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Abstract

The connectedness of financial assets and markets represents an essential concept that
has long-lasting consequences for the assessment of risk. Thus, it is important to correctly
measure dependencies and describe their dynamics to predict future responses of markets
to shocks. In this thesis, I focus on the connectedness of Eastern European stock markets
and assess the relationships between returns and volatilities in these markets, account-
ing for the presence of cryptocurrency markets and other major developed markets. I
describe conditional correlations of returns from the DCC model of Engle (2002, JBES).
Using the spillover framework proposed by Diebold and Yılmaz (2009, EJ) I measure the
connectedness from a static and dynamic perspective. The results indicate that Eastern
European markets are tightly connected. The measures of connectedness were fluctuat-
ing over time and have risen significantly as a consequence of the recent pandemic. The
magnitude of the increase for different groups of markets ranges from 35% to 100%.

Abstrakt

Propojení finančních aktiv a trhů představuje významný koncept při hodnocení rizika.
Je důležité správně měřit závislosti a popsat dynamiku propojení trhů k předpovídání
reakcí trhů na šoky. V této práci se zaměřuji na propojení akciových trhů východní
Evropy a vyhodnocuji vztahy mezi výnosy a volatilitou na těchto trzích. Při své analýze
beru v potaz existenci trhů s kryptoměnami i jiných významných trhů. Popisuji pod-
míněné korelace výnosů DCC modelem Engleho (2002, JBES). S použitím frameworku
pro zkoumání přelévání šoků mezi trhy, který byl navržen Dieboldem a Yilmazem (2009,
EJ), měřím statickou i dynamickou propojenost. Výsledky naznačují, že trhy výhodní
Evropy jsou úzce propojeny. Míra propojení kolísá v čase a výražně se zvýšila v nedávné
době jako důsledek pandemie COVIDu. Nárust propojení se v různých kategoriích trhů
pohybuje od 35 % do 100 %.
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Research question and motivation:
The interdependence between the economies of European countries generates gains

due to cooperation but also poses the risk of domino effects during economic down-
turns (Sapir, 2010). Considering the economic slowdown at the beginning of 2020 due
to Covid-19 quarantine measures, potential negative effects of economic integration seem
to be especially important. Knowledge of the presence of negative effects of integration
raises a question about the ability of European countries to maintain economic stability
when responding to significant and geographically unequally distributed shocks. The ef-
fects of their connectedness are likely to be reflected in the behavior of European financial
markets, and to cause co-movements in the prices of stock market indices of individual
countries. Thus, a return or a volatility shock to one local market may propagate to con-
nected markets, generating additional uncertainty. The magnitude of the effects of shocks
may vary across time with changes in the degree of market connectedness. Time dynam-
ics become even more important with the rise of new markets connected to the financial
system, such as cryptocurrencies. It is widely accepted that uncertainty contributes to
declines in the value of financial assets and decreases in returns. Therefore, it is essential
to correctly estimate the degree of interdependence of European economies to construct
possible recovery scenarios. There are various examples of works describing integration
and spillover effects in European financial markets. Forbes Rigobon (2002) created a
methodological environment for these studies by noting that the presence of heteroskedas-
ticity requires separate modeling when estimating the degree of market interdependence.
Various techniques are used to model heteroskedasticity: Bayesian quantile regressions
(e.g., Caporin et al., 2018), extensions of the MGARCH model (e.g., Baele, 2005), and
the VAR framework (e.g., Égert Kočenda, 2007, Diebold and Yılmaz, 2009, Demiralay
Bayraci, 2015), to name a few. Among various MGARCH extensions there is a Dynamic
Conditional Correlation (DCC) model proposed by Engle (2002) as an improvement on
previous modeling approaches (for example, the BEKK model described in Engle Kroner,
1995). The specification of this model addresses the problem of the dimensionality of the
vector of parameters and allows one to estimate time-varying conditional correlations,
which motivate ubiquitous use of the DCC in empirical studies on financial connected-



ness. Another way to approach the problem is to estimate return or volatility spillovers.
The framework proposed in Diebold and Yılmaz (2009) is based on forecast error variance
decompositions from a VAR model that are used to construct various measures of the
connectedness of markets. The measures allow one to investigate the magnitudes and
directions of spillover effects across markets. To the best of my knowledge, no works have
concentrated on changes in the integration of Eastern European stock markets during the
recent pandemic, accounting for the influence of cryptocurrencies. The goal of this thesis
is to fill this gap in the literature and provide new empirical evidence on the financial
connectedness of Eastern European stock markets.

Contribution:
There have been many studies about spillover effects and the integration of Eastern

European stock markets. However, they do not consider the influence of the Covid-
19 pandemic on the degree of connectedness. There has been no study concentrating
on Eastern European stock markets in isolation and describing how these markets are
connected to cryptocurrencies. My thesis will contribute by applying the DCC model
and Diebold and Yılmaz’s (2009) spillover framework to study the integration of Eastern
European stock markets.

Methodology:
I will use daily returns data on stock market indices of Eastern European and linked

developed countries. I will represent the cryptocurrency markets with Bitcoin data. The
quality of data is essential for the estimation of the model, and the availability of data on
both stock market indices and different financial instruments may be beneficial for the
comparison of evidence of connectedness from different models. Thus, the major part of
the work will be devoted to gathering the necessary data on returns. I will compare the
results from proposed approaches to the results of prior studies, with a special focus on the
effects of the pandemic on the connectedness of markets. I will interpret the potential
differences in the estimates of the magnitude of spillover effects. My conclusions will
include policy suggestions, taking into account the current degree of interdependence
between Eastern European stock markets and their dependence on the performance of
cryptocurrency markets.

Outline:

1. Introduction

2. Literature review

3. Data description

4. Dynamic conditional correlations of returns

5. Return and volatility spillovers



6. Discussion

7. Conclusion
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1 Introduction

The concept of connectedness receives a lot of attention in the financial literature. The
assumption that financial markets or assets are independent is usually rejected by the
data in favor of integration (Billio et al., 2012; Diebold and Yılmaz, 2015a). Financial
connectedness implies that the assessment of future outcomes, for example, risks, should
take into account the influence of a surrounding environment. If a group of markets in
a portfolio is strongly connected, the shock to one market may create a chain of shocks
spreading across all other markets in the portfolio. Thus, the failure of one member of a
group may cause the entire group to fail, raising the problem of systemic risk. The chain
effect causes the magnitude of losses to exceed a loss implied by the initial shock in the
case of independence of markets. The failure of the financial side of the economy may
impact the real economy through spillover effects and cause declines in economic activity.
Moreover, movements in the opposite direction are also a possibility. Such notions were
shown to be true and significant in the financial crisis that began in 2008, and which at-
tracted additional attention to the importance of financial integration and connectedness.
Since not only assets but also financial institutions and countries may be, in some sense,
connected, the study of financial integration provides relevant information for all kinds of
professionals, from risk and portfolio managers to policymakers. It helps to predict and
quantify the consequences of possible significant negative shocks for the dynamic evolu-
tion of connected systems. It may also reveal spillover effects from regulatory policies
generated by the underlying connection structure. This information may guide policy
decisions and increase their efficiency. The measurement of the degree of integration is
also directly related to standard tools in risk management, including Expected Shortfall,
Value at Risk (VaR), and its conditional CoVaR counterpart (Billio et al., 2012).

The important aspect of financial connectedness is its time-varying nature (Rockinger
and Urga, 2001). The degree of integration may evolve dynamically and respond to new
information coming to markets. The recent pandemic1 events represent an illustrative
example of a systemic shock that affected all countries and markets. The pandemic has
likely changed the patterns of connectedness between financial markets, given tremendous
changes in the real sector of the economy. The changes should be even more pronounced
in regions where special efforts are made to increase the cooperation between member
countries, including the European Union (EU). In such groups of countries, the concept
of connectedness of both real and financial sectors is more relevant. Thus, the spillover
effects are likely to be more significant for the countries and financial markets of the EU.

Another portion of time variation in financial connectedness may be explained by ad-
ditional entities entering or leaving the connected network. Although no major changes

1Officially recognized by the World Health Organization on 11th of March 2020. Link:
https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/
news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic/
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in EU structure have happened recently, the rise in importance of cryptocurrencies may
represent an example of the entrance of a new market to the system. The recent study
by Bouri et al. (2021) shows how different cryptocurrencies are connected to each other
in terms of volatility of returns. Using Twitter feed data the authors explain the dy-
namic nature of the connectedness of cryptocurrencies by changes in sentiment (level
of happiness) of traders. Other papers provide evidence on how cryptocurrencies are
linked in terms of both return and volatility spillovers to markets for major commodities
(Okorie and Lin, 2020; Bouri et al., 2021) and stock markets (Frankovic et al., 2021).
It is possible that the pandemic increased connectedness between EU stock markets and
cryptocurrencies through the sentiment channel. The above-mentioned aspects of time-
variability demonstrate that static evaluation of connectedness is likely to be misleading
or incomplete and a dynamic approach should be exploited instead.

The previous literature on the relationship between European stock markets is vast.
Earlier studies, for example, Syllignakis and Kouretas (2010, 2011), concentrate on the
return connectedness of Central and Eastern European (CEE) stock markets and con-
clude that the integration of these markets with developed European markets and the US
increased after the 2008 financial crisis. Demiralay and Bayraci (2015) investigate volatil-
ity spillovers for the same group of markets and conclude that similar results regarding
the connectedness of CEE with other major markets hold for volatility. Moreover, they
provide evidence on a moderate connectedness of CEE markets, showing that around 50
% of future volatility forecasts are formed by spillovers. These studies mostly discuss the
effects of the 2008 financial crisis; evidence on the effects of the pandemic on the con-
nectedness of European markets is scarce. Aslam et al. (2021) focus mostly on developed
European stock markets in the period around the start of the pandemic. The authors use
5-minute intraday volatility data and show that almost 80 % of the variation in forecasts
of future volatility is due to spillover effects between markets. The significant limitation
of their work comes from the high-frequency nature of the data. The authors are able to
cover only a short time period before and after the pandemic. Their model captures the
connectedness of markets while they are under the effects of the pandemic and does not
account for previous available information on the evolution of European markets. This
may lead to an overestimation of the degree of connectedness and magnitude of spillover
effects. To my best knowledge, empirical evidence on the relationship between Eastern
European (EE) markets and cryptocurrencies is missing. However, the issue requires a
separate investigation for the reasons already described. I aim to fill the gap in the lit-
erature by providing an empirical analysis of the financial connectedness of EE markets
with themselves and other developed markets, considering the role of cryptocurrencies in
this picture. I also describe how the dynamics of EE markets’ connectedness responded
to the pandemic events.

In this thesis, I focus on the connectedness of EE financial markets and their relations
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to other markets. Using daily information on prices of stock market indices I study how
EE markets depend on each other, financial markets of developed countries, and the
cryptocurrency market. I investigate the connectedness on return and volatility levels.
Firstly, I describe the dynamic conditional correlations of returns obtained from the DCC-
GARCH model of Engle (2002). Then I separately quantify spillover effects using the
framework proposed by Diebold and Yılmaz (2009b, 2012, 2014) for financial returns and
volatilities. Based on the results I construct connectedness measures and study their
dynamic evolution, concentrating on the effects of the pandemic in the last part of the
sample.

My results suggest that EE markets are tightly connected. Conditional correlations
of returns of EE markets were fluctuating over time around a value close to 50 % with a
noticeable spike at the beginning of the pandemic. The dynamic measure of connected-
ness based on spillover effects showed the same pattern and significantly increased as a
consequence of the pandemic. Estimates of return and volatility spillovers allow one to
conclude that EE markets were mostly receiving spillovers from other markets. However,
in terms of returns, some EE markets started to generate spillover effects while in terms
of volatility their behavior mostly remained unchanged. I document a weak relation-
ship between cryptocurrency and EE markets, which departed from the state close to
independence only after the pandemic.

The rest of the thesis is organized as follows: Section 2 provides a literature review;
Section 3 describes data employed in the analysis; Section 4 introduces the results; Section
5 contains a discussion; and Section 6 concludes.

4



2 Literature review

2.1 GARCH approach

It is widely accepted in the financial literature that returns of assets may depend on
each other and exhibit comovements. Poon et al. (2003) investigated the importance of
time-varying volatility in studying dependencies between financial assets. The authors
showed that estimates of tail dependence differ significantly once the heteroskedasticity
is accounted for, suggesting that the appropriate way to analyze the dependence between
financial assets must include the modeling of volatility dynamics.

A natural starting point in volatility modeling is the Autoregressive Conditional Het-
eroskedasticity (ARCH) model proposed by Engle (1982). Since the volatility is not
observable, the idea is to explicitly define an equation that governs the dynamics of
volatility of return series. The simplest example of the ARCH model of order p consists
of two equations describing the mean and variance processes:

rt = µ+ εt

σ2
t = ω +

p∑︂
i=1

αiε
2
t−i

εt = σtϵt

(1)

where ϵt are i.i.d disturbances with zero mean and unit variance, rt is the return of the
asset with variance σ2

t . The model filters unobserved volatility using squares of residuals
from the mean equation. It is evident that the large realizations of shocks εt drive the
variance of subsequent returns up, generating a possibility to observe greater shocks
in the future. To ensure the positiveness of variance the parameters should satisfy non-
negativity constraints ω > 0 and αi ≥ 0. The existence of unconditional variance requires∑︁p

i=1 αi < 1. The model captures the stylized fact of financial time series that volatility
persists in time, forming volatility clusters. However, the generated level of persistence
is usually too low to correctly describe the behavior of the return series. To improve
upon the ARCH idea and increase the persistence of volatility generated by the model
Bollerslev (1986) introduced the Generalized ARCH (GARCH) model, which adds lags
of volatility to the variance equation. In the GARCH(p,q) model the variance equation
is augmented by lagged values of volatility:

σ2
t = ω +

p∑︂
i=1

αiε
2
t−i +

q∑︂
j=1

βjσ
2
t−j (2)

where again the non-negativity of the parameters is required to ensure that generated
variances are positive. To achieve the finite unconditional variance the condition ∑︁p

i=1 αi+
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∑︁q
i=1 βi < 1 should be satisfied. The consequences of the violation of this condition

for the persistence of variance generated are discussed by Nelson (1990, 1991). The
proposed Integrated GARCH (IGARCH) model allows one to work in the case when∑︁p

i=1 αi + ∑︁q
i=1 βi = 1, estimating the standard GARCH model with the restrictions on

the coefficients of volatility persistence. The main feature of this model is that the impact
of previous volatility levels persists and never dies out for any forecasting horizon. The
behavior of volatility series (the existence of unconditional variance and stationarity)
depend on whether the intercept ω is equal to zero or positive.

One significant limitation of the models described above is that they do not appro-
priately capture the asymmetric effects of shocks on the volatility level. Among other
researchers, Pagan and Schwert (1990) noted that GARCH models impose strict restric-
tions on the dynamics of the volatility process by stating that the effect of positive and
negative shocks is identical. This feature is ensured by the use of squares of shocks
in the volatility equation. In fact, the symmetric impact of shocks is usually not the
case for financial time series. For example, Bekaert and Harvey (1997) demonstrate in
the GARCH framework that the behavior of the majority of emerging markets exhibits
signs of asymmetric reactions of volatility to previous shocks. Bad news, represented
by negative shocks (unanticipated drops in the return), is likely to increase the volatility
more than unanticipated increases; this typical feature is usually called the leverage effect
(Hamilton, 1994) and may be modeled by the slight transformation of the volatility equa-
tion. Engel (1990) proposed to model an asymmetric effect in the GARCH(1,1) model
by adding an unrestricted parameter γ to the previous shock before squaring the term:

σ2
t = ω + α(ϵt−1 + γ)2 + βσ2

t−1 (3)

The consequences of this transformation may be summarized using the terminology
proposed by Engle and Ng (1993): the News Impact Curve (NIC), which shows the impact
of previous return shocks on the current volatility level, is asymmetric with respect to
the sign of the shock. Indeed, fixing previous volatility levels on the unconditional mean
level σ2 the NIC is centered at ϵt−1 = −γ as opposed to zero in the GARCH(1,1) model:

σ2
t = ω + βσ2 + α(ϵt−1 + γ)2 = A+ α(ϵt−1 + γ)2 (4)

where A is a constant. If γ < 0 the NIC is shifted to the right and the impact of negative
shocks is greater compared to the impact of positive shocks close to γ.

Nelson (1991) proposed the Exponential GARCH (EGARCH) model as another ap-
proach to directly address the asymmetric reaction of volatility to previous shocks of
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different signs. In this model the logarithm of volatility is modeled instead of the level of
volatility and the equation takes the following form:

ln(σ2
t ) = ω +

p∑︂
i=1

αi[ϕϵt−i + ψ(|ϵt−i| − E(|ϵt−i|))] +
q∑︂

j=1
βjln(σ2

t−j) (5)

where ln() is a natural logarithm, α1 = 1 and ϵt are i.i.d disturbances with zero mean and
unit variance. Since the volatility is log-transformed the non-negativity constraints on
the parameters are no longer relevant. In the case of the normality of ϵt, E(|ϵt|) = ( 2

π
) 1

2

and it is evident that the part of the slope of previous shocks without αi depends on the
sign of the shock: it is equal to ψ + ϕ for positive realizations and ψ − ϕ for negative
realizations, making the NIC asymmetric. If the log transformation is not desirable one
may still make the NIC asymmetric using the GJR-GARCH model of Glosten et al.
(1993). The approach is close to the proposition of Engle and Ng (1993) described
previously but implies a less restrictive structure in the volatility equation. For the same
case of p = q = 1 it may be expressed in the following way:

σ2
t = ω + αε2

t−1 + γε2
t−1It−1 + βσ2

t−1 (6)

where It−1 is an indicator function which is equal to 1 if εt−1 < 0 and 0 otherwise. The
NIC has its minimum at εt−1 = 0 and the impact of the previous shock is α + γ for
negative realizations and α for positive ones. It is worth noting that for the symmetric
distributions of ϵt the existence of unconditional variance is insured by the transformed
condition α + β + γ

2 < 1 (Ling and McAleer, 2002). If γ = 0 and no asymmetry is
present the condition reduces to the standard one for the GARCH(1,1) model. Rockinger
and Urga (2001) study the financial integration of European economies and identify
the presence of significant asymmetric GARCH effects with negative shocks generating
additional volatility. This finding suggests that one needs to account for asymmetries
when modeling the behavior of stock markets. Engle and Ng (1993) use Japanese stock
return data to compare the performance of different asymmetric GARCH models. The
authors identify the GJR-GARCH model as the best parametric alternative for modeling
the asymmetric influence of past shocks on the current volatility. The EGARCH model
is able to adequately account for asymmetry too. However, the implied variability of the
predicted conditional variance is higher than in other models and exceeds the variability
of squared returns. This speaks against the use of EGARCH in empirical applications.

The specification of the volatility equation is the central focus of the GARCH-type
model selection process. However, the form of the conditional mean equation may also be
transformed to accommodate theoretical facts and considerations about financial returns.
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The specification of the conditional mean from Equation 1 assumes a constant mean of
returns. However, the assets with higher variance may pay more to compensate for the
risk. Since variance changes over time as postulated by the volatility equation the mean of
returns should also change. Engle et al. (1987) proposed the GARCH-in-Mean (GARCH-
M) model to account for the presence of the time-varying risk premium. Their proposal
was to include some measure of risk into the mean equation:

rt = µt + εt = c+ δht + εt (7)

where ht may be equal to σ2
t , σt or ln(σ2

t ), c is a constant term and δ is a parameter
that describes the relationship between the return and risk of an asset. If the parameter
δ is not equal to zero, the specification implies the existence of the serial correlation in
returns, which is pronounced through the volatility equation. This serial correlation may
be modeled directly by including autoregressive terms in the mean equation (lags of re-
turns). For a stock market return the significant autocorrelation may indicate inefficiency.
Rockinger and Urga (2000) test the efficiency of European stock markets using a sample
from 1994 to 1999. The authors use the time-varying AR(1) model and identify that the
Czech, Polish, and Hungarian markets drifted towards efficiency, which is captured by the
insignificance of the autoregressive term. The Russian market remained inefficient with
a slightly significant AR(1) parameter. Although the process takes time, the evidence
suggests that stock markets become more efficient over time. The common practice in
GARCH-type modeling is to include an autoregressive term in the mean equation. An-
other way is to include a set of variables to model the seasonality in mean returns or
combine both approaches. However, when working with the returns of markets that are
mature enough, the inclusion of these terms into the mean equation is likely to lead to
insignificant results.

Another important part of the conditional mean equation is the unpredictable inno-
vation. The choice of the distribution of the error term determines the distribution of the
returns and affects the estimation. The vector of parameters θ of GARCH-type mod-
els is usually estimated using Maximum Likelihood (ML) procedures (Hamilton, 1994).
Given the distribution of i.i.d. standardized innovations f(ϵt(θ)|It−1) one may construct
a sample log-likelihood conditioning on the first m observations2 to ensure that necessary

2The unconditional distribution of first m observations is complicated and usually omitted by the
virtue of the assumption that this distribution does not depend on the estimated parameter vector θ.
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information It−1 is available for the estimation for all lags (up to m)3 at time t:

LL(θ) =
T∑︂

t=1
[ln(f(ϵt(θ)|It−1)) − 1

2 ln(σ2
t (θ))] (8)

where the variance term arises from the standardization of innovations (recall from Equa-
tion 1 that ϵt(θ) = εt(θ)

σt(θ )). The maximization of LL(θ) delivers ML estimates θ̂. One
solves the problem numerically choosing starting values for all elements of θ and m initial
values for volatility and realizations of residuals.

The maximization of the conditional log-likelihood depends on the choice of density.
For financial applications a researcher is free to choose from several common alternatives:
standard normal, standardized Student‘s t, generalized error distribution (GED), and
their modifications. The choice is guided by theoretical considerations with the aim
of capturing important facts about the data. For example, Bollerslev (1987), in the
GARCH framework, models exchange rates using standardized Student‘s t distributed
errors to capture the tail fatness of the return distribution. Nelson (1991) employs a GED
distribution for asset returns to capture the same property of data, arguing that the use
of standardized Student‘s t distribution may deliver non-finite unconditional moments
of the resulting distribution. One major problem with these distributions is that the
misspecification of the density may lead to inconsistent estimates. The common practice
is to use Quasi-maximum Likelihood (QML) estimators: if both conditional mean and
variance equations are correctly specified one may assume Gaussian distribution of errors
and receive consistent estimates of the parameters, sacrificing efficiency (Fan et al., 2014).
However, both standardized Student‘s t and GED are not suitable for QML. Newey and
Steigerwald (1997) discuss properties of non-Gaussian QML estimators and show how the
identification condition may be satisfied when the true density is unimodal and symmetric
around zero.

Although the wide range of univariate models discussed so far is relevant for the de-
scription of volatility dynamics of single assets, they are silent about the interdependence
of assets. To address the central question of this thesis one needs to model the behavior
of return series as a group, evaluating the strength of possible bidirectional relationships
between them. The univariate GARCH-type models may serve as a building block for
more general multivariate GARCH (MGARCH) models that are intended to work in the
case when the number of considered assets is greater than 1. The general formulation of

3For example, in the GARCH(p,q) model m=max(p,q).
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the setting may be summarized in the following form:

rt = µt + εt

εt = H
1/2
t ϵt

(9)

where bold rt, µt are now (n × 1) vectors or returns and expected values of returns,
respectively; ϵt is an (n × 1) i.i.d. vector of innovations with zero mean and unity
covariance matrix In; Ht is an (n × n) conditional covariance matrix of rt that obeys
some structure defined by an MGARCH model. It is important for this matrix to be
positive definite and symmetric since it represents the covariance structure of the returns.

The most straightforward MGARCH model called VEC(p,q)4 was introduced by
Bollerslev et al. (1988). The authors proposed to model Ht in the following form:

vech(Ht) = c +
q∑︂

i=1
Aivech(εt−iε

′
t−i) +

p∑︂
i=1

Bivech(Ht−i) (10)

where c is an (n(n+1)
2 × 1) vector of constant parameters; Ai and Bi are (n(n+1)

2 × n(n+1)
2 )

matrices of parameters; the operator vech() stacks the lower triangular portion of a
square matrix into one column vector5. The structure is similar to the GARCH(p,q)
model. However, the important difference is that volatilities of assets depend not only
on their own lags of volatilities and shocks but also on these values of other considered
assets and all their combinations. The generality and flexibility of this model comes at
a cost as the number of parameters to estimate is equal to n(n+1)

2 + (p + q)(n(n+1)
2 )2 and

increases significantly with the number of assets n (Bauwens et al., 2006). Moreover,
the generated Ht is likely to be not positive definite at least for some periods t. To
make it positive definite one needs restrictive assumptions, which are hard to justify.
For example, the assumption that parameter matrices Ai and Bi are diagonal delivers a
simplified diagonal VEC (DVEC) model with significantly lower number of parameters
(p+ q+1)n(n+1)

2 for which the conditions for positive definiteness of Ht may be obtained.
However, the model is restrictive in the sense that it prohibits interactions between assets
(due to its diagonal structure) that are desirable for an MGARCH model. To overcome
this weakness while forcing Ht to be positive definite one may use Baba, Engle, Kraft and

4The name comes from the column-stacking operator and should not be confused with the Vector
Error Correction model.

5To understand the operator consider the following example with (3 × 3) matrix: if X=

⎛⎝x11 x12 x13
x21 x22 x23
x31 x32 x33

⎞⎠ then vech(X)=

⎛⎜⎜⎜⎜⎜⎜⎝
x11
x21
x31
x22
x32
x33

⎞⎟⎟⎟⎟⎟⎟⎠ is a (6 × 1) vector.
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Kroner (BEKK(p,q,K)) model proposed by Engle and Kroner (1995) with the following
dynamics of Ht:

Ht = CC ′ +
q∑︂

i=1

K∑︂
k=1

A′
kiεt−iε

′
t−iAki +

p∑︂
i=1

K∑︂
k=1

B′
kiHt−iBki (11)

with Aki ,Bki, and lower triangular C (n× n) matrices of parameters. It may be shown
that every BEKK model is a restricted version of a VEC model with the parameter
K guiding the degree of generality (the increase of K drives the BEKK closer to an
unrestricted VEC counterpart). The decreased number of parameters equals to (p +
q)Kn2 + n(n+1)

2 , which is less than in VEC but higher than in the DVEC model (Bauwens
et al., 2006). Identification and estimation difficulties in practical applications force
one to set K equal to 1. In this model Ht is positive definite by construction and the
interactions between assets are not prohibited. This creates an ability to investigate the
existence of spillover effects between assets. Using a BEKK(1,1,1) model with n = 3
assets Yu et al. (2020) measure volatility spillovers between oil and stock markets. The
model allows authors to identify changes in the direction of spillover effects in response
to major political events considered to represent structural breaks in the relationship
between markets.

The direct modeling of the dynamics of Ht is not the only way to proceed in multi-
variate volatility modeling. A completely different class of MGARCH models that con-
centrates on conditional correlations was introduced by Bollerslev (1990). The Constant
Conditional Correlation (CCC) model expresses the conditional covariance matrix as a
product of conditional standard deviations and time-invariant conditional correlations:

Ht = DtRDt = (ρij
√
σiitσjjt)

Dt = diag(σ11t, ..., σnnt)
(12)

with R being a (n×n) symmetric positive definite matrix of constant correlations of asset
returns ρij with elements on the main diagonal equal to 1; Dt is a (n×n) diagonal matrix
of standard deviations σiit. The attractive feature of the model is that standard deviations
for each asset may be modeled separately using different univariate GARCH models. In
the original paper GARCH(1,1) is employed, but the choice may cover other extensions
discussed previously. Ht is ensured to be positive definite provided that conditional
variances are positive and R is positive definite. Another advantage of the model over
the VEC and BEKK alternatives is the significant reduction of the number of parameters
to estimate. For example, with the GARCH(1,1) model for each asset this number is
equal to n(n+5)

2 (Bauwens et al., 2006). Moreover, the estimation of the parameters is
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simplified because of the stated covariance matrix decomposition.
The most important disadvantage of the CCC is the restriction on conditional corre-

lations to be constant over time: a property which is highly unlikely to lead to a correct
description of the underlying relationships between assets. To overcome this problem En-
gle and Sheppard (2001) and Engle (2002) proposed a Dynamic Conditional Correlation
(DCC(p,q)) model that relaxes the assumption and allows the conditional correlation
matrix to be time-varying, giving rise to the following decomposition extended by an
additional equation for the dynamics of the structure of conditional correlations:

Ht = DtRtDt

Dt = diag(σ11t, ..., σnnt)

Rt = Q−1∗
t QtQ

−1∗
t

Qt = (1 −
p∑︂

i=1
αDCC

i −
q∑︂

i=1
βDCC

i )Q̄ +
p∑︂

i=1
αDCC

i (ϵt−iϵ
′
t−i) +

q∑︂
i=1

βDCC
i Qt−i

(13)

where Qt is an (n × n) symmetric positive definite conditional covariance matrix of
standardized residuals ϵt; the main diagonal of (n × n) Q∗

t contains square roots of
elements from the main diagonal of Qt and zeroes everywhere else; Q̄ is an (n × n)
unconditional covariance matrix of ϵt; αDCC

i and βDCC
i are positive scalar parameters.

As is common with GARCH-type modeling, in empirical applications the usual choice of
the specification is the most parsimonious p = q = 1 version of the model (Engle and
Sheppard, 2001), for which the condition αDCC + βDCC < 1 is important to ensure that
Qt is appropriately defined. Dajcman et al. (2012) employ the model in the assessment
of comovements of major European stock markets. The authors show how one may
describe the influence of crisis events using changes in conditional correlations. In the
same framework, Asaturov et al. (2015) investigates the influence of Polish and Russian
markets on other EE markets. The time variation of conditional correlations helps to
describe differences in comovements of prices during tranquil and crisis periods.

It is clear that scalar parameters may represent only common dynamic patterns among
all assets. A way to generalize the DCC model to capture differences in dynamics of Qt

was introduced by Cappiello et al. (2006). The Asymmetric Generalized DCC (AG-DCC)
model departs from the DCC specification of Qt dynamics by using parameter matrices
instead of scalar parameters. Moreover, the equation is augmented by the part which
captures asymmetry effects of past shock in the multivariate setting:

Qt = (Q̄ − A′Q̄A − B′Q̄B − G′Q̄−G) + A′(ϵt−1ϵ′
t−1)A + B′Qt−1B + G′(ϵ−

t−1ϵ−
t−1

′)G
(14)
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with (n×n) parameter matrices A, B, and G; ϵ−
t−1 = It−1 ⊙ϵt−1, where It−1 is a vector

of indicator functions with entries Iit−1 equal to 1 if ϵit−1 < 0 and 0 otherwise6; Q̄− being
a counterpart of unconditional covariance matrix of residuals Q̄ that is estimated using
ϵ−

t−1 instead of ϵt−1. The evident flexibility from using parameter matrices comes at a
cost because one needs to estimate the expanded set of parameters. The AG-DCC model
possesses a reduced scalar form like the DCC model in Equation 13, which may be of use
in empirical applications. One may prefer this specification over scalar DCC when the
modeling of leverage effects is suspected to be important for the correct representation of
the multivariate distribution. For example, Gjika and Horvath (2013) use scalar version
of asymmetric DCC model to describe comovements of Central European stock markets
and provide evidence on mild asymmetric effects in the Qt dynamics.

The estimation of the parameters of the DCC model requires a two-step procedure:
in the first step, the parameters of the specified univariate GARCH models are estimated
using QML under the assumption of Gaussian innovations to ensure the consistency of
the estimates in the case of a possible misspecification of the density; the estimate of
Q̄ is obtained from standardized residuals ϵit = εit

σit
; in the second step, the information

from the first step is used to estimate the remaining DCC parameters via ML under
the likelihood which depends on the specified multivariate distribution (Bauwens et al.,
2006). As in the univariate case, the choice of the distribution is affected by the properties
of the data: if one wants to capture heavy tails of the joint distribution of returns
the multivariate Student‘s t distribution should be employed instead of a more simple
multivariate normal alternative. In this case, the first step quasi-log-likelihood for the
estimation of the set of parameters of univariate GARCH-type models θ1 will take the
following form:

LL1ststep(θ1) =
n∑︂

i=1
(const− 1

2

T∑︂
t=1

(ln(σit) + ε2
it

σit

)) (15)

The second step log-likelihood for the estimation of the remaining DCC parameters
θ2 = {αDCC , βDCC , νDCC} using the multivariate Student‘s t distribution taking θ1̂ as
given will reduce to:

LL2ndstep(θ2|θ1) =
T∑︂

t=1

(︃
ln(Γ(ν + n

2 )) − ln(Γ(ν2)) − n

2 ln(π(ν − 2))

− 1
2 ln(|Rt|) − ν + n

2 ln(1 + ϵ′
tR

−1
t ϵt

(ν − 2) )
)︃ (16)

6⊙ is a Hadamard or element-wise product. One can illustrate the operator by a simple example:(︃
a1
a2

)︃
⊙

(︃
b1
b2

)︃
=

(︃
a1 ∗ b1
a2 ∗ b2

)︃
that can be easily generalized for any matrices with the same dimensions.

13



with Γ() representing the Gamma function and |A| denoting the determinant of A.

2.2 VAR approach

Another approach to modeling the dynamic relationship between financial time series is
available with the use of vector autoregressive (VAR) models. Sims (1980) introduced
the model as a new atheoretical approach to study the dynamic relationship between
multivariate time series. Following the notation of Hamilton (1994) the standard VAR(p)
model for n time series may be represented by the following equation:

yt = c +
p∑︂

i=1
Φiyt−i + εt (17)

or equivalently using lag polynomials7:

Φ(L)yt = c + εt (18)

where bold yt, c are (n × 1) vectors, Φi are (n × n) matrices, Φ(L) = In − ∑︁p
i=1 ΦiL

i,
and (n × 1) vector of innovations is i.i.d. εt ∼ N (0,Ω). The vector yt may contain
either returns of different assets or their measures of volatility, for example range-based
volatilities of assets. For this model to be covariance-stationary all roots z of the equa-
tion involving a determinant operator |In − ∑︁p

i=1 Φiz
i| = 0 must lie outside the unit

circle. The condition implies that effects of shocks εt decrease over time and eventually
disappear entirely. If this is the case, then the VAR(p) model possesses a vector MA(∞)
representation of the following form:

yt = µ + Ψ(L)εt (19)

where µ = [In − ∑︁p
i=1 Φi]−1c. The elements of Ψs matrices for all s may be calculated

by solving Ψ(L) = [Φ(L)]−1 or simulating the behavior of the system8. While the direct
interpretation of elements of Φi is not available and is complicated because of the number
of parameters estimated even for small values of n and p, the MA representation provides
a way to understand the relationship between series. For example, in the absence of all
other innovations, an element of Ψs on the intersection of the ith row and jth column

7The lag operator produces the lagged value of a time series Lyt = yt−1. In general, the following
property holds: Liyt = yt−i for non-negative integers i.

8To be more precise, the following recursive relationship holds: Ψi = Φ1Ψi−1 + Φ2Ψi−2 + ... +
ΦpΨi−p for all positive i, Ψ0 = In, and Ψi = 0 for all negative i (Pesaran and Shin, 1998).
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shows the effect of a unit increase in a jth variable‘s shock at time t εjt on the ith variable
at period t+s yi,t+s (Hamilton, 1994). Based on this notion, one could construct impulse
response functions (IRFs) plotting the appropriate elements of Ψs against different time
horizons s to summarize the effects of different shocks to the system on the evolution of
variables of interest.

The vector MA(∞) representation and IRFs help to study the structure of the error
variance for the s periods ahead forecast. The error of the forecast of yt+s may be written
as:

yt+s − ŷt+s|t =
s−1∑︂
i=0

Ψiεt+s−i (20)

The variance of this error may be obtained by squaring the error and taking the
expectation. Since the shocks εt may be contemporaneously correlated according to the
structure summarized by Ω, additional transformations are required to proceed with the
calculation and receive the convenient simplification of the variance of the sum. The
original identification proposal of Sims (1980) was to orthogonalize the shocks to the
system by using the Cholesky decomposition9 of the covariance matrix Ω = P P

′ and pre-
multiply εt with P −1 to receive orthogonalized shocks ut = P −1εt with covariance matrix
In by construction. The transformation of the initial vector MA(∞) representation leads
to the following equations that contain orthogonalized innovations:

yt = µ̃ + A(L)ut (21)

yt+s − ŷt+s|t =
s−1∑︂
i=0

Aiut+s−i (22)

where A(L) = Ψ(L)P with P representing a part of the Cholesky decomposition of
the covariance matrix Ω = P P

′ of non–orthogonalized shocks εt and appropriately
transformed constant term µ̃. This representation leads to the following variance share of
the ith variable s-step-ahead forecast error variance attributed to shocks to jth component
of yt:

θ̃
C

ij(s) =
∑︁s−1

h=0(e
′
iΨsP ej)2∑︁s−1

h=0(e
′
iΨsΩΨ′

sei)
=

∑︁s−1
h=0(e

′
iAsej)2∑︁s−1

h=0(e
′
iAsA

′
sei)

(23)

9Symmetric positive-definite matrix A may be represented as A = LL
′ , where L is a lower triangular

matrix with positive entries on the main diagonal and L
′ is a transpose of L.
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with ei being a selection vector (n×1) that contains zeros everywhere except unity on the
ith position. One potential problem of the decomposition presented is that it depends
on the predetermined order of variables in yt used in the Cholesky identification. An
alternative approach, to avoid the sensitivity of impulse responses and forecast error
variance decompositions to the ordering of variables in a VAR model, was proposed by
Koop et al. (1996). The authors defined the Generalized Impulse Response Function
(GIRF) for a horizon s as:

GIRF (s, δ, It−1) = E(yt+s|εt = δ, It−1) − E(yt+s|It−1) (24)

with It−1 representing all available history up to time t-1 and shock to the system δ.
Instead of orthogonalization of shocks the composition of δ is chosen such that only
one element of the vector (say jth variable shock) is not equal to zero. Note that in
case of the VAR(p) the GIRF will be history-invariant GIRF (s, δ, It−1) = Asδ. Then
the assumption of multivariate normality of εt is used to integrate out the influences of
correlated shocks using the historical distribution:

E(εt|εjt = δj) = Ωejδj

σjj
(25)

with σjj denoting the square root of the variance of errors from the jth equation of the
underlying VAR model.

Based on the GIRF approach, Pesaran and Shin (1998) showed that the variance
share of the ith variable s-step-ahead forecast error variance attributed to shocks to jth
component of yt is equal to:

θ̃
G

ij(s) =
∑︁s−1

h=0(e
′
iΨsej)2

σii
∑︁s−1

h=0(e
′
iΨsΩΨ′

sei)
(26)

It is worth noting that the proposed decomposition does not depend on the ordering of
variables in yt. However, one shortcoming of this approach is that while ∑︁n

j=1 θ̃
C

ij(s) = 1
the same result does not usually hold for θ̃G

ij(s).
The seminal paper by Diebold and Yılmaz (2009b) (hereafter the pair of authors is

referred to as DY) introduced a framework for studying the connectedness of financial
assets. The authors looked separately at the return and volatility connectedness of global
equity markets. The main idea of the framework is to use a VAR model for returns or
volatilities of assets and respective forecast error variance decompositions to construct
so-called spillover tables. The decomposition shows how the variance of the error of
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the forecast of yt+s is affected by shocks from different entities of yt. Thus, it shows the
dynamic connectedness of elements of yt. If we fix the forecast horizon s and denote dij(s)
to be the variance share of the s-step-ahead forecast error variance of the ith variable
that is explained by the shocks to the jth variable, then the spillover table for n financial
assets is going to have the structure presented in Table 1. It is immediately evident that
TO others measures represent the sum of variance shares that come from a market to
all other markets disregarding the own variance share (column sum minus the element
on the main diagonal) and FROM others measures represent the sum of variance shares
that come from all other markets to a particular market disregarding the own variance
share (row sum minus the element on the main diagonal).

Table 1: General form of a spillover table.

x1 x2 x3 · · · xn FROM others
x1 d11 d12 d13 · · · d1n

∑︁n
j=1,j ̸=1 d1j

x2 d21 d22 d23 · · · d2n
∑︁n

j=1,j ̸=2 d2j

x3 d31 d32 d33 · · · d3n
∑︁n

j=1,j ̸=3 d3j
... ... ... ... . . . ... ...
xn dn1 dn2 dn3 · · · dnn

∑︁n
j=1,j ̸=n dnj

TO others ∑︁n
i=1,i ̸=1 di1

∑︁n
i=1,i ̸=2 di2

∑︁n
i=1,i ̸=3 di3 · · · ∑︁n

i=1,i ̸=n din
1
n

∑︁∑︁∑︁n
i=1,i ̸=j dij

The bold corner element in the last row of the table is called the Total spillover index
and represents an aggregated measure of connectedness for the entire set of n assets. It
shows the spillover effects from shocks across all assets to the total forecast error variance,
summarizing the influence of shocks of each asset i on all other assets disregarding asset
i. The total spillover index is calculated as a sum of non-diagonal elements of a spillover
table (or, equivalently, as a mean of FROM measures). Given a fixed forecasting horizon
s the total spillover index takes the following form (may be presented as a share or as a
percentage after multiplication by 100):

S(s) = 1
n

∑︁n
i,j=1,i ̸=j dij(s)∑︁n

i,j=1 dij(s)
(27)

The identification strategy one uses to plug in for dij(s) is crucially important. Ini-
tially, Diebold and Yılmaz (2009b) used the Cholesky decomposition and plugged in θ̃C

ij(s)
from Equation 23. The authors showed that the TO and FROM measures naturally de-
pend on the ordering of variables and vary significantly from one order to the other.
Thus, the directional dependence (TO and FROM measures, for example) may not be
identified properly. However, the total spillover index is more robust to the ordering
of variables and varies less as a result of different reorderings of variables. The results
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showed that the static total spillover indices for returns and volatilities of global equity
markets are similar for the period from 1995 to 2007 and close to 37.5 %. However, return
and volatility connectedness have significantly different dynamics. To compare them, the
authors used the rolling window estimation procedure and constructed the series of dy-
namic total spillover indices using a 75-week rolling window as a sample for the VAR
estimation and construction of forecast error variance decompositions. They noted that
volatility connectedness is more sensitive to crisis events and has more time variation than
return connectedness. Diebold and Yılmaz (2009a) applied the same methodology in the
analysis of connectedness between American markets and provided additional evidence
on the robustness of the total connectedness measure to the ordering of variables when
using the Cholesky decomposition.

Diebold and Yılmaz (2012) further improved the framework by using the generalized
forecast error variance decompositions described previously. This change made it possible
to identify directional connectedness between assets, since generalization overcomes the
sensitivity of the results to the ordering of variables. Instead of using θ̃C

ij(s) from Equation
23 to plug in for dij(s) the authors utilized θ̃G

ij(s) from Equation 26. In order not to lose
the possibility of interpreting the results from the generalized decomposition as variance
shares, the additional transformation to θG

ij(s) that ensures ∑︁n
j=1 θ

G
ij(s) = 1 for all assets

i by construction was performed:

θG
ij(s) =

θ̃
G

ij(s)∑︁n
j=1 θ̃

G

ij(s)
(28)

The authors summarized how each particular asset i affects all other assets (TO
others), and how all other assets affect i (FROM others) using the following directional
connectedness indices based on the TO others row and FROM others column of the
spillover table:

Si,T O(s) =
∑︁n

j=1,i ̸=j θ
G
ij(s)∑︁n

j=1 θ
G
ij(s)

Si,F ROM(s) =
∑︁n

j=1,j ̸=i θ
G
ij(s)∑︁n

j=1 θ
G
ij(s)

(29)

The difference in these measures may be interpreted as an indicator of whether the
asset i is a net transmitter of shocks (Si,T O(s) − Si,F ROM(s) > 0) or a net receiver of
shocks (Si,T O(s) − Si,F ROM(s) < 0). The switch to directional connectedness measures
allows one to identify the most important assets that are responsible for the observed level
of total connectedness. The results of the paper suggest that the connectedness of four
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major asset classes, namely Stocks, Bonds, Commodities, and FX increased significantly
as a result of the 2008 financial crisis. Among these assets, stock markets were relatively
more influential in terms of generation of volatility spillovers.

Diebold and Yılmaz (2014) provided an additional methodological development of
the connectedness framework by noting that spillover tables based on the generalized
approach to decompositions may be interpreted as a structure of a weighted directed
network of assets. This interpretation allows one to identify a correspondence between
the proposed connectedness measures (total spillover index, TO and FROM indices)
and typically accepted connectedness measures from the network theory. For example,
the total spillover index may be interpreted as the mean degree of the network, which
represents the average number of connections of all nodes. The correspondence creates a
bridge between the DY framework and the vast body of network literature in economics.
Diebold and Yılmaz (2015a) summarize the wide applicability and flexibility of the DY
framework providing evidence on the use of spillover measures outside financial markets’
topics. In sum, the approach is suitable for the estimation of the financial connectedness
of specific groups of markets. It may be used to investigate the changes of connectedness
in time and identify the influence of crisis events on it.

One additional thing regarding the DY framework is worth discussing: across all
papers mentioned above the authors remain silent about uncertainty measures of their
estimates of spillover effects. Connectedness measures represent non-linear combinations
of the parameters of underlying VAR models, this significantly complicates the computa-
tion of their standard errors. If asymptotic approximations are hard or even impossible
to derive in a closed-form one may use bootstrap techniques as an alternative strategy
(Davison and Hinkley, 1997). A correctly executed bootstrap may provide approximations
of higher quality than the asymptotic approach. The choice of the bootstrap algorithm
depends on the context and differs between cross-section and time series settings. The
convenient structure of the VAR model may be exploited to perform residual bootstrap
and receive approximations of variability measures Berkowitz and Kilian (2000). Buse
et al. (2019) proposed the following residual bootstrap procedure for DY connectedness
measures:

1. For each replication10 construct a series of bootstrap residuals drawing randomly
with replacement the demeaned residuals of the VAR model from Equation 17
estimated using the entire sample.

2. With the help of a vector MA(∞) representation from Equation 19 recursively
reconstruct a series of dependent variables and estimate the VAR model using this
bootstrap sample.

10The number of replications should be large enough, for example, 1000.
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3. Use the estimates to construct Table 1. A collection of tables from each bootstrap
replication represents an approximate distribution of connectedness measure which
can be exploited to approximate standard errors and construct confidence intervals.

The algorithm is computationally heavy, especially in cases when the number of series
in the VAR model becomes large. Moreover, the combination of this algorithm with the
rolling window estimation may be highly demanding in terms of time for computation.
Nevertheless, this bootstrap approximation may be considered as a valid way to assess the
variability of connectedness measures in the absence of valid asymptotic approximations.
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3 Data

In the proceeding analysis, I examine three major Easter European stock market indices:
Hungary (BUX), the Czech Republic (PX), and Poland (WIG). I also include the Russian
(RTSI) index because its relation to the EE markets is likely to be relevant, given the size
of the Russian market and geographical proximity. This group of markets is the main
focus of my thesis. To account for the possible connections with other developed financial
markets I include the US (S&P500, hereafter SP500), France (CAC-40, hereafter CAC),
Germany (DAX), and Japan (Nikkei 225, hereafter Nikkei) into the analysis. I also rep-
resent cryptocurrency markets by a single, yet the most important (for example, in terms
of capitalization) representative of these markets, namely, Bitcoin (BTC). Although Liu
and Tsyvinski (2021) argue that Bitcoin can not represent the entire zoo of cryptocurren-
cies, they provide evidence suggesting that the behavior of Bitcoin closely follows that of
a more general index of coins with a sophisticated time-varying structure. The informa-
tion on close, open, minimum, and maximum prices was taken from the Investing.com11

platform.
In the first part of my investigation, I work with correlations of returns and return

spillovers. I define returns as the lag difference of natural logarithms of closing prices.
Since the prices of indices are observed only on weekdays while the prices of cryptocurren-
cies are observed anytime I recalculate the log returns for BTC such that their return on
Monday includes the returns on weekends. To clarify the adjustment consider a Monday
and compare returns of the BUX and BTC:

rBUX
Monday = log(PBUX

Monday) − log(PBUX
F riday)

rBT C
Monday = log(PBT C

Monday) − log(PBT C
Sunday)

(30)

For the BUX the return contains information from weekends, while for the BTC the
return does not contain information from full weekends; thus, the returns should not
be treated equally. However, the following adjustment of BTC returns makes Monday
returns comparable because after the transformation both returns contain information
from the same period of time:

r̃BT C
Monday =log(PBT C

Monday) − log(PBT C
Sunday)+

log(PBT C
Sunday) − log(PBT C

Saturday)+

log(PBT C
Saturday) − log(PBT C

F riday) =

log(PBT C
Monday) − log(PBT C

F riday)

(31)

11Link: https://www.investing.com/Investing.com website.
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All other missed observations due to holidays or special occasions were omitted. The
final sample for the analysis of returns consists of 2007 daily observations and covers the
period from the 3rd of February 2012 to the 16th of June 2021. The series of returns
are presented in Figure 1. Noticeable spikes in all series at the beginning of 2020 are
connected to the WHO announcement about the recognition of the COVID-19 outbreak as
a pandemic. Descriptive statistics for return series are presented in Table 2. The data on
returns obeys common stylized facts about financial data. All series significantly depart
from normality: they are positively skewed (have a negative skewness) and leptokurtic
(which implies heavier tails of the distribution). Unit root tests strongly reject the null
hypothesis of the existence of a unit root for all time series. These features are important
because they shape the way one should perform the analysis using this data. It is worth
noting that returns of all markets fluctuate in a range from −10% to 10%, while the
returns of BTC differ in this regard and demonstrate greater volatility ranging from
−40% to 40%.

In the second part of the empirical analysis I turn to volatility spillovers to construct
alternative connectedness measures. I abstract from volatility filtering and instead con-
struct range-based volatility measures using all available information on prices of assets.
Parkinson (1980) suggested to combine highest and lowest observed daily prices and use
the following optimal estimator for daily volatility:

σ2
t = 0.361(ht − lt)2 (32)

with lt and ht representing minimum and maximum log prices in period t, respectively.
However, this estimate does not use the entire set of information usually available. Gar-
man and Klass (1980) suggested to add close and open prices and use the following daily
range-based volatility measure:

σ2
t = 0.511(ht − lt)2 − 0.019[(ct − ot)(ht + lt − 2ot) − 2(ht − ot)(lt − ot)] − 0.383(ct − ot)2

(33)

where ct and ot represent close and open log prices in period t, respectively. In this thesis,
I use the latter approach for the estimation of volatility spillovers. In order to align BTC
with market indices, I recalculate volatility on each Monday to include volatility realized
during weekends by summing over the period of three days. The final sample for the
analysis of volatility spillovers consists of 1626 daily observations and covers the period
from the 12th of November 2013 to the 16th of June 2021. Constructed volatility series
are presented in Figure 2. Summary statistics for range-based volatilities are collected
in Table 3. For all series the consistent spike of the volatility around the start of the
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pandemic may be indicated. I find no evidence of the existence of unit roots in constructed
series. It is evident that BTC stands out from the rest of the markets: both mean and
median volatility is significantly higher for the cryptocurrency.

In the construction of volatility spillovers, I use the natural logarithm of range-based
volatilities, which is a common transformation for volatility spillovers studies based on
the DY framework. I delete 9 trading days for which the range-based volatility is equal to
zero. The transformation is applied to make the distribution of volatilities less leptokurtic
and to ensure that VAR models do not produce negative variance forecasts. Series of log
range-based volatilities and their summary statistics are presented in Figure 3 and Table
4, respectively. For all series the null of the existence of a unit root is strongly rejected.

Table 2: Summary statistics of daily returns.

BTC BUX PX WIG RTSI SP500 CAC DAX Nikkei
Mean ×102 0.30 0.04 0.02 0.03 0.00 0.07 0.05 0.05 0.05
Median ×102 0.21 0.06 0.06 0.03 0.05 0.07 0.08 0.09 0.06
Maximum 0.38 0.06 0.07 0.06 0.13 0.09 0.08 0.10 0.08
Minimum -0.48 -0.12 -0.08 -0.14 -0.14 -0.13 -0.13 -0.13 -0.08
Std.Dev. 0.05 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01
Skewness -0.65 -0.81 -0.83 -1.28 -0.68 -0.83 -0.78 -0.58 -0.25
Kurtosis 14.71 12.06 12.80 19.38 12.75 26.50 14.36 14.27 7.61
ADF -10.69 -11.21 -12.37 -11.96 -11.27 -12.28 -12.49 -12.03 -12.81
Probability <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Observations 2007 2007 2007 2007 2007 2007 2007 2007 2007

Note: Augmented Dickey—Fuller (ADF) unit-root tests are performed. <0.01 indicates the rejection of
the null of a unit root at 1% level. Sample period is 03/02/2012 – 16/06/2021.

Table 3: Summary statistics of daily range-based volatilities.

BTC BUX PX WIG RTSI SP500 CAC DAX Nikkei
Mean ×102 0.26 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01
Median ×102 0.07 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00
Maximum ×102 21.46 0.75 0.48 0.26 2.90 0.26 0.38 0.44 0.30
Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Std.Dev. 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Skewness 13.83 17.75 14.67 12.34 24.70 9.49 10.68 11.77 9.87
Kurtosis 277.60 447.14 271.38 216.32 759.14 118.22 154.78 188.14 139.02
ADF -5.50 -6.90 -8.14 -8.00 -8.66 -7.22 -7.63 -7.98 -7.11
Probability <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Observations 1626 1626 1626 1626 1626 1626 1626 1626 1626

Note: Augmented Dickey—Fuller (ADF) unit-root tests are performed. <0.01 indicates the rejection of
the null of a unit root at 1% level. Sample period is 12/11/2012 – 16/06/2021.
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Figure 1: Returns.
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Figure 2: Range-based volatilities.
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Table 4: Summary statistics of log daily range-based volatilities.

BTC BUX PX WIG RTSI SP500 CAC DAX Nikkei
Mean -7.22 -9.77 -10.35 -10.35 -9.10 -10.64 -10.01 -9.92 -10.34
Median -7.23 -9.80 -10.44 -10.37 -9.17 -10.71 -10.10 -9.94 -10.41
Maximum -1.54 -4.90 -5.35 -5.94 -3.54 -5.95 -5.57 -5.42 -5.81
Minimum -14.61 -12.68 -12.97 -13.22 -11.63 -13.99 -12.82 -13.87 -19.84
Std.Dev. 1.55 0.90 0.95 0.94 1.01 1.23 1.06 1.05 1.08
Skewness 0.03 0.50 0.81 0.39 0.66 0.44 0.41 0.27 0.13
Kurtosis 3.31 4.65 4.90 4.05 4.29 3.40 3.50 3.54 7.20
ADF -6.34 -6.06 -5.69 -6.66 -4.93 -5.72 -5.37 -5.47 -5.26
Probability <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Observations 1617 1617 1617 1617 1617 1617 1617 1617 1617

Note: Augmented Dickey—Fuller (ADF) unit-root tests are performed. <0.01 indicates the rejection of
the null of a unit root at 1% level. Sample period is 12/11/2012 – 16/06/2021.

Figure 3: Log range-based volatilities.
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4 Results

4.1 Dynamic conditional correlations of returns

To investigate how correlations of market returns evolve in time I estimate the DCC(1,1)
model (Engle and Sheppard, 2001; Engle, 2002) described in Equation 13 using the two-
step procedure12. For each asset i a univariate GJR-GARCH(1,1) of Glosten et al. (1993)

12To model leverage effects in the multivariate distribution I estimated scalar AG-DCC model but the
parameter related to asymmetry turned out to be statistically insignificant.
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from Equation 6 with AR(1) in mean and normally distributed errors is estimated using
QML by maximizing the log-likelihood from Equation 15. For the SP500 and the Nikkei
the GARCH(1,1) is used instead. These specifications aim to model the asymmetric
influence of positive and negative shocks on future volatility when it is relevant and allow
me to estimate consistently the parameters of univariate volatility models. In the second
step, I use a multivariate Student‘s t distribution to match important facts about daily
returns from Table 2, estimating the remaining DCC parameters by maximizing the log-
likelihood from Equation 16. The results of the estimation are presented in Table 5. In
the upper part of the table I report coefficient estimates and their corresponding standard
errors. Each pair of rows contains information about the particular market. The lower
part of the table contains DCC estimates and summarizes the results for the Qt dynamics.

It is worth noting that for each asset the ρ coefficients in the mean equation are
not statistically significant at the 1 % level. Moreover, for all assets except the BTC
the γ parameter is statistically significant, suggesting the relevance of the asymmetric
reactions of volatility to positive and negative shocks. Although the degrees of freedom
parameter νDCC is low enough to claim that a normality assumption is not relevant for
the joint distribution of these markets, it is high enough for moments to be appropriately
defined. Both coefficients from the DCC equation are significantly different from zero,
indicating that the assumption about dynamic and not constant conditional correlations
is appropriate. I conclude that there is evidence in favor of a time-varying conditional
correlation between the markets under consideration.

In all subsequent graphs the red line indicates the 11th of March 2020, when the WHO
recognized the COVID-19 outbreak as a pandemic. This date is commonly used in the
literature as a border between periods before and after the pandemic (e.g. Topcu and
Gulal (2020); Aslam et al. (2021)). Although the pandemic started to affect different parts
of the world disproportionately at different points in time, this date may approximately
indicate the beginning of the pandemic, at least in an informational sense, when the
majority of agents recognized the importance of a threat.

Figure 4 demonstrates pairwise dynamic conditional correlations between the Eastern
European and Russian markets. The correlations between indices remain in the range
from 0.25 to 0.6 and vary significantly during the period under consideration. There are
no obvious positive or negative trends in the connectedness of markets. The WIG seems
to be the most connected market since all pairwise correlations for it are close to 0.5 on
average. The PX/WIG dynamic profile is the most volatile. For this pair, the increase
of the correlation near the start of the pandemic does not lead to a level that was not
observed in the past. For other pairs, the spike is more pronounced if one compares
it with previously observed correlations. Although all markets become more correlated
at this point, they generally return back to the unconditional average level after a short
period of time. The connection of the PX with the RTSI in the 2014-2015 period dropped
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to the minimum level, while the responses of the BUX and WIG were less sharp. In sum,
dynamic correlations indicate a significant increase in the connectedness of the EE and
Russian markets during the pandemic. However, for some pairs, the effect is comparable
to extreme movements in the past.

Dynamic conditional correlations of BTC with other markets are presented in Figure
5. On average, the correlations with the EE and Russian markets are positive but close
to zero. The WIG and RTSI returns seem to be more correlated with BTC than the
almost unrelated PX and BUX. The positive correlations with developed markets are
slightly more pronounced but still quite low. Interestingly, the correlation of BTC with
the Nikkei is mostly negative and was not significantly affected near the start of the
pandemic. However, at the end of the sample, the correlation with the Nikkei increased
and became positive. BTC did not demonstrate independence with all other markets:
the correlation rapidly increased and achieved an all-time maximum but then drifted
back towards zero. Judging by the dynamics of the conditional correlations, there is no
persuasive evidence in favor of the connectedness of BTC with other markets.

Figure 4: Dynamic conditional correlations between EE and Russian markets.
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Note: The red line indicates the 11th of March 2020 when WHO recognized COVID-19 outbreak as a
pandemic. The blue horizontal line corresponds to the average correlation.
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Table 5: DCC model estimates.

Univariate GARCH estimates
µ× 102 ρ ω × 104 α β γ

BTC 0.32 0.04 2.16 0.40 0.40 -0.17
(0.08) (0.03) (0.73) (0.10) (0.07) (0.10)

BUX 0.09 -0.02 0.04 0.14 0.89 -0.11
(0.03) (0.03) (0.19) (0.04) (0.07) (0.03)

PX 0.06 0.00 0.02 0.23 0.86 -0.20
(0.02) (0.02) (0.02) (0.04) (0.03) (0.04)

WIG 0.05 0.03 0.04 0.17 0.89 -0.18
(0.02) (0.02) (0.00) (0.02) (0.01) (0.03)

RTSI 0.08 0.03 0.06 0.18 0.89 -0.17
(0.03) (0.02) (0.03) (0.02) (0.01) (0.03)

SP500 0.09 -0.06 0.05 0.24 0.71 -
(0.01) (0.02) (0.02) (0.02) (0.03) -

CAC 0.13 0.02 0.04 0.25 0.88 -0.27
(0.02) (0.03) (0.00) (0.09) (0.03) (0.08)

DAX 0.11 0.01 0.03 0.18 0.91 -0.19
(0.02) (0.02) (0.02) (0.02) (0.01) (0.03)

Nikkei 0.08 -0.03 0.07 0.14 0.82 -
(0.02) (0.03) (0.03) (0.02) (0.02) -

DCC estimates
αDCC βDCC νDCC

0.010 0.938 11.501
(0.002) (0.019) (0.707)

Note: The first part of the table reports estimates and their standard errors of the univariate GJR-
GARCH(1,1) model with AR(1) in mean and normally distributed errors for each asset except the
SP500 and the Nikkei for which GARCH(1,1) is used instead. The second part of the table reports
DCC(1,1) with multivariate Student‘s t distribution estimates and their standard errors.
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Figure 5: Dynamic conditional correlations of BTC.
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Note: The red line indicates the 11th of March 2020 when WHO recognized COVID-19 outbreak as a
pandemic. The blue horizontal line corresponds to the average correlation.
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4.2 Spillover framework

4.2.1 Return spillovers

In this section, I turn to the DY spillover framework (Diebold and Yılmaz, 2009b, 2012,
2014) and concentrate on return spillovers. Firstly, I perform static spillover analysis by
estimating a VAR model using the entire sample of observations without accounting for
time variability of connectedness. In other words, I present unconditional return spillover
measures. Secondly, I use a rolling-window estimation to investigate how connectedness
measures and spillovers change over time.

To choose the structure of the VAR model I employ information criteria for the lag
selection. I use Akaike Information Criterion (AIC) for a choice decision and select
the lag length of the VAR model that corresponds to the lowest AIC level. Although
the AIC tends to select less parsimonious models than other information criteria, in my
analysis the optimal lag length is not high enough to generate any problems with the
estimation of the parameters of the model; thus, less parsimonious lag structures are
feasible to estimate. It is important to use an identical sample for the construction of
different models. Otherwise, the information criteria will not be comparable. For the
return spillovers the optimal lag length of 3 is identified. This structure produces stable
VAR models that admit vector MA(∞) representations required for the calculation of
connectedness measures.

To calculate DY spillover measures that are based on forecast error variance decom-
positions I need to select the interval length h for h-step-ahead predictions of returns.
The choice usually depends on the purpose of the calculations. For example, for daily
value-at-risk calculations horizons from 1 day to 30 days (representing a month) are usu-
ally employed (Degiannakis et al., 2013; Dowd et al., 2004). In my work, for the purpose
of measurement of connectedness, I set h = 12, which corresponds to half of a trading
month on average after accounting for the presence of weekends. This interval is long
enough to draw conclusions regarding the financial connectedness and is comparable to
intervals chosen in studies based on DY‘s framework (Diebold and Yılmaz, 2015b; Demi-
ralay and Bayraci, 2015). I performed robustness checks (results are not shown here)
using different values 1, 10, and 30 for h and found no significant changes in the results.

Table 6 summarizes the results of the estimation of return spillovers among the mar-
kets considered. An entry of the table at the intersection of different markets is the share
of forecast error variance of the row market that is generated by the return shock of the
column market. For example, the value 10.98 in the upper part of the table at the in-
tersection of BUX and WIG means that approximately 11% of the 12-days-ahead return
forecast error variance of the BUX is due to the return shock of the WIG. The column
FROM others (FROM o.) is the row sum of all non-diagonal elements, which identifies
the share of the forecast error variance of the row market generated by spillover effects
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from all other markets in the system. The row TO others (TO o.) is a column sum
of non-diagonal elements that represents the spillover effect generated by the market in
the column to all other markets. The bold element in the lower right corner is a total
spillover index. It can be calculated in many ways, for example, by taking the average
of the FROM o. column. It is an aggregate measure of connectedness of markets, which
represents the average share of the forecast error variance explained by shock from other
markets.

A total spillover index of 55.4 indicates that more than half of the variance of returns
comes from spillover effects, suggesting that the markets studied are tightly connected.
The contributions of each market to the total connectedness are quite heterogeneous.

The cryptocurrency market represented by Bitcoin (BTC) is the least pronounced
member of the system. It generates almost no spillovers to other markets (around 1%)
and receives only 8% of the variation from return spillovers of other markets. The evidence
suggests that the connectedness of BTC with other financial markets is quite weak and
its influence is limited.

In contrast, the group of EE markets and Russia are significantly connected in the
system. The spillover effects from other markets are the most pronounced for the Czech
Republic (PX) and Poland (WIG), around 65.5% of their variances are formed by other
markets. Hungary (BUX) and Russia (RTSI) are slightly less connected with FROM
values close to 59%. The heterogeneity is also observed in the degree of spillover gen-
eration from these markets. The PX and WIG, on average, generate 66.4%

9−1 = 8.3% and
64.3%
9−1 = 8.0% of the return variation of other markets through return spillovers. The BUX

and RTSI are less significant for the system in this respect with TO measures equal to
50.5 and 47.8, respectively. Interestingly, there is little heterogeneity in the connectedness
of the EE and Russian indices to the developed markets. The difference between the TO
and FROM measure, which helps to judge whether the market is a net transmitter or a
net receiver of spillovers, is presented in Table 7. Only the Czech Republic is identified as
a net transmitter among the EE and Russian stock markets, although the net measure is
pretty close to zero, suggesting that in the overall system this group of markets may be
considered to be receivers of return spillovers. It is possible to measure the connectedness
within the group of markets by looking at the average of FROM measures in isolation13.
The calculation of the total connectedness for this group of markets in isolation gives a
value of 28.1, which is more than half of the total connectedness measure. The interpre-
tation of this value is that, on average, 28.1% of the return forecast error variance of the
EE and Russian markets is generated by return spillovers from this group of markets.
This means that the significant return spillovers in the system are not solely driven by the

13Accounting for other members of the network (developed markets and cryptocurrency) the total
connectedness within EE and Russian markets is equal to the average of adjusted FROM measures in a
reduced Table 6 where only the rows and columns of the isolated group are presented.
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developed markets; the relationship between the EE and Russia is of equal importance
for the overall connectedness of the network.

The group of developed market indices forms a notably connected cluster. More than
30% of return forecast error variance for these markets is generated by spillovers from
other developed markets. The only exception is Japan (Nikkei) for which this percentage
is equal to 18%. The Nikkei is also less connected to the system; only 40% of the
variation could be explained by the influence of all other markets. Germany (DAX) and
France (CAC) receive more return spillovers than the US (SP500) from other markets
in the network. The values are 72.1%, 72.4%, and 59.2%, respectively. Although the
SP500 and Nikkei have TO measures less than those of the PX and WIG, the CAC
and DAX represent important generators of return spillovers to the system in the group
of developed markets with TO measures close to 90%. Table 8 identifies France and
Germany as significant net transmitters of spillovers, while the SP500 is identified as a
net receiver. The net connectedness measure for the Nikkei is close to zero.

One potential issue, which may undermine the static results, is the structural stability
of the estimated VAR model. To check for the presence of structural breaks I use the
CUSUM test (Ploberger and Krämer, 1992) for each equation of the VAR. The results
indicate that the null hypothesis of the absence of structural breaks can not be rejected
at 5% significance level.

Having described the static connectedness of the system I turn to the dynamic evo-
lution of return spillovers. Time variability is accounted for with the help of the rolling
window estimation of the VAR model. I set lag length to be equal to 3 (as in the static
case), separately evaluate the model on each subsample of 250 trading days, and use 12-
days-ahead forecast error variance decompositions to construct spillover measures similar
to those presented in Table 6. The size of the window is equal to 250 because this period
is equivalent to one full trading year; this number of observations is enough to estimate
the model and perform subsequent calculations. I also check how the results respond to
changes in the size of the window. In general, wider windows produce smoother connect-
edness measures, but the dynamics remain relatively similar from one size to another.

Figure 6 demonstrates the time-varying total spillover index (the bold element of Table
6). First of all, the significant time variation of the total connectedness is immediately
evident from the graph. In a pre-pandemic period (to the left of the red line) the index
fluctuates close to its unconditional value of 55.4. However, near the red line the total
connectedness increases sharply to a value close to 75, then it levels off around this
number and recovers to levels of the pre-pandemic period only at the end of the sample.
The static examination of the index could not reveal the effect of the pandemic on the
connectedness of markets. The increase in market connectedness implies that the part
of the forecast error variance of returns due to shocks from other markets increased by
approximately 20 p.p. or by almost 35% compared to the unconditional connectedness.
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Table 6: Static return spillovers.

BTC BUX PX WIG RTSI SP500 CAC DAX Nikkei FROM o.
BTC 92.26 0.61 0.76 1.10 0.35 1.73 1.11 0.78 1.31 7.74

(2.68) (0.43) (0.43) (0.60) (0.30) (0.62) (0.53) (0.44) (0.51) (2.68)
BUX 0.10 40.62 10.44 10.98 7.78 6.04 10.28 10.24 3.51 59.38

(0.13) (2.17) (0.66) (0.78) (0.74) (0.81) (0.65) (0.65) (0.55) (2.17)
PX 0.15 9.02 35.37 9.83 7.55 5.73 13.30 12.84 6.21 64.63

(0.12) (0.63) (1.74) (0.72) (0.65) (0.93) (0.46) (0.51) (0.69) (1.74)
WIG 0.13 9.70 10.16 35.62 9.06 7.03 11.91 12.31 4.08 64.38

(0.17) (0.71) (0.64) (1.64) (0.65) (0.70) (0.49) (0.49) (0.55) (1.64)
RTSI 0.32 8.03 8.92 10.73 41.27 5.62 10.76 10.01 4.33 58.73

(0.18) (0.72) (0.63) (0.68) (2.05) (0.76) (0.71) (0.77) (0.59) (2.05)
SP500 0.25 5.24 6.93 7.54 5.65 40.84 12.69 12.06 8.79 59.16

(0.17) (0.71) (0.87) (0.70) (0.68) (2.41) (0.57) (0.65) (0.91) (2.41)
CAC 0.14 6.92 10.55 9.20 7.03 9.08 27.64 23.47 5.98 72.36

(0.12) (0.55) (0.48) (0.51) (0.61) (0.58) (0.90) (0.63) (0.60) (0.90)
DAX 0.08 6.97 10.27 9.61 6.59 8.57 23.76 27.95 6.21 72.05

(0.10) (0.55) (0.51) (0.50) (0.64) (0.62) (0.66) (0.94) (0.62) (0.94)
Nikkei 0.21 3.96 8.37 5.31 3.82 3.34 7.48 7.24 60.25 39.75

(0.19) (0.66) (0.84) (0.73) (0.61) (0.83) (0.92) (0.89) (3.79) (3.79)
TO o. 1.38 50.45 66.40 64.29 47.83 47.15 91.29 88.95 40.42 55.35

(0.85) (3.31) (3.12) (3.38) (3.13) (3.94) (2.12) (2.30) (3.52) (1.60)

Note: The calculation is based on a VAR(3) model estimated on the full sample. 12-days-ahead forecast
error variance decomposition is used. Residual bootstrap standard errors obtained with 1000 replications
in parenthesis.
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Table 7: Net static return spillovers.

TO FROM Net Transmitter
BTC 1.38 7.74 -6.36 No

(0.85) (2.68) (2.38)
BUX 50.45 59.38 -8.93 No

(3.31) (2.17) (1.55)
PX 66.40 64.63 1.78 M

(3.12) (1.74) (1.71)
WIG 64.29 64.38 -0.09 M

(3.38) (1.64) (2.15)
RTSI 47.83 58.73 -10.90 No

(3.13) (2.05) (1.71)
SP500 47.15 59.16 -12.01 No

(3.94) (2.41) (2.92)
CAC 91.29 72.36 18.93 Yes

(2.12) (0.90) (1.52)
DAX 88.95 72.05 16.90 Yes

(2.30) (0.94) (1.64)
Nikkei 40.42 39.75 0.68 M

(3.52) (3.79) (3.53)

Note: The Net column is the difference between the TO and FROM measures. M stands for marginal
and indicates markets with a Net value close to 0. Residual bootstrap standard errors obtained with
1000 replications in parenthesis.
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The examination of return connectedness of the EE and Russian markets in isolation,
accounting for the presence of other markets in the system, reveals an even more extreme
dynamic pattern and is presented in Figure 7. The increase from the unconditional 28.1
level by almost 11 p.p. is equivalent to a rise in the connectedness of the EE and Russian
markets of 38%.

A close look at the time variation of net connectedness measures presented in Figure 8
partly explains the drivers of the spike in the total spillover index caused by the pandemic.
While the majority of developed markets did not change their role in the system, the EE
and Russian markets switched to the opposite part of the spectrum. The CAC and
DAX remained net return spillover transmitters during the entire sample period; the
Nikkei was always a net receiver. The SP500 generated more spillovers than it received
in the pre-pandemic period, but in a post-pandemic part of the sample, this market
transformed to a net receiver. The WIG and RTSI increased their influence during the
pandemic, starting to generate more spillovers to other markets. The PX and BUX
moved from the negative part to the region close to zero. Interestingly, in a dynamic
perspective, BTC was a net transmitter of return spillovers during 2016, when the first
wave of attention to cryptocurrencies developed. However, during the pandemic, BTC
returned to a net receiver role. In conclusion, the EE and Russian markets increased their
net connectedness measure as a consequence of the pandemic. The dynamic analysis of
return spillovers showed that cryptocurrency markets are not totally unrelated to other
markets under consideration.

Figure 6: Total dynamic return spillover index.
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Figure 7: Total dynamic return spillover index for EE and Russian markets in isolation.
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Note: The red line indicates the 11th of March 2020 when the WHO recognized the COVID-19 outbreak
as a pandemic. For the estimation a 250 days rolling window is used.

4.2.2 Volatility spillovers

The return spillovers indicate the significant influence of the pandemic on the connect-
edness of markets. In this section I take a look at the same process but from a different
perspective. I calculate volatility spillovers in a DY framework using range-based volatil-
ity measures instead of returns. The methodology for this part remains the same as in the
return spillovers section. To ensure that the predictions of the VAR model do not deliver
negative variances, I work with natural logarithms of volatilities. The AIC suggests using
a lag length equal to 5 in VAR model for volatilities.

The results for static volatility spillovers are presented in Table 8. The findings on
volatility connectedness differ significantly from the evidence on return connectedness.
First of all, the total volatility spillover index (the bold element of Table 8) is equal to
41.6. This means that, on average, less than half of the volatility forecast error variance is
driven by volatility spillovers from other markets. However, the value is still high enough
to conclude that the markets we are analyzing are connected in terms of volatility.

In the static approach there is no evidence that BTC is connected to other markets.
The spillover measures FROM and TO are positive but close to zero. Thus, BTC does
not generate or receive any significant volatility spillovers in the system. As was seen
in the analysis of return spillovers, the independence of BTC is a feature of the static
approach, which does not hold after accounting for time-variability in connectedness.

The EE and Russian markets are tightly connected with other developed markets.
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Figure 8: Net dynamic return spillovers.
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Note: The red line indicates the 11th of March 2020 when WHO recognized COVID-19 outbreak as a
pandemic. For the estimation 250 days rolling window is used.
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The PX receives more volatility spillovers than others in the group. The FROM measure
for this index is equal to 49.1; thus, approximately half of the variation in forecast error
variance of the PX volatility is explained by spillovers from other markets. The WIG,
BUX, and RTSI have this measure equal to 43.3, 39.6, and 33.3, respectively. The
heterogeneity in TO measures for this group of markets is almost parallel to the structure
of differences in FROM measures. The PX is a leader in volatility spillover generation
with a TO measure of 44.1; the other markets generate significantly less and their TO
measures are in the 29 − 34 range. It is worth noting that the PX seems to be the
most connected to developed indices among the EE and Russian markets. Net spillover
measures presented in Table 9 indicate that all these markets are identified as net receivers
of volatility spillovers in the system. The average TO measure for the EE and Russian
markets in isolation is equal to 16.2, meaning that volatility connectedness is mostly
driven by the interactions with developed markets, a result which is opposite to that
observed for return spillovers. As opposed to the return spillovers evidence, the Czech
Republic may be identified as a leader in connectedness with developed markets because
it receives in sum the highest fraction of volatility spillovers from them. This observation
suggests that volatility shocks from developed markets may propagate to the EE and
Russian markets through the index of the Czech Republic.

The two leaders in connectedness in the network among the developed indices are the
CAC and DAX. Around 60% of their volatility forecast error variance is due to volatility
spillovers from all other markets. The CAC generates more spillovers than the DAX:
on average, 10.2% of volatility forecast error variance for each market is explained by
the CAC spillovers. This fraction is 9.1% for the DAX. The SP500 is less connected to
the system with FROM and TO measures of 52.6 and 43.0, respectively. The Japanese
market is the least connected to the network among the developed indices. Despite its
size, the connectedness of the Nikkei is close to that of the RTSI. In the static case,
only the CAC and DAX are identified as significant net volatility spillover transmitters.
However, these static results should be considered with caution because for the BUX,
WIG, and SP500 equations the CUSUM test rejects the null of the absence of structural
breaks at 5% significance level. Although the breaks can not be attributed to the start
of the pandemic, their existence generates additional motivation to use rolling window
estimation, which accounts for the changes in parameters of the model over time.

The dynamic examination of volatility spillovers indicates a significant time variation
of volatility connectedness. To construct these graphs I used a 250 day rolling window
estimation and prediction horizon equal to 12 days as in the previous dynamic analysis of
return spillovers. Figures 9 and 10 show how the total volatility spillover index changed
over time for the entire system and for the EE and Russian markets in isolation, respec-
tively. For the entire system the level near the start of the pandemic is 21.5 p.p. higher
than the average value of 44.8. This means that the pandemic increased the volatility
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connectedness of the system of markets by almost 50%. For the EE and Russian markets
in isolation the difference is equal to 16 p.p. (the average level is 16.5); in other words,
the connectedness of these markets almost doubled. Thus, the effect of the pandemic was
more pronounced for volatility than return connectedness of the markets. Moreover, the
EE and Russian markets responded more sensitively than other markets. However, at
the end of the sample, their isolated connectedness decreased to the full sample average
value faster than the connectedness of the entire network.

In the dynamic perspective, the main spillover transmitter is the US market. The
influence of the SP500 was increasing steadily before the pandemic, remained important
during it, and disappeared only at the end of the sample. At the start of the pandemic the
CAC, DAX, and Nikkei received more volatility spillovers than they generated. However,
as opposed to the behavior of the SP500, the CAC and DAX increased their influence
during the pandemic. The major switches from net transmitter to net receivers were not
observed for these markets in return spillovers analysis.

BTC fluctuated around zero in the pre-pandemic period but became a strong net
receiver of spillovers at the end of the sample. Thus, in terms of volatility spillovers,
cryptocurrency market did not significantly influence the indices studied but rather were
influenced by them.

The EE and Russian indices mostly received volatility spillovers at the pre-pandemic
portion of the sample, in line with the result that was observed for return spillovers.
Nevertheless, after the start of the pandemic they did not switch their role to volatil-
ity transmitters, except the WIG, as they partly did with return spillovers. For the
PX a positive spike near the 11th of March 2020 is observed, which may be caused by
the leadership of the Czech Republic among the EE and Russian markets in terms of
connectedness to developed indices.
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Table 8: Static volatility spillovers.

BTC BUX PX WIG RTSI SP500 CAC DAX Nikkei FROM o.
BTC 95.43 2.07 0.19 0.65 0.22 0.54 0.28 0.21 0.42 4.57

(1.90) (1.25) (0.39) (0.62) (0.36) (0.53) (0.40) (0.36) (0.45) (1.90)
BUX 0.36 60.43 8.03 6.78 5.69 5.27 5.04 5.75 2.66 39.57

(0.37) (3.62) (1.38) (1.37) (1.41) (1.24) (1.21) (1.27) (1.03) (3.62)
PX 0.58 5.75 50.92 4.50 5.46 4.69 13.14 9.16 5.80 49.08

(0.48) (1.19) (3.00) (1.07) (1.25) (1.01) (1.41) (1.32) (1.38) (3.00)
WIG 0.37 7.34 6.45 56.70 3.26 7.60 7.91 7.15 3.22 43.30

(0.40) (1.44) (1.28) (3.18) (0.94) (1.33) (1.15) (1.12) (1.13) (3.18)
RTSI 0.10 4.83 5.01 1.77 66.71 2.66 8.01 6.73 4.18 33.29

(0.31) (1.34) (1.40) (0.67) (3.91) (1.10) (1.63) (1.58) (1.43) (3.91)
SP500 0.24 5.28 5.58 5.84 3.88 47.36 11.72 11.06 9.04 52.64

(0.30) (1.39) (1.23) (1.33) (1.19) (3.06) (1.42) (1.45) (1.74) (3.06)
CAC 0.29 2.44 7.97 3.79 5.25 7.64 40.77 27.35 4.51 59.23

(0.29) (0.73) (1.18) (0.81) (1.16) (1.11) (1.59) (1.17) (1.17) (1.59)
DAX 0.32 3.11 6.14 3.96 4.57 8.31 29.46 39.47 4.66 60.53

(0.31) (0.83) (1.05) (0.80) (1.09) (1.17) (1.18) (1.56) (1.18) (1.56)
Nikkei 0.11 3.21 4.73 1.75 3.95 6.32 6.32 5.79 67.81 32.19

(0.31) (1.25) (1.30) (0.94) (1.33) (1.44) (1.51) (1.53) (4.48) (4.48)
TO o. 2.35 34.02 44.10 29.04 32.28 43.03 81.88 73.20 34.50 41.60

(1.37) (6.16) (6.42) (5.34) (6.48) (6.07) (6.37) (6.49) (7.01) (1.97)

Note: The calculation is based on a VAR(3) model estimated on the full sample using natural logarithms
of range-based volatilities. A 12-days-ahead forecast error variance decomposition is used. Residual
bootstrap standard errors obtained with 1000 replications in parenthesis.

Figure 9: Total dynamic volatility spillover index.
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Table 9: Net static volatility spillovers.

To From Net Transmitter
BTC 2.35 4.57 -2.22 M

(1.37) (1.90) (2.31)
BUX 34.02 39.57 -5.55 M

(6.16) (3.62) (6.36)
PX 44.10 49.08 -4.98 M

(6.42) (3.00) (6.84)
WIG 29.04 43.30 -14.26 No

(5.34) (3.18) (5.59)
RTSI 32.28 33.29 -1.01 M

(6.48) (3.91) (7.01)
SP500 43.03 52.64 -9.61 M

(6.07) (3.06) (6.82)
CAC 81.88 59.23 22.64 Yes

(6.37) (1.59) (6.64)
DAX 73.20 60.53 12.67 Yes

(6.49) (1.56) (6.73)
Nikkei 34.50 32.19 2.31 M

(7.01) (4.48) (8.13)

Note: The Net column is the difference between TO and FROM measures. M stands for marginal and
indicates markets with Net value close to 0. Residual bootstrap standard errors obtained with 1000
replications in parenthesis.
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Figure 10: Total dynamic volatility spillover index for EE and Russian markets in isola-
tion.
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Note: The red line indicates the 11th of March 2020 when the WHO recognized the COVID-19 outbreak
as a pandemic. For the estimation a 250 days rolling window is used.
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Figure 11: Net dynamic volatility spillovers.
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Note: The red line indicates the 11th of March 2020 when the WHO recognized the COVID-19 outbreak
as a pandemic. For the estimation a 250 days rolling window is used.
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5 Discussion

My results may be compared to previous literature on the financial connectedness of
European markets. Asaturov et al. (2015) identify the significant influence of the Russian
market on Eastern European (EE) indices using the sample period 2001-2012. During
the financial crisis the average conditional correlations with the BUX, PX, and WIG are
approximately equal to 50 %, 55 %, and 57%, respectively. The estimates from my thesis
suggest lower levels of correlations. However, the results are similar if one compares with
the correlations during the beginning of the pandemic, showing that the effect of the
pandemic on the connectedness of financial markets may be compared to the effect of the
financial crisis of 2008. Employing data in the same period Gjika and Horvath (2013)
concentrate on the connectedness of EE markets disregarding the influence of the Russian
market. For this period the asymmetric DCC model suggests estimates of conditional
correlations of market returns that are significantly higher than my estimates. In the
second half of the sample, the correlations between the BUX, PX, and WIG exceed 60
%. The authors find significant asymmetric effects of past shocks on the level of volatility
for the univariate models and only mild asymmetry in the multivariate part. Although
in this thesis the asymmetric effects in the multivariate distribution turned out to be
insignificant, these results are in line with my findings. One may partly explain the
differences in correlation estimates by the fact that Gjika and Horvath (2013) do not
consider the influence of the Russian market which proved to be important.

Demiralay and Bayraci (2015) study the EE and Russian markets using the sample
period 1998-2013, which covers the 2008 financial crisis. Their static total volatility
connectedness measure is equal to 57.5 and is greater than that obtained in this work
(41.6). However, it is close to the total connectedness in terms of return spillovers,
which is equal to 55.4. The authors show that during the 2008 financial crisis the total
connectedness measure increased to levels close to 80. In this work, near the start of the
pandemic, this measure was close to 65; this shows again that the effect of the pandemic on
the financial connectedness of the EE and Russian markets may be compared to the effect
of the financial crisis (especially, if one considers return spillovers). In general, I obtain
estimates of connectedness that are uniformly less than those presented by Demiralay
and Bayraci (2015). Aslam et al. (2021) study volatility spillovers in Europe using high-
frequency data and a sample covering three months before and three months after the
start of the pandemic. They conclude that total connectedness during this period is
equal to 77.8, a result that is moderately higher than my estimates during the same
period. Perhaps the overestimation of connectedness comes from the difference in return
frequencies used, suggesting that the connectedness may be more pronounced in the very
short term which corresponds to 5-minute interval intraday observations. Moreover, the
authors use only the "stress" period in their analysis, while my work takes into account a

44



wider pre-pandemic period that helps to understand the behavior of markets during the
relatively calm periods.

The low level of connectedness of cryptocurrency and stock markets in terms of both
correlations and spillover effects looks surprising. On the one hand, some sort of inter-
dependence is expected considering the evidence on the connectedness within cryptocur-
rency markets (Yi et al., 2018; Ji et al., 2019) and their connectedness with commodity
markets (Ji et al., 2019). On the other hand, the empirical evidence suggests that stock
markets may behave differently in this regard. Tiwari et al. (2019) find low conditional
correlations of six major cryptocurrencies with S&P500, the result which is close to my
estimates of the relationship between BTC and the S&P500.
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6 Conclusion

In this thesis, I investigate the financial connectedness of Eastern European markets. The
analysis of conditional correlations of returns and spillover effects indicates tight connec-
tions between the EE markets. The significant part of the connectedness is explained
by the interactions within the group of EE markets and is not driven solely by other
developed markets. The relationship is not static and changes over time with different
dynamics for return and volatility spillover effects. Importantly, after the start of the
COVID-19 pandemic, the strength of connections increased significantly and achieved
maximal levels for the 2014-2021 period. The cryptocurrency market demonstrates a
limited relation to the considered markets and mostly acts as a receiver of spillovers even
during crisis periods.

The results have important implications for portfolio managers. The increase in con-
nectedness indicates limited diversification abilities for a portfolio that includes EE and
Russian indices. However, a cryptocurrency may be considered as a desirable asset for
risky investors that provides possibilities for diversification if one considers its‘ weak con-
nections to other markets. Although the connection is weak, one needs to take into
account that the independence may vanish during crisis periods like the recent pandemic.
Based on the results of this thesis, policymakers may assess the magnitude of the response
of EE financial markets to the changes in the real economy of the European Union (es-
pecially strict lockdown or travel bans). Failure to account for the described level of
connectedness may lead to underestimation of possible adverse effects of strict policies
and their influence on systemic risks. Moreover, one may also argue how the cryptocur-
rency events may affect EE markets, suggesting arguments for debates on the regulation
of cryptocurrencies.

Given the increase in connectedness during the pandemic, it would be interesting to
see whether the lockdown measures in different EE countries were the important drivers
of the change. It seems plausible that some EE economies (for example, with significant
travel and tourism orientation) could respond more sensitively to the consequences of the
pandemic, forcing the financial connectedness to increase. Another avenue to improve on
this work is to depart from the rolling window estimation procedure and look at dynamic
connectedness using Time-Varying Parameter Vector Autoregression (TVP-VAR) model.
The model allows one to maintain the assumption that parameters may change over time
while using the full sample for the estimation. This can potentially increase the efficiency
of the estimates or affect the results on the dynamic connectedness measures.
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