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Abstract

We provide an extensive and general investigation of the effects on industry per-

formance (profits and social welfare) of exogenously changing the number of firms in

a Cournot framework. This amounts to an in-depth exploration of the well-known

trade-off between competition and production efficiency. We establish that under scale

economies, welfare is maximized by a finite number of firms. Our results shed light on

several theoretical issues and policy debates in industrial organization, including the

relationship between the Herfindahl index and social welfare, destructive competition

and natural monopoly. Our analytical approach combines simplicity with generality.
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1. Introduction

There has been a rich and insightful debate in industrial organization about the welfare and

profitability effects of increasing the number of firms in an industry. While many complex

facets of this fundamental issue remain partly unsettled, the basic compromise at work is

well-known, though still a source of major controversy both among academics and antitrust

practitioners1 . On the one hand, conventional intuition – sometimes wrongly – holds that

increasing the number of firms reduces monopoly power and allows closer approximation

of the competitive ideal. On the other hand, increasing the number of firms may result in

reduced ability to take advantage of scale economies.

The relationship between concentration and profit rates has been one of the most active

research areas in empirical industrial organization (e.g. Mueller, 1986). While conventional

intuition holds that per-firm profit must decline with the number of firms, interaction be-

tween theoretical and empirical work has over the years uncovered the potential role of several

inter-related factors, including potential collusion, ease of entry, and merger policy. The im-

portance of scale economies has been stressed early on to argue against antitrust-mandated

break-ups of large firms and for a laisser-faire policy (e.g. Demsetz, 1973).

The welfare implications of market structure have been prominent in the early beginning

of the field, Bain (1956). The unquestioned view then was that barriers to entry are respon-

sible for the presence of imperfect competition, which in turn results in sizable welfare losses.

The belief that public policy must correct for this imperfection by removing barriers to en-

try and possibly subsidizing entry had dominated the profession and persisted until quite

recently. Perceptive work by von Weiszacker (1980), Perry (1984), Mankiw and Whinston

(1986) demonstrated that this view was fundamentally ill-founded by showing that if firms’

conduct is not subject to regulation, then free entry results in an excessive (endogenous)

number of firms relative to a social optimum. In addition to developing a version of this

result, Suzumura and Kiyono (1987) also show the same conclusion holds with respect to

first-best entry regulation (also see von Weiszacker, 1980).

Once the existence of the trade-off between the benefits of competition and the cost-

1 The current Microsoft case is a timely reminder of the importance of this issue, albeit with a relatively
new key dimension: Network effects.
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savings of production scale is established, the main issue becomes largely empirical. Indeed,

the empirical literature on the subject is extensive, though somewhat outdated by now.

Several studies in Goldschmid, Mann and Weston (1974) provide empirical evidence and a

general debate on this controversial issue. For instance, Sherer (1974) concludes on the basis

of a detailed empirical study of twelve manufacturing industries that the evidence provides

little support for the conjecture that concentration is the result of a realization of scale

economies. On the other hand, his findings are controversial (e.g. Brozen, 1973).

The present paper offers a thorough theoretical investigation of the effects on industry

profits and social welfare of exogenously increasing the number of firms in a Cournot industry

composed of identical firms. Given the importance that these issues have for a free market

society, the results presented here would be a pre-requisite to any modern empirical work or

formulation of public policy dealing with market structure and social welfare.

An extensive older literature addresses the related questions of the effects of the number

of firms on industry price and output levels, e.g. Ruffin (1973) and Seade (1980)2 . Yet, to

the best of our knowledge, no systematic theoretical analysis of industry profits and social

welfare has been conducted with an exogenous number of firms.

An important aspect of the paper, from a methodological viewpoint, is its reliance on the

new lattice-theoretic comparative statics approach. We build directly on Amir and Lambson

(2000) who use this same framework to analyse price and output effects. They derive two

main results. The first one is that industry price falls (increases) with the number of firms

if a firm’s residual inverse demand declines slower (faster) than its marginal cost, globally.3

This is the so-called property of quasi-competitiveness (quasi-anticompetitiveness). Strong

scale economies are required for demand to decline slower than marginal cost, and lead to

the counterintuitive outcome on price. The second result is that per-firm profit falls with

the number of firms in both cases.

A complementary methodological feature is our reliance on tight illustrative examples.

These serve a dual purpose. First, they confirm that the given sufficient conditions are, in

some sense, critical to the resulting conclusions. Second, they illustrate in a more accessible

2 See also Frank (1973), Okuguchi (1973) and Novshek (1980), among others.
3 This sharp intuition behind many of our main conclusion is only possible with the latice-theoretic approach.
In previous work, other method-imposed assumptions, such as concave profits and decreasing marginal
revenue, prevented such simple and clear-cut economic interpretations based only on critical assumptions.
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manner the interaction between the various effects at work in the comparative statics at

hand. In particular, we present a Main Example (Section 3) which is a blueprint for the entire

paper, in that most effects of interest can be captured by varying the Example parameters.

This example can serve as a pedagogical tool to convey the main ideas of the paper in a

simple and intuitive framework to undergraduate students or policy practitioners.

For industry performance comparisons (Section 4), the quasi-competitive case has two

clear-cut welfare results that are independent of the returns to scale: (i) welfare increases in

the number of firms whenever per-firm output does, and (ii) in case of multiple equilibria, the

maximal output equilibrium is the social-welfare maximizing equilibrium. The latter result

vindicates the supremacy of consumer welfare over producer welfare. Otherwise, this case

gives rise to two subcases, depending on the returns to scale in production. In the presence

of economies of scale, industry profits are shown to globally decline with the number of firms,

while social welfare is generally not monotonic. More precisely, we argue that the slightest

amount of scale economies leads to welfare being decreasing at sufficiently high number of

firms. Inversely, under diseconomies of scale, social welfare is globally increasing in the

number of firms, while industry profits exhibit a tendency to initially increase in the number

of firms (treated as a real number), starting at monopoly level. (Whether this tendency

leads to duopoly, say, having higher total profit than monopoly depends on the magnitude

of the returns). As an important corollary of the two monotonicity results above, under

constant returns to scale, both conventional beliefs indeed hold: Industry profits fall and

social welfare increases with the number of firms.

For the quasi-anticompetitive case, monopoly always leads to the highest possible indus-

try profits, with this being the only clear result on industry profits.4 On the other hand,

the welfare outcome is unambiguous: Social welfare always decreases in the number of firms.

In this case there are strong enough scale economies to overcome all other considerations.

Our conclusions provide a precise theoretical foundation for intuitive beliefs about the

need for a trade-off between the benefits of fostering increased competition and the ability

of firms to exploit scale economies. The conclusions are also fully congruent with some

classical results in partial equilibrium analysis. It is well-known (Ruffin, 1973) that, under

4 We provide an informal argument showing that, for intermediate market structures, the cost and revenue
effects move in conflicting directions, the latter in a counterintuitive way..
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quasi-competitiveness, Cournot equilibria converge to perfectly competitive equilibria when

average cost is nondecreasing, and that this same convergence fails when average cost is

nonincreasing. Our results show that welfare is monotonically increasing in the former case

(thus converging to first-best welfare), but not in the latter. Also see Novshek (1980).

The results presented here may also be invoked to illuminate a number of important

theoretical and public policy debates: See Section 5 where some important corollaries of our

results are presented in various applications. The first of these concerns the relationship

between Cournot and perfectly competitive equilibria, as described above.

The second point deals with the comparison of endogenous concentration levels prevailing

under free entry and first or second-best socially optimal entry. Mankiw and Whinston

(1986) and Suzumura and Kiyono (1987) show that the old belief that free entry leads to

socially too few firms is invalid under general conditions. Our results provide simple but

important insights into this important issue in addition to clarifying in important ways the

latter authors’ conclusions on the comparison between free and first best entry.

The third point addresses the extensive use made by antitrust authorities of the Herfindahl-

Hirschman index of concentration under the presumption that the Index is a good inverse

measure of social welfare. Recent theoretical work showed that with a constant number of

firms, any output transfers across firms that leave price unchanged must cause the Index

and social welfare to move in the same direction, Farrell and Shapiro (1990) and Salant and

Shaffer (1999). We complement this insight by the observation that with scale economies

and a varying number of firms, both the Index and welfare decrease with the number of

firms, when the latter is larger than a threshhold level, which may be one.

The fourth point considers the long-standing concentration/profitability debate, and re-

lates our results to the inconclusive evidence uncovered over the years on this key issue. In

particular, in cases where free entry leads to a completely indeterminate number of firms

(the quasi-anticompetitive case) or to multiple equilibria with a given number of firms, any

meaningful correlation between industry characteristics and profits is unlikely.

The fifth point identifies the Cournot model in the quasi-anticompetitive case as an ap-

propriate (noncooperative) framework for modelling the concept of destructive competition

that was prevalent in the old regulation literature (e.g. Sharkey, 1982). Indeed, there is an
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excellent match between the theoretical predictions of the Cournot model in that case and

the stylised facts commonly associated with destructive competition.

The sixth point proposes to define natural (unregulated) monopoly as an industry where

the socially optimal number of firms is one, as opposed to the old definition of (regulated)

natural monopoly based on the inability to improve on costs by subdividing production,

a purely production-based criterion. This new definition clearly balances the market and

production sides, and is more appropriate in the absence of regulation and contestability.

All these applications emphasize the role of scale economies in engendering a trade-off

between the market effect and the production efficiency effect. They convey the sense that

our simple results form a pre-requisite for a thorough understanding of the issues presented.

2. The Model

The fundamental questions under investigation here can be simply phrased as follows: How

do total equilibrium output (and hence industry price), per-firm profit, industry profit and

social welfare vary with the exogenously given number of firms in the industry? We consider

these fundamental questions in the framework of equilibrium comparisons (as in Milgrom

and Roberts, 1994), the exogenous parameter being the integer number of firms.

We begin with the basic notation. Let P : R+ → R+ be the inverse demand function,

C : R+ → R+ the (common) cost function, A : R+ → R+ the average cost function, and n

the number of firms in the industry. Let x denote the output of the firm under consideration,

y the total output for the other (n − 1) firms, and z the cumulative industry output, i.e.,

z = x+y. At equilibrium, these quantities will be indexed by the underlying number of firms

n. We explicitly deal with the (possible) nonuniqueness of Cournot equilibria by considering

extremal equilibria. Denote the maximal and minimal points of any equilibrium set by an

upper and a lower bar, respectively. Thus, for instance, zn and zn are the highest and lowest

total equilibrium outputs, with corresponding equilibrium prices p
n

and pn, respectively.

Performing comparative statics on equilibrium sets will consist of predicting the direction of

change of these extremal elements as the exogenous parameter varies.

The profit function of the firm under consideration is

Π (x, y) = xP (x + y)− C (x) (1)
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Alternatively, one may think of the firm as choosing total output z = x + y, given the

other firms’ cumulative output y, in which case its profit is given by

Π̃ (z, y) = Π (z − y, y) = (z − y) P (z)− C (z − y) (2)

Let 4 (z, y) denote the cross-partial derivative of Π̃ with respect to z and y, i.e.,

4 (z, y) = −P
′
(z) + C

′′
(z − y) (3)

Note that both Π̃ and 4 are defined on the set ϕ
∧
= {(z, y) : y ≥ 0, z ≥ y}.

The following Standard Assumptions are in effect throughout the paper:

(A1) P (·) is continuously differentiable and P
′
(·) < 0.

(A2) C (·) is twice continuously differentiable on (0,∞) and C
′
(·) > 0.

(A3) There exists x̂ > 0 such that P (x) < A(x) for all x > x̂.

Although convenient, the smoothness assumptions are by no means necessary for our main

results. (A3) simply guarantees that that a firm’s reaction curve eventually coincides with

the horizontal axis, so that a firm’s effective outputs, and thus all Cournot equilibrium

outputs, are bounded by some constant, say K , for all n.

The qualitative nature of most of our results hinges entirely on the global sign of ∆, so

that we will distinguish two main cases: ∆ > 0 and ∆ < 0. When ∆ > 0 globally, there will

be two subcases of interest depending on the returns to scale, or the slope of the average

cost curve. This division is already apparent in the upcoming example, which may serve as

a blueprint for the entire paper.

3. Concentration, Returns to Scale and Industry Performance:
The Main Example

We now consider a simple example that provides an excellent and thorough overview of most

of the results derived in this paper.5 As a parameter capturing the returns to scale is varied,

the example can fit the two major cases of analysis of the general model: ∆ < 0 and ∆ > 0.

In the latter case, the example can also capture the two subcases of interest: economies or

5 This example would be very appropriate for the purpose of presenting in a very elementary framework the
essentials of the analysis to undergraduate students or economic practitioners.
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diseconomies of scope. In addition, this example will also be invoked later on to gain further

insight into the tightness of the conditions behind our general results.

Let the inverse demand be linear and the cost function be quadratic6 , i.e.,

P (z) = a− bz and C(x) = cx + dx2 (4)

with the assumption throughout that a > c > 0 , b > 0 , b + d > 0 .

Since A(x) = c + dx, returns to scale are increasing (decreasing) if d > (<)0. Thus d is

our returns to scale parameter, key to many results below. Furthermore (cf. (3))

∆ = b + 2d R 0 if d R −b/2 (5)

The reaction function is always linear (when strictly positive) and given by r(y) = a−c−by
2(b+d)

.

Thus for any number of firms n there is always a unique symmetric Cournot equilibrium.

Omitting some lengthy calculations (including solving for the symmetric Cournot equilibrium

via r[(n− 1)xn] = xn ), this equilibrium satisfies

xn =
a− c

b(n + 1) + 2d
, πn =

(b + d)(a− c)2

[b(n + 1) + 2d]2
, Wn =

n[b(n + 2) + 2d)](a− c)2

2[b(n + 1) + 2d]2
(6)

Furthermore, if d > −b/2 (or ∆ > 0), the slope of the reaction curve in larger than −1 and

the symmetric equilibrium is the unique equilibrium. It is also globally stable in the sense

that best-reply Cournot dynamics converges to this equilibrium, from any initial outputs.

On the other hand, if d < −b/2 (or ∆ < 0), then r′(y) ≤−1, so that r(y) decreases steeply

and is equal to 0 when y ≥ (a − c)/b .7 For the n-firm oligopoly, the unique symmetric

equilibrium (with all firms active) is unstable in the sense that best-reply Cournot dynamics

diverge away from it (Seade, 1980).

It can be verified that for the unique symmetric equilibrium:

(i) per-firm output xn is always decreasing in n (cf. Proposition 1b).

6 This specification of the demand and cost functions with the restriction d < 0 has already been considered
with different motivations in Cox and Walker (1998) and d’Aspremont, Gerard-Varet and Dos-Santos-Ferreira
(2000). Neither study deals with our main issues: industry profits and social welfare.
7 Consequently, there are several other Cournot equilibria, and they can be characterized as follows. With
n being the total number of firms in the industry, if any m firms (with m < n) produce the output xm each
(given in (6)), and the remaining n−m firms produce nothing, the resulting output configuration is clearly
a Cournot equilibrium. To see this, observe that r(mxm) = 0, since mxm ≥ (a − c)/b, as can be easily
checked. In particular, if any one firm produces the optimal monopoly output x1 = (a− c)/(b + 2d), and all
the others produce nothing, we have a Cournot equilibrium. Again, this follows from r(x1) = 0 since x1 ≥
(a− c)/b, and x1 = r(0) clearly. Given the linearity of the reaction curve here, this is easy to see graphically.
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(ii) industry output zn = nxn is increasing in n if d > −b/2 (or ∆ > 0) and decreasing in n

if d < −b/2 (or ∆ < 0) (cf. Propositions 1a and 2a).8

(iii) per-firm profit πn is always decreasing in n (cf. Propositions 1c and 2c).

It remains to analyse the effects of n on industry profits and social welfare. It is convenient

here to treat the number of firms as a real variable. For industry profits, we have (with the

computational details left out)

∂(nπn)

∂n
T 0 if and only if n S 1 + 2d/b. (7)

Here, there are two separate cases of interest:

(i) d < 0 : Then industry profits always decrease with the number of firms, with in particular

monopoly having the largest industry profit.

(ii) d > 0 : Then ñ = 1 + 2d/b maximizes industry profits, which thus increase in n when

n < ñ and decrease in n when n > ñ, starting from any given n. Observe that if d/b < 1/2,

then 1 < ñ < 2. Hence, in particular, if ñ = 1 (i.e. monopoly is the market structure that

maximizes total profits), industry profits would be globally decreasing in n. But if d is large

enough, i.e., if there are sufficiently high returns to scale, industry profits will be rising in n

initially, all the way to ñ which may be a large number of firms, but industry profits always

eventually decrease in n (i.e., for n > ñ.)

For social welfare, one can easily verify that

∂Wn

∂n
T 0 if and only if nbd T −(b + d)(b + 2d) (8)

Again, there are two separate cases of interest:

(a) ∆ < 0 iff d < −b/2: Welfare always decreases with n (cf. Proposition 10.)

(b) ∆ > 0 iff d > −b/2: Here, there are two different subcases of interest.

(i) d > 0 : welfare always increases in n (cf. Proposition 6.)

(ii) if −b/2 < d < 0, then welfare is maximized at n∗ = −(b+ d)(b+2d)/bd , increases in

n for n < n∗ and decreases in n for n > n∗ (cf. Proposition 8). Observe that this statement

is true no matter how close d is to 0 (from below)! In other words, the slightest presence of

8 The intuition behind the counter-intuitive case ∆ < 0 is that with more competition, each firm lowers
output drastically since r′(y) < −1, thereby moving up its steeply declining average cost curve. The resulting
efficiency loss is large enough to overcome the downward pressure on price engendered by the increase in
competition. The increase in average cost is passed on to consumers via a higher price.
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(uniform) scale economies causes welfare to be eventually declining in n (i.e., for sufficiently

large values of n). The parameters of this example can be chosen to make n∗ equal any

desired value from 1 on, while satisfying all the underlying constraints here.

The economic intuition can now be stated concisely and precisely since the main results

hinge mainly on the sign of ∆ = −P ′ + C ′′, and sometimes also on the returns to scale.

For industry price, there are two effects at work, a market or competition effect captured

by the term −P ′, and a production or scale effect captured by C ′′. The market effect always

pushes in the intuitive direction that price should fall with the number of firms. The scale

effect goes in the same direction if and only if costs are convex. When costs are concave, the

overall outcome on price is determined by the relative strength of the two effects. Per-firm

profit always behave in the intuitive way.

For industry profits, the market effect pushes in the intuitive direction if and only if

industry price is well-behaved ( ∆ > 0). The production effect works in the intuitive direction

if scale economies are present. When the two effects are antagonistic, the outcome depends

on the relative strengths again.

Viewed as the sum of consumer and producer surpluses, social welfare can be discussed

on the basis of the previous assessments. Thus, with ∆ > 0 and diseconomies of scale,

consumer surpluse increases with n, overcoming a possible decrease in producer surplus (the

latter effect being ambiguous). With ∆ < 0, strong scale economies are necessarily present,

and both surpluses decrease wth n. Finally, with ∆ > 0 and economies of scale, consumer

surplus moves up and producer surplus down, with an ambiguous net effect.

In conclusion, this example provides a microcosm for the entire paper. In the remainder,

we present a generalization of the insights illustrated so far, preserving another key role for

this Example in testing the tightness of the sufficient conditions given for our various results.

4. A General Cournot Analysis of Industry Performance

This section contains the general analysis of the interplay between market structure or

concentration and scale economies in determining industry performance as reflected in price,

outputs, industry profits and social welfare. This amounts to comparing Cournot equilibria

along these characteristics as the number of firms varies. In an attempt to obtain the broadest
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possible understanding of the issues involved, we provide a series of minimally sufficient

conditions for the desired conclusions, combined with tight complementary examples to

shed further light on the relationship between assumptions and conclusions. The proofs

combine analytical simplicity with generality. Nonetheless, we supplement the presentation

with some heuristic arguments whenever it is felt they may provide additional insight.

Methodologically, we make crucial use of the lattice-theoretic comparative statics ap-

proach.9 This allows for very general conclusions relying only on critically needed assump-

tions, thereby leading to clean and tight economic interpretations of the conclusions, as well

as analytical rigor. In the present context, the usual arguments in favor of this approach

become even more pertinent, as the parameter of interest, the number of firms, is an integer:

See Appendix for a graphical illustration of many important details on this issue.10

While the condition ∆ > 0 is familiar in Cournot theory at least since Hahn (1962), it

has typically been used in conjunction with many other assumptions, such as some form of

concavity of each firm’s profit in own output, decreasing marginal revenue, etc...The latter

assumptions interfere with a good intuitive understanding of the economic forces at work,

as they are also made for the case ∆ < 0. As shown below, there is a very natural division

of the results here, and it depends only on the global sign of ∆. The latter has a very

simple and appealing interpretation: ∆ > 0 (∆ < 0) means that price, or residual inverse

demand, decreases (increases) faster than marginal cost. Since P
′
< 0, it is clear that the

convexity of C implies 4 > 0 on ϕ. Likewise, strong concavity of C is required for ∆ < 0.

Examples provided below illustrate that ∆ > 0 can hold globally even when the cost function

is everywhere concave, an important subcase of analysis in this paper.

9 In particular, we invoke the general results of Milgrom and Roberts (1994), in addition to Topkis (1978).
More specific to Cournot oligopoly, we build on the results of Amir and Lambson (2000). See also McManus
(1962) and Roberts and Sonnenschein (1976) for early antecedents.
10The traditional method based on the Implicit Function Theorem and the signing of derivatives can provide
insight for special cases, but is ill-suited for the requisite analysis at hand. The main reason is that it rests
on assumptions (such as concavity and equilibrium uniqueness) that need not be satisfied in our general
setting. Furthermore, as these same assumptions are needed in all the otherwise mutually exclusive cases
of analysis, this method prevents a tight intuitive understanding of the economic forces behind each result.
Finally, in the context at hand, as the parameter of interest is an integer, traditional methods have further
drawbacks: See de Meza (1985), Amir and Lambson (2000) and Milgrom and Roberts (1994).
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4.1 Equilibrium Price and Outputs

The results of this subsection have been proved in Amir and Lambson (2000). They are

stated here without proof, interpreted and then used in the sequel in looking at industry

profit and social welfare. For a more detailed presentation, the reader is referred to the

above paper. In the Appendix, a graphical illustration of the need for the new comparative

statics is presented, with the conclusion that only extremal equilibria can be unambiguously

compared as the number of firms varies.11 For any variable of interest, the maximal

(minimal) value will always be denoted by an upper (lower) bar.

Proposition 1 Let 4 (z, y) > 0 on ϕ. For each n, there exists a symmetric equilibrium and
no asymmetric equilibria. Let xn be an extremal Cournot equilibrium output.
(a)Industry output zn is nondecreasing in n, and hence price pn is nonincreasing in n.
(b) xn is nonincreasing [nondecreasing] in n if log P is concave [convex and C(·) ≡ 0].
(c)The corresponding equilibrium profit πn is nonincreasing in n.

Thus the Cournot model is quasi-competitive here (Part (a)). The fundamentally needed

assumption is the supermodularity of Π̃ on ϕ, which is equivalent to ∂2Π̃/∂z∂y = ∆ > 0.

This implies that the line segment joining any two points on the graph of the reaction

correspondence r of a firm must have a slope ≥ −1, which means that, in response to an

increase in rivals’ output, a firm can never contract its output by more than this increase.

In particular, this precludes downward jumps for r (while allowing for upward jumps).12

The other case is characterized by the assumption4 (z, y) < 0, implying that r has all its

slopes bounded above by −1: as the joint output of the rivals is increased, a firm optimally

reacts by contracting its output so much that the resulting total output decreases.

Proposition 2 Let 4 (z, y) < 0 on ϕ. Then assuming Π(·, y) is quasi-concave, we have:
(a) There is a unique symmetric equilibrium, and it satisfies: xn, zn and πn are nonincreas-
ing in n. Hence pn is nondecreasing in n.
(b) For any m with 1 ≤ m < n, the following is an equilibrium for the n-firm oligopoly:
Each of any m firms produces xm while the remaining (n −m) firms produce nothing. All
these Cournot equilibria are invariant in n, in that all entering firms would produce zero.
(c) There are no other Cournot equilibrium (than those of Parts (a) and (b)).

For this case, we henceforth focus on the symmetric equilibria13 (from Part (a)).

11For unstable equilibria (in the sense of best-reply Cournot dynamics), the price comparative statics is
counter-intuitive (as seen in the Appendix), and this will carry through to other results.
12This property was noticed and exploited in classic papers by McManus (1962) and Roberts and Sonnen-
schein (1976) to establish the existence of Cournot equilibrium in the case of symmetric firms with convex
cost functions. See Amir and Lambson (2000) for a generalization.
13
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4.2 Industry Profits and Social Welfare

Here, the effects of an exogenous change in the number of firms on total profits and social

welfare are investigated. Most of the results below are stated both in a local and in a global

sense, the latter being a direct consequence of the former. Elementary (heuristic) proofs for

the global statement are given in the text, while rigorous proofs for the local statement are

given in Appendix. We emphasize that the latter, while not standard, nonetheless combine

generality with simplicity ! For the same reasons as before, we continue to focus on the

two extremal equilibria for all our results, and to separate the analysis of our comparative-

equilibria results into two cases, according to the global sign of ∆.

4.3 The Case ∆ > 0

Recall that ∆ > 0 globally is consistent with both globally increasing and decreasing returns

to scale. We begin with the effects of concentration on industry profits. The local statement

(a) below is more general than the global statement (b). The former requires a rigorous

proof, given in Appendix (A1), while the latter is heuristically proved here with a standard

approach. This separation of proofs applies to most of our main results below.

Proposition 3 Let ∆ > 0 on ϕ. For the extremal equilibria,
(a)Industry profit nπn is globally nonincreasing in n if A(·) is nonincreasing.
(b)nπn ≥ (n + 1)πn+1 for any given n if A(n+1

n
xn+1) ≤ A(xn+1).

Proof. We present here a simple heuristic proof of (a). Assuming n is a real and nπn =

zn[P (zn)−A(xn)] is differentiable in n, one can get d(nπn)
dn

= dzn

dn
[P (zn)−A(xn)]+zn[P ′(zn)dzn

dn
−

A′(xn)dxn

dn
]. Using the first-order condition for a symmetric Cournot equilibrium,

P (zn)− A(xn) + xn[P ′(zn)− A′(xn)] = 0 (9)

and simplifying, one arrives at

d(nπn)

dn
= xnA

′(xn) + (n− 1)P ′(zn)
dzn

dn
(10)

Now, d(nπn)
dn

≤ 0 follows from A′(xn) ≤ 0, and dzn

dn
≥ 0 since ∆ > 0 (Proposition 1a).

Here existence of a symmetric equilibrium is not guaranteed for all n without the quasi-concavity assump-
tion, as the best-response may have a downward jump where it skips over the y/(n− 1) lines for some n’s,
thus implying the absence of a symmetric equilibrium for those n’s.
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Since per-firm profit πn always falls with n, Proposition 3 asks whether πn falls fast

enough to have nπn ≥ (n + 1)πn+1. In interpreting the proposition, it is convenient to

separate the overall effect of an increase in the number of firms on industry profits into two

distinct parts, as suggested by the above proof. The market or total revenue effect, which

may be isolated by setting A′ = 0, always pushes in the intuitive direction that industry

profits must fall. On the other hand, the production or efficiency effect goes in the same

direction if and only if scale economies are present.14

The proof of the result also makes it clear that the conclusion follows when both the

market and the production efficiency effects push in the same direction, which suggests the

condition on average cost is sufficient but not necessary. It is natural then to ask how critical

this assumption is for this conclusion. Treating the number of firms as a real number, the

following argument provides a simple but interesting insight: Monopoly is never the profit

maximizing market structure under increasing average cost.

Proposition 4 if A′(·) > 0, industry profit increases from monopoly level as the number of
firms is increased slightly beyond n = 1.

Proof. Setting n = 1 in (10), we have
[

d(nπn)
dn

]
n=1

= x1A
′(x1) > 0.

Observe that this need not mean that duopoly has higher profit than monopoly, as

industry profit may peak between n = 1 and n = 2, with either π1 or 2π2 as the highest

value. This point is illustrated in the Main Example where, for d < b/2, industry profits

may well be globally decreasing in the number of firms, and are certainly decreasing in n for

n ≥ 2 (see (7)). Thus, Proposition 4 relies crucially on the number of firms being a real.

Nonetheless, the point made here is important as it shows that the slightest amount

of increasing returns pushes toward industry profits that are increasing in the number of

firms. Whether this effect actually succeeds in preventing industry profit from being globally

decreasing in the integer number of firms depends on the strength of the increasing returns,

as suggested by the Main Example. Indeed, from (7), a sufficient condition for industry

profit not to be globally decreasing in n is d > b/2.

14By contrast, an n-firm cartel always has higher optimal profit than the total n-firm oligopoly profit, since
the cartel, with access to n plants, always has the option of producing nxn at a cost at most equal to the
total cost of the n-firm oligopoly. There is thus an obvious difference between a monopoly (with access to
one plant) and a cartel composed of n identical firms.

13



We now turn to the welfare analysis. In case of multiple Cournot equilibria, xn is the

Pareto-dominant equilibrium for the firms (i.e. leads to the largest producer surplus) and

Pareto-worst equilibrium for consumers (i.e. leads to the smallest consumer surplus), while

xn is Pareto-preferred for consumers and Pareto-worst for the firms. It is then of interest to

know whether the Cournot equilibria are ranked according to (the Marshallian measure of)

social welfare, defined as
∫ z

0
P (t)dt − nC(z/n). In other words, is one of the two surpluses

always dominant? The next result (proof in Appendix A1) settles this question in favor of

consumer surplus.

Proposition 5 Let ∆ > 0, and xn and x′n denote two distinct equilibrium per-firm outputs
with corresponding social welfare levels Wn and W ′

n. If xn ≤ x′n, then Wn ≥ W ′
n. Hence, xn

is the social welfare maximizer among all equilibrium per-firm outputs.

As Proposition 1 shows, the case ∆ > 0 is consistent with both xn increasing and xn

decreasing. The implications of these two possibilities on social welfare are quite different,

as reflected in the next result. Also, if the demand function does not satisfy either condition

(log-concavity or log-convexity) from Proposition 1(b), then xn will generally not be mono-

tonic in n. Thus, in the following result, the local statement (b) of the welfare result is more

general than the global statement (a).

Proposition 6 Let ∆ > 0 on ϕ. For any n, at an extremal equilibrium,
(a) Social welfare is nondecreasing in n if (i) A(·) is nondecreasing and xn ≥ xn+1, or

(ii) xn ≤ xn+1.
(b) Wn+1 ≥ Wn for a given n if either one of the following holds: (i) A(xn+1) ≤ A(xn),

or (ii) xn ≤ xn+1.

Proof. We prove Part (a) in a simple heuristic way, and leave the proof of Part (b) to

Appendix. Assuming differentiability of Wn and xn with respect to n, and differentiating

through Wn =
∫ zn

0
P (t)dt− znA(xn), one gets dWn

dn
= P (zn)dzn

dn
− dzn

dn
A(xn)− znA

′(xn)dxn

dn
, or

dWn

dn
= πn + n[P (zn)− C ′(xn)

dxn

dn
] (11)

Using the first-order condition for a Cournot equilibrium (9), and simplifying yields

dWn

dn
= xn[A′(xn)xn −

dzn

dn
P ′(zn)] (12)

For (a), the conclusion follows from (11) since P (zn) ≥ C ′(xn) and dxn

dn
≥ 0. For (b), the

conclusion follows from (12) since A′(xn) ≥ 0 and dzn

dn
≥ 0 (from ∆ > 0).
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Since price falls with the number of firms here, consumer surplus always increases. How-

ever, producer surplus may a priori move either way. So the proposition identifies two

sufficient conditions (diseconomies of scale and decreasing per-firm output, or increasing

per-firm output) implying that total profit will never decrease enough to overcome the in-

crease in consumer welfare and result in lower social welfare. An alternative way to think of

this result is as follows. Due to the increase in industry output, the sum of consumer surplus

and industry revenue (i.e. total benefit or the total area under the inverse demand up to the

equilibrium output) always increases with the number of firms. On the other hand, industry

costs may go either way. In this perspective, Proposition 6 identifies conditions ensuring

that industry costs will never increase enough to cause social welfare to overall decrease, in

spite of the increase in total benefit.

Propositions 3 and 6, taken together, imply that conventional wisdom fully prevails for

the case of constant returns to scale, which is widely invoked in industrial organization.

Corollary 7 With linear cost, C(x) = cx, industry profit nπn is nonincreasing in n and
social welfare Wn is nondecreasing in n, for all n, at any extremal equilibrium.

Proof. This follows directly from Propositions 3 and 6, as average cost is constant.

In the presence of scale economies, it is of interest to shed further light on the welfare-

maximizing number of firms n∗. Treating the number of firms as a real variable, we can

provide a characteriation and an interesting interpretation of n∗ (cf. (8)).

Proposition 8 Assume ∆ > 0 and global scale economies prevail (i.e. A′(·) ≤ −ε < 0).
Then the welfare-maximizing number of firms n∗ is finite and satisfies

d[P (zn∗)]

dn
= C ′(xn∗)− A(xn∗) (13)

Proof. It is convenient here to rewrite (12) as

dWn

dn
= x2

n[A′(xn)− 1

xn

dzn

dn
P ′(zn)]. (14)

Differentiating the Cournot equilibrium first-order condition P (zn)+xnP
′(zn) = C ′(xn) with

respect to n and symplifying, one can evaluate

1

xn

dzn

dn
=

P ′(zn)− C ′′(xn)

(n + 1)P ′(zn) + znP ′′(zn)− C ′′(xn)
−→ 0 as n →∞.
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Hence, given the ε such that A′(·) ≤ −ε < 0, there is some N large enough such that

n ≥ N =⇒ − 1
xn

dzn

dn
P ′(zn) < ε ≤ −A′(xn), and xn > 0. Then from (14), it follows that

dWn

dn
< 0 for all n ≥ N . This implies Wn has a maximum for n ≤ N . Setting dWn

dn
= 0 in (14)

yields P ′(zn)dzn

dn
= xnA

′(xn). (13) then follows from the obvious relations C ′(xn)− A(xn) =

xnA
′(xn) and d[P (zn)]

dn
= P ′(zn)dzn

dn
.

Thus, the socially optimal number of firms has a simple interpretation: The last ”marginal

firm” taken in lowers industry price by exactly the difference between average and marginal

cost at the equilibrium per-firm output. This equalizes marginal social benefit (the sum

of consumer surplus and firms’ revenues) with marginal social cost (the production costs).

While the fact that the socially optimal number of firms is typically finite in the presence of

fixed costs is well-known, Proposition 8 is nonetheless somewhat surprising as it relies only

on the slightest level of scale economies and not necessarily on any fixed costs.15

The next example shows that if A′ ≤ 0 but A′(0) = 0, Wn may be globally increasing in

n, so that n∗ = ∞. Hence, the assumption A′(0) < 0 in Proposition 8 is crucially needed:16

Example 2. Let P (z) = 2− z and C(x) = x− .1x3/3, for x ≤
√

30.

Thus A(x) = 1 − .1x2/3 and A′(0) = 0. There is a unique Cournot equilibrium with

xn = 5[n + 1−
√

(n + 1)2 − .4]. It can be numerically verified that Wn is increasing in n.17

4.4 The case ∆ < 0

Strong economies of scale are necessary for ∆ to be globally negative. One feature that is

known to give rise to economies of scale is the presence of (avoidable) fixed-costs. Without

these, one needs a strongly concave cost function for ∆ < 0 to be possible.

In view of the multiplicity of Cournot equilibria described in Proposition 2 (b), free

entry would give rise to every possible integer number of firms being active, with all firms

producing equal outputs.18 Furthermore, the equilibrium with m active firms is also a

15With diseconomies of scale (or A′(·) > 0), (13) holds with a ≤ sign instead of the = sign. In the limit as
n →∞, both sides of (13) are zero, as should be the case for perfect competition (recall that marginal and
average costs intersect at the latter’s minimum): See Ruffin (1971).
16The Main Example also shows that any (uniform) level of scale economies, i.e. the smallest (in absolute
value) d < 0, the conclusion that social welfare globally increases with the number of firms would fail as
shown by (8): See Point (b)(ii) just below (8).
17Wn = 5x(x + 1−

√
(x + 1)2 − .4)− 12.5x2(x + 1−

√
(x + 1)2 − .4)2 + 4. 166 7x(x + 1−

√
(x + 1)2 − .4)3.

18This refers to the subgame-perfect equilibria of a two-game of entry where (infinitely many) firms simulta-
neously decide whether to enter or not at no cost in the first stage, and the entrants then engage in Cournot

16



Stackelberg equilibrium of a two-stage game where the m firms act as first-movers and the

rest of the firms as second movers, m ≤ n− 1: Amir and Lambson (2000), Robson (1990).

The only general result on industry profit we can offer here vindicates the conventional

wisdom only about monopoly.

Proposition 9 Let ∆ < 0 on ϕ. Industry profit is highest under a monopoly than under
any other market structure, i.e., π1 ≥ nπn, for all n.

Proof. Since the cost function is concave (hence subadditive), a single firm has the option

of producing the n-firm total Cournot output zn = nxn at a cost lower than that of the

n-firm oligopoly (i.e., C(nxn) ≤ nC(xn)) for any n. The conclusion then follows.

While no counterexample could be found to establish that nπn is not always decreasing

in n, the following argument suggests the conjecture might be false. Total cost is easily seen

to increase in n here, but the revenue part ”moves in the counterintuitive direction”.19

The welfare comparative statics is unambiguous here, due to the strong scale economies:

With more firms, output per firm is strongly reduced, resulting in a drastic increase in

average cost. This efficiency loss overcomes any other countervailing considerations.

Proposition 10 Let ∆ < 0 on ϕ. Then at the unique symmetric equilibrium, social welfare
Wn is nonincreasing in n, for all n.

Proof. The conclusion follows from (12) since A′(xn) ≤ 0 and dzn

dn
≤ 0 (from ∆ < 0).

Since price increases with the number of firms here (Proposition 2a), consumer surplus

decreases. Also, as average cost and equilibrium per-firm output both decline rapidly, equi-

librium total production costs increase rapidly with the number of firms here. Hence, even if

total profits go up, the increase will never be sufficient (recall also that per-firm profit goes

down) to overcome the fall in consumer surplus.

Corollary 11 Let ∆ < 0 on ϕ. Then monopoly leads both to the highest producer surplus
and to the highest consumer surplus levels.

competition in the second stage upon observing the number of entrants. Lopez-Cunat (1999) analyses the
differences between this entry process and the one-stage version used by Novshek (1980) among many others.
19Indeed, if it were possible to have nxn ≥ (n + 1)xn+1 while C ≡ 0 (which we know is impossible since
C ≡ 0 clearly implies ∆ > 0), we would have Πn+1 = xn+1P [(n + 1)xn+1] ≥ nxn

n+1P
(

nxn

n+1 + nxn+1

)
≥

nxn

n+1P
(

nxn

n+1 + n nxn

n+1

)
= nxn

n+1P (nxn) = nΠn

n+1 , where the first inequality is from the Cournot equilibrium
property and the second from the facts that P is decreasing and nxn ≥ (n + 1)xn+1. It would then follow
that (n + 1)Πn+1 ≥ nΠn: Industry profit would be increasing in the number of firms!
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Proof. The two statements follow respectively from Propositions 9 and 2a.

In view of the counterintuitive nature of many of the results in the case ∆ < 0, it is

natural to ask whether these results could have any predictive value in describing imperfect

competition in some real-world markets.20 Experimental evidence suggests that unique

(stable) Cournot equilibria are good predictors of actual behavior (Holt, 1986). By contrast,

Cox and Walker (1998) report that in a symmetric Cournot game with three equilibria, a

symmetric unstable one and two boundary or monopoly equilibria (cf. Proposition 2), lab-

oratory behavior reflected no regular patterns of play that would support any of the three

equilibria. Rather, play seemed to proceed along irregular cycles around the three equilibria,

meaning that the players continuously exhibited large swings in their output levels, convey-

ing a clear sense of unstable behavior. On the other hand, none of the Nash equilibrium

refinements for one-shot games (such as perfection, properness, strategic stability, etc..., see

e.g. Fudenberg and Tirole, 1991) can discard Cournot-unstable equilibria, although some

evolutionary learning processes can. Finally, regardless of stability properties, symmetric

Cournot equilibria can always be regarded as being focal (Schelling, 1960.)

4.5 Hybrid Cases

In view of the level of generality of our conclusions, the fact that the entire analysis rests

essentially on one easily checked condition on the global sign of ∆ is a remarkable feature. On

the other hand, there are many demand-cost combinations of interest for which ∆ changes

signs on its domain: Hybrid cases. For these, Cournot equilibria will generally not behave in

the globally monotonic ways we uncovered here. The issue of existence also needs separate

attention then. De Meza (1985) provides an interesting hybrid counterexample highlighting

the differences between local and global comparative statics and showing that treating n

as a real number can lead to misleading results. Nonetheless, in spite of the nonmonotonic

behavior of some of the variables of interest, some of the insights we developed can still be

useful here. We offer an example.

Example 3. Let P (z) = 1
z+1

and C(x) = 1
2
log(x + 1).

It is easily checked that4 (z, y) changes signs on ϕ (so that our results do not apply here),

20Further discussion of this issue is provided in Section 5 where the characteristics of the Cournot equilibria
here are identified with the concept of destructive competition, among other applications.
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and that Π(x, y) =
x

x + y + 1
− 1

2
Log (x + 1) is quasi-concave in x, for fixed y. The reaction

curve is r(y) =
√

1− y2, and the (unique) Cournot equilibrium is given by xn = 1√
n2−2n+2

.

Simple calculations show that while xn and nπn are decreasing in n, for all n, zn and thus

pn are not monotonic in n (details are left out).

Social welfare is given by Wn = log( n√
n2−2n+2

+ 1) − n
2

log( 1√
n2−2n+2

+ 1). In particular,

W1 = 1
2
ln 2 ' . 34657, and W2 = ln

(√
2 + 1

)
− ln

(
1
2

√
2 + 1

)
' . 34657, so that W2 ' W1.

Thus21 , n∗ = {1, 2}: A social planner is indifferent (at least up to 5 decimals) between

monopoly and duopoly as the optimal choice!

5. On some Theoretical and Policy Implications

The results presented here lie at the heart of the modern theory of industrial organization

and can, to some extent, illuminate a number of past as well as present theoretical issues

and public policy debates. In particular, we relate our findings to the relationship between

Cournot outcomes and perfect competition, the regulation of entry, the welfare content of

the Herfindahl index, natural monopoly and destructive competition. Surprisingly, the latter

two notions have not really been linked with Cournot theory in the past. We attempt to fill

this gap below. In some cases, we also present some new results here.

5.1 Relationship to Perfect Competition

Ruffin (1971) showed that if the number of firms is increased with fixed demand22 , Cournot

equilibria converge to the perfectly competitive equilibrium under global diseconomies of

scale, but not under global economies of scale. Our conclusions shed some light on this

result by indicating that (i) in the former case, equilibrium welfare converges monotonically

to first-best welfare, and (ii) in the latter case, although industry profits and per-firm output

both monotonically converge to zero, welfare does not increase to first-best welfare, due to

firms producing at increasing (and in the limit, maximal) average cost. Here, first-best

welfare would involve one firm producing the entire output and pricing at marginal cost.23

21In fact, viewing n as a real variable, it can be shown that Wn is single-peaked in n and achieves its
maximum at n ' 1.36.
22See Novshek (1980) for the other approach, where demand is replicated.
23The planner’s objective is then max{

∫ nx

0
P (t)dt − nC(x) : n ≥ 1, x ≥ 0}. The first-order conditions are

P (nx) = C ′(x) and xP (nx) = C(x). These imply that marginal and average cost are equal, as is well-known
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5.2 Free versus Socially Optimal Entry

Perry (1984), Mankiw and Whinston (1986) and Suzumura and Kiyono (1987) put to rest

a long-standing belief that free-entry leads to insufficient competition by showing that the

opposite conclusion holds under general assumptions, using a two-stage game where firms

decide upon entry in the first period, and then compete a la Cournot in the second period.

The comparison benchmark is second-best social optimum in that the regulator controls

firms’ entry decisions but not their market conduct. Suzumura and Kiyono (1987) differs

from the other two papers in that costless entry is assumed, and two extra results are

established: (i) with convex costs, free entry is excessive relative to the first-best level, where

the regulator also controls pricing or market conduct, see Footnote 24 (and von Weiszacker,

1980) and (ii) the first and second-best levels of entry are generally not comparable.

Our welfare results indicate that some of Suzumura and Kiyono’s conclusions are not

really instructive, and potentially misleading. Indeed, with diseconomies of scale, Cournot

equilibrium welfare increases monotonically with the number of firms to the first-best level,

so that both the first and the second-best socially optimal numbers of firms are infinite (for

the former, see Footnote 24.) The free-entry number of firms is also infinite24 , so that all

three entry levels are actually equal in a trivial way.

With (strict) economies of scale25 , the second-best socially optimal number of firms is

finite, and equal to n∗ (which is 1 if ∆ < 0), the first-best is always 1 (see footnote 24),

while the free-entry number is infinite (see Footnote 25). Hence, free entry obviously leads

to socially excessive entry under both criteria. Furthermore, the level of entry is at least

as high under second-best than under first-best regulation.26 Thus our results substantially

clarify and extend the analysis of Suzumura and Kiyono (1987).

for a first-best solution. In particular, the first-best number of firms is then 1 if A′ < 0 and ∞ if A′ > 0.
24The latter follows from the fact that Cournot equilibria are intersections of r with the rays y/(n− 1), and
(i) the fact that r has all its slopes greater than −1, if ∆ > 0, or (ii) the fact that r is continuous if a firm’s
profit is quasi-concave in own output (whether ∆ < 0 globally or not).
25These may also prevail over the relevant range of operation regardless of the properties of the ”variable”
cost function in the case of costly entry (with the entry cost acting as a fixed cost). Hence, our conclusions
here may also apply when entry is costly.
26Both the latter statements are actually new results here, as Suzumura and Kiyono assume convex costs in
the comparison between the free-entry and the first-best outcomes.
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5.3 The Herfindahl Concentration Index and Welfare

The Herfindahl-Hirschman Index (or HHI) of industry concentration, defined as a (normal-

ized) sum of the squares of the firms’ market shares, is the most often used quantitative

assessment of industry concentration. In particular, the value of the HHI constitutes the

primary indicator for antitrust authorities of market power and of the likelihood of overt

or tacit collusion in a given market. The HHI is also one of the main elements of the 1982

Merger Guidelines27 in determining whether a proposed merger is to be allowed.

Underlying the extensive reliance of economic law on this measure is a fundamental

belief that social welfare and the HHI are always inversely related (see e.g. Dansby and

Willig, 1979). Yet, this belief has recently been challenged by theoretical studies based

on the Cournot model. Farrell and Shapiro (1990) establish that, with a fixed number of

(nonidentical) firms, whenever industry output is unchanged folowing individual firm output

changes, social welfare and the HHI must change in the same direction. Salant and Shaffer

(1999) provide further insight into this result in the case of constant unit costs by showing

that both welfare and the HHI increase if the variance of the unit costs increases in a mean-

preserving way. Also see Daughety (1990).

The present paper sheds further light on this issue by considering the effects of changing

the number of firms instead. Given the symmetry assumption, the HHI with n firms here

is clearly given by (a constant factor of) 1/n. Hence, the HHI decreases if and only if the

number of firms increases. On the other hand, our results indicate that in the presence of

scale economies (with A′ < 0), social welfare decreases if the number of firms exceeds some

socially optimal level n∗. Thus, both the HHI and welfare decrease whenever n increases

beyond n∗. In particular, in industries where n∗ = 1, the two measures would always produce

conflicting prescriptions as the number of firms increases.

This conclusion clearly suggests that the HHI should be augmented by some measure

of economies of scale in the industry that would allow appropriate balancing between the

legitimate fears of market power and the desire for production efficiency.

27For some historical backround on these Guidelines and an exchange of views among experts, see the
Symposium in the Journal of Economic Perspectives, vol. 1, 1987.
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5.4 Concentration and Profitability

One of the most extensive debates in industrial organization has revolved around the al-

leged positive relationship between market concentration and profits. While the majority

view ended up with a belief that a weak correlation exists, the issue remains somewhat

controversial. In spite of the simplicity of our framework, our results suggest new possible

theoretical explanations of an elementary nature as to why this issue turned out to be so

complex. Consider a two-stage game of free entry followed by Cournot competition amongst

the entrants. First, the possible multiplicity of Cournot equilibria leads to different entry

levels or different equilibria for the same entry level. Either way, profits per-firm will differ.

Second, our results confirm in a general way that scale economies should imply a more

pronounced level of this correlation (Demsetz, 1974, Dewey, 1976 and Lambson, 1987): Since

industry profits increase with concentration, per-firm profits increase at an increasing rate

(i.e. πn ≥ (n+1)
n

πn+1). Conversely, if with diseconomies of scale, we have πn ≤ (n+1)
n

πn+1, the

correlation between profits and concentration is more likely to be weak.28

Third, with strong scale economies (∆ < 0), the free-entry number of firms is fully inde-

terminate. In particular, with no entry cost, any number of firms is possible in a subgame-

perfect equilibrium, thus leading to many possible profit levels! Postulating that the actual

number of firms is determined in part by historical and other random events in such markets,

no clear correlation could be expected between profits and industry characteristics.

5.5 Destructive Competition

Destructive competition was a recurrent theme in older case and empirical studies of regu-

lated industries, particularly those in the transportation sector such as railroad and trucking

(see Sharkey (1982) for a historical account). It is typically associated with a combination

of industry characteristics, such as strong economies of scale (often due to large fixed costs),

large productive capacity, relatively easy entry, and ill-guided government subsidies. The

symptoms of destructive competition in such industries include high levels of market in-

stability, excessive capacity and widespread price discrimination, often leading to frequent

28Furthermore, three other important factors of a more dynamic nature contribute to the higher correlation
in the case of economies of scale: Mergers are more likely to be sought and to be allowed, entry by new firms
is more difficult (in particular if fixed costs are sizable), and collusion is thus more likely.
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changes in regulatory regimes, including entry regulation.

Sharkey (1982) develops a cooperative game-theoretic approach to model destructive

competition, defining industry stability by the nonemptiness of the core. The results here

suggest a simple and natural alternative within the noncooperative paradigm: In the abs-

cence of any regulatory interference, destructive competition can be fruitfully modelled by

Cournot competition under the assumption that ∆ is globally negative. Indeed, increases

in competition from any pre-existing level, including in particular monopoly, result in lower

consumer welfare, per-firm profit and social welfare. Thus higher competition is unambigu-

ously detrimental to all economic agents, with even unregulated monopoly emerging as the

best among market outcomes. Furthermore, and more strikingly, some aspects of reported

market instability in industries thought to have undergone phases of destructive competi-

tion may be instructively linked to the indeterminacy in the number of active firms and the

unstable nature of the Cournot equilibria (in the sense of divergence of best-reply dynamics),

both of which are characteristics of the case ∆ globally negative (see Section 4.4.)

5.6 Natural Monopoly

Following various attempts, Baumol, Panzar and Willig (1982) provided the final definition of

natural monopoly: An industry with a subadditive cost function. This is the least restrictive

property of a cost function that captures the notion that any amount of final output is

cheaper to produce by one firm, or, in other words, subdividing production cannot possibly

save on costs. This definition completely ignores the demand side of the market, which is

justified in light of two special features that were dominant in the economic scene two decades

ago. The first, reflecting the prevalent public policy view of the times, is that monopolies

are to be regulated anyway, so that market conduct is not really an issue, leaving production

efficiency as the primary concern. The second, a theoretical belief, is that if an industry

has a downward-sloping average cost curve and the market is contestable, the only stable

configuration will involve a single firm pricing at average cost, resulting in zero profits.

Subsequently, a near-conscensus emerged, recognizing the limited real-life validity of

contestable markets29 , and a wave of deregulation originating in the US and the UK swept

29In a book review of Baumol, Panzar and Willig (1982), Spence (1983) offered an eloquent account of the
currently prevailing view on contestable markets. He concludes that the benefits of this theory lie in its
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through the industrialized world. In view of the need to incorporate the demand side of the

market now in a revised definition of natural monopoly, the analysis of the present paper

suggests an obvious alternative: An unregulated monopoly is natural if social welfare Wn is

maximized by n = 1. According to our results, this would require scale economies of sufficient

magnitude over the relevant range, but not necessarily that ∆ be globally < 0. Recall that

the Main Example shows that n∗ can be equal to 1 for an industry for which ∆ > 0 globally.

This definition is clearly more restrictive than the old one30 , as it incorporates the market

or demand side of the industry. In other words, it strikes a socially optimal balance between

the detrimental effects of concentration and the cost-saving effects of size.

More generally, a natural n∗-firm oligopoly can be analogously defined by n∗ = arg maxn Wn.

If ∆ < 0, Proposition 10 implies that n∗ must necessarily be equal to 1. Hence, n∗ > 1 is

not compatible with ∆ < 0 globally. On the other hand, it is compatible with ∆ > 0 and

with ∆ not having a uniform sign on all its domain.

5.7 Merger Policy

Proposition 3 says that with scale economies, there are industry-wide gains to mergers.

However, according to Cournot theory on mergers, in a unilateral merger, these gains are

generally appropriated by nonparticipating firms, except in near-monopolization cases.31

An important aspect of the 1984 revisions of the Merger Guidelines is their novel con-

sideration of cost efficiency: mergers that are likely to raise prices will be allowed if the

merging firms can demonstrate by ”clear and convincing evidence” that the merger will lead

to significant cost savings or efficiency benefits. In practice, this clause has been exploited by

candidate firms to secure approval by overstating uncertain future cost gains. Yet, ignoring

the important verification and burden-of-proof issues here, our conclusions are certainly in

favor of this amendment to the Guidelines for industries with known scale economies, and

suggest that the extent of scale economies in the industry should be taken into account, as

opposed to more firm-specific claims of technological and organizational synergies.

thorough analysis of cost functions, and not in its empirical relevance as a theory of market structure.
30Scale economies of any magnitude imply the subadditivity of the cost function, but not vice-versa.
31See e.g. Farrell and Shapiro (1990) and Fauli-Oller (1997).
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6. Appendix

Here, we provide (A1) a graphical illustration of the benefits of our approach to equilibrium

comparisons when ∆ > 0 and there are multiple equilibria, and (A2) the formal proofs.

(A1) Comparing Equilibria. The following discussion refers to Figure 1. With ∆ > 0,

the reaction curve r can never decrease at a rate larger than −1. With n firms, the Cournot

equilibria are the intersections of the reaction curve with the line y/(n− 1). The number of

equilibria is thus 1 for n = 1 and n = 4, 3 for n = 2, and 5 for n = 3. It is easy to see that:

1) For the extremal equilibria, industry output zn increases with n (to see this, simply

draw lines of slope −1 through these equilibria and observe the outward shifts.)

2) The motion of zn is generally indeterminate for the middle equilibria since a may go to

b, c, or d! On the other hand, if there were only one middle equilibrium for both n = 2 and

n = 3, then zn would actually decrease for this unstable equilibrium, so that price would

increase as we go from 2 to 3 firms! More generally, the comparative statics of unstable

equilibria goes opposite that of the extremal equilibria. In particular, price increases with

n. Furthermore, since a firm’s rivals’ total output, yn, decreases with n at an unstable

equilibrium, per-firm profits also increase with n at such equilibria.
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3) Most of the other comparisons of interest (industry profit and welfare) depend on the

previous two points, as seen in our proofs. Thus, dealing only with the extremal equilibria,

one avoids a lot of indeterminacy in the comparative statics.

4) Even with the artifact of treating n as a real variable, the implicit function theorem

approach cannot be justified in dealing with (say) dxn/dn (add to this that r need not even

be continuous in general). In addition, signing dxn/dn in hybrid cases (where ∆ is not

uniformly signed) can be misleading (de Meza, 1985).

(A2) Proofs.

Proof of Proposition 3b. Let xn be an extremal Cournot equilibrium, and consider

πn = xn {P (nxn)− A(xn)}

≥ n+1
n

{
xn+1P

[
n+1

n
xn+1 + (n− 1)xn

]
− A(n+1

n
xn+1)

}
≥ n+1

n
xn+1

{
P

[
n+1

n
xn+1 + (n− 1)n+1

n
xn+1

]
− A(n+1

n
xn+1)

}
= n+1

n
xn+1

{
P [(n + 1)xn+1]− A(n+1

n
xn+1)

}
≥ n+1

n
xn+1 {P [(n + 1)xn+1]− A(xn+1)}

= n+1
n

πn+1

where the first inequality follows from the Cournot equilibrium property, the second from

the facts that P is decreasing and nxn ≤ (n + 1)xn+1 (Proposition 1a), and the third from

the fact that A(n+1
n

xn+1) ≤ A(xn+1). Multiplying across by n gives the conclusion.

The global statement follows directly from the local statement.

Proof of Proposition 4. With z denoting industry output, industry profit is given by

Πn(z) = z[P (z) − A(z/n)]. Since for fixed z, Πn(z) is increasing in n if A′ > 0, the result

follows from the envelope theorem, as monopoly profit π1 = maxz Π1(z).

Proof of Proposition 5. Since ∆ > 0 or P ′(z) − C ′′(z − y) < 0 on ϕ, the function

W (z) ,
∫ z

0
P (t)dt − nC(z/n) is concave in z, since W ′′(z) = P ′(z) − 1

n
C ′′(z/n).. Now,

consider

W ′
n −Wn =

∫ z′n
0

P (t)dt− nC(z′n/n)− [
∫ zn

0
P (t)dt− nC(zn/n)]

= W (z′n)−W (zn)

≥ W ′(z′n)(z′n − zn) , since W is concave.

= [P (z′n)− C ′(z′n/n)]n(x′n − xn)

≥ 0, since x′n ≥ xn.
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The second statement of the lemma follows directly.

Proof of Proposition 6b. To prove Part (b)(i), consider:

Wn+1 −Wn =
{∫ zn+1

0
P (t)dt− zn+1A(xn+1)

}
−

{∫ zn

0
P (t)dt− znA(xn)

}
=

∫ zn+1

zn
P (t)dt− zn+1A(xn+1) + znA(xn)

≥ (zn+1 − zn)P (zn+1)− zn+1A(xn+1) + znA(xn)

= zn+1 [P (zn+1)− A(xn+1)]− zn [P (zn+1)− A(xn)]

≥ zn+1 [P (zn+1)− A(xn+1)]− zn [P (zn+1)− A(xn+1)]

= (zn+1 − zn) [P (zn+1)− A(xn+1)] ≥ 0,

where the first inequality follows from the fact that P (·) is decreasing, the second from the

assumption A(xn) ≥ A(xn+1), while the last follows from the facts that zn+1 ≥ zn (since

∆ > 0) and xn+1 is a symmetric Cournot equilibrium.

To prove Part (b)(ii), we begin with two preliminary observations. First, the function

Vn(x) ,
∫ nx

0
P (t)dt−nC(x) is concave in x for each n since V ′′

n (x) = n[nP ′(nx)−C ′′(x)] < 0,

as a result of ∆ > 0. Second, since zn+1 = (n + 1)xn+1 and P is decreasing,∫ zn+1

0

P (t)dt =

∫ nxn+1

0

P (t)dt +

∫ zn+1

nxn+1

P (t)dt ≥
∫ nxn+1

0

P (t)dt + xn+1P (zn+1). (15)

Now, consider,

Wn+1 −Wn =
{∫ zn+1

0
P (t)dt− (n + 1)C(xn+1)

}
−

{∫ zn

0
P (t)dt− nC(xn)

}
≥ xn+1P (zn+1)− C(xn+1) +

{∫ nxn+1

0
P (t)dt− nC(xn+1)

}
−

{∫ nxn

0
P (t)dt− nC(xn)

}
= πn+1 + Vn(xn+1)− Vn(xn)

≥ πn+1 + V ′
n(xn+1)(xn+1 − xn)

= πn+1 + n[P (nxn+1)− C
′
(xn+1)](xn+1 − xn) ≥ 0,

where the first inequality follows from (15), the second from the concavity of Vn in x, and

the last from the facts that P (nxn+1) ≥ P [(n + 1)xn+1] ≥ C
′
(xn+1) and xn+1 ≥ xn.

Proof of Proposition 10. Consider (with zn ≥ zn+1 here, since ∆ < 0):
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Wn −Wn+1 =
{∫ zn

0
P (t)dt− znA(xn)

}
−

{∫ zn+1

0
P (t)dt− zn+1A(xn+1)

}
=

∫ zn

zn+1
P (t)dt− znA(xn) + zn+1A(xn+1)

≥ (zn − zn+1)P (zn)− znA(xn) + zn+1A(xn+1)

= zn [P (zn)− A(xn)]− zn+1 [P (zn)− A(xn+1)]

≥ zn [P (zn)− A(xn)]− zn+1 [P (zn)− A(xn)]

= (zn − zn+1) [P (zn)− A(xn)] ≥ 0

where the first inequality follows from the fact that P (·) is decreasing, the second from the

facts that xn ≥ xn+1 and A(·) is nonincreasing (the latter follows since ∆ < 0 requires

concavity of C), and the last from the fact that zn ≥ zn+1(since ∆ < 0).
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