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Abstract

This thesis consists of three chapters.
The first chapter proposes a novel multi-layer clustering algorithm aimed to identify

technology clusters from the network of collaboration ties among innovators with geo-
coded locations. Using this novel algorithm, I identify innovation clusters in the U.S.
Patent Inventor Database by simultaneously exploring two dimensions: the spatial dis-
tribution of inventors and the patterns of interconnections among them. Based on the
clusters identified, I show that a combination of proximity and interconnectedness of
inventors within the cluster boundaries is related to higher quality of innovations than
those produced outside the clusters.

In the second chapter, I exploit the introduction of the USPTO’s Prioritized Ex-
amination (Track One) Program to capture the impact of shortened pendency on the
likelihood that a pending or granted patent will be commercialized via the transfer of
property rights. I find that the Track One program significantly increased the probability
of commercial reassignment of applications that were more likely to be prioritized.

In the third chapter, joint with Christian Fons-Rosen and Patrick Gaulé, we inves-
tigate causes of the ageing of the U.S. scientific workforce. Using novel data on the
population of U.S. chemistry faculty members between 1960 and 2010, we find that the
secular increase in the age of the academic workforce has mainly been driven by changes
in the numbers of new faculty hires over time.
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Introduction

This dissertation presents an empirical analysis of three different topics in the field of

Economics of Innovation. Each of the three dissertation chapters is self-contained and

lacks direct links to the other chapters. All three chapters are based on different data

sources, but each one includes data that was originally collected in the United States.

The first chapter focuses on innovation clusters. There are three most common con-

texts in which innovation clusters are discussed in the literature. First, a geographical

space of clustering, proximity, and spatial concentration of inventors are considered to be

essential features of clusters in the geography of innovation studies (Verspagen & Schoen-

makers, 2004; Giuliani, 2007; Huber, 2012; Ter Wal, 2013; Nomaler & Verspagen, 2016).

Second, clustering as a particular pattern of connections among economic actors has been

studied in the literature on social network analysis. In the context of innovations, one ex-

ample of such connections is a collaboration network of innovators. At the intersection of

social network analysis and the geography of innovation, several studies have considered

the role of collaboration networks in combination with geographic proximity in deter-

mining the innovation and economic performance of regions (Lobo & Strumsky, 2008;

Strumsky & Thill, 2013; Coffano, Foray, & Pezzoni, 2017; Hazır, LeSage, & Autant-

Bernard, 2018), and have explored the properties of knowledge networks captured at

different geographical levels (Whitington et al., 2009; Galaso & Kovářík, 2020).

One of the major findings shared by these studies, which motivated the first chapter

of this disseration, is that spatial distribution along with a structure of interconnec-

tions among inventors constitute complex multi-layer structures. Such structures exhibit
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salient features that play a crucial role in fostering innovation performance. Thus, the

third context in which innovation clusters are commonly discussed is the differences in

innovation performance of individual inventors who are within and outside of the cluster

boundaries. The latter context has crucial policy relevance, as innovation clusters are

among the common targets of regional policies aimed at boosting innovations.

In the first chapter, I propose a new cluster identification algorithm that can be used

as a tool for analysis of the spatial distribution of innovative activities, and thus pro-

vide a useful insight for policy-makers aiming to target both established and emerging

innovation clusters. My approach consists of a stepwise restriction of the search space –

a set of active inventors – connected via a network of collaboration linkages, along two

dimensions: geographical proximity and interconnectedness. My cluster identification

algorithm endogenously detects the borders of clusters, illustrating the relationships be-

tween the geographical proximity, the interconnectedness of innovators, and the quality

of innovations.

The second chapter was inspired by two major aspects of the U.S. patent system that

can be observed in publicly available data from the U.S. Patent and Trademark Office –

the patent examination procedure and patent reassignments. First, it is notable that, at

any given time, there are a large number of pending patent applications, which are idly

waiting for the outcome of examination procedure at the USPTO (Mitra & Kahn, 2013)

and, thus, are not being fully exploited by technology users or by society as a whole.

Second, there is a surprisingly large amount of data about reassignments of intellectual

property rights protected by patents, while sale-of-patent transactions were not common

and only anecdotal evidences are currently accessible (for example, the IP3 Program

originally initiated by Google Inc.).

The latter two aspects of the patent system, and the linkage between a lengthy patent

examination and the effectiveness of the market for technology was first studied in Gans,

Hsu, and Stern (2008). The key empirical fact they established was that the probability

of a settlement between an innovating start-up company and a downstream firm that

acquires the property rights for a new technology is significantly higher when the patent

application that covers the underlying technology progresses to the final stage of the

examination process. It is important to note that Gans, Hsu, and Stern (2008) focus

on the hazard rate rather than on the unconditional probability that the commercial

agreement will be signed. Therefore, the external validity of this finding is rather limited

and applies only to successful examples of the commercialization of patents.
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In the second chapter, I contribute to the previous literature by raising a broader

question about the links between the length of the patent examination process and com-

mercialization of technologies. I explore whether the earlier result regarding patent ex-

amination is also positively related to the unconditional chances of innovating start-ups

being able to sell their patents to large firms. My key finding is that shortening the

examination time from around 24 to around 12 months for applicants in the USPTO

Track One Prioritized Examination program is associated with at least 50% higher prob-

ability of reassignment of patents. I suggest that longer pendency time of applications at

patent offices may not only lead to a welfare loss due to the deferred commercialization

of innovations, but may also create frictions on the market for technology that reduce the

overall saleability of patents.

The third chapter, joint with Christian Fons-Rosen and Patrick Gaulé, is about the

ageing of the U.S. scientific workforce. It is observed in the literature that the age of

scientists at the time when they make major discoveries tend to increase over time. This

is not only true for the most prominent scientific achievements, such as a Nobel Prize

(Jones, 2009; Jones & Weinberg, 2011), but also for more common career milestones, such

as grant awards (Daniels, 2015). This observation has the potential to gain significant

policy relevance, if it can be also shown that age influences the quantity and type of

knowledge produced by individuals. It is also important for making appropriate policy

changes, if there is a need for them, to find the strongest forces driving the upward trend

of the typical age among the scientific workforce.

In the third chapter, we build a demographic model of the U.S. academic workforce to

shed light on the causes of its ageing. The model leverages novel data on the population

of U.S. chemistry faculty members between 1960 and 2010. Combining the flexibility of

assumptions in our model and the relatively long time span of the relevant demographic

data, we aim to quantify the importance of various factors that potentially contribute to

the ageing pattern. We find that changes in the numbers of people hired over time was

the major driver in the ageing of our sample. Theis finding has a important implication

for science policy. We suggest that policies narrowly focused on increasing the overall

size of workforce, may have positive effects only in the short term, whereas the long-

term consequences of such policies may counterbalance the early-stage benefits or even

generate problematic and longer-lasting conditions, such as an increasing share of the

older segment of a scientific population.

3
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Chapter 1

Cluster Identification in Collaboration
Networks of Innovators

1.1 Introduction

Ever since Porter’s (1990) seminal paper on competitiveness, innovation and growth,

innovation clusters, rather than countries or regions, have become increasingly popular

as alternative units of analysis in economic geography. Recently, clusters have become key

targets of regional policies aimed at boosting innovation.1 The cluster mapping procedure

– delineation of geographical and social boundaries of clusters – is an important technical

task demanded by and crucially relevant to policymakers. Hence, there is extensive

discussion of cluster mapping in the geography of innovation literature (Delgado, Porter,

& Stern, 2015; Ketels, 2017).

As the amounts of micro-level geocoded data on entrepreneurial and innovation ac-

tivities has grown over time, the focus of cluster mapping techniques have shifted from

pre-defined administrative units (states, counties or districts) and well-known case studies

(e.g. Silicon Valley, Route 128) to more flexible computable algorithms that can identify

clusters spanning across arbitrary areas. Moreover, such algorithms may help to identify

emerging clusters in developing regions, without the need to refer to established cases.

In this paper, I propose a new cluster-identification algorithm that can be used as a

tool for analysis of spatial distribution of innovative activities, and thus provide a use-

1Examples include the Smart Specialization Strategy as a part of EU innovation policies, and the
Regional Innovation Clusters initiative by the U.S. Small Business Administration
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ful insight for policymakers aiming to target both established and emerging innovation

clusters. My approach consists of a stepwise restriction of the entire search space – a pop-

ulation of active inventors – connected via a network of collaboration linkages, along two

dimensions: geographical proximity and interconnectedness. Such a cluster-identification

algorithm endogenously detects the borders of clusters, illustrating the relationship be-

tween geographical proximity, interconnectedness of innovators, and their performance.

I use the newly-proposed algorithm to identify clusters from the microgeographic data

of U.S. inventors – geolocalized with their residence addresses. Unlike previous studies

where parameters of the clustering algorithms are set to arbitrary fixed values, I search

over a range of possible values that determine a set of identified clusters. I show that the

difference in the quality of innovations produced within and outside the clusters varies

a lot with parameters of the clustering algorithm. As a result, it is possible to find a

specific range of parameter values, that describe the strength of collaboration ties and

geographical proximity of inventors, such that their within-cluster performance exceeds

the outside-of-cluster counterpart.

Specifically, clusters with more than 170 members, and a maximum of 9-12 kilometers

between the closest members, produce patents that outperform those produced outside

them for the following quality measures. First, they receive 13% more forward citations

on average. Second, these citations are more dispersed across the technological areas,

resulting in 20% higher generality. Third, patents produced within these clusters are

55% more likely to belong in the 95% of most-cited patents than other patents produced

outside clusters. Hence, the proposed novel algorithm successfully recovers the innovation

clusters from the data.

To illustrate a comparative advantage of my algorithm, I consider counterfactual

methods of cluster identification – density-based clustering of geographic locations and

identification of large connected components in a collaboration network. Neither of these

methods allow me to identify clusters that would exhibit a positive and statistically

significant difference in innovation performance that is robust to a choice of performance

measures. As a consequence, the newly-proposed algorithm captures features that are

not recovered by other commonly-used methods of cluster identification.

I suggest that a cluster identification algorithm relying on endogenously optimized

parameter values, as proposed in this study, can be more applicable in a wide range

of research and policy agendas than algorithms that rely on pre-defined and arbitrarily

chosen parameter values. An analysis of clusters that do not have pre-defined features
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and are not restricted to geographical boundaries of regions or administrative units can

provide more insights about the role of geographic proximity and knowledge spillovers in

innovation processes.

For example, an output of the algorithm can be used to analyse mechanisms driving

the formation of technology clusters and their development over time. Therefore, cluster-

oriented policies can be proposed and tailored for specific cases of clusters identified from

various datasets using this newly-proposed algorithm. Moreover, a larger-scale analysis

of the characteristics of such clusters that exhibit systematically higher innovation per-

formance, as shown in the empirical application of the algorithm in this paper may shed

more light on the role of spillover effects in fostering innovation activity within clusters.

This paper is structured as follows. Section 2 provides an overview of studies in

the geography of innovation and social network analysis literature that constitute the

methodological basis of this paper. In Section 3, I propose a formal definition of a ‘cluster’

and give a detailed description of a novel methodology – a cluster-identification algorithm.

In Sections 4 and 5, I focus on the application of the newly-proposed methodology to the

U.S. patent dataset. Section 6 concludes.

1.2 Related literature

The methodological basis of this study borrows from two strands of the literature, the

geography of innovation and social network analysis. In the geography of innovation

literature there are various ways of referring to technology clusters. One group of studies

uses specific, usually well-known examples of particular industries or locations, as in

Ter Wal (2013), Giuliani (2007) and Huber (2012). There are also studies that refer to

administrative units (states, counties or districts) as separate clusters, as in Verspagen

and Schoenmakers (2004) or Nomaler and Verspagen (2016).

However, analysis of clusters based on a pre-defined division of space has a crucial

limitation, known in spatial analysis as the “modifiable areal unit problem”, or the “eco-

logical fallacy”. This limitation arises because “one administrative unit may encompass

multiple clusters, while one technology cluster may expand across several administrative

lines” (Alcacer & Zhao, 2012, p. 741). In order to tackle this inconsistency, diverse

distance-based clustering techniques, including partition clustering and hierarchical clus-

tering, have been developed in the geography of innovation literature to identify cluster

borders from the actual spatial distribution of innovation activities. These techniques,

7



however, fail to identify clusters of irregular geographic shapes (Alcacer & Zhao, 2016).

Another group of techniques, including the density-based cluster identification ap-

proach in Alcacer and Zhao (2016) and city clustering algorithm in Rozenfeld et al.

(2008), overcome the limitations of the previous methods, however, they still tend to rely

on arbitrary pre-defined parameters.

As long as an ultimate outcome of the clustering algorithm is contingent on parame-

ters pre-defined by a researcher, an empirical analysis of the innovation performance of

clusters identified might lead to inconsistent implications. Thus, the potential evidence

of positive externalities arising from the clustering, if any, becomes less robust. In order

to address this issue, I seek to endogenize the choice of parameter values in the proposed

clustering algorithm by searching over the range of possible values and empirically trac-

ing the relationship between parameter values and the innovation performance of clusters

identified. My conjecture is that a choice of parameters can be considered optimal if the

resulting clusters exhibit significantly better innovation performance than innovators in

the outside environment.

In contrast to the geography of innovation literature, where clustering has been con-

sidered to be a geographical concentration of actors and innovative activities, in network

analysis, clustering is considered to be a particular pattern of interconnections among a

set of unique nodes, represented, for example, by economic actors. In a similar vein, as

innovation geographers have developed various techniques to identify technology clusters

from the geographic data, network researchers have developed clustering techniques. Such

techniques, known as community detection algorithms, aim to partition complex struc-

tures of interpersonal connections into cohesive groups of individuals who are tightly

connected to, or share similarities with others in the group, and have loose connections

or differ from individuals outside the group.2

In the context of innovations, a widely-studied and important type of interpersonal

connection is knowledge transfer among innovators. Multiple interpersonal ties, in the

form of co-authorships, citations or co-inventions, constitute a complex structure of the

knowledge network. Positioning in the network, instances of collaboration and knowledge

exchange among individuals have all been studied as potential determinants of innovation

performance in the network literature (Cassi & Plunket, 2012; Ter Wal, 2013).

Studies at the intersection of social network analysis and the geography of innovation

have considered the role of collaboration networks in combination with geographic prox-
2Rani and Mehrotra (2019) provide a review of ongoing developments in this field.
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imity, in determining innovation and economic performance of regions (Lobo & Strum-

sky, 2008; Strumsky & Thill, 2013; Coffano, Foray, & Pezzoni, 2017; Hazır, LeSage, &

Autant-Bernard, 2018). They have also explored the properties of knowledge networks

captured at different geographical levels (Whitington et al., 2009; Galaso & Kovářík,

2020). One of the major findings that motivated this paper is that a spatial distribution

and a structure of interconnections among inventors form a complex multi-layer structure

with salient features that play a crucial role in fostering innovation performance.

In this paper, I therefore combine methodologies employed in previous studies to

depict innovation clusters as an intersection of two patterns – geographical concentration

and interconnectedness via collaboration ties among inventors.

Furthermore, my approach is in line with the definition of a ‘regional innovation

system’ in Asheim and Gertler (2005, p. 299), or ‘innovation ecosystem’ in general.

The latter concept emerged in the geography of innovation literature in the early 2000s

as an extension of the ‘cluster’ notion.3 Rallet and Torre (2017) emphasize one of the

main distinctive features of an innovation ecosystem – it is not only the economic actors

who are located within a close geographic proximity, but also a complex network of

interconnections among them that constitutes an extended environment.

In line with this literature addressing innovation ecosystems, I propose two main

characteristics of a cluster. First, economic actors within a cluster are interconnected;

thus, their interactions might constitute a localized part of a large-scale network. Second,

a cluster is characterized by the geographical proximity of its members, which fosters

frequent interactions among them. In this paper I refer to both interconnectedness and

proximity as essential characteristics of technology clusters and I show how a combination

of both characteristics can determine the geographical and social boundaries of clusters.

Firstly, I consider geographical proximity as an initial criterion for identification of

clusters. In line with previous studies (Rozenfeld et al., 2008; Catini et al., 2015), I apply a

distance-based clustering technique to delimit groups of densely-located innovators, thus

considering a purely geographic ‘layer’ of clustering. I refer to such groups as benchmark

clusters or ‘geographical components’. Further, I suggest that a set of interpersonal

linkages represented by collaboration ties should be considered to be an additional ‘layer’

of the clustering space. Finally, I propose a novel multi-layer clustering algorithm aimed

at simultaneously identifying innovation clusters across two dimensions: geographical

space and the structure of collaboration ties among innovators.
3Granstrand and Holgersson (2020) review this strand of the literature.
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While showing how a combination of clustering at the geographical and interpersonal

levels might shape the boundaries of innovation clusters, I also measure the role of both

pure geographic proximity and collaboration in determining the variation observed in

innovation performance. I contrast the differences in innovative output produced within

and outside the ‘borders’: for a set of connected components in a collaboration network;

for a set of benchmark clusters – components in a geographical network; and, finally, for

a set of technology clusters identified with my clustering algorithm.

Using a panel of innovators I seek to exploit a within-inventor variation in innova-

tion performance and relationship to clusters, controlling for unobserved time-invariant

individual characteristics, to measure the degree of association between the quality of in-

novations produced and relationship to a cluster. I observe a significantly higher quality

of innovation output produced within technology clusters than outside them. In contrast,

for the purely geographical counterparts, I find little or no significant difference between

innovation output produced within and outside them. Thus, interpersonal knowledge

flows among geographically proximate innovators are shown to play a reinforcing role in

determining the individual performance of innovators. The latter finding is in line with

previous studies where it was shown that geographic proximity is a necessary but not a

sufficient condition of the success of innovation clusters.

1.3 Methodology

1.3.1 Definition of a cluster

In my analysis of technology clusters, I focus on individual inventors, rather than firms

or institutions, as component elements of clusters, and consider a particular type of

interconnection between them – collaborations on joint patenting activities4. I draw on

the network studies discussed in the previous section by referring to the structure of these

interconnections as a collaboration network. More formally,

Definition 1. A collaboration network is an undirected graph C represented by an or-

dered pair C = (V,E) comprising a set V of vertices (individual inventors) together with

4This specification is linked to the microgeographic data that is employed to illustrate the proposed
methodology. This, however, does not preclude considering a discussion in a different context, such as
identification of industrial clusters consisting of firms, or technology clusters consisting of R&D labs
interconnected via different types of linkages, such as patent-to-patent citations, inter-firm labor flows.
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a set E of edges (collaboration ties), which are two-element subsets of V (co-authors on

a given patent).

Therefore, technology clusters are assumed to comprise particular parts of a larger

collaboration network, such that cluster members are concentrated at a certain spatial

scale and are characterized by geographical proximity. In order to describe a geographical

dimension of clusters, consider:

Definition 2. A geographical network is an undirected graph G = (V,D(x)) comprising

the same set of vertices V from a graph C together with a set D(x) of edges. A pair of

elements (vi, vj) ∈ D(x), if a geographical distance5 between them is less than a threshold

of x km.

The two graphs, C = (V,E) and G = (V,D(x)), can alternatively be viewed as

separate layers of a single multidimensional graph6 and effectively outline the search

space for the clustering algorithm described later in this section.

It is crucial to note that dependence of the set D(x) of proximity relations on a param-

eter x makes the inputs and subsequent outcome of the cluster identification procedure

contingent on the value of x. In Section 3, I verify whether innovations produced within

cluster borders are of significantly higher quality than outside them. I show that the lat-

ter inference might also be highly susceptible to the choice of the pre-defined parameter.

As a result, I suggest that the value of x, the maximum geographical distance separating

a node from its nearest neighbor within a cluster, is an essential element of the cluster

definition; thus it can and should be specified endogenously so that for a set of identified

clusters the implied advantage of being inside a cluster in terms of innovation performance

is significantly large and robust to the choice of performance measure.

Based on the defined notions and implied characteristics of clusters, I propose the

following formal definition of a cluster:

Definition 3. A technological (innovation) cluster is an induced subnetwork7 of an entire

network C = (V,E), denoted by C[S(x)] that satisfies two conditions:

(i) the vertex set S(x) ∈ V , where ∀vi ∈ S(x) ∃vj ∈ S(x), such that vivj ∈ D(x);

5Hereinafter I refer to geographical distance as the great-circle distance between two points on a
sphere given their longitudes and latitudes calculated using the Haversine formula.

6For brevity reasons I use the simpler notation of two separate graphs.
7A subset of the vertices and all edges connecting pairs of vertices in that subset.
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(ii) there is a path – sequence of edges i1i2, i2i3, ..., iK−1iK – between any two vertices

(vi, vj) ∈ S(x), such that ikik+1 ∈ E for each k ∈ {1, ..., K − 1}, il ∈ S(x) for each

l ∈ {1, ..., K} with i1 = vi and iK = vj.

The suggested definition can be thought about from the following perspective: tech-

nology clusters comprise groups of closely-located inventors who are also directly or indi-

rectly interconnected with each other. The latter condition might be interpreted as the

existence of a common knowledge-sharing environment among members.

1.3.2 Cluster identification algorithm

A fundamental goal of cluster identification is to classify the groups of economic agents

(or partition a network into groups of vertices), such that they share common properties.

According to the proposed definition, vertices within a technology cluster are assumed to

share two basic properties – each node has at least one geographical neighbor who is also

located within a cluster and each node is connected by at least one path with all other

nodes in a cluster via the collaboration ties existing in a cluster.

Consider the following definition:

Definition 4. A component is a maximal subnetwork,8 such that every pair of nodes in

the subnetwork is connected by a path9 (Jackson, 2008).

Based on the aforementioned Definitions (1-4), I propose a simple algorithm of the

cluster identification that takes a set of nodes (innovators with geo-coded locations) as an

input and two networks: (i) network C0 of collaboration ties (Figure 1.1 (a)) constructed

according to Definition 1 and (ii) geographical network G0 constructed according to

Definition 2 that describes the relative allocation of nodes in a geographical space. The

following steps thus lead to identification of the technology clusters as per Definition 3:

1. In network G0, find its components (see Definition 4). Consider each component as a

purely geographical counterpart of a cluster, hereinafter referred to as a geographical

component. Each node inside a geo-component has at least one neighbor within a

radius of x km, but it might not have any collaboration ties with other nodes (Figure

1.1 (b)).

8A subnetwork is maximal if it is not possible to add any other node to the subnetwork without
violating the next condition.

9A path is a sequence of intermediating edges between a pair of nodes.
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2. For each geo-component i create an induced subnetwork C1
i of the network C0

constituting all members of a geo-component and collaboration ties among them.

For each subnetwork C1
i find its connected components (Figure 1.1 (c)).

3. If there is more than one connected component per geo-component, for each con-

nected component construct the network G1
i according to Definition 2 and find its

corresponding geo-components; otherwise consider a candidate from Step 2 as a

technology cluster identified at the first iteration.

4. Iterate Steps 2 and 3 until all geo-components of the network Gk
i entirely coincide

with the connected components of the subnetwork Ck
i . The latter can be referred to

as the technology clusters identified at the k-th iteration of the algorithm (Figure

1.1 (d)).

The final set of clusters identified can be further restricted by a minimum compo-

nent size threshold measured by the number of cluster members. Hereinafter I refer to

the minimum component size threshold Nmin and the maximum distance to the closest

geographical neighbor x as the pre-defined parameters of the algorithm.

The proposed algorithm of cluster identification is applicable, in general, to the mi-

crogeographic data on innovation collaborations that possesses the following features:

1. Economic actors (e.g. firms, researchers or individual innovators) are grouped in

collaboration teams (e.g. joint R&D projects, research papers or patents).

2. Each economic actor is associated with a unique and geo-coded location (e.g. reg-

istration, residence or working address).

In contrast to previous studies, I aim to endogenize the choice of pre-defined pa-

rameters of the cluster-identification algorithm by searching over the range of possible

values. This allows me to link different outcomes of the algorithm to the innovation per-

formance observed within the clusters identified, and thus identify an optimal range of

the parameter values.

In the following sections, I present an example of how technology clusters can be

identified using the proposed algorithm and how the optimal values of pre-defined pa-

rameters of the algorithm can be found. The ultimate result of the cluster identification

procedure illustrated below is a set of technology clusters. I calculate and analyze various

geographic and network characteristics of identified clusters to illustrate the interrelation-

ship between spatial concentration and collaborations among cluster members.

13



●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

(a) Collaboration network G0.

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

Geo−component C

Geo−component B

Geo−component A

(b) Geographic components in D0.
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(c) Connected components in G1.
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(d) Geographic components in D1.

(a) Provides an example of an input collaboration network with geocoded positions of vetrices.
(b) Illustrates the first stage of the algorithm and the geo-components obtained. Circles here represent
the distance threshold x.
(c) Illustrates the second stage of the algorithm and the connected components obtained within each
geo-component. Note that: the connected component in geo-component A already corresponds to the
cluster; the geo-component B contains more than one connected component and requires further
analysis; the geo-component C does not contain any connections within its borders so will not be
considered in the further stages.
(d) Shows the final set of clusters identified. Note that only two out of three connected components in
B can be considered to be clusters satisfying the proximity requirement.

Figure 1.1: Cluster identification algorithm.
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1.4 Data

I focus on co-patenting collaborations among individual inventors as a source of data

for cluster identification and utilize patent quality measures to estimate the difference in

innovation performance of inventors within and outside the delineated cluster borders.

Noteworthily, the patent data combines all the types of information needed for an empir-

ical analysis in the present setup. First, patents constitute an example of collaborations

among individual inventors. Second, patent applications contain information about the

geographical locations of co-authoring inventors. Last but not least, patents represent a

kind of innovation output that can be assessed in terms of its quality and characterizes

the innovation performance of individual inventors.

I employ the U.S. Patent Inventor Database retrieved from the Harvard Dataverse

(Li et al., 2014), which contains records on more than 4 million patents granted by the

United States Patent and Trademark Office between 1975 and 2010. Each patent record

in the database comprises disambiguated names10 of inventors listed in the application,

their geographical locations (residence addresses at time of filing patent applications),

patent grant and application filing dates, and the major technology classes of patents

defined according to the U.S. Patent Classification System (USPC). Importantly, each

innovator in the dataset is uniquely related to the geo-coded location11 and geographical

distances between all inventors can be calculated in a given application-filing year.

Using these microgeographic data on patenting activities, I aim to identify innovation

clusters at the national level, restricting the geographical scope of analysis to the U.S.

borders. I consider a subset of patents, namely those for which the primary inventor is

based in the U.S., which reduces the number of patents in the dataset to 2.3 million.

Although the latter subset of the patent and inventor data would be sufficient for

implementation of the cluster-identification algorithm, I merge it with the Examiner

Citation Data (Sampat, 2012) retrieved from the Harvard Dataverse, which contains

examiner and other backward citations made by the U.S. patents granted between 2001

and 2010, in order to obtain patent quality measures used in the empirical analysis.

Merging the patent and citations datasets imposes the following restrictions on the

patent grant and application filing years. First, as an analysis of the patent quality is

10See Li et al., (2014) for the description of disambiguation procedure.
11This feature of the dataset is essential, though its actual presence is contingent on the accuracy of

the preceding disambiguation procedure. In fact, 4% of inventors do not satisfy this condition and are
discarded from further analysis.

15



based on counts and composition of forward citations, and in order to make a comparison

of patent quality consistent across time, I consider citations made within a two-year time

window starting from the patent grant date of a focal patent. The range of possible

patent grant years in the dataset is thus restricted to 2001-2008. Second, as mentioned

earlier, unique geographical locations of inventors are available at the time an application

is filed and to construct a single geographical network that represents relative locations

of inventors, patents filed in the same year should be considered.12 Therefore, the dataset

allows me to construct geographical networks and to identify sets of clusters for each year

of application until 2008.

However, as I rely on the citation data that are collected during the time window

linked to the patent grant date, and the difference between application filing and patent

grant dates is not the same for all patents, ranging from several months to 10 years in

the dataset, I explicitly limit the difference allowed between patent grant and application

filing dates to at least 1 and at most 5 years.13

If, for some patents filed in a year, it is not possible to obtain quality characteristics

because of excessive application-to-grant lag I exclude that year. This ensures that the

distribution of patents used for the cluster identification are unchanged in any given year.

For example, to identify clusters in 2006, patents that were filed in 2006 and were granted

between 2007 and 2011 could be considered, but this would require a truncation of the

distribution at 2008, since it is the latest possible patent grant year for which the citation

data can be collected that respects the two-year time-window restriction. Therefore, the

range of application filing years for which I can identify clusters is restricted to 2000-2003.

The final dataset includes 395,033 patent applications filed by 379,358 inventors be-

tween 2000 and 2003 for which patents were granted between 2001 and 2008. For each

filing year between 2000 and 2003, data on patent applications are processed according

to the following procedure:

(1) construct a geographical network based on locations of individual inventors as stated

in the corresponding patent applications;

(2) construct a collaboration network of co-patenting ties among inventors;

(3) identify technology clusters, with each cluster comprising a set of individual inven-

tors who belong to it;

12I assume that the residence address details of the inventors are not changed during the year an
application is filed.

13This condition is satisfied for about 90% of patents in our dataset.
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(4) consider a cross-section of inventors, where each inventor has a cluster status

(within/outside the cluster) and a measure of innovation performance.

As a result, I obtain an unbalanced panel of 551,946 inventor-year pairs with two

associated time-variant variables: cluster status and innovation performance equal to the

average quality of patent applications filed in a given year by each inventor. The resulting

panel data are used to study the relationship between individual innovation performance

and presence within a cluster. The strength of such a relationship is used later in this

analysis as a criterion for optimizing the pre-defined parameters (i.e. component size and

distance thresholds – Nmin and x, correspondingly) of the cluster-identification algorithm.

1.5 Results

1.5.1 Application of the algorithm

The ultimate outcome of the cluster-identification algorithm (i.e. the geographical borders

of clusters and composition of their members) is contingent on the input data (i.e. the

exact geographical locations of inventors and structure of collaboration ties among them),

as well as the values of pre-defined parameters.

Even though the outcome of the cluster-identification algorithm is not uniquely defined

at this stage of analysis, due to the variability of factors described above, I present

a ‘snapshot’ of the cluster mapping for an arbitrarily chosen time period and preset

parameter values to illustrate the proposed definition of a ‘cluster’ and recapitulate its

main features.

Figure 1.2: Sample map of clusters.
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Figure 1.2 provides an example of clusters depicted on a fragment of a map. Each color

corresponds to a separate cluster; each circle depicts an area delimited by the maximum

distance threshold around a unique location of inventors. It is clear from the map that

a single node is considered to be a part of a given cluster if it falls within a radius of

the ‘close neighborhood’ defined by the distance threshold. It is also apparent that this

condition is necessary for being a part of a given cluster, but not sufficient. Therefore,

clusters might overlap visually on a geographical map if there are inventors who are

geographically close to each other, but not interconnected via a collaboration network

and, hence be identified as members of different clusters.

Figure 1.3 (a) depicts separately the largest cluster on the map with overlaid collab-

oration linkages. It consists of 80 individual inventors based in the State of New Jersey.

Patents produced in this cluster represent innovations in pharmaceutical and biotechnol-

ogy industries, most of them were assigned to the Schering Corporation14 and Dendreon

Corporation.15 Figure 1.3 (b) depicts a network of collaboration linkages among individ-

ual inventors in this cluster. In this figure, nodes (individual inventors) are placed in a

two-dimensional space in such a way16 that shorter distances between nodes correspond

to more collaboration linkages and do not necessarily correspond to closer geographic

locations of inventors.

(a) Cluster. (b) Network structure.

Figure 1.3: Example of identified cluster.

14The company’s headquarters is in Kenilworth, New Jersey. The company was acquired by Merck &
Co. in 2009.

15The company had a manufacturing facility in Morris Plains, New Jersey, sold in 2012 to Novartis
Pharmaceuticals Corporation.

16The Fruchterman-Reingold Layout (Fruchterman & Reingold, 1991) was used for plotting the net-
work of collaboration linkages.
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1.5.2 Optimization of the parameter values

In the empirical analysis I utilize the variability of cluster borders observed across time

in order to compare the performance of individual inventors in periods when they fall

into and out of the clusters identified. Thus, I aim to measure the degree of association

between ‘being in a cluster’ and delivering a certain level of innovation performance.

Effectively, I compare the difference between innovation performance within and out-

side the ‘borders’: for a set of connected components in a collaboration network; for a

set of benchmark ‘geo-components’ that resemble the outcome of conventional distance-

based clustering algorithm; and, finally, for a set of technology clusters resulting from the

proposed cluster-identification algorithm.

Because each method of grouping relies on the data observed in a specific time period,

‘being within’ a group is also time-specific. It is possible that an inventor retains a ‘within’

status for a given type of groups, while shifting from one specific group to another. It is

also possible that a status switches between ‘within’ and ‘outside’ even without a change

in an inventor’s geographical location, because borders of groups depend simultaneously

on the locations of all inventors and/or collaborations among them in a given time period.

Thus, each inventor’s status can also be affected by characteristics of other inventors.

To measure individual innovation performance, I calculate the average quality of in-

ventors’ patents. I focus purposely on qualitative rather than quantitative measures, in

order to assess the innovation performance of individual persons. Both types of mea-

sures could be equally relevant for assessing firm-level innovation performance. Because

an intensive margin of patenting (number of patents produced) may be contaminated

by the availability of financial resources needed to fund a costly patenting process to a

greater extent than an extensive margin (the quality of patents produced), I choose to

measure the average quality of patents produced by a given inventor normalized by the

total number of patents in her portfolio.

There are numerous metrics that can used as proxies for patent quality in general.

Squicciarini et al. (2013) present a comprehensive overview of existing proxies that are

commonly used in the literature. Those include, among others, indicators that are based

on backward (referenced) and forward (attracted) citations, as well as on other character-

istics of patents relevant for their enforcement. For example: originality and radicalness

indices can be constructed from a set of citations made in a patent; generality and out-

standing citedness can be inferred from the number and composition of citations received
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by a patent; technological breadth and market size are reflected in the number of pro-

tected claims and the number of patent offices at which an invention is protected.

It is worth noting that indicators such as the technological breadth and the market

size are more relevant for assessment of the commercial value of a firm’s patent portfolio.

In my analysis, I use bibliometric indices that are based on forward citations and can be

better suited for assessment of patents at the level of an individual inventor’s portfolio.

The following three selected proxies of patent quality are also in line with Acemoglu and

Akcigit (2014), where the quality of patents is attributed more to individual inventors

than to firm-level characteristics:

1. Average number of citations received per patent during a two-year window since a

patent grant date.

2. Average generality index measuring the average dispersion of forward citations re-

ceived by patents (during a two-year window) in terms of the technological classes

of their citing patents, defined for a patent portfolio with positive citations as:
1
N

∑︁N
j=1

(︂
1 −

∑︁
i∈I s

2
ij

)︂
where i ∈ I denotes a technological class and sij ∈ [0, 1]

denotes the share of citations that patent j receives from patents in technological

class I. The index is close to 1 if there is a large number of classes citing a patent

and is 0 if all citations come from a single technological class. Let us also assign 0

value to patents with no forward citation.

3. The number of ‘tail patents’, i.e. patents which, during a two-year window, received

a number of citations above the 95th percentile in the distribution of all patents

granted in the same period.

I use each of the three measures to evaluate the degree of association between the

presence of an inventor in a connected component, geo-component or cluster on the

one side and her innovative output on the other. Table 1.1 summarizes the correlation

coefficients, that are positive and statistically significant. Therefore, I suggest that for

a given method of grouping inventors the relationship between belonging to the group

and delivering a certain level of innovation quality is robust if it has the same sign and

significance level across all three measures.

In the panel of 551,946 inventor-year pairs, I construct three dependent variables that

follow the definitions of innovation quality measures introduced above and three binary

independent variables that take a value of one if the inventor was a ‘member’ of one of
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Measures of innovation performance

Citations Generality ‘Tail’ patents

Citations per patent 1
Generality (average) 0.574*** 1
‘Tail’ patents (number) 0.409*** 0.152*** 1
*p < 0.05, **p < 0.01, ***p < 0.001

Table 1.1: Correlations

the identified connected components, geo-components or clusters and zero otherwise. In

total, 9 different regressions with inventor fixed effects are estimated according to the

following equation:

Qualityit = α + βMemberit + γi + ϵit (1)

For each independent variable that represents a certain method of grouping inventors

(based on their interconnectedness, proximity or both), I obtain three values of the coeffi-

cient β to measure the degree of association with one of the three innovation performance

measures. I refer to the output of three alternative regressions to ascertain the robustness

of association between the dependent and independent variables.

By controlling for unobserved heterogeneity γi, I capture the within-inventor variation

in innovation performance for those inventors who switched between being a ‘member’ of

and being outside the corresponding groups at least once during the covered interval.

Because each method of grouping inventors relies on the minimum component size

and the maximum distance thresholds (Nmin and x, correspondingly), which affect the

composition of groups identified and hence the variation in the right-hand side of the

regression equation (1), I reestimate each of the 9 specifications while changing the values

of the pre-defined parameters along the grid.17 For each grouping method I obtain a grid

of β estimates that correspond to different combinations of the parameter values. I

identify the optimal values such that the β estimates are significantly positive and robust

to the choice of an innovation quality measure.

The results of a sensitivity analysis are reported in a concise way using a graphical

representation (Figure 1.4). Each of the 9 graphs corresponds to a certain regression

specification and plots a grid of possible parameter values. Each dot on the grid depicts

17I consider 25 possible values of the maximum distance threshold ranging from 1 to 25 km and 25
possible values of the minimum component size threshold ranging from 5 to 200 inventors.
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properties of the corresponding β estimate: size being proportional to its magnitude18,

color showing the significance level and shape representing a sign of the relationship

between the cluster status and innovation performance of individual inventors.

In the following subsection, I identify the optimal values of the parameters (i.e. com-

ponent size and distance thresholds – Nmin and x, correspondingly) used in the clustering

algorithm that lead to the positive and significant association, which is robust to the

choice of a performance measure. I show below that different methods of partitioning

inventors into cohesive groups might exhibit different degrees of sensitivity of the optimal

values to the choice of innovation performance measure.

1.5.3 Results of a sensitivity analysis

First, consider the network components (Figure 1.4 (c)). Under this approach, inventors

in a given year were grouped according to their positions in the collaboration network,

disregarding their geographical locations. The vertical axis on the grid of estimates is

thus irrelevant and the horizontal axis corresponds to the minimal restricted size of a

connected component to which an inventor should belong, in order to turn the value

of Memberit from zero to one. Note, however, that in the case of the minimum size

of connected component being set to one, there would be no variation observed in the

right-hand side of the regression equation (1), since, by definition, every node in the

network would belong to some connected component of a size equal to or greater than

one. Thus for small values of the component size threshold, the within-inventor variation

in the Memberit can be approximately interpreted as ‘switching’ from a single-authorship

to collaboration or vice versa. The significant and positive βs along the smallest values

of the horizontal range commonly observed on all three graphs of panel (c) suggests the

presence of a positive relationship between collaborating with other inventors, rather than

working alone, and achieving a higher average quality of innovations. It is not, however,

enough to consider connectedness to other inventors through collaboration ties as the sole

criterion of cluster identification.

For the geographical components (Figure 1.4 (b)), the method of assigning inventors

to the densely populated groups according to the distances to their nearest geographical

neighbors closely resembles the City Clustering Algorithm in Rozenfeld et al. (2008) and

the Network Analytical Approach in Catini et al., (2015). I refer to geo-components as the
18Size of the dot represents a relative (percentile) magnitude of the estimate β as compared to other

estimates on the same grid.
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(a) Clusters

(b) Geo-components

(c) Network components

Figure 1.4: Results of sensitivity analysis.

‘benchmark’ clusters and I aim to contrast the proximity-based methodology of cluster

identification to the proposed algorithm. In contrast to the grouping method analyzed in

panel (c), the proximity-based methodology disregards the structure of interpersonal con-
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nections in the collaboration network of inventors. The maximum distance to the nearest

neighbor in a geographical component is an important parameter of such a clustering

method and the vertical axis of the grid in panel (b) corresponds to its possible values.

Increasing the value of this parameter would lead, in the limit case, to the inclusion of

all inventors in a single geo-component that would cover the whole area of the country.

Finally, consider the results of sensitivity analysis (Figure 1.4 (a)) for the technology

clusters identified with our proposed methodology. The latter combines the clustering

criteria of the previous two methods. According to Definition 3, the group of inventors

constitute a technology cluster if the distance of each inventor to her nearest geograph-

ical neighbor does not exceed the maximum threshold value and if there is at least one

sequence of collaborations between any two inventors.

It is apparent from the graphs in panels (a) and (b) that imposing an additional

criterion of ‘interconnectedness’ in the proximity-based clustering algorithm leads to sub-

stantial changes in the pattern of association between presence within the cluster borders

and delivering a certain level of innovation performance. It is not possible to endogenously

determine the optimal values of the distance and size parameters for the proximity-based

algorithm as none of the parameters lead to robust evidence of a positive and statistically

significant degree of association. At the same time, all three graphs in panel (a) clearly

exhibit the following common patterns.

First, as the distance restriction becomes irrelevant (when the maximum threshold

is increased above the 15 km value), the positive relationship between ‘being present’ in

a cluster and producing innovations of a higher quality is apparent only for small sizes

of the clusters, which mirrors the pattern from the graphs in panel (c) and effectively

suggests the dominant role of collaborations as a cluster-identification criterion.

Second, and most importantly, it is easy to identify the range of optimal parameter

values that lead to robust evidence of a positive and statistically significant relationship

between the variables Memberit and Qualityit, which represent the cluster status and

innovation performance of individual inventors. The optimal range includes the values of

the distance threshold x between 9 and 12 km and the minimum component size Nmin

greater than 130 members.

Below, I characterize the clusters identified in terms of their network structure, geo-

graphic locations, and degree of concentration in order to illustrate the interrelationship

between spatial concentration and collaborations among cluster members.
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1.5.4 Characteristics of identified clusters

The range of optimal parameter values yields a set of 19 distinct clusters. Because a

search space (i.e., geographic and collaboration layers of the network) used as an input

for the cluster-identification algorithm is not fixed over time (i.e. geographic locations

and collaboration linkages among inventors are specified for a given moment of time),

the exact geographic and social boundaries of clusters may change over time. In order to

characterize the identified clusters in general, not in each moment of time, I focus on the

most-recent state of clusters and consider the following measures:

– Size defined as the total number of nodes (inventors) in a cluster, which is limited

by the minimum component size threshold set at the optimization stage.

– Diameter defined as the maximum length of the shortest path (sequence of collabo-

ration ties) between any pair of nodes (inventors) within a cluster. Diameter values

can vary in a range from 1 (i.e. each inventor has at least one collaboration tie with

any other inventor within a cluster) to N − 1, where N is a size of cluster (i.e. all

inventors are connected in a chain of collaborations).

– Global clustering coefficient defined as follows. Consider a triplet (3-set of inventors)

where each node is directly (collaboration tie) or indirectly (chain of two collabora-

tions) connected to other two nodes within a triplet, and all nodes in a triplet are

members of an identified cluster. The global clustering coefficient is the number of

closed triplets (3-sets of inventors having at least one collaboration tie with each

other) divided by the number of all triplets (3-sets of inventors with at least two

pairs having at least one collaboration tie). A range of possible values is from 0 (no

closed triplets) to 1 (all triplets are closed and, thus, each inventor has at least one

collaboration tie with any other inventor within a cluster).

– Spatial spread measured by the maximal geographical distance between any pair

of nodes (inventors) in a cluster. It has a similar interpretation of a diameter, but

in a purely spatial context. This measure can vary in a range between 0 (i.e. all

inventors being concentrated on a single location) and (N − 1)x, where x is the

maximum distance threshold (i.e., all inventors are located on a straight line and

are separated by exactly x km from each other.

Table 1.2 reports summary statistics on five cluster characteristics defined above.

The results suggest that clusters identified using the proposed methodology tend to be
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relatively small; the median size of cluster is only twice the minimum threshold of 130

inventors and the largest cluster is slightly above 500 – the size of a small business.19 At

the same time, the relatively small size of the clusters can be explained by the stringency

of conditions that need to be satisfied according to the proposed cluster-identification

algorithm: each cluster member has to collaborate on at least one patent with other

inventors within a cluster, and the distance to the closest neighbor within a cluster should

not exceed a threshold of about 10 km.

Cluster characteristic Mean Median Min Max

Size 305 267 135 592
Diameter 16 16 8 32
Global clustering 0.52 0.55 0.35 0.69
Max geo-distance 63.00 60.90 11.25 140.08

Table 1.2: Summary statistics on cluster characteristics

A typical value of the clustering coefficient is relatively large – 0.55, i.e., about half

of the collaboration triplets are closed. This means that most inventors within identified

clusters tend to form multiple teams, recombining different members around the cluster,

rather than repeatedly collaborating with the same coauthors. At the same time, a

relatively large average diameter of clusters can be explained by the existence of several

collaboration hubs within clusters, so that teams are typically formed by the members

of such hubs (increasing the global clustering coefficient), but only a few inventors form

collaborations among the hubs, which makes inventors from different hubs within a cluster

relatively distant from each other in terms of collaboration ties (increasing the diameter

of a cluster). Figure 1.5 illustrates such a structure of collaboration ties within a cluster.

Even though clusters are characterized by a relatively large distance between teams

in terms of collaboration ties, the geographical spread of inventors within clusters tends

to be rather small. The most-distant cluster members are, on average, located 63 km

from each other. This can be explained by the maximum distance threshold x imposed

by the cluster-identification algorithm and the typical radius of urban agglomerations.

Therefore, a typical cluster is concentrated within an area characterized by a suffi-

ciently high density of population. A higher spatial concentration of inventors within

such areas presumably leads to a higher frequency of social interactions and increases

the chances for new collaborations. However, it is evident from the characteristics of the
19According to the U.S. Small Business Administration:http://www.sba.gov/size
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(a) Cluster in Albany (NY) dominated
by General Electric Company

(b) Cluster in Appleton (WI) dominated
by Kimberly Clark Worldwide Inc.

Figure 1.5: Examples of collaboration networks within clusters.

clusters identified that connected components in collaboration networks – communities

of inventors, where each member is linked with at least one other member of the same

community via a collaboration tie – do not necessarily span the entire area of a high spa-

tial concentration of inventors. The latter fact may explain the relatively small sizes of

the clusters identified. Large values of a global clustering coefficient and relatively large

distances in social networks of clusters show that collaboration ties are likely to be con-

centrated within small groups that are linked with each other via only few a collaboration

ties (Figure 3b).

Therefore, a crucial role in the establishment of a connected network structure within

areas of high spatial concentration of inventors, and thus in the formation of innovation

clusters, might be played by a small number of so-called ‘gatekeepers’20. Further exten-

sions of this study may include analysis of the role played by ‘gatekeepers’ in connecting

collaboration hubs into innovation clusters.

In this study, the difference in innovation performance observed within clusters and

outside the cluster borders was used as a criterion for optimization of the cluster-identification

parameters. Future research based on the results obtained in this study may explore a

20The term ‘gatekeeper’, in the context of innovations and collaboration networks, refers to an economic
actor (individual or firm) which links a localized knowledge network to outside sources. Graf (2011)
discusses the role of ‘gatekeepers’ in regional innovation systems.
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differential contribution by internal collaborations (among cluster members) and exter-

nal collaborations (with at least one inventor from outside the cluster borders) to the

innovation performance of clusters.

1.6 Conclusions

It has been widely observed in empirical studies that frequent interactions between in-

novation firms, organizations or individual inventors are more likely to occur within a

relatively short space. The latter naturally leads to a strengthening of agglomeration

forces and geographic clustering of innovation activities.

The latter tendency has recently attracted great interest to clusters, among both

economic researchers and policymakers. Because of this popularity, the notion of a ‘clus-

ter’ has been discussed and reinterpreted many times in the literature, though there is

still no consensus among researchers on its clear-cut definition, or a commonly-accepted

cluster-identification procedure.

This paper builds on the previous work and proposes a novel method of cluster identi-

fication. I suggest that boundaries of innovation clusters should be sought simultaneously

across two dimensions – geographical space and the structure of collaboration ties among

innovators. I propose a novel multi-layer clustering algorithm and exploit it to identify

technology clusters in the network of collaboration ties among innovators.

Given that the outcome of the cluster-identification algorithm is contingent on the

input data, as well as the values of pre-defined parameters, I seek to endogenize the choice

of parameter values in the proposed clustering algorithm by searching over the range of

possible values and empirically tracing the relationship between the choice of parameter

values and the innovation performance observed within identified cluster borders.

I search for the optimal values of the parameters used in the clustering algorithm that

lead to the positive and significant association between ‘being in a cluster’ and delivering

a certain level of innovation performance, which is robust to the choice of a performance

measure. I find that the sign, magnitude and significance of such association is highly

vulnerable to the choice of pre-defined parameter values, as well as the clustering method.

The sensitivity analysis shows that the cluster-identification algorithm proposed in

this study performs better than existing methods in identifying successful clusters with a

significantly better innovation performance in the terms of several patent measures, and

within a consistent range of pre-defined parameters.
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Chapter 2
The Impact of Prioritized Examination on

Commercialization of Patents

2.1 Introduction

Patents play an important role in facilitating the transfer of knowledge and enabling

commercialization of innovative ideas via the market for technology. There are many

well-known cases in which patent sales have been accompanied by multi-billion dollar

deals between technology giants, such as the $12.5 billion purchase of Motorola Mobility

and its 20,000 patents by Google Inc. in 2011. Anecdotal evidence has shown that even

small startups and individual inventors can turn their patents into salable commodities

in rather short periods. On April 27, 2015, Google Inc. announced its Patent Purchase

Promotion, offering to buy patented technology for the price set by the patent owner.

The time during which sale offers could be submitted was limited to several weeks. This

short-term experimental marketplace was just the beginning of a series of such events1

supported by many other large companies across different industries. This proves how

quickly patents owned by small startups and individual inventors can be monetized. The

crucial question that remains is how quickly innovative ideas can be patented.

In practice, an inventor cannot immediately obtain patent protection for her invention,

since the patent system requires time to process applications before the patent office

grants formal property rights to the invention claimed by the applicant. The total time to

patent, known as the pendency time, is not strictly determined. It may vary substantially
1IP3 Program (https://www.ast.com/ip3/).
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from one case to another and its length depends on many different factors that have been

examined in the literature (Harhoff & Wagner, 2009, Mejer & Potterie, 2011, Liegsalz &

Wagner, 2013, Tong et al., 2018). Currently, the total pendency time averages 2-4 years

across the largest patent offices2. Although the length of pendency is largely determined

by the time of certain actions taken by the patent office and the applicant, it is also

possible that a considerable backlog of filed but still-unprocessed applications at a patent

office can postpone the beginning of communication between an applicant and a patent

examiner for a non-negligible amount of time. For example, at the United States Patent

and Trademark Office (USPTO), more than half of a total pendency is typically spent

waiting in a queue of unprocessed applications (Figure 2.1).
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Figure 2.1: Total Pendency Time

As the demand for patents increases, the patent backlog also increases, due to the

numbers of applications waiting for examination by patent offices (Mitra & Kahn, 2013).

This trend has attracted increasing public concern over the last decade and is commonly

referred to as “global patent warming” (Mejer & Potterie, 2011). One of the negative

2The range corresponds to the total pendency time averages at the USPTO, EPO, JPO, and SIPO.
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externalities arising from this trend is a large volume of idled inventions that may be as-

sociated with substantial social costs of the delayed benefits from a technological change.

According to London Economics, the estimated3 overall harm to the global economy

caused by an additional year of pendency for all current applications at the three largest

patent offices, the European Patent Office (EPO), the Japan Patent Office (JPO) and

the United States Patent and Trademark Office (USPTO), is as large as $9 billion per

annum (London Economics, 2010).

While some applicants may intentionally postpone the outcome of the examination

process (Henkel & Jell, 2010, Zahringer, Kolympiris & Kalaitzandonakes, 2016) and ap-

plicants’ preferences related to the length of pendency time are, in general, ambiguous

(Dechezleprêtre, 2013; Rassenfosse & Zaby, 2015), patent offices are generally willing to

redistribute their limited examination capacity in favor of welfare generating inventions,

and to examine these patent applications as a matter of priority. Therefore, various poli-

cies for expedited examination of selected patent applications that satisfy specific criteria

are commonly used by patent officies across the world.

Specific policies and selection criteria for expedited examination vary across countries

and patent offices. Some common policies and respective groups of patent application

that can be granted special status to undergo an expedited examination process include:

green technologies (e.g., patent offices in Australia, Canada, China, and other countries

give priority to applications related to environmentally friendly technologies)4, specific

technologies in a pharmaceutical industry (e.g., the National Institute of Industrial Prop-

erty of Brazil prioritizes examination of AIDS, cancer, neglected, and rare disease-related

inventions; the USPTO offers expedited examination of patent applications related to

cancer immunotherapy under the Cancer Immunotherapy Pilot Program), and earth-

quake disaster recovery support-related innovations (e.g., the JPO issues patent grant

decisions for these types of innovations on an accelerated basis).

The privilege of faster examination is usually granted only for certain groups of patent

applications selected by patent offices, as in the cases above. Such policies, however,

do not directly address the issue of patent backlogs, and many other inventions with

potentially high value that do not belong to the selected groups may remain idle.

3The cost of lost innovation estimated from the average patent values in the PATVAL survey (Gam-
bardella et al., 2006) and the assumption that the value of a patent is proportionally spread over its
lifetime.

4See Lu (2013) for an overview of existing policy practices to expedite examination of ‘green’ patents
in different countries.
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Moreover, the length of pendency time and the number of applications idled in the ex-

amination process is not always determined by examination capacity and the priorities of

the patent office. If the examination process, especially in later stages, is associated with

large direct and indirect costs incurred by an applicant, it may be in the interests of an

applicant to defer the costly stages and, thus, to extend the length of examination process

irrespective of other factors or circumstances that determine pendency time. For exam-

ple, at the European Patent Office (EPO), a grant of patent unavoidably leads to high

expenses for an applicant due to translation requirements and other prosecution-related

fees. This causes a larger patent backlog at the patent office (Mejer & Potterie, 2011).

In such a case, the issue cannot be directly addressed by redistribution of examination

capacity among pending applications or by a prioritized examination policy.

At the same time, in patent offices where examination process is relatively less costly

and applicants may be willing to obtain a final decision faster, the right to obtain a

prioritized status may be also much more demanded by applicants. For example, to cope

with the patent backlog more generally, as a part of the America Invents Act (AIA)

enacted in September 2011, the USPTO introduced Track One Prioritized Examination

– an option for applicants to obtain priority in the list of pending applications and,

thus, to expedite the examination process, for an extra fee. This intervention was partly

motivated by the need to promote innovations produced primarily by small firms in

technology sectors with short product life cycles5.

Wider access to faster examination at the USPTO may have brought many potential

benefits to technology markets, including private benefits for start-up firms seeking to ob-

tain a competitive advantage in the R&D race on markets with short product life cycles or

those seeking financing in sectors with scarce funding sources (Fischer & Ringler, 2014).

The Track One option has also been widely promoted by U.S. patent attorneys encourag-

ing applicants to take advantage of the faster examination at the USPTO. Nevertheless,

to our knowledge, the introduction of the USPTO Track One Prioritized Examination and

its consequences on the market for technology have not yet been studied in the literature.

In this paper, we raise two empirical questions about the prioritized examination of

patent applications. First, we summarize the main statistics related to participation of

applicants in the USPTO Track One program and ask whether the program’s target group

– start-up firms – was effectively reached during the first year of the program. Second,

we ask whether participation in the program brought pecuniary benefits to start-ups.
5https://www.uspto.gov/
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More specifically, we verify whether prioritizing an innovation in a queue of pending

applications increases its saleability in the market for technology. Hence, we shed some

light on frictions in the market for technology potentially created by the pendency time

of patent applications.

Our empirical strategy aims to address three main challenges related to the questions

posed above: (1) how to measure the saleability of both pending and granted patents;

(2) how to avoid confounding due to the fact that, under the limited time coverage of

the data, prioritized applications are observed for a longer period of time after a patent

is granted than regular applications (3) how to disentangle the effect of participation in

prioritized examination on the saleability of a patent, which may be confounded by other

observable and unobservable characteristics of the patent.

First, the extensive coverage of the dataset released by the Office of the Chief Economist

of the USPTO, which contains patent assignments recorded by the USPTO (Marco et al.,

2015), allows us to track the history of the reassignment of property rights for regular

patent applications, and for those that have undergone the prioritized examination. We

closely follow the refinement procedure employed in Serrano (2010)6 to select reassign-

ment records that most likely correspond to the sales transactions from the start-up firms

to larger corporate entities. The most important feature of the USPTO Patent Assign-

ment Dataset is that it contains virtually all records of both pending and granted patent

sales, as it is required that patent sale transactions are filed with the USPTO and, thus

publicly recorded, to be legally binding (Dykeman & Kopko, 2004; Serrano, 2011).

Second, in measuring the saleability of patents, we take into account the fact that

the limited time coverage of the Patent Assignment Dataset restricts the length of the

forward-looking time window starting from the application filing date during which we can

track the reassignment history of a pending or granted patent and, thus, conclude whether

or not it was sold by the start-up firm. We also take into account the empirical observa-

tion first documented in Gans, Hsu and Stern (2008) and recently confirmed in Gaessler

(2016) that the distribution of the timing of patent commercialization agreements (licens-

ing and reassignment) peaks immediately after the patent allowance. Therefore, granted

patents which underwent the prioritized examination would be observed longer during

the post-allowance period than granted patents that underwent a regular, longer exam-

ination process. In view of this, we first verify whether the limited time window causes

underestimation of the saleability of patents in the regular, longer system.
6Described in detail in Serrano (2008) – the working paper version of the referenced study.
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Third, to eliminate potential bias driven by omitted characteristics of patents corre-

lated both with the probability of application for prioritized examination and the proba-

bility of commercial reassignment, we compare patent applications filed before and after

the Track One inception date with high predicted propensity for prioritization implied

from their observable characteristics. Thus, if there are any confounding patent charac-

teristics strongly correlated with the probability of prioritization, they would be equally

distributed among the two groups of applications filed before and after the program start

date. This conjecture relies on the assumption that there was no evidence of manipulation

of the filing date in anticipation of the announced Track One program. As we find strong

evidence of strategic filing immediately after the program start date, we eliminate its

impact on the main results by excluding applications filed closely around this date. We

also eliminate the effects of other factors that may have affected all applications, includ-

ing those less likely to be prioritized, by estimating a standard difference-in-differences

model. Finally, we control for differential non-linear time trends of applications with

high and low propensity for prioritization to eliminate the effect of potential pre-program

changes in saleability of patents that persisted after the Track One inception date.

We find that shortening the examination time for participants in the Track One pro-

gram is associated with at least a 1.56 percentage point increase in the probability of

commercial reassignment, which is in fact 50% of the average reassignment rate of patent

applications filed by the start-ups. This suggests that the USPTO Track One Prioritized

Examination, in addition to its obvious advantage of providing an earlier disposition of

patent applications, may have resulted in private pecuniary benefits to applicants who

opted for prioritization, and that a large overall benefit to the market for technology

remains unrealized due to low participation in the program.

This study contributes to the literature on the commercialization of innovations via

the market for technology in two respects. First, in the data on transfers of formal

property rights across firm boundaries, we find evidence for the sales of patents, in line

with Serrano (2008, 2011), Galasso et al. (2013) and Gaessler (2016). Second, we find

that, other things being equal, patent applications that undergo prioritized examination

are significantly more likely to be commercialized via the market for technology. This

finding suggests that longer pendency time of applications may not only lead to a welfare

loss due to the deferred commercialization of innovations (Gans, Hsu & Stern, 2008), but

may also create frictions on the market for technology that reduce the overall saleability

of granted and pending patents. We thus contribute to evidence from other studies
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(Galasso et al., 2013, Harhoff & Stoll, 2015, Hegde & Luo, 2018) of frictions in the

market for technology, and analyze different sources of those frictions.

2.2 Institutional Context and Hypotheses

2.2.1 The America Invents Act and Track One Prioritized Ex-

amination Program

At the USPTO, patent examination, the process that precedes the issuance of a patent,

typically takes about two years. A final disposition – allowance or final rejection – for a

patent application is reached, on average, within 24 months of the filing date. About two-

thirds of that time is spent awaiting the first office action – the start of communication

between the patent office and the applicant on the merits of the application (Figure 2.1).

Thus, a major part of pendency time at the USPTO is spent waiting in a line of other

filed applications awaiting examination.

While earlier approval of a patent application may hasten commercialization of in-

novation via the market for technology (Gans, Hsu & Stern, 2008; Gaessler, 2016), it is

not common for all applicants to seek a shorter examination time. Some inventors, for

example, may need more time to secure investment or generate revenue needed to convert

the invention into a marketable product, and therefore they may tolerate or even prefer

a deferred patent grant. Moreover, owners of pending patent applications may be able to

realize up to 75% of the returns that would be generated under full patent protection by

strategically creating uncertainty for competitors about the patentability of an innovation

and the risk of infringement of a future patent (Harhoff, Rudyk & Stoll, 2016).

To allow inventors to shorten waiting times and release the potential value of innova-

tions trapped in a backlog of pending applications, the USPTO introduced the Track One

Prioritized Examination program as a part of the America Invents Act (AIA) enacted

in September 2011. Under this program, up to 10,000 nonprovisional utility patent ap-

plications filed each year, beginning on September 26, 2011 can obtain prioritized status

in the examination process. This option is offered for a fee that ranges from $1,000 for

a micro-entity to $4,000 for a large entity, which compares to the minimal overall cost

of all stages from an application filing to an issued patent7 ranging from $715 to $2,860

depending on the applicant’s status.
7A sum of filing, search, examination and issue fees.
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In exchange for the prioritization fee, applicants in the Track One Prioritized Exami-

nation are effectively allowed to obtain a final disposition for their applications in about

half the time of the regular examination (Figure 2.1). Since the usual 20-year term of a

patent starts from the filing date of a application, earlier final disposition and a patent

grant imply a longer enforcement time, during which a patent can be enforced by its

owner against potential infringers. Moreover, in some cases, a pending application may

severely delay product market entry when legal protection of the technology is crucial

for a producer to secure itself against unauthorized infringement. In many other cases,

such an aggressive R&D race between large corporations or participation in limited-time

marketplaces for innovations, such as the Patent Purchase Promotion8, faster examina-

tion of patent applications can create a substantial competitive advantage for innovators.

Shorter pendency time can also reduce transaction costs faced by start-up innovators

commercializing their technologies via licensing contracts (Gans, Hsu & Stern, 2008).

Further, start-up firms seeking external funding with a lack of tangible assets to secure

the loan may benefit from earlier issue of a patent, since the patent can be immediately

provided to a lender as an alternative form of collateral (Fischer & Ringler, 2014).

Introduction of the Track One program was initially motivated by the USPTO as

a promotion mechanism for innovations produced by small firms in technology sectors

with short lifecycles and high speed R&D races9. Since the program’s inception, the

advantages of faster examination at the USPTO have been widely promoted by patent

attorneys around the U.S. (Whitt, 2015; O’Brien, 2017). Surprisingly low demand, how-

ever, is evidenced by the fact that the limit of 10,000 prioritization requests per fiscal

year has never been achieved (Merchant, 2015). The overall participation rate in Track

One Prioritized Examination during its first year averaged only 1.2% of all eligible utility

patent applications filed at the USPTO. We find that the participation rate was notably

higher among VC-backed start-ups, averaging 4.8% and peaking in the following tech-

nology sectors: Computer Hardware & Software, Communications, Surgery & Medical

Instruments and Drugs, with the shares of prioritized applications ranging between 6-8%

(Figure 2.2). To see how the group of innovators targeted by the USPTO and character-

ized by more active participation was affected by the Track One program, we focus on

the applications initially owned by VC-backed start-up firms.

VC-backed start-up firms have been under the spotlight of research in the field of

8IP3 Program (https://www.ast.com/ip3/)
9http://www.uspto.gov/
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economics of innovation due to their more intensive patenting (Bertoni, Croce, & D’Adda,

2010; Sandner, Dufter, & Geibel, 2016; Zhang & Zhang, 2020), and due to a particular

importance of patents in pursuing VC-backed firms’ success (Cao, Jiang, & Ritter, 2013;

Gaulé, 2018). Previous studies have also shown that small start-up firms are more likely

to apply for and to benefit from an accelerated examination procedure (Dechezleprêtre,

2013; Kuhn & Teodorescu, 2021).

From the methodological perspective, we may benefit from specifically focusing on

the patent applications of VC-backed start-up firms by reducing the measurement error

in the outcome variable – the probability of commercial reassignment of a granted patent

or a pending application. Due to the difficulty of separating cases of patent sales from

other types of transactions between firms in the reassignment data, we choose to focus

on transfers of property rights from start-up firms to larger corporate entities, because

such transactions are more likely to have a commercialization purpose.
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Figure 2.2: Track One Participation Rates
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2.2.2 Empirical hypothesis

In our empirical analysis, we study the implications of faster examination for the commer-

cialization of innovations made by VC-backed start-up firms via the market for technology.

We ask how the probability of commercial reassignment of a granted or pending patent

from a VC-backed start-up to a large corporation is affected by the length of pendency

time at the patent office.

There are several potential ways prioritized status of a patent application can affect its

saleability on the market for technology. First, in sectors characterized by a short product

life cycle and incremental innovations, new technologies developed by innovative start-ups

may quickly become obsolete and lose the interest of potential buyers – practicing firms

willing to acquire patents for production or strategic use. Thus, other things being equal,

faster examination would naturally increase the probability of commercial reassignment

of a given patent. Second, when the marketplace for technology is limited in time8,

the possibility to expedite examination of a pending application may become a deciding

factor in a competition among sellers. Last but not least, the innovator may convey an

informative signal about the intrinsic value of a pending or granted patent to its potential

buyers by filing a prioritized application (Harhoff & Stoll, 2015).

Thus, we believe that introduction of the prioritized examination track at the USPTO

may have affected the market for technology by reducing frictions between buyers –

start-up innovators – and sellers – large corporations – and by increasing the saleability

of patents undergoing prioritized examination. We exploit a variation in the length of

patent examination generated by the introduction of the USPTO Track One Prioritized

Examination to test our hypothesis of the existence of a difference in the saleability of

granted and pending patents that undergo regular versus prioritized examination.

2.3 Data

We consider patent applications filed at the USPTO within one year before and after the

effective inception date of the Track One program, that is between September 26, 2010,

and September 26, 2012. These include 803,621 applications. We merge several data

sources to find the necessary details about the application characteristics, their prose-

cution, and their reassignment history. First, we use the USPTO Patent Examination

Research Dataset (PatEx), including technology class, number of inventors, small entity
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status of the applicant and a detailed transactions history between the applicant and the

patent office, including the filing date, notice of allowance date, and the date of grant-

ing the prioritized status. Second, we use the USPTO Patent Assignment Dataset to

track the reassignment history of each patent application in a sample, and identify its

initial owner and the first assignee involved in a commercial transaction with the initial

owner. Third, we retrieve the names of VC-backed firms and the dates of their funding

rounds from the VentureXpert database, and match them with the names of the initial

owners of the patent applications. Finally, we obtain the subset of 15,458 applications

filed within one year before and after the program inception date and initially owned by

the VC-backed start-ups; that is, VC-backed firms that had their first round of funding

no later than five years before September 26, 2010 – the beginning of the time window.

Additionally, we use the OECD Triadic Patent Families database and the PATSTAT data

to obtain the application characteristics that are not available in the PatEx database,

including patent family size and the triadic status of the patent.

To construct the outcome variable – saleability of patent applications – measured by

the probability of commercial reassignment, we use the Patent Assignment Dataset10 re-

leased by the Office of the Chief Economist of the USPTO. This dataset contains patent

assignments – transactions in patents executed by an interested party prior to or after

a patent is granted and recorded by the USPTO (Marco et al., 2015). Though, in gen-

eral, the disclosure of patent assignments to the USPTO is not mandatory, to be legally

binding, it is necessary for patent sale transactions to be filed with the USPTO and

publicly recorded. The latter condition implies a no or negligibly small selection issue

in subsequent empirical analysis (Dykeman & Kopko, 2004; Serrano, 2011). Most of

the recorded transactions, however, are not associated with a genuine transfer of prop-

erty rights across firm boundaries and, thus, with the sale of a patent (Serrano, 2008,

2010; Galasso et al., 2013; Gaessler, 2016). There are several types of records, including

individual inventor assignments, security agreement assignments, name change records,

patent assignments associated with mergers and acquisitions, and transactions between

subsidiaries and patent companies, that are usually disregarded in analyses of commercial

reassignments. We closely follow the refinement procedure employed in Serrano (2010)11

to filter out non-relevant transactions and to select reassignment records that most likely

correspond to the sales transactions between the VC-backed start-up firms and the large

10http://www.uspto.gov/economics
11Described in detail in Serrano (2008) – the working paper version of the referenced study.
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corporations. We construct a dichotomous variable which is equal to one if a given patent

application is reassigned from its initial owner – a VC-backed start-up firm – to another

corporate entity. A more detailed description of the data construction and refinement

procedures is presented in Appendices C, D, and E.

When identifying whether a given patent application has been reassigned or not, we

take into account the fact that the time coverage of the Patent Assignment Dataset is

limited by its most recent update, and applications with earlier filing dates in a sample are

observed in the Assignment Dataset for a longer time than applications with more recent

filing dates. We thus consider a fixed five-year forward-looking time window starting

from the application filing date, during which we track the reassignment history of all

applications in a sample.
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Figure 2.3: Distribution of Difference Between Reassignment and
Patent Allowance Dates

We also take into account the fact that the probability of commercial reassignment

is not evenly distributed along a patent’s life, and peaks right after its allowance date
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(Figure 2.3; Gans, Hsu & Stern, 2008; Gaessler, 2016). Therefore, given a limited five-

year forward-looking time window, patents that undergo prioritized examination and

which are, on average, allowed within twelve months from the filing date, would have

a longer exposure time to a higher probability of reassignment than the non-prioritized

patents that are allowed within twenty-four months on average. To verify whether a

five-year time window causes underestimation of the reassignment rates of regular versus

prioritized patents, we calculate reassignment rates of patents filed in 2006 and granted

within twelve months of the filing date, considering a restricted five-year time window and

a counterfactual time window of a maximum of ten years. The former reassignment rate

is 36% lower than the latter due to the truncated distribution of timing of reassignments.

It turns out, however, that this discrepancy is not much different for patents filed in the

same year and granted within twelve months of the filing date. For the latter patents,

reassignment rates within the five-year time window is 38% lower than the time window

of a maximum of ten years. We thus conclude that the restricted time window does

not cause any implicit differences in the reassignment rates of regular and prioritized

applications.

2.4 Empirical results

2.4.1 Treated vs untreated applications

Only applications filed on or after September 26, 2011 – the effective date of the policy

change – were eligible for a prioritized examination request. However, since the requests

were initiated by the applicants, not all applications filed after the policy change were

actually treated. In fact, fewer than 5% of all eligible applications12 had prioritized status

(Table 2.1). Thus, it is not possible to directly utilize a discontinuity in the length of

examination time of all applications filed around the policy change to estimate the effect

of shortened examination time on commercialization.

Another way of assessing the degree of association between shortened examination

time and the saleability of patent applications – a simple comparison of means (Tables

2.1 and 2.6) – shows that eligible applications (filed after the program inception date)

12We assume that only the filing date of an application is a relevant eligibility criterium. Even though
other eligibility criteria were set by the USPTO, such as the maximum total number of claims and the
maximum number of independent claims, those additional criteria were satisfied by more than 80% of
all applications in our sample.
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Means (SD)

Whole sample
Period Track One status

before Sep 26 after Sep 26 untreated treated
(1) (2) (3) (4) (5)

Outcome variables
Reassignment rate 0.031 (0.175) 0.032 (0.175) 0.031 (0.174) 0.031 (0.172) 0.048 (0.215)
Track One rate – – 0.047 (0.213) – –

Applicant characteristics
Small entity status 0.44 (0.50) 0.44 (0.50) 0.44 (0.50) 0.43 (0.50) 0.53 (0.50)
Age of the firm 1.78 (2.31) 1.81 (2.26) 1.75 (2.34) 1.78 (2.34) 1.22 (2.39)

Application characteristics
Top-tier law firm 0.21 (0.41) 0.21 (0.41) 0.21 (0.41) 0.21 (0.41) 0.31 (0.46)
Triadic status 0.12 (0.32) 0.13 (0.33) 0.12 (0.32) 0.12 (0.32) 0.09 (0.29)
Patent family size 4.81 (8.39) 5.06 (8.37) 4.59 (8.40) 4.45 (8.22) 7.39 (11.05)
Number of inventors 2.92 (1.86) 2.92 (1.93) 2.93 (1.79) 2.92 (1.77) 3.22 (2.06)
Allowance lag (months) 26.4 (12.05) 28.53 (12.9) 24.59 (10.96) 25.13 (10.66) 14.57 (11.53)
Allowance rate 0.68 (0.47) 0.68 (0.47) 0.69 (0.46) 0.68 (0.47) 0.75 (0.43)

Notes: This table reports the summary statistics (means and standard deviations – in parentheses) of
the outcome variable in the difference-in-differences model and predictor variables used for predicting
the treatment status, separately for untreated applications filed before the Track One program start
date, and treated and untreated applications filed after the program start date.

Table 2.1: Summary statistics

which underwent the prioritized examination had a 1.56 p.p. higher reassignment rate,

thus, were on average 50% more frequently commercialized by VC-backed start-ups than

applications that underwent the regular examination. It is, however, also evident from

the summary statistics (Table 2.1) that the two groups of applications – prioritized and

non-prioritized – differ in terms of their observable characteristics. If a clustering of

some of these characteristics in either group affected both the probability of commercial

reassignment and treatment status, they cannot be directly compared in terms of their

average saleability.

In fact, as the results show (Table 2.3), there are patent application and firm charac-

teristics that are correlated both with the outcome variable (column 1) and the treatment

status (column 2) of patent applications in our sample. In particular, applications pre-

pared and prosecuted by top-tier patent attorneys are more likely to be examined under

the prioritized Track One procedure and are also more likely to be commercialized within

five years of the filing date. It is also evident that the number of applications in the

patent family and the number of inventors listed in the application increase both the
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Reassignment (mean = 0.031)

Intercept 0.0309∗∗∗

(0.0020)

TrackOne 0.0181∗∗

(0.0091)

Observations 8,151
F-statistic 3.916

Notes: Simple comparison of means of the outcome variable computed
for the treated and untreated patent applications filed after the Track
One program start date suggests a higher reassignment probability of
prioritized applications as compared to the applications that underwent
the regular examination process.
Standard errors are in parentheses; ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

Table 2.2: Difference in means: treated vs. untreated

probability of prioritized examination and of reassignment.

Finally, we show that characteristics of patent applications predict both, probability of

reassignment and prioritized examination by plotting fitted values of the linear probability

models presented in columns 1 and 2 of Table 2.3. It is clear from Figure 2.4 that there is

a significant positive correlation between probability of reassignment and propensity for

prioritization, both predicted using the same set of application and firm characteristics.

Thus, due to these characteristics the effect of prioritized examination on the probability

of commercial reassignment is confounded and the estimate in a simple comparison of

means presented earlier in Table 2.6 is biased.

To address the issue of bias caused by non-random assignment of applications into the

treated (prioritized) and untreated (non-prioritized) group, we compare applications with

high predicted propensity for treatment filed before and after the policy change. This

allows us to match applications with similar observable characteristics that predict both

the probability of commercial reassignment and the propensity for treatment (Table 2.3).

Thus, if we observe a difference in the probability of commercial reassignment between

applications with high predicted propensity for prioritization filed before the introduction

of Track One Program and similar applications filed after the policy change, this difference

cannot be attributed to observable application and firm characteristics. We also seek to

eliminate the effect of other factors that may have affected all applications, including those
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Notes: This figure plots the fitted values of regressions
presented in Table 2.3 – predicted probability of commercial
reassignment and predicted propensity for prioritization of
applications filed after the policy change.

Figure 2.4: Predicted Probability of Reassignment
vs Predicted Propensity for Prioritization

that were less likely to be prioritized, by estimating a standard difference-in-differences

model.

2.4.2 Difference-in-differences framework

In this setup, we do not distinguish patent applications based on their actual treatment

status. Instead, we define several levels of treatment intensity inferred from the observable

application and firm characteristics. Using the difference-in-differences framework, we

compare the difference in the probability of commercial reassignment before and after

the policy change for applications with high and low propensity for prioritization.

Under the null hypothesis of no effect of prioritized examination, the difference in

reassignment probability between high and low propensity groups would be the same

around the date of the policy change. Alternatively, if the difference in probability of

reassignment between high and low groups increased after the implementation of Track

One Prioritized Examination, this may suggest the presence of an effect of a prioritized

examination on the probability of commercial reassignment.
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Propensity for prioritization

To predict the propensity for prioritization of applications filed before and after the policy

change, we start with the linear probability model of the form:

TrackOne = Zβ + ε (1)

where TrackOne is a binary outcome variable that takes a value of one if an application

was examined on the prioritized track, and Z denotes the matrix of observable applicant

and application characteristics listed in Table 2.1. Based on the subset of 8,285 patent

applications filed after the policy change, we estimate equation (1). Coefficient estimates,

their standard errors, and significance levels are reported in column 2 of Table 2.3.

Most characteristics are significant predictors of prioritization status. Notably, if the

application is prosecuted by a top-tier patent attorney, its probability of prioritization

increases by 2.17 p.p. Applications authored by larger teams of inventors are more likely

to be prioritized. Small entity status increases the probability of prioritization by 1.28

p.p. We also find that prioritization of applications is requested more frequently by

smaller and younger firms, though the magnitude of the relationship is not statistically

different from zero.

A larger patent family size, i.e., the total number of national or international patents

that cover the same invention, is associated with a higher probability of prioritization. It is

notable that applications that are part of a triadic patent family, i.e., a patent family that

contains patent documents filed in the three largest patent offices (USPTO, EPO, and

JPO), undergo prioritized examination less frequently. Even though both characteristics

are typically correlated with market scope and the economic value of inventions (Harhoff

et al., 2003), we suggest that the opposite signs of the two predictors can be explained

by the following reasoning.

In our dataset, a larger patent family size does not necessarily imply broader market

scope, as it is not generally equal to the number of countries where a given invention

is protected. Instead, the size of patent family in our data may include the number of

documents filed within the same national jurisdiction. Such documents can be divisional

or continuation applications claiming the same priority date, which do not broaden the

market scope of a covered invention, but are intended to strengthen its protection within

a single country. Therefore, an applicant will prefer to obtain a faster decision from the

patent office on a pending application, if a large number of other filings within the patent

45



Linear probability model

Reassignment
(mean = 0.031)

Track One status
(mean = 0.047)

Applicant characteristics
Small entity status −0.0079∗∗ 0.0128∗∗

(0.0038) (0.0062)

Age of the firm −0.004∗∗∗ −0.0011

(0.0010) (0.0016)

Small × Age of the firm 0.0044∗∗∗ −0.0024

(0.0013) (0.0021)

Application characteristics
Top-tier law firm 0.0151∗∗∗ 0.0217∗∗∗

(0.0035) (0.0058)

Triadic status −0.0072 −0.0254∗∗∗

(0.0046) (0.0077)

Patent family size 0.0003∗ 0.0019∗∗∗

(0.0002) (0.0003)

Number of inventors 0.0026∗∗∗ 0.0034∗∗

(0.0008) (0.0013)

Technological sector dummies Yes Yes

Observations 15,458 8,285
R2 0.008 0.042

Notes: This table reports the estimated coefficients (LPM) of the variables predicting
commercial reassignment and treatment – prioritized status of patent applications.
Standard errors are in parentheses; ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

Table 2.3: Reassignment probability and propensity for prioritization

family claim the same priority date. An applicant seeking protection of an invention across

the largest patent offices (triadic patent family) may not necessarily prefer to obtain a

faster decision from just one patent office - USPTO, under the Track One Program -

while having applications in other patent offices still pending. Therefore, a patent family

size may positively affect the probability of prioritization, while triadic status may have

the opposite effect, as in our results.

To find similar applications in terms of their propensity for prioritization filed before

and after the policy change date, we estimate model (1) with a large set of controls and
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their interaction terms refined using the Lasso method13. We use a random subset from

our sample of applications filed after the policy change to train the model. Then, we use

the remaining applications to validate the model14.
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Notes: This figure plots the predicted propensity for prioritization
over time. Each dot corresponds to the average propensity score of
applications filed within a one-week interval.

Figure 2.5: Predicted Propensity for Prioritization

We use the Lasso model to make an out-of-sample prediction of the prioritization

status of all 15,458 applications filed within one year around September 26, 2011, and

initially owned by the VC-backed start-ups. Outliers in the top and bottom 1% of the

overall distribution of predicted values were excluded, resulting in 15,150 observations

used in the subsequent analysis (Figure 2.5).

Based on the predicted values of propensity for prioritization, we assign applications

into two groups with different levels of treatment intensity. Applications with predicted

propensity for prioritization above the optimal cut-off point are assigned to the high-level

group, while the remaining applications are assigned to the low-level group15.

13We chose the Lasso (least absolute shrinkage and selection operator) method to select the most
significant controls and improve the prediction power of the model.

14More details about the estimation process can be found in Appendix 2.A.4.
15More details about the optimal cut point and the confusion matrix summarizing the results of the

classification can be found in Appendix 2.A.4.
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Assumptions

Our empirical strategy of performing a difference-in-differences comparison of applications

with similarly high or low predicted propensity for commercialization relies on several

assumptions. We state them and discuss their validity in this section.

First, we assume that applications filed before the policy change with relatively higher

predicted propensity for prioritization would have been exposed to the policy change to

a larger extent if it had been implemented earlier. The validity of this assumption relies

on the choice of predictors used to predict the propensity for prioritization. We test

for this assumption by running a simple OLS of actual treatment status (prioritized

vs. non-prioritized) of 8,135 applications filed after the policy change on their predicted

propensity for prioritization (Table 2.8). In fact, 10.8% – the highest participation rate

– corresponds to applications with high predicted propensity; significantly larger than in

the case of applications with low predicted propensity.

Track One (mean = 0.047)

Intercept 0.0230∗∗∗

(0.0027)

High 0.0846∗∗∗

(0.0051)

Observations 8,135
F-statistic 272.9

Notes: We regress the treatment variable – prioritization dummy – on a dummy for the
high treatment intensity level. The results reported in this table show that actual
prioritization rate is significantly higher in the group of applications with high (above
the optimal cut point) as opposed to low predicted propensity for prioritization.
Standard errors are in parentheses; ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

Table 2.4: Participation rates across treatment intensity groups

Second, we implicitly assume that observed characteristics used to predict the propen-

sity for prioritization to some extent confound the effect of a prioritized examination on

reassignment probability. Thus, we expect significant discrepancies between the reassign-

ment rates at different levels of the treatment intensity, if our assumption is valid. We test

for the presence of the latter discrepancies by running a simple OLS of the reassignment

probability on a High group dummy along with an intercept corresponding to the base
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Reassignment (mean = 0.031)

Intercept 0.0285∗∗∗

(0.0017)

High 0.0112∗∗∗

(0.0032)

Observations 15,150
F-statistic 12.46

Notes: We regress the outcome variable – reassignment probability – on a set of
dummies for the treatment intensity levels. The results reported in this table show that,
in the absence of treatment, higher predicted propensity for prioritization is associated
with higher reassignment probability. Thus, the effect of prioritization on the outcome
variable may be confounded by other characteristics of patent applications that are
associated both with the treatment and the outcome variables.
Standard errors are in parentheses; ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

Table 2.5: Reassignment rates across treatment intensity groups

group, using all 15,150 observations in the sample (Table 2.5). The average reassignment

rate in the high-level group is in fact significantly higher than in the base group.

Third, we assume that confounding patent characteristics strongly correlated with

the probability of prioritization are equally distributed among applications around the

program start date, making applications that were filed before the inception date compa-

rable counterfactuals of those that were filed after. To explore evidence of manipulation

– strategical postponement – of the filing date by the applicants in anticipation of the

announced Track One program, we test for discontinuity in a distribution of filing dates

of applications with a high propensity for prioritization at the program start date. The

“manipulation test” (McCrary, 2008) clearly rejects the null hypothesis of no discontinu-

ity at a 99% significance level (Figure 2.6). To avoid the potential impact of this filing

pattern on our results, we exclude from our sample applications filed closely around the

program start date. The result of the test confirms the absence of any statistically signif-

icant evidence of manipulation after excluding applications filed within one week around

the program start date (Figure 2.7), which results in a sample of 14,625 applications used

in the difference-in-differences analysis.

Last but not least, we assume that changes in the reassignment probability in high

and low groups over time before the policy change followed parallel paths and were on

the same increasing, decreasing or constant trajectories at the time of the policy change.
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Notes: This figure plots the distribution of filings with high propensity for
prioritization around the Track One program start date. “Manipulation test”
rejects the null of no discontinuity at the program start date.

Figure 2.6: Distribution of filings in a high
treatment intensity group
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Notes: Excluding applications filed within one week around the Track One
program start date mitigates the issue of manipulation of the filing date in
anticipation of a new policy. A repeated “manipulation test” does not reject
the null of no discontinuity at the program start date.

Figure 2.7: Excluding one week around the program start date
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Results

We start with a comparison of the means of an outcome variable – reassignment proba-

bility – across four cells constructed on the interaction of two treatment intensity groups

– high and low – and two time intervals relative to the policy change date – before and

after. The results (Figure 2.8) suggest that the high treatment intensity group exhibiting

about the average level of reassignment probability (within one year) before the policy

change, experienced a significant increase in the outcome (within one year) after the

policy change, whereas the low treatment intensity group seems unaffected by the intro-

duction of Track One Prioritized Examination. We formally test for the latter finding by

estimating a difference-in-differences model:

Reassign = β0 + β1After + β2High+

+ β3After ×High+ ε (2)

where Reassign is a binary outcome variable that takes a value of one if an application

was reassigned from its first assignee (VC-backed startup) to a corporate entity within

five years of its filing date, the After dummy takes a value of one if the filing date is on

or after September 26, 2011, and the High dummy corresponds to the high treatment

intensity group defined above. The coefficient of the interaction term, β3, is a difference-

in-differences estimator and constitutes the focus of interest in our analysis.
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Notes: This figure plots the average probability of reassignment in each
treatment intensity group. The results suggest that a higher predicted
propensity for prioritization is associated with a larger positive difference in
the reassignment probability before and after the policy implementation.

Figure 2.8: Comparison before and after
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The results (Table 2.6) suggest that the introduction of the Track One Prioritized

Examination by the USPTO on September 26, 2011, did not change the saleability of

patent applications with low propensity for prioritization. At the same time, compared to

the change in the probability of commercial reassignment of patent applications with low

propensity for prioritization before and after the policy change, patent applications that

were more likely to be prioritized were also, by 1.57 p.p. (50% of the mean reassignment

rate), more frequently reassigned once the Track One Program was introduced.

Reassignment (mean = 0.031)

After −0.003

(0.0034)

High 0.0020

(0.0048)

After ×High 0.0157∗∗

(0.0065)

Observations 14,625
F-statistic 5.567

Notes: The baseline results of our standard difference-in-differences model are reported in
this table. We compare applications with high propensity for prioritization with the base
group – low-propensity applications – before and after the Track One program start date. A
significantly higher reassignment rate after the policy change is observed only among
applications with high propensity for prioritization.
Standard errors are in parentheses; ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

Table 2.6: Difference-in-differences (baseline results)

To visualize the assumption of parallel paths implicitly made in the model (1), we allow

for differential changes over time in pre- and post-treatment periods for both treatment

intensity groups. Thus, we consider a linear model with time fixed effects and interactions

between the High group dummy with time period dummies:

Reassign =
∑︂
t

βH,tTt ×High+
∑︂
t

βtTt + ε (3)

where the High dummy corresponds to the high-level treatment intensity group and Tt

are time period dummies corresponding to four 90-day lags preceding the policy change

indexed as −4,−3,−2,−1 and four 90-day leads following the policy change indexed as

1, 2, 3, 4.
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Estimates of the coefficients and their significance levels are reported in Table 2.7. In

Figure 2.9, we plot the values of the coefficients βH,t which correspond to the departures

of the outcomes of high-propensity group from the base – low-propensity group in each

period. Coefficients βH,t in the pre-treatment periods were not significantly different from

zero, which confirms the validity of our assumption about the parallel trends posed in

the previous section. At the same time, coefficients βH,t in the post-treatment periods

show that the probability of commercial reassignment of the high-propensity group with

the largest share of applications which were actually prioritized visibly increased and

remained significantly higher than the probability of commercial reassignment of the

low-propensity group, which was unlikely to be exposed to the effect of the Track One

Prioritized Examination.

Reassignment (mean = 0.031)

High−4 0.0008 High1 0.0167∗

(0.0099) (0.0092)

High−3 0.0018 High2 0.0163∗

(0.0099) (0.0091)

High−2 0.0033 High3 0.0224∗∗∗

(0.0091) (0.0083)

High−1 0.0022 High4 0.0151∗

(0.0094) (0.0085)

Observations 14,625
F-statistic 31.25

Notes: This table reports the estimation results of the extended version
of the baseline difference-in-differences model that allows for a flexible
specification of the time trends.
Standard errors are in parentheses; ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

Table 2.7: Difference-in-differences (flexible model)

Finally, our extended difference-in-differences model suggests that applications which

underwent prioritized examination may have about 1.56 p.p. (the difference between the

averages of the βH,t coefficients in the pre- and post-treatment periods) higher reassign-

ment rates, that is 50% of the average reassignment rate of applications filed by the

VC-backed start-up firms.

53



● ● ● ●

● ●

●

●

−0.02

0.00

0.02

0.04

−4 −3 −2 −1 0 1 2 3 4
Time to the policy change (quarters)

E
st

im
at

e 
β H

,t

Notes: This figure depicts the statistical significance of the upward
trend in the high-propensity group after the Track One program start
date. Error bars correspond to the 95% CI.

Figure 2.9: Difference-in-differences (flexible model)

2.4.3 Discussion of results

Our empirical results suggest that saleability of pending and granted patents is strongly

associated with the length of pendency time at the patent office. Thus, a growing patent

backlog and consequently longer time periods before the First Office Action, which al-

ready accounts for half of the total pendency time at the USPTO, may not only delay

commercialization of innovations, but it may also create frictions on the market for tech-

nology and deteriorate potential economic gains from innovation.

This leads to an important implication of the Track One Program introduced by

the USPTO. Specifically, the introduction of the fast examination track could affect the

market for technology by facilitating commercial agreements between start-up innovators

who opted for prioritization of their patent applications and large corporations.

There are several possible mechanisms that can drive the relationship between the

prioritized status of patent application and its attractiveness to investors. First, investors

may perceive an intention of inventors to move their patent applications forward in line

of pending applications as a signal of greater economic value. Second, investors may

particularly value the longer patent enforcement period implied by an earlier patent grant.

Third, an earlier litigation procedure against patent infringements can be anticipated by
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large corporations buying prioritized patents. Fourth, potential buyers can pursue a

competitive advantage through earlier entry to the product market with a technology

patented in a shorter time.

Last but not least, companies may anticipate rapid obsolescence of certain technolo-

gies and, thus, will be interested in transferring property rights for these technologies in

a shorter time frame. In such cases, the prioritized status may be related to a higher

probability of commercialization along two distinct channels. On the one hand, a shorter

examination period may lead to an earlier grant of a patent and full enforcement of prop-

erty rights, which directly strengthens the appropriability of the invention (Rassenfosse,

Palangkaraya, & Webster, 2016). The latter would, of course, make a technology more

valuable for potential investors. On the other hand, an earlier grant of patent may in-

directly improve the visibility of a technology to potential buyers, as compared to other

patent applications that undergo a regular examination procedure, thanks to earlier pub-

lic disclosure of a new technology, which would otherwise happen 18 months after the

application filing date. As Hegde and Luo (2018) show, earlier disclosure of technology

to a public domain in fact tends to shorten a commercialization lag for patent applica-

tions and thus increases the probability of commercialization for technologies in rapidly

changing industries.

The external validity of results presented in this paper should be considered cautiously.

First, it is limited to a particular type of patent applicants – VC-backed start-up firms.

It is difficult to conjecture if the same relationship between prioritized examination and

commercialization of patents can be observed for all patent applicants that are eligible for

the Track One Program. Second, the magnitude of the statistical relationship reported

in the results is bounded by the low participation rate of VC-backed start-up firms in the

Track One Program within the observable time window (one year after the inception).

The actual benefit of participation in the form of higher saleability of patents can become

larger if the participation rate increases. Third, the magnitude of change in the proba-

bility of commercial reassignment around the date of policy inception is shown for the

group of applications with the highest propensity for prioritization. Because the latter

group is contaminated with applications that did not actually undergo the prioritized

examination, the actual magnitude of change could be underestimated.

Finally, we conjecture that weak demand for prioritization, potentially caused by

a vague awareness of inventors about the Track One Program, implies that the large

potential benefits of the program to the market for technology remain unrealized.
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2.5 Conclusion

Previous research has shown that timely granting of patents plays a crucial role in the

commercialization of innovations via the market for technology (Gans, Hsu & Stern,

2008). Even though in some cases innovators may choose to strategically postpone the

outcome of a patent office examination, it is widely claimed that longer application pen-

dency has a detrimental impact on the social value of innovations. Therefore, patent

offices around the world have been implementing various policy programs targeted at

accelerating the examination process of innovations with the highest social value.

Starting September 26, 2011, the USPTO offered its applicants the option to choose a

faster examination track – Track One. As evidenced from the data, this option allows ap-

plicants to obtain a final disposition in half the usual time. Several empirical observations

made in this study concern the participation activity of applicants in the Track One pro-

gram. First, we find that the group of applicants – small start-ups – which were primarily

targeted by the USPTO indeed participated much more actively than others. Second,

we find that dissemination of information about the benefits of the Track One program

by patent attorneys may have had a persuasive impact on innovators’ decisions to apply

for the prioritized examination. Third, despite the overall low demand for the prioritized

examination documented by the USPTO, we find evidence of bunching of strategically

postponed filings right after the program start date, suggesting possible anticipation of

some benefits made available by participation in the program.

Using the difference-in-differences approach, we compare the average saleability of

granted and pending patents, which we assign into two groups according to their predicted

propensity for prioritization before and after the program start date. We find that shorted

examination time or a decision to apply for prioritized status have a positive impact on the

probability of commercialization of a patent via the market for technology. We suggest

that this empirical finding may have important policy implications for patent offices

willing to minimize the social costs of pending innovations and to reduce the frictions on

the market for technology. Our findings may also be relevant in the context of innovation

management within start-up firms seeking formal protection for their intellectual property

rights and commercialization of ideas via the market for technology.
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2.A Appendix

2.A.1 Data Refinement: Applications of VC-backed start-ups

To construct a sample of patent applications initially owned by VC-backed start-ups we

implement the following refinement procedure:

1. Create a subset of applications filed within one year around the program

start date: We started with a set of 803,621 applications filed between September

26, 2010 and September 26, 2012 retrieved from the USPTO Patent Examination

Research Dataset (PatEx). 578,963 of them had at least one assignment record in

the USPTO Patent Assignment Dataset.

2. Identify the first assignee of a patent application: for 572,986 applications

that were assigned by inventor(s) at least once it was possible to identify a unique

assignee (employer) in 541,088 cases; in the other 6,732 cases it was possible to

identify a unique non-academic employer (some inventors may assign their patent

applications to multiple employers – academic and business entities). Out of the

5,977 applications that were never assigned by the inventor(s), in 2,961 cases there

was just one assignment of the assignor’s interest, and assignors of such applications

were treated as the first assignees. In total, for 28,182 applications (fewer than 5%)

with at least one assignment record, it was not possible to identify a unique first

assignee.

3. Match the names of assignees with the names of VC-backed firms: be-

fore identifying VC-backed firms among the first assignees of patent applications,

we unified both names of assignees and known VC-backed firms by simplifying and

deduplicating them. Specifically, both groups of names were cleaned of special char-

acters and numbers, names containing such strings as “also known as” and “formerly

known as” were split into separate names of the same company. All resulting names

were deduplicated using the Rosette API16 and assigned unique identifiers that al-

lows to match the names of first assignees with the list of names of VC-backed firms

and the dates of their funding rounds retrieved from the VentureXpert database.

4. Create a subset of patent applications owned by the VC-backed start-

ups: out of 550,781 applications for which first assignees could be identified, 45,190
16https://developer.rosette.com/features-and-functions
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applications had first assignees with names that matched those of VC-backed firms.

15,458 were owned by the VC-backed firms that had their first round of funding no

later than five years before September 26, 2010 and, thus, were considered in our

analysis as applications owned by the VC-backed start-ups.

2.A.2 Data Refinement: Commercial reassignments

To construct an outcome variable – probability of commercial reassignment – we imple-

ment the following refinement procedure:

1. Assignments from VC-backed start-ups: Out of 57,349 assignment records

associated with a set of patent applications defined above, 2,789 transactions orig-

inated from VC-backed first assignees.

2. Assignments of assignor’s interest: 1,136 of 2,789 records were of the “assign-

ment of assignor’s interest" type identified based on the conveyance text, and those

records were considered to be commercial reassignment candidates. 291, however,

were excluded as their execution dates were prior to the filing dates of reassigned

applications. Another 81 records were excluded because their assignors’ and as-

signees’ names were identified as the same names. A further 26 records where

applications were assigned to entities that later reassigned the same applications

back to the first VC-backed assignees were also excluded and, finally, 18 records

that duplicated earlier records with the same assignor-assignee-application combi-

nation were excluded from the sample. 720 assignment records associated with 712

patent applications remained.

3. Probability of commercial reassignment: in our analysis, we treat a patent

application as commercially reassigned if the execution date of commercial reassign-

ment is within the five years after the filing date. The length of the time window

is dictated by availability of the data on assignments (Figure 9) recorded up to

2016 in the original Patent Assignment Dataset, and additional data on assign-

ments recorded in 2017 that were retrieved via the API interface of the web-based

Patent Assignment Database17. The length of the forward-looking time window is,

thus, set to five years based on the maximum possible value for the most recent

applications in our sample. Out of 712 commercially reassigned applications in our
17https://assignment.uspto.gov/,https://assignment-api.uspto.gov/documentation-patent/
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sample, 606 were reassigned within five years of the filing date, thus implying a

3.1% average commercialization rate.

2.A.3 Data Construction: Applicant and application character-

istics

1. Track One status: indicator variable constructed from the Transaction History

Data, part of the PatEx dataset, that takes a value of one if there is a specific type

of transaction coded as “Mail Track 1 Request Granted” in the transaction history

of the patent application, available only on and after September 26, 2011, when the

USPTO began to accept requests for prioritized examination.

2. Small entity status: indicator variable retrieved from the PatEx dataset that

takes a value of one if the applicant is either an individual inventor, a collaboration

of individual inventors, a nonprofit organization, or a company with fewer than 500

employees18.

3. Age of the firm: a numerical variable indicating the difference in years between

September 26, 2010 (start of the sample time frame) and the date of first funding

round of the VC-backed firm – first assignee of the patent application – constructed

from the VentureXpert data. Firms aged less than or equal to two years are con-

sidered ‘young’.

4. Top-tier patent attorney: indicator variable constructed from the information

on the attorneys and patent agents who have been granted power of attorney with

regard to the corresponding subject applications, that takes a value of one if the

name of a patent agent appears in the list of 123 “Best Law Firms for Patent Law"

compiled by the U.S. News & World Report19.

5. Triadic status: indicator variable retrieved from the OECD Triadic Patent Fam-

ilies database, February 2015, that takes a value of one if the patent application

is a part of a patent family formed by patents filed at the European Patent Office

(EPO), the Japan Patent Office (JPO) or the United States Patent and Trademark

Office (USPTO).

18https://www.uspto.gov/web/offices/pac/mpep/s2550.html
19https://www.usnews.com/rankings
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6. Patent family size: numerical variable retrieved from the PATSTAT database

indicating the number of patents that cover exactly the same technical content as

a focal patent application.

7. Number of inventors: numerical variable constructed from the PatEx dataset

indicating the number of individual inventors listed in a patent application.

8. Technological sector: categorical variable indicating 36 two-digit technological

sectors aggregated from 457 classes of the U.S. Patent Classification (USPC) System

based on the mapping constructed by Hall, Jaffe & Trajtenberg (2001).

2.A.4 Lasso estimation: Predicted propensity for prioritization

To construct the dummy variable used in the difference-in-differences analysis, which

distinguishes patent applications with high and low predicted propensity for treatment

(prioritization), we implement the following procedure:

1. We construct an extended set of controls including applicant and application char-

acteristics described in Appendix 2.A.3 plus: 1) a set of dummies for all possible

combinations of values of the young firm and small entity indicators; 2) a set of

dummies for all possible combinations of values of the top-tier patent attorney

indicator and each of two indicators – for a young firm and a small entity.

2. We take a random subsample constituting 80% of applications filed after the policy

change, for which the actual treatment status – prioritized or non-prioritized – is

observed. We use the latter applications to train the Lasso model and the remaining

20% of applications are stored for cross-validation purposes.

3. Using the random subsample of applications and the extended set of controls, and

technology sector dummies, we run the Lasso algorithm to select the most significant

predictors of the prioritized status of patent applications.

4. We make an out-of-sample prediction of the propensities for treatment (prioriti-

zation) for the remaining set of applications and use the distribution of predicted

values to choose the cut point (threshold value), such that applications can be

divided into high and low treatment intensity groups.
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5. For each possible value of the cut point (threshold value), we contrast the actual

treatment status (prioritized or non-prioritized) with the predicted treatment in-

tensity (high or low) and calculate the corresponding values of true positive and

false positive rates. We find the optimal cut point, such that the true positive rate

is maximized and the false positive rate is minimized.

6. We use the optimal cut point obtained in the previous step to split all 15,150

applications in our sample filed before and after the policy implementation into two

groups – with high and low predicted propensity for prioritization, and construct

the corresponding dummy variable used in the difference-in-differences analysis.

7. The confusion matrix below reports the summary of prediction results and accuracy

of the classification model by tabulating the number of observations across two

predicted groups (High and Low) and two actual groups (TrackOne = 1 and

TrackOne = 0).

TrackOne = 0 TrackOne = 1

Low 10468 133

High 3812 212

Table 2.8: Confusion matrix for the classification model
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Chapter 3

Why has Science become an
Old Man’s Game? (co-authored with Christian
Fons-Rosen and Patrick Gaulé*)

3.1 Introduction

Scientific knowledge is increasingly produced by older people. John Goodenough was 97

when he received the 2019 Nobel Prize for chemistry. He has since published ten papers

in highly respected peer-reviewed journals. Beyond this (arguably extreme) example,

the average age of National Institutes of Health grant recipients has increased from 39

to 51 between 1981 and 2008 (Daniels, 2015). Among U.S. chemistry faculty members,

the mean age has increased from 37 in 1960 to 53 in 2015. Moreover, the age at which

Nobel-prize-winning discoveries are made has risen steadily over the course of the 20th

century (Jones, 2009; Jones & Weinberg, 2011).

The ageing of the scientific workforce may not necessarily impact the rate and direction

of scientific progress. Scientific discoveries can be made by scientists in middle age –

Wilhelm Röntgen discovered X-rays at the age of 50 – or indeed later. To the extent that

age has an impact on cognitive function, this effect could be small and counterbalanced

by experience. Some studies find only a small effect of age on scientific productivity

*Christian Fons-Rosen: Conceptualization, Methodology, Validation, Writing - Review & Edit-
ing. Patrick Gaulé: Conceptualization, Formal analysis, Investigation, Writing - Original Draft (In-
troduction, Institutional context, Data, Discussion). Taras Hrendash: Conceptualization, Software,
Visualization, Writing - Original Draft (Methodology and Results).
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(Diamond, 1984, Turner & Mairesses, 2003).

If, however, age influences the quantity and type of knowledge produced by individuals

to any degree, then understanding the reasons for general ageing of the scientific workforce

is important to shape appropriate policy responses. One influential explanation of the

ageing of the scientific workforce is the ‘burden of knowledge’ hypothesis (Jones, 2009).

As the stock of human knowledge accumulates over time, new entrants need to spend more

time in training in order to reach the knowledge frontier. This leads to a secular increase

in the age at which scientists begin their careers and make keys discoveries, empirical

patterns that are observed among Nobel Prize winners (Jones, 2009, 2010). From this

perspective, policymakers should seek to improve the quality of training and preserve

incentives to start scientific careers, but may want to refrain from giving large grants to

young scientists (Jones, 2011). An alternative explanation for the ageing of the scientific

workforce is declines in the retirement rate of older scientists, a process facilitated by

the elimination of mandatory retirement in U.S. universities (Blau & Weinberg, 2017). If

declines in retirement rates drive the ageing of the scientific workforce, policymakers might

– depending on the productivity of older scientists – reconsider end-of-career incentives.

It may seem that rising ages at entry and retirement dynamics are the only factors

impacting the age composition of the scientific workforce, but this is not so. Entry age

and exit dynamics clearly matter in the age composition of the scientific workforce, but

a potentially important third factor is the number of people hired over time. Consider

what would happen if the U.S. government made a large investment in science – a new

Apollo or Manhattan project, perhaps. As the total demand for scientific labor goes up,

the extra positions would be disproportionately filled by younger people graduating from

universities (as opposed to older individuals moving from non-research to research jobs).

As a consequence, the scientific workforce would immediately become younger. The effect

of such a hiring spree on the age composition of the scientific workforce would not be

limited to the short run: as the dis-proportionally large cohort of new entrant aged, so

would the scientific workforce as a whole.

In this paper, we build a demographic model of the U.S. academic workforce, to shed

light on the causes of its ageing. The model leverages novel data on the population of U.S.

chemistry faculty members between 1960 and 2010. Having set up the model to mimic

observed empirical patterns in the data, we can then use it to quantify the importance

of various channels – changes in entry age; retirement dynamics; and the number of new

hires – to the ageing of the workforce. For instance, we can ask what would happen to
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the age composition of faculty members if entry ages had remained at their initial (1960)

level, but retirement dynamics and hiring patterns still evolved as they did.

We find that changes in the numbers of people hired over time is the major driver

in the ageing of our sample. In the data, the mean age of chemistry faculty members

rises from 37 in 1960 to 53 in 2010. While the age at which individuals become faculty

members has indeed increased (as predicted by the ‘burden of knowledge’ hypothesis),

this only accounts for about 20% of the increase in mean faculty age. Further, changes in

retirement dynamics have no sizeable effects in our sample. By contrast, variation in the

numbers of people hired over time appear to be the major factor in the ageing over time.

In the 1960s, the number of new hires exceeded retirements by a factor of four. If faculty

hiring had proceeded at the same pace in subsequent decades (instead of declining a level

roughly in line with retirements), the mean age of chemistry faculty members would have

stabilized around 40, instead of rising to 53 as it did.

Our results have a number of implications for science policy. First, the age composition

of the academic workforce need not simply reflect fundamental trends in the nature of

knowledge production or of overall societal ageing. Instead, it may (and perhaps should)

be seen as the result of past and present policy choices, particularly in terms of the number

of people hired. Second, hiring more new faculty could generate disproportionate returns.

Because new hires tend to be younger, they generate a sort of ‘demographic dividend’

in that their productivity tends to be higher than the average faculty, at least in the

beginning. Given that currently less than 10% percent of graduate students become

faculty members, and that faculty positions are generally considered attractive (Ganguli,

Gaule & Vuletic, 2022), there is no shortage of talented young scholars interested in

taking up faculty positions. Third, steps could be taken to mitigate the bias against

young scholars in grant allocation. This could include, for instance, putting a greater

weight on a proposal itself relative to the track record of the principal investigator.

This paper contributes to the literature on the causes of the ageing of the scientific

workforce (Jones, 2009; Jone, 2010; Blau & Weinberg, 2017), highlighting a new cause (a

slowdown in hiring) as quantitatively most important factor after the World War II.

The rest of the paper is organized as follows. Section 2 provides institutional context

on the changing age structure of the U.S. scientific workforce, U.S. Science Funding since

World War II, and chemistry as a scientific discipline. Section 3 describes the data,

Section 4 presents the methodology of the simulation and section 5 presents the results.

Finally, section 6 concludes.
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3.2 Institutional context

In this section, we provide three pieces of institutional context that are relevant to un-

derstanding the causes and consequences of ageing of the scientific workforce. First, we

provide some descriptive statistics on the ageing of the U.S. scientific workforce from

1960 to 2010. Second, we describe how funding for basic research has evolved in the U.S.

from World War II to the present, as this will be relevant for understanding how hiring

patterns have changed over time. Third, since our analysis will focus on chemistry, we

provide some background on how knowledge production is organized in this discipline.

3.2.1 Age structure of the U.S. scientific workforce

The U.S. scientific workforce is ageing. Many observers have noted changes in the age

composition of National Institutes of Health grantees (see, e.g., Daniels, 2015). From

1980 to 2010, for instance, the median age of NIH R011 grant recipients increased from

40 to 50 years of age. Among chemistry faculty members, the median age increased

from 41 to 51 in 1960-2010 (Figure 3.1).2 Even in mathematics, traditionally seen as the

preserve of the young, the median age of authors increased from 35 to 44 in 1960-2010.

There appears to be something distinct and specific about the scientific workforce

compared to the labor force as a whole. To put the ageing of the U.S. scientific workforce

into context, it is useful to consider the ageing of the U.S. labor force as a whole. It is

true that the U.S. labor force in general grew older from 1980 to 2010, with the median

age rising from 35 to slightly above 40. However, across a longer time period, the trends

are less clear: the U.S. workforce had a median age slightly above 40 as early as 1960.

Moreover, even within 1980-2010, the rate of ageing of the U.S. workforce (with the

median age rising by less than 1.5 years per decade) is clearly lower than for the NIH

grantees, for instance, where the median age rose by more than 3 years per decade.

3.2.2 U.S. science funding after World War II

World War II was a powerful demonstration of the practical utility of science and in-

novation. The development of the radar, for instance, gave the United Kingdom a key
1Research Project Grants (R01) is the original and historically oldest grant mechanism used by the

NIH. Grants are meant to support a specified project to be performed by a principal investigator in an
area representing the investigator’s specific interest and competencies, based on the mission of the NIH.
NIH R01 grants constitute the bulk of NIH external grant giving.

2This figure is based on our dataset of U.S. chemistry faculty members.
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Figure 3.1: Age structure of the U.S. scientific and labor workforce
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advantage in the Battle of Britain (a series of aerial battles between German and British

air forces over the skies of Britain). Most ominously, World War II ended shortly after

deployment of the atomic bomb at Hiroshima and Nagasaki. The atomic bomb was de-

veloped under the Manhattan Project, a gargantuan research project mobilizing most of

the best physicists residing in America.

After World War II, a consensus emerged that basic research was important both for

national prosperity and in the ongoing geopolitical rivalry with the USSR. The argument

was best encapsulated in Vannebar Bush’s influential report to the U.S. report ‘Science,

The Endless Frontier’ (Bush, 1945). In 1957, the USSR launched the first satellite into

space, sparking fears that the U.S.A was falling behind in technology. This ‘Sputnik

moment’ provided further impetus for investment in U.S. science and education.

After 1945, the U.S. federal government began to support basic research on a system-

atic basis, and public R&D investments became very substantial. In 1950, a brand new

federal agency, the National Science Foundation, was funded. Further, the National In-

stitutes of Health were instituted, building on prewar institutions, bolstered by a growing

mandate and budgets. Federal funding for R&D grew tenfold from 1949 to 1962. As the
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share of GDP, federal funding for R&D grew from 0.5% in 1949 to more than 2% in 1964,

before declining subsequently (Figure 3.2).

Figure 3.2: Federal Expenditure on R&D

Notes: This Figure is reproduced from Goldman Sachs Research (2020)

The influx of federal funding resulted in a bonanza for U.S. universities. In an anec-

dote recounted by Paula Stephan (Stephan, 2018), federal grant agencies were sending

representatives to universities to encourage faculty members to apply for funding. In the

late 1960s and early 1970s, U.S. universities also benefited from a surge in demand for

education from the ‘baby boom’ generation entering college. In response to increased de-

mand for both research and teaching, U.S. universities hired large numbers of new faculty

members, a pattern we clearly see in our data, and will discuss later.

Federal R&D funding peaked in the mid 1960s before decreasing substantially in the

late 1960s and 1970s. As a percentage of GDP, federal R&D spending fell from above

2% in 1964 to around 1% in 1980. Thereafter, there was a further slow decline over

time, with federal R&D spending reaching 0.6% in 2019. The decline in federal R&D

was briefly interrupted by the doubling of the NIH budget between 1998 and 2003, but
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this increase was not permanent. Moreover, the rapid increase in NIH spending and

ensuing deceleration created substantial adjustment problems in the market for research

(Freeman & Von Reenen, 2009).

3.2.3 Chemistry

Chemistry is the scientific study of the properties and behavior of matter. While chem-

istry is a physical science, large parts of it relate to living organisms, so that chemistry

is also closely related to life sciences. Apart from some smaller sub-disciplines such as

theoretical chemistry, chemistry is largely a lab-based science. Besides being a physical

space with instruments and research materials, the lab is also an organizational struc-

ture through which a faculty member (principal investigator) obtains funding for the lab,

directs research projects, and appears as a coauthor on all publications. While faculty

members in elite institutions are normally supported by a relatively large number of grad-

uate students, postdocs and technical staff working in their lab, support staff varies to

some extent across time and institutions.

Traditionally, faculty members/lab directors appear as the last author of scientific

publications. The graduate student or postdoc who has done most of the day-to-day

work on the research project typically receives first authorship. Authors in the middle

of the authorship list have normally made relatively minor contributions to the projects,

though this clearly varies across papers.

Research by chemistry faculty members is supported through a mix of federal, state,

and industry sources. Depending on their speciality, chemistry faculty members may

apply to the NIH, the NSF, or to other federal agencies. Given that research in chemistry

often has practical applications, industry funding through R&D contracts is common.

3.3 Data

To investigate the causes and consequences of the ageing of the scientific workforce, we

assembled an original data set combining multiple sources. The core and most original

component is the longitudinal database of academic scientists derived from the ACS

directory (described below). We complement this longitudinal database with information

on publications.

The ACS Directory. Our main data source is the ‘ACS Directory of Graduate Re-
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search’ (hereafter: ACS Directory). The ACS directory was a biennial publication of the

American Chemical Society than ran from 1953 to 2015, when it was discontinued. The

publication aimed to provide prospective graduate students with information on U.S.

chemistry departments offering PhD degrees. Initially published as a book, the ACS

directory was also later disseminated via an electronic version (first on CD-ROM, and

then on a dedicated website). The publication included lists of faculty members by name,

year of birth, gender, educational history, and current affiliation, among other informa-

tion (Figure 3.8). The information on the year of birth is particularly interesting and

valuable, as it is otherwise hard to find on a systematic basis.

Building a dataset of U.S. chemistry faculty members based on the ACS directory. We

procured the 1961, 1971, 1981, 1991, 2001 and 2011 editions of the ACS Directory. For

the 1991, 2001 and 2011 editions, we used electronic versions.3 For the earlier versions

(1961, 1971 and 1981), we digitalized the respective copies (for a total of more than 3

thousand pages) using optical character recognition (OCR) software and freelance assis-

tants to correct OCR mistakes. The resulting data yields six snapshots of the distribution

of faculty members in U.S. chemistry departments between 1961 and 2011. We then gen-

erated a longitudinal database linking individual faculty members across the different

editions of the book, using names, birth years, and educational histories to create link-

ages. This longitudinal dataset also enabled us to obtain a proxy for entry and exit from

the profession, through the year of first listing in the directory and the year of last listing,

respectively4.

3.4 Methodology

We build a demographic model simulating the evolution of the U.S. academic workforce

in chemistry to shed light on the causes of its ageing. Having set up the model to mimic

observed empirical patterns in the data, we can then use it to quantify the importance of

various channels – changes in entry age; retirement dynamics; and numbers of new hires

– to the ageing of the workforce.

3A version of that database covering 1993 to 2009 has been used in Gaule (2014), Gaule & Piacentini
(2018), Catalini, Fons-Rosen & Gaule (2020) and Ganguli, Gaule & Vuletic (2022).

4Alternatively, it could be possible to infer entries and exits from publication activity of a faculty.
However, we believe that our approach is more precise, as the alternative approach cannot distinguish
between retirement from remaining professionally active but without publication activity, or a delay in
publication early in an academic career.
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The simulation starts with the sample of 3,464 scientists who are active as of 1961 in

the data. Six editions of the directories are used with an interval of ten years between

consequential snapshots, producing a range of years between 1961 and 2011.

Assumptions. We assume that someone who appeared in a given snapshot s for the

first time actually entered the dataset in s = s− 6. Due to the left truncation, we cannot

make any assumptions about the actual time of entrance for people who were active as

of the initial snapshot s = 1961, that is, s = 1955. Therefore, after excluding 1955, our

range of entry years is: s ∈ 1965 + 10k4
k=0. Similarly, we assume that someone who was

active in a given snapshot s for the last time actually exited the dataset in s = s+4. Due

to the right truncation, we cannot make this assumption in the last snapshot s = 2011,

that is, s = 2015. Therefore, we end up with the range: s ∈ 1965 + 10k4
k=0.5

We refer to the middle-decade points throughout the simulation as the simulated

periods t. In other words, whenever we discuss time periods, we are referring to these

middle-decade points.

Transitions between simulated periods. The dataset, starting from the initial

data we have available for 1961, is subject to hirings and exits over time that lead to

changes in the number of people. Furthermore, we identify three channels leading to

changes in the mean age: (1) Exits; (2) Hirings; (3) Age composition of hirings. Below

we sequentially describe these three channels.

Exits. For each person who is active in the current simulated period t, we assign an

updated status – “active” or “exited” – for the next period t + 10 based on age-specific

and time-specific exit probabilities eat calculated from the actual data, where a is the age

decade (i.e., people in their 20s, 30s, etc.) and t is time. This implies that we account

for the fact that older scientists are more likely to exit than younger ones, and that these

likelihoods also evolve over time.

For every middle-decade point t and 10-year-wide age group a, we calculate proba-

bilities eat = N e
at/N

a
at. The numerator N e

at, is the number of people in age group a who

are active at time t but are no longer active at time t+ 10. The denominator Na
at, is the

total number of currently active people in the age group a at time t.6

In our simulations, suppose that a group of individuals (defined by an age range a

at time t) has a likelihood of exit defined by eat, say, equal to 20%. In this case, we

5In other words, we assume that the hiring of people who appear for the first time in snapshot s and
the exit of people who were active for the last time a decade earlier in snapshot s− 10, actually happen
at the middle-decade point.

6For clarify, the subindex e stands for “exits” and the subindex a stands for “active”.
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randomly choose one fifth of these individuals and assign them an “exited” status in the

next time period.

Hirings. In each simulated period t, we simulate hiring Nt
ˆ h

people, which we refer to

as the “extensive” margin of hiring, meaning that we do not account for scientist age.7

It is determined by Nt
ˆ h

= Nt
ˆ e

· ht, where Nt
ˆ e

is the number of simulated exits including

all age groups, and ht is an expansion rate, i.e. the number of simulated hirings for each

simulated exit in the same period. We define this expansion rate as ht = Nh
t /N

e
t , that is,

calculating the ratio from actual data on hires and exits in a given time period.

The exits channel directly affects both the intensive and extensive margins, because

each exiting individual is assigned an age that we track. But the hirings channel only

affects the extensive margin, because no age is assigned to entrants yet. To allocate

an age to these hires, we need to add a third channel that will be described below. In

other words, we distinguish between the “extensive” (number of people) and “intensive”

(age composition) margins of hiring represented by two separate channels, while the exit

channel is not divided into two parts.

Age composition of hires. In each simulated period t, birth years of newly hired people

(Nt
ˆ h

) are assigned so that the resulting age composition of simulated hirings reconstructs

the actual age composition of newly hired people in the data.8 All parameters calculated

from actual data (i.e., Nh
t and N e

t , eat, and all P x%
t ) are time-specific data moments.

Extensive vs intensive margins. It follows from these three definitions that exits and

hirings affect not only the total number of scientists but also the age composition of active

scientists in each simulated period t. We justify the asymmetry by which the exit channel

does not incorporate an intensive margin channel as follows.

First, we show that the results of a simulation relying on time-specific data moments

will be equivalent, independently of whether the exit activity is collapsed into a single

channel or instead is decomposed into two different channels – the number and the age

composition of exits.

Consider an alternative definition of exits in which we explicitly account for the two

channels: in each simulated period t, we first impose a fixed number of total exits N e
t and

then divide them into age groups according to age-specific shares of the exits – Eat. We

then randomly assign an “exited” status to a number of people from a given age group

7The subindex h stands for “hiring” and the hat notation stands for “simulated”.
8Specifically, we assign (Pmin

t +P 10%
t )/2 to 10% of randomly chosen simulated hires, (P 10%

t +P 50%
t )/2

to 40%, (P 50%
t +P 75%

t )/2 to 25%, (P 75%
t +P 90%

t )/2 to 15% and (P 90%
t +P 95%

t )/2 to 10% of hires, where
P x%
t is a corresponding percentile of the actual age composition of hires at the time t.
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according to N̂
e

at = N e
t ·Eat. In this way, we explicitly distinguish between the “extensive”

and “intensive” margins of exits.

While this alternative share of exits Eat only relies on one age-specific component,

N e
at, in our preferred share of exits eat we additionally incorporate a second age-specific

component, Na
at. Thus, without a loss of generality, we can replicate the actual data by

relying on either a broader set of data moments in our initial definition or a narrower

set of data moments with the alternative definition.

Second, it follows from defining simulated exits as eat = N e
at/N

a
at that we simulate the

number of exits for the age range a in the following way: N̂
e

at = Na
at · eat. Summing up

across all age ranges, the total number of exits is therefore N̂
e

t =
∑︁

a N̂
e

at =
∑︁

a N
a
ateat.

Because hirings are a function of exits, Nt
ˆ h

= Nt
ˆ e

· ht, we can rewrite this expression as

Nt
ˆ h

= ht(
∑︁

a N
a
ateat). Thus, our approach allows us to account for the age-specific stock

of active scientists in a given period t, Na
at, not only in the exits, but also in the hirings.

Counterfactual scenarios. Starting with the initial sample of scientists described

above, we generate transitions to the next periods through the three channels described

above by: (1) adding new people to the dataset; (2) randomly dropping people condi-

tional on each given age group; (3) randomly assigning age to each newly added hire

based on statistics from actual data.

For the three channels, we differentiate between two modes: (1) “ON” – time-specific

data moments (Nh
t and N e

t , rat, and P x%
t ) are used in each period t; (2) “OFF” – only

the initial 1965 period data moments (Nh
1965 and N e

1965, ra1965, and P x%
1965) are used.

As a clarification, under our baseline scenario “ALL ON”, all three channels are sim-

ulated in the “ON” mode. The simulated data moments (ht = Nh
t /N

e
t , rat, and P x%

t ) for

a given time period are generated based on statistics of actual data in that same time

period. Instead, under the baseline scenario “ALL OFF” only actual data from 1965 is

used to generate the simulated data moments of all time periods.

We evaluate alternative counterfactual scenarios by switching on only one channel at

a time. For example, suppose that the time-varying expansion rate is “ON”, while the

exits and age distribution of newly hired are “OFF”. In this scenario, actual data is used

for the parameter ht = Nh
t /N

e
t across all decades. Instead, data from 1965 (ra1965, P x%

1965)

is used for the exits and moments of the age distribution of new hires across all decades.

The other two counterfactual scenarios switch on either the exits or the age distribu-

tion of the new hires. That is, we use actual data from all decades only for the parameter

rat or P x%
t , respectively, while the remaining channels are in the “OFF” mode.
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3.5 Results

3.5.1 Baseline scenarios

In each simulated period t, we calculate a mean age of all scientists active in the current

period and plot the dynamics of it over time and across different counterfactual scenarios.

Scenario Mean 2005 Age

Actual 51.4
ALL ON 51.7
ALL OFF 39.1
Age of hired ON 41.7
Exits ON 39.1
Expansion rate ON 47.3

Mean 1965 Age 38.5

Notes: This table reports the mean age of active scientists as of the first
(1965) and the last (2005) periods in each simulated scenario.

Table 3.1: Summary of simulations results

“ALL ON” – time-varying dynamics for all three channels is switched on

Under this scenario, we switch on all three channels: hirings, exits, and age composition

of hired scientists. This means that we will use the time-varying data moments (1965-

2005). This baseline scenario demonstrates a good match in terms of replicating both

the evolution (Figure 3.3) and the absolute increase (Table 3.1) of the mean age in the

actual data.

Therefore, the increasing mean age of scientists between 1955 and 2005 can be ex-

plained by the joint dynamics of time-varying expansion rate, exit probabilities, and age

distribution of new hires.

“ALL OFF” – time-varying dynamics for all three channels is switched off

This scenario switches off all three time-varying channels, leading to a flat trajectory of

the mean age trend (Figure 3.4). We do not observe any change in the absolute levels of

the mean age between 1965 and 2005 (Table 3.1).
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Figure 3.3: Baseline scenario “ALL ON”
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Notes: This Figure shows that the trend in the mean age of scientists simulated with the use
of all time-varying moments calculated from the actual data closely matches the actual trend
observed over the last 50 years.

Figure 3.4: Baseline scenario “ALL OFF”
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Notes: This figure shows that, in the counterfactual scenario assuming no changes over the
last 50 years in the age distribution of new hires, the probability of exits, and the expansion
rates, the mean age of scientists would have stayed close to that of the 1960s.
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Consider the total gap in the mean age in 2005 – the last period simulated – between

the “ALL ON” and “ALL OFF” counterfactual scenarios (51 – 39 = 12 years of age).

We decompose this 12-year absolute increase into individual contributions via the three

channels described previously. In particular, we will deviate from the “ALL OFF” scenario

by switching on only one particular channel in each counterfactual scenario.

3.5.2 Counterfactual scenarios: switching on only one channel

Case 1: Switching on the time-varying age distribution of hired scientists

Unlike the “ALL OFF” case, this scenario allows the age of hired scientists to be matched

to actual data moments (P x%
t ) in each simulated period. The remaining two channels

remain switched off.

In this counterfactual scenario, there is a clear upward trend in the mean age over

time (Figure 3.5). The absolute increase in mean age from 38.5 in 1965 to 41.7 in 2005

is consistent with the notion that entry age is constantly rising as claimed in the ‘burden

of knowledge’ hypothesis (Jones, 2009). Comparing the 2005 levels (Table 1) obtained in

this scenario to the “ALL OFF” case, we can explain (41.7− 39.1)/(51.7− 39.1) = 20.6%

of the 12-year increase.

Case 2: Switching on the time-varying age-specific exit rates

Unlike the “ALL OFF” case, this scenario uses actual data to obtain the rate of age-

specific exits (eat) in each time period.

There is no clear trend change in the mean age over time (Figure 3.6). This can be

explained by the fact that age-specific exit rates eat did not exhibit a consistent upward

or downward pattern between 1965 and 2005 (Figure 3.10). Instead, increases in exit

rates in one period are followed by decreases in the following period, thereby driving the

volatility of the simulated mean-age trend. Moreover, when we compare the 2005 levels

(Table 1), we cannot explain any portion of the total 12-year increase by the dynamics

of exits channel isolated from other two channels, since the mean age remains unaltered

at a value of 39.1.
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Figure 3.5: Time-varying age distribution of hired is “ON”
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Notes: This Figure shows how the changes observed during the last 50 years in the age
distribution of new hires (the difference between the blue and red dashed lines) contributed
to the increasing mean age of scientists (black line).

Figure 3.6: Time-varying exits are “ON”

35

40

45

50

55

M
ea

n 
ag

e

1960 1970 1980 1990 2000

Calendar year

Actual ALL OFF Exits ON

Notes: This figure shows how the changes observed during the last 50 years in the
probability of exits (the difference between the blue and red dashed lines) contributed to the
increasing mean age of scientists (black line).
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Case 3: Switching on the time-varying expansion rates

Unlike the “ALL OFF” case, this scenario uses actual data to account for time-varying

expansion rates ht = Nh
t /N

e
t . In the previous two counterfactual scenarios, the exit rate

used for all time periods was 4.05. This number was chosen because, in the actual data,

we observe 4.05 hirings in snapshot s = 1971 for each exit in the previous snapshot

s = 1961.

As this channel is now switched on, we allow the number of new hires in each period

to be determined as: Nt
ˆ h

= ht ·Nt
ˆ e

, where Nt
ˆ e

is the number of simulated exits and ht is

an expansion rate that changes every period based on actual data.

Figure 3.7: Time-varying expansion rate is “ON”
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Notes: This Figure shows how the changes observed during the last 50 years in the
expansion rate (the difference between the blue and red dashed lines) contributed to the
increasing mean age of scientists (solid black line).

Looking at actual data on expansion rates across all periods, it turns out that using

a fixed value of 4.05 based on 1965 data is a very high expansion rate. This initial level

is more than two times the average of 1.76 across the entire interval 1965-2005. The

expansion rate remained lower in all subsequent periods (Figure 3.11). Furthermore, the

expansion rate never surpassed a value of 2 in any period after 1965.

This means that the major expansion in the scientific workforce observed in 1965

was not persistent over time. Due to the left-truncation of the data, we cannot identify
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whether this expansion began earlier or not. However, we suggest that it is this unprece-

dented magnitude and its abrupt end in 1975 that led to the pronounced upward trend

in the mean age observed in actual data between 1955 and 2005.

In fact, the simulated trend of the mean age in this counterfactual scenario closely

follows the actual trend between 1955 and 1985 (Figure 3.7), and the unexplained gap

after 1985 is due to the volatility in the expansion rate observed in the actual data. That

is, this counterfactual scenario relying on time-varying expansion rates can explain most

of the mean-age increase over time.

Overall, comparing the levels reached in 2005 (Table 1), we conclude that the dy-

namics of the expansion rate observed in actual data (i.e., a sharp drop in 1975 followed

by constantly low expansion rates thereafter) helps to explain 66% of the total 12-year

increase in the mean age. Therefore, the hiring channel is clearly the main driver of the

ageing pattern.

From a policy perspective, it is relevant that the academic expansion rates that we

observed early in our dataset are unparalleled in their magnitude when compared to more

recent expansions of the academic workforce. This staggering stock of academic scientists

has led to a gradual increase in the age of academics. Combined with the fact that older

scientists tend to produce less impactful research, the results in this paper suggest that

scientific productivity can be substantially increased via considerable increases in the

scientific workforce.

3.6 Discussion

The U.S. scientific workforce has aged considerably over the past 60 years. This phe-

nomenon has been noted by many observers, with the rising age of NIH grant grantees

receiving particular attention (Kaiser, 2008, Daniels, 2015). Yet the causes of the ageing

of the scientific workforce remain imperfectly understood.

Previous literature on the causes of ageing in academia has focused on the rising age at

entry into science (Jones, 2009), as well as the tendency of scientists to retire later (Blau

& Weinberg, 2017), our work highlights a third distinct reason the scientific workforce

may be be ageing: compositional changes arising from a slowdown in hiring over time.

In a simulation based on detailed data on U.S. chemistry faculty members between 1960

and 2010, changes in hiring over time appear to drive most of the change in the age

composition of scientists. In the 1960s – a period in which universities were expanding
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significantly – new faculty hires outnumbered retirements by a factor of four. Because

new hires tend to be relatively younger, this led to a large influx of young people in

academic profession. However, as hiring slowed down in subsequent decades, the cohorts

of 1960s entrants (and to a lesser extent, 1970s entrants) became disproportionally large,

resulting in an ageing scientific workforce.

One important consequence of ageing being largely driven by changes in hiring over

time is that the ageing of the scientific workforce is not then the inevitable result of an

ageing society or of fundamental forces in the production of knowledge. Rather, much of

it could be the reflection of a specific set of historical circumstances and policy choices.

In the U.S. post WWII, there was a massive expansion of the university sector, followed

by a period of no growth in faculty numbers.

Just as countries that go through a demographic transition experience a demographic

dividend, countries that expand their scientific sector may experience a demographic

dividend of a kind with an overall younger and more productive scientific workforce in

the transition phase. It is quite surprising that systematically increasing the hiring of

faculty members is not often discussed in policy circles, despite its obvious potential to

increase scientific productivity – both directly, by increasing the number of researchers,

and indirectly through rejuvenation of the academic workforce.

We conclude by noting two directions for future research. This paper, and indeed

much of the related literature, has focused on the U.S. scientific workforce. However,

much less is known regarding other countries. Of particular interest is the case of China,

which has made large investments in universities over the last two decade. Research on

changes in the age of the scientific workforce outside the U.S. and in China in particular

would be welcome. Another area that merits attention is the age dynamics in industrial

R&D, where employment relationships are rather different from those in academia. To

what extent has the industrial R&D workforce aged and is that ageing also influenced

by hiring sprees? Research along either of theses lines of inquiry could further elucidate

whether changes in the age composition of the scientific workforce are driven more by

fundamental forces or by particular historic circumstances.

3.A Appendix

Figures 3.8 and 3.9 below depict examples of the data – entries from the ACS directory.

Among other information, each directory entry lists the name, birth year, and education

80



history of the person. We can also deduce in which department the person was working

at the time, from the department under which the listing appears. In this sample entry,

the person listed is Elias Corey, a distinguished American chemist who spent most of his

career at Harvard and won the Nobel Prize in Chemistry in 1990. Whereas biographical

information about famous scientists such as Corey is available from many sources, the

strength of the directory is that it includes all faculty members employed in the reporting

departments irrespective of their status in their profession.

Figure 3.8: A sample entry from the ACS directory

Notes: This Figure displays a sample entry from the 1971 ACS directory – see
Figure 3.9 for a full page from the directory.

Figure 3.9: A sample page from the ACS directory

Notes: The Figure displays a sample page from the 1971 ACS directory. In the
directory, departments list their faculty members in alphabetical order.

81



Figure 3.10: Age-specific probabilities of exits across time
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Notes: This Figure shows how the probabilities of exits in each age group evolved over time.
There is a clear trend only in groups at the ages of 60s and 70s.

Figure 3.11: Evolution of the expansion rate over time
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Notes: This Figure shows how the ratio of the number of hirings to the number of exits
evolved over time. There is a clear downwards trend.

82



University
Edition of the directory

1961 1971 1981 1991 2001 2011 All

Arizona State 1 1 1 1 1 1 1
Auburn 1 1 1 1 1 1 1
Baylor U 1 1 1 1 1 1 1
Boston College 0 0 0 1 1 1 0
Boston U 1 1 1 1 1 1 1
Bowling Green State 0 0 1 1 1 1 0
Brandeis 1 1 1 1 1 1 1
Brigham Young U 1 1 1 1 1 1 1
Brown U 1 1 1 1 1 1 1
California State LA 0 0 0 1 1 1 0
Caltech 1 1 1 1 1 1 1
Carnegie Mellon 0 1 1 1 1 1 0
Case Western 1 1 1 1 1 1 1
Clark Atlanta U 0 0 0 1 1 1 0
Clarkson U 0 1 1 0 1 1 0
Clemson U 1 1 1 1 1 1 1
Colorado School Mines 0 0 1 1 1 1 0
Colorado State 1 1 1 1 1 1 1
Columbia 1 1 1 1 1 1 1
Cornell 1 1 1 1 1 1 1
CUNY City College 0 1 1 1 0 0 0
CUNY Hunter College 0 0 0 1 1 0 0
CUNY Staten Island 0 0 0 1 0 0 0
Dartmouth 0 1 1 1 1 1 0
Delaware 1 1 1 1 1 1 1
Drexel U 1 1 1 1 1 1 1
Duke 1 1 1 1 1 1 1
Duquesne 1 1 1 1 1 1 1
Emory 1 1 1 1 1 1 1
Florida Atlantic U 0 0 1 1 1 1 0
Florida Int U 0 0 0 1 1 1 0
Florida State 1 1 1 1 1 1 1
George Washington U 1 1 1 1 1 1 1
Georgetown U 1 1 1 1 1 1 1
Georgia State 0 0 1 1 1 1 0
Georgia Tech 0 0 0 1 1 1 0
Harvard 1 1 1 1 1 1 1
Howard 1 1 1 1 1 1 1
Illinois Inst Tech 1 1 1 1 1 1 1
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University
Edition of the directory

1961 1971 1981 1991 2001 2011 All

Indiana U 1 1 1 1 1 1 1
Iowa State 1 1 1 1 1 1 1
Jackson State 0 0 1 0 1 1 0
Johns Hopkins 1 1 1 1 1 1 1
Kansas State 1 1 1 1 1 1 1
Kent State 0 0 1 1 1 1 0
Lehigh 1 1 1 1 1 1 1
Louisiana State 1 1 1 1 1 1 1
Marquette U 0 1 1 1 1 1 0
Miama U (OH) 1 1 1 1 1 1 1
Michigan State 1 1 1 1 1 1 1
Mississippi State 0 1 1 1 1 1 0
MIT 0 0 0 1 1 1 0
Montana State (Bozeman) 0 1 1 1 1 1 0
New Jersey Tech 0 0 1 1 1 1 0
New Mexico Inst Mining 0 0 0 1 1 1 0
New Mexico State 0 1 1 1 1 1 0
North Carolina State 1 1 1 1 1 1 1
North Dakota State 0 1 1 1 1 1 0
Northeastern 0 1 1 1 1 1 0
Northwestern 1 1 1 1 1 1 1
NYU 1 1 1 1 1 1 1
Ohio State 1 1 1 1 1 1 1
Ohio U 1 1 1 1 1 1 1
Oklahoma State 1 1 1 1 1 1 1
Old Dominion U 0 0 0 1 1 1 0
Oregon State 1 1 1 1 1 1 1
Penn State 1 1 1 1 1 1 1
Polytechnic U 1 1 1 1 1 1 1
Princeton 1 1 1 1 1 1 1
Purdue 1 1 1 1 1 1 1
Rennssalaer 1 1 1 1 1 1 1
Rice U 1 1 1 1 1 1 1
Rockefeller 0 1 1 1 1 0 0
Rutgers 1 1 1 1 1 1 1
San Diego State 0 0 0 1 1 0 0
San Francisco State 0 0 1 1 1 1 0
San Jose State 0 0 0 1 1 1 0
Soutern Illinois U Carbondale 0 1 1 1 1 1 0

84



University
Edition of the directory

1961 1971 1981 1991 2001 2011 All

South Dakota State 1 1 1 1 1 1 1
Southern Illinois U (Edwardsville) 0 0 0 1 1 1 0
Southern Methodist U 0 0 1 1 1 1 0
Stanford 1 1 1 1 1 1 1
SUNY Albany 0 1 1 1 1 1 0
SUNY Binghamton 0 1 1 1 0 0 0
SUNY Buffalo 1 1 1 1 0 0 0
SUNY Env Sci Forestry 0 0 1 1 1 1 0
SUNY Stony Brook 0 1 1 1 1 1 0
Syracuse U 1 1 1 1 1 1 1
Temple U 1 1 1 1 1 1 1
Texas A&M 1 1 1 1 1 1 1
Texas Tech 1 1 1 1 1 1 1
Tufts 1 1 1 1 1 1 1
Tulane U 1 1 1 1 1 1 1
U Akron 1 1 1 1 1 1 1
U Alabama 1 1 1 1 1 1 1
U Alabama (Huntsville) 0 0 1 1 1 1 0
U Arizona 1 1 1 1 1 1 1
U Arkansas 0 0 0 1 1 1 0
U Central Florida 0 0 1 1 1 1 0
U Chicago 1 1 1 1 1 1 1
U Cincinnati 1 1 1 1 1 1 1
U Colorado 1 1 1 1 1 1 1
U Connecticut 1 1 1 1 1 1 1
U Denver 0 1 1 1 1 1 0
U Florida 1 1 1 1 1 1 1
U Georgia 1 1 1 1 1 1 1
U Hawaii Manoa 1 1 1 1 1 1 1
U Houston 1 1 1 1 1 1 1
U Idaho 1 1 1 1 1 1 1
U Illinois Chicago 0 1 1 1 1 1 0
U Illinois Urbana 1 1 1 1 1 1 1
U Iowa 1 1 1 1 1 1 1
U Kansas 1 1 1 1 1 1 1
U Kentucky 1 1 1 1 1 1 1
U Louisville 1 1 1 1 1 1 1
U Maine 1 1 1 1 1 1 1
U Maryland (Baltimore County) 0 0 1 1 1 1 0
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University
Edition of the directory

1961 1971 1981 1991 2001 2011 All

U Maryland (College Park) 1 1 1 1 1 1 1
U Massachusetts (Amherst) 1 1 1 1 1 1 1
U Massachusetts (Lowell) 0 0 0 0 1 1 0
U Memphis 0 1 1 0 1 1 0
U Michigan 1 1 1 1 1 1 1
U Minnesota 1 1 1 1 1 1 1
U Missouri (Columbia) 1 1 1 1 1 1 1
U Missouri (Kansas City) 0 1 1 1 1 1 0
U Missouri (Rolla) 0 1 1 1 1 0 0
U Missouri (St Louis) 0 0 1 1 1 1 0
U Montana 1 1 1 1 1 1 1
U Nebraska 1 1 1 1 1 1 1
U Nevada Las Vegas 0 0 0 1 1 1 0
U Nevada Reno 0 0 1 1 1 1 0
U New Hampshire 1 1 1 1 1 1 1
U New Mexico 1 1 1 1 1 1 1
U North Dakota 1 1 1 1 1 1 1
U North Texas 0 1 1 1 1 1 0
U Notre Dame 1 1 1 1 1 1 1
U Oklahoma 1 1 1 1 1 1 1
U Oregon 1 1 1 1 1 1 1
U Pennsylvania 1 1 1 1 1 1 1
U Pittsburgh 1 1 1 1 1 1 1
U PR (Rio Piedras) 0 0 1 1 1 1 0
U PR Mayaguez 0 0 0 1 1 1 0
U Rochester 1 1 1 1 1 1 1
U South Carolina 1 1 1 1 1 1 1
U South Dakota 0 1 1 1 1 1 0
U South Florida 0 1 1 1 1 1 0
U Southern Mississippi 0 1 1 1 1 1 0
U Tennessee 1 1 1 1 1 1 1
U Texas Arlington 0 0 1 1 1 1 0
U Texas Austin 1 1 1 1 1 1 1
U Texas El Paso 0 0 1 0 1 1 0
U Texas MD Anderson 0 0 0 1 0 0 0
U Texas San Antonio 0 0 0 1 1 1 0
U Toledo 0 1 1 1 1 1 0
U Tulsa 0 0 0 0 1 1 0
U Utah 1 1 1 1 1 1 1
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University
Edition of the directory

1961 1971 1981 1991 2001 2011 All

U Virgina 1 1 1 1 1 1 1
U Washington 1 1 1 1 1 1 1
U Wisconsin Madison 1 1 1 1 1 1 1
U Wisconsin Milwaukee 0 1 1 1 1 1 0
U Wyoming 1 1 1 1 1 1 1
UAB 0 1 1 1 1 1 0
UC Berkeley 1 1 1 1 1 1 1
UC Davis 1 1 1 1 1 1 1
UC Irvine 0 1 1 1 1 1 0
UC Riverside 1 1 1 1 1 1 1
UC San Diego 0 1 1 1 1 1 0
UC Santa Barbara 0 1 1 1 1 1 0
UC Santa Cruz 0 1 1 1 1 1 0
UCLA 1 1 1 1 1 1 1
UCSF 0 1 1 1 0 0 0
UNC Chapel Hill 1 1 1 1 1 1 1
USC 1 1 1 1 1 1 1
Utah State 1 1 0 1 1 1 0
Vanderbilt U 1 1 1 1 1 1 1
Virginia Commonwealth 0 1 1 1 1 1 0
Virginia Tech 1 1 1 1 1 1 1
Wake Forest U 0 1 1 1 1 1 0
Washington State 1 1 1 1 1 1 1
Washington U 1 1 1 1 1 1 1
Wayne State 1 1 1 1 1 1 1
Wesleyan U 0 1 1 1 1 1 0
West Wirgnia U 1 1 1 1 1 1 1
Western Kentucky U 0 0 1 1 1 1 0
Western Michigan U 0 0 1 1 1 1 0
Wichita State 0 1 1 1 1 1 0
Yale 1 1 1 1 1 1 1

Table 3.2: Coverage of the universities

Notes: This table lists the universities included in the directories by edition. In each row,

numbers 0 and 1 indicate if the university was listed in a respective edition of the directory.

In the last column, the indicator is equal to 1 if the university was listed in all six editions.
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