Voting with Your Children: A Positive Analysis of Child-Labor Laws*

Matthias Doepke Fabrizio Zilibotti
UCLA UCL, IIES and CEPR

August 2002

Abstract

We develop a positive theory of the adoption of child-labor regulation. There are two key mechanisms at work in our model. First, parental decisions on family size interact with their preferences for child-labor regulation. Second, the supply of child labor affects skilled and unskilled wages. If policies are determined by majority voting, multiple steady states with different child-labor policies can exist. The model is consistent with international evidence on the incidence of child labor. In particular, it predicts a positive correlation between child labor, fertility, and inequality across countries of similar income per capita. The model also predicts that the political support for regulation should increase if a rising skill premium induces parents to choose smaller families. A calibration of the model shows that it can replicate features of the history of the U.K. in the 19th Century, when regulations were introduced after a period of rising wage inequality, and coincided with rapidly declining fertility and rising educational levels.

*First draft. The paper was previously presented under the title “Who Gains from Child Labor: A Politico-Economic Analysis.” We thank Narayana Kocherlakota, Robert Lucas, Kjetil Storesletten, Torsten Persson, Nancy Stokey, and seminar participants at IIES, UCLA, Université Catholique de Louvain, the SED Annual Meetings in New York, and the Minnesota Workshop in Macroeconomic Theory for helpful comments. We also thank Christina Loennblad for editorial assistance. Doepke: Department of Economics, UCLA, Box 951444, Los Angeles, CA 90095. E-mail address: doepke@econ.ucla.edu. Zilibotti: University College London, Gower Street, London WC1E 6BT, IIES-Stockholm University and CEPR. E-mail: f.zilibotti@ucl.ac.uk.
1 Introduction

Child labor, a widespread practice across different periods and cultures in human history, has been a source of social concern, at least since the British industrial revolution. At the end of the 18th century, children in British cotton mills could work 13-15 hours a day and, in 1835, 16% of the workers employed in textile factories were below 12. Similarly, in the U.S., one-third of the U.S. work force in manufacturing industries in the early 19th Century consisted of children below seven. In both Britain and the U.S., the employment of children declined in the second half of the 19th Century (see Nardinelli (1980), Horrell and Humphries (1999) and Sanderson (1974)), and in the same period, a variety of child labor regulations (CLR) were progressively introduced, first in Britain, and later in the U.S.. The introduction of CLR followed upon a period of sharply increasing wage inequality between skilled and unskilled workers, and was associated with a decline in fertility. In both countries, trade unions and humanitarian organizations were the decisive forces behind the introduction of CLR, which were opposed by both rich capital owners and very poor households dependent on child labor income (see Krueger and Tjornhom (2000)).

Today, child labor has almost disappeared in industrialized countries, while it continues to be a large-scale phenomenon in developing countries, raising a passionate political debate. Figure 1 shows child labor rates (the percentage of children aged 10-14 who are economically active) versus GDP per capita for 126 countries in 1970. Not surprisingly, child labor is strongly negatively correlated with GDP per capita. There is, however, a remarkable variability of experiences across developing countries of similar income levels. For instance, for countries with an income per capita between $1000 and $3000 child-labor rates range from less than one to over 40 percent. The incidence of child labor across countries of similar income levels is highly

1The first regulation of the employment of children was introduced in Britain in 1833, but it was limited to the textile industry. A series of Factory Acts extended CLR first to the mines, in 1842, and then to other non-textile industries in the 1860s and 1870s. CLR came later in the U.S., with state regulation being introduced mainly between 1880 and 1910, and federal statutes starting to appear in 1910-20. Interestingly, child labor declined later in the U.S., where, in 1900, 18.2% of the children below fifteen were still active in the labor market.

According to Nardinelli (1980), technological factors have been more important than the Factory Acts in causing the long-run decline of child labor. CLR did, however, have a significant effect in reducing child labor in the short run, especially in the textile industry. As we will see, this interpretation is consistent with the prediction of our theory.
correlated with the average size of families and with the extent of income inequality. To document this correlation, we regressed, respectively, child labor, fertility differential, and Gini coefficients in a cross-section of countries on $\log(GDP)$, $(\log(GDP))^2$, and a constant, and constructed the residuals for each regression. Figure 2 plots the residuals of child-labor versus the residuals of fertility differentials, and Figure 3 plots the residuals from the child-labor and Gini regressions. The two plots show that countries with unusually high child labor rates relative to their income also have high fertility differentials (correlation 0.54) and high inequality (correlation 0.35).

Moreover, cross-country differences in child labor are persistent over time. To document such persistence, we computed residuals of the regression of child labor on $\log(GDP)$ and $(\log(GDP))^2$ (as described above) for 1960, 1970, 1980, and 1990, and for each year, we grouped countries into quintiles according to the size of their residual. The countries in the first quintile are the 20% with the highest child labor rates relative to the expected value, given their income per capita. Table 1 displays the average ten-year transition probabilities between quintiles resulting from this data. After ten years, on average 71% of the countries starting in the highest quintile are still there. Another 25% have moved to the second-highest quintile, and only 4% are to be found in the three lower quintiles. Similar results are obtained for countries with unusually high child labor rates. Even if we consider the entire period 1960 to 1990, we find that 85% of the countries in the highest quintile in 1960 are still in the top two quintiles in 1990.

This paper studies child labor and CLR from a rational choice perspective. The first building block of our theory is that preferences for CLR are closely related to the choice of family size. Parents with few children have less to gain from child labor and are, ceteris paribus, more inclined to support the introduction of restrictions. Parents with many working children, on the other hand, tend to be harmed by CLR. Furthermore, the attitudes to CLR differ before and after making the decision on family

2 The fertility differentials are from the World Fertility Survey (the difference between the highest and lowest education group), Ginis are from the Deininger-Squire data set, and child labor is the percentage of children aged 10-14 who are economically active, from the ILO. We control for GDP per capita because both child labor and fertility are highly correlated with income.

3 Alternatively, if we regress directly child labor on $\log(GDP)$, $(\log(GDP))^2$, fertility differentials, Ginis, and a constant directly, the estimated coefficients on the fertility differential and the Gini are positive. However, only the differential-fertility parameter is significant at the 5%-level (the p-value of the Gini coefficient is 0.20).
size. Before choosing the family size, parents have a margin of adjustment to policy changes, but this is lost once fertility decision are taken. The second building block is that preferences for CLR depend on the wealth of the agents, in particular their human wealth. As noted by Basu and Van (1998), children typically compete with unskilled workers in the labor market, but increase the return to capital (which we ignore in the analysis) and to skilled labor. Finally, our theory recognizes the existence of a feedback mechanism: the distribution of family size and factor endowments in the population are endogenous, and their dynamics are affected by the existence of CLR.

To analyze this feedback mechanism more formally, we construct an overlapping-generations model with endogenous fertility and educational choice. In the model economy, all agents are born identical, but, ex post, become heterogenous in productivity. In particular, some become high productivity (skilled) workers, and some low productivity (unskilled) workers. When young, each agent can either work or go to school. Education, which is chosen by altruistic parents, increases the probability for a young worker of becoming a skilled adult worker. Parents face a quantity-quality tradeoff in their decisions on children. Those who plan to make their children work will tend to have more children in order to increase the family income from child labor. Conversely, parents who send their children to school will tend to choose a smaller family to economize on the cost of schooling.

First, we characterize the steady-state equilibrium in a laissez-faire economy, i.e., absent CLR. We establish the existence of a unique steady-state distribution over skill types and family size. In the region of the parameter space that we regard as the most interesting, skilled workers educate their children and choose a small family, whereas a positive proportion, and possibly all, of the unskilled workers choose to have large families and make their children work. Intuitively, since skilled workers earn higher wages and have a lower marginal utility of consumption, they place less value on the additional resources they can extract from their children’s work. This makes them more prone to manifest their altruism to their offspring by sending them to school. The economy with no CLR has low social mobility and high inequality. The children of skilled parents go to school and, in majority, become skilled adults, whereas part (or all) of children of unskilled parents do not go to school and become unskilled adults. This implies a high correlation of earnings within dynasties (low social mo-
bility). Second, low education translates into a large share of unskilled workers in the population, and a high skill premium (high cross-sectional inequality).

Next, we consider economies with perfectly enforced CLR. Given our assumed preferences, no parents will choose large families. Furthermore, unless education is prohibitively expensive, all parents will choose to give their children an education. Thus, the steady-state with CLR will be less unequal and characterized by higher social mobility.

Finally, we move to the most important part of our analysis and consider political economy and transitions. In particular, we consider an economy where, initially, there is no CLR and analyze which groups would support its introduction. All agents are assumed to be rational and anticipate that CLR will trigger a transition towards a more equal and mobile society. We focus on the adults’ preferences, although these entail some degree of altruism. Skilled workers never support CLR, since child labor implies a larger supply of unskilled labor, and higher skilled wages. Even if they may educate their own children, they gain from the work of other families’ children. Thus, a first prediction of the theory is that societies politically dominated by elites of skilled workers will not introduce CLR. Conversely, assume that unskilled workers can influence political decisions, either directly in a democracy, or through their political organizations, e.g., trade unions. Will they want to introduce CLR? The answer is, in this case, ambiguous. On the one hand, CLR increase the unskilled wage by increasing the relative supply of skills. On the other hand, CLR cause a loss of child labor earnings, which is particularly pronounced for families locked-in into a large family size. If the second effect dominates, it is possible that poor households with large families will join the cause of the rich workers and want to have the “right” to send their children to work.

While the steady-state equilibrium is unique under given policy, multiple steady-states may exist when the choice over CLR is endogenous. Given no CLR, unskilled workers choose large families and make their children work. Furthermore, if the loss of child labor income dominates the “wage effect”, all adults with children, including unskilled workers, oppose the introduction of CLR. Hence, no CLR induces fertility choices preventing the future rise of a constituency for CLR. Conversely, in an otherwise identical economy with CLR, unskilled workers have small families and support CLR. The link between CLR and fertility decisions gives rise to a self-reinforcing
mechanism generating, under some parameters, multiple steady states. In particular, one steady state features high inequality, low schooling and no CLR, whereas another features low inequality, high schooling and CLR.

Multiple steady-state political equilibria can explain why some developing countries persistently get locked-in into equilibria where a large proportion of children works, and there is no political support for the introduction of CLR, while in other countries at an equal stage of development, there is a lower incidence of child labor. Moreover, consistent with the evidence discussed above, child labor should positively correlate with fertility and wage or income inequality.

But, historically, we observed a change in attitudes towards child labor during the industrial revolution, and a growing pressure of the union movement for CLR. How can this change be explained? According to our theory, the political support for CLR can rise over time if there is an increase in the return to education. Consider an economy where all children of unskilled parents work. A progressive increase in the return to schooling will eventually induce some of the newly formed families to have few children and send them to school. The proportion of poor small families will keep increasing as the wage premium continues its upwards trend and, eventually, a majority of the unskilled workers will support CLR. If CLR is eventually introduced, the trend of increasing wage inequality will, at least temporarily, be reversed and, a decline in inequality may occur due to the relative supply effect (more children will go to school, thereby increasing the number of skilled workers, and child labor is withdrawn from the labor force). This prediction of the model is consistent with the observation that CLR were first introduced in Britain in the 19th century, after a period of increasing wage inequality. Moreover, the introduction of CLR was accompanied by a period of substantial fertility decline, which is again consistent with the predictions of the model.

Finally, our theory can provide some guidance in the debate on the introduction of CLR in developing countries. Our model predicts that even in countries where the majority currently opposes the introduction of CLR, the constituency for CLR may increase over time once CLR are in place. This statement needs qualifications, though. First, if the cost of schooling is too high, poor parents may decide not to send their children to school anyway. Second, if children are still productive (either in some household or marginal activities), the policy may fail to reduce fertility and induce
the switch from quantity to quality. All agents, including children, might in this case be worse off after CLR have been introduced. Therefore, CLR should be accompanied by policies reducing the cost or increasing the accessibility of schools.

The paper is organized as follows. In the following section, we review the related literature. Section 3 describes the model economy. In Section 4 we analyze steady states for fixed policies, and provide conditions under which steady states for fixed policies exist and are unique. Voting is introduced in Section 5. We introduce the concept of a steady-state political equilibrium (SSPE), and show that there can be multiple SSPE even when there is a unique steady state without voting. Section 6 illustrates our results for steady states and SSPE with a computed example. Section 7 provides computational experiments to demonstrate how exogenous changes in the skill premium can lead to the introduction of CLR, and Section 8 concludes.

2 Related Literature

This section discusses some of the related theoretical and empirical literature on child labor. A more comprehensive overview can be found in the recent surveys by Basu (1999) and Brown, Deardorff, and Stern (2001). In the theoretical child-labor literature, a number of papers develop arguments why ruling out child labor might be welfare-improving. In Basu and Van (1998), CLR can be beneficial because parents dislike child labor, but have to send their children to work if their income falls below the subsistence level. Ruling out child labor can increase the unskilled wage sufficiently to push family incomes above the subsistence level even when children do not work, leaving everyone better off. Basically, the Basu-Van model has multiple equilibria in the labor market, and CLR can be used to select the “good” equilibrium. A similar effect is at work in our model: Unskilled workers who send their children to school prefer to rule out child labor in order to increase their own wage. Contrary to Basu and Van, however, the wage effect is not large enough to render CLR universally welfare-improving.

Another example of a coordination failure leading to inefficient child labor is given by Dessy and Pallage (2001). Parents do not invest in the education of their children since the demand for skilled labor is low, and firms do not invest in skill-intensive
technologies since the supply of skilled labor is low. Again, ruling out child labor can be welfare improving. In a model with altruistic parents, Baland and Robinson (2000) show that banning child labor can be welfare improving when capital markets are imperfect, or bequests are zero. The reason is that in the presence of these imperfections, parents invest less than the socially optimal amount in the education of their children. In a similar vein, Ranjan (2001) develops a model where credit constraints lead to inefficient child labor, and analyzes the welfare and distributional consequences of different policies targeted at child labor.

A contribution closer to the ideas of our work is Berdugo and Hazan (2002), who develop a model where, along the lines of Galor and Weil (2000), technical progress increases the return to education and induces altruistic parents to switch from quantity to quality in their choice of fertility and child-rearing. Education, in turn, speeds up technical change. Then, CLR may expedite the process of demographic transition and temporarily foster growth.

The papers discussed so far rely on the representative-agent framework; CLR are either preferred by all agents, or by none. In contrast, our paper concentrates on distributional conflicts associated with the issue of child labor. Our approach is similar, in this respect, to that of Krueger and Tjornhom (2000), who use a quantitative model to assess the welfare effect of child labor laws on different groups of the population, in the presence of human capital externalities. While certain groups of workers can gain from a ban on child labor, compulsory education is generally the preferable policy in their model. Krueger and Tjornhom abstract from fertility choice and endogenous policies, however. A different rationale for restrictions is developed by Dessy and Knowles (2001). In their model, parents have time-inconsistent “quasi-geometric” preferences, which leave them unable to commit to the ex-ante optimal education level for their children. CLR can help parents overcome their commitment problem. Dessy and Knowles also allow voting on compulsory education laws, and find that such laws will be introduced once the income of the median voter reaches a threshold level. Endogenous fertility in relation to child labor is considered in Dessy (2000). CLR lead to lower fertility and can prevent the economy from remaining stuck in a poverty trap. Doepke (2001) introduces CLR in a model featuring an industrial revolution from stagnation to growth and finds that CLR have considerable effects on the income distribution and account for much of the decline in fertility experienced by
industrializing countries.

In the empirical literature, a number of papers measure the effects of legal restrictions on labor supply and the education of children in order to assess whether the restrictions were actually binding. Peacock (1984) documents that the British Factory Acts of 1833, 1844 and 1847 were actively enforced by inspector and judges, resulting in a large number of firms having been prosecuted and convicted already since 1834. Similarly, Galbi (1997) finds that the share of children employed in English cotton mills fell significantly before the introduction of the restrictions in the 1830s. Both papers suggest that CLR in were indeed binding in Britain. Moving to the U.S., Acemoglu and Angrist (2000) use state-by-state variation in child-labor laws to estimate the size of human capital externalities. Using data from 1920 to 1960, their results suggest that CLR were binding in most of this period. Margo and Finegan (1996) find that the combination of compulsory schooling laws with child-labor regulation is binding in the sense that it significantly raises school attendance, while compulsory schooling laws alone have insignificant effects. Similarly, Angrist and Krueger (1991) find that compulsory schooling had a significant effect schooling in the 20th century. However, Moehling (1999) studies the effect of state-by-state differences in minimum age limits from 1880 until 1910, and find that CLR contributed little to the decline in child labor. The reason might be that pre-1900 state laws were often weakly enforced (see Sanderson (1974)).

Our arguments in this paper build on the assumption that parents face a tradeoff between the number of children and the quality of each child. The notion of a quantity-quality tradeoff, going back to Becker (1960) and Becker and Lewis (1973), was originally developed to account for fertility behavior in developed countries, where there is strong evidence for such tradeoff. In both cross-section and time-series data, family size and education levels tend to be negatively related. Hanushek (1992) provides evidence for the U.S. which links family size to measures of scholastic achievement (reading comprehension and vocabulary tests). He finds that the annual growth in achievement falls by two percent when a second child is added, and one-half percent when a sixth child is added. For developing countries, the picture is more mixed, but many studies still find evidence of a quantity-quality tradeoff. Rosenzweig and Evenson (1977) examine a data set from rural India and find fertility to be positively associated with child labor and negatively associated with schooling attainment. Rosen-
zweig and Wolpin (1980) find that an exogenous increase in fertility reduces child quality as measured by a schooling index. Singh and Schuh (1986) find that child labor has a positive effect on fertility in rural Brazilian data. Ray (2000) studies national household surveys from Peru and Pakistan, and finds that the number of children in a family significantly raises labor supply of children in Peru, whereas the estimate for Pakistan is insignificant. In both Peru and Pakistan schooling is negatively related to the number of children. Hossain (1990) reports that in rural counties in Bangladesh high child-labor wages are associated with larger family sizes and lower levels of schooling.

3 The Model

The model economy is populated by overlapping generations of agents differing in age and skill. There are two skill levels, high and low ($h \in \{S,U\}$), and two age groups, young and old. Agents age and die stochastically. Each household consists of one parent and her children, where the number of children depends on the parent’s earlier fertility decisions. Children age (i.e., become adult) in each period with probability λ. Whenever a child ages, her parent dies (hence, old agents die with probability λ). As soon as they become adult, agents decide on their number of children. For simplicity, there are only two family sizes, large (grand) and small (petite) ($n \in \{G,P\}$).

All adults work and supply one unit of (skilled or unskilled) labor. Children may either work or go to school. Working children provide $l < 1$ units of unskilled labor in each period in which they work. Children in school supply no labor, and there is a schooling cost, p, per child. When they become adult, children who worked in the preceding period become skilled with probability π_0, whereas educated children become skilled with probability $\pi_1 > \pi_0$. For simplicity, we assume that only the educational choice ($e \in \{0,1\}$) of the period before aging determines the probability for an agent of becoming skilled (either π_0 or π_1).

In the model economy, all decisions are carried out by adult agents. Young adults choose once-and-for-all how many children they want, as well as the education of their children in the current period. Old adults are locked-in into the family size that
they chose when becoming adult and consequently, only choose the current education of their children $e \in \{0, 1\}$. For an adult who has already chosen her number of children, the individual state consists of the skill level and the number of children. V_{nh} denotes the utility of an old agent with n children and skill h. Preferences are defined over consumption c, discounted future utility in case of survival, and the average discounted expected utility of the children in the case of death. The utility of an agent with n children and skill h is then given by

$$V_{nh}(\Omega) = \max_{e \in \{0, 1\}} \left\{ u(c) + \lambda \beta z \left(\pi_e \max_{n \in \{G,P\}} V_{nS}(\Omega') + (1 - \pi_e) \max_{n \in \{G,P\}} V_{nU}(\Omega') \right) \right\}$$

$$+ (1 - \lambda) \beta V_{nh}(\Omega'),$$

s.t.

$$c + p ne \leq w_h(\Omega) + (1 - e) n lw_U(\Omega).$$

Here, Ω is the aggregate state of the economy (to be defined in detail below), Ω' the state in the following period, w_h the wage for skill level h, and e denotes the education decision, where $e = 1$ is schooling and $e = 0$ is child labor. The probability of survival is $1 - \lambda$, and future utility is discounted by the factor β. With probability λ, an adult passes away, and applies discount factor βz to the children’s utility. Here, z is allowed to differ from one, so that parents can value their children’s utility more or less than they would value their own future utility. For utility to be well-defined, we assume that $\beta z < 1$. With probability π_e, depending on the educational choice, the offspring π_e, depending on the educational choice, the offspring will be skilled.

For simplicity, we restrict all siblings to have the same realization of the stochastic process determining skill. Note that after their skill has been realized in the next period, aging children will have the possibility of choosing their optimal family size, hence the term $\max_{n \in \{G,P\}} V_{nh}(\Omega')$. The budget constraint has consumption and, if $e = 1$, educational cost on the expenditure side and the wage income of the adult plus, if $e = 0$, the wage income of the n children on the revenue side. Note that children do not consume (this assumption is easily relaxed). Once family size has been chosen by a young adult, the only remaining decision is whether to educate the children or send them to work. The decision problem is also simplified by the fact that the number of children does not enter the utility parents derive from their children, since they care about their average utility. Parents will therefore have a large number of children.
only if they expect to send them to work, because in that case more children result in a higher income.

The main differences between our setup and the standard altruistic family model of Becker and Barro (1988) are that in our model, altruism does not depend on the number of children, and only two choices each for education and fertility are possible. We introduce these simplifications partly for ease of exposition, and partly to facilitate the computation of equilibria with voting, which is difficult in more complicated models. Despite the simplifications, the key implications of our model are similar to richer models with a continuous fertility choice.4

We now move to the production side of the economy. The consumption good is produced with a technology using skilled and unskilled labor as inputs. The technology features constant returns to scale and a decreasing marginal product to each factor. Formally, we can write the output per unskilled worker, y, as

$$y = f(x),$$

where $x \equiv X_S/X_U$ is the skill ratio, and f an increasing and concave function. Labor markets are competitive, and wages are equal to the marginal product of each factor

$$w_S = f'(x),$$

$$w_U = f(x) - f'(x)x.$$ (3)

The main role of the production setup is to generate an endogenous skill premium. Wages depend on the supply of skilled and unskilled labor. If child labor is restricted, the supply of unskilled labor falls, and therefore the unskilled wage rises. This wage effect is one of the key motives that determines agents preferences over CLR (the other motive being potential child labor income, which, in turn, depends on the number of children).

We now move on to determine the supply of workers at each skill level. It simplifies the exposition to restrict attention to economies where all children who do not work

4Doepke (2001) considers the choice of education versus child labor in an otherwise standard Barro-Becker model with skilled and unskilled workers. As in our model, unskilled workers are more likely to choose child labor, and fertility is higher conditional on choosing child labor. The main difference is that in Doepke (2001) the fertility differential is endogenous, while it is exogenously fixed in our setup.
go to school. This is necessarily a feature of the equilibrium if the cost of education is sufficiently small. We will denote by x_{nh} the total number of adults of each type after family size has been determined by the young adults, and define

$$
\Omega = \{x_{PU}, x_{GU}, x_{PS}, x_{GS}\}
$$

as the state vector.\(^5\)

The number of working children is equal to

$$
L = I \left((1 - e_{GU}) x_{GU} + (1 - e_{GS}) x_{GS} \right) G + I \left((1 - e_{PU}) x_{PU} + (1 - e_{PS}) x_{PS} \right) P,
$$

where e_{nh} denotes the educational choice of parents of type n, h. The supply of skilled and unskilled labor, respectively, is given by

$$
X_S = x_{PS} + x_{GS},
$$

$$
X_U = x_{PU} + x_{GU} + L.
$$

The state vector Ω follows a Markov process such that

$$
\Omega' = ((1 - \lambda) \cdot I + \lambda \cdot \Gamma (\eta_U, \eta_S)) \cdot \Omega,
$$

where I is the identity matrix, η_U, η_S denote the proportion of young unskilled and skilled adults, respectively, choosing a small family size and providing their children.

\(^5\)Note that young adults choose their family size at the beginning of the period, before anything else happens. After their choice, they become old adults. The state vector summarizes the number of workers of each type after this decision has been taken. Thus, formally, this decision is subsumed into the law of motion.
with education, and

\[
\Gamma (\eta_U, \eta_S) = \begin{bmatrix}
\eta_U (1 - \pi_e) P & \eta_U (1 - \pi_e) G & \eta_U (1 - \pi_e) P & \eta_U (1 - \pi_e) G \\
(1 - \eta_U) (1 - \pi_e) P & (1 - \eta_U) (1 - \pi_e) G & (1 - \eta_U) (1 - \pi_e) P & (1 - \eta_U) (1 - \pi_e) G \\
\eta_S \pi_e P & \eta_S \pi_e G & \eta_S \pi_e P & \eta_S \pi_e G \\
(1 - \eta_S) \pi_e P & (1 - \eta_S) \pi_e G & (1 - \eta_S) \pi_e P & (1 - \eta_S) \pi_e G
\end{bmatrix},
\]

is a transition matrix, conditional on the choice of family size of the young adults.\(^6\)

We restrict attention to economies such that the skilled wage is larger than the unskilled wage. Furthermore, we impose the stronger requirement that skilled adults always receive higher consumption than unskilled adults, even though the former choose a small family and educate their children, whereas the latter choose a large family of working children. To this aim, recall that wages are given by marginal products and depend on the ratio of skilled to unskilled labor supply. The highest possible ratio of skilled to unskilled labor supply is given by \(\bar{x} \equiv \pi_1 / (1 - \pi_1)\), which yields the lowest possible wage premium. We then formalize the desired restriction by the following assumption.

Assumption 1

\[
f'(\bar{x}) - pP > [f(\bar{x}) - f'(\bar{x})\bar{x}](1 + G\lambda)
\]

We are now ready to define an equilibrium for our economy. In the definition, we assume that the child-labor policy is exogenous, i.e, the amount of unskilled labor \(l\) that children can supply is fixed. It is easy to extend the definition to the case of an exogenous, but time-varying policy, by adding a time subscript to \(l\) and switching to

\^6\C Consider, for instance, the measure of adult unskilled workers with small families, \(x_{PUt,1}\), \((1 - \lambda) x_{PUt}\) is the measure of surviving old unskilled adults with small families. The rest consists of young adults: \(\lambda \eta_U (1 - \pi_1) P x_{PUt}\) children of unskilled parents with small families who had given their offspring an education, \(\lambda \eta_U (1 - \pi_0) G x_{GLt}\) children of unskilled parents with large families who had given their offspring no education, \(\lambda \eta_U (1 - \pi_1) P x_{PSlt}\) children of skilled parents with small families who had given their offspring an education, and, finally, \(\lambda \eta_U (1 - \pi_0) G x_{GSlt}\) children of skilled parents with large families who had given their offspring no education. A similar reasoning applies to the remaining variables.
a sequential definition of an equilibrium. Later on, we will also consider equilibria with an endogenous policy choice.

Definition 1 (Recursive Competitive Equilibrium) An equilibrium consists of functions (of the state vector Ω) V_{nh}, e_{nh}, w_h, and η_h, where $n \in \{G, P\}$ and $h \in \{U, S\}$, and a law of motion m for the state vector, such that:

- **Utilities** V_{nh} satisfy the Bellman equation (1), and education decisions e_{nh} attain the maximum in (1).

- **Decisions of young adults are optimal**, i.e.:

\[
\begin{align*}
\text{If } \eta_U(\Omega) &= 0 : V_{GU}(\Omega) \geq V_{PU}(\Omega), \\
\text{if } \eta_U(\Omega) &= 1 : V_{GU}(\Omega) \leq V_{PU}(\Omega), \\
\text{if } \eta_U(\Omega) &\in (0,1) : V_{GU}(\Omega) = V_{PU}(\Omega),
\end{align*}
\]

and:

\[
\begin{align*}
\text{If } \eta_S(\Omega) &= 0 : V_{GS}(\Omega) \geq V_{PS}(\Omega), \\
\text{if } \eta_S(\Omega) &= 1 : V_{GS}(\Omega) \leq V_{PS}(\Omega), \\
\text{if } \eta_S(\Omega) &\in (0,1) : V_{GS}(\Omega) = V_{PS}(\Omega).
\end{align*}
\]

- **Wages** w_h are given by (2) and (3).

- **For $\Omega' = m(\Omega)$, the law of motion m satisfies (5).**

4 Steady States with Fixed Policies

We begin the analysis of the model by examining steady states with fixed policies and without voting. Formally, we assume child labor to be unrestricted. However, the analysis also comprises steady states with CLR, since ruling out child labor amounts to setting the parameter ruling child-labor supply to zero: $l = 0$.

In the model, each adult must decide on family size, and whether to educate her children or send them to work. The situation is simplified since every adult choosing
to send children to work will choose a large family, because having children is costless, and having more children increases the income from child labor. Conversely, parents who decide to educate their children will always choose a small family, since education is costly and, given that parents care only about the average utility of their children, there is no benefit from having additional children.

Another immediate implication of the model is that if unskilled parents are willing to choose small families and educate their children, skilled parents will also do so. The reason is that the gain from educating children (the added utility for the children) is the same for the two types of parents, whereas the cost of education (direct cost plus lost child-labor income) is higher for unskilled parents in utility terms, since the unskilled wage is lower.

4.1 Properties of Steady States.

We define a steady state as a situation where the fraction of each type of adult in the population is constant, and a constant fraction \(\eta_U \) of unskilled parents decide to have small families. Define \(N_t = x_{PU,t} + x_{GU,t} + x_{PS,t} + x_{GS,t} \). Further, let \(\bar{x}_j = x_j / N \), \(\Xi = \{ \bar{x}_{PU}, \bar{x}_{GU}, \bar{x}_{PS}, \bar{x}_{GS} \} \) and \(g_t = N_{t+1} / N_t - 1 \) (so, \(g \) denotes the growth rate of the population).

In steady state, the law of motion (5) specializes to

\[
(1 + g) \cdot \Xi = (1 - \lambda) \cdot I + \lambda \cdot \Gamma(\eta_U, \eta_S) \cdot \Xi, \quad (6)
\]

\[
1 \cdot \Xi = 1. \quad (7)
\]

The education decisions are known in advance, since in steady state all agents with small families educate their children, and all agents with large families choose child labor. Note that, therefore, (6)-(7) define a system of five linear equations in five unknowns, \(\bar{x}_{PU}, \bar{x}_{GU}, \bar{x}_{PS}, \bar{x}_{GS} \) and \(g \).

We are now ready to define formally a steady-state equilibrium.

Definition 2 (Steady-State Equilibrium) A steady-state equilibrium (SSE) consists of fractions \(\eta_U \in [0, 1] \) and \(\eta_S \in [0, 1] \) of unskilled and skilled parents, respectively, deciding to have
small families, utilities V_{PS}, V_{GS}, V_{PU}, V_{GU} of each type of family, an education decision for each type, a child labor supply L, wages w_S and w_U, a vector of constant fractions of each family type, $\Xi = \{\xi_{PS}, \xi_{GS}, \xi_{PU}, \xi_{GU}\}$, and a population growth rate g such that:

- Wages w_S and w_U are given by (2) and (3).
- Child-labor supply L is given by (4).
- The vector of fractions of family types, Ξ, and the population growth rate g are solutions to the laws of motion (6)-(7).
- The utilities satisfy (1), and education decisions are optimal.
- Decisions of young adults are optimal, i.e.:

\[
\begin{align*}
\text{If } \eta_U &= 0 : V_{GU} \geq V_{PU}, \\
& \text{if } \eta_U = 1 : V_{GU} \leq V_{PU}, \\
& \text{if } \eta_U \in (0, 1) : V_{GU} = V_{PU},
\end{align*}
\]

and

\[
\begin{align*}
\text{If } \eta_S &= 0 : V_{GS} \geq V_{PS}, \\
& \text{if } \eta_S = 1 : V_{GS} \leq V_{PS}, \\
& \text{if } \eta_S \in (0, 1) : V_{GS} = V_{PS},
\end{align*}
\]

We are now ready to establish three lemmas which are useful for characterizing steady states.

Lemma 1 In steady-state, $V_{GS} (\Omega) - V_{PS} (\Omega) < V_{GU} (\Omega) - V_{PU} (\Omega)$. Hence:

1. $V_{GS} (\Omega) \geq V_{PS} (\Omega)$ ($\eta_S > 0$) implies that $V_{GU} (\Omega) > V_{PU} (\Omega)$ ($\eta_U = 0$), and

2. $V_{GU} (\Omega) \leq V_{PU} (\Omega)$ ($\eta_U > 0$) implies that $V_{GU} (\Omega) < V_{PU} (\Omega)$ ($\eta_S = 1$).
This lemma establishes that, if skilled young adults do not strictly prefer small families and educated children, unskilled young adults will strictly prefer large families with working children. The intuition for the result is that since skilled adults have a higher income, their utility cost of providing education to their children is smaller, and therefore skilled parents are generally more inclined towards educating their children than unskilled parents.

The next lemma establishes the intuitive result that population growth falls in the fraction of agents deciding to have small families.

Lemma 2 The steady-state population growth rate g has the following properties.

1. If $\eta_S = 1$, then

$$1 + \frac{g}{\lambda} = \frac{P}{2} \left(\psi (\eta_U) + \sqrt{\psi (\eta_U)^2 - \frac{4G}{P} (1 - \eta_U) (\pi_1 - \pi_0)} \right) \equiv \gamma (\eta_U),$$

where $\psi (\eta_U) \equiv 1 + (1 - \eta_U) \left(\frac{G}{P} (1 - \pi_0) - (1 - \pi_1) \right) \geq 1$, and $\gamma (1) = P$. The population growth rate g is a strictly decreasing function of the fraction η_U of unskilled adults with small families.

2. If $\eta_S < 1$, then

$$1 + \frac{g}{\lambda} = \frac{G}{2} \left(\psi_S (\eta_S) + \sqrt{\psi_S (\eta_S)^2 - \frac{4P}{G} \eta_S (\pi_1 - \pi_0)} \right) \equiv \gamma_S (\eta_S),$$

where $\psi_S (\eta_S) \equiv 1 + \eta_S \left(\frac{G}{P} \pi_1 - \pi_0 \right)$, $\gamma_S (0) = G$ and $\gamma_S (1) = \gamma (0)$. The population growth rate g is a strictly decreasing function of the fraction η_S of skilled adults with small families.

The growth rate of the population depends on the fractions of the population deciding to have small versus large families, and since $\eta_U (\eta_S)$ is the fraction of unskilled (skilled) adults with small families, the growth rate of population g decreases in $\eta_U (\eta_S)$.

Next, we establish that the fraction of skilled adults in the population strictly increases in η_U and η_S. Once more, this is an intuitive result, since a higher $\eta_U (\eta_S)$
means that more unskilled (skilled) parents decide to educate their children, which raises the probability of being skilled as an adult.

Lemma 3 The fraction ξ_{PS} of skilled adults in the steady state is strictly increasing in η_U. The fraction ξ_{GU} of unskilled adults in the steady state is strictly decreasing in η_S. The ratio of skilled to unskilled labor supply increases with both η_U and η_S. Hence, the equilibrium skilled (unskilled) wage decreases (increases) with both η_U and η_S.

Recall, finally, that by Lemma 1, $\eta_U > 0$ implies that $\eta_S = 1$ (if unskilled workers do not strictly prefer not to educate their children, then skilled workers strictly prefer to educate their children) and $\eta_S < 1$ implies $\eta_U = 0$ (if skilled workers do not strictly prefer to educate, then unskilled workers strictly prefer not to educate their children). Then, potential steady-states can be indexed by the sum $\tilde{\eta} \equiv \eta_S + \eta_U$, where $\tilde{\eta} \in [0, 2]$ and, by Lemma 3, the steady-state equilibrium skill premium is decreasing in $\tilde{\eta}$.7 Five potential types of steady states can be distinguished:

1. All agents educate their children, $\tilde{\eta} = 2$.
2. All skilled workers and a positive proportion of the unskilled workers educate their children, $\tilde{\eta} \in (1, 2)$.
3. All skilled workers and no unskilled worker educate their children, $\tilde{\eta} = 1$.
4. A positive proportion of the skilled workers and no unskilled worker educate their children, $\tilde{\eta} \in (1, 2)$.
5. No agent educates her children, $\tilde{\eta} = 0$.

In steady states with either $\tilde{\eta} = 2$ or $\tilde{\eta} = 0$, all agents behave identically. When $\tilde{\eta} = 2$, in spite of the wage premium being at its lower bound, all children receive an education and all families are small. Conversely, when $\tilde{\eta} = 0$, in spite of the wage premium being at its upper bound, no children receive an education and all families are large. In the steady state with $\tilde{\eta} = 1$, at the equilibrium wage, unskilled agents

7Note that whenever $\tilde{\eta}$ takes on an integer value, i.e., $\tilde{\eta} \in \{0, 1, 2\}$ all agents in (at least) one group strictly prefer one of the two educational choices. If $\tilde{\eta} \in (0, 1)$, skilled workers are indifferent, whereas if $\tilde{\eta} \in (1, 2)$, unskilled workers are indifferent.
find it optimal to have large families and make their children work, while skilled workers find it optimal to educate their children. Finally, it is possible to have steady states where all agents in one group behave identically, whereas agents in the other group behave differently. In steady states with $\bar{\eta} \in (1, 2)$, all skilled workers educate their children whereas unskilled workers are indifferent between having large uneducated or small educated families. Conversely, in steady states such that $\bar{\eta} \in (0, 1)$, no unskilled workers educate their children whereas skilled workers are indifferent between having large uneducated or small educated families.

The formal conditions for each of the steady states to hold as an equilibrium are provided in the appendix.

4.2 Existence and Uniqueness of Steady States

We now analyze the conditions for the existence and uniqueness of a steady-state equilibrium. We prove the existence of a unique steady state by establishing that, for all agents, the difference between the utilities from having small educated or large uneducated families is strictly increasing in the wage premium.

The argument can be illustrated with the aid of Figure 4. In the plot, the downward-sloping schedule SS_1 represents the negative relationship between the wage premium w_s/w_u and $\bar{\eta}$ that follows from Lemma 3. Intuitively, an increase in the relative supply of skills, parameterized by $\bar{\eta}$, decreases the skill premium. The piecewise positive schedule EE represents the optimal steady-state educational choice of parents as a function of the wage premium.\(^8\) In particular, for a range of low wage premia, no education is strictly preferred by all agents ($\bar{\eta} = 0$). For an intermediate range of wage premia, no education is strictly preferred by unskilled agents, whereas education is chosen by skilled agents ($\bar{\eta} = 1$). For a range of high wage premia, all agents prefer education ($\bar{\eta} = 2$). Between these regions, there exist threshold wage premia \bar{w}_s/\bar{w}_u and \bar{w}_s/\bar{w}_u at which, respectively, either skilled workers ($\bar{\eta} \in (0, 1)$) or unskilled workers ($\bar{\eta} \in (1, 2)$) are indifferent. If the difference between the utilities from

\(^8\)Educational decisions not only depend on the wage premium, but on the level of both the skill and unskilled wage. In the particular case of CRRA utility and no cost of education ($p = 0$), the educational choice only depends on the wage premium, however. While the figure is generally correct for a given technology, comparative statics (e.g., a change in the skill bias of technology that shifts the SS schedule while not affecting the EE schedule) are legitimate only under CRRA utility and $p = 0$.

19
educating or not educating children is strictly increasing in the wage premium, the thresholds \(w_S/w_{11} \) and \(\bar{w}_S/\bar{w}_{11} \) are unique, as in Figure 4. In this case, the steady-state equilibrium is unique and corresponds to one of the five types of steady-states discussed earlier. If the difference between the utilities from educating or not educating children were non-monotonic, however, there could exist multiple thresholds (i.e., the EE curve could be locally downward sloping), and the steady-state equilibrium could fail to be unique.

The threshold \(w_S/w_{11} \) is necessarily unique. Namely, the difference between the utilities from small educated or large uneducated families is strictly increasing in the wage premium for skilled parents (see the proof of Proposition 1). The same monotonicity does not necessarily hold for unskilled parents, however, for the following reason. On the one hand, as the skill premium rises, education becomes more attractive to unskilled agents, since the utility from potential skilled descendants increases. On the other hand, a higher skill premium also implies that unskilled parents earn a lower wage, and this increases the utility cost of paying the fixed cost of education.9 If the curvature of utility is high, the latter effect may dominate. In fact, if marginal utility is infinite at zero, unskilled adults have no choice but to have large families whenever the education cost exceeds their income. To obtain a unique steady state, we must therefore introduce an additional assumption that bounds the curvature of utility in the relevant range. Under CRRA preferences, a sufficient, though not necessary, condition is:

Assumption 2

\[
(1 + Gl) \frac{1 - \beta (1 - \lambda)}{1 - \beta (1 - \lambda (1 - z (\pi_1 - \pi_0)))} > \frac{u'(w_{11,2} - pP)}{u'(w_{11,2}(1 + Gl))}.
\]

We can now establish the following result.

Proposition 1 Under Assumption (2) and CRRA preferences, there exists a unique steady state.

9The same problem does not arise for skilled workers, since an increase in the wage premium implies an increase in their income and, therefore, a lower utility cost to provide education).
Consider, now, the effect of changes in technology that raise the skill premium. For example, assume an increase in the share of skilled labor, denoted by α, under a Cobb-Douglas technology (the same exercise can be performed with a more general CES production function). Suppose that, initially, α is low. Then, the supply schedule would be described by the SS_0 (dashed) schedule, with the equilibrium featuring $\tilde{\eta} = 0$. An increase in α would shift the schedule to the right, while the EE curves remain unaffected. Thus, the steady-state equilibrium would feature an increasing $\tilde{\eta}$. For some intermediate level of α, the supply schedule is given by the SS_1 schedule. In this case, $\tilde{\eta} \in (1,2)$, i.e., all skilled and some unskilled workers educate their children. Eventually, for large values of α, the curve shifts to SS_2 and all workers educate their children in equilibrium ($\tilde{\eta} = 2$).

5 Steady States with Endogenous Policies

So far, we have established that the model has a unique steady state when parents can choose freely whether to make their children work. Imposing CLR is equivalent to reducing the parameter l, or setting it to zero when child labor has been completely banned. Therefore, the previous section shows that there is a unique steady state for any child-labor policy that is exogenously fixed (maintaining Assumption 2 throughout). 10

It is easy to construct examples where, for instance, all parents choose large families with working children ($\tilde{\eta} = 0$) if there are no CLR, but the introduction of CLR moves the economy to a steady-state equilibrium where all parents choose small families with educated children ($\tilde{\eta} = 2$). Assume that the cost of schooling is infinitesimal ($p \to 0$) and that CLR takes the extreme form of a complete ban, i.e., $l = 0$. Then, it is immediate that, under CLR, all parents would choose small families and send their children to school (in Figure 1, the EE line would be horizontal at $\tilde{\eta} = 2$). In the absence of CLR, an equilibrium with $\tilde{\eta} = 0$ holds if condition (16) is satisfied. If

10Note that decreasing l moves both the SS and the EE curves to the left in Figure 1. Thus, the wage premium unambiguously falls, whereas the effect on the educational choice is, in principle, ambiguous.
preferences are logarithmic, this can be expressed as

$$\ln (1 + G l) \geq \beta \lambda z \frac{\pi_1 - \pi_0}{1 - \beta (1 - \lambda)} \ln \left(\frac{w_{S0}}{w_{U0}} \right), \quad (8)$$

where the wage premium depends on G, π_0 and π_1, but not on the discount factor $\beta \lambda z$. Thus, in economies with sufficiently low $\beta \lambda z$, the inequality (8) holds and the steady state features widespread child labor if there are no CLR.

While CLR was treated as exogenous in this example, the main objective of this section is to establish the possibility of multiple steady states with different policies when the choice of policy is *endogenous*. In order to carry out this analysis, we must specify a political mechanism in the model. We assume that CLR can be irreversibly introduced by a majority of adult agents. Clearly, this “referendum” decision is a stand-in for more complicated decision processes whereby different groups in society can exert political pressure to introduce restricting laws. What we are mainly interested in is to analyze under which conditions the “working class” (unskilled workers) supports the introduction of CLR, as it is historically observed. We will also ask the opposite question. Namely, would a majority in an economy where CLR have been in effect for long time vote for CLR to be abandoned?

The main result is that there exist parameter configurations such that, if the economy is in a steady state with no CLR, a majority of the adults (the skilled and some or all of the unskilled) will vote against the introduction of CLR. Conversely, if CLR exist, a majority of the adults (some or all of the unskilled) will vote to keep the restrictions in place. The source of this multiplicity is that old adults are locked-in into the family size that they choose when they become adult, which influences their policy preferences. As in the example above, absent CLR agents would choose large families and make their children work, whereas, if CLR were in place, they would choose small families and educate their children. This feedback between political decisions and family size gives rise to multiple steady states. For simplicity, we will state the analytical results under the assumption that the CLR policy includes compulsory schooling.

Definition 3 (Steady-State Political Equilibrium) A steady-state political equilibrium (SSPE) consists of a child-labor policy (child labor is either ruled out or not), $\bar{\eta} \in [0, 2]$
denoting the distribution of educational choices, utilities V_{PS}, V_{GS}, V_{PU}, V_{GU} of each type of family, a child labor supply L, constant fractions ξ_{PS}, ξ_{GS}, ξ_{PU}, and ξ_{GU} of each type of family, and a population growth rate g that:

- **Given the policy, all conditions in Definition 2 are satisfied.**

- **A majority of adults obtain higher utility under the current child labor policy than if the opposite policy were permanently introduced.**

Consider, first, a candidate SSPE where child labor is unrestricted. For this SSPE to be sustained, a majority of adults must prefer to keep child labor unrestricted, as opposed to switching to CLR forever. To make the problem interesting, we assume that the old unskilled are in majority (skilled agents always prefer no CLR) and that at least some of them have large families in the unrestricted steady-state. We need to compare the utility of old unskilled agents in the steady-state with no CLR to the utility they obtain if CLR are introduced. To compute the latter, we must take transitional dynamics into account, since the wage premium would be changing over time after the approval of CLR. In particular, as soon as CLR are introduced, all young adults must educate their children and therefore choose small families. The old unskilled are stuck with large families, but they have to educate their children as well. The immediate effect of CLR is a decline in the wage premium, since the stock of children of unskilled families is suddenly withdrawn from the labor force, which increases the ratio of skilled to unskilled labor supply. Thereafter, the skill ratio in the adult population continues to increase gradually, since, in the new environment, all parents educate their children. Thus, the wage premium falls monotonically to the new steady-state level, corresponding to the skill ratio in the labor force $\pi_1/(1 - \pi_1)$.

Consider, next, a candidate SSPE with CLR. Given CLR, everyone is forced to educate their children. Therefore all parents choose small families and educate their children. For this situation to be an SSPE, the old unskilled majority must prefer to keep rather than eliminate the existing CLR. The steady-state utility for unskilled workers associated with the status quo (CLR) must be compared with the utility that prevails if CLR are abandoned and the economy converges to a new steady-state. As before, we assume that without CLR some unskilled workers, at least, choose large families (otherwise CLR would be irrelevant). If unskilled workers prefer large families and
child labor at the steady-state without CLR, a fortiori, they do so at the wages prevailing in the steady-state with CLR, since the skill premium is lower, making education even less attractive. Therefore, once CLR are lifted, young unskilled (and, possibly, also skilled) parents will start choosing large families and make their children work, thereby causing the skill premium to rise over time.

¿From the perspective of old unskilled agents, who form the majority, CLR implies both gains and losses. The former are associated with larger unskilled wages, while the latter are associated with the opportunity cost of child labor income. The trade-off between these two effects determines whether they support CLR. The key factor for multiple SSPE to emerge is the lock-in into family size decisions. For parents of large families the opportunity cost of child labor, as well as the cost of education, is higher than for parents of small families. Thus, ceteris paribus, families that were formed under no CLR are less supportive of introducing a ban on child labor, since they have more children. Conversely, families formed under CLR are more supportive of retaining the ban on child labor, since they have fewer children.

Building on this intuition, Proposition 2 formally establishes that there are parameters such that multiple SSPE exist.

Proposition 2

There exists a set of parameters such that:

- In the absence of CLR, the steady state features $\bar{\eta} < 2$.
- The old unskilled are the majority.
- Both CLR and no CLR are SSPE.

6 A Computed Example

This section illustrates the theoretical results obtained so far by analyzing steady states in a parameterized version of our economy. Table 2 displays the parameter values used. Preferences are CRRA with risk-aversion parameter σ. The production function is of the constant-elasticity-of-substitution form

$$ Y = \left[\alpha X_S^\kappa + (1 - \alpha) X_U^\kappa \right]^\frac{1}{\kappa}. $$
The fertility values for small and large families are $P = 1$ and $G = 3$. A family of two would therefore have two children if they prefer education, or six children if they opt for child labor. This fertility differential approximates the fertility differential between mothers in the lowest and highest income quintiles in countries with widespread child labor, such as Brazil or Mexico (see Kremer and Chen (2000)). The probability of death $\lambda = 0.15$ and the probabilities $\pi_0 = 0.05$ and $\pi_1 = 0.4$ of becoming skilled are chosen such that the old unskilled are always the majority of the population, and therefore politically decisive. The choice for λ implies that adults on average live for $6\frac{2}{3}$ periods. If we assume that people survive 40 years on average after becoming adults, a model period corresponds to six years. The rate of time preference implied by our choice of β would generate an annual interest rate of 4% per year (if assets could be traded), which is the standard basis for calibrating β in the RBC literature. The choice $l = 0.1$ for the supply of child labor implies that a large family with working children derives about a quarter of family income from children, which is in line with evidence from Britain in the period of early industrialization (Horrell and Humphries 1995) and recent data from developing countries. The elasticity parameter $\sigma = 0.5$ sets the elasticity of substitution half way between the Cobb-Douglas and the linear production technology. The weight α of skilled labor in the production function is left unspecified for now. We will use α as a measure of the skill premium and compute outcomes for a variety of α.

We start by determining which steady states and SSPE exist for different values of α. Recall from Section 4 that as long as Assumption 2 is satisfied, there is a unique steady state in the economy without voting. Figure 5 displays the steady-state $\tilde{\eta}$ as a function of α. For low α’s, the skill premium is low. Consequently, education is not very attractive, and there is a range of α’s where all parents prefer child labor ($\tilde{\eta} = 0$). As the skill premium rises, we reach a threshold for α at which a fraction of skilled adults educates their children ($\tilde{\eta} \in (0, 1)$) and ultimately all skilled parents choose education ($\tilde{\eta} = 1$). For even higher α’s, there is a wide region in which unskilled parents are indifferent between education and child labor ($\tilde{\eta} \in (1, 2)$). Throughout this region, higher α’s are offset by a higher supply of skilled labor, which keeps the

\[\text{11If the skilled adults have political control, the problem is not interesting, since skilled agents always oppose CLR. Even in a more complicated political mechanism where different groups can exert political pressure, the unskilled adults would be important, since they are the only group whose preferences over CLR are, in principle, ambiguous.}\]
unskilled parents indifferent. Ultimately, all parents educate their children \((\bar{\eta} = 2)\).

Figure 6 considers the model with voting, and shows which SSPE exist as a function of \(\alpha\). For low values of \(\alpha\), the only SSPE is no CLR. In other words, the return to education is so low that even a population of adults who all have small families would vote to abandon CLR. For an intermediate range of \(\alpha\)’s, there are multiple SSPE: both CLR and no CLR are steady states supported by a majority of the population. In the range of multiplicity, in the absence of CLR at least a fraction of unskilled agents would choose child labor and large families. However, if CLR are already in place, unskilled parents are locked into having small families, and therefore prefer to keep CLR. As the wage premium increases, we enter a region where CLR is the only SSPE. Ultimately, even unskilled parents with large families prefer to introduce CLR. The immediate income loss after the introduction of CLR is made up by higher unskilled wages in the present (because other parents’ children can no longer work) and in the future (which they care about because they care for their children).

To demonstrate that the multiplicity result depends on endogenous fertility choice, we also computed outcomes without fertility differentials by setting \(P = G = 1\), i.e., families of working and educated children are of the same size. We still find that, for low \(\alpha\)’s, no CLR is an SSPE, and for high \(\alpha\)’s CLR is an SSPE. However, there is no overlap, i.e., in no region both policies can be supported in steady state, since the policies no longer lock agents into different fertility choices. In fact, there is a region where neither policy is an SSPE. The reason for the non-existence of SSPE for some \(\alpha\) is the endogenous skill premium. If CLR are in place, the supply of skilled labor is high, and the skill premium is low. The low skill premium makes child labor attractive relative to education, so that a majority is in favor of abandoning CLR. If there are no restrictions, however, the supply of skilled labor is low and the skill premium is high. This makes education more attractive, and increases the gain from removing other parents’ children from the labor market, and thus, a majority is in favor of introducing CLR.
7 The Transition to CLR

So far, we have shown that the interaction of fertility choice and political preferences in our model can lead to a lock-in effect, which results in multiplicity of SSPE, either with child labor and high fertility or no child labor and low fertility. This feature of the model can explain why there is a great deal of variation in the incidence of child labor around the world, even when controlling for income per capita. However, we also need to explain why many countries have adopted over the last two centuries child-labor bans, starting from a situation where child labor was common all over the world. In our model, a transition from no CLR to CLR is possible if technological change increases the skill premium, and therefore the return to education. If the increase in the return to education is large, even unskilled families will prefer to have small families and educate their children, which ultimately creates a majority in favor of the introduction of CLR.

This explanation of the introduction of CLR is consistent with evidence on the evolution of the skill premium in the U.K. before the introduction of CLR. Figure 7 shows that the ratio of skilled to unskilled wages increased sharply at the beginning of the 19th century in the U.K.12 The skill premium reached a peak in 1850, subsequently declined, and by 1910, it had returned to its 1820 level. Following shortly after the initial rise in the skill premium, the first child-labor restrictions (the “Factory Acts”) were put into place in 1833 and 1842. The initial Factory Acts, however, only applied to some industries (textiles and mining), and Nardinelli (1980) argues that while the laws effectively restricted the employment of young children in these industries, the effect on overall child labor was short lived. The Factory Acts were extended to other non-textile industries in the 1860s and 1870s. The introduction of compulsory schooling in 1880 put an additional constraint on child labor. Compulsion was effectively enforced: In the 1880s, close to 100,000 cases of truancy were prosecuted every year (see Cunningham 1996), which made truancy the second-most popular offense in terms of cases brought before the courts (drunkenness being the first). Figures 9 and 10 show the corresponding decline in child labor rates (the fraction of 10 to 14 year-olds who were economically active) and increase in schooling rates (the fraction of children aged 5-14 at school).

12The skill-premium data (from Williamson 1985) is computed as the ratio of the wages in twelve skilled and six unskilled profession, weighted by employment shares.
To examine whether our model is capable of reproducing the stylized facts of the transition to CLR, we computed transition paths triggered by an exogenous increase in the skill premium. A rising skill premium can be parameterized by an increase in the parameter α in the production function. We chose the specific transition path such that in the steady state without CLR, the wage premium in the model matches the observed value of 2.5 in the U.K. around 1820 (see Figure 7). This is achieved by setting the initial α to 0.33. The endpoint of the transition was chosen such that in the steady state with CLR, the skill premium matches 2.5 as well, as in the data around 1910. This implies a final value for α of 0.65. In the computed transition path, α is at 0.33 until period 2, and then increases linearly until the maximum of 0.65 is reached in period 9 (see Figure 11).

Generally, the problem of computing transitions paths with an endogenous policy choice is complicated. Agents’ decisions depend on the entire path of expected future policies. Future policies therefore partly determine the evolution of the state vector of the economy which, in turn, affects the preferences over these same policies. This interdependence can lead to multiple equilibria (not just multiplicity of steady states), or the nonexistence of equilibria. In principle, these problems could arise in our framework, but it turns out that unique results are obtained for the calibrated version of our model. To limit the number of time paths of future policies, we assume that once CLR are introduced, they cannot be revoked.\(^\text{13}\) Future policies can therefore be indexed by the period when CLR are introduced.

The conditions for the introduction of CLR to occur in a given period T can therefore be checked as follows. We assume that the economy starts in the steady state corresponding to the initial value of α. First, we compute private decisions and the evolution of the state vector Ω under the assumption that CLR are indeed introduced at time T. In period T, we check whether a majority prefers the introduction of CLR to the alternative. The relevant alternative here is not to introduce CLR at T, but to expect their introduction at $T/2$ (the skill premium and therefore the incentive to introduce CLR increases over time, therefore if T is the equilibrium switching time, the switch would certainly occur at $T + 1$.). We also must check that CLR are not...

\(^{13}\)We conjecture that in our specific application the results would not change if we allowed CLR to be revokable in later periods, because we focus on an episode where the skill premium is increasing over time, which together with the lock-in effect of endogenous fertility choice tends to increase support for CLR over time.
introduced before T. Once more, because the incentive to introduce CLR increases over time, it is sufficient to check that given the path for the state variable resulting from expecting the switch at T, there is still a majority opposed to introducing CLR at time $T-1$. In summary, for T to be an equilibrium switching time, conditional on agents expecting CLR to be introduced at time T, a majority must prefer no CLR at time $T-1$, and a majority must prefer CLR at time T. Since the evolution of the state vector depends on the expected policies, there could be in principle multiple or none such switching times, but in our example there is a unique switching time.

In the computed transition path, a majority continues to oppose the introduction of CLR in the first periods of the increasing wage premium. Beginning in period 5, however, all young unskilled adults start to choose education and small families, in response to the increasing skill premium and the expected future introduction of CLR. Old unskilled families are stuck with many children and therefore continue to choose child labor. In period 7, unskilled families with small families form the majority of the population and vote for a permanent introduction of CLR.

Figure 12 shows the evolution of the skill premium during the transition. Initially, the skill premium increases due to an increasing α. Once CLR are introduced and children are withdrawn from the labor market the skill premium drops, however, since the increase in α is offset by the smaller supply of unskilled labor. After α stops increasing, the skill premium declines further, as the number of skilled workers gradually increases. The introduction of CLR also leads to a sharp decline in population growth (Figure 14), because all unskilled parents then have small families. Notice, however, that the decline in population growth starts even before CLR are introduced, because young unskilled families start to have small families already in period 5. The switch in the decisions of young unskilled parents also triggers an immediate decline in the supply of child labor, as shown by Figure 13. Thus, child labor declines even before CLR are introduced. However, the future introduction of CLR is still responsible for part of the decline in child labor: If the introduction of CLR in period 7 was not expected, a much smaller number of families would have chosen education in period 5, and therefore, the decline in child labor would also have been smaller.

Figures 15 and 16 show how the skill premium and the fraction of working children would have evolved without the endogenous introduction of CLR. There is still a
peak in the evolution of the skill premium and a decline in child labor, but child labor falls much less and inequality remains much higher than with the introduction of CLR. Thus, in the model, neither technological change nor CLR are solely responsible for the decline in child labor; rather, both explanations are complementary. Relative to the English experience, this is a strong feature of the model, because, historically, it was also the case that the decline in child labor started before effective CLR were introduced. The main deviation between the model and the English data is that in the model, fertility falls rapidly well before the skill premium reaches a peak and CLR are introduced, while in the data, fertility declined later (Figure 8). The assumption of perfect foresight might be partially responsible for this deviation: If parents in period 5 had not perfectly foreseen the introduction of CLR in period 7, fertility would have declined much less in the simulation. Overall, it is very encouraging that our stylized model successfully matches the central features of the data. The increasing wage premium triggers the introduction of CLR, which ultimately leads to falling wage premia. Child labor falls already before the introduction of CLR, and the transition is accompanied by a rapid decline in fertility.

The same theory which explains policy transitions also predicts that countries which are initially similar might adopt different policies and therefore, might ultimately diverge. Picture two countries which both experience a temporary increase in the skill premium, but the increase is slightly larger in country A than in country B. For example, country B may be using a technology that is more intensive in unskilled labor. It is then possible that in country A the majority votes in favor of CLR, thereby leading the economy onto a future path with low fertility and inequality, while support for CLR just fails to reach 50% in country B, so that large families and high inequality would continue to dominate.

Finally, the results suggest a reason why some econometric studies find that CLR only have a relatively small effect on the supply of child labor. Moehling (1999) and others use state-by-state variation in the introduction of CLR in the U.S. to estimate the effects of CLR, employing “difference-in-difference” estimators. Our results show that child labor may decline even before CLR are actually introduced, since young families start to have small families of educated children in anticipation of future CLR. The relative decline in child labor in the periods before and after the introduction of CLR depends on average family size, the number of young families, and the enforce-
ment of CLR. Depending on these variables, it is possible that the measured impact of CLR would be small (i.e., the difference in the decline of child labor before and after the introduction of CLR, either within or across states). The true effect of CLR would be larger than this empirical measure, since the underlying decline in average family size is also triggered by the expected introduction of CLR. In our example, if no CLR are introduced, child labor rates remain at 60 to 80 percent throughout. To a large extent, CLR work indirectly by reducing family size and changing families’ education decisions, as opposed to directly by removing children from the labor market who would otherwise have worked.

8 Conclusions

The aim of this paper has been to shed light on the political economy of child-labor restrictions. The key novelty of the model presented is an interaction between demographic variables (the number of children per family as chosen by the parents) and political preferences. The results described above show that the model can generate multiple steady states, because CLR induce individual behavior which, in turn, increases the support for maintaining CLR. This “lock-in” effect can explain why we observe large variations in the incidence of child-labor and child-labor laws across countries, even after controlling for income levels. A typical example would be the contrast between American countries like Mexico and Brazil and Asian countries such as South Korea. In Mexico and Brazil (which have been democracies for some time) there is comparatively little child-labor regulation, the enforcement of the existing laws is lax, and the incidence of child labor is high. In South Korea, there is more regulation, laws are actually enforced, and child-labor rates have been very low for many years. Consistent with the predictions of the model, fertility differentials within the population are much higher in Mexico or Brazil than in South Korea (see Alam and Casterline 1984 and Mboup and Saha 1998).

In order to account for the initial introduction of CLR, the model must be extended to allow for an exogenous change shifting preferences in favor of CLR. Our prime suspect for this shift is a change in technology which raises the return to skilled labor, thereby providing incentives for parents to choose small families and educate
their children, while child labor continues to be legal. Once the skill premium is sufficiently high, political pressure for the introduction of CLR will be expected to rise. The theory predicts that unskilled workers with few children will profit from the introduction of CLR, since they compete with children in the labor market, but have little to gain from sending their own children to work. It is consistent with this account of the transition that in the U.S., organized labor was the driving force behind the introduction of CLR. In addition, the theory predicts that the introduction of CLR should follow on a period of rising wage inequality and coincide with a period of falling fertility and rising educational levels.

Beyond the specific case of child labor, we see this project a contribution to the emerging theoretical literature which puts the spotlight on policy reforms in the course of development. During the period when child-labor laws first came into effect towards the end of the 19th century, a number of industrializing countries also extended the voting rights, introduced free, public, and compulsory education, and started social insurance programs. Two recent papers addressing some of these changes are Acemoglu and Robinson (2001), where a rich elite introduces reforms to reduce a threat of revolution, and Galor and Moav (2000), where social institutions are put into place in order to reap human capital externalities. The research outlined in this paper provides another perspective which links policy reforms to changes in technology, but also to the major demographic changes which were taking place at the same time.
A Mathematical Appendix

A.1 Formal characterization of the five types of steady-states described in section 4.

A.1.1 All Workers Educate Their Children, $\tilde{\eta} = 2$.

In this steady-state, $x_{GU} = x_{GS} = 0$ and $e_{PU} = e_{PS} = 1$. Hence, $L = 0$. The necessary and sufficient condition for this steady-state to be an equilibrium is that, given wages, the unskilled adults find it optimal to educate their children. By Lemma 1, this implies, a fortiori, that the skilled adults also choose to educate their children.

The steady-state utility of unskilled adults in the steady state where all children receive education is given by:

$$V_{PU,2} = u(w_{U,2} - pP) + \lambda \beta z (\pi_1 V_{PS,2} + (1 - \pi_1) V_{PU,2}) + (1 - \lambda) \beta V_{PU,2},$$

where $V_{nh,\tilde{\eta}}$ denotes the steady state utility of an agent of family size n and skill h conditional on $\tilde{\eta}$. A similar notation is used for wages. This equation can be solved and expressed as:

$$V_{PU,2} = \frac{u(w_{U,2} - pP) - \Pi_{U \rightarrow S}^{1,1}[u(w_{U,2} - pP) - u(w_{S,2} - pP)]}{1 - \beta(1 - \lambda(1 - z))},$$

(9)

where $\Pi_{h \rightarrow h'}^{eU,eS}$ denotes the average discounted probability for an agent who is currently of skill level h to have descendants of skill level h'. The superscripts denote whether the skilled and unskilled parents educate their children. The average discounted probability entering equation (9) is defined as:

$$\Pi_{U \rightarrow S}^{1,1} = \frac{\beta z \lambda \pi_1}{1 - \beta(1 - \lambda)}.$$

For the candidate steady state equilibrium to be sustained, deviations must be unprofitable, i.e., no agent can increase her utility by choosing a large family and making her children work. Consider an unskilled adult who deviates and chooses a large family where the children work. If this deviation is profitable for the parent, it would
also be profitable for a potential unskilled child. We therefore check a continued deviation of an entire dynasty, i.e., we assume that the parent and all future unskilled descendants choose a large family and child labor. The resulting utility is:

\[V_{\text{dev}}^{GU,2} = \frac{u(w_{U,2}(1 + Gl)) - \Pi_{U \rightarrow S}^{0,1} u(w_{U,2}(1 + Gl)) - u(w_{S,2} - pP)}{1 - \beta(1 - \lambda(1 - z))}, \]

where

\[\Pi_{U \rightarrow S}^{0,1} = \frac{\lambda \beta z \pi_0}{(1 - \beta(1 - \lambda(1 - z(\pi_1 - \pi_0)))}. \]

Comparing \(V_{PU,2}^{GU} \) and \(V_{\text{dev}}^{GU,2} \), we find that the deviation is not profitable as long as

\[(1 - \Pi_{U \rightarrow S}^{0,1})u(w_{U,1}(1 + Gl)) - (1 - \Pi_{U \rightarrow S}^{1,1})u(w_{U,2} - pP) \leq \]

\[(\Pi_{U \rightarrow S}^{1,1} - \Pi_{U \rightarrow S}^{0,1})u(w_{S,2} - pP). \quad (10) \]

Note that, since we consider individual deviations, we have held wages constant at the steady state level. Inequality (10) is a necessary and sufficient condition for a steady-state equilibrium where all agents educate their children (\(\tilde{\eta} = 2 \)) to be sustained.

A.1.2 All Skilled and Some Unskilled Workers Educate Their Children, \(\tilde{\eta} \in (1, 2) \).

A necessary and sufficient condition for this equilibrium is that, for some \(\tilde{\eta} \in (1, 2) \), the skilled and unskilled wages, \(w_{S,\tilde{\eta}} \) and \(w_{U,\tilde{\eta}} \), are such that \(V_{GU,\tilde{\eta}} = V_{PU,\tilde{\eta}} \), i.e.,

\[u\left(w_{U,\tilde{\eta}}(1 + Gl)\right) - u\left(w_{U,\tilde{\eta}} - pP\right) = \Pi_{U \rightarrow S}^{0,1} u\left(w_{U,\tilde{\eta}}(1 + Gl)\right) - u\left(w_{S,\tilde{\eta}} - pP\right) \]

\[- \Pi_{U \rightarrow S}^{1,1} u\left(w_{U,\tilde{\eta}} - pP\right) - u\left(w_{S,\tilde{\eta}} - pP\right). \]

Recall that, by Lemma 1, \(V_{GU,\tilde{\eta}} = V_{PU,\tilde{\eta}} \) implies that \(V_{GS,\tilde{\eta}} < V_{PS,\tilde{\eta}} \). Hence, skilled adults strictly prefer small families with educated children.

A.1.3 All Skilled and No Unskilled Worker Educate Their Children, \(\tilde{\eta} = 1 \).

In this steady state, \(x_{PU} = 0, x_{GS} = 0, e_{GU} = 0, \) and \(e_{PS} = 1 \). Hence, \(L = LGx_{GU} \). Two conditions need to be checked. First, skilled workers must prefer to educate their
children. Second, unskilled workers should prefer not to educate their children. For one of the two groups, at least, the preference will be strict.

Proceeding as before, we find:

\[
V_{GU,1} = \frac{u \left(w_{U,1} (1 + Gl) \right) - \Pi_{U\rightarrow S}^{0,1} (u \left(w_{U,1} (1 + Gl) \right) - u \left(w_{S,1} - pP \right))}{1 - \beta \left(1 - \lambda \left(1 - z \right) \right)}, \tag{11}
\]

\[
V_{PS,1} = \frac{u \left(w_{S,1} - pP \right) - \Pi_{S\rightarrow U}^{0,1} (u \left(w_{S,1} - pP \right) - u \left(w_{U,1} (1 + Gl) \right))}{1 - \beta \left(1 - \lambda \left(1 - z \right) \right)}, \tag{12}
\]

where

\[
\Pi_{S\rightarrow U}^{0,1} = \frac{\lambda \beta z (1 - \pi_1)}{(1 - \beta \left(1 - \lambda \left(1 - z \left(\pi_1 - \pi_0 \right) \right) \right))}.
\]

Next, consider individual deviations. Consider, respectively, an unskilled parent who decides to educate her children and a skilled parent who decides not to educate her children. The deviating parent’s utility is:

\[
V_{PU,1}^{dev} = \frac{u \left(w_{U,1} - pP \right) - \Pi_{U\rightarrow S}^{1,1} (u \left(w_{U,1} - pP \right) - u \left(w_{S,1} - pP \right))}{1 - \beta \left(1 - \lambda \left(1 - z \right) \right)},
\]

\[
V_{GS,1}^{dev} = \frac{u \left(w_{S,1} + w_{U,1}Gl \right) - \Pi_{S\rightarrow U}^{0,0} (u \left(w_{S,1} + w_{U,1}Gl \right) - u \left(w_{U,1} (1 + Gl) \right))}{1 - \beta \left(1 - \lambda \left(1 - z \right) \right)},
\]

where

\[
\Pi_{S\rightarrow U}^{0,0} = \frac{\lambda \beta z (1 - \pi_0)}{(1 - \beta \left(1 - \lambda \right))} > \Pi_{S\rightarrow U}^{0,1}.
\]

The two deviations do not increase utility as long as, respectively

\[
\left(1 - \Pi_{U\rightarrow S}^{0,1} \right) u \left(w_{U,1} (1 + Gl) \right) - \left(1 - \Pi_{U\rightarrow S}^{1,1} \right) u \left(w_{U,1} - pP \right) \geq \left(\Pi_{U\rightarrow S}^{1,1} - \Pi_{U\rightarrow S}^{0,1} \right) u \left(w_{S,1} - pP \right), \tag{13}
\]

\[
\left(1 - \Pi_{S\rightarrow U}^{0,1} \right) u \left(w_{S,1} - pP \right) - \left(1 - \Pi_{S\rightarrow U}^{0,0} \right) u \left(w_{S,1} + w_{U,1}Gl \right) \geq \left(\Pi_{S\rightarrow U}^{0,0} - \Pi_{S\rightarrow U}^{0,1} \right) u \left(w_{U,1} (1 + Gl) \right). \tag{14}
\]

For our candidate steady-state equilibrium to be sustained, both (13) and (14) must hold simultaneously. To see that the range of parameters satisfying the two condi-
tions is not empty, consider a knife-edge economy such that (13) holds with equality, i.e., given the wage premium consistent with \(\eta_S = 1\) (skilled workers educate their children) and \(\eta_U = 0\), unskilled workers are indifferent between large and small families. Then, by Lemma 1, \(V_{GS,1} < V_{PS,1}\). By continuity, the same inequality holds in a neighborhood of this knife-edge economy where unskilled workers strictly prefer large families. Therefore, the set of economies for which a steady-state equilibrium with \(\eta_U = 0\) and \(\eta_S = 1\) exists is not empty.

A.1.4 Some Skilled and No Unskilled Workers Educate Their Children, \(\bar{\eta} \in (0, 1)\).

A necessary and sufficient condition for this equilibrium is that, for some \(\bar{\eta} \in (0, 1)\), the skilled and unskilled wages, \(w_{S,\bar{\eta}}\) and \(w_{U,\bar{\eta}}\), are such that \(V_{GS,\bar{\eta}} = V_{PS,\bar{\eta}}\), i.e.,

\[
\begin{align*}
&u\left(w_{S,\bar{\eta}} (1 + Gl)\right) - u(w_{S,\bar{\eta}} - pP) = \Pi_{S \rightarrow U}^{0,0}\left[u\left(w_{S,\bar{\eta}} (1 + Gl)\right) - u\left(w_{U,\bar{\eta}} (1 + Gl)\right)\right] \\
&- \Pi_{S \rightarrow U}^{0,1}\left[u\left(w_{S,\bar{\eta}} - pP\right) - u\left(w_{U,\bar{\eta}} (1 + Gl)\right)\right].
\end{align*}
\]

Recall that, by Lemma 1, \(V_{GS,\bar{\eta}} = V_{PS,\bar{\eta}}\) implies that \(V_{GU,\bar{\eta}} > V_{PU,\bar{\eta}}\). Hence, unskilled adults strictly prefer large families with working children.

A.1.5 No Workers Educate Their Children, \(\bar{\eta} = 0\).

In this steady state, no children receive education and all families are large. The necessary and sufficient condition for this steady-state to be an equilibrium is that, given wages, the skilled adults find it optimal not to educate their children. By Lemma 1, this implies, a fortiori, that the unskilled adults also choose not to educate their children.

The steady-state utility of skilled adults in this steady state is given by:

\[
V_{GS,0} = \frac{u(w_{S,0}(1 + Gl)) - \Pi_{S \rightarrow U}^{0,0}\left[u\left(w_{S,0}(1 + Gl)\right) - u\left(w_{U,0}(1 + Gl)\right)\right]}{1 - \beta(1 - \lambda(1 - z))},
\]

(15)
The utility from a deviation (educating children) is given by:

\[
V_{PS,0}^{dev} = \frac{u(w_{S,0} - pP) - \Pi_{S \rightarrow U}^{0,1} u(w_{S,0} - pP) - u(w_{U,0} (1 + Gl))}{1 - \beta (1 - \lambda (1 - z))},
\]

The deviation is not profitable as long as:

\[
(1 - \Pi_{S \rightarrow U}^{0,1}) u(w_{S,0} - pP) - (1 - \Pi_{S \rightarrow U}^{0,0}) u(w_{S,0} (1 + Gl)) \leq (\Pi_{S \rightarrow U}^{0,0} - \Pi_{S \rightarrow U}^{0,1}) u(w_{U,0} (1 + Gl)). \quad (16)
\]

A.2 Proofs.

Proof for Lemma 1: Proving that \(V_{GS} (\Omega) - V_{PS} (\Omega) < V_{GU} (\Omega) - V_{PU} (\Omega) \) is identical to prove that:

\[
(1 - \beta (1 - \lambda)) \cdot (V_{GS} (\Omega) - V_{GU} (\Omega)) < (1 - \beta (1 - \lambda)) \cdot (V_{PS} (\Omega) - V_{PU} (\Omega)).
\]

From (1), plus being in a steady-state (\(\Omega = \Omega' \)), it follows that:

\[
(1 - \beta (1 - \lambda)) \cdot (V_{GS} (\Omega) - V_{GU} (\Omega)) = u (w_s + w_\lambda G) - u (w_u + w_\lambda G) < u (w_s - pP) - u (w_u - pP) = (1 - \beta (1 - \lambda)) \cdot (V_{PS} (\Omega) - V_{PU} (\Omega))
\]

The last inequality follows from the concavity of the utility function. Q.E.D.

Proof for Lemma 2: Define \(q \equiv G/P > 1 \).

Part 1: The law of motion (6), together with the restriction that \(\eta_S = 1 \) and \(x_{GS,t+1} = 0 \), defines a system of four equations in four unknowns. The unique solution with non-negative fractions of each type yields a solution for the growth rate of the population such that \(1 + g/\lambda = \gamma (\eta_U) \), where \(\gamma (\eta_U) \) is as defined in the text. It is useful to note that:

\[
\psi (\eta_U) = (1 + (1 - \eta_U) q ((1 - \eta_0) - (1 - \eta_1))) \equiv \tilde{\psi} (\eta_U),
\]

with strict inequality for any \(\eta_U < 1 \) (whereas \(\psi (1) = \tilde{\psi} (1) = 1 \), and that:

\[
\psi' (\eta_U) < \tilde{\psi}' (\eta_U) < 0.
\]
Next, define:
\[
\tilde{\gamma}(\eta_U) \equiv \frac{P}{2} \left(\tilde{\psi}(\eta_U) + \sqrt{\tilde{\psi}(\eta_U)^2 - 4q(1 - \eta_U)(\pi_1 - \pi_0)} \right) \leq \gamma(\eta_U),
\]
and observe that, using the definition of \(\tilde{\psi}(\eta_U)\):
\[
\tilde{\gamma}(\eta_U) = \frac{P}{2} \left((1 + (1 - \eta_U)q(\pi_1 - \pi_0)) + \sqrt{(1 - (1 - \eta_U)q(\pi_1 - \pi_0))^2} \right) = P \leq \gamma(\eta_U).
\]
Thus, \(\lambda(P - 1)\) is a lower bound to the growth rate of the population.

Note also that \(\tilde{\psi}(\eta_U)^2 - 4q(1 - \eta_U)(\pi_1 - \pi_0) = (1 - (1 - \eta_U)q(\pi_1 - \pi_0))^2 > 0\), hence, \(\psi(\eta_U)^2 - 4q(1 - \eta_U)(\pi_1 - \pi_0) > 0\), i.e., \(\gamma(\eta_U) \in R^+\).

Furthermore,
\[
\gamma'(\eta_U) < \tilde{\gamma}'(\eta_U) = 0,
\]
proving that \(g\) is uniformly decreasing in \(\eta_U\).

Part 2: The law of motion (6), together with the restriction that \(\eta = 0\) and \(x_{PU,t+1} = 0\) defines a system of four equations in four unknowns. The unique solution with non-negative fractions of each type yields a solution for the growth rate of the population such that \(1 + g/\lambda \equiv \gamma_S(\eta_S)\), where \(\gamma_S(\eta_S)\) is as defined in the text. First, note that the discriminant in the definition of \(\gamma_S(\eta_S)\) is positive, since:
\[
\psi_S(\eta)^2 - 4\eta_S(\pi_1 - \pi_0) \geq (1 + \eta_Sq(\pi_1 - \pi_0))^2 - 4\eta_Sq(\pi_1 - \pi_0) = (1 - \eta_Sq(\pi_1 - \pi_0))^2 \geq 0.
\]

Next, observe that:
\[
\gamma_S(\eta) \leq \tilde{\gamma}_S(\eta) \equiv \frac{G}{2} \left(\psi_S(\eta) + \sqrt{\psi_S(\eta)^2 - 4\eta_S \left(\frac{P}{G} \pi_1 - \pi_0 \right)} \right),
\]

38
and, moreover, \(\gamma'_S (\eta_S) < \tilde{\gamma}'_S (\eta_S) \). Finally, note that:

\[
\tilde{\gamma}_S (\eta) = \frac{G}{2} \left(\psi_S (\eta) + \sqrt{\psi_S (\eta)^2 - 4\eta_S \left(\frac{P}{G} \pi_1 - \pi_0 \right)} \right)
\]

\[
= \frac{G}{2} \left(1 + \eta_S \left(\frac{P}{G} \pi_1 - \pi_0 \right) + \sqrt{\left(1 + \eta_S \left(\frac{P}{G} \pi_1 - \pi_0 \right) \right)^2 - 4\eta_S \left(\frac{P}{G} \pi_1 - \pi_0 \right)} \right)
\]

implying that \(\tilde{\gamma}'_S (\eta_S) = 0 \). This establishes that \(\gamma'_S (\eta_S) < 0 \), i.e., \(g \) is uniformly decreasing in \(\eta_S \). Q.E.D.

Proof for Lemma 3: Once more, the two cases of \(\eta_U \in (0,1) \) and \(\eta_S \in (0,1) \) are parallel. We therefore concentrate on the case \(\eta_U \in (0,1) \). Using the solution for \(g \) and the definition of \(\gamma (\eta_U) \) defined in the proof of Lemma 2, we can solve for the steady-state proportion of each type, as a function of \(\eta_U \):

\[
\xi_{PU} (\eta_U) = \frac{G \eta_U \left((1 - \pi_0) - P (\pi_1 - \pi_0) / \gamma (\eta_U) \right)}{\gamma (\eta_U) + (G - P) \eta_U + (G \pi_0 - P \pi_1) (1 - \eta_U)},
\]

\[
\xi_{GU} (\eta_U) = \frac{\gamma (\eta_U) - P (\eta_U + \pi_1 (1 - \eta_U))}{\gamma (\eta_U) + (G - P) \eta_U + (G \pi_0 - P \pi_1) (1 - \eta_U)},
\]

\[
\xi_{PS} (\eta_U) = \frac{G \pi_0 + G \pi_U (\pi_1 - \pi_0) \gamma (\eta_U)}{\gamma (\eta_U) + (G - P) \eta_U + (G \pi_0 - P \pi_1) (1 - \eta_U)}.
\]

We now calculate the total derivative of \(\xi_{PS} (\eta_U) \):

\[
\xi'_{PS} (\eta_U) = 2P^2 (\pi_1 - \pi_0) \lambda^3 \left[F (\eta_U) P + (G (1 - \pi_0) - P (\pi_1 - \pi_0)) \sqrt{\psi (\eta_U)^2 - 4q (1 - \eta_U) (\pi_1 - \pi_0)} \right],
\]

where:

\[
F (\eta_U) = q^2 (1 - \eta_U) (1 - \pi_0)^2 + q \left(\eta_U (1 - \pi_0)^2 + \pi_0 (3 - \pi_0) - 2\pi_1 \right) + (\pi_1 - \pi_0) (\eta_U + \pi_1 (1 - \eta_U)).
\]
We want to prove that $\tilde{\xi}'_{PS}(\eta_U) \geq 0$ for all $\eta_U \in [0,1]$. To this aim, we define the function:

$$\tilde{\xi}(\eta_U) = 2P^3 (\pi_1 - \pi_0) \lambda^3$$

$$= 2P^3 (\pi_1 - \pi_0) \lambda^3 (1 - \pi_1)$$

$$= \left[F(\eta_U) + (q (1 - \pi_0) - (\pi_1 - \pi_0)) \sqrt{\tilde{\psi}(\eta_U)^2 - 4q (1 - \eta_U)(\pi_1 - \pi_0)} \right]$$

where we have that $\tilde{\xi}(\eta_U) \geq \tilde{\xi}(\eta_U)$. It is immediate to verify that $\tilde{\xi}(\eta_U) \geq 0$, with strict inequality holding whenever $\pi_0 < \pi_1 < 1$. Hence, $\tilde{\xi}'_{PS}(\eta_U) \geq 0$. In fact, $\tilde{\xi}'_{PS}(\eta_U) > 0$ whenever $\pi_0 < \pi_1 < 1$.

All Workers Educate Their Children, $\tilde{\eta} = 2$.

Q.E.D.

Proof for Proposition 1:

We need to show that the steady-state utility differential between having large and small families is monotonically increasing in $\tilde{\eta}$. Lemma 3 establishes that the wage premium is strictly decreasing in $\tilde{\eta}$, and therefore we want to show that the utility differential is strictly decreasing in the wage premium. For the skilled adults, this monotonicity is immediate. Writing steady-state utilities for unskilled adults as a function of $\tilde{\eta}$ we get:

$$V_{GU}(\tilde{\eta}) = \frac{u(\{f(\tilde{x}(\tilde{\eta})) - f'_{x}(\tilde{x}(\tilde{\eta})) \tilde{\eta}\} (1 + Gl))(1 + Gl)}{1 - \beta (1 - \lambda (1 - z))}$$

$$- \frac{\Pi_{U \rightarrow S}^0 u(\{f(\tilde{x}(\tilde{\eta})) - f'_{x}(\tilde{x}(\tilde{\eta})) \tilde{\eta}\} (1 + Gl)) - u \{f'_{x}(\tilde{x}(\tilde{\eta})) - pP\})}{1 - \beta (1 - \lambda (1 - z))},$$

$$V_{PU}(\tilde{\eta}) = \frac{u(f(\tilde{x}(\tilde{\eta})) - f'_{x}(\tilde{x}(\tilde{\eta})) \tilde{\eta} - pP)}{1 - \beta(1 - \lambda(1 - z))}$$

$$- \frac{\Pi_{U \rightarrow S}^1 [u(\{f(\tilde{x}(\tilde{\eta})) - f'_{x}(\tilde{x}(\tilde{\eta})) \tilde{\eta} - pP\}) - u(f'_{x}(\tilde{x}(\tilde{\eta})) - pP)]}{1 - \beta(1 - \lambda(1 - z))}.$$

Here we assume that skilled adults educate their children. Let:

$$\Delta(\tilde{\eta}) = V_{GU}(\tilde{\eta}) - V_{PU}(\tilde{\eta}).$$
We have
\[\Delta' (\bar{\eta}) = -u' (w_U (\bar{\eta}) (1 + Gl)) \left(1 - \Pi^0_{U \to S} \right) (1 + Gl) x (\bar{\eta}) f'' (x (\bar{\eta})) \chi' (\bar{\eta}) \]
\[+ u' (w_U (\bar{\eta}) - pP) \left(1 - \Pi^{1,1}_{U \to S} \right) x (\bar{\eta}) f'' (x (\bar{\eta})) \chi' (\bar{\eta}) \]
\[+ \left(\Pi^0_{U \to S} - \Pi^{1,1}_{U \to S} \right) u' (w_S (\bar{\eta}) - pP) f'' (x (\bar{\eta})) \chi' (\bar{\eta}), \]
where
\[\chi' (\bar{\eta}) > 0, \]
\[f'' (x (\bar{\eta})) < 0, \]
\[\left(\Pi^0_{U \to S} - \Pi^{1,1}_{U \to S} \right) < 0. \]

Therefore it suffices to show that:
\[u' (w_U (\bar{\eta}) (1 + Gl)) \left(1 - \Pi^0_{U \to S} \right) (1 + Gl) > u' (w_U (\bar{\eta}) - pP) \left(1 - \Pi^{1,1}_{U \to S} \right) \]
or:
\[(1 + Gl) \frac{1 - \Pi^0_{U \to S}}{1 - \Pi^{1,1}_{U \to S}} > \frac{u' (w_U (\bar{\eta}) - pP)}{u' (w_U (\bar{\eta})(1 + Gl))}. \]

Under CRRA, the right-hand side is increasing in the wage and, therefore, Assumption 2 is a sufficient condition for a unique steady state to exist. Q.E.D.

Proof for Proposition 2: To begin, set \(\beta = 0 \) and choose arbitrary positive values for the other parameters, under the condition that the old unskilled are always in majority (i.e., \((1 - \lambda)(1 - \pi_1) > 0.5 \)). Since the future is not valued, there is no incentive for education. Therefore without CLR, the steady state with \(\bar{\eta} = 0 \) prevails, and all families are large. Conversely, when CLR are in place (combined with a compulsory education policy) the steady state is \(\bar{\eta} = 2 \), as all families are small to economize on the educational cost.

Consider this economy under the assumption that the steady state without CLR prevails. We want to find conditions under which the (old unskilled) majority would vote against CLR if a referendum occurred. The gain from introducing CLR consists of a rising wage premium, since the supply of child labor falls. The loss consists of reduced income from child labor and the education cost \(pG \) for children. The relative
size of these effects depends on the production function, the fertility-parameter \(G \), the educational cost \(p \), and on \(\pi_0 \) (which determines the relative number of skilled and unskilled agents in this steady state), but not on \(P \). For given remaining parameters, the education cost \(p \) can always be chosen such that the majority of unskilled agents opposes the introduction of CLR.

Conversely, consider the same economy under the assumption that the steady state with CLR prevails. We want to find conditions under which the majority would prefer to keep CLR in place. The gain from abandoning CLR consists of increased income opportunities through child labor and forgoing the educational cost \(pP \). The loss from abandoning CLR consists of lower unskilled wages through the increased supply of unskilled wages. The gain of abandoning CLR goes to zero as \(P \) goes to zero. The loss, in contrast, does not go to zero, since fraction \(\lambda \) of young parents will choose the large family size \(G \), resulting in a downward effect on the unskilled wage which is independent of \(P \). By choosing \(P \) sufficiently small, we can therefore ensure that the majority votes to keep CLR in place. We have therefore found a set of parameters for which multiple SSPE exist. Finally, since utility is continuous in \(\beta \), the same result can be obtained for positive \(\beta \), sufficiently close to zero, and the same remaining parameters.

Q.E.D.
References

<table>
<thead>
<tr>
<th>Current Quintile</th>
<th>Quintile in Ten Years</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>High</td>
<td>0.71</td>
<td>0.25</td>
<td>0</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.23</td>
<td>0.5</td>
<td>0.12</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>0.01</td>
<td>0.15</td>
<td>0.5</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>0.03</td>
<td>0.07</td>
<td>0.33</td>
<td>0.4</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Table 1: Average Transition Rates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.8</td>
</tr>
<tr>
<td>z</td>
<td>1</td>
</tr>
<tr>
<td>σ</td>
<td>0.5</td>
</tr>
<tr>
<td>λ</td>
<td>0.15</td>
</tr>
<tr>
<td>P</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
</tr>
<tr>
<td>π_0</td>
<td>0.05</td>
</tr>
<tr>
<td>π_1</td>
<td>0.4</td>
</tr>
<tr>
<td>p</td>
<td>0.015</td>
</tr>
<tr>
<td>l</td>
<td>0.1</td>
</tr>
<tr>
<td>κ</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 2: Parameter Values
Figure 1: GDP per capita versus Child Labor
Figure 2: Differential-Fertility versus Child-Labor Residuals

Figure 3: Gini versus Child-Labor Residuals
Figure 4: Steady States
Figure 5: Steady-State $\tilde{\eta}$ (Unskilled Parents with Small Families) as a Function of α

Figure 6: SSPE as a Function of α
Figure 7: Skill Premium in U.K.

Figure 8: Total Fertility Rate in U.K.
Figure 9: Child Labor Rates in U.K.

Figure 10: Schooling in U.K.
Figure 11: Parameter α over Time

Figure 12: Wage Premium over Time, Endogenous Policy
Figure 13: Fraction of Children Working, Endogenous Policy

Figure 14: Population Growth over Time, Endogenous Policy
Figure 15: Wage Premium over Time, Exogenous Policy

Figure 16: Fraction of Children Working, Exogenous Policy