for classifying participants’ justifications
were the same as described in the method section of Experiment 1. In
Experiment 2, a trained student who had a thorough understanding of the
Monty Hall problem but was unaware of the experimental conditions
classified the participants’ responses independently. The independent coder
agreed with our initial classification of 94% of the responses.

Results

The results of Experiment 2 are presented in Table 4. A Pear-
son’s chi-square test of the rate of switch choices did not reach the
alpha level of .05, X2(9, N = 137) = 6.98, p = .07. However, the

Table 4
Parameters for the Three Experimental Groups in Experiment 2, Including Percentages of Switch Choice
Parameter C-Us ID + F ID+P GI-US

Participants (N) 35 34 34 34
Less-is-more effect No Yes Yes Yes
Specified door(s) First choice and door opened by Monty Hall First choice Car position Car position
Perspective Contestant Contestant Monty Hall Monty Hall
Frequency question for mental models

(“frequency simulation”) No Yes No Yes
Switch choice (%)

Random switch 17 6 3 6

Right intuition 6 12 17 12

Correct justification 0 9 9 32

Total 23 26 29 50

Note.
perspective change; GI-US = guided intuition with all four manipulations.

C-US = control version (United States), no manipulation; 1D + F = one-door version plus frequency simulation; 1D + P = one-door plus
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overall Pearson chi-square test of the frequencies of three types of
justifications indicated a reliable difference, x*(3, N =
137) = 25.40, p < .01. Of the three types of justifications for
switch choices, namely, random switch, right intuition, and correct
justification, only the rate of correct justifications showed a sig-
nificant difference between the four experimental conditions, f(3,
N = 137) = 18.21, p < 0L

The guided intuition version elicited the highest rate of correct
justifications (32%), comparable to that found in Experiment 1.
For analyzing the rates of correct justifications, we used a Fisher’s
exact probability test accompanied by Cohen’s effect size h for
differences between proportions. A Fisher’s exact probability test
revealed that the 32% switch choice with a mathematically correct
justification in the guided intuition condition was significantly
higher than the corresponding 0% in the control condition (p =
.0002, one-tailed; & = 1.2).

Monty Hall’s perspective alone (1D + P) and frequency simu-
lation alone (1D + F) both had a rate of 9% correct justifications,
significantly lower than the 32% rate found in the guided intuition
condition (Fisher’s exact probability two-tailed test, p < .04, h =
.59). The 9% rate of correct justifications in the 1D + P and 1D +
F conditions was not a statistically reliable improvement on the 0%
found in the control condition (Fisher’s exact probability two-
tailed test, p < .12, h = .61). However, the effect sizes for both
comparisons (no manipulation vs. two manipulations and two
manipulations vs. full manipulation) yielded values of approxi-
mately h = .6 (between medium and large effect).

Discussion

In our further discussion of Experiment 2, we consider the
results of Experiments 1 and 2 together. The similar performance

Switch choice percentage

C-Ger C-Us 1D+F

1D+P 1D

in the two identical control versions suggests that it would be
reasonable to look at the results collapsed across the experiments.
Figure 5 illustrates the results for all seven versions, ordered by
observed percentage of switch decisions. The difference between
the performances on the two control versions (on the left of Figure
5) and that on the two guided intuition versions (on the right of
Figure 5) demonstrates the strong impact of simultaneously incor-
porating all four manipulations. The improved grasp of the math-
ematical structure of the task in the GI-Ger and the GI-US condi-
tion clearly can be attributed to the four psychological
manipulations. The similar performance in both guided intuition
conditions—as well as analysis of participants’ protocols—sug-
gests that the kind of one-door scenario implemented (specifying
first choice vs. specifying car position) makes no notable
difference.

Note that our control condition was a modification of the stan-
dard version: We specified the rules of the game show, included a
diagram of the three doors, deleted the ambiguous word say when
specifying which door Monty Hall opens, and asked participants to
justify their choice. Approximately 22% of participants chose to
switch in our control condition, which is slightly greater than the
switch rates typically reported with standard control conditions.
However, the percentage of participants who gained a mathemat-
ically correct insight into the problem’s structure given these
nonexperimental changes (3% in Experiment 1 and 0% in Exper-
iment 2) was very low.

The synergistic effect of the combination of the perspective
change and the frequency simulation is particularly intriguing. The
perspective change alone (1D + P) and the frequency simulation
alone (1D + F) both failed to facilitate understanding: The rates of
correct justifications in these two conditions were not significantly

Gl-Ger

GI-US

Problem version

O Switched randomly, i.e., regarded switching and staying as equaily good alternatives
8 Had the right intuition, but could not provide a mathematically correct proof
B Gave the correct solution and exhibited full insight into the mathematical structure

Figure 5. Complete results of Experiment 1 and Experiment 2, ordered according to the percentages of switch
choice in each condition. See Table 2 for definitions of each problem version.
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different from that in the 1D condition. Thus the better perfor-
mance of participants in the guided intuition versions can be
attributed neither to the perspective change nor to the frequency
simulation alone. In fact, there seems to be a synergistic effect
between the frequency simulation and the perspective change, as
both manipulations have to be applied simultaneously.

The effects of perspective change and frequency simulation
appear to be essentially additive when measured in terms of
switch-choice total but appear to be superadditive for mathemati-
cally correct justifications. To examine the superadditivity of the
effects of perspective change and frequency simulation, we com-
pared the rate of correct justifications collapsed across the two
guided intuition groups (i.e., the GI-Ger and GI-US conditions)
with double the rate of correct justifications collapsed across the
two single manipulation groups (i.e., ID + P and 1D + F). In
other words, we conducted a chi-square test of the rate of correct
justifications, comparing 24/68 with 12/68. The result showed a
synergistic effect (superadditivity) of perspective change and fre-
quency simulation. The facilitation effect of the combined manip-
ulation in the guided intuition condition was significantly higher
than the doubling of the average effect of the two single manipu-
lations, x*(1, N = 136) = 5.44, p = .02.

The trichotomous categorization (see Figure 5) also shows that
the counterintuitively higher switch rate in the 1D condition as
compared with the 1D + P and the 1D + F conditions is in fact
due to a relatively high proportion of participants who had no
mathematical insight but switched in accordance with the unifor-
mity belief (empty bars).

In our tables presenting the results of Experiments 1 and 2
(Tables 3 and 4), the two theoretical elements mental model and
natural frequencies were collapsed into the frequency question for
mental models, in short, the frequency simulation. Johnson-Laird
et al. (1999) claimed that the mental model concept provides
another theory of probabilistic reasoning that differs from the
natural frequency approach (Gigerenzer & Hoffrage, 1995, 1999).
It is true that both elements stress different aspects of knowledge
representation: On the one hand, the term natural frequencies
emphasizes external information representation. In nature, we ob-
serve frequencies of outcomes rather than probabilities, and our
minds should be adapted to this kind of information. Thus the
natural frequency approach provides an ecological explanation for
why humans are good at dealing with frequencies. On the other
hand, the term mental models stresses internal information repre-
sentation. Yet, when considering the actual reasoning process, it
emerges that natural frequencies and mental models are deeply
intertwined: The frequency question (“in how many of these three
possible arrangements...”) is answered by counting arrange-
ments, which actually are mental models.

Experiment 3

In Experiments 1 and 2, people’s intuition was guided by the
combined manipulations. Participants in both experiments had to
choose and justify the correct solution on their own; no attempts
were made to convince disbelievers of the correct solution. Vos
Savant’s (1997) experiences show that even entire demonstrations
of how to solve the problem—including presentation of the correct
solution—can fail to break people’s resistance. One of the indi-
cators of insightful understanding of a problem is the ability to

transfer one’s knowledge about its resolution to other, similar
problems.

The questions addressed in Experiment 3 are pedagogical in
nature: Can a guided intuitive training in the Monty Hall problem
effectively be transferred to similar problem-solving situations?
Which way of demonstrating the solution to the Monty Hall
problem would be most effective? Consider, for instance, the
following two problems:

The One Goat and Two Cars Problem

Imagine that there are two cars and one goat behind the doors.
The contestant chooses a door. The host then has to open another
door and show a car to the contestant. Now the contestant can
decide whether she wants to stay with her first choice or switch to
the last remaining door. (She is not allowed to take the car behind
the opened door.) What should the contestant do?

Problem of the Three Prisoners

Tom, Dick, and Harry are awaiting execution while imprisoned
in separate cells in some remote country. The monarch of that
country arbitrarily decides to pardon one of the three, but the name
of the lucky man is not announced immediately, and the warden is
forbidden to inform any of the prisoners of his fate. Dick argues
that he already knows that at least Tom or Harry must be executed,
thus convincing the compassionate warden that by naming one of
them he will not be violating his instructions. The warden names
Harry. Did this change the chances of Dick and Tom being freed?

Both problems are variants of the Monty Hall problem. In the
first problem, the contestant should choose to stay, because in two
out of three arrangements the first choice is a car. In the problem
of the three prisoners, the chance of Dick being freed remains one
third, whereas the chance of Tom being freed increases to two
thirds. Previous studies have shown that participants’ beliefs and
justifications regarding the three prisoners problem do not differ
from the corresponding ones in the Monty Hall problem (Falk,
1992; Ichikawa & Takeychi, 1990). The majority of participants
think that the chances of Dick and Tom being freed are the same.

In a pilot study, we provided the participants in Experiment 1
with one of three different explanations of how to solve the Monty
Hall problem (after they had returned their response sheets). One
was based on Figure 1 (frequency simulation explanation, FS), the
second on Table | (mental models explanation, MM), and the third
on Equation 1 (Bayes’s rule explanation, BR). To investigate the
relative effects of these explanations, we presented the participants
with four new problems. One problem (the one goat— two cars
problem) was given immediately afterward, and the other three
problems were presented 10 weeks later. One of these three prob-
lems was the three-prisoners problem, the other two were extended
Monty Hall problems by using four doors (see Appendix B). All
problems were presented in their standard version, involving none
of the manipulations used in Experiments 1 and 2. The results of
the pilot study presented in Table 5 suggest that the three training
explanations all have the potential to facilitate problem solving in
related situations. A better controlled experiment was needed to
further examine the possible transfer effects of these training
methods.

The following features were not controlled in the pilot study:
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Table 5
Participants’ Performance (Percentage of Correct Justifications)
Immediately and 10 Weeks After Training in the Pilot Study

Training type

Problem FS (N = 22) BR (N = 25) MM (N = 21)
Immediately after training
1 goat-2 cars 82 49 42
10 weeks after training
3 goats—1 car 73 60 29
2 goats-2 cars . 73 28 43
3 prisoners 46 44 14

Note. FS = frequency simulation explanation; BR = Bayes's rule ex-
planation; MM = mental models explanation.

1. Participants were given different versions of the Monty
Hall problem before training.

2. The follow-up problems were presented in constant order.

3. Because the three-prisoners problem was the last to be
presented, it was obvious that this problem, which devi-
ates from the familiar game show content, could also be
solved with the trained scheme.

4. When tested after training, frequency simulation and
mental models had to be retrieved from memory, but
Bayes’s rule was available on paper.

5. There was no control condition (i.e., solving test prob-
lems without previous training).

In Experiment 3, the above issues were controlled.

Method

Participants in Study 3 were 120 students (76 females and 44 males)
recruited from universities in Berlin, whose average age was 23.1 years.
The participants were paid 10 euros (about $10) for approximately 1 hr of

Table 6

work. Participants were randomly divided into four groups with 30 partic-
ipants in each group: the FS group, the MM group, the BR group, and the
control group. In the FS condition, participants were taught how to solve
the Monty Hall problem by constructing the frequency simulation illus-
trated in Figure 1. In the MM condition, the six mental models adapted
from Johnson-Laird et al. (1999) and illustrated in Table 1 were used. In
the BR condition, we taught participants how to use Bayes’s rule to attain
the correct solution. In the control group, participants were presented with
the original Monty Hall problem and then asked to solve the other test
problems without further explanation. After excluding 10 participants who
reported that they had already heard of the Monty Hall problem, we were
left with a total of 110 participants.

Before the respective training, all participants were presented with the
control version of the Monty Hall problem (see Figure 3). To test possible
transfer effects of training, we used the three-prisoners problem and a
four-door version of the Monty Hall problem called the two goats—two cars
problem (see Appendix B). To conceal the applicability of the received
explanations to the three-prisoners problem, we also included a distractor
problem (the Duncker Tumor problem) that could not be solved by apply-
ing the explanations learned in the training session. The order of presen-
tation of the follow-up problems, including the Duncker Tumor problem,
was counterbalanced. All explanation sheets, including the Bayes’s rule
explanation, had to be returned to the experimenter before any of the
follow-up problems were presented. To minimize memory effects, we
presented all test problems immediately after training.

In Experiment 3, a trained student who had a thorough understanding of
the Monty Hall problem but was unaware of the experimental conditions
classified all participants’ responses independently. The independent coder
agreed with the initial classification of 94% of the responses.

Results

The results of Experiment 3 are summarized in Table 6. In the
following analysis, we focus on the rate of correct solutions with
mathematically correct justifications. Before training, none of the
110 participants managed to solve the Monty Hall problem and
give a correct justification for the switch choice. This poor per-
formance (0% of mathematically correct solution) remained the
same in the control (no training) condition when participants were
presented with the two test problems (i.e., the four-doors and
three-prisoners problem), showing no ad hoc understanding of the
test problems at all.

A Pearson’s chi-square test showed a significant difference in
the rate of correct solutions between the control, BR, MM, and FS

Percentage of Mathematically Correct Solutions Given for the Monty Hall Problem Before
Training and for Related Problems After Training in Experiment 3

Control and training conditions

Control (no training;

Problem n = 24) FS (n = 28) BR (n = 28) MM (n = 30)
Before training
Monty Hall problem 0 0 0 0
After training '
2 goats-2 cars 0 46 4 30
3 prisoners 0 18 0 10

Note. FS = frequency simulation explanation; BR = Bayes’s rule explanation; MM = mental models

explanation.



THE PSYCHOLOGY OF THE MONTY HALL PROBLEM 19

conditions for both the four-doors problem, X3, N =
110) = 23.96, p < .01, and the three-prisoners problem, x*(3, N =
110) = 9.06, p < .03. Follow-up comparisons indicated that the
rate of correct solutions after BR training was not better than in the
control group. For both test problems, the rate of correct solutions
was nearly the same in the control and BR condition (see Table 6).
Thus, contrary to the results of the pilot study, the findings of
Experiment 3 suggest that training with Bayes’s rule does not help
participants to solve related problems.

In contrast, FS training and, to a lesser degree, MM training
helped participants to solve the test problems. A Fisher’s exact
probability one-tailed test indicated that the FS group had a sig-
nificantly higher rate of correct solutions than the control group in
both the four-doors test problem (p < .01, & = 1.49) and the
three-prisoners problem (p < .04, h = 0.88), both yielding large
effect sizes. Compared with the control group, the MM group had
a significantly higher rate of correct solutions for the four-doors
problem (p < .01, A = 1.16), but not for the three-prisoners
problem (p = .16. A = 0.64). However, the advantage of the FS
training over the MM training in terms of the rate of correct
solutions (46% vs. 30% for the four-doors problem; 18% vs. 10%
for the three-prisoners problem) was not statistically reliable (p =
A5, h = 0.33 and p = .31, A = 0.23. respectively).

Discussion

The findings of Experiment 3 can be further reviewed by taking
into account the results of the pilot study. This combined analysis
offers several suggestions on how Bayesian reasoning can be
fostered and improved.

First, the positive transfer effects of BR training in the pilot
study suggest that participants were able to use and even to
generalize Bayes’s rule (e.g., extend the denominator from three to
four summands as required in the four-doors problems), as long as
they had their BR explanation sheets handy while working on the
test problems. In consideration of this, the lack of effects of BR
training observed in Experiment 3 suggests that partictpants failed
to recall the entire Bayes formula rather than failed to transfer such
a rule-learning to the test problems.

Second, an interesting finding of Experiment 3 is that it was
easier for the participant to solve the four-doors (two goats—two
cars) problem than the three-prisoners problem. Across the three
training conditions, the average rate of succeeding in solving the
four-doors problem was 26.7%, whereas this rate was 9.3% in
solving the three-prisoners problem. From a mathematical point of
view. the four-doors problem should be more difficult to solve
because its underlying structure differs from that of the training
problem. To solve the four-doors problem, the mathematical struc-
ture of the problem must be constructed by expanding the structure
of the training problem (i.e., adding arrangements in FS, adding
models in MM, or adding summands in the denominator of BR).
To solve the three-prisoners problem, in contrast, one only needs
to replace the original content of the training problem with a new
content, that is, the three prisoners correspond to the three doors,
the fates of the prisoners correspond to the objects behind the
doors, and so on.

It is interesting to note that this finding is contrary to some
previous findings in the field of problem solving. According to
Reed (1993), there are four types of test problems in terms of
similarities of stories and similarities of solution procedures. An

equivalent test problem has the same story content and solutions as
the training example. A similar test problem has the same story
content but a different solution. An isomorphic test problem has a
different story content but the same sohition as the example. And
finally, an unrelated test problem differs in both dimensions. A
review of the literature in the fields of problem solving and
educational psychology suggests that it is easier to solve isomor-
phic problems than similar problems (see Reed, 1993, Renkl,
1997). In contrast, in Experiment 3, the similar problem (the
four-doors problem) was much easier to solve than the isomorphic
problem (the three-prisoners problem). A reason for this difference
might be that the transfer from the Monty Hall problem to the three
prisoners problem requires that humans (the prisoners) have to be
mapped to doors. Ross (1987) found that “the details of the
correspondence, in terms of the object mappings, are a crucial part
of how the earlier example is used” (p. 630), and that “in partic-
ular, if similar objects were included in the study and test prob-
lems, at test, subjects tended to assign them to the same variables
that they had been assigned to in the study problem™ (p. 632).
Thus, one could speculate that the following isomorphic problem
will be solved by participants: A prisoner, who is fated to die, gets
a last chance. In one out of three scrolls is a certificate of amnesty.
He can choose one of the scrolls. After he has made his choice, the
warden opens another scroll, which is unwritten. The warden asks
whether the prisoner wants to stay with his first choice or switch
to the rematning scroll.

In sum, regarding Bayesian reasoning, once a match between a
training problem and a test problem has been identified, people
seem to be able to transfer frequency-based Bayesian training
methods to new problems (see also Krauss. Martignon, Hoffrage,
& Gigerenzer, 2002; Sedlmeier & Gigerenzer, 2001).

Theoretical Implications and Conclusion

Bayesian reasoning can be fostered either through the formula-
tion of a problem (e.g., guided intuition versions of Experiments 1
and 2) or through an explanation (e.g., FS training in Experiment
3). Studying how a combined manipulation of cognitive elements
improves problem solving is of practical interest, and finding
evidence of synergistic relationships between these cognitive ele-
ments is of theoretical value.

An information format such as natural frequency presentation
that is effective in one problem context may be ineffective in
another. However, its effectiveness may depend on the perspective
taken by the problem solver. In the case of the Monty Hall
problem, the contestant perspective often inhibits the problem
solver from using frequency information correctly. By combining
the two psychological elements (i.e., frequency simulation and
perspective change), the inhibitory relation becomes multiplicative
facilitation.

In particular, the frequency simulation and perspective change
only improve participants’ performance if presented in combina-
tion (psychological dependency). The frequency simulation re-
quires the less-is-more manipulation as a precondition to present
insightful information, because only in a one-door scenario can the
frequency counting be applied to the relevant mental models
(mathematical dependency). In other words, not implementing the
less-is-more manipulation would lead to the uniformity belief, as
participants would be limited to only two arrangements, instead of
the three possible ones.
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The superadditive effects of the frequency simulation and per-
spective change showcase the importance of information presen-
tation in reasoning and problem solving. Our multidimensional
approach of testing dynamic relationships between cognitive fac-
tors may enable us to interpret the seemingly futile results of
single-factor manipulation and achieve a fuller understanding of
the cognitive mechanisms involved in our reasoning and problem
solving.

A second theoretical implication of our findings concerns a
mathematical foundation for perspective change. Taking Monty
Hall’s perspective opens a pathway to the insight that the game
show host has no choice in two out of three arrangements: When-
ever the contestant first chooses a goat, Monty Hall has to reveal
the other goat, and the contestant wins by switching. Taking the
game show host’s perspective is to take a Bayesian view: The
question posed in the standard version (“Is it to your advantage to
switch your choice?”) corresponds to the left side of Equation 1,
that is, p(C, | M;). To calculate this conditional probability with
Bayes’s rule, one has to assess the ingredients of the right side of
Equation 1. Although clear on the equal distribution of the car’s
position, that is p(C|) = p(C,) = p(C;) =1/3, the conditional
probabilities p(M; | C)), p(M; | C,), and p(M, | C;) remain to be
assessed. In our view, this is the step that requires looking at the
possible arrangements through Monty Hall’s eyes: What is the
probability that Monty Hall will open Door 3, given that the car
actually is behind Door 1, Door 2, or Door 3? Amiving at the
correct solution requires the participant to detect the constraints
imposed on Monty Hall. Focusing on his behavior leads to a
straightforward Bayesian solution, be it the formal one (Bayes's
rule) or an intuitive one (in accordance with Figure 1). Does the
beneficial effect of changing perspectives on the understanding of
Bayes’s rule generalize to different situations? This approach
might have great potential for other Bayesian reasoning problems.

Indeed, a training based on the manipulations of the guided
intuition versions (FS) helped the participants in solving related
problems (Experiment 3). The positive transfer effects were sig-
nificant for the FS and MM but not BR training. The superiority of
the FS training over the MM training was evident in the case of
solving a test problem that had a greater degree of difficulty (i.e.,
the three-prisoners problem). Across all trainings, content similar-
ity between a training problem and a test problem appeared to be
more helpful than mathematical similarity in transferring learning
into new situations.

In conclusion, a remarkable proportion of naive participants can
gain full insight into the structure of the Monty Hall problem when
elements from the cognitive psychologists’ toolbox are applied.
During the last 10 years, the claim has persisted that there is no
way to break most people’s resistance to grasping the mathemat-
ical structure of the problem. In hindsight, one might think it
obvious that many participants will understand the problem when
presented with the guided intuition version. However, in view of
the long tradition of vain attempts to explain the problem, the
crucial progress made in the present experiments was to identify
these versions, which have not been considered in previous re-
search. Note that our manipulations do not “destroy a fascinating
cognitive illusion,” but that—as we leamed from our partici-
pants—the Monty Hall problem only displays its whole fascination
when one realizes that switching is indeed better.
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Appendix A

Experiment 1: Version 1D
LET'S MAKE A DEAL

In America there is a game show called “Let’'s Make a Deal.” The con-
testant is allowed to choose one out of three closed doors. Behind one door is
the first prize, a car. Behind the other two doors are goats. Monty Hall (the host
of the game show) asks the contestant to choose one door. After the contestant
has chosen a door, the door remains closed for the time being, because the
rules of the game show require that the host (who actually knows where the
car is) first opens one of the other two doors and shows a goat to the con-
testant. Now the contestant can again decide whether she wants to stay with
her first choice or whether she wants to switch to the last remaining door.

Task:
Imagine you are the contestant and you don’t know which door the
car is behind. You chose a door, say, number one.

X Monty Hall

door 1 doar 2 door 3

N

contestant

In accordance with the rules of the game, Monty Hall then opens
another door and shows you a goat. Now he asks you whether you
want to stay with your first choice (Door 1) or to switch to the last
remaining door.

What should you do?__stay __switch

Important:

Please tell us in writing what went on in your head when you made your
decision. You may use sketches, etc., to explain your answer.

Please also tell us if you were already familiar with this game___(Yes) ___(No)
and knew what the correct answer should be___ (Yes) _ (No).

(Appendixes continue)
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Appendix B

Problems A-D

One Goat-Two Cars Problem

Imagine that two cars and one goat are now behind the doors. After the
contestant has chosen a door, the door remains closed for the time being.
The game show host now has to open one of the two unchosen doors and
reveal a car. After Monty Hall has shown a car to the contestant, he asks
her to decide whether she wants to stay with the first choice or switch to
the last remaining door. (The car behind the open door cannot be chosen.)

Probability of winning by switching: 1/3

One Goat-Three Cars Problem

A contestant in a game show is allowed to choose one of four doors.
Behind one door is the first prize, a car. Behind the other three doors are
three goats. Monty Hall asks the contestant to choose one door. After the
contestant has chosen a door, the door remains closed for the time being,
because the rules of the game require that the host (who knows where the
car is) first opens two of the other three doors and reveals two goats to the
contestant. Now the contestant can decide whether she wants to stay with
the first choice or switch to the last remaining door.

Probability of winning by switching: 3/4

Two Goats-Two Cars Problem

A contestant in a game show is allowed to choose one of four doors.
Behind two doors are cars. Behind the other doors are goats. Monty Hall

asks the contestant to choose one door. After the contestant has chosen a
door, the door remains closed for the time being, because the rules of the
game require that the host (who knows where the cars are) first opens two
of the other three doors and reveals a goat and a car to the contestant. Now
the contestant can decide whether he wants to stay with his first choice or
switch to the last remaining door.

Probability of winning by switching: 1/2

Problem of the Three Prisoners

Imagine three prisoners (A, B, and C) sitting in three different cells.
They know that one of them will be set free; the other two will be executed.
The only person present who already knows the identity of the lucky
prisoner is the guard. He is not allowed to inform the prisoners about their
fate. Therefore one of the prisoners (A) asks him, “Please name at least one
of the others who will be executed.” The guard thinks for a while and says,
“Prisoner C will be executed.” Does this change the chances of Prisoner A
being set free?

Probability of Prisoner A being set free: 1/3
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