
CERGE - EI
Center for Economic Research and Graduate Education –

Economics Institute

Essays in Genoeconomics

Jaroslav Groero

Dissertation

Prague 2023



2



Dissertation Committee

Doc. Nikolas Mittag, Ph.D. (CERGE-EI; chair)

prof. Ing. Štěpán Jurajda, Ph.D. (CERGE-EI)

Doc. PhDr. Michal Bauer, Ph.D. (CERGE-EI)

Referees

Dr Selma Walther (Department of Economics, University of Sussex)

prof. Pietro Biroli (Department of Economics, University of Bologna)

i



ii



Table of Contents

Abstract v

Abstrakt vii

Acknowledgments ix

Introduction 1

1 Chapter 1 3
1.1 Genetic Data in the Social Sciences . . . . . . . . . . . . . . . . . . 9
1.2 The Current PGS approach in GxE models . . . . . . . . . . . . . . 12
1.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.2 The ROSLA Policy . . . . . . . . . . . . . . . . . . . . . . 20
1.3.3 Genetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 The Gene-Environment Model . . . . . . . . . . . . . . . . . . . . . 22
1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.6 Robustness Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A Extensions of section 1.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

B Measurement Error Bias in the GxE Model . . . . . . . . . . 46
C Additional Figures . . . . . . . . . . . . . . . . . . . . . . . 51

2 Chapter 2 55
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

iii



2.2 Genetic Markers in Economic Research . . . . . . . . . . . . . . . . 59
2.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.3.1 Analytical Sample . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.2 Measurement of the Variables of Interest . . . . . . . . . . . 62

2.4 Empirical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.4.1 Identification and Basic Concepts . . . . . . . . . . . . . . . 73

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.6 Robustness Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3 Chapter 3 89
3.1 The Role and Usage of Genetic Data in Social Sciences . . . . . . . 93
3.2 The current PGS approach in the GxE models . . . . . . . . . . . . 96
3.3 New Method to Estimate GxE Models . . . . . . . . . . . . . . . . 103

3.3.1 Empirical Application . . . . . . . . . . . . . . . . . . . . . 105
3.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.4.1 HRS Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.4.2 UK Biobank Sample . . . . . . . . . . . . . . . . . . . . . . 107

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A Derivations of formulae of section 3.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

B Extensions of section 3.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

C Measurement Error Bias in the GxE Model . . . . . . . . . . 117

iv



Abstract

This thesis explores gene-environment interaction models, which comprise a new
and rapidly developing field in the empirical economics literature. I study how
investments and environments complement or substitute genetic predispositions
in various settings. The first chapter shows that one additional year of educa-
tion moderates the role of genetic predispositions for important medical condi-
tions and diseases. The second chapter documents that adverse macroeconomic
conditions negatively affect risk tolerance for individuals with low genetic predis-
position for risk tolerance. At the same time I show that these conditions have
no significant effect for individuals with genetic predispositions to be risk tolerant.
Finally, the third chapter discusses problems in the methodology of the current
gene-environment models and proposes a new approach that addresses them.
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Abstrakt

Ve své dizertaci se zabývám novou generací empirických modelů zkoumající inter-
akci genů a prostředí, jejichž význam v ekonomické literatuře v posledních letech
značně vzrostl. Se své práci analyzuji, jak investice a prostředí komplementují
nebo substituují genetické predispozice a to v široké škále situací. V první kapi-
tole ukazuji, že jeden dodatečný rok vzdělání snižuje vliv genetických predispozic
pro závažné choroby. Ve druhé kapitole ukazuji, že nepříznivé makoronomické
podmínky mohou negativně olivnit rizikovou toleranci jednotlivců s vysokými ge-
netickými predispozicemi pro nízkou rizikovou toleranci. Zároveň ukazuji, že stejné
makroekonomicé podmínky nemají žádný vliv na jedince s genetickými predispoz-
icemi pro vysokou rizikovou toleranci. V poslední třetí kapitole diskutuji problémy
současné metodologie modelů zkouající interakci genů a prostředí a navrhuji novou
metodu, která se tyto problémy snaží vyřešit.
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Introduction

Social scientists have long been interested in whether the role of predetermined

innate conditions can be influenced by environments, choices, or investments (Man-

ski, 2011, Heckman, 2007). However, due to a lack of proper genetic data empirical

research on this matter was not feasible in the past. Recent decline in the cost of

genetic data allowed inclusion of this information in many socio-economic surveys,

and opened the doors to studies that can address these important questions.

This thesis contributes to the literature by investigating how environments and

investments influence the role of genetic predispositions in the formation of im-

portant social and economic outcomes in two settings. First, I investigate how

one year of additional schooling in adolescence moderates the role of genetic pre-

dispositions with respect to health conditions and diseases at later stages of life.

I show that one year of additional schooling in adolescence decreases the risk of

experiencing a heart attack and cancer by about 40 %. In the second setting I

investigate how macroeconomic conditions affect individual risk preferences and

how genetic predispositions moderate this relationship. I document that adverse

macroeconomic conditions negatively affect willingness to take risks for individu-

als with low genetic predispositions for risk tolerance. At the same time, I do not
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find any evidence of the effect of macroeconomic conditions on risk tolerance for

individuals with high genetic predispositions for risk tolerance.

To estimate the GxE model, I adopt a methodology from the current gene-

environment (GxE) literature and estimate a GxE class of models. The thesis

also discusses problems of the current GxE models and shows that under a typical

scenario the results may lead to measurement error bias. To fix the problem, I

propose a new two-step method, based on a split-sample approach (Wasserman

and Roeder, 2009), that alleviates this issue under the assumption that the first

step serves as a proper variable selection stage.
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Chapter 1

Leveling Health Inequalities: Raising
the School Leaving Age Reduces the Risk
of Diseases and Severe Medical Conditions
Related to Genetic Endowment

Abstract

Health inequality has a significant genetic component and socio-economic factors, includ-

ing education, can moderate the effects of genes. However, little is known about whether

more years of education can effectively moderate the relationship between genetic condi-

tions and severe contemporary diseases and medical conditions. I use UK Biobank data

to investigate the relationship between education, genetic endowment, and four health

conditions: heart attack, cancer, stroke, and type-2 diabetes. To avoid the potential en-

dogeneity of education, I focus on the long-term health consequences of a 1972 increase in

the UK school-leaving age (ROSLA). As a measure of genetic endowment, I use an index

of genetic predispositions for obesity. Genetic predispositions are typically summarised

by a weighted average of individual genetic markers called polygenic scores (PGS), where

weights are derived from analyses performed on different populations. Furthermore, the
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outcomes of these analyses often differ from the outcomes the PGS is used to predict.

This may skew the results of follow up studies of other outcomes, including cancer. I

introduce a two-step method that adjusts the available weights to new outcomes, and

show that genetic predisposition for obesity increases the risks of the four diseases I study.

The results based on my new method show that the additional year of schooling driven

by the ROSLA reform diminished the importance of genetic predispositions for the risks

of cancer and heart attack by 40%. The results offer new evidence on how environments

moderate the inequalities in health that have been tilted from birth.

JEL classification: I12,I14, I28

Keywords: health, disease, education reform, polygenic scores, UK Biobank
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Introduction

Health outcomes are an important influence on both the quality and length of life. Ac-

cordingly, better understanding of the roots of health inequalities may help to diminish

disparities in wellbeing that are attributable to health conditions. It has been estab-

lished that later-life inequality in health outcomes has roots in the prenatal and early-life

developmental stages (Almond et al., 2018, Rosales-Rueda, 2018, Almond et al., 2018).

Genetic predispositions are important innate factors that have been shown to explain a

large proportion of health disparities (Visscher et al., 2012, 2017), though human diseases

differ in terms of the extent to which genes affect them.

While some diseases are determined mostly or solely by genetic endowment, such

as Huntington’s disease (Bates et al., 2015), most contemporary diseases are shaped by

both genetic and environmental factors. By environmental factors I mean aspects of

life that can be controlled by the individual, such as lifestyle, and those that cannot be

controlled by individuals, such as macroeconomic development or pollution. For example,

it has been established that genetic components play an important role in predicting

susceptibility to health conditions, including prostate cancer (Conti et al., 2021),breast

cancer (Michailidou et al., 2017), Alzheimer’s disease (Bone et al., 2021), heart disease

(Hartiala et al., 2021), and many other conditions that can be influenced by environment

and lifestyle (Almond et al., 2018, Dixon, 2010, Hubert et al., 1983).

Thus, a substantial part of health inequality stems from innate conditions that cannot

be changed and are an outcome of the lottery of nature. Although the genetic endow-

ment cannot be changed, its influence on health and other outcomes can be modified

throughout life. It follows that health prevention is more important for individuals who

have higher genetic predispositions to develop severe medical conditions and diseases.

Empirical evidence suggests that for many diseases an individual’s genetic endowment

represents initial disparities that can be moderated by behavior later in life (Turkheimer

et al., 2003). Hence, for most contemporary diseases, genetic predispositions do not play

a deterministic role, but rather their influence on individual outcomes can be shaped by

lifestyle, investments, or other environmental factors.

I use UK Biobank data to investigate how education moderates the relationship

between genetic endowment and severe medical conditions. My research sheds light on
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how more years of schooling can help to decrease health inequalities attributed to genetic

conditions. Early-life investment into education is an important environmental factor

that has been shown to affect later-life health outcomes (e.g. Barcellos et al., 2019, Albouy

and Lequien, 2009, Grossman, 1972, Glied and Lleras-Muney, 2003, Clark and Royer,

2013, Barcellos et al., 2018). Recent evidence suggests that higher education moderates

the relationships between genetic endowment and obesity and other health indicators

(Barcellos et al., 2018). However, little is known about how education moderates the

relationship between genetic conditions and severe diseases and medical conditions.

Similarly toBarcellos et al. (2018), I use an index of genetic predispositions for obesity

as a measure of genetic conditions. I use the index to investigate inequality in severe

diseases and medical conditions, including cancer and heart disease, to uncover new

patterns in the sources of health inequalities. Previous research has established that

obesity can lead to health problems including heart disease, cancers, and premature

death (e.g Dixon, 2010, Hubert et al., 1983) and that obesity is partly determined by

genetic components (Locke et al., 2015). Importantly, as research in genetics suggests,

genetic regions usually affect more than just one outcome; a notion called pleiotropy

(Mills et al., 2020). I demonstrate that genetic markers that have been shown to explain

variation in obesity are also related to other, more severe, health problems. This finding

documents that a genetic correlation exists between obesity and severe illnesses (Zhao

and Zhu, 2021, Bulik-Sullivan et al., 2015).

A potential problem of incorporating genetic data into economic research is their large

dimensionality. Consequently, social science researchers usually rely on large consortia to

provide estimates of individual genetic effects, which they then use to construct indexes

of genetic predispositions (Purcell et al., 2009). This procedure has many drawbacks,

including the fact that estimates provided by consortia are usually based on different

modelling assumptions and obtained from different populations. Importantly, the num-

bers of outcomes a social-science researcher can effectively explore are usually constrained

by the quality and availability of the results the genetic consortia provide. I develop and

apply a new method designed to study gene-environment (GxE) models in situations

in which there is not enough information to construct the measure of genetic predispo-

sitions for the outcome of interest. Currently researchers often use a polygenic score

(PGS) index as a measure of genetic predispositions in GxE models (see e.g. Janssens

6



et al., 2006, Purcell et al., 2009, Belsky and Harden, 2019). The PGS is a weighted

average of individual genetic markers, single-nucleotide polymorphisms (SNPs, read as

SNIPs), where the weights are based on estimates from genome-wide association studies

(GWAS), which are conducted by large scientific consortia. The GWAS estimates of the

relationship between outcomes and SNPs are usually used as weights when constructing

the PGS.

I use the results from an obesity GWAS (Locke et al., 2015) and investigate the

relationship between genetic predisposition for obesity and severe medical condition out-

comes other than obesity. Thus, although the individual SNPs that affect obesity may

also affect other health outcomes, it is likely that the estimated GWAS weights for obe-

sity do not carry over to empirical models with outcomes that are not a measure of body

size or obesity. Consequently, if the outcomes of the GWAS population and the popu-

lation of interest differ, when GxE models that rely on GWAS estimates of population

genetic effects are used in economics they may result in skewed estimates of important

parameters of standard GxE models.

The method I develop allows me to expand the scope of existing GWAS by not

making any specific assumption about the similarity of the outcomes in GWAS samples

and the survey sample used to estimate the GxE model. The method is well suited for

outcomes for which there are no GWAS or for which existing GWAS do not provide

high quality estimates. It is also well suited to models that aim to study the roles of

cross-trait genetic predispositions in the formation of illnesses, including SNPs related to

obesity. I use a two step nonlinear approach that does not rely on GWAS coefficients but

rather estimates the individual SNP coefficients together with the main coefficients of

interest. This approach alleviates the problem of imperfect portability of GWAS weights.

Furthermore, my method solves additional issues of GWAS model mis-specification that

arise if the true genetic effects are heterogeneous.

In this paper, I focus on four severe medical conditions: cancer, heart attack, stroke,

and diabetes. The major advantage of studying genes over other types of initial conditions

is that they are fixed at conception and cannot be altered later in life. Hence, to some

extent, they can be viewed as a natural experiment that creates a random variation

in initial conditions. However, the challenge is that years of schooling are most likely

endogenous to the model, which makes it cumbersome to identify the causal inference of
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GxE models. For this reason I investigate the long term health consequences of raising

the minimum age at which a student can leave school (ROSLA), a policy introduced in

the UK in 1972.

This paper presents new evidence that suggests the ROSLA policy decreased the

disparities related to the genetic endowment for obesity in severe diseases and medical

conditions. Specifically, I show that the policy moderated the relationship between the

probabilities of developing cancer and suffering a heart attack and the genetic endowment

by 40%. Although the percentage point change is rather high, it should be noted that

this is a product of two point estimates. Moreover, this policy targeted the adolescent

population, which is more likely to respond to an increase in length of education than

older individuals (Heckman, 2007). Moreover, my results confirm the previous findings

of Barcellos et al. (2018) that the ROSLA policy moderates the relationship between

genetic endowment and high values of health indicators.

Together with the evidence of the attenuation of the role of genetic endowment for dis-

eases, my findings imply that individuals start to perceive health indicators as a negative

influence on their lives only after their value reaches a certain threshold. This implies that

the health costs of high values of intermediary health indicators are not linear. Hence,

individuals may prefer to act on their health indicator values only when the value is high

enough that they clearly have a greater risk of developing a disease or a severe medical

condition. I also document a positive relationship between genetic predispositions for

obesity and heart attacks, strokes, cancer, and type 2 diabetes. This finding shows that

genetic markers related to obesity also affect serious diseases and medical conditions,

thereby shedding more light on the genetic sources of health inequalities. Finally, my

results suggest that using my new method to correct for the PGS index weights matters

most when the outcome of interest of the GxE study does not correspond to the GWAS

outcome.

The rest of the paper is organized as follows. Section 1.1 documents the role of genetic

data in economic research and identifies some potential challenges. Section 1.2 presents

the problems connected with modelling the GxE using standard methods. Section 1.3

presents the analytical sample and the variables of interest. Section 1.4 proposes a

new two stage procedure that I use in this paper, which is based on a nonlinear least

squares estimator. Section 1.5 describes the results of my analysis of the long-term
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health effects of the ROSLA policy and shows new empirical evidence about the role of

education in decreasing the influence of genetic conditions on severe illnesses and medical

conditions. Section 1.6 presents robustness checks. Section 1.7 concludes and summarizes

the findings.

1.1 Genetic Data in the Social Sciences

For many decades, scientists have discussed the respective roles of genes and environ-

ments in the formation of human traits. Recent research suggests that the traditional

dichotomy between genetic and environmental components of trait formation is outdated

and imprecise, and new models have been proposed in which genes and environments in-

teract in the formation of important human outcomes (phenotypes) (Turkheimer, 2000,

Turkheimer et al., 2003, Rutter, 2006). Consequently, researchers have started to examine

what parts of human DNA are correlated with specific outcomes. This type of analysis

was not feasible in the past due to the scarcity and high cost of genetic data. However,

contemporary researchers in large consortia now conduct large genome-wide association

studies (GWAS) to establish robust correlations between genetic markers and outcomes,

including education level, (Okbay and Rietveld, 2015, Lee et al., 2018), obesity (Locke

et al., 2015), risk aversion (Linnér et al., 2018), height (Yengo et al., 2018), and many

other important behavioral and health outcomes.

The most common genetic variant that researchers investigate are single-nucleotide

polymorphisms (SNPs). Each SNP represents a position on the DNA called a nucleotide,

which varies across individuals. By virtue of being diploid organisms, humans have 2

versions of each SNP (one per chromosome). Thus, SNPs are represented in genetic data

by variables that can take on only three values: 0,1, or 2. The specific realization depends

on how many risky alleles a person has at a given SNP1. The GWAS results are then

used to investigate more deeply the role of genes, environments, and their interaction in

the formation of important human behavioral and health outcomes.

Most current empirical studies that work with genetic data use GWAS summary

statistics to construct a single index that represents the individual genetic propensity for

1By risky allele I mean a specific realisation of a SNP that contributes to an outcome. For
more information about genetic markers, see Mills et al. (2020)
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a certain trait. In a recent study, Chabris et al. (2015) argues that all behavioral traits are

polygenic in their nature, which means that most human outcomes are generally affected

by many genetic markers with small-effect sizes. This presents a problem for empirical

studies, since there are billions of SNPs that need to be tested and often hundreds or

thousands of SNPs contribute to any given outcome. Therefore, scientists use a score,

often called a polygenic score (PGS), to decrease the dimensions of genetic data (see e.g.

Janssens et al., 2006, Belsky and Harden, 2019). A PGS index is simple to construct

and easy to implement and is used in empirical studies, which usually operate with small

sample sizes (e.g. 10,000 samples). To construct the PGS, researchers use the SNP

coefficients estimated in a GWAS, together with a survey’s SNP data in the following

way:

PGSi =

J∑︂
j

γGWAS
j SNPj,i

where γj are the GWAS coefficients, SNPj,i is a particular realization of SNP j for

individual i in a survey, and J stands for the total number of SNPs in the survey. The

advantage of using the single index score is that it allows estimation of the usual empirical

economic models without the need to estimate the individual SNP coefficients, which in

most cases would be infeasible due to the large dimensions of genetic data.

Although PGS are widely used, they have several shortcomings when applied to

economic models. Recently, Mostafavi et al. (2020) show that the predictive power of a

PGS depends on the specific sample it is applied to. This suggests that GWAS results

are not generally applicable across samples when it comes to PGS creation. Moreover,

Becker et al. (2021) shows that the PGS score weights derived from a large scale GWAS

may lead to measurement bias in the PGS. Moreover, social science researchers are often

limited to studying outcomes for which there are high quality GWAS. However, in some

cases, it is desirable to study related outcomes that do not necessarily correspond to

those for which there are GWAS results.

I study sources of heterogeneity in health outcomes that are distant from the outcomes

of the obesity GWAS, which I use to create a measure of genetic endowment. It has been

established that genetic markers may influence various outcomes (Mills et al., 2020).

Thus, in many cases, the SNPs that affect the outcome of interest to a researcher and

those that affect the outcome of a GWAS overlap. Furthermore, in many cases, the
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GWAS results for an outcome of interest are missing or are not of very high quality,

though there are results for a related outcome that can be used. In all these cases,

the outcome of interest to a researcher differs from the outcome of the GWAS. Hence,

even though the SNPs overlap, the GWAS coefficients of these SNPs are not likely to

be valid for the construction of a PGS, which leads to a measurement error bias in the

PGS. It is well known that measurement error can worsen the performance of standard

empirical models (Meyer et al., 2020, Meyer and Mittag, 2017), which indicates that PGS

measurement error caused by incorrect PGS weights may be one reason for the results

the of Mostafavi et al. (2020). In section 1.2 I elaborate on this problem further. In

section 1.4, I present a novel approach that solves the problems of the current method.

In economics, an important application of genetic data, and specifically the PGS, is

its use in gene-environment models (GxE). It is crucial to understand how individual

decisions and environmental factors interact with genes in order to understand the bio-

logical and social architecture of economic outcomes, and to inform the design of policies

that can reduce disparities in these key determinants of wellbeing, thus leveling a play-

ing field that is often tilted from birth by genetic differences. The effects of genes on

social outcomes arise from an interplay between differences in initial conditions, differ-

ences in the environment the individual is exposed to, and endogenous investment choices

that respond to the environment (Rosales-Rueda, 2014, Sanz-de Galdeano and Terskaya,

2019, Boneva and Rauh, 2018). The interplay between genes and the environment, or

nature and nurture, has long been debated in the medical (Bickel et al., 1953) and ge-

netic literature (Plomin, 1990). See e.g. Turkheimer et al. (2003), Rutter (2006), Ridley

(2003), Barcellos et al. (2018), Biroli (2015a), Liu and Guo (2015), Schmitz and Conley

(2016b), Domingue et al. (2015), Wedow et al. (2018) and Bierut et al. (2018) for recent

discussions and empirical examples. I extend the current literature by analyzing how an

increase in education may decrease health inequality that has been unequal from birth.

GxE models are also very closely related to the economic life-cycle literature. For

instance, Cunha and Heckman (2007) and Cunha et al. (2010) show that initial conditions

have an impact on a variety of skills. Moreover, this literature presents evidence of

a dynamic complementarity of investments, which means that investments are more

effective in building higher values of a skill in subsequent periods for higher values of that

skill in the current periods (Cunha and Heckman, 2007). This finding is consistent with
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gene-environment interactions because it implies that investment in a skill leads to higher

returns for individuals with stronger genetic predispositions for that skill. Additionally,

recent genetic literature shows that parental genes also affect a child’s outcome indirectly

through investments (Trejo and Domingue, 2019, Kong et al., 2018).

To my best knowledge, the GxE models are currently the best class of empirical mod-

els with the potential to study the dynamic complementarity between investments and

initial genetic conditions, self-productivity, and cross-productivity (Cunha and Heckman,

2007). These concepts are crucial to understanding the formation of important outcomes

such as skills or health. Ideally, the gene-environment interaction term in a GxE model

provides a direct estimate of the dynamic complementarity, because it provides informa-

tion on how effective an investment is likely to be based on initial genetic conditions.

Furthermore, due to the wide range of GWAS summary statistics, it is possible to

estimate the cross-productivity of the genetic predispositions for different skills or out-

comes. For instance, Barcellos et al. (2018) estimate the effect of a PGS for education

on body size and blood pressure together with the interaction effect of the PGS with

an additional year of schooling. I study cross-productivity by investigating how genetic

predispositions towards obesity influence the probability of an individual experiencing in-

cidences of cancer, heart attack, stroke, and diabetes later in life. Additionally, I present

evidence on the negative complementarity of initial genetic predispositions towards obe-

sity and years of schooling. Thus, this study explores how education moderates the role

of genetic predispositions in health formation. Due to data limitations, I am not able to

shed more light on the channels through which education can mediate the gene-health

relationship. However, there are several possible paths. For instance, higher education

may lead to better jobs which may lead to higher social status and income, which in turn

contribute to better health (Deaton, 2008). Alternatively, more education may lead to

more information about the consequences of an unhealthy lifestyle, which may promote

healthier lifestyles.

1.2 The Current PGS approach in GxE models

Although studying the roles of genes and their interactions with socio-economic variables

is an important strand of research, connecting biological markers including genes to
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social-science outcomes raises many conceptual and practical challenges. The arguments

above suggest that the true data-generating process is far more complex than the current

GWAS imply, which leads to problems in constructing a PGS. Interestingly, one of the

main shortcomings of the PGS is its implementation and interpretation in GxE models.

PGS are often interpreted as a genetic predisposition towards a certain trait. In GxE

models, the PGS coefficient and the coefficient of its interaction with an environment

are often of interest to social science researchers. By construction, PGS are a weighted

average of survey SNPs, in which the population of the survey generally differs from the

GWAS population.

As already mentioned, this may lead to problems of performance of the PGS in terms

of predictive power, but it also hinders the interpretation of the GxE model coefficients.

The construction of a PGS implicitly assumes that the GWAS coefficients are valid for

the sample in which the GxE is conducted. Moreover, using PGS in GxE models raises

some substantive difficulties in the interpretation of the results. The problems become

even more complex when the outcome in the GWAS differs from the outcome studied in

an analysis for which the PGS is constructed, which is the case in my analysis. In this

section, I show that using GWAS coefficients as weights in PGS construction generally

leads to a measurement error bias of the GxE model coefficients. Below, I discuss the

problem of applying GWAS estimates to construct a PGS when the outcome of the

GWAS differs from that of the GxE study2.

A) GWAS step

I first consider the GWAS step. N, J, and K denote the number of observations, the

number of SNPs, and the number of environments. Next, denote the SNP matrix as

GN×J , the environment matrix as EN×K and the interaction matrix as (E ×GΓ)N×K ,

where GΓ represents the PGS with ΓJ×1 being the matrix of J SNP coefficients (genetic

effects) γj . Then, general true and estimated GWAS models can be described as follows:

GWAS Stage :

Y = GΓsurveyβ + Eθ + E ×GΓsurveyρ+ ϵ (1.1)

2In section A of the appendix I show that the PGS is generally measured with error if the
true model is the GxE model and the weights used to create it are based on GWAS estimates.
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Y = GΓgwas + v (1.2)

E[Wϵ] = 0 (1.3)

E[Gv] = 0 (1.4)

W = [G E G× E]

where equation (1.1) represents the standard GxE model, which has been estimated in

many gene-environment applications and is here assumed to be the true data generating

process, and equation (1.2) represents the GWAS model. Equation (1.2) represents a

multivariate GWAS that generates SNP coefficients, which are then used to construct

the PGS 3.

B) Difference between GWAS and Survey Outcomes

In the setting of this paper, differences between Γgwas and Γsurvey are likely to arise

due to differences in outcomes between the GWAS step and the estimation step. In

this application, I use the BMI GWAS (Locke et al., 2015) to create an index of genetic

endowment, which I use in a GxE model that explores diseases. However, in general,

the difference in outcomes may arise for several reasons. For instance, it can be the case

that, in both stages, the two outcomes aim to provide information about the same or

similar substantive topics (e.g. education). However, the methodology and the nature of

the question may differ in the two samples, which may cause differences between their

outcomes. An interesting aspect of genetic data is that, with current technology, it is

possible to investigate the role of genetic predispositions for an outcome Ygwas on outcome

Y2. This is conceptually close to the cross-productivity idea, and more insight into this

type of analyses will shed more light on important human trait formation. I investigate

the role of genetic predispositions for obesity on diseases and medical conditions including

cancer and heart attack. In this case it is even more obvious that the weights from the

GWAS are not applicable to the PGS. To make the argument clear, consider a simple

3Note that I abstract from the additional problem that GWAS coefficients from univariate
regressions may be biased. Additional or different biases may arise if the true model does
not conform to the assumption of a simple linear interaction. These issues are likely to make
the problem even worse. Moreover, I acknowledge that the GWAS usually also includes other
variables such as sex, age, and principal components of the genetic relationship matrix. In this
example, I abstract from this as it does not affect the results in any significant way.
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setup where the GWAS stage and the estimation stage look as follows:

GWAS (First) Stage:

Ygwas = γgwas
0 + γgwas

1 SNP + ζ (1.5)

Estimation (Second) Stage

Y2 = β0 + β1PGS + ϵ (1.6)

For simplicity, I consider a case where only 1 SNP is related to an outcome Ygwas.

In the typical scenario, the GWAS stage produces SNP weight γgwas
1 by estimating the

model (1.5). In the second stage, a researcher uses survey data to construct the PGS

and uses it in the estimation stage. Note that the PGS is an estimate of a conditional

average of Ygwas, E[Ygwas|SNP ]. It follows that equation (1.6) amounts to Y2 = β0 +

β1E[Ygwas|SNP ] + ϵ. Also, there is an implicit relationship between Y2 and SNP such

that Y2 = γsurvey0 + γsurvey1 SNP + v. Abstracting from additional problems that may

lead to differences in the gammagwas
1 and γsurvey1 , the important implication of this

procedure is that if a researcher wants to estimate the effects of genetic predispositions

for trait Ygwas on trait Y2, then, if he or she uses the standard PGS = γgwas
1 SNP ,

it will be measured with error. Consequently, the standard method will not identify

the relationship between the true PGS∗ = γsurvey1 SNP and the outcome because of

measurement error in the PGS. The model, as described by equation (1.6) then becomes:

Y2 = β0 + β1
γgwas
1

γsurvey1

PGS∗ + ϵ (1.7)

Instead of the coefficient of interest β1, the model identifies plim ˆ︁β1 = β1
γgwas
1

γsurvey
1

. If the

GWAS estimates were portable across outcomes and samples then model 1.7 will identify

β1 but in general a case when γsurvey1 ̸= γgwas
1 , the estimate of β1 will be biased.

To overcome the problems described in this section, I estimate the effects of the GxE

on adult health using a new approach, which I present in section 1.4.

1.3 Data

To study the long-term relationship between initial genetic conditions, education, and

health, I use the UK Biobank data. Similarly to Barcellos et al. (2018), I apply this data
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and investigate the consequences of the ROSLA policy, which raised the school leaving

age. Specifically, I study the heterogeneous effects of the policy on health outcomes by

genotype. The UK Biobank is a prospective cohort study of more than 500,000 people

who were aged between 37 and 73 at the time of recruitment between 2006 and 2010

(Sudlow et al., 2015). It provides a unique combination of large sample size and rich

information about individual health and socio-economic outcomes. Survey participants

were asked to complete a self-reported touchscreen questionnaire and to participate in

a computer-assisted interview. Additionally, trained nurses collected their blood, saliva,

and urine samples together with additional physical and medical measures. Finally,

all participants were genotyped. I focus on health outcomes that were collected and

standardized across the recruitment centers. All medical variables were collected by

trained nurses.

To make the results of my analysis comparable to the benchmark model of Barcellos

et al. (2018), I first focus on the same health outcomes (body size, lung function, blood

pressure, and health summary index). I provide additional evidence on the heterogeneous

effects of the policy on severe diseases and health conditions: stroke, heart attack, cancer,

and type 2 diabetes. The final analytical sample consists of almost 260,000 white indi-

viduals with European ancestry born in England, Scotland, or Wales between September

1, 1947 and September 1, 1967. I focus on European ancestry only because GWAS sum-

mary statistics are available for this ancestry group. Similarly to the original study, I

focus on birth cohorts born within a ten year window from September 1957. Children

born in September 1957 were the first who directly experienced the policy change.

1.3.1 Outcomes

The first four outcomes analyzed in this paper are created using the same procedure as in

Barcellos et al. (2018). The first outcome measure is body size index. This is generated

using 3 measures from the data: body mass index (BMI), body-fat percentage, and

waist-hip ratio. The UK Biobank provides two measures of BMI. First is the standard

weight-to-height squared ratio. The second combines height with mass quantified using

electrical impedance. I create the final BMI measure by taking the average of these

two measures. The three measures are then combined into a single body-size index that
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represents a weighted average of the three measures. Before taking the weighted average,

I standardize the three measures for men and women by taking those born within the

1-year window before September 1957 as a reference. Then, similarly to Barcellos et al.

(2018), I use Anderson’s (2008) procedure, which uses input weights according to the

variance-covariance matrix of the input variables. Higher values of the index denote

poorer health status.

Second, I create a measure of lung function using spirometry-test data. A spirometer

is a machine that measures the speed and volume of air after a forced exhale. The data

provides information about three values of the spirometry test: (i) forced expiratory

volume in one second represents the volume in litres of air exhaled during the first second;

(ii) forced vital capacity represents the volume in litres of air exhaled during the forced

breath; and (iii) peak expiratory flow represents the fastest rate of exhalation measured

in litres per minute. Next, I standardize the three measures for men and women using

the same procedure as in the previous paragraph. The final measure of lung function is

a weighted average of the three spirometry measures constructed in the same way as the

body size index. Finally, the signs of the respective input measures are reverted so that

higher values of the index denote worse health status.

The third outcome is a measure of blood pressure. The data provides information

on two measures of both systolic and diastolic blood pressure. To create one measure

for each type of blood pressure, I first standardize the outcomes as previously. Then

I take the simple average of each pair of measures. Finally, I use the same weighted

average procedure as before and create a blood pressure index. Similarly to the previous

two indexes, higher values of the blood pressure index denote poorer health status. The

fourth outcome is a summary index of the three measures presented above, and represents

a weighted average of the three main outcomes.

In addition to the outcomes investigated by Barcellos et al. (2018), I present new

evidence of the effects of genetic endowment connected to BMI and of the heterogeneous

effect of the ROSLA policy by the BMI genetic endowment. Specifically, I investigate

the role of GxE on diseases and medical conditions that are linked to lifestyle and other

environments. Following the first part of the analysis, I choose diseases related to obesity.

The first outcome I study is the probability of having a heart attack. Second, I study

the probability of having a stroke. The third outcome is the probability of receiving a
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diagnosis of any kind of cancer and the fourth is a diagnosis of type 2 diabetes. All

the disease outcomes are provided in the UK Biobank medical history of the patients.

The UK Biobank provides two sources of information on occurrences of heart attack

and stroke. The first source is self-reported occurrence of the event in the presence of an

interviewer (a trained nurse). The second source is a touchscreen question about whether

the respondent was ever diagnosed by a doctor as having had a heart attack or stroke.

I construct the final measure using both sources such that the final outcome is a

binary variable with a value equal to one if either of the two sources provides evidence

that a health event occurred and zero otherwise. For the cancer outcome, I use only the

touchscreen question about whether a doctor ever diagnosed the respondent with any

form of cancer.

Finally, I identify those who have type 2 diabetes based on self-reported information

provided to an interviewer (a trained nurse). I study the origins of just type 2 diabetes

because this type can be affected by lifestyle, unlike type 1, which often emerges early in

life.

In Table 1.1 I show that the selected health problems correlate substantially with

body size. Table 1.1 shows that a one standard deviation increase in the body size index

is associated with an average increase of heart attack incidence of 0.8 percentage points.

A correlation coefficient that corresponds to approximately 60 % of the total baseline

heart attack incidence rate in the sample, which is 1.3 %. Furthermore, table 1.1 shows

that one standard deviation increase in the body size index is associated with a 0.4

percentage point increase in stroke and cancer incidence in the data. These associations

correspond to 40 % and 68 % of the total baseline stroke and cancer incidence rates in

the sample. Finally, table 1.1 shows that one standard deviation increase in the body size

index is associated with a 0.7 percentage points increase in the type 2 diabetes incidence

rate, an association that is even larger than the baseline type 2 diabetes incidence rate.

Table 1.2 shows how higher values of health indicators are correlated with severe

health conditions, which suggests that the relationship between indicators and health

problems is non linear. Specifically, for most of the health indicators, the health problems

are positively correlated with the third quartile and higher values of the standardized

health indicator distribution. Table 1.3 presents the sample using some simple descriptive

statistics and baseline health problem probabilities.
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Table 1.1: Health Outcomes and Body Size

Outcome: Body Size Coefficient
Heart Attack 0.008***

(0.000)
Stroke 0.004***

(0.000)
Cancer 0.004***

(0.000)
Type 2 Diabetes 0.007***

(0.000)
Number of observations: 259 380
Heteroskedasticity robust standard errors in parenthesis

Table 1.2: Health Outcomes and Health Indicators

Outcome: Heart Attack Stroke Cancer Type 2 Diabetes
Body Size (1stQartile) -0.010*** -0.005*** -0.0058*** -0.006***

(0.000) (0.000) (0.001) (0.000)
Body Size (3rdQartile) 0.016*** 0.008*** 0.008*** 0.013***

(0.001) (0.001) (0.001) (0.001)
Lung Function (1stQartile) -0.008*** -0.005*** -0.012*** -0.004***

(0.000) (0.000) (0.001) (0.000)
Lung Function (3rdQartile) 0.011*** 0.009*** 0.014*** 0.005***

(0.001) (0.001) (0.001) (0.000)
Blood Pressure (1stQartile) 0.011*** -0.000 -0.004*** -0.001*

(0.001) (0.000) (0.001) (0.000)
Blood Pressure (3rdQartile) -0.007*** 0.000 0.005*** -0.002***

(0.000) (0.000) (0.001) (0.000)
Number of observations: 259 380
Heteroskedasticity robust standard errors in parenthesis

Table 1.4: Descriptive Statistics: By Sex

Men Women

Variable Mean Standard deviation Mean Standard deviation

Body Size 0.000 1.023 -0.005 0.965

Lung Function 0.022 1.035 0.069 1.055

Blood Pressure 0.001 0.994 -0.007 1.006

Summary Index 0.011 1.025 0.026 1.027

Heart Attack 0.024 0.154 0.004 0.064

Stroke 0.012 0.110 0.008 0.086

Cancer 0.041 0.198 0.074 0.261

Type 2 Diabetes 0.009 0.093 0.005 0.068

Age 52.786 5.897 52.848 5.797

Number of observations: 116210 14317019



Table 1.3: Descriptive Statistics

Variable Mean Standard deviation
Body Size -0.003 0.992
Lung Function 0.048 1.047
Blood Pressure -0.004 1.001
Summary Index 0.019 1.026
Heart Attack 0.013 0.114
Stroke 0.010 0.098
Cancer 0.059 0.236
Type 2 Diabetes 0.006 0.080
Male 0.448 0.497
Age 52.82 5.842
Number of observations: 259 380

1.3.2 The ROSLA Policy

On September 1, 1972, the government of Great Britain raised the minimum school-

leaving age from 15 to 16 years old in England, Scotland, and Wales. The policy implied

a "cutoff" date of birth on September the first of 1957. Children born before this date

were not affected by the ROSLA policy and could leave school at the age of 15, whereas

those born after the cutoff date had to remain in school at least until they were 16.

Figure 1.1 demonstrates the relationship between the year of birth and the propensity to

stay in school until the age of 16. The figure also shows the discontinuous jump in this

propensity in the birth year affected by the policy. The design of the policy presents an

ideal environment to study the effects of an additional year of schooling on important

economic and health outcomes. This paper builds on the results of Barcellos et al. (2018)

and presents new evidence on the heterogeneous effects of the ROSLA policy on health

by different genetic risk levels for poor health, using a new two step nonlinear method

presented in section 1.4. Contrary to Barcellos et al. (2018), I do not have data on the

day of birth but only on the birth month. Thus, in my analysis I construct trends based

on the year and month of birth of the individuals.

1.3.3 Genetic Data

To investigate the heterogeneous effect of the ROSLA policy by genetic endowment, I

use individual SNP data provided by the UK Biobank. In the main analysis, I compare

results from the standard linear model with the newly proposed nonlinear GxE model.
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Figure 1.1: Discontinuity around the date of birth on the propensity to stay in
school until the age of 16.

As suggested above, I use two different measures of the genetic propensity to high BMI.

First, I use the standard PGS, which I create based on Locke et al.’s (2015) summary

statistics, and which I adjust for linkage disequilibrium (LD) 4 using LDpred. Finally, I

standardize the final PGS for BMI using the procedure from Barcellos et al. (2018)

In the nonlinear model, I do not use the GWAS weights to construct the PGS, but

rather estimate the individual SNP coefficients together with all other coefficients from

the GxE model. Finally, I standardize the selected SNPs the same way I standardize the

PGS5.

4LD is a problem of standard GWAS because the analyses test each SNP at a time. Thus,
if there is a non-zero covariance between different SNPs, the raw GWAS coefficient suffers from
omitted variable bias due to the omitted SNPs

5I describe the selection of the relevant SNPs in 1.5 section

21



1.4 The Gene-Environment Model

Here I introduce the GxE model that I apply to the data to study how an additional year

of education impacts the relationship between initial genetic conditions and health. To

overcome the challenges presented in section 1.2, I propose a two-step nonlinear approach

that aims to alleviate measurement error in the PGS and provide a more direct way

to answer the important question on how policy interventions can help to level health

differences that stem from different genetic predispositions.

My proposed two-step method is similar to current practice, except that it does not

construct the PGS using GWAS weights, but rather builds an index function that also

represents, an individual’s propensity towards an outcome. The proposed index is as

follows:

PGSnew = G[Y |SNP ] =
K∑︂
j

wY
j SNPj (1.8)

Y is the outcome of interest and wY
j are individual SNP weights estimated by the GxE

model, together with the main parameters of interest. The main challenge is to estimate

the individual weights. To make the problem feasible, I use GWAS summary statistics

to select only K SNPs in the analysis, such that K = {SNP |p− value <= p− value∗},
where the p-value stands for the p-value from the GWAS stage summary statistics. This

index does not depend on the GWAS weights and therefore represents a raw form of

initial genetic conditions, which makes interpretation of the GxE model coefficients more

straightforward and comparable to important economic concepts such as dynamic com-

plementarity, self-productivity, and cross-productivity (Heckman, 2007).

The new approach I use consists of two steps. In the first step, I use GWAS summary

statistics to select genome-wide significant SNPs for a given outcome. Standard GWAS

summary statistics are based on univariate regressions that have a high propensity for

false positive-discoveries. To address the problem of the SNP selection based univariate

regressions, I adjust the p-values using the COJO method developed in Yang et al. (2011).

COJO analysis aims to correct for the omitted variable bias of the GWAS estimates that

arises due to the linkage disequilibrium (LD) structure of the genetic data6 by considering

the survey data’s genetic correlation matrix.

6LD essentially means that the SNP variance-covariance matrix is not diagonal
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To overcome the potential problem of overfitting, I use the part of the analytical

sample that is not used in the main analysis to conduct the COJO analysis. One of the

major challenges of the new approach is to select the right amount of SNPs that are

related to the outcome of interest and make the estimation of the GxE model feasible.

While the standard method typically, uses all available SNPs to construct the PGS, my

new method is constrained by the amount of SNPs it can include for the GxE model

to be identified. This constraint may potentially lead to problems because most traits

are polygenic (Chabris et al., 2015), which means that many SNPs contribute to an

outcome. Hence, the potential downside of my new method is that the proposed index

function 1.8 may not include all the relevant SNPs, which may lead to skewed results.

However, unless the total number of variables in the GxE model is equal to or larger

than the number of observations, my new method identifies the coefficients of interest.

Hence, with large enough samples and with outcomes that are determined with relatively

small amount of SNPs, my new method delivers consistent results. However a proper

selection device is needed in order to select the correct amount of relevant SNPs that is

large enough to account for the polygenic nature of an outcome and at the same time

estimation of the model is still feasible. To accomplish this, I first run the standard

approach with the PGS created using GWAS summary statistics adjusted for LD using

LDpred (Vilhjálmsson et al., 2015). Next, I calculate the mean squared error (MSE) of

the standard GxE model and then choose the amount of SNPs for the new nonlinear

approach such that the MSE of the standard approach approximately equals the MSE

of the new nonlinear GxE model.

In the second step, after selecting the variables, I estimate the GxE model to provide

causal evidence about how education moderates the effects of adverse genetic predisposi-

tions on health. In this setup, the causality requires both G and E to be exogenous. The

standard approach in the genetic literature is to consider the genetic endowment as being

random, conditional on parental genotype. In most applications, this is still not feasible,

so to diminish the confounding of the G variables, researchers often include principal

components (PCs) of the genetic relatedness matrix into their models. The PCs serve as

controls for population stratification, which is a known confounding factor in the genetic

models. Next, in most economic applications of the GxE model, the environment E is

endogenous, which leads to inconsistent estimates of the causal parameters (θ0, ρ0). Re-
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cently, researchers have aimed to identify the causal effects by employing identification

strategies and focusing on the exogenous variation in E (Schmitz and Conley, 2017b,

2016a,c, Barcellos et al., 2018).

I analyse my GxE model specification and the performance of my new two step

nonlinear method, exploiting the exogenous shift in years of schooling resulting from

the ROSLA policy described above. To make the differences between the standard and

my new methods clear, I first analyze the effect of the interaction of the ROSLA policy

and the PGS on health outcomes using the standard method, which relies on GWAS

weights to construct the PGS. Next, I estimate the same model using my new method

and compare the results. For the purpose of this paper, I only consider the reduced form

equation, in which I use the date of birth to discriminate between those who were and

were not affected by the policy.

The major advantage of the two step nonlinear approach is that the interaction

coefficient provides more direct evidence of the heterogeneous effect of the policy by

genotype. Finally, the method overcomes the measurement error problem presented in

section 1.2 that arises when the outcomes in GWAS and in the GxE analysis do not align.

Finally, as equation (1.9) documents, my new method allows a researcher to study the

cross-effects of genetic predispositions, because the individual SNP weights are estimated

in the main specification. The β1 coefficient captures the cross-effect of the index (1.8)

on an outcome. Finally, the flexibility of my new method allows the individual SNP

(genetic) effects to differ for different outcomes, which overcomes most of the problems

mentioned in sections 1.2 and 1.4.

In the following, I apply a regression discontinuity design together with nonlinear

least squares to estimate the coefficients of interest.

Y = c+ β1PGSnew + θROSLA+ ρROSLA× PGSnew+

t1DoB + t2DoB
2 + t3DoB ×ROSLA+ t4DoB

2 ×ROSLA+ αX + ϵ (1.9)

where PGSnew is the genetic risk score; its weights are estimated by the model.

ROSLA represents the cutoff birth date of September 1, 1957, DoB stands for the date

of birth trend, and X is a matrix of other covariates. The X matrix includes 15 principal
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components of the genetic relationship matrix and their interaction with the ROSLA

dummy variable, male dummy, dummies for place of birth, and a second order polynomial

of age. I run model specification (1.9) for all outcomes presented in section 1.3. In the

analysis, I use the same 10-year bandwidth of the running variable as in previous studies

(Barcellos et al., 2018, 2019).

To estimate model (1.9), I first specify a sample loss function. For the purpose of

this paper, I minimize a standard sample mean square error, i.e., ˆ︂LossS =
∑︁N

i [yi − yî]

by combining the gradient descent algorithm with the Adadelta learning rate 7. One

potential issue of the nonlinear least squares estimator is that, depending on the starting

values of the parameters, it may converge to a local optimum, which is not necessarily

the global optimum. Note that model (1.1) to a large extent resembles a standard linear

model, which makes it attractive because the MSE loss function resembles the standard

convex loss function of the linear models, which alleviates the problem of the local optima

not being global. However, to ensure that I converge to a global optimum, in the analysis

I try several initial values of the parameters in the analysis. For more complex functions,

that may not have a convex loss function, the nonlinear nature of my new method may

lead to a set of parameters that do not represent the global optimum. In that case, it is

necessary to try various starting values and observe whether the coefficients converge to

the same values.

1.5 Results

Here, I present and discuss the results of the GxE model that appear in section 1.4. I

also compare the results from my new method to those of the benchmark GxE model

that uses a standard PGS as a measure of genetic endowment. Following the procedure

described in section 1.4, the estimation of the GxE model is accomplished in 2 steps.

The first step of the nonlinear two step approach involves selecting the significant SNPs.

I use Locke et al.’s (2015) GWAS summary statistic for BMI and run a COJO analysis

7The gradient descent algorithm is easy to implement, because it does not rely on a Hessian
matrix to calculate the step size, which makes it attractive for large models. Instead of the
Hessian matrix, I use the Adadelta method to calculate the step size of each iteration. Adadelta
adapts the step size of each coefficient according to the average gradient and previous step sizes.
Consequently, the algorithm is less likely to overshoot the optimum.
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(Yang et al., 2012). The COJO analysis corrects for the omitted variable bias of the

univariate GWAS regressions caused by omitted SNPs. A COJO analysis needs two

inputs, the GWAS summary statistics and the survey data, in order to estimate the

variance-covariance SNP matrix. To avoid overfitting, I use the UK Biobank sample,

which I do not use in the main analysis, to estimate the GxE model. This sample

consists of individuals of European ancestry who were born outside the time window

used in the main analysis.

I select the SNPs that I use in the main empirical model based on the COJO p-

value. The challenge is to select the optimal number of SNPs. Because the PGS usually

includes all the SNPs, it is likely that it will have greater predictive power. To select the

optimal p-value threshold for my analysis, I first run the standard GxE model using a

BMI PGS based on LDpred SNP weights (Vilhjálmsson et al., 2015). Then I calculate

the mean squared error (MSE) of this GxE model and select the number of SNPs such

that the MSE of the nonlinear model is close to the GxE linear model. Figure 1.2 shows

the comparison of the MSEs between the linear GxE model and the final nonlinear GxE

model, which uses a SNP p-value threshold of 0.001. The total number of SNPs selected

for the analysis is 337. After I select the optimal number of SNPs, I proceed with the

second step, in which I estimate the GxE nonlinear model (1.9).

Table 1.5 presents the first set of results of the new nonlinear model (1.9) and com-

pares them to the benchmark linear GxE RDD model, similar to the one estimated in

Barcellos et al. (2018), with a polygenic score based on LDpred weights. The results

in Table 1.5 show that the BMI PGS has a statistically significant positive impact on

later-life body size, lung function index, and blood pressure. Before the ROSLA reform,

the effects of the PGS was significant in all three cases at the 1% significance level. As

expected, the BMI PGS affects body size the most, out of all the outcomes investigated.

According to the new nonlinear model, the results suggest that before the ROSLA reform

an increase by one standard deviation in the BMI PGS led, on average, to a 0.141 stan-

dard deviation increase in body size. The results also suggest a cross-effect or pleiotropy

of the BMI genetic predispositions. The genetic predispositions towards obesity do af-

fect lung function and blood pressure later in life. The analysis shows that before the

reform, a one standard deviation increase in the BMI PGS led to worse lung function by

an average of 0.078 standard deviations and increased blood pressure by 0.072 standard
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Figure 1.2: Mean Squared Error Comparison Between the Benchmark Method
and my new method with Selected SNPs: Indicators

deviations. Table 1.5 also suggests that the benchmark model underestimates the impact

of these cross-effects.

Furthermore, the results suggest that the ROSLA reform intensified the role of genetic

endowment on intermediary health indicators. Specifically, the results show that after

the reform the effect of the genetic endowment increased by 0.014 standard deviations

for body size and 0.008 standard deviations for blood pressure. This effectively means

that for individuals who were affected by the reform a one standard deviation increase in

the BMI PGS led to, on average, a 0.155 increase in body size. Similarly, one increase in

the BMI PGS for this sub-population means an average 0.08 standard deviation increase

in blood pressure 8.

8In this paper, blood pressure is an index that accounts for both systolic and diastolic blood
pressure. For more information see section 1.3
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Table 1.5: Results A: Analysis of Health Indicators

Body Size Lung Function Blood Pressure Summary Index
New
Model

Benchmark
Model

New
Model

Benchmark
Model

New
Model

Benchmark
Model

New
Model

Benchmark
Model

BMI PGS × ROSLA 0.014*** 0.009** 0.003 -0.011** 0.008** 0.012*** 0.010** 0.004
(0.004) (0.004) (0.005) (0.004) (0.004) (0.004) (0.004) (0.004)

BMI PGS 0.141*** 0.160*** 0.078*** 0.027*** 0.072*** 0.034*** 0.101*** 0.102***
(0.000) (0.002) (0.000) (0.003) (0.000) (0.003) (0.000) (0.003)

ROSLA -0.018 -0.018 -0.023 -0.022* 0.013 0.015 -0.022* -0.020
(0.012) (0.012) (0.014) (0.013) (0.013) (0.012) (0.013) (0.013)

N 255395 255395 212287 212287 259151 259151 209519 209519
Significance levels: ***0.01 **0.05 *0.1
Standard errors: (i) OLS heteroskedasticity robust (ii) NLS bootstrapped with 1000 resamples according to MacKinnon (2006).

Interestingly, the comparison of the results from the benchmark linear model, which

includes a PGS based on LDpred weights, and the new two-step nonlinear model in-

troduced in this paper, suggests significant differences in the two approaches. In Table

1.8 I provide a statistical test of the equality of the coefficients from the two models,

based on bootstrapped T-statistics. As described in sections 1.2 and 1.4, the benchmark

model is likely to suffer from PGS measurement error bias induced by using incorrect

weights in the PGS construction. I apply my new approach, which does not use the

standard weights in the PGS construction. Consequently, the discrepancies between the

two approaches likely point to the measurement error bias of the benchmark method.

The largest discrepancies between the two methods appear in the blood pressure and

lung function models. The BMI PGS coefficient of my new method in the case of the

lung function model is almost three times higher than the corresponding coefficient of

the benchmark method for the lung function model. Similarly, in my new method, the

PGS BMI coefficient for blood pressure is twice as large as it is in the benchmark method

coefficient. This evidence points to the problem presented in section 1.2 that when the

outcomes in the GWAS and those from the main analysis differ, the PGS weights from

the GWAS generally lead to skewed results. The analysis performed in this paper is

better suited to estimate the crosseffect of genetic predispositions for BMI on outcomes

that do not measure obesity or body size in general. At the same time, Table 1.5 shows

only minor differences between the BMI PGS and BMI PGS × ROSLA coefficients for

body size. Note that this is an outcome that is conceptually closer to the one from the

GWAS that I use to construct the PGS index.

Overall, the evidence suggests that the benchmark model underestimates the effect
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that the genetic endowment for BMI has on outcomes that are conceptually more distant

from BMI. Finally, the results suggest that, if the outcome at hand is similar to that of

the GWAS, then the PGS delivers similar results to those of the my new method, which

does not use GWAS estimates to construct the index of genetic predisposition.

The results from the new two GxE method in Table 1.5 suggest that the genetic pre-

disposition for BMI leads to poorer results of intermediary health indicators. The results

also suggest that the ROSLA policy, which increased the compulsory years of schooling,

also increased the role of genetic predispositions in the formation of the health indica-

tors. However, it is necessary to acknowledge that health indicators are not the actual

diseases or severe medical conditions which lead to worse quality of life and sometimes

even death. Thus, poorer outcomes of the health indicators may not necessarily signal a

poorer quality of life due to health problems.

To investigate the ways in which the ROSLA policy and genetic predisposition to-

wards obesity contribute to adverse health conditions, I first analyze how these two inputs

influence the higher quantiles of the health indicators. Table 1.6 presents the results of

a version of model (1.9). The outcomes are binary variables, equal to one if the value of

the given health indicator is higher, or equal to the third quartile of the respective health

indicator distribution. This analysis is similar to Barcellos et al. (2019) and Barcellos

et al. (2018), and is another necessary step in the analysis of the links between health

indicators and actual health problems. In the analysis, I focus on the third quartile

because it provides a better insight into how the gene-education interplay contributes

to the higher, and therefore worse, values of health indicators. Table 1.6 provides the

first indicative evidence of the role of education as a mediating factor for unfavorable

genetic endowment in regards to health. The evidence in Table 1.6 is in accordance

with previous literature (Barcellos et al., 2018) and suggests that an increase in years

of schooling decreased the inequality in the higher values of the health indicators that

stems from genetic predispositions. However, this result is still only indicative, as it does

not provide concrete evidence of the mediating role of education on actual diseases and

dangerous health conditions. The top quartiles of distributions of health indicators are

indicative of a potential effect on worse health. However, one can argue that the exact

cutoff when the worse values of health indicators including BMI, blood pressure, or lung

function severely affect health is not clear. For that reason, below I analyse and discuss
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the mediating role of education on actual health conditions and diseases.

To continue with the discussion above and to shed more light on the mediating role of

education on health conditions, I connect the policy change and genetic predispositions

to illnesses and life threatening conditions. While the health indicators are indicative of

life expectancy and overall quality of life, it is important to study the consequences of

lifestyle and other environmental factors and genetic predispositions on the probability of

developing a severe life-threatening disease. This analysis sheds more light on the sources

of heterogeneity in the quality of life at later stages of life. Hence, I investigate how the

results on intermediary health indicators translate into the probability of developing

cancer, severe cardiac diseases, stroke, and type 2 diabetes, which are all outcomes that

severely disrupt the quality of life. Table 1.7 explores the relationship between the

ROSLA policy, BMI PGS, and obesity-related diseases.

Table 1.6: Results B: Outcome ≥ 3rd quartile

Body Size Lung Function Blood Pressure Summary Index
New
Model

Benchmark
Model

New
Model

Benchmark
Model

New
Model

Benchmark
Model

New
Model

Benchmark
Model

BMI PGS × ROSLA -0.004** -0.008*** -
0.012*** -0.006*** 0.008* 0.002 -0.011** -0.010***

(0.002) (0.002) (0.002) (0.002) (0.004) (0.002) (0.002) (0.002)
BMI PGS 0.054*** 0.059*** 0.032*** 0.013*** 0.072*** 0.011*** 0.041*** 0.040***

(0.000) (0.001) (0.000) (0.001) (0.000) (0.001) (0.000) (0.001)
ROSLA -0.007 -0.007* -0.009 -0.009 0.013*** 0.002 -0.010* -0.010*

(0.005) (0.005) (0.006) (0.005) (0.005) (0.005) (0.006) (0.006)
N 255395 255395 212287 212287 259151 259151 209519 209519
Significance levels: ***0.01 **0.05 *0.1
Standard errors: (i) OLS heteroskedasticity robust (ii) NLS bootstrapped with 1000 resamples according to MacKinnon (2006).

Table 1.7: Results C: Probability of Medical Conditions

Heart Attack Stroke Cancer Type 2 Diabetes
New
Model

Benchmark
Model

New
Model

Benchmark
Model

New
Model

Benchmark
Model

New
Model

Benchmark
Model

BMI PGS × ROSLA -
0.002*** -0.001*** -0.000 -0.001* -0.004** 0.001 -0.001 -0.000

(0.001) (0.000) (0.000) (0.000) (0.002) (0.001) (0.000) (0.000)
BMI PGS 0.005*** 0.002*** 0.002*** 0.001*** 0.010*** -0.000 0.002*** 0.001***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000)
ROSLA -0.001 -0.001 -0.001 -0.001 -0.002 -0.002 -0.000 -0.000

(0.001) (0.001) (0.001) (0.001) (0.003) (0.003) (0.001) (0.001)
N 259380 259380 259380 259380 258644 258644 182144 182144
Significance levels: ***0.01 **0.05 *0.1
Standard errors: (i) OLS heteroskedasticity robust (ii) NLS bootstrapped with 1000 resamples according to
MacKinnon (2006).
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The results from Table 1.7 indicate that genetic predispositions for BMI do positively

affect the probability of developing cancer or of having a heart attack. Specifically,

a one standard deviation increase in the BMI PGS increases the risk of heart attack

by, on average, 0.5 percentage points, and the risk of cancer by 1 percentage point.

Interestingly, Table 1.7 demonstrates that the ROSLA policy decreased the effect of

genetic predisposition on the probability of developing cancer by 40% (from 1 percentage

point to 0.06 percentage points) and the probability of having a heart attack also by 40%

(from 0.5 percentage points to 0.3 percentage points). Hence, the policy helped to level

the health disparities tilted from birth, by 40% on average for incidences of heart attack

and cancer.

Furthermore, note that Tables 1.7 and 1.8 present more evidence on the difference

between the novel and benchmark methods, which is consistent with previous results.

Specifically, when applied to an outcome that does not align with the GWAS step out-

come, the PGS coefficient from the benchmark method is attenuated compared to the

coefficient from my new method, which does not incorporate the GWAS estimates as

weights but rather estimates them together in the method. Moreover, figure 1.3 shows

the correlation between individual SNP coefficients from LDpred and my new method.

In the figure, the chosen SNPs are subset of all LDpred SNPs that are included in the

nonlinear model. Figure 1.3 suggests that the individual SNP coefficients from the two

methods are not correlated. This presents even further evidence in support of the hy-

pothesis that the coefficients from GWAS are generally not portable across outcomes.

In terms of magnitude the coefficients are similar to the effects of previous literature,

which finds no or a very small effect of education on health outcomes. For instance,

Clark and Royer (2013) finds that one additional year of education in early adolescence

decreases the probability of fair or poor health by 0.08%. Similarly, Barcellos et al.

(2019) finds no signifficant effect of one additional year of education on health indica-

tors, although they do find substantive effect on higher quantiles of the health indicator

distributions. Moroever, Davies et al. (2018) finds that a year of additional education

dicreases the risk of cancer, heart attack, and stroke by approximately 1%.

It is interesting to link the results from Tables 1.5, 1.6, and 1.7, as they suggest a

broader picture of health development. While the results of the first set suggest that edu-

cation may intensify the impact of genetic endowment on the average values of the health
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Table 1.8: P-values of the Tests of Equality of Coefficients

Pval: PGS GxE
Heart Attack 0.000 0.000
Stroke 0.000 0.006
Cancer 0.000 0.000
Type 2 Diabetes 0.000 0.014
Body Size 0.000 0.998
Lung Function 0.000 0.801
Blood Pressure 0.000 0.884
Summary Index 0.000 0.967
High Body Size 0.000 0.021
High Lung Function 0.000 0.000
High Blood Pressure 0.000 0.004
High Summary Index 0.000 0.000
P-values are based on bootstrapped T test using 1000 bootstrap samples

indicators, the story reverses for more extreme values of these indicators. More impor-

tantly, the analysis in this paper shows that the ROSLA intervention, which increased

the years of compulsory schooling, helped to diminish the health inequality that stems

from unequal initial genetic predispositions by decreasing the role of genetic endowment

on the probability of developing cancer or experiencing a heart attack. These results add

to the debate that genetic endowment is not primarily deterministic and, even for out-

comes such as cancer, it is possible to adjust the environment such that the probability

of actually developing a severe medical condition is lower than genetic predispositions

suggest. The results also show that a policy starts to moderate the relationship between

genetic predispositions and health indicators only when the values of the indicator are

rather high. Taken together with the moderation effect of the policy on the diseases, the

evidence suggests that individuals start to adopt preventive actions when the values of

the indicators are high enough that their health may clearly be in danger. Consequently,

the results suggest that the cost of an unhealthy lifestyle captured by the effect on health

indicators is nonlinear.

Previous research suggests that individuals derive utility from an unhealthy lifestyle,

but this also carries a cost of potential health problems in the future (Biroli, 2015b).

This cost, as shown in this paper, is heterogeneous by genetic endowment. If the cost
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Figure 1.3: Correlation between SNP Coefficients from my new method and
LDpred

of an unhealthy lifestyle is indeed nonlinear, one would expect individuals to engage in

preventive behavior when there is a higher risk of developing a severe disease. This claim

is supported by the evidence, as it is a direct implication of the moderation effect being

more important for higher values of the health indicators and for diseases.

1.6 Robustness Checks

This section presents robustness checks and investigates the validity of the regression

discontinuity design. A potential problem of the design is the strategic behavior of

individuals close to the cutoff. They may behave in such a way to fall in the desired

part of the threshold value of the assignment variable. In this case, the policy had been

in preparation since 1964 and was introduced in 1972. Thus, it is unlikely that there
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are substantial differences within the 1957 birth cohort as a consequence of the strategic

behavior of the parents. However, it is possible that, because the investigated outcomes

are related to death, the results might be distorted by survival bias. In this specific

scenario, individuals with higher genetic predispositions for obesity and with lower years

of education may be more prone to die early and hence not respond to the survey. To

investigate the possibility of survival bias, Table 1.9 shows the results of the b2 coefficient

of the balance test regressions Y = b0 + b1Cutoff + b2date− of − birth+ b3date− of −
birth2+b4date−of−birth×cutoff+b5date−of−birth2×cutoff+u. Table 1.9 suggests

that, in the treatment group, there are approximately one percent more males than in

the control group. Moreover, some differences can be seen in the principal components

that stand for population stratification.

Table 1.9: Balance Test

Outcome Cutoff Coefficient Robust Standard Errors
BMI PGS 0.004 0.012
Fraction of Males 0.012** 0.006
Fraction of Wales 0.001 0.003
Fraction of Scotland -0.001 0.003
PC1 0.019 0.013
PC2 -0.009 0.012
PC3 0.017 0.012
PC4 -0.018 0.012
PC5 -0.030*** 0.012
PC6 0.029*** 0.012
PC7 -0.024* 0.012
PC8 0.029** 0.013
PC9 -0.011 0.012
PC10 -0.020 0.012
PC11 -0.007 0.012
PC12 0.012 0.012
PC13 0.004 0.012
PC14 -0.009 0.012
PC15 0.006 0.012
Significance levels: ***0.01, **0.5 ,*0.1

The main analysis includes all variables from the balance check to ensure that they
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do not affect the results. Importantly, if individuals with less education are more likely

to develop a mortal disease, it is possible that the control group would be missing those

who died early, which would be reflected in the McCrary test of the distribution of the

running variable (date of birth) in the form of discontinuity around the cutoff. Figure

1.4 shows that there is not enough evidence to support this hypothesis.

Figure 1.4: McCrary Test

The results are based on the method developed by Cattaneo et al. (2020)

Next, I test for the difference in the PGS distributions between treated and the

controls. Differences in genetic predispositions may also hint at survival bias, as those

with a higher PGS for obesity may be more likely to die early and will not be included in

the sample. Figure 1.5 presents the results of the Kolmogorov-Smirnov test of equality of

the treatment and control distributions of PGS based on LD pred weights. The formal

test rejects the null hypothesis about the equality of the distributions. However, as figure

1.5 suggests, the actual difference is substantively negligible. To further document the
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substantively small difference in the two distributions, in Table 1.10, I show a formal test

of the equality of means of the two PGS distributions. The test suggests a substantially

negligible but statistically significant difference in means. However, due to the small

substantive difference, the bias that may potentially arise from this is in the order of

10−8, which does not affect the results in any meaningful way.

Figure 1.5

Table 1.10: Difference between the Control and Treatment Means of BMI PGS

Parameter Value T statistic
Mean Treatment BMI PGS −1.400× 10−8 -
Mean Control BMI PGS −1.336× 10−8 -
Difference −6.362× 10−10∗∗∗ -3.655

Next, I check how different definitions of bandwidth alter the results of the interaction
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term. Figure 1.6 shows the results of this test for the disease outcomes studied in Table

1.6. Similar graphs for the other outcomes can be found in the appendix section C. As

figure 1.6 suggests, the results are robust to smaller bandwidths. The main difference

between the 10 year, 3 year, and the data-driven Calonico et al. (2015) bandwidths stems

from the lower confidence intervals of the 10-year bandwidth’s RDD design, which is a

natural outcome since this specification includes more observations.

Figure 1.6: 3 year, 10 year, and Calonico et al.’s (2015) Bandwidth of the RDD
for GxE Estimates of the Model for Medical Conditions

The bars represent 95% confidence intervals.

The next set of robustness checks investigates whether the effect of GxE persists when

the cutoff changes. Table 1.11 shows the results. Finally, Table 1.12 presents the results

of the new two step method for individuals who did not attend college. As mentioned,
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the ROSLA policy raised the school leaving age from 15 to 16. This essentially means

that the affected group, or the compliant group, is composed of individuals who would

have left school had the policy not been implemented. Therefore, the group most affected

by the policy should be the population that did not attend college.

Table 1.11: Robustness Check: Different Cutoffs

PGS × Cutoff Heart Attack

September 1955 -0.002***

(0.001)

September 1959 -0.002*

(0.001)

September 1961 -0.001

(0.001)

September 1965 -0.001

(0.001)

PGS × Cutoff Cancer

September 1955 -0.001

(0.001)

September 1959 -0.005***

(0.001)

September 1961 -0.004***

(0.001)

September 1965 -0.005***

(0.002)

Significance levels: ***0.01 **0.05 *0.1

Standard errors: Bootstrapped with 1000 re-samples according to MacKinnon (2006).
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Table 1.12: Robustness Check: Probability of Negative Health Outcomes on the
Non-College Sub-population

Heart Attack Stroke Cancer Type 2 Diabetes

BMI PGS × ROSLA -0.004*** -0.001 -0.005*** -0.000

(0.001) (0.001) (0.002) (0.001)

BMI PGS 0.007*** 0.003*** 0.014*** 0.003***

(0.000) (0.000) (0.000) (0.000)

ROSLA -0.002 -0.002 0.003 -0.001

(0.002) (0.001) (0.003) (0.002)

N 167593 167593 167593 167593

Significance levels: ***0.01 **0.05 *0.1

Standard errors: Bootstrapped with 1000 resamples according to MacKinnon (2006).

1.7 Conclusion

This paper investigates the heterogeneous effect of the ROSLA policy by genotype to show

how it decreased health inequality that stems from initial genetic endowment. I exploit

the exogenous introduction of the ROSLA policy, which increased the school leaving age

by one year and effected an increase in the years of education of individuals who would

have left school earlier if allowed. The results suggest that the ROSLA intervention

decreased the role of genetic endowment in the risk of developing cancer or experiencing

a heart attack by 40%. Moreover, I show that initial genetic predispositions for obesity

are positively related to heart attack, strokes, cancer, and diabetes. Hence, the paper

shows that health inequality stemming from innate genetic endowment is malleable by

intervention in the environment that increases years of schooling. This knowledge sheds

light on how education policies and investments into education in general can help to

level a playing field that has been tilted since birth by innate genetic factors. The results

support an important claim in the literature on nature via nurture by showing that, even

though genetic factors affect severe diseases such as cancer or heart attack, these effects

may be moderated by behavior.

I also confirm findings from previous literature that the ROSLA policy moderates the

effect of genotype for higher values of health indicators, and I show that a similar effect
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applies to severe diseases. These two findings together suggest that the health indicators

represent a measure of poorer health. However, the results suggest that individuals

start to perceive the health indicators as a negative influence on their lives only after

a certain threshold. This in turn suggests that the costs associated with high values of

the intermediary health indicators is not linear. Additionally, given that individuals do

derive utility from an unhealthy lifestyle, and that its costs are not linear, individuals

may choose to work to counteract the high value of a health indicator only when there

is a high risk of developing a disease.

To measure the genetic endowment, I use results from the obesity GWAS conducted

by Locke et al. (2015). The standard approach is to construct a measure of genetic

endowment called the PGS, which is a weighted average of individual SNP data where

the weights are usually based on results from a GWAS conducted on different populations.

I demonstrate the problems with the current methods of constructing a PGS when

the outcome of the GWAS does not correspond to the outcome of a GxE study. To

overcome the problem, I present a novel method for studying GxE models that does not

rely on individual SNP estimates from a GWAS. The method consists of two stages.In

the first stage, I use the BMI GWAS results to select the relevant SNPs. In the second

stage I re-estimate the individual SNP coefficients in the GxE model.

More generally, the paper expands the scope of current GWAS to situations in which

the GWAS and survey outcomes of the GxE study differ. Unlike the standard approach,

the novel method presented in this paper does not make any implicit assumptions about

the portability of individual SNP weights across samples and outcomes. Instead, it uses a

GWAS as a selection device and then estimates the weights in the GxE model. The results

support the claim that my new method delivers estimates that have clear interpretations

and alleviate the measurement error bias of PGS constructed based on GWAS weights.
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Apendix

A Extensions of section 1.2

Consider the GWAS stage presented in section 1.2 by equations 1.1 - 3.4

GWAS Stage :

Y = GΓsurveyβ + Eθ + E ×GΓsurveyρ+ ϵ

Y = GΓgwas + v

E[Wϵ] = 0

E[Gv] = 0

W = [G E G× E]

Consequently, the probability limit of the estimated GWAS coefficients approach is as

follows
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Under assumption E[Wϵ] = 0

plim ˆ︂Γgwas = Γβ+plim
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(1.10)

Equation (1.10) shows that not including the environment variables from the GxE

studies may lead to omitted variable bias of the GWAS coefficients. The bias depends

on two terms. First, if the environment is correlated with genetic endowment G, then

the bias in ˆ︂Γgwas depends on the relationship between E with G, E with Y, E with G,

and E ×G with Y. Thus, the bias in the estimated SNP coefficients ˆ︂Γgwas is a complex

function of environments, including parental investments, individual life experiences, and

initial genetic conditions. Under the typical omitted variable scenario, it would be enough

to either include the omitted variable in the regression or to exploit the variation in G

that is exogenous. GWAS studies aim to partially solve the issue by including principal

components of the genetic relatedness matrix that controls for population stratification

(Price et al., 2006), which is one of the factors that leads to gene-environment correlation.

More recently, GWAS research focuses on family data samples to better control for

confounding factors such as population stratification, assortative mating, or omitted

parental genotype (Kong et al., 2018, Young et al., 2019).

However, it is important to note that the bias in equation (1.10) also depends on the

interaction term. Analogous to the argument presented in Solon et al. (2015), Deaton

(1997), if the true genetic effect is heterogeneous, then GWAS identifies some sample

weighted average of the heterogeneous genetic effects that is generally not the true average

genetic effect.

Consider a case where the environment is uncorrelated with the genetic endowment.

Assumption A.1 : E[EG] = 0

Moreover, assume that the true data generating process (DGP) can be described by
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equation (1.1). Then the population’s average genetic effect is equal to:

E[δi] = Γβ + ΓE[E]ρ (1.11)

Then equation (1.10) is written as:

plim ˆ︂Γgwas = Γβ + plim

(︄∑︂
i

GT
i Gi

)︄−1∑︂
i

[GT
i GiΓEi]ρ (1.12)

Equation (1.12) implies that, under the GxE model (1.1), the SNP coefficient esti-

mates are a weighted average of the heterogeneous genetic effects Γi = Γβ + ΓEiρ. Im-

portantly, the average genetic effects identified by a GWAS depend on the distribution of

the environment in the respective sample and on the conditional SNP variance-covariance

matrix GTG 9.

Equation (1.12) suggests that, under GxE heterogeneity described by model (1.1), the

estimated average genetic effects in a GWAS sample may not identify the population’s

average genetic effects. To better illustrate the problem and to analyze the sources of

the potential bias, consider a simpler case where E is just one discrete variable. For the

purpose of this paper, consider a policy that increases the years of schooling as an E

measure. In this paper, I analyze how such an increase in the years of schooling modifies

the health inequality that arises due to genetic endowment. However, if genetic effects on

health outcomes depend on years of schooling during childhood and adolescence, then the

estimated average genetic effects identified by equation (1.2) depend on the distribution

of years of education in the GWAS sample. To formalise the argument, suppose that E is

discrete and can take on a limited amount of possible values El such that l = {1, 2, ...., L},
representing whether a person was treated by the policy and consequently was exposed

to more years of education. Then Γgwas
i = Γgwas

l = Γβ + ΓElρ
10. Next, denote the

GWAS sample size by Ngwas and the sample size of each l group by Ngwas
l . Finally,

9In section A of the appendix, consider a case of independence of E and G, which shows that,
even under this strong assumption, the estimated coefficients may still lead to biased average
genetic effects

10Note that in this case ρ is just a scalar. Furthermore, for simplicity, I consider a case where
the heterogeneous effect is linear in E. The argument presented here even applies to a more
realistic example of a fully saturated model where Γgwas

l = Γβ +
∑︁L

l=1 ΓElρl
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suppose that as the sample size Ngwas grows, the proportions of each l groups remains

the same. Then, following the result of Deaton (1997) equation (1.12) can be rewritten

as a weighted sum of genetic effects in a GWAS sample

plim ˆ︂Γgwas = Γβ + plim

(︄
L∑︂
l=1

Ngwas
l

Ngwas
Ωgwas
l

)︄−1(︄ L∑︂
l=1

Ngwas
l

Ngwas
Ωgwas
l ΓElρ

)︄
(1.13)

Where I denote the variance-covariance matrix of SNPs as 1
Ngwas

l
GT

l Gl as Ωgwas
l

11.

Formula (3.8) illustrates several important points. First, the GWAS estimates of

the genetic effects are not consistent estimates of the population’s average genetic effect

(1.11) unless ρ = 0, which is equivalent to saying that the genetic effects are homogeneous

and equal to E[δl] = Γβ. Next, if ρ > 0, then the environment and the genetic endowment

complement and reinforce each other, which will lead to an overestimation of the average

genetic treatment effect. If ρ < 0, then the environment and genetic endowment mitigate

each other, which will in turn lead to underestimation of the average genetic effect.

This suggests that the GWAS estimates and PGS weights bias depend on the a priori

complementarity between genetic endowment and the environment.

On a more technical note, the bias in the estimated average genetic effects also de-

pends on the different genetic variance-covariance structure Ωgwas
l among different groups

in the environment. Interestingly, the bias does not disappear even if the genetic correla-

tion structure is similar among different values of the environment. To see this, consider a

case where Ωgwas
l = Ωgwas ∀ l. Then plim ˆ︂Γgwas = Γβ+

Ngwas
2

NgwasΓρ. Therefore, even if the

variance-covariance structure of the SNPs is the same across environments, GWAS may

still yield inconsistent estimates of the average genetic effects because the proportions of

the environmental groups may differ from the population proportions. However, if G and

E are independent terms, then proper weighting of the inverse population shares would

lead to a consistent estimates of the population’s average genetic effect. Even though in

this case, weighted least squares would yield consistent estimates, it is unlikely that the

independence of E and G holds. As economic research shows, individuals make strategic

choices and select themselves into different environments and make important decisions

11In section A of the appendix I consider a special case where E takes on only 2 values.
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about their human capital investments and about investments into their children. This

selection most likely appears in the very early stages of life or even in the prenatal period,

as parents also make choices about their offspring in the early stages of their development

(e.g. Rosales-Rueda, 2014, Sanz-de Galdeano and Terskaya, 2019, Attanasio et al., 2018,

Boneva and Rauh, 2018). Consequently, even the current advances in GWAS (Young

et al., 2019, Kong et al., 2018) that aim to deal with the omitted variable bias from

equation (1.10) will most likely not identify the population average genetic affects. In

the best case scenario, they will alleviate the bias caused by the omitted environment,

but they will not solve the issue of the omitted genetic effect heterogeneity.

Finally, equation (3.8) implies that (unless ρ = 0) GWAS estimates of the genetic

effects will in general identify a different weighted average of the individual genetic effects

than would a GWAS performed on survey samples used by researchers to estimate GxE

models. Consequently, the GxE applications test for ρ ̸= 0 but at the same time use

PGS built using SNP coefficients that would be correct for a given survey sample only if

ρ = 0. I illustrate the problem in more detail in section B of the appendix.

Extension of the omitted interaction effect formula (1.12). Assume a special case where

E and G are independent.

Assumption A.2 : E ⊥ G = 0

The independence assumption allows me to simplify equation (1.12) further to12:

plim ˆ︂Γgwas = Γβ + plim

(︄∑︂
i

GT
i Gi

)︄−1∑︂
i

GT
i GiΓ

∑︂
i

Eiρ

= Γ(β + plim
∑︂
i

Eiρ) (1.14)

Hence, in this case, each of the estimated J SNP coefficients γ̂gwas
j from a GWAS

12The independence is necessary because the bias term in equation (1.12) is a matrix of
higher order moments. Therefore, the standard mean independence assumption is not enough
to simplify the equation
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converges in probability to

plim γgwas
j = γj

(︄
β + plim

∑︂
i

Eiρ

)︄

Equation (3.13) shows that the independence assumption alleviates the problem pre-

sented in section 1.2 because the estimated average genetic effects do not depend on the

conditional variance-covariance genetic matrix GTG, Nevertheless, the estimated average

genetic effects still depend on the distribution of the environment in the sample. There-

fore, even under the independence assumption, the GWAS estimates do not generally

identify the population’s average genetic effect and there is no reason to believe that

the weighted average of the genetic effects identified by a GWAS is the correct weighted

average of these effects that a researcher should use in GxE analyses performed in survey

samples that differ from the GWAS samples.

Formula (3.8) represents a case where the heterogeneous effect is linear in E. To illus-

trate that the problem also applies to the saturated models, consider a case when E is

categorical and can take only 2 values (i.e. 0 or 1) for l = {1, 2} The formula above then

rewrites as:

plim ˆ︂Γgwas =

(︃
Ngwas

1

Ngwas
Ωgwas
1 +

Ngwas
2

Ngwas
Ωgwas
2

)︃−1(︃
Ngwas

1

Ngwas
Ωgwas
1 Γβ +

Ngwas
2

Ngwas
Ωgwas
2 (Γβ + ρΓ)

)︃
= Γβ +

(︃
Ngwas

1

Ngwas
Ωgwas
1 +

Ngwas
2

Ngwas
Ωgwas
2

)︃−1
Ngwas

2

Ngwas
Ωgwas
2 Γρ (1.15)

B Measurement Error Bias in the GxE Model

The problems presented above imply that the PGS weights a researcher should use for

a GxE model in a survey, ˆ︂Γsurvey, likely often differ from those that are actually used,
ˆ︂Γgwas. In consequence, the researcher estimates a miss-specified model of the following

46



form:

Yi = α+ [PGS∗
i +G(Γgwas − Γsurvey)]β+Ei × [PGS∗

i +G(Γgwas − Γsurvey)] ρ+Eiθ+ εi

(1.16)

where PGS∗ = GΓsurvey is the true PGS among the population of interest. This for-

malization shows that the PGS as currently constructed can be seen as a version of the

correct PGS that is affected by systematic measurement error. In line with this obser-

vation, some recent studies have pointed to the low predictive power of PGS, which is a

common consequence of measurement error. Its predictive power varies with the specifi-

cation of the outcome model and the population to which it is applied, which is likely to

occur if the measurement error arises from differences in the model specification, or if the

population of interest differs from the GWAS population (Mostafavi et al., 2020, Tropf

et al., 2017). Importantly, if the PGS is mis-measured as described by equations (3.14)

and (1.16) the estimated coefficients of the GxE model estimated in survey data will

generally suffer from measurement error bias that depends on the relationship between

genetic endowment and environments. Therefore, it is not classical measurement bias

that would generally lead to attenuation. Instead, the direction of the measurement error

bias will depend on the complementarity and covariance structure of the genetic endow-

ment and environment. To analyze the nature of the bias, consider a case of only one

environment interaction. First, introduce some notation. Denote the PGS constructed

from the GWAS weights as follows:

˜︂PGSi = PGS∗
i +Gi(Γ

gwas − Γsurvey)

Then the measurement error in the interaction term is:

E × ˜︂PGSi = Ei × PGS∗
i + Ei ×Gi(Γ

gwas − Γsurvey)

Denote the PGS measurement error as Gi(Γ
gwas − Γsurvey) = GiΓ

∆ and the matrix of

covariates as ˜︂Xi =
[︂
˜︂PGSi E E × ˜︂PGSi

]︂
.

Then the asymptotic measurement error bias of the GxE model (1.16) B = E[
[︂ˆ︁β ˆ︁ρ ˆ︁θ]︂]T−[︂

β ρ θ
]︂T

depends on the variance-covariance structure of the genetic matrix, the en-
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vironment and the difference between the true SNP coefficients and the GWAS SNP

coefficients. Given that I consider only one environment, the probability limit of the

model estimates is written as:

plim

⎡⎢⎢⎣
ˆ︁βˆ︁ρˆ︁θ
⎤⎥⎥⎦ =

⎡⎢⎢⎣
β

ρ

θ

⎤⎥⎥⎦+ plim

(︄∑︂
i

˜︂Xi
T˜︂Xi

)︄−1∑︂
i

˜︂Xi
T
(−GiΓ

∆)

⎡⎢⎢⎣
β

ρ

θ

⎤⎥⎥⎦

=

⎡⎢⎢⎣
β

ρ

θ

⎤⎥⎥⎦− plim

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(︄∑︂

i

˜︂Xi
T˜︂Xi

)︄−1

⎡⎢⎢⎢⎢⎢⎣
∑︁
i

˜︂PGSiGiΓ
∆ 0

∑︁
i

˜︂PGSiEiGiΓ
∆∑︁

i
EiGiΓ

∆ 0
∑︁
i
E2

iGiΓ
∆∑︁

i

˜︂PGSiEiGiΓ
∆ 0

∑︁
i

˜︂PGSiE2
iGiΓ

∆

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣
β

ρ

θ

⎤⎥⎥⎦
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Therefore, the B bias amounts to:

B=−plim

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(
∑︁
i

˜︂Xi
T ˜︂Xi)

−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑︁
i=1

J∑︁
k=1

J∑︁
j=1

Gi,kGi,jγ
gwas
k γ∆j 0

N∑︁
i=1

J∑︁
k=1

J∑︁
j=1

Gi,kGi,jγ
gwas
k γ∆j Ei

N∑︁
i=1

EiGiΓ
∆ 0

N∑︁
i=1

E2
iGiΓ

∆

N∑︁
i=1

J∑︁
k=1

J∑︁
j=1

Gi,kGi,jγ
gwas
k γ∆j Ei 0

N∑︁
i=1

J∑︁
k=1

J∑︁
j=1

Gi,kGi,jγ
gwas
k γ∆j E

2
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
β

ρ

θ

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1.17)

Equation (1.17) has several important implications for the estimated coefficients of

the GxE model. Note that if Γgwas = Γ∆ then the bias B goes to 0 because all the terms

inside the middle matrix of B will be 0. Importantly, using results from equations (3.8),

(3.14), and (1.17) it is easy to see that this condition holds if

plim

(︄
L∑︂
l=1

Ngwas
l

Ngwas
Ωgwas
l

)︄−1(︄ L∑︂
l=1

Ngwas
l

Ngwas
l

Ωgwas
l ΓElρ

)︄
=

plim

(︄
L∑︂
l=1

N survey
l

N survey
Ωsurvey
l

)︄−1(︄ L∑︂
l=1

N survey
l

N survey
l

Ωsurvey
l ΓElρ

)︄
(1.18)

Therefore, the measurement error bias will disappear if there is no heterogeneity in the ge-

netic effects (ρ = 0) or if the structure of the genetic relatedness matrix
∑︁L

l=1
Ngwas

l
NgwasΩ

gwas
l

48



resembles the structure of the survey genetic relatedness matrix
∑︁L

l=1
Nsurvey

l

Nsurvey
l

Ωsurvey
l . An

important implication of the above thought experiment is that, even if the environment

is exogenous in both samples, i.e., the GWAS sample and the survey sample, the mea-

surement error will not disappear. To see this, note that if the environment is orthogonal

to the genetic structure of the two populations (or samples) then Ωgwas
l = Ωsurvey

l = Ω

for all l, which is not enough to satisfy the equality in equation (1.18), which in turn does

not guarantee the measurement error bias B to be 0. In the previous section, I discussed

that it is unlikely that, in the GWAS step, the environment will probably not be orthog-

onal to SNPs in the genetic matrix G. However, in the survey, researchers often employ

identification strategies from econometrics that are built to identify causal effects. Note

that if assumption A.2 is satisfied (i.e. E ⊥ Gj ,∀j), then the middle matrix of equation

(1.17) simplifies and the measurement bias in ˆ︁ρ and ˆ︁β asymptotically approaches the

following:

B(ˆ︁β) = β
1

σ2G

⎛⎝ J∑︂
j=1

γgwas
j γ∆j σ

2
g,j + (J − 1)

J∑︂
k=1

J∑︂
j=1

γgwas
k γ∆j σg,k,j

⎞⎠ (1.19)

B(ˆ︁ρ) = ρ
1

σ2E

⎛⎝ J∑︂
j=1

γgwas
j γ∆j σ

2
g,j + (J − 1)

J∑︂
k=1

J∑︂
j=1

γgwas
k γ∆j σg,k,j

⎞⎠ (1.20)

Where σg,k,j denotes the covariance between SNPs k and j and σ2g,j denotes the variance

of SNP j. Note that, in order to obtain the results in (1.19) an(1.20) it is not enough to

assume no correlation between E and G. The result in (1.19) an(1.20) is most likely to

hold in an experimental setting where treatment and control groups are chosen completely

randomly. Although equations (1.19) an(1.20) imply that, even under independence, the

estimates of ρ and β in a GxE study would yield inconsistent estimates, in this special

case it is still possible to test for ρ = 0 even if the PGS is measured with error as described

above. Even though ρ and β are generally biased, their fraction will identify the true

fraction up to a scale that is equal to the E ang G respective variances.

ˆ︁ρˆ︁β =
ρ

β

σ2G
σ2E

Therefore, if G and E are independent at least in the survey sample, a researcher may
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conduct a statistical test for ρ
β = 0 which would essentially test for ρ = 013. It is impor-

tant to acknowledge that this is a very special case that relies on a strong assumption that

is unlikely to hold outside an experimental setting. Hence, a researcher should present

strong evidence that assumption 2 is likely to hold in his or her setting using proper tests

such as the test of conditional independence introduced in Mittag (2018) . In the gen-

eral case, the measurement will lead to biased estimates of ρ, β, andθ in the GxE studies.

13Note that, in this test, it is important to assume that β ̸= 0 which is a condition that is
likely to hold in most GxE applications.
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C Additional Figures

Figure 1.7: Mean Squared Error Comparison Between the Benchmark Method
and my new method with Selected SNPs: Medical Conditions

51



Figure 1.8: Mean Squared Error Comparison Between the Benchmark Method
and my new method with Selected SNPs: Binary Indicators
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Figure 1.9: 3 Year vs 10 Year Bandwidth of the RDD for GxE Estimates of the
Model for Continuous Indicators
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Figure 1.10: 3 Year vs 10 Year Bandwidth of the RDD for GxE Estimates of the
Model for Indicator Values Higher than 3rd Quartile of the Respective Indicator
Distribution
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Chapter 2

The Role of Gene-Environment Interaction
in the Formation of Risk Attitudes

Abstract

Risk preferences are an important feature of every individual’s decision-making process,

which has been treated as an exogenous and fixed parameter of economic models for a

long time. However, recent empirical economic literature suggests that risk aversion is

in fact an endogenous variable that may change throughout life. Despite recent efforts

to find factors that explain the formation of risk-preference, the empirical evidence is

inconclusive and does not provide a clear picture of its architecture. I investigate risk-

preference formation using a novel model class of gene-environment interactions. This

allows me to study the relationship between genetic endowment and previous experi-

ences of changes in the unemployment rate. This is the first study to shed light on the

complementary role of socio-economic factors and genetic endowment in the formation

of risk-preference. The aim of the paper is to deepen our understanding of the risk-

preference formation process in a way which was not possible in previous studies that

focused only on the socio-economic dimension of the problem. The results show that

only individuals with low genetic predispositions for risk tolerance are affected by the

changes in their unemployment-rate histories, whereas individuals with high genetic pre-
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dispositions for risk tolerance are not significantly affected. Hence, this paper presents

evidence that adverse economic situations accentuate the inequality in risk preferences

that originates from initial genetic endowment. This may ultimately lead to an increase

in inequality in health, wealth, income and other outcomes related to risk preferences.

2.1 Introduction

Attitudes towards risk (risk attitudes) fundamentally shape decisions. A risk aversion pa-

rameter is present in many economic models that aim to explain, for example, investment

decisions (e.g. Brunnermeier and Nagel, 2008). Furthermore, recent empirical research

has shown that measurements of fundamental risk aversion parameters are related to

many important outcomes including migration (Jaeger et al., 2010), self-employment

status (De Blasio et al., 2018), health outcomes (Dohmen et al., 2011), and many others.

Most current economic models assume that risk preferences are exogenous and fixed.

However, the current empirical risk-aversion literature has presented evidence that changes

in environments may influence preference for risk taking1. Specifically, the literature

shows that, among other factors, changes in wealth, financial crises, and natural disas-

ters lead to changes in risk attitudes (e.g. Page et al., 2014, Cameron and Shah, 2015,

Cassar et al., 2017, De Blasio et al., 2018, Hanaoka et al., 2018). However, the empirical

evidence is inconclusive and sometimes contradictory, which suggests that the relation-

ship between environments and risk attitudes is more complex 2. At the same time recent

advances in behavioral genetics and genoeconomics document that individual heterogene-

ity in risk-taking behavior is influenced to some extent by genetic endowment (Cesarini

et al., 2009, Benjamin et al., 2012). However, this strand of the literature does not take

into account the economic dimension of the problem, or the possibility that the genetic

and the economic sides may interact, which may skew their conclusions (Heckman, 2007,

Mostafavi et al., 2020, Houmark et al., 2020).

To shine new light on the discussion and provide a possible explanation for the mixed

evidence of the risk-aversion literature in empirical economics, this study brings the two
1By environments I mean the broad area of surroundings the individual is exposed to. These

may include social factors, natural factors, and others. Including environments into which indi-
viduals self-select.

2For a comprehensive discussion of the topic see Chuang and Schechter (2015).
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existing strands of literature together. It does so by investigating how risk attitudes are

formed by earlier life experiences and by genes, and by the interaction of the two factors.

If the genetic and the economic (or environmental) sides do interact, then not taking

them both into account may lead to a skewed and incomplete explanation and picture of

the architecture of risk attitudes.

Hence, the aim of this study is to help to understand the mixed evidence from the

empirical risk-aversion literature and help illuminate the overall risk-attitudes formation

problem. Additionally, the study addresses to what extent genetic endowment influences

risk attitudes. Although there are several gene-environment interaction studies that have

investigated the genetic architecture of many behavioral outcomes (i.e. phenotypes),

this is, to the best of my knowledge, the first study that investigates how environment

moderates the relationship between genes and elicited risk tolerance.

I use data from the Health and Retirement Study (HRS), which includes genetic

information about the respondents and income lottery questions that elicit individual

risk attitudes. As a measure of risk attitudes I create a risk-tolerance measure, which is

the inverse of risk aversion. To measure the genetic endowment, I follow the literature

and construct a single index measure called a polygenic score (PGS) (see e.g. Janssens

et al., 2006, Belsky and Harden, 2019), which captures individual genetic predisposition

for risk taking. As a measure of earlier life experiences I use individual life experiences

on the labor market. To overcome the potential endogeneity arising from individual

selection into experiences based on their risk tolerance, I exploit the variation across

birth cohorts.

Specifically, I merge the HRS data with the national unemployment rate from the

Bureau of Labor and Statistics and create a variable that captures the nationwide un-

employment rate growth that each individual faced from the year they were born until

the year of the survey. Moreover, following the seminal work of Malmendier and Nagel

(2011) I allow for each historical unemployment growth rate to have a different weight,

which is captured by a single parameter. This approach allows investigation of which

life experiences are the most formative. The other benefit of this approach is that it

allows the model to control for age and time fixed effects while estimating the role of life

experiences based on the birth cohort variation.

The effects of life experiences related to economic conditions on risk attitudes are
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subject to many studies. These life experiences can include financial crises, changes in

wealth, GDP growth, and adverse development of stock markets. However, similarly to

other domains the empirical evidence is mixed. For instance, in closely related papers,

Malmendier and Nagel (2011) and Malmendier et al. (2011) suggest that experiencing

unfavorable development of the stock market and financial crisis lead to higher risk

aversion.

Another closely related paper by Levin and Vidart (2020) finds no evidence for the

experience of GDP growth on risk attitudes but does find evidence that the volatility

of GDP growth has a positive effect on risk averse behavior. In contrast, a substantial

part of the literature suggests that the main source of heterogeneity in risk attitudes is

due to persistent differences between individuals and that risk attitudes do not change

in response to changes in income, unemployment status, or wealth (e.g. Sahm, 2012,

Brunnermeier and Nagel, 2008).

The goal of this study is to investigate whether individuals with different genetic

predispositions differ in their responsiveness to adverse economic shocks. The individual

heterogeneity in responsiveness may be one source of the inconclusive evidence, because

if the effect of an environment is moderated by genotype, then the estimates of the treat-

ment effects of the environment depend on the genetic composition of the sample. More

importantly, the current empirical models are not able to identify the effects of adverse

economic conditions for individuals who were endowed with lower genetic predisposi-

tions for risk taking. The model I investigate may further illuminate this heterogeneity,

which is important in order to better understand how adverse economic conditions affect

inequality in risky behavior.

The results document that genetic predisposition for risk tolerance positively affects

the elicited risk tolerance in my sample, and this effect does not disappear even if I

control for past experiences. In terms of magnitude, the estimate of the effect of genes

is similar to those for females, veteran status, and education. I do not find any evidence

that life experiences have a dire impact on elicited risk tolerance. However, I do find

evidence that the effect of life experiences varies with genotype. Specifically, I find that

individuals at and below the median of the distribution of the standardized polygenic

score for risk tolerance (low PGS) are substantially affected by past experiences, while

individuals above the median of the PGS distribution for risk tolerance (high PGS) are
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almost not responsive to past development of growth in the unemployment rate. The

low PGS individuals are, on average, willing to sacrifice around 30 percentage points less

of their income in order to play the risky option when they experience a one percentage

point increase in unemployment growth than high PGS individuals.

Furthermore, I show that the results do not change substantively when I change the

specification of the PGS group to quartiles. In this case the two bottom-quartile groups

are significantly less risk tolerant than the highest PGS group (above the third quartile).

Hence, my results show how genes and the environment jointly shape outcomes, implying

that adverse life experiences can amplify genetic differences This may lead to an increase

in the inequality in risk tolerance, which can ultimately be reflected in health, income and

many other outcomes related to risk tolerance. Thus, the results help us to understand

how changes in environments may further alter the differences between individual risk

tolerance that arise due to genetic endowment.

The rest of the paper is structured as follows. Section 2.2 describes the background

of genetic data analysis and related challenges. Section 2.3 describes the data and the

main variables of interest and presents robustness checks. Section 2.4 presents the model

and our identification strategy. Section 2.5 presents our findings and discusses their

implications. Finally, section 2.7 concludes.

2.2 Genetic Markers in Economic Research

For many decades, scientists have discussed the respective roles of genes and environments

in the formation of human outcomes. This debate is often summarised by the nature

vs nurture dichotomy. However, recent evidence shows that this debate is obsolete and

imprecise. Instead, new models have been proposed that capture a more nuanced rela-

tionship between outcomes, genes and socio-economic variables. These models allow for

genes and environments to interact in the formation of important human outcomes (phe-

notypes) (Turkheimer et al., 2003, Rutter, 2006, Heckman, 2007, Biroli, 2015a, Houmark

et al., 2020). Although the notion of gene-environment interaction has been discussed in

the past, it was not then feasible to investigate their importance in empirical models due

to the high cost of obtaining genetic data.

Recent decline in the price of genetic data collection and advances in genetics have
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lead to projects called genome-wide-asscociation studies (GWAS) (Okbay and Rietveld,

2015, Locke et al., 2015, Linnér et al., 2018, Lee et al., 2018). These are hypothesis-

free studies that aim to find robust relationships between genetic markers called single-

nucleotide polymorphisms (SNPs) and a phenotype (Schmitz and Conley, 2017a). This

and the recent availability of genetic data in many socio-economic surveys has opened

doors to investigate the questions that were previously not feasible to explore.

The new empirical studies have started to provide more insights into how genes and

environments complement or substitute each other in the vast areas of outcomes, which

include smoking behavior (e.g. Schmitz and Conley, 2016d), education (e.g. Conley et al.,

2015, Schmitz and Conley, 2017b), obesity (e.g. Biroli, 2015a, Schmitz and Conley, 2016b,

Barcellos et al., 2018), or skills (Houmark et al., 2020). This paper is one of the first

attempts to investigate how genes moderate the relationship between an environment

and elicited risk tolerance.

One of the main challenges of incorporating genetic data into social-science research

is their large dimensionality. Chabris et al. (2015) show that all behavioral traits are

polygenic in their nature, which means that most outcomes are affected by many genetic

markers with small effect sizes. Fortunately, external analyses called GWAS usually work

with samples of hundreds of thousands or millions of individuals, so they are suitably

powerful to estimate robust relatioships between individual SNPs and outcomes. The

results of GWAS are used by practitioners who work with survey data to construct an

index called a polygenic score (PGS)(see e.g. Janssens et al., 2006, Belsky and Harden,

2019). Many survey data now provide rich information about the respondents but lack

the number of observations necessary in order to find robust relationships between high-

dimensional SNPs and outcomes.

The attractiveness of a polygenic score is that it is a single index that captures

individual genetic predispositions for a given trait. Hence, using a polygenic score instead

of all the SNPs in empirical models, substantially decreases the dimensionality of the

models (from several thousand to only one variable). The basic ingredients of the PGS

are the SNPs from the survey and SNP association coefficients from the GWAS. Humans

possess a total of 23 pairs of chromosomes. This means that we have 2 versions of each

SNP (one per chromosome). Consequently, SNPs can take on only three possible values:

0,1, or 2. The concrete realization of the SNP variable depends on how many risky alleles
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a person has at a given SNP3. The PGS index is then commonly used as a variable that

captures genetic endowment or genetic predispositions for a given outcome and can be

interacted with a measure of an environment in the gene-environment (GxE) models.

2.3 Data

This paper uses data from the Health and Retirement Study (HRS). The HRS is a

nationally representative sample of the elderly US population over the age of 50. It was

launched in 1992 and its participants have been surveyed every two years since then.

Each wave of interviews contains information about approximately 20 000 individuals.

Additionally, every six years a new cohort of participants is introduced to the survey. This

paper uses information about individuals belonging to the following cohorts: "Children of

the Depression" cohort (CODA), born 1924-1930, "HRS" cohort (HRS), born 1931-1941,

"War Babies" cohort (WB), born 1942-1947, "Early Baby Boomers" cohort (EBB),born

1948-1953, and "Mid Baby Boomers" cohort (MBB), born 1954-1959. The purpose of

the HRS survey is to monitor the changes in economic conditions, health, and cognition

in the aging population in the US (Sonnega and Weir, 2014). This paper only studies

individuals born between 1929 and 1959. I do not include individuals born before 1929

because the imputed data on the unemployment rate from the Bureau of Labor and

Statistics ends in 1929.

I employ an easy-to-use version of the publicly available HRS data, which is available

at RAND HRS 4, together with information about individual genotype from the HRS and

nationwide unemployment-rate data from the Bureau of Labor Statistics. The Bureau of

Labor and Statistics provides information about the US unemployment rate only from

1947. In order to obtain precedent unemployment rates, I link the information from

Lebergott (1948) about the measured unemployment rates to the updated information

about the imputed unemployment rate from 1929-1946 5.

3A risky allele represents a specific realisation of a SNP that increases the chance or amount
of an outcome. For more information see Mills et al. (2020)

4The RAND HRS Data (Version P, 2016) was developed by the RAND company with funding
from the National Institute on Aging and the Social Security Administration, Santa Monica.

5The imputation study is available in the publications section of the Bureau of Labor and
Statistics
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2.3.1 Analytical Sample

The HRS collected DNA samples from respondents during interviews in 2006, 2008, and

2010. The DNA was extracted from saliva and genotyping was conducted using the

Illumina Omni2.5 Beadchip. Before the analysis, standard quality checks were applied to

the genotype data. These checks include the SNP Hardy-Weinberg Equilibrium (HWE)

p-value: p < 0.0001, the SNP missing rate ≤1%, individual missing rates ≤ 10%, and

minor allele frequency ≥ 1%.

Besides the quality control mentioned above, this paper also uses information about

the ancestry group provided by the HRS to select only individuals from European an-

cestry. Hence, the final sample consists only of individuals of European descent. This

is because, as mentioned for example in Tishkoff et al. (2009), individuals with African

ancestry form a group of genetically diverse populations. This diversity is reflected in

different linkage disequilibrium patterns and different minor allele frequencies across pop-

ulations. Consequently, these differences alter the relationship between a phenotype and

SNPs that was established by a GWAS performed on a population of European descent.

If the GWAS results were applied to construct a genetic risk score, also known as a

polygenic score, in a sample of individuals from different ancestry groups, the resulting

index of genetic risk would be noisy and lose a great deal of its predictive power.

In 1998 respondents from the birth cohorts used in the analysis were asked risk

attitudes related questions. In 2000, one in twelve individuals were randomly selected

to answer the questions. In 2004 and 2006 only individuals younger than 65 years were

asked the questions, and in 2002 only individuals from the EBB cohort were asked these

questions (Bugliari et al., 2016). Hence the final sample consists of 5243 individuals

observed across 5 interview waves, which amounts to a total of 9937 observations. Table

2.1 summarizes the main variables of interest.

2.3.2 Measurement of the Variables of Interest

A. Risk Aversion measure

Unlike the traditional approach in economics, where preferences are perceived as fixed

starting points and not malleable throughout life, a modern approach relaxes the fixed

nature of preferences and rather perceives them as malleable psychological traits (e.g.
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Table 2.1: Summary Statistics

All
mean sd

Risk Attitudes
Gamble Questions 0.165 0.201
Genes
PGS(standardized) 0.000 1.000
Demographics
Educ(years) 13.591 2.390
Age 57.512 5.333
Household Income 89.849 189.191
(yearly. thousands of USD)
Sex 0.593 0.491
Behavior
Smoking Now 0.185 0.388
Smoking Ever 0.577 0.494
Self-employed 0.192 0.394
Risky Assets 69.371 452.622
(thousands of USD)
Observations

Loewenstein and Angner, 2003). For instance, Becker et al. (2012) show that economic

preferences measures are likely to be complements of measures of the big five psychological

traits in explaining real behavior. Although many economic studies treat preferences

as malleable outcomes, it is still not clear which mechanisms lead to heterogeneity in

individual risk aversion and to changes in it. Moreover, there is lack of consensus in the

empirical literature about the effects of changes in various environments on risk aversion.

One reason for the contradictory results is the imperfect measurement of risk aversion.

Often the risk-aversion-survey measures also capture other factors such as expectations

about the future, beliefs, status quo biases, and others. Therefore, to properly study

risk aversion (or risk tolerance), it is necessary to have a clean measure of risk-taking

behavior. In this study I use income-gamble responses, which allow me to estimate the

effect of life experiences on a risk attitude measure net of expectations and other potential

confounding factors. This is because the income gamble questions explicitly state the
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probabilities of every scenario.

The main outcome variable of interest is a measurement of risk tolerance6, which is

derived from the responses to hypothetical HRS income lottery questions. The individ-

ual’s risk attitudes are then induced from the responses. From 1992 until 2006 the HRS

questionnaire included hypothetical lottery questions that asked participants to choose

between a job with a certain income and one that has a 50% chance of doubling the

individual’s income and a 50% chance of cutting it by a certain amount. The risk atti-

tudes can be induced from the switching point, where the respondents switch from the

risky option to the safe option. From 1992 until 1996 the safe option meant staying in

their current hypothetical job or switching to a risky job. In 1998 both alternatives were

presented as new job offers and the questions included two additional categories. For the

1992-1996 waves, the specific wording of the question is:

-1cm-1cm "Suppose that you are the only income earner in the family, and you have a

good job guaranteed to give you your current (family) income every year for life. You

are given the opportunity to take a new and equally good job, with a 50-50 chance it will

double your (family) income and a 50-50 chance that it will cut your (family) income by

a third. Would you take the new job?"

If the individual accepts the new job then a new question is presented with a higher

potential income cut. If the individual declines the new job a new question is presented

with a lower potential income cut. In the 1998-2006 the questions were changed to:

-1cm-1cm "Suppose that you are the only income earner in the family. Your doctor rec-

ommends that you move because of allergies, and you have to choose between two possible

jobs. The first would guarantee your current total family income for life. The second is

possibly better paying, but the income is also less certain. There is a 50-50 chance the

second job would double your total lifetime income and a 50-50 chance that it would cut

it by a third. Which job would you take − the first job or the second job?"

If the safe option is chosen, then the individual is asked to choose again between the two

jobs but this time the income cut is reduced to 20%. If the individual still prefers the

safe option, he or she is presented with a new question where the potential income cut

is reduced even further to 10%. If the individual chooses the risky option in the first

6Risk tolerance is the inverse of risk aversion.
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question, then the potential income cut in the next question is increased to a half. If the

individual chooses the risky option again then the potential cut is increased further to

75%.

This paper uses only information from the 1998-2006 waves because the questions

are framed as a choice between two new hypothetical jobs, while the older version was

framed as a choice between new and current hypothetical jobs. Hence, the older version

is likely to capture both risk aversion and status quo bias (Kimball et al., 2008). This

paper aims to obtain the cleanest available measurement of risk aversion that is available

and hence uses only the later version of the questions.

The main outcome variable is constructed from the responses presented in table 2.2.

From table 2.2 it follows that the values of the risk-attitudes variable coincide with the

point at which the individual switches from the safe to the risky option (e.g. individuals

with value 0.33 accept the safe option if the income cut is higher than one third and

when it is one third, they switch to the risky option). Hence, the higher the value of this

variable, the higher the degree of risk tolerance.

Although the income-gamble questions provide a clean measure of risk preferences,

the measure may still contain other factors including e.g. beliefs (Levin and Vidart,

2020). Hence, it may be the case that the income gable questions are still an imperfect

measure of risk-related behavior. However, Dohmen et al. (2011) show that the income

gamble questions that are often used in surveys to elicit risk aversion are correlated with

real risk taking behavior across many different dimensions. Furthermore, the authors

validated similar survey questions to mine with experiments and showed them to be

valid measures of risk attitudes. To present more evidence on this matter, I perform

simple tests to examine to what extent the HRS risk attitudes measure is related to

real outcomes. Table 2.3 shows correlations between risky investment decisions and

hypothetical lottery outcomes. Table 2.3 shows that the income gamble questions are

significantly related to actual behavior.

B. Life Experiences

The aim of this paper is to investigate how life experience, together with genetic en-

dowment, shape risk tolerance. The risk attitudes measure that we introduce above is

induced from gamble lotteries regarding hypothetical job offers. Therefore, it is natural
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Table 2.2: Risk Tolerance measures

Value of the Outcome Income Cut Accepted Income cut Rejected
0.75 75% -
0.5 50% 75%
0.33 33% 50%
0.2 20% 33%
0.1 10% 20%
0 - 10%

to choose a life-experience measure that is related to the labour market. One class of

possible environmental variables would be individual job histories. However, these mea-

sures can suffer from endogeneity because, for example, more risk-averse individuals may

select themselves into jobs with lower risk of being laid off and consequently experience

fewer spells of unemployment. To deal with the bias emerging from the selection of indi-

viduals into labor market environments based on their risk attitudes, I use an aggregate

measure of changes in unemployment rate as a life experience measure. To construct

the environmental measure, I merge the data on the unemployment rate from the Bu-

reau of Labor and Statistics with the HRS Data. Including the imputed data, I have

information about the US unemployment rate from 1929 to 2006, which was the year

of the last wave of the survey that contained the income-gamble questions. Figure 2.1

shows the development of the unemployment-rate growth in the US in this time period.

Note that the paper focuses on changes in the unemployment rate rather than on its

levels. This is because evidence from behavioral economics suggests that individuals are

more susceptible to changes in their environments than to levels (e.g. Kahneman, 1979,

Malmendier and Nagel, 2011).

I link the aggregate unemployment measure to every individual, such that the life

experience of each individual is captured as the history of aggregate changes in the un-

employment rate that they experienced since birth. Thus, the main source of variation in

the life-experience measure comes from the differences in birth years. The resemblance

of this approach to cohort studies implies several potential challenges as the main issue

with cohort studies is the linear dependence of year, age, and cohort effects. Further-

more, omitting one of the effects may confound the estimate of the remaining two. For
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Table 2.3: Correlation of Risk Tolerance and Various Real Life Outcomes

Risk Tolerance
Intercept 0.042**

(0.020)
Female -0.053***

(0.007)
Veteran -0.022**

(0.009)
Risky Assets 0.000

(0.000)
Income 0.000

(0.000)
Education Years 0.010***

(0.001)
Ever Smoked 0.012*

(0.006)
Smoke Now 0.003

(0.008)
Self-employed 0.066***

(0.008)

Nobs 9937
Adjusted R squared 0.048
Note: Individual level clustered stan-
dard errors in parenthesis. ∗ ∗ ∗p <
0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

example Dohmen et al. (2017) find that risk aversion increases with age, which is by

definition correlated with birth year and the year of an interview. Similarly, the time

of the interview may matter for the response. Some periods may, for example be less

volatile than others, which could be projected into a higher degree of risk tolerance for

everyone. Therefore, in order to separate the cohort effects from the time and age effects,

it is necessary to control for age and time in the analysis. However, this is not feasible

as the three variables are perfectly collinear (Heckman and Robb, 1985).

Another challenge linked to the historical unemployment rates is the dependence of

the effect of life experiences on the stage of the life cycle the individual is currently in. For

example, a significant increase in the unemployment rate may have a different effect for a
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Figure 2.1: Growth of the US Unemployment Rate

forty-year old worker with a secured job than for a young adult who is entering the labor

market. It follows that the experience measure should not be a simple average of growth

in past unemployment rates, but the specification should rather capture the possibility

that the unemployment rate shocks may have different effects in different periods of life.

One extreme specification would be to allow for each year of realized unemployment rate

growth to have a different effect. This specification is difficult to implement because

not only would it imply a high-dimensional empirical model, but also the number of

parameters to estimate would differ for each individual.

To address the two challenges mentioned in the previous two paragraphs, I use the
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methodology developed by Malmendier and Nagel (2011). The idea is to build a single-

parameter function of age, life experiences, and how long ago the experience was realized.

This function is essentially a weighted average of past experiences where the weight

depends on the age of the respondent, how long ago the experience was realized, and a

parameter λ that allows for different weighting schemes:

Ai,t(λ) =

agei,t−1∑︂
k=1

wi,t(λ, k) ∗∆Unemploymenti,t−k

Where wi,t =

[︄
(agei,t − k)λ∑︁agei,t−1

k (agei,t − k)λ

]︄
(2.1)

Equation (2.1) can flexibly capture the differential importance of historical growth in

unemployment rates without imposing too complex model that may be difficult to esti-

mate. The weight assigned to each past experience is captured by a parameter λ that can

be estimated from the data and serves as a discount rate of past experiences. If λ < 0

, then the weight is monotonically increasing and convex. Such a profile would imply

that early life experiences matter more than more-recent ones. If λ = 0, then each past

experience would obtain equal weight and equation (2.1) would become a simple average

of past experiences. If λ > 0, then the weight is monotonically decreasing and concave,

which means that the more-recent experiences matter more than the past ones. Finally,

if λ = 1, then the weight is linearly decreasing. To better illustrate the logic behind

the parameter λ, in figure 2.2 I show the weights as a function of time lags for different

lambdas for a representative fifty-year-old individual.

Finally, because the expression in equation (2.1) is a function of the unemployment

rate and a nonlinear function of age, it is possible to include controls for age and time in

the main specification, as I show in section 2.4.

C. Polygenic Score As described in section 2.2 most of the outcomes (phenotypes) of

interest to social scientists are in their nature polygenic. Hence, it is not generally feasible

to estimate the effect of the individual genes in survey data because of the lack of power

in these data sets. Instead, I adopt the standard approach from the behavioral genetic

literature that studies the effects of gene-environment interactions and construct a single

index measure that captures individual genetic risk, also known as a polygenic score.
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Figure 2.2: Weights with different values for λ

To construct the polygenic score, I use the summary statistic from the recent GWAS

conducted by Karlsson Linnér et al. (2019), together with information about genes from

the HRS. I then construct the polygenic score as follows

PGSi =

J∑︂
j

βjSNPi,j (2.2)

where i stands for individual and j stands for a SNP. The β coefficients are taken from

the GWAS summary statistic.

The discovery sample of the GWAS did not include the HRS data and was performed

on individuals of European descent. I do not use any trimming methods for the score

construction. Thus, the polygenic score includes all the SNPs that are in the HRS

and overlap with the SNPs from the GWAS. Moreover, in the analysis, I work with a

70



standardized polygenic score. Table 2.4 presents evidence on the predictive power of the

HRS polygenic score on both income-gamble questions and for some real-life outcomes.

Each row of table 2.4 shows a coefficient on the polygenic score from a regression of an

outcome on the polygenic score and the first ten principal components of the genetic-

relatedness matrix, which controls for population stratification (Price et al., 2006).

Table 2.4: PGS on Risk Tolerance and Real Life Outcomes

Outcome: PGS(standardized) Coefficient:
Lottery 0,008**

(0.003)
Self Employed 0.018**

(0.008)
Education (years) 0.05

(0.04)
Ever Smoked 0.03***

(0.009)
Smoke Now 0.013**

(0.006)

Nobs 9937
Note: Individual level clustered stan-
dard errors in parenthesis. ∗ ∗ ∗p <
0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

2.4 Empirical Model

In the analysis I explore the effects of life experiences, and polygenic score, and their

interaction, on the responses to income gamble questions. To model the life experiences,

I adopt the method developed by Malmendier and Nagel (2011) (described in more de-

tail in section 2.3.2). This section describes the heterogeneity in individual perception

of the past within the framework of the established model described above. There are

many potential reasons why individuals may remember their past differently, for exam-

ple, they may idealize their past (Schutz, 1962). Alternatively, the heterogeneity in how

individuals react to their experiences may come from their genetic endowment. This

paper investigates whether individuals who have a higher genetic predisposition for risk
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tolerance are resilient when it comes to adverse developments in the labor market, while

individuals who are genetically predisposed to be less risk tolerant are more careful and

more responsive to their past experiences. To investigate the heterogeneity in respon-

siveness to life experiences by genotype, I extend Malmendier and Nagel’s (2011) current

model by introducing a measure of genetic predisposition for risk tolerance and its inter-

action with the past-experiences measure. The general form of the model is described by

equation (2.3).

Riski,t = α1 + γ1Ai,t(λ) +
∑︁G

g δ1,g1PGSg(PGSi) +
∑︁G

g θ1,gAi,t(λ)× 1PGSg(PGSi) +Xi,tβ1 + ψ1,a + µ1,t + ϵi,t

(2.3)

where Ai,t(λ) is the measure of life experiences defined by equation (2.1). Because in the

case of this paper Ai,t captures the individual unemployment rate history, in what follows

I address this measure as "Unemployment" or "Unemployment history". 1PGSg(PGSi)

stands for the polygenic score dummy variable, which is equal to 1 if individual i belongs

to a specific part of the distribution of polygenic score PGSg and 0 otherwise. Finally,

X stands for other covariates, including the first 10 principal components of the genetic-

relatedness matrix, to control for population stratification. ψ1,a and ψ2,a stand for age

fixed effects and µ1,t and µ2,t stand for time fixed effects. Hence, the model allows me to

study the effects of the cohort differences in unemployment-rate growth net of time and

age effects. Finally, Riski,t stands for the responses to the income-gamble questions. I

estimate the model using nonlinear least squares. To capture the nonlinear relationship

between the interaction term and the risk-attitudes outcome, I assign individuals into G

genetic groups based on their polygenic score and estimate the main effect and the effect

of the interaction with unemployment rate histories for every polygenic score group.

1PGSg(PGSi) =

⎧⎪⎨⎪⎩1, if PGSi ∈ PGSg

0, if PGSi /∈ PGSg

The step-function approach is meant to approximate the true conditional mean

E[Y |PGS,A(λ)]. I choose to use the step function of the PGS because it fits the re-

lationship better than a simple linear function of the PGS. Specifically, as I show in more

detail in section 2.5, the relationship between the interaction of the PGS and unemploy-

72



ment rate history and risk attitudes is rather flat for high values of the PGS distribution

and spikes upwards for lower values of the PGS distribution. To capture different possible

functional forms, I consider 3 versions of model (2.3). First, I split the PGS by median

into two PGS groups. Second, I split the PGS by tercile into 3 groups. Finally, I split

the PGS by quartiles into 4 groups.

2.4.1 Identification and Basic Concepts

As stated above, the aim of the empirical model is to shed more light on how genetic

endowment and life experiences shape human risk attitudes. To better understand the

model a useful mental exercise is to link it to an ideal experiment. The simplest ex-

periment I have in mind is to compare four hypothetical scenarios for individual risky

behavior such that in all the scenarios individuals differ only in terms of their experience

and genetic predisposition for risk tolerance. In the first scenario individuals would have

low genetic predispositions for risk tolerance and experience adverse situations on labor

markets7. In the second scenario the individuals would experience favorable situations

on labor-markets but have low genetic predispositions for risk tolerance. In the third

scenario the individuals would experience adverse labor market development and have

high genetic risk for risk tolerance. Finally, in the fourth scenario the individuals would

have high genetic predispositions for risk tolerance and experience favorable situations

on the labor market. It is useful to think of the model as an approximation to the ideal

experiment because it simplifies the analysis of the potential shortcomings of the model

and its strength.

Model 2.3 allows for the heterogeneous effect of past experiences by genotype. Hence,

it provides more insight into discrepancies between the results from previous empirical

literature. The core idea behind gene-environment interaction is that some traits are

mainly affected if both suitable environments and suitable genes occur at the same time

(see e.g. Rutter, 2006). It follows that some environments may affect outcomes only for

people who are genetically predisposed to be susceptible to changes in those outcomes.

7Adverse situations on the labor market may be embodied by several factors including a
higher amount of the individual’s unemployment spells, and a bad match between an employer
and an employee that may lead to income loss or unemployment. In general I think of an adverse
situation as a series of adverse shocks that can lead to either income losses and or unemployment
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Thus, one possible reason for the mixed evidence in the empirical literature that investi-

gates the causes of risk aversion may be the heterogeneous treatment effect by genotype.

So far the main goal of the empirical risk-aversion literature was to find an average effect

on the treated (ATT) which is an average of the effects over all genetic groups:

ATT = EG|T [E[Y1 − Y0|T = 1, G]|T = 1]

However, if the fixed nature of risk aversion is relaxed, it is possible to perceive it as a skill

that can be harnessed. Therefore, as has been shown, for example, in Heckman (2007),

Houmark et al. (2020), the environment side and the genetic side may dynamically com-

plement each other. If true then omitting either of the two dimensions from the main

specification may lead to a skewed and incomplete picture of the risk preference forma-

tion. The ATT estimates from the contemporaneous empirical literature may, to some

extent, depend on the genetic composition of the sample if, for instance, only individuals

with a certain genetic predisposition for risk tolerance are susceptible to the change in

the environment, or if the effects have an opposite sign for individuals with different ge-

netic predispositions. At the same time, the behavioral genetics literature, which at best

considers the environmental channel and the genetic channel to contribute independently

to the risk-aversion preference, misses the point of possible dynamic complementarity of

the two dimensions. The proposed empirical model (2.3) aims to illuminate the com-

plementary relationship between initial genetic predispositions, environment, and risk

attitudes. In the rest of this section I discuss potential problems and constraints of the

empirical model, which allows me to better define the realm of insights the model can

provide.

A potential problem that may arise when estimating individual life experiences from

the survey data is reverse causality. In this setting, individuals may select themselves

into environments based on their degree of risk tolerance and consequently differ in

their life experiences. The empirical model overcomes this issue by focusing on the

unemployment rate at a national level. Although it is possible that individuals may

affect their environments I assume that no individual from the sample has sufficient

power to affect the aggregate unemployment rate. The downside of this approach is that

the model is only sensitive to nationwide historical changes in unemployment rates that
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affected everyone in the given cohort.

The nature of an empirical model that focuses on differences between cohorts implies

that the effect of life experiences may include other factors that differ between cohorts.

For instance Levin and Vidart (2020) argue that differences in smoking behavior across

cohorts may lead to differences in death rates and therefore also to differences in poten-

tial risk tolerances between treated and control groups 8. I include in the model other

explanatory variables that may capture additional differences between cohorts. However,

it possible that some unobserved cohort differences are still captured by my measure of

earlier life experiences.

Finally, given that this paper is a gene-environment interaction study, it also embodies

the threats that arise from using genetic data as described in section 2.2. The main

concern is the spurious correlation between genes and a phenotype due to population

stratification, which is essentially a special case of omitted variable bias. To address the

potential confounders that arise due to population stratification, I adopt the standard

approach of the gene-environment interaction studies and include the first ten principal

components in the regressions.

2.5 Results

In this section I document that genetic predispositions and past labor-market experiences

contribute together to the formation of risk tolerance. Furthermore, I show that not

taking into account the possibility of the complementary role of the two dimensions may

lead to incorrect inference about the architecture of risk tolerance. To support this claim,

I first consider a scenario that does not allow for the gene-environment interaction, thus

reflecting the nature vs nurture dichotomy. Such a model allows life experiences and

genetic predispositions to contribute independently to the risk tolerance measure. The

results are shown in table 2.5. The results suggest that the polygenic score influences

the responses to income-gamble questions. Specifically, a one standard deviation increase

in the polygenic score leads to a 3.5 percentage points increase in the share of income

the individual is willing to sacrifice in order to play the risky option in the lottery.

8I discuss the problem of differences in survival probabilities between birth cohorts in more
detail in section 2.6
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The coefficient of the past-life-experience measure is not statistically significant. Thus,

the results based on a simple model that does not take into account gene-environment

interactions suggest that past labor-market experiences play little role in forming risk

tolerance compared to the genetic factor. The result that earlier life experiences do not

contribute to risk attitudes, be it risk tolerance or risk aversion, is not uncommon in the

empirical literature (Chuang and Schechter, 2015). At the same time the results in table

2.5 are in accordance with the traditional notion that risk preferences are predetermined

and do not change over the lifetime. However, as I document in the rest of this section,

this conclusion is imprecise as it does not allow for the more dynamic relationship between

predetermined genetic predispositions and life experiences.

Following the discussion on the complementary role between genetic endowment and

environments (or choices), I next estimate the gene-environment model 2.3, which cap-

tures the idea that genes and life experiences may complement or substitute each other in

the formation of risk attitudes. Table 2.6 shows the results for 2 PGS groups9. Individuals

below the median polygenic score are labeled as a group with low genetic predisposition

for risk tolerance and individuals with a score higher than the median genetic score are

labeled as a group with high predispositions for risk tolerance.

The main effect of the low polygenic score group is negative and significant, which is

consistent with the results from table 2.5. The results show that individuals with low-

polygenic-score predispositions to risk tolerance are willing to sacrifice, by 3 percentage

points, less of their income in order to play the lottery than the high polygenic score

individuals. The coefficient of life experiences, which is captured by past unemployment

rate changes, and the lambda coefficient are not statistically significant. However, the

coefficient on the interaction term is both statistically significant and large in magnitude.

Taken together, the results provide a more detailed picture of the formation of risk

attitudes than models that take into account only either the genetic or socio-economic

part of the problem and do not allow for these two strands to interact. The results from

the gene-environment interaction model document that individuals with lower genetic

predispositions to risk tolerance who experienced unemployment growth are willing to

risk less than their counterparts who also experienced high unemployment growth but

9In section 2.6 I discuss additional model specifications and show that the main results hold
across these.
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belong to the group with high genetic predispositions for risk tolerance. The difference in

responsiveness to an unfavorable past between the two genetic groups is a 37 percentage

points share of income they are willing to sacrifice in order to play the lottery.

The results imply that individuals with a low polygenic score for risk tolerance are

willing to sacrifice less of their income in order to play a lottery when they experience

an increase in the overall unemployment rate than the high polygenic score group. At

the same time, individuals with a higher polygenic score are almost non-responsive to

unfavorable past experiences. While low-polygenic-score individuals are, on average,

willing to sacrifice less of their income, by 37 percentage points, when they experience a

1 percentage point increase in the unemployment rate, high polygenic score individuals

seem to be affected less by the past experiences10.

The last parameter of interest is λ, which captures the relative importance of more-

recent experiences relative to more distant ones. Table 2.6 presents suggestive evidence

that individuals discount past histories relatively more than more recent ones. However,

the estimate is rather noisy, which is reflected in its large standard error.

It follows from the discussion above that the effect of past experiences on risk at-

titudes is present only for individuals who are strongly genetically predisposed to be

risk averse. Individuals who have average or even high genetic predispositions for risky

behavior have a "thick skin", so for them past experiences play little role when they

decide if they should take a risk or not. An important implication of these results is that

negative life experiences may increase inequality between individuals who were born with

different genetic endowment. The inequality may arise because risk attitudes are related

to many real-life outcomes. The results also help to clarify the inconsistency of previous

studies that try to estimate the effects of changes in environments on risk attitudes. By

allowing for the interaction between genetics and the environment, the model uncovers

an important feature of the role of past life experiences on risk attitudes that would not

be possible under a simpler version of the model that does not include both dimensions

and their interaction.

10The difference in the responsiveness by the PGS group can be seen by adding the estimates
of the past unemployment-rate effect and the interaction effect together. However, this simple
arithmetic does not account for the confidence intervals. Therefore, I conclude that high polygenic
score individuals are, on average, less responsive to the unfavorable past experiences.
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2.6 Robustness Checks

This section discusses potential threats to identification of the coefficients of interest and

provides tests of these concerns. Moreover, this section tests different model specifications

to test for robustness of the results.

To address the robustness of the results, I examine additional possible PGS step-

functions. For that purpose, I next consider two additional versions of model (2.3).

First, I split the polygenic score distribution into terciles. The low genetic predisposition

risk group corresponds in this case to the observations below the first tercile; the average

polygenic score group corresponds to observations between the first and the second tercile

and the high polygenic score group corresponds to observations above the second tercile.

Formally:

PGSLow = {PGSi : PGSi ≤ Q(1/3)}

PGSAverage = {PGSi : Q(1/3) < PGSi < Q(2/3)}

PGSHigh = {PGSi : Q(2/3) ≥ PGSi}

where Q(p) is the corresponding quantile corresponding to probability p from F [PGS].

The finer structure helps to identify the nature of the relationship between the variables

of interest. It also allows to further investigation of the relationship between polygenic

score and risk tolerance 11.

The results for the PGS step function by terciles are presented in the first column of

table 2.7. The results indicate that the low polygenic score group is less risk tolerant than

the high polygenic score group. The average polygenic score group is more similar to the

high polygenic score group in terms of risk tolerance. Table 2.7 demonstrates that there is

neither statistical nor substantial difference between the average and high polygenic score

groups. Thus, the results confirm the previous finding that the effect of polygenic score on

risk tolerance is driven mainly by the low polygenic-score individuals. The interaction

term between both the average and low polygenic score groups are both statistically

11To uncover the relationship precisely, we would need to have a dummy variable for each
value of the polygenic score, but the score is continuous so this specification is not feasible.
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insignificant due to low precision of the estimates. However, the point estimates of the

two interaction terms suggest that the negative effect of past unemployment rate history

is greater for the lowest PGS group, which is in accordance with the results based on

the main specification presented in section 2.5. Individuals from the low PGS group are

willing to sacrifice, by 25.6 percentage points on average, less of their income in order

to play the lottery when they experience a percentage point increase in unemployment

history.

Next, I consider the quartile based PGS step function. Formally:

PGSLow = {PGSi : PGSi ≤ Q(1/4)}

PGSLowAverage = {PGSi : Q(1/4) < PGSi < Q(1/2)}

PGSHighAverage = {PGSi : Q(1/2) < PGSi < Q(3/4)}

PGSHigh = {PGSi : Q(3/4) ≥ PGSi}

The results for the model with PGS by quartiles are presented in column 2 of table

2.7. The pattern of the effects of the PGS score groups is again in accordance with

previous findings. Specifically, individuals from the lowest PGS group (below the first

quartile of PGS distribution) are, on average, willing to sacrifice 4 percentage points less

of their income to play the lottery than the highest PGS group (above the third quartile

of the PGS distribution). Individuals from the low-PGS group (between the first and

second quartile of the PGS distribution) are, on average, willing to sacrifice 3 percentage

points less of their income to play the lottery than the highest PGS group. The average

PGS group (between second and third quartiles of the PGS distribution) is very similar

to the highest PGS group in terms of risk tolerance. The coefficient for the average group

presents evidence that the difference in the income the individuals are willing to sacrifice

in order to play the lottery, compared to the highest PGS group, is -0.8 percentage points.

The coefficient is statistically insignificant and substantially small compared to estimates

of the lower PGS groups.

The interaction effects present further evidence on the heterogeneous response to the

unfavorable unemployment shocks by genotype. The effect of past unemployment histo-
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ries is largest for the lowest PGS group (-0.47). The estimate suggests that individuals

from the lowest PGS group (below the first quartile of the PGS distribution) are willing

to sacrifice 47 percentage points less of their income to play the lottery, than the high

PGS group when they have experienced a 1 percentage point increase in unemployment

rate history. The interaction of the low-PGS group (between first and second quartile of

the PGS distribution) suggests that individuals from this group are willing to sacrifice

43 percentage points less of their income on average to play the lottery, than the high-

est PGS group when they experienced a 1 percentage point increase in unemployment

rate history. Both estimates are of substantial magnitude and similar to the interaction

coefficient estimate from the main specification in table 2.6 (PGS groups by median).

The interaction-effect estimates from the two low-PGS quartile groups are statistically

significant on the ten percent significance level. This is mainly due to the low number of

observations in both groups compared to the main specification where these two groups

are merged into 1 (below median).

Nevertheless, together with the interaction effect estimate from column one, the re-

sults suggest that the interaction between the risk aversion PGS and unemployment rate

history is negative and quite substantial in magnitude. Finally, the estimate of the in-

teraction effect of the high average group (between the second and third quartiles of the

PGS distribution) suggests that there is no significant difference between this group and

the highest PGS group (above the third quartile of the PGS distribution). The discussion

of different model specifications implies that individuals who are below the median of

the PGS distribution are the most responsive to shocks in their unemployment histories,

while those above the median are less so. Hence, the main specification includes the PGS

step function by median.

Next I discuss a potential threat to identification that comes from the nature of the

HRS data. Because the survey focuses on population aged 50+ and, as mentioned in

section 2.3, this paper includes individuals born between 1929 and 1959, it is possible

that some respondents may not have survived until the data collection phase. Domingue

et al. (2016) show that the genotyped HRS sample differs in observables from the non

genotyped sample. This suggests that the genotyped HRS sample suffers from a mortality

related sample-selection problem. Moreover, Domingue et al. (2016) show that averages

of various polygenic scores differ by birth cohort which indicates a genotype-based sample
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selection.

The mortality-based selection that may arise due to non-random deaths of HRS

respondents across cohorts, may lead to a survival bias of the estimated GxE coefficient.

The main concern is that more-risk-tolerant individuals may be more likely to die from

their risky behavior. Consequently, the resulting bias of the GxE coefficient would be

positive. The other possible scenario is that the less-risk-tolerant individuals may be

more likely to die prematurely12. In this case the bias of the GxE coefficient would be

negative. To mitigate the survival bias, it is more appropriate to use variation across

birth cohorts that are close to each other in terms of birth year. Table 2.8 presents a

simple test of differential survival rates of individuals with different risk attitudes.

First, I address the concern that genetic predispositions for risk tolerance may lead to

higher risk tolerance, which may lead to higher death rates. This claim would be reflected

in different polygenic score distributions among the cohorts. Table 2.8 does not support

this claim as the means and standard deviations of polygenic scores are rather stable

across birth cohorts. Additionally, figure 2.3 presents a simple comparison between PGS

distributions across cohorts and further supports the claim that the PGS distribution is

rather stable across cohorts. Second, table 2.8 suggests that the risk tolerance, measured

by the income-gamble questions, is also stable across cohorts.

12For example they may achieve less wealth due to their low risk tolerance
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Figure 2.3: Risk Tolerance PGS Distribution by Cohorts

Another potential problem may arise in situations when individuals do not wish to

answer all the risk-aversion related questions or if they answer them fast, without thinking

too much about the lottery questions. Specifically in the income-gamble question, the

individuals may incline to always choose one of the extremes. Such a measurement would

be too noisy to provide any meaningful information about individual risk tolerance. In

figure 2.4 I provide evidence that this is not the case in the HRS survey.

2.7 Conclusion

This paper investigates how adverse life experiences influence the inequality in risk tol-

erance that stems from genetic endowment. To identify the role of adverse experiences,

I use data concerning the historical US unemployment rate. To capture the multidimen-

sional problem of genetic predispositions for risk tolerance, I construct a polygenic score

variable. Thus, the paper exploits the variation on the birth cohort level. I adopt a

non-linear model developed by Malmendier and Nagel (2011) that allows me to estimate

an effect of a cohort level variable while at the same time controlling for the age and

time fixed effects.
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Figure 2.4

Previous research shows that elicited risk tolerance is related to many real life out-

comes, which means that heterogeneity in the elicited risk tolerance has consequences

for inequality in health, income, or wealth. Consequently a substantial body of empirical

economic research has investigated whether and how changes in the environment influ-

ence risk attitudes. Despite this effort, there is little concensus on the matter. Hence,

the literature does not provide a clear message about whether preferences for risk taking

can change during life and, if they do, in what direction. Parallel to the discussion in eco-

nomics, there is a debate in behavioral genetics that investigates the genetic component

of the variation in risk attitudes. However, this strand of literature does not take into

account the potential interaction of genetic endowment with choices and environments,

which makes the conclusion incomplete and skewed.

This paper combines the knowledge of both strands of the literature and aims to esti-

mate a gene-environment model in the setting of risk attitudes, providing a more precise

picture of the architecture of risk attitudes. Specifically, the paper investigates whether

previous life experiences of changes in the unemployment rate affect risk tolerance and

83



how this effect varies for individuals with high and low genetic predispositions for risk

taking. Thus, the paper provides an important insight into the relationship between

adverse economic conditions and risk attitudes.

The results show that individuals with low genetic predispositions for risk tolerance

are, on average, 30 percentage points more susceptible to adverse shocks on the labor

market than individuals with high genetic predispositions for risk tolerance. Thus, the

paper demonstrates that individuals who have low genetic predisposition to risk tolerance

became less risk-tolerant in response to adverse changes on the labor market. In contrast,

individuals with high genetic predisposition to risk tolerance are not significantly by such

changes. Hence, unfavorable development on the labor market may further accentuate

the inequality in attitudes towards risk that arise because of differences in initial genetic

endowment. The increased inequality in risk aversion may lead to a further increase in

income inequality. The findings also suggest that, in order to uncover a more detailed and

precise picture of risk attitudes formation, it is necessary to take into account both genetic

and socio-economic factors. Although these two factors may contribute independently to

risk attitudes, an important feature uncovered by the paper is that they complement or

substitute each other in the risk-attitudes-formation model.
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Table 2.5: Role of life experiences and the PGS

Outcome: Risk Tolerance
Constant -0.093

(0.084)
Unemployment -0.119

(0.540)
λ 24.67

(0.997)
PGS(standardized) 0.035

(0.00)
Female -0.053

(0.000)
Veteran -0.016

(0.000)
Income 2.894× 10−8

(0.000)
Education(YRS) 0.008

(0.001)
MSE 0.039
Age FE Yes
Year FE Yes
Principal Components 10
Observations 9937
Note: p-values in parenthesis. To
calculate the p-values I used clus-
tered bootstrapping as described in
Cameron and Miller (2015).
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Table 2.6: Life experiences shape risk attitudes for individuals with low genetic
predispositions for risk tolerance

Gene-Environment Model
PGS below median -0.032

(0.001)
PGS below median × Unemployment -0.372

(0.043)
λ 1.749

(0.292)
Unemployment 1.027

(0.412)
MSE 0.039
Age FE Yes
Time FE Yes
Principal Components 10
Observations 9937
Note: p-values in parenthesis. To
calculate the p-values I used clus-
tered bootstrapping as described in
Cameron and Miller (2015).
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Table 2.7: Model Specification check: Different versions of the PGS step
function

(1) (2)
Gene-Environment Model PGS by tercile PGS by quartiles
PGS below 1st tercile -0.032

(0.004)
PGS between 1st and 2nd tercile -0.006

(0.583)
PGS below 1st tercile × Unemployment -0.256

(0.240)
PGS between 1st and 2nd tercile × Unemployment 0.066

(0.812)
PGS below 1st quartile -0.041

(0.001)
PGS between 1st and 2nd quartile -0.033

(0.005)
PGS bewteen 2nd and 3rd quartile -0.008

(0.536)
PGS below 1st quartile × Unemployment -0.477

(0.072)
PGS between1st and 2nd quartile × Unemployment -0.436

(0.080)
PGS between 2nd and 3rd quartile × Unemployment -0.155

(0.614)
λ 1.818 1.700

(0.327) (0.249)
Unemployment 0.836 1.116

(0.531) (0.382)
MSE 0.039 0.39
Age FE Yes Yes
Time FE Yes
Yes
Principal Components 10 10
Observations 9937 9937
Note: p-values in parenthesis. To calculate the p-values I used clustered bootstrapping as described
in Cameron and Miller (2015).
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Table 2.8: Cohort Comparison

All 1929-1935 1936-1941 1942-1947 1948-1953 1954-1959
mean sd mean sd mean sd mean sd mean sd mean sd

Risk Attitudes
Gamble Questions 0.165 0.201 0.146 0.201 0.170 0.208 0.167 0.205 0.165 0.194 0.153 0.184
Genes
PGS(standardized) 0.000 1.000 -0.003 1.030 0.016 0.990 0.019 1.009 -0.028 0.992 -0.017 0.991
Demographics
Educ(years) 13.591 2.390 12.874 2.504 13.214 2.480 13.580 2.423 13.967 2.230 13.662 2.226
Age 57.512 5.333 67.199 1.923 62.486 1.931 57.986 3.673 53.905 2.548 48.401 2.822
Household Income 89.849 189.191 56.352 63.534 79.982 192.318 85.135 94.735 103.808 273.237 109.574 162.435
(yearly. thousands of USD)
Sex 0.593 0.491 0.637 0.481 0.529 0.499 0.586 0.493 0.580 0.494 0.843 0.364
Behavior
Smoking Now 0.185 0.388 0.121 0.326 0.158 0.365 0.192 0.394 0.193 0.395 0.239 0.427
Smoking Ever 0.577 0.494 0.610 0.488 0.613 0.487 0.603 0.489 0.524 0.500 0.541 0.499
Self-employed 0.192 0.394 0.275 0.447 0.237 0.426 0.195 0.397 0.172 0.378 0.143 0.350
Risky Assets 69.371 452.622 106.783 367.301 65.064 216.952 81.038 636.184 56.262 298.878 46.846 407.299
(thousands of USD)
Observations
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Chapter 3

New Method to study Gene-Environment
Interaction in Empirical Economics Models

Abstract

Many socio-economic surveys have started to include genetic data about their respon-

dents, which has lead to new studies that investigate how environments and choices

interact with genetic endowments to form important economic, behavioral, or health

outcomes. To cope with the high dimensionality of genetic data, researchers often sum-

marize individual genetic information using an index for genetic predisposition called

a polygenic score (PGS). The index exploits information from genome-wide association

studies (GWAS), which establish robust correlations between genes and determinants of

economic wellbeing, health, and inequality: including preferences, smoking, obesity, and

education. The GWAS correlations are then used to construct a PGS for a given outcome,

which then often serves as a variable in empirical economic models. This paper revisits

the validity of the usage of PGSs in the framework of the widely used gene-environment

models and in the non-interacted models. First, I demonstrate that gene-environment

(GxE) interactions can severely distort the PGS index and thereby skew the results of

important parameters of GxE studies. To correct the bias that stems from omitted GxE

interaction in the GWAS, I propose a new two-step method to estimate GxE models and
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their non-interacted counterparts. The new method requires only information from a

GWAS to select the relevant genetic variables in the first step, and in the second step it

estimates the full GxE model jointly. Unlike the standard method, this procedure does

not rely on the GWAS estimates, which are often derived from a different population

than in the survey used for the main empirical specification. Hence, the new method

does not suffer from biases that stem from using GWAS estimates in the PGS index. In

the empirical application I show that measurement error bias can significantly distort

inference based on the standard GxE modelling approach. By not relying on the GWAS

estimates, the new method expands the scope of the current survey-based studies that

aim to incorporate genetic data into social research. The new method allows the study

of outcomes for which suitable GWAS are not yet available.
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Introduction

Recent technological progress has drastically reduced the cost of collecting genetic data,

allowing genetic information to be part of a wide range of medical and social-science data

sets. This technological progress has opened the door to new studies that aim to integrate

genetic data into social-science research. Recent studies examine whether factors such

as socio-economic status, education, or policy changes can mediate or amplify genetic

dispositions (Turkheimer et al., 2003, Liu and Guo, 2015, Biroli et al., 2017, Barcellos

et al., 2018, Barban et al., 2021). These studies often adopt methods from the natural

sciences, which when applied to social-science difficulties may lead to methodological

problems caused by endogeneity of choices.

This paper investigates the validity of the current modelling approach of genetic data

in social-science research and proposes an alternative technique that aims to solve some

of the shortcomings of the current approach. The two major classes of models that

introduce genetic data into economics are gene-environment interaction models (GxE)

and non-interacted models, which control for genetic endowment. In this paper I study

the properties of these two model types under typical social-science settings, which may

often suffer from omitted variable, selection, and measurement-error bias. Furthermore,

I propose a new two-step method that aims to solve the issues of the current approach

by using a split-sample approach. The two-step approach is necessary due to the high

dimensionality of genetic data. Hence, the first step serves as a variable selection step

and the second step estimates the actual model at hand.

Whereas my method deals with the high dimensionality of genetic data by estimat-

ing the model of interest in 2 steps, the current approach relies on external results, and

therefore on additional assumptions about model specification that may lead to biased

estimates when not met. First, the standard method uses results from external anal-

yses called genome-wide association studies (GWAS) that establish robust correlations

between many genetic variables called single-nucleotide polymorphisms (SNPs) and out-

comes. Second, the standard approach constructs a polygenic score index (PGS) (see

e.g. Janssens et al., 2006, Belsky and Harden, 2019) using the information about the

relationship between SNPs and an outcome from a GWAS. The PGS is a weighted aver-

age of SNP variables weighted by their relative importance, which is captured by GWAS
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coefficients. Finally, in a GxE model, the PGS is applied together with the interaction

with an environment1 factor such as mother’s education.

This paper adds to the discussion presented in Groero (2022) by focusing more on

the properties of standard gene-environments models when the outcomes of GWAS and

the study of interest do not substantially differ. This paper shows that even when

this condition holds, the standard use of PGS in the gene-environment models leads

to measurement error bias that stems from applying GWAS coefficients as weights in

the PGS construction. Moreover, contrary to the method introduced in Miao et al.

(2022), this method still adopts the logic of a single index measure that captures genetic

predispositions towards a certain trait. The method proposed in this paper imposes a

standard PGS x E structure to the gene-environment model, which allows for simple

interpretation of the interaction coefficient.

In the simpler model, the PGS is added as an additional control variable in an em-

pirical model. The problem with this approach is that the first step and the model

estimation step are built under different model specification assumptions and for differ-

ent populations. Hence, the relationships between SNPs and an outcome in the first stage

are likely to differ from the relationship in the second stage. For example, if a scientist

wants to estimate whether mothers’ education moderates or amplifies the role of genetic

predispositions for education, they need to rely on established estimates of the relation-

ship between individual SNPs and educational attainment to construct a PGS. However,

these estimates could be based on populations with a different distribution of mothers’

education than the survey population the scientist uses. For instance, in an extreme

case, if a GWAS was performed on a population of individuals with only low-educated

mothers, then using these estimates to create a PGS for individuals with highly-educated

mothers would lead to a measurement error in the PGS and biased estimates of the model

at hand.

I examine the nature of the bias the mis-measured PGS introduces to the GxE mod-

els. Specifically, I show that under GxE heterogeneity and correlation between genes and

environments, the GWAS coefficients are biased. This bias depends on the GxE rela-

tionship with an outcome and on the variance-covariance structure of the genetic data.

1Although I talk about environments in the text, other socio-econmic variables including
choices also belong into this category.
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This implies that, under GxE heterogeneity, GWAS coefficients are not valid weights for

the PGS used in GxE models. Consequently, including such a PGS in a GxE model

will generally lead to systematic non-classical measurement error bias. To overcome the

problem, I propose a new two-step approach, which produces a better measure of PGS

by estimating the individual SNP weights within the GxE model. The improved PGS

only requires information about the individual SNP significance level, which the GWAS

provides. Hence, the new approach treats a GWAS as a variable selection step similarly

to the principles of the sample splitting literature (e.g. Wasserman and Roeder, 2009).

Finally, in two empirical applications I demonstrate that such gene-environment

(GxE) interactions exist and can severely distort the predicted PGS, thereby skewing

the results of studies that simply interact a PGS with other variables. In the empirical

part of the paper, I focus on two types of samples. First, I test the differences between

the new method and the standard method in the Health and Retirement Study sample,

which is relatively smaller and far from the respective GWAS population. Second, I run

comparisons on UK Biobank sample, which is relatively large and closer to the target

GWAS population. Comparing the performance of the two methods on these two types

of samples allows me to assess whether the size of the bias of the standard method differs

when the target sample is closer or more distant from the target GWAS sample. This

provides more insight into which situation it still reasonable to use the standard approach

and when it is preferable to employ the new method proposed in this paper.

3.1 The Role and Usage of Genetic Data in Social

Sciences

For many decades scientists from a variety of fields have been interested in the role

of genes versus the environment on human behavior, health, skills, and other outcomes.

While early studies focused mainly on the dichotomy of the two sources (i.e. nature versus

nurture), more recent studies studies show that the relationship between environments, or

choices, and genes is much more complicated and in most cases the two sources may even

complement or substitute each other (Turkheimer, 2000, Turkheimer et al., 2003, Rutter,

2006, Heckman, 2007). Hence, recent studies focus on the gene-environment interaction
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(GxE) models to better understand how genes, together with environments and choices,

contribute to the architecture of important economic, health, or behavioral outcomes.

For recent examples of this literature see e.g. Turkheimer et al. (2003), Rutter (2006),

Ridley (2003), Barcellos et al. (2018), Biroli (2015a), Liu and Guo (2015), Schmitz and

Conley (2016d,c, 2017a,b), Domingue et al. (2015), Wedow et al. (2018), Barcellos et al.

(2018), Bierut et al. (2018).

One of the largest challenges of incorporating genetic data into economic research

has been their high dimensionality, cost of collection, and scarcity. This has changed in

recent years. Due to the drastic decrease in the costs of genotyping individuals, scientists

have formed large consortia that conduct large genome-wide association studies (GWAS).

These studies establish robust correlations between genetic markers and outcomes includ-

ing education (Okbay and Rietveld, 2015, Lee et al., 2018), obesity (Locke et al., 2015),

smoking (The Tobacco and Genetics Consortium et al., 2010), attitudes towards risk

(Linnér et al., 2018) and others. However, these studies establish only a basic correlation

between individual genetic markers called single-nucleotide polymorphisms (SNP) and an

outcome, without taking into account any interaction with the environment. Moreover,

GWAS do not account for the correlation between socioeconomic variables with genes,

which leads to omitted variable bias. Such a correlation may arise if, for instance, indi-

viduals self-select into environments based on their genetic endowment or make choices

based on their innate abilities.

Another problem of the GWAS is that they are generally conducted using a large

sample pool that does not necessarily represent the same population that the social

scientist is usually interested in. Finally, the outcomes analysed in a GWAS often do

not correspond exactly to those analysed by social scientists in the GxE models (or

in simpler non-interacted models, which include only the PGS without the interaction

term). Such an outcome mismatch leads to additional problems, discussed in Groero

(2022). Hence, when applied to different populations, indices based on GWAS results

may provide inaccurate measures of genetic endowment.

Nevertheless, social scientists use the information a GWAS provides to construct an

index of genetic predisposition for an outcome called a polygenic score (PGS). The need

to use the single index derives from the polygenic nature of most human traits (outcomes).

Chabris et al. (2015) establish that most human outcomes are affected by many genetic
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markers with small effect sizes. This presents a problem for standard empirical studies,

which usually work with surveys that contain at most several thousands of observations,

while there are billions of SNPs that need to be tested, and often hundreds or thousands

of SNPs contribute to any given outcome. Therefore, the PGS is a neat way of reducing

dimensionality (see e.g. Janssens et al., 2006, Belsky and Harden, 2019).

The basic version of the PGS is rather simple to construct. A reasearcher usually

only needs access to a survey that includes genetic data about their respondents and

GWAS summary statistics. The PGS is then constructed in the following way:

PGSi =

J∑︂
j

γGWAS
j SNPj,i

Where γj are the GWAS coefficients, SNPj,i is a particular realization of SNP j for

individual i in a survey, and J stands for the total number of SNPs in the survey2.

Even though PGSs are widely used, they have several shortcomings when applied

to economic models. Some recent studies have pointed to the low predictive power of

PGSs, which is a common consequence of measurement error. It has been shown that

the predictive power of a PGS varies with the specification of the outcome model and

the population it is applied to. This problem is likely to arise if the survey population of

interest differs from the GWAS population (Mostafavi et al., 2020, Tropf et al., 2017). The

heterogeneity of the genetic effects among environments raise important questions about

the external validity of the GWAS coefficients. The problem of external validity arises

from differences between the samples the genetic information was drawn from (survey

sample) and the GWAS sample from which the correlations with outcome variables are

obtained. These conditions are unlikely to hold in the presence of gene-environment

interactions. This implies that, under GxE heterogeneity, the GWAS weights of the

PGS are not generally applicable to other populations. This paper shows that, if the

PGS is mismeasured, the GxE model estimated from a survey’s data will generally suffer

2Note that each SNP represents a position on the DNA. Humans are diploid organisms, which
means that we all have 2 versions of each SNP (one per chromosome). Hence, every human SNP
can take on only three possible values: 0,1, or 2. The specific realization depends on how many
risky alleles a person has at a given SNP, where risky allele means a specific realisation of a SNP
that contributes to an outcome. For more information about genetic markers, see e.g. Mills et al.
(2020)
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from a measurement error bias that will depend on the relationship between genetic

predispositions and environments. This bias differs from classical measurement error

bias, which would generally lead to attenuation. Rather, the direction of the measurement

error bias will depend on complementarity and the covariance structure of the genetic

endowment and the environment.

3.2 The current PGS approach in the GxE models

Although studying the role of genes and their interactions with socio-economic variables

is an important strand of research that connects biological markers to social-science

outcomes. This research raises many conceptual and practical challenges. In the previous

section I mentioned several potential problems that the usage of GWAS results in PGS

construction may lead to. Nevertheless, PGSs are widely used and often interpreted as

a genetic predisposition for a certain trait. As such, they are used in the (interacted)

GxE models and in the (non-interacted) models that include only the PGS as a control

variable without interaction.

Section 3.1 noted that a PGS is a weighted average of survey SNPs where the popula-

tion of the survey generally differs from the GWAS population. As mentioned above, this

may lead to problems of performance of the PGS in terms of predictive power but it also

hinders the interpretation of the GxE model coefficients. The construction of a PGS im-

plicitly assumes that the GWAS coefficients are valid for samples where both interacted

GxE or non-interacted models are conducted. Moreover, using a PGS in both inter-

acted and non-interacted models raises some substantive difficulties in the interpretation

of the results. In Groero (2022) I argue that this may be a serious problem when the

outcome in a GWAS differs from the outcome studied in an analysis for which the PGS

was constructed. In this section I show that using GWAS coefficients as weights in PGS

construction generally leads to measurement error bias of the GxE model coefficients.

The heterogeneity of the genetic effects among environments raises important ques-

tions of the external validity of the GWAS coefficients. The problem of external validity

arises from differences between the samples which the genetic information was drawn

from (survey sample) and the sample from which the correlations with outcome variables

are obtained (the GWAS sample). These conditions are unlikely to hold in the pres-
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ence of gene-environment interactions and if the outcome in the GWAS sample does not

correspond to that in the survey sample.

To illustrate the point, consider a simple example where a researcher wants to study

the effect of mothers’ education on years of schooling for individuals with high and low

genetic predispositions to achieve high academic outcomes 3. To simplify the example

further consider the case when mothers’ education is binary and distinguishes moth-

ers with a college degree from those with lower educational attainment. Following the

standard method, a scientist would construct a PGS based on the educational attain-

ment GWAS and interact it with mothers’ education in a survey such as the Health

and Retirement Study (HRS). Also, for the sake of argument, assume that the GWAS

population consists of individuals with low-educated mothers only. Then, at best, the

GWAS identifies the effect of genes for individuals whose mothers have low educational

attainment. This means, that a follow-up study that aims to investigate the GxE inter-

action model can feasibly estimate the role of the PGS on education for individuals with

low-educated mothers but is not able to identify this effect for these individuals, unless

the role of genes is not heterogeneous in mothers’ education. This is because if the role of

genes depends on mothers’ education, then the PGS for individuals with highly-educated

mothers includes GWAS coefficients that are valid only for individuals whose mothers

have low education. Hence, the PGS for individuals with highly educated mothers would

be measured with an error. This case would then lead to a biased estimate of the GxE

coefficient in the follow-up GxE study.

Below I discuss in detail the two reasons the GWAS weights are not generally appli-

cable to the PGS in the survey samples that researchers typically use to estimate GxE

models4. I study the consequences of not accounting for the heterogeneous genetic ef-

fects for the GWAS parameters γ̂GWAS and for the GxE model parameters, β and ρ from

equation (3.1). First, I consider the GWAS step by analyzing the asymptotic properties

of the individual SNP coefficients under GxE heterogeneity. Second, I use the results

from the GWAS step to analyze the consequences of the heterogeneity of genetic effects

for the GxE analyses.

3A similar analysis is performed in section 3.5 and sheds more light on whether mothers’
education complements or substitutes the role of genes in the education formation process.

4In what follows I consider the GxE model. However, the arguments also hold for a simpler
non-interacted model.
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A) GWAS step

The first step of the PGS construction is the GWAS step. Let N, J, and K denote the

number of observations, the number of SNPs and the number of environments, respec-

tively. Next, denote the SNP matrix as GN×J , the environment matrix as EN×K and

the interaction matrix as (E ×GΓ)N×K , where GΓ represents the PGS with ΓJ×1 being

the matrix of J SNP coefficients (genetic effects) γj . Then, a general true and estimated

GWAS model can be described as follows:

GWAS Stage :

Y = GΓβ + Eθ + E ×GΓρ+ ϵ (3.1)

Y = GΓgwas + v (3.2)

E[Wϵ] = 0 (3.3)

E[Gv] = 0 (3.4)

W = [G E G× E]

where equation (3.1) represents the standard GxE model estimated in many gene-environment

applications (e.g. Schmitz and Conley, 2016d,c, Barcellos et al., 2018) and is here assumed

to be the true data-generating process, and equation (3.2) represents the GWAS model.

In equations (3.1) - (3.4) E stands for the Environment, G for the matrix of SNPs, and

GΓ for the PGS. Hence, β, θ, ρ are coefficients of the PGS, environment, and the GxE

interaction respectively. One way to think about the current GxE models is that they im-

plicitly test for model mispecification of the GWAS model. However, they do so by taking

the coefficients from the seemingly mispecified GWAS to construct the PGS. Equation

(3.2) represents a multivariate GWAS that generates SNP coefficients. These are then

used to construct the PGS 5. Consequently, the probability limit of the estimated GWAS

5Note that we abstract from the additional problem that the GWAS coefficients from uni-
variate regressions may be biased. Additional or different biases may arise if the true model does
not conform to the assumption of a simple linear interaction. These issues are likely to make
the problem even worse. Moreover, we acknowledge that the GWAS usually also includes other
variables such as sex, age, and principal components of the genetic relationship matrix. In this
example we abstract from this as it does not affect the results in any significant way.
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coefficients approach is as follows6:

plim ˆ︂Γgwas = Γβ + plim
(︁∑︁

iG
T
i Gi

)︁−1∑︁
iG

T
i Eiθ + plim

(︁∑︁
iG

T
i Gi

)︁−1∑︁
iG

T
i (Ei ×GiΓ) ρ

(3.5)

Equation (3.5) shows that not including the environment variables from the GxE

studies may lead to omitted variable bias of the GWAS coefficients 7. The bias depends

on two terms. First, if the environment is correlated with genetic endowment G, then

the GWAS coefficients suffer from omitted variable bias. The specific form of the bias in
ˆ︂Γgwas depends on the relationship between E with G, E with Y, E with G, and E × G

with Y. Thus, the bias in the estimated SNP coefficients ˆ︂Γgwas is a complex function of

environments or choices, including parental investments, individual life experiences, and

initial genetic conditions. For example, a possible omitted variable may arise if individ-

uals with unfavorable genetic predispositions for education may receive more attention

from their parents, and hence receive more parental investments in terms of time or other

resources.

In a model that would investigate the link between a SNP and education the lower ge-

netic predispositions for education are negatively correlated with the amount of parental

investment. This would lead to a negative omitted variable bias, provided that higher

parental investment leads to higher education. Under the typical omitted variable sce-

nario, it would be enough to either include the omitted variable in the regression or to

exploit the variation in G that is exogenous. GWAS studies aim to partially solve the

issue by including the principal components of the genetic relatedness matrix that con-

trols for population stratification (Price et al., 2006), which is one factor that leads to

gene-environment correlation. More recently, GWAS research has focused on family data

samples in order to better control for confounding factors such as population stratifica-

tion, assortative mating or omitted parental genotype (Kong et al., 2018, Young et al.,

2019). Even though these solutions alleviate some biases, neither of these adjustments

solves the omitted variable bias effectively. For a more rigorous analysis, one would need

to understand the data underlying the model and ideally include E in the baseline GWAS

6The derivation of equation (3.5) is in section A of the appendix
7Note that in the best case scenario of no bias, GWAS are able to identify the Γβ term,

which is a joint effect of any given SNP multiplied by the overall effect of the PGS.
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model.

However, it is important to note that the bias in equation (3.5) also depends on

the interaction term. Analogous to the argument presented in Solon et al. (2015) and

Deaton (1997), if the true genetic effect is heterogeneous then the GWAS identifies a

sample weighted average of the heterogeneous genetic effects that is generally not the

true average genetic effect.

Consider the case where the recent adjustments (e.g. including family fixed effects)

deal with the omitted variable bias discussed above. Then the environment is uncorre-

lated with the genetic endowment.

Assumption 1 : E[EG] = 0

Moreover, assume that the true data generating process (DGP) can be described by

equation (3.1). Then the population average genetic effect is equal to:

E[δi] = Γβ + ΓE[E]ρ (3.6)

Then equation (3.5) writes as:

plim ˆ︂Γgwas = Γβ + plim

(︄∑︂
i

GT
i Gi

)︄−1∑︂
i

[GT
i GiΓEi]ρ (3.7)

Equation (3.7) implies that under the GxE model (3.1) the SNP coefficient estimates

are a weighted average of the heterogeneous genetic effects Γi = Γβ+ΓEiρ. Importantly,

the average genetic effects identified by a GWAS depend on the distribution of the envi-

ronment in the respective sample and on the conditional SNP variance-covariance matrix

GTG 8.

Equation (3.7) suggests that under the GxE heterogeneity described by model (3.1)

the estimated average genetic effects in a GWAS sample may not identify the population-

average genetic effects. To better illustrate the problem and to analyze the sources of the

potential bias, consider a simpler case where E is just one discrete variable. For example

8In section B of the appendix consider a case of independence of E and G and show that even
under this strong assumption the estimated coefficients may still lead to biased average genetic
effects
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E can be a policy that increases years of schooling. In a typical GxE study a researcher

may be interested in estimating the heterogeneous effect of such a policy by genotype on

future income or health. However, if genetic effects on outcomes of interest depend on

years of schooling during childhood and adolescence, then the estimated average genetic

effects identified by equation (3.2) depend on the distribution of years of education in

the GWAS sample.

To formalise the argument suppose that E is discrete and can take on a limited amount

of possible values El such that l = {1, 2, ...., L}, representing for example whether a person

was treated by the policy and was consequently exposed to more years of education. Then

Γgwas
i = Γgwas

l = Γβ + ΓElρ
9. Next, denote the GWAS sample size by Ngwas and the

sample size of each l group by Ngwas
l . Finally, suppose that as the sample size Ngwas

grows, the proportions of each l groups remain the same. Then following the result of

Deaton (1997), equation (3.7) can be rewritten as a weighted sum of genetic effects in

the GWAS sample.

plim ˆ︂Γgwas = Γβ + plim
(︂∑︁L

l=1
Ngwas

l
NgwasΩ

gwas
l

)︂−1 (︂∑︁L
l=1

Ngwas
l

NgwasΩ
gwas
l ΓElρ

)︂
(3.8)

where I denote the variance-covariance matrix of SNPs as 1
Ngwas

l
GT

l Gl as Ωgwas
l

10.

Formula (3.8) illustrates several important points. First, the GWAS estimates of the

genetic effects are not consistent estimates of the population average genetic effect (3.6)

unless ρ = 0, which is equivalent to saying that the genetic effects are homogeneous and

equal to E[δl] = Γβ. Next, if ρ > 0 then the environment and the genetic endowment

complement and reinforce each other, which will lead to an overestimation of the average

genetic treatment effect. If ρ < 0, then the environment and genetic endowment mitigate

each other, which will in turn lead to underestimation of the average genetic effect. This

suggests that the GWAS estimates and the biases of the PGS weights depend on the a

priori complementarity between genetic endowment and the environment.

On a more technical note, the bias in the estimated average genetic effects also de-

9Note that in this case ρ is just a scalar. Furthermore, for simplicity I consider a case where
the heterogeneous effect is linear in E. The argument presented here applies even to a more
realistic example of a fully saturated model where Γgwas

l = Γβ +
∑︁L

l=1 ΓElρl
10In section B of the appendix I consider a special case where E takes on only 2 values.)
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pends on the different genetic variance-covariance structure Ωgwas
l among different groups

of the environment. Interestingly, the bias does not disappear even if the genetic corre-

lation structure is similar for different values of the environment. To see this, consider a

case where Ωgwas
l = Ωgwas ∀ l. Then plim ˆ︂Γgwas = Γβ +

∑︁L
l=1

Ngwas
l

NgwasΓElρ. Therefore,

even if the variance-covariance structure of the SNPs is the same across environments,

the GWAS may still yield inconsistent estimates of the average genetic effects because

the proportions of the environmental groups may differ from those of the population.

However, if the G and E terms are independent, then a proper weighting of the inverse

population shares would lead to a consistent estimate of the population-average genetic

effect.

Finally, equation (3.8) implies that (unless ρ = 0) the GWAS estimates of the ge-

netic effects will in general identify a different weighted average of the individual genetic

effects than a GWAS performed on a survey sample used to estimate the GxE models.

Consequently, the GxE applications, which aim to test for ρ ̸= 0 paradoxically use PGSs

that are built using SNP coefficients, which would be correct for a given survey sample

only if ρ = 0. It is important to note that while ρ captures the true relationship between

the GxE interaction and an outcome, for example the role of a policy that increases years

of schooling on the relationship between high academic achievements and genetic predis-

positions for education, the social scientist is only able to estimate ρ̂ in a GxE model.

An important consequence of this approach is that ρ̂ = 0, ρ ̸= 0 may arise. I illustrate

the problem in more detail below.

B) GxE analysis step

The problems presented above imply that the PGS weights researchers should use for

a GxE model in a survey, ˆ︂ΓSurvey, likely often differ from those that are actually used,
ˆ︂Γgwas. In consequence, the researcher estimates a mispecified model of the following

form:

Yi = α+
[︁
PGS∗

i +G(Γgwas − ΓSurvey)
]︁
β + Ei ×

[︁
PGS∗

i +G(Γgwas − ΓSurvey)
]︁
ρ+ Eiθ + εi

(3.9)

where PGS∗ = GΓSurvey is the true PGS for the population of interest. This formalization

shows that the PGS as currently constructed can be seen as a version of the correct PGS
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that is affected by systematic measurement error. In line with this observation, some

recent studies have pointed to the low predictive power of a PGS, which is a common

consequence of measurement error. Its predictive power varies with the specification of

the outcome model and the population it is applied to, which is likely to occur if the

measurement error arises from differences in the model specification or if the population

of interest differs from the GWAS population (Mostafavi et al., 2020, Tropf et al., 2017).

Importantly, if the PGS is mismeasured, as described by equations (3.14) and (3.9),

the estimated coefficients of the GxE model estimated on survey data will generally

suffer from a measurement error bias that depends on the relationship between genetic

endowment and environments. In section 3.5 I present an empirical example where the

measurement error leads to attenuation of the PGS and the GxE interaction coefficients.

However, in general the bias may not only lead to attenuation. Rather, the direction of

the measurement error bias will depend on complementarity and the covariance structure

of the genetic endowment and environment 11.

3.3 New Method to Estimate GxE Models

To address the problems raised in section 3.2 I propose to estimate the GxE model

together with the SNP weights on the survey data. The new method consists of two

steps that follow the logic of Wasserman and Roeder (2009). In the first step I select

relevant SNPs using GS summary statistics. Contrary to the standard method, I do not

rely on the estimated coefficients but rather on the p-values, which provide information

about which SNPs are important predictors of a given outcome. Hence, the new method

treats a GWAS as a variable selection device. A potential problem of GWAS is that their

analyses usually run a SNP by SNP univariate regression, which may lead to omitted

variable bias. Therefore, I adjust the GWAS SNP coefficients (and consequently the

p-values) using a method presented in Yang et al. (2011).

In the second step I estimate the GxE model of the form:

Y = β0 + β1SNPΓ + β2E + ρE × SNPΓ + θX + ϵ

11For more technical details about the specifics of the measurement error bias in the GxE
model please see section C of the appendix
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V ar(SNPΓ) = 1 (3.10)

where SNPΓ stands for the polygenic score index, which is a function of SNP variables

and SNP coefficients Γ. The main difference between the standard PGS and the PGS

in the new method is that while the standard method takes the vector of coefficients Γ

from a GWAS, the new method estimates them in the main model specification. E rep-

resents the environment of interest and X other covariates. The normalization condition

V ar(SNPΓ) = 1 is necessary for identification of the model. This normalization is also

applied in the standard approach.

Although the new method solves the issues connected with using the GWAS SNP

weights in the PGS construction, it still relies on the GWAS p-values. Hence, as with

any method, the new approach faces several limitations. The largest limitation stems

from the fact that the new method relies on the ability of the GWAS to properly select

important SNP variables. In the ideal case, where GWAS are able to identify all relevant

SNPs, the new method leads to unbiased estimates of all coefficients of interest. However,

if the GWAS are not perfect, then the new method will not include all the relevant SNPs

and may attenuate the effect of the genetic component. Fortunately, the ability of GWAS

to properly select relevant genetic variables has been gradually improving over the years

(Tropf et al., 2017). Additionally, the new method does not use an efficient way to

estimate standard errors. Therefore, I propose to make inference based on bootstrapping,

which leads to inefficient but still consistent estimates and inference.

Equation 3.10 represents a general GxE model specification. In the rest of this paper

I apply the method on two cases and compare the results to the standard method. First, I

apply the method to a survey with a small sample size, which is representative of surveys

social scientists usually work with. The important feature of the first survey is that its

target population is not close to the GWAS population. Then I apply the method to

a survey with a larger sample size, which also represents a population more similar to

the GWAS sample. These two settings allow me to study the differences between the

new and standard methods in two different settings, which are both relevant to applied

researchers. First, I analyze the differences between the two methods in a population

that differs from the GWAS population. Second, I analyze the differences in a population

that forms part of a GWAS. In the analysis I expect the differences between the methods
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to be larger in a sample that represents a population distant from the GWAS population.

However, I show that there are significant differences between the methods even in the

case when the GWAS and survey populations overlap to some extent.

3.3.1 Empirical Application

First, I estimate a simple GxE model using the Health and Retirement Study survey

and information from the educational attainment GWAS (Lee et al., 2018). Following

equation 3.10, I estimate the following GxE model:

Educ = β0 + β1SNPeducΓeduc + β2MEduc+ ρMEduc× SNPeducΓeduc + θX + ϵ

V ar(SNPeducΓeduc) = 1 (3.11)

where Educ stands for respondents’ education and Meduc stands for mother’s education.

This is a standard model that investigates the interaction between genetic predispositions

for education and mother’s education level (e.g. Conley et al., 2015).

Next, I estimate the GxE model on UK Biobank data following the empirical strategy

of Barcellos et al. (2018).

BMI = β0 + β1SNPbmiΓbmi + β2ROSLA+ ρROSLA× SNPbmiΓbmi+

t1DoB + t2DoB
2 + t3DoB ×ROSLA+ t4DoB

2 ×ROSLA+ αX + ϵ

V ar(SNPbmiΓbmi) = 1 (3.12)

Where ROSLA stands for a rise in school leaving age policy in the UK in 1972. The

policy increased the earliest school leaving age from 15 to 16 years old. DoB stands for

date of birth. The model is essentially a regression discontinuity model with the ROSLA

cutoff representing the September 1957 birth cohort, which was the first to experience

the policy change. The model includes a second order polynomial of the running variable

date of birth (DoB).

The two applications represent two types of studies. First, the example that uses HRS
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data represents a general setting in which the sample of interest to the scientist is different

from the GWAS population that was used to generate the SNP coefficients. Hence, the

amount of bias should be large in this setting. The second application represents a general

setting where the sample of interest lies close to the GWAS population. The purpose

of this exercise is to investigate whether the standard method can deliver estimates

close to the new method estimates if the research of interest reasonably resembles the

GWAS population. Such evidence would suggest that using the standard method can

still deliver useful results in samples that are sufficiently large and close to the target

GWAS population.

3.4 Data

In the empirical part of the paper I use 2 data sources to investigate how the method

performs in data sets with different sample-size magnitudes and samples of populations

with different relatedness to the GWAS population. First, I employ an easy-to-use ver-

sion of the the publicly available Health and Retirement Study (HRS)12. The HRS is a

nationally representative sample of the US population aged over 50. It first launched

in 1992, since when its respondents have been interviewed on a biannual basis (Sonnega

and Weir, 2014). An important feature of the HRS is that it contributes only rarely to

GWAS samples. Hence, the target HRS population differs from the GWAS population

quite substantially.

Second, I use information from the UK Biobank. The UK Biobank is a prospective

cohort study of more than 500,000 respondents aged between 37 and 73 years at the time

of recruitment between 2006 and 2010 (Sudlow et al., 2015). Due to the large amount of

UK Biobank samples and its inclusion in GWAS its data represents a population that is

closer to the GWAS target population.

12The RAND HRS Data (Version P, 2016) was developed by the RAND company with funding
from the National Institute on Aging and the Social Security Administration, Santa Monica.

106



3.4.1 HRS Sample

Following a standard procedure in the genetic data analysis, I first select only individuals

with European ancestry. This is because individuals from e.g. an African ancestry group

differ in the distribution of individual genetic markers (Tishkoff et al., 2009). Hence, using

a data set that combines multiple ancestries may lead to incorrect results. Additionally, I

apply the following filters to the HRS genetic data: (i) SNP Hardy-Weinberg Equilibrium

(HWE) p-value: p < 0.0001; (ii) SNP missing rate ≤1%; (iii) individual missing rates

≤ 10%; and (iv) minor allele frequency ≥ 1%. Finally, I use information from the 2010

wave, which includes information about both genetic data and the HRS survey questions.

Thus, the final HRS sample contains 8260 observations.

I use the HRS data to investigate whether the proposed method of estimating GxE

models differs from the standard GxE method in smaller samples. The specific empirical

model for the application of the new method follows the debate on whether parental

education interacts with genetic predisposition for education in the education formation

process (e.g. Conley et al., 2015). Therefore, The model uses data about respondents’

years of education, mothers’ education, and genetic data.

Table 3.1: Descriptive Statistics: HRS

Variable Mean Standard deviation
Years of education 13.482 2.452
Mother’s years of education 10.654 2.990
Female sex 0.580 0.494
Age 69.638 10.991
Number of observations: 8260

3.4.2 UK Biobank Sample

The application of the new method follows the empirical strategy used in Barcellos et al.

(2018, 2019). I exploit the increase in the ROSLA policy in the UK, which started in

1972 and affected individuals born after September 1957. The analytical sample consists

of 255,395 individuals of European ancestry born in England, Scotland, or Wales between
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September 1, 1947 and September 1, 1967. Finally, I apply filters to the genetic data

that are similar to the HRS sample.

Following Barcellos et al. (2018), the outcome of interest is body mass index (BMI),

constructed as in the original study. This version of the empirical GxE model uses a

regression discontinuity design with the birth month year being the running variable and

with the cutoff at September 1957.

Table 3.2: Descriptive Statistics: UK Biobank

Variable Mean Standard deviation
Body Size -0.003 0.992
Male 0.448 0.497
Age 52.82 5.842
Wales 0.048 0.215
Scotland 0.089 0.285
Number of observations: 255,395

3.5 Results

This section provides insight into the differences between the new two-step non-linear

GxE method and the standard linear GxE model. In section 3.2, I argued that the

coefficients of interest in the GxE model are likely biased due to measurement error in

the PGS that stems from the inappropriate SNP weights γ. Section 3.3 introduced a

new method that aims to deliver unbiased estimates of the GxE model under standard

NLS consistency assumptions. This section applies the new and standard method into 2

different settings to investigate the nature of the measurement error bias. As mentioned

above, the nature of the measurement error bias is not clear, since it depends on complex

relationships between genes and environments. Thus, it is not clear if the bias generally

leads to attenuation of the coefficients of interest.

First, I apply my method to the HRS data set and estimate a simple model described

by equation 3.11. The model describes the relationship between the educational attain-

ment (EA) PGS, mother’s education, and years of education. The results, presented

in table 3.3, suggest that The EA PGS positively affects individual years of education.
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Specifically, a one standard deviation unit increase in the EA PGS leads to an increase

in years of education by 0.9 years on average. At the same time the results suggest that

a one year increase in a mothers’ education decreases the role of the EA PGS by 0.03

years, which suggests that longer mothers’ education compensates for poorer genetic en-

dowment. However, the results on the interaction provide only suggestive evidence, as

mothers’ education is most likely endogenous. More importantly, table 3.3 documents

that the standard method in this case leads to attenuation bias of both the EA PGS

and the interaction coefficients. The third column of table 3.3 presents results from the

statistical test of equality of coefficients generated by the new and the standard methods

and shows that there is a statistically significant difference between the two methods.

Moreover, as the first 2 columns of table 3.3 show, the difference in the coefficients is

also substantial in magnitude.

Table 3.3: HRS: Standard GxE model attenuates the relationship between PGS
and Education

Outcome: Education (Years) New Method Standard Method difference P-value
PGS EA 0.935*** 0.783*** 2.119× 10−11

(3.608× 10−8) (0.083) -
PGS EA x Mother Education -0.031*** -0.010 0.001

(0.003) (0.007)
Significance levels: ***0.01 **0.05 *0.1
P-values of the coefficient tests are based on bootstrapped T test using 1000 bootstrap samples.
Standard errors: (i) OLS heteroskedasticity robust (ii) NLS bootstrapped with 1000 resamples.

Second, I apply the new GxE method to a larger UK Biobank data set. Table 3.4

presents the results of model 3.12. This specification captures the relationship between

body mass index (BMI), genetic predispositions for high BMI, and a policy that raised

the school leaving age (ROSLA). Table 3.4 shows two sets of results. First, I apply

the method to a continuous and standardized BMI measure 13. The results reported in

the first two rows of table 3.4, show that the BMI PGS has a positive effect on BMI.

Specifically, a one standard deviation increase in the BMI measure before the reform leads

on average, to a 0.141 standard deviation increase in in the BMI measure. Furthermore,

after the reform the relationship between the BMI PGS and BMI strengthened by 0.014

13The measure is constructed as in Barcellos et al. (2018)
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standard deviation units on average. The first column of table 3.4 show the results based

on the new GxE method, while the second column presents the results based on the

standard GxE method. A close examination of the first two columns of table 3.4 implies

that in this case the measurement error bias in the PGS leads to a positive bias of the

PGS. While the PGS estimate generated by the new method is 0.141, the corresponding

estimate of the standard method is 0.160. Interestingly, the measurement error bias

of the interaction coefficient (PGS BMI x ROSLA Policy) is negative. While the new

method delivers an interaction coefficient of 0.014, the standard method delivers 0.009.

The differences in both the PGS and the interaction coefficients are substantially large

and statistically significant.

The last two rows of table 3.4 show the results for BMI being larger than the third

quartile of the BMI distribution, which points to an obesity status. The results again

show that the PGS BMI has a positive effect on the probability of being obese. However,

in this case the results suggest that the ROSLA policy decreased the role of genetic pre-

dispositions for obesity, which is consistent with the findings of Barcellos et al. (2018).

As in previous cases, the more important analysis in this study is the difference of es-

timates generated by the new GxE method and the standard method. In this case the

differences in both the PGS and the interaction coefficients are similar to the continuous

BMI case, although the substantive difference in this case is smaller than in the model

with a continuous measure of BMI.

The results from tables 3.3 and 3.4 confirm the findings of section 3.2, which argues

that the standard GxE method leads to measurement error bias that is systematic and

does not generally lead only to attenuation of the estimated coefficients. This section

shows that the measurement error bias stemming from the mismeasured PGS has both

substantive and statistical impact on the results. Therefore, a method that directly

estimates the SNP coefficients in the main GxE model specification is preferable.

Next, I analyze the relationship between the individual SNP coefficients produced

by the new and standard GxE methods. Figure 3.1 documents the relationship between

the GWAS SNP coefficients and the new GxE method coefficients in the case of model

3.11, estimated using the HRS data. Figure 3.1 demonstrates that there is no statistically

significant relationship between individual SNP coefficient estimates from the GWAS and

from the GxE model estimated by the new method. Hence, the individual SNP weights
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Table 3.4: UK Biobank: The standard GxE model leads to positive bias in the
relationship between PGS and Education

Outcome: BMI (standardized) New Method Standard Method difference P-value
PGS BMI 0.141*** 0.160*** 0.000

(1.638× 10−6) (0.004) -
PGS BMI x ROSLA Policy 0.014*** 0.009** 0.998

(0.004) (0.004)
Outcome: BMI (BMI ≥ 3rd quartile)
PGS BMI 0.054*** 0.059*** 0.000

(6.602× 10−9) (0.002) -
PGS BMI x ROSLA Policy -0.004** -0.008*** 0.021

(0.002) (0.002)
Significance levels: ***0.01 **0.05 *0.1
P-values of the coefficient tests are based on bootstrapped T test using 1000 bootstrap samples.
Standard errors: (i) OLS heteroskedasticity robust (ii) NLS bootstrapped with 1000 resamples.

generated by the two methods differ quite substantially.

Figure 3.2 repeats the analysis for model 3.12 applied to the UK Biobank data. In

this case the relationship between the individual SNP weights produced by the new and

the standard GxE methods are positively correlated. However, the correlation is only

moderate, which again suggests that a PGS based on the GWAS coefficients leads to

measurement error.
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Figure 3.1: The relationship between the SNP GWAS coefficients and the new
GxE method SNP coefficients
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Figure 3.2: The relationship between the SNP GWAS coefficients and the new
GxE method SNP coefficients

3.6 Conclusion

Recent technological progress has allowed researchers to incorporate genetic data into

social science research, which offers unique possibilities to investigate questions that

were not feasible to answer in the past. However, the new research often incorporates

techniques from genetic data analysis that are valid within the natural science paradigm

but may be challenging to use in the social sciences. This paper examines the properties

of widely-used GxE models, which aim to research important questions about how genes

and environments mitigate or amplify each other. Due to the high dimensionality of

genetic data the standard GxE models rely on external GWAS, which provide information

about correlation between every genetic variable SNP and an outcome such as education,
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obesity, smoking, risk aversion, and others. These correlation coefficients are then used

to construct a weighted average called polygenic score, which is a sum of risky alleles at

each SNP weighted by their respective GWAS coefficients.

This paper argues that using GWAS weights in the PGS construction leads to mea-

surement error bias in the GxE models and skewed results of important GxE model

parameters. The GWAS weights are conducted on different populations from those in

surveys that are often of interest to social scientists. Hence, if gene-environment interac-

tions exist, the genetic correlation coefficients are not generally portable across popula-

tions or samples. Additionally, GWAS models, by construction, only provide information

about average genetic treatment effects, while GxE models investigate heterogeneous ef-

fects by environment. This leads to additional problems as the models that choose PGS

weights and the GxE model rely on different model specifications.

This paper shows that under GxE heterogeneity, GWAS coefficients are generally not

consistent estimates of the population average genetic effects. Thus, GWAS implicitly

work with the assumption of homogeneous genetic effects. The bias depends on the sign

of the relationship between the GxE and an outcome and on the variance-covarinace

structure of the genetic variables. Consequently, a PGS that uses biased GWAS weights

is measured with error, which leads to a systematic measurement error bias in a GxE

model.

To correct for the measurement error bias, I propose a new two-step approach that

relies only on GWAS p-values to select a subset of significant SNPs with coefficients that

are feasible to estimate in a survey. Thus, the new approach treats a GWAS as a variable

selection step. In the second step of the new method I estimate the GxE model together

with the individual SNP coefficients. Provided that the GWAS selects correct SNPs

for a given outcome, the new approach leads to consistent estimates under traditional

non-linear least squares consistency assumptions and under the argument presented in

Wasserman and Roeder (2009).

In the empirical application of the paper I show that the GxE exists and that the

standard method produces significantly different results from the new method. This

suggests that the measurement error bias of the standard method leads to skewed results.
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Apendix

A Derivations of formulae of section 3.2

Derivation of equation (3.5)
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Under assumption (3.3)
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B Extensions of section 3.2

Extension of the omitted interaction effect formula (3.7). Assume a special case where

E and G are independent.
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Assumption B.1 : E ⊥ G = 0

The independence assumption allows further simplification of equation (3.7)14:

plim ˆ︂Γgwas = Γβ + plim

(︄∑︂
i

GT
i Gi

)︄−1∑︂
i

GT
i GiΓ

∑︂
i

Eiρ

= Γ(β + plim
∑︂
i

Eiρ) (3.13)

Hence, in this case each of the estimated J SNP coefficients γ̂gwas
j from a GWAS

converges in probability to

plim γgwas
j = γj

(︄
β + plim

∑︂
i

Eiρ

)︄

Equation (3.13) shows that the independence assumption alleviates the problem pre-

sented in section 3.2 because the estimated average genetic effects do not depend on the

conditional variance-covariance genetic matrix GTG, Nevertheless, the estimated average

genetic effects still depend on the distribution of the environment in the sample. There-

fore, even under the independence assumption the GWAS estimates do not generally

identify the population-average genetic effect and there is no reason to believe that the

weighted average of the genetic effects identified by a GWAS is the correct weighted av-

erage of these effects that a researcher should use in GxE analyses performed in different

survey samples.

Formula (3.8) represents a case where the heterogeneous effect is linear in E. To illus-

trate that the problem applies also to the saturated models, consider a case when E is

categorical and can take only 2 values (i.e. 0 or 1) for l = {1, 2}, the above formula then

14The independence is needed because the bias term in equation (3.7) is a matrix of higher
order moments. Therefore, the standard mean independence assumption is not enough to simplify
the equation.
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rewrites as:
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C Measurement Error Bias in the GxE Model

To analyze the nature of the bias consider a case of only one environment interaction.

First, introduce some notation. Denote the PGS constructed from the GWAS weights as

follows:
˜︂PGSi = PGS∗

i +Gi(Γ
gwas − ΓSurvey)

Then the measurement error in the interaction term is

E × ˜︂PGSi = Ei × PGS∗
i + Ei ×Gi(Γ

gwas − ΓSurvey)

Denote the PGS measurement error as Gi(Γ
gwas − ΓSurvey) = GiΓ

∆ and the matrix of

covariates as ˜︂Xi =
[︂
˜︂PGSi E E × ˜︂PGSi

]︂
.

Then the asymptotic measurement error bias of the GxE model (3.9) B = E[
[︂ˆ︁β ˆ︁ρ ˆ︁θ]︂]T−[︂

β ρ θ
]︂T

depends on the variance-covariance structure of the genetic matrix, the en-

vironment and the difference between the true SNP coefficients and the GWAS SNP

coefficients. Given that we consider only one environment, the probability limit of the

model estimates is written as

plim

⎡⎢⎢⎣
ˆ︁βˆ︁ρˆ︁θ
⎤⎥⎥⎦ =

⎡⎢⎢⎣
β

ρ

θ

⎤⎥⎥⎦+ plim

(︄∑︂
i

˜︂Xi
T˜︂Xi

)︄−1∑︂
i

˜︂Xi
T
(−GiΓ

∆)

⎡⎢⎢⎣
β

ρ

θ

⎤⎥⎥⎦

=

⎡⎢⎢⎣
β

ρ

θ

⎤⎥⎥⎦− plim

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(︄∑︂

i

˜︂Xi
T˜︂Xi

)︄−1

⎡⎢⎢⎢⎢⎢⎣
∑︁
i

˜︂PGSiGiΓ
∆ 0

∑︁
i

˜︂PGSiEiGiΓ
∆∑︁

i
EiGiΓ

∆ 0
∑︁
i
E2

iGiΓ
∆∑︁

i

˜︂PGSiEiGiΓ
∆ 0

∑︁
i

˜︂PGSiE2
iGiΓ

∆

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣
β

ρ

θ

⎤⎥⎥⎦
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Therefore, the bias B amounts to
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(3.15)

Equation (3.15) has several important implications for the estimated coefficients of

the GxE model. Note that if Γgwas = Γ∆ then the bias B goes to 0 because all the terms

inside the middle matrix of B will be 0. Importantly, using results from equations (3.8),

(3.14), and (3.15) it is easy to see that this condition holds if
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Therefore, the measurement error bias will disappear if there is no heterogeneity in the ge-

netic effects (ρ = 0) or if the structure of the genetic relatedness matrix
∑︁L

l=1
Ngwas

l
NgwasΩ

gwas
l

resembles the structure of the survey genetic relatedness matrix
∑︁L

l=1
NSurvey

l

NSurvey
l

ΩSurvey
l . An

important implication of the above thought experiment is that even if the environment is

exogenous in both samples, i.e. the GWAS sample and the survey sample, the measure-

ment error will not disappear. To see this, note that if the environment is orthogonal to

the genetic structure of the two populations (or samples) then Ωgwas
l = ΩSurvey

l = Ω for

all l, which is not enough to satisfy the equality in equation (3.16), which in turn does

not guarantee the measurement error bias B to be 0.

In the previous section I discussed that in the GWAS step it is unlikely that the

environment is orthogonal to SNPs in the genetic matrix G. However, in the survey,

researchers often employ identification strategies from econometrics that are built to

identify causal effects. Note that if, in the survey, a researcher manages to satisfy as-

sumption 2 (i.e. E ⊥ Gj , ∀j), then the middle matrix of equation (3.15) simplifies and
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the measurement bias in ˆ︁ρ and ˆ︁β asymptotically approaches the following:
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where σg,k,j denotes the covariance between SNPs k and j and σ2g,j denotes the variance

of SNP j. Note that in order to obtain the results in (3.17) an(3.18) it is not enough to

assume no correlation between E and G. The results in (3.17) and (3.18) are most likely to

hold in an experimental setting where treatment and control groups are chosen completely

randomly. Although equations (3.17) and (3.18) imply that even under independence the

estimates of ρ and β in a GxE study would yield inconsistent estimates, in this special

case it still possible to test for ρ = 0 even if the PGS is measured with error as described

above. Even though ρ and β are generally biased, their fraction will, in probability limit,

identify the true fraction up to a scale that is equal to the E and G respective variances.

ˆ︁ρˆ︁β =
ρ

β

σ2G
σ2E

Therefore, if G and E are independent at least in the survey sample, a researcher may

conduct a statistical test for ρ
β = 0, which would essentially test for ρ = 015. It is impor-

tant to acknowledge that this is a very special case that relies on a strong assumption that

is unlikely to hold outside an experimental setting. Hence, a researcher should present

strong evidence that assumption 2 is likely to hold in his or her setting, using propper

tests such as the test of conditional independence introduced in Mittag (2018) . In the

general case the measurement will lead to biased estimates of ρ, β, and θ in the GxE

studies.

15Note that in this test it is important to assume that β ̸= 0 which is a condition that is likely
to hold in most GxE applications.

119



120



Bibliography

Albouy, V. and L. Lequien (2009). Does compulsory education lower mortality? Journal

of health economics 28 (1), 155–168.

Almond, D., J. Currie, and V. Duque (2018). Childhood circumstances and adult out-

comes: Act ii. Journal of Economic Literature 56 (4), 1360–1446.

Anderson, M. L. (2008). Multiple inference and gender differences in the effects of early

intervention: A reevaluation of the abecedarian, perry preschool, and early training

projects. Journal of the American statistical Association 103 (484), 1481–1495.

Attanasio, O., T. Boneva, and C. Rauh (2018). Parental beliefs about returns to different

types of investments in school children: Hceo working paper 2018–032.

Barban, N., E. De Cao, and M. Francesconi (2021). Gene-environment effects on female

fertility.

Barcellos, S. H., L. S. Carvalho, and P. Turley (2018, oct). Education can reduce health

differences related to genetic risk of obesity. Proceedings of the National Academy of

Sciences 115 (42), E9765–E9772.

Barcellos, S. H., L. S. Carvalho, and P. Turley (2019). Distributional effects of education

on health. Technical report, National Bureau of Economic Research.

121



Bates, G. P., R. Dorsey, J. F. Gusella, M. R. Hayden, C. Kay, B. R. Leavitt, M. Nance,

C. A. Ross, R. I. Scahill, R. Wetzel, et al. (2015). Huntington disease. Nature reviews

Disease primers 1 (1), 1–21.

Becker, A., T. Deckers, T. Dohmen, A. Falk, and F. Kosse (2012). The relationship

between economic preferences and psychological personality measures. Annu. Rev.

Econ. 4 (1), 453–478.

Becker, J., C. A. Burik, G. Goldman, N. Wang, H. Jayashankar, M. Bennett, D. W.

Belsky, R. K. Linnér, R. Ahlskog, A. Kleinman, et al. (2021). Resource profile and

user guide of the polygenic index repository. Nature human behaviour , 1–15.

Belsky, D. W. and K. P. Harden (2019, jan). Phenotypic Annotation: Using Polygenic

Scores to Translate Discoveries From Genome-Wide Association Studies From the Top

Down. Current Directions in Psychological Science, 096372141880772.

Benjamin, D. J., D. Cesarini, M. J. H. M. van der Loos, C. T. Dawes, P. D. Koellinger,

P. K. E. Magnusson, C. F. Chabris, D. C. Conley, D. I. Laibson, M. Johannesson,

and P. M. Visscher (2012, may). The genetic architecture of economic and political

preferences. Proceedings of the National Academy of Sciences.

Bickel, H., J. Gerrard, and E. M. Hickmans (1953, oct). Influence of phenylalanine intake

on phenylketonuria. Lancet 265 (6790), 812–3.

Bierut, L. J., P. Biroli, T. Galama, and K. Thom (2018, jun). Childhood socioeconomic

status moderates genetic predisposition for peak smoking. bioRxiv , 336834.

Biroli, P. (2015a). Genetic and Economic Interaction in Health Formation: the Case of

Obesity. Working Paper .

Biroli, P. (2015b). Health and Skill Formation in Early Childhood. Working Paper .

Biroli, P., L. Bierut, T. Galama, and K. Thom (2017). GxSES in health behaviors:

theory and empirics. Working Paper .

Bone, W. P., K. M. Siewert, A. Jha, D. Klarin, S. M. Damrauer, K.-M. Chang, P. S.

Tsao, T. L. Assimes, M. D. Ritchie, and B. F. Voight (2021). Multi-trait association

122



studies discover pleiotropic loci between alzheimer’s disease and cardiometabolic traits.

Alzheimer’s research & therapy 13 (1), 1–14.

Boneva, T. and C. Rauh (2018). Parental beliefs about returns to educational invest-

ments—the later the better? Journal of the European Economic Association 16 (6),

1669–1711.

Brunnermeier, M. K. and S. Nagel (2008). Do wealth fluctuations generate time-varying

risk aversion? micro-evidence on individuals. American Economic Review 98 (3), 713–

36.

Bugliari, D., N. Campbell, C. Chan, O. Hayden, M. Hurd, R. Main, J. Mallett, C. Mc-

Cullough, E. Meijer, M. Moldoff, et al. (2016). Rand hrs data documentation, version

p. RAND Center for the Study of Aging .

Bulik-Sullivan, B., H. K. Finucane, V. Anttila, A. Gusev, F. R. Day, P.-R. Loh, L. Dun-

can, J. R. Perry, N. Patterson, E. B. Robinson, et al. (2015). An atlas of genetic

correlations across human diseases and traits. Nature genetics 47 (11), 1236–1241.

Calonico, S., M. D. Cattaneo, and R. Titiunik (2015). Optimal data-driven regression

discontinuity plots. Journal of the American Statistical Association 110 (512), 1753–

1769.

Cameron, A. C. and D. L. Miller (2015). A practitioner’s guide to cluster-robust inference.

Journal of Human Resources 50 (2), 317–372.

Cameron, L. and M. Shah (2015). Risk-taking behavior in the wake of natural disasters.

Journal of Human Resources 50 (2), 484–515.

Cassar, A., A. Healy, and C. Von Kessler (2017). Trust, risk, and time preferences after a

natural disaster: experimental evidence from thailand. World Development 94, 90–105.

Cattaneo, M. D., M. Jansson, and X. Ma (2020). Simple local polynomial density esti-

mators. Journal of the American Statistical Association 115 (531), 1449–1455.

123



Cesarini, D., C. T. Dawes, M. Johannesson, P. Lichtenstein, and B. Wallace (2009, may).

Genetic Variation in Preferences for Giving and Risk Taking. Quarterly Journal of

Economics 124 (2), 809–842.

Chabris, C. F., J. J. Lee, D. Cesarini, D. J. Benjamin, and D. I. Laibson (2015). The

Fourth Law of Behavior Genetics. Current Directions in Psychological Science 24 (4),

304–312.

Chuang, Y. and L. Schechter (2015). Stability of experimental and survey measures

of risk, time, and social preferences: A review and some new results. Journal of

Development Economics 117, 151–170.

Clark, D. and H. Royer (2013). The effect of education on adult mortality and health:

Evidence from britain. American Economic Review 103 (6), 2087–2120.

Conley, D., B. W. Domingue, D. Cesarini, C. Dawes, C. A. Rietveld, and J. D. Board-

man (2015). Is the effect of parental education on offspring biased or moderated by

genotype? Sociological Science 2, 82.

Conti, D. V., B. F. Darst, L. C. Moss, E. J. Saunders, X. Sheng, A. Chou, F. R. Schu-

macher, A. A. Al Olama, S. Benlloch, T. Dadaev, et al. (2021). Trans-ancestry genome-

wide association meta-analysis of prostate cancer identifies new susceptibility loci and

informs genetic risk prediction. Nature genetics 53 (1), 65–75.

Cunha, F. and J. Heckman (2007). The technology of skill formation. American Economic

Review 97 (2), 31–47.

Cunha, F., J. J. Heckman, and S. M. Schennach (2010). Estimating the technology of

cognitive and noncognitive skill formation. Econometrica 78 (3), 883–931.

Davies, N. M., M. Dickson, G. Davey Smith, G. J. Van Den Berg, and F. Windmeijer

(2018). The causal effects of education on health outcomes in the uk biobank. Nature

human behaviour 2 (2), 117–125.

De Blasio, G., M. De Paola, S. Poy, and V. Scoppa (2018). Risk aversion and en-

trepreneurship: New evidence exploiting exposure to massive earthquakes in italy.

Technical report, IZA Discussion Papers.

124



Deaton, A. (1997). The analysis of household surveys: a microeconometric approach to

development policy. The World Bank.

Deaton, A. (2008). Income, health, and well-being around the world: Evidence from the

gallup world poll. Journal of Economic perspectives 22 (2), 53–72.

Dixon, J. B. (2010). The effect of obesity on health outcomes. Molecular and cellular

endocrinology 316 (2), 104–108.

Dohmen, T., A. Falk, B. H. Golsteyn, D. Huffman, and U. Sunde (2017). Risk attitudes

across the life course.

Dohmen, T., A. Falk, D. Huffman, U. Sunde, J. Schupp, and G. G. Wagner (2011, 06). In-

dividual Risk Attitudes: Measurement, Determinants, and Behavioral Consequences.

Journal of the European Economic Association 9 (3), 522–550.

Domingue, B., D. Belsky, A. Harrati, D. Conley, D. Weir, and J. Boardman (2016).

Mortality selection in a genetic sample and implications for association studies. biorxiv,

049635.

Domingue, B. W., D. C. Conley, J. M. Fletcher, and J. D. Boardman (2015, jul). Cohort

Effects in the Genetic Influence on Smoking. Behavior genetics.

Glied, S. A. and A. Lleras-Muney (2003). Health inequality, education and medical

innovation.

Groero, J. (2022). Leveling health inequalities: Raising the school leaving age reduces

the risk of diseases and severe medical conditions related to genetic endowmentleveling

health inequalities: Raising the school leaving age reduces the risk of diseases and

severe medical conditions related to genetic endowment.

Grossman, M. (1972). On the concept of health capital and the demand for health, 80 j.

Pol. Econ 223 (10.2307), 1830580223.

Hanaoka, C., H. Shigeoka, and Y. Watanabe (2018). Do risk preferences change? ev-

idence from the great east japan earthquake. American Economic Journal: Applied

Economics 10 (2), 298–330.

125



Hartiala, J. A., Y. Han, Q. Jia, J. R. Hilser, P. Huang, J. Gukasyan, W. S. Schwartzman,

Z. Cai, S. Biswas, D.-A. Trégouët, et al. (2021). Genome-wide analysis identifies novel

susceptibility loci for myocardial infarction. European Heart Journal 42 (9), 919–933.

Heckman, J. and R. Robb (1985). Using longitudinal data to estimate age, period and

cohort effects in earnings equations. In Cohort analysis in social research, pp. 137–150.

Springer.

Heckman, J. J. (2007, aug). The economics, technology, and neuroscience of human

capability formation. Proceedings of the National Academy of Sciences 104 (33), 13250–

5.

Houmark, M. A., V. Ronda, and M. Rosholm (2020). The nurture of nature and the

nature of nurture: How genes and investments interact in the formation of skills.

Technical report, IZA Discussion Papers.

Hubert, H. B., M. Feinleib, P. M. McNamara, and W. P. Castelli (1983). Obesity as an

independent risk factor for cardiovascular disease: a 26-year follow-up of participants

in the framingham heart study. Circulation 67 (5), 968–977.

Jaeger, D. A., T. Dohmen, A. Falk, D. Huffman, U. Sunde, and H. Bonin (2010). Di-

rect evidence on risk attitudes and migration. The Review of Economics and Statis-

tics 92 (3), 684–689.

Janssens, A. C. J. W., Y. S. Aulchenko, S. Elefante, G. J. J. M. Borsboom, E. W.

Steyerberg, and C. M. van Duijn (2006, jul). Predictive testing for complex diseases

using multiple genes: Fact or fiction? Genetics in Medicine 8 (7), 395–400.

Kahneman, D. (1979). Prospect theory: An analysis of decisions under risk. Economet-

rica 47, 278.

Karlsson Linnér, R., P. Biroli, E. Kong, S. F. W. Meddens, R. Wedow, M. A. Fontana,

M. Lebreton, S. P. Tino, A. Abdellaoui, A. R. Hammerschlag, M. G. Nivard, A. Okbay,

C. A. Rietveld, P. N. Timshel, M. Trzaskowski, R. de Vlaming, C. L. Zünd, Y. Bao,

L. Buzdugan, A. H. Caplin, C.-Y. Chen, P. Eibich, P. Fontanillas, J. R. Gonzalez,

P. K. Joshi, V. Karhunen, A. Kleinman, R. Z. Levin, C. M. Lill, G. A. Meddens,

126



G. Muntané, S. Sanchez-Roige, F. J. van Rooij, E. Taskesen, Y. Wu, F. Zhang, A. Au-

ton, J. D. Boardman, D. W. Clark, A. Conlin, C. C. Dolan, U. Fischbacher, P. J. F.

Groenen, K. M. Harris, G. Hasler, A. Hofman, M. A. Ikram, S. Jain, R. Karlsson,

R. C. Kessler, M. Kooyman, J. MacKillop, M. Männikkö, C. Morcillo-Suarez, M. B.

McQueen, K. M. Schmidt, M. C. Smart, M. Sutter, A. R. Thurik, A. G. Uitterlin-

den, J. White, H. de Wit, J. Yang, L. Bertram, D. I. Boomsma, T. Esko, E. Fehr,

D. A. Hinds, M. Johannesson, M. Kumari, D. Laibson, P. K. E. Magnusson, M. N.

Meyer, A. Navarro, A. A. Palmer, T. H. Pers, D. Posthuma, D. Schunk, M. B. Stein,

R. Svento, H. Tiemeier, P. R. H. J. Timmers, P. Turley, R. J. Ursano, G. G. Wagner,

J. F. Wilson, J. Gratten, J. J. Lee, D. Cesarini, D. J. Benjamin, P. D. Koellinger,

and J. P. Beauchamp (2019, feb). Genome-wide association analyses of risk tolerance

and risky behaviors in over 1 million individuals identify hundreds of loci and shared

genetic influences. Nature Genetics 51 (2), 245–257.

Kimball, M. S., C. R. Sahm, and M. D. Shapiro (2008). Imputing risk tolerance from

survey responses. Journal of the American statistical Association 103 (483), 1028–1038.

Kong, A., G. Thorleifsson, M. L. Frigge, B. J. Vilhjalmsson, A. I. Young, T. E. Thorgeirs-

son, S. Benonisdottir, A. Oddsson, B. V. Halldorsson, G. Masson, et al. (2018). The

nature of nurture: Effects of parental genotypes. Science 359 (6374), 424–428.

Lebergott, S. (1948). Labor force, employment and unemployment, 1929-1939: Estimat-

ing methods. Monthly Labor Review 67, 50–53.

Lee, J. J., R. Wedow, A. Okbay, E. Kong, O. Maghzian, M. Zacher, T. A. Nguyen-Viet,

P. Bowers, J. Sidorenko, R. K. Linnér, et al. (2018). Gene discovery and polygenic

prediction from a 1.1-million-person gwas of educational attainment. Nature genet-

ics 50 (8), 1112.

Levin, R. and D. Vidart (2020). Risk-taking adaptation to macroeconomic experiences:

Theory and evidence from developing countries. Available at SSRN 3748186 .

Linnér, R. K., P. Biroli, E. Kong, S. F. W. Meddens, R. Wedow, M. A. Fontana, M. Le-

breton, A. Abdellaoui, A. R. Hammerschlag, M. G. Nivard, A. Okbay, C. A. Rietveld,

P. N. Timshel, S. P. Tino, M. Trzaskowski, R. de Vlaming, C. L. Zünd, Y. Bao,

127



L. Buzdugan, A. H. Caplin, C.-Y. Chen, P. Eibich, P. Fontanillas, J. R. Gonzalez,

P. K. Joshi, V. Karhunen, A. Kleinman, R. Z. Levin, C. M. Lill, G. A. Meddens,

G. Muntané, S. Sanchez-Roige, F. J. van Rooij, E. Taskesen, Y. Wu, F. Zhang, a. R.

Team, E. Consortium, I. C. Consortium, P. G. Consortium, S. S. G. A. Consortium,

A. Auton, J. D. Boardman, D. W. Clark, A. Conlin, C. C. Dolan, U. Fischbacher,

P. J. Groenen, K. M. Harris, G. Hasler, A. Hofman, M. A. Ikram, S. Jain, R. Karls-

son, R. C. Kessler, M. Kooyman, J. MacKillop, M. Männikkö, C. Morcillo-Suarez,

M. B. McQueen, K. M. Schmidt, M. C. Smart, M. Sutter, A. R. Thurik, A. G. Uit-

terlinden, J. White, H. de Wit, J. Yang, L. Bertram, D. Boomsma, T. Esko, E. Fehr,

D. A. Hinds, M. Johannesson, M. Kumari, D. Laibson, P. K. Magnusson, M. N. Meyer,

A. Navarro, A. A. Palmer, T. H. Pers, D. Posthuma, D. Schunk, M. B. Stein, R. Svento,

H. Tiemeier, P. R. Timmers, P. Turley, R. J. Ursano, G. G. Wagner, J. F. Wilson,

J. Gratten, J. J. Lee, D. Cesarini, D. J. Benjamin, P. Koellinger, and J. P. Beauchamp

(2018, feb). Genome-wide study identifies 611 loci associated with risk tolerance and

risky behaviors. bioRxiv , 261081.

Liu, H. and G. Guo (2015, aug). Lifetime Socioeconomic Status, Historical Context, and

Genetic Inheritance in Shaping Body Mass in Middle and Late Adulthood. American

Sociological Review 80 (4), 705–737.

Locke, A. E., B. Kahali, S. I. Berndt, A. E. Justice, T. H. Pers, F. R. Day, C. Powell,

S. Vedantam, M. L. Buchkovich, J. Yang, D. C. Croteau-Chonka, T. Esko, T. Fall,

T. Ferreira, S. Gustafsson, Z. Kutalik, J. Luan, R. Mägi, J. C. Randall, T. W. Win-

kler, A. R. Wood, T. Workalemahu, J. D. Faul, J. A. Smith, J. Hua Zhao, W. Zhao,

J. Chen, R. S. N. Fehrmann, Å. K. Hedman, J. M. Karjalainen, E. M. Schmidt,

D. Absher, N. Amin, D. Anderson, M. Beekman, J. L. Bolton, J. L. Bragg-Gresham,

S. Buyske, A. Demirkan, G. Deng, G. B. Ehret, B. Feenstra, M. F. Feitosa, K. Fis-

cher, A. Goel, J. Gong, A. U. Jackson, S. Kanoni, M. E. Kleber, K. Kristiansson,

U. Lim, V. Lotay, M. Mangino, I. Mateo Leach, C. Medina-Gomez, S. E. Medland,

M. A. Nalls, C. D. Palmer, D. Pasko, S. Pechlivanis, M. J. Peters, I. Prokopenko,

D. Shungin, A. Stančáková, R. J. Strawbridge, Y. Ju Sung, T. Tanaka, A. Teumer,

S. Trompet, S. W. van der Laan, J. van Setten, J. V. Van Vliet-Ostaptchouk, Z. Wang,

L. Yengo, W. Zhang, A. Isaacs, E. Albrecht, J. Ärnlöv, G. M. Arscott, A. P. Attwood,

128



S. Bandinelli, A. Barrett, I. N. Bas, C. Bellis, A. J. Bennett, C. Berne, R. Blagieva,

M. Blüher, S. Böhringer, L. L. Bonnycastle, Y. Böttcher, H. A. Boyd, M. Bruinen-

berg, I. H. Caspersen, Y.-D. Ida Chen, R. Clarke, E. Warwick Daw, A. J. M. de Craen,

G. Delgado, M. Dimitriou, A. S. F. Doney, N. Eklund, K. Estrada, E. Eury, L. Folk-

ersen, R. M. Fraser, M. E. Garcia, F. Geller, V. Giedraitis, B. Gigante, A. S. Go,

A. Golay, A. H. Goodall, S. D. Gordon, M. Gorski, H.-J. Grabe, H. Grallert, T. B.

Grammer, J. Gräßler, H. Grönberg, C. J. Groves, G. Gusto, J. Haessler, P. Hall,

T. Haller, G. Hallmans, C. A. Hartman, M. Hassinen, C. Hayward, N. L. Heard-

Costa, Q. Helmer, C. Hengstenberg, O. Holmen, J. J. Hottenga, A. L. James, J. M.

Jeff, Å. Johansson, J. Jolley, T. Juliusdottir, L. Kinnunen, W. Koenig, M. Koskenvuo,

W. Kratzer, J. H. Laitinen, C. Lamina, K. Leander, N. R. Lee, P. Lichtner, L. Lind,

J. Lindström, K. Sin Lo, S. Lobbens, R. Lorbeer, Y. Lu, F. Mach, P. K. E. Magnus-

son, A. Mahajan, W. L. McArdle, S. McLachlan, C. Menni, S. Merger, E. Mihailov,

L. Milani, A. Moayyeri, K. L. Monda, M. A. Morken, A. Mulas, G. Müller, M. Müller-

Nurasyid, A. W. Musk, R. Nagaraja, M. M. Nöthen, I. M. Nolte, S. Pilz, N. W.

Rayner, F. Renstrom, R. Rettig, J. S. Ried, S. Ripke, N. R. Robertson, L. M. Rose,

S. Sanna, H. Scharnagl, S. Scholtens, F. R. Schumacher, W. R. Scott, T. Seufferlein,

J. Shi, A. Vernon Smith, J. Smolonska, A. V. Stanton, V. Steinthorsdottir, K. Stir-

rups, H. M. Stringham, J. Sundström, M. A. Swertz, A. J. Swift, A.-C. Syvänen, S.-T.

Tan, B. O. Tayo, B. Thorand, G. Thorleifsson, J. P. Tyrer, H.-W. Uh, L. Vandenput,

F. C. Verhulst, S. H. Vermeulen, N. Verweij, J. M. Vonk, L. L. Waite, H. R. Warren,

D. Waterworth, M. N. Weedon, L. R. Wilkens, C. Willenborg, T. Wilsgaard, M. K. Wo-

jczynski, A. Wong, A. F. Wright, Q. Zhang, E. P. Brennan, M. Choi, Z. Dastani, A. W.

Drong, P. Eriksson, A. Franco-Cereceda, J. R. Gådin, A. G. Gharavi, M. E. Goddard,

R. E. Handsaker, J. Huang, F. Karpe, S. Kathiresan, S. Keildson, K. Kiryluk, M. Kubo,

J.-Y. Lee, L. Liang, R. P. Lifton, B. Ma, S. A. McCarroll, A. J. McKnight, J. L. Min,

M. F. Moffatt, G. W. Montgomery, J. M. Murabito, G. Nicholson, D. R. Nyholt,

Y. Okada, J. R. B. Perry, R. Dorajoo, E. Reinmaa, R. M. Salem, N. Sandholm, R. A.

Scott, L. Stolk, A. Takahashi, T. Tanaka, F. M. Van’t Hooft, A. A. E. Vinkhuyzen,

H.-J. Westra, W. Zheng, K. T. Zondervan, A. C. Heath, D. Arveiler, S. J. L. Bakker,

J. Beilby, R. N. Bergman, J. Blangero, P. Bovet, H. Campbell, M. J. Caulfield, G. Ce-

sana, A. Chakravarti, D. I. Chasman, P. S. Chines, F. S. Collins, D. C. Crawford,

129



L. Adrienne Cupples, D. Cusi, J. Danesh, U. de Faire, H. M. den Ruijter, A. F.

Dominiczak, R. Erbel, J. Erdmann, J. G. Eriksson, M. Farrall, S. B. Felix, E. Ferran-

nini, J. Ferrières, I. Ford, N. G. Forouhi, T. Forrester, O. H. Franco, R. T. Gansevoort,

P. V. Gejman, C. Gieger, O. Gottesman, V. Gudnason, U. Gyllensten, A. S. Hall, T. B.

Harris, A. T. Hattersley, A. A. Hicks, L. A. Hindorff, A. D. Hingorani, A. Hofman,

G. Homuth, G. Kees Hovingh, S. E. Humphries, S. C. Hunt, E. Hyppönen, T. Il-

lig, K. B. Jacobs, M.-R. Jarvelin, K.-H. Jöckel, B. Johansen, P. Jousilahti, J. Wouter

Jukema, A. M. Jula, J. Kaprio, J. J. P. Kastelein, S. M. Keinanen-Kiukaanniemi, L. A.

Kiemeney, P. Knekt, J. S. Kooner, C. Kooperberg, P. Kovacs, A. T. Kraja, M. Kumari,

J. Kuusisto, T. A. Lakka, C. Langenberg, L. Le Marchand, T. Lehtimäki, V. Lyssenko,

S. Männistö, A. Marette, T. C. Matise, C. A. McKenzie, B. McKnight, F. L. Moll,

A. D. Morris, A. P. Morris, J. C. Murray, M. Nelis, C. Ohlsson, A. J. Oldehinkel, K. K.

Ong, P. A. Madden, G. Pasterkamp, J. F. Peden, A. Peters, D. S. Postma, P. P. Pram-

staller, J. F. Price, L. Qi, O. T. Raitakari, T. Rankinen, D. C. Rao, T. K. Rice, P. M.

Ridker, J. D. Rioux, M. D. Ritchie, I. Rudan, V. Salomaa, N. J. Samani, J. Saramies,

M. A. Sarzynski, H. Schunkert, P. E. H. Schwarz, P. Sever, A. R. Shuldiner, J. Sinisalo,

R. P. Stolk, K. Strauch, A. Tönjes, D.-A. Trégouët, A. Tremblay, E. Tremoli, J. Vir-

tamo, M.-C. Vohl, U. Völker, G. Waeber, G. Willemsen, J. C. M. Witteman, M. Carola

Zillikens, L. S. Adair, P. Amouyel, F. W. Asselbergs, T. L. Assimes, M. Bochud, B. O.

Boehm, E. Boerwinkle, S. R. Bornstein, E. P. Bottinger, C. Bouchard, S. Cauchi, J. C.

Chambers, S. J. Chanock, R. S. Cooper, P. I. W. de Bakker, G. Dedoussis, L. Fer-

rucci, P. W. Franks, P. Froguel, L. C. Groop, C. A. Haiman, A. Hamsten, J. Hui, D. J.

Hunter, K. Hveem, R. C. Kaplan, M. Kivimäki, D. Kuh, M. Laakso, Y. Liu, N. G.

Martin, W. März, M. Melbye, A. Metspalu, S. Moebus, P. B. Munroe, I. Njølstad,

B. A. Oostra, C. N. A. Palmer, N. L. Pedersen, M. Perola, L. Pérusse, U. Peters,

C. Power, T. Quertermous, R. Rauramaa, F. Rivadeneira, T. E. Saaristo, D. Saleheen,

N. Sattar, E. E. Schadt, D. Schlessinger, P. Eline Slagboom, H. Snieder, T. D. Spec-

tor, U. Thorsteinsdottir, M. Stumvoll, J. Tuomilehto, A. G. Uitterlinden, M. Uusitupa,

P. van der Harst, M. Walker, H. Wallaschofski, N. J. Wareham, H. Watkins, D. R.

Weir, H.-E. Wichmann, J. F. Wilson, P. Zanen, I. B. Borecki, P. Deloukas, C. S. Fox,

I. M. Heid, J. R. O’Connell, D. P. Strachan, K. Stefansson, C. M. van Duijn, G. R.

Abecasis, L. Franke, T. M. Frayling, M. I. McCarthy, P. M. Visscher, A. Scherag,

130



C. J. Willer, M. Boehnke, K. L. Mohlke, C. M. Lindgren, J. S. Beckmann, I. Bar-

roso, K. E. North, E. Ingelsson, J. N. Hirschhorn, R. J. F. Loos, and E. K. Speliotes

(2015, feb). Genetic studies of body mass index yield new insights for obesity biology.

Nature 518 (7538), 197–206.

Loewenstein, G. and E. Angner (2003). Predicting and indulging changing preferences.

Time and decision: Economic and psychological perspectives on intertemporal choice,

351–391.

MacKinnon, J. G. (2006). Bootstrap methods in econometrics. Economic Record 82,

S2–S18.

Malmendier, U. and S. Nagel (2011). Depression babies: do macroeconomic experiences

affect risk taking? The Quarterly Journal of Economics 126 (1), 373–416.

Malmendier, U., G. Tate, and J. Yan (2011). Overconfidence and early-life experi-

ences: the effect of managerial traits on corporate financial policies. The Journal

of finance 66 (5), 1687–1733.

Manski, C. F. (2011). Genes, Eyeglasses, and Social Policy. Journal of Economic Per-

spectives.

Meyer, B. D. and N. Mittag (2017). Misclassification in binary choice models. Journal

of Econometrics 200 (2), 295–311.

Meyer, B. D., N. Mittag, and R. M. George (2020). Errors in survey reporting and

imputation and their effects on estimates of food stamp program participation. Journal

of Human Resources, 0818–9704R2.

Miao, J., G. Song, Y. Wu, J. Hu, Y. Wu, S. Basu, J. S. Andrews, K. Schaumberg,

J. M. Fletcher, L. L. Schmitz, et al. (2022). Reimagining gene-environment interaction

analysis for human complex traits. bioRxiv , 2022–12.

Michailidou, K., S. Lindström, J. Dennis, J. Beesley, S. Hui, S. Kar, A. Lemaçon,

P. Soucy, D. Glubb, A. Rostamianfar, et al. (2017). Association analysis identifies

65 new breast cancer risk loci. Nature 551 (7678), 92–94.

131



Mills, M. C., N. Barban, and F. C. Tropf (2020). An Introduction to Statistical Genetic

Data Analysis. MIT Press.

Mittag, N. (2018). A nonparametric k-sample test of conditional independence.

Mostafavi, H., A. Harpak, I. Agarwal, D. Conley, J. K. Pritchard, and M. Przeworski

(2020). Variable prediction accuracy of polygenic scores within an ancestry group.

Elife 9.

Okbay, A. and C. A. Rietveld (2015, aug). On improving the credibility of candidate gene

studies: A review of candidate gene studies published in Emotion. Emotion 15 (4),

531–537.

Page, L., D. A. Savage, and B. Torgler (2014). Variation in risk seeking behaviour

following large losses: A natural experiment. European Economic Review 71, 121–131.

Plomin, R. (1990). Nature and nurture: An introduction to human behavioral genetics.

Wadsworth Publishing Company.

Price, A. L., N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick, and D. Reich

(2006, aug). Principal components analysis corrects for stratification in genome-wide

association studies. Nature genetics 38 (8), 904–9.

Purcell, S. M., N. R. Wray, J. L. Stone, P. M. Visscher, M. C. O’Donovan, P. F. Sullivan,

P. Sklar, D. M. Ruderfer, A. McQuillin, D. W. Morris, C. T. O’Dushlaine, A. Corvin,

P. A. Holmans, M. C. O’Donovan, S. Macgregor, and G (2009, jul). Common polygenic

variation contributes to risk of schizophrenia and bipolar disorder. Nature 460 (7256),

748–752.

Ridley, M. (2003). Nature Via Nurture: Genes, Experience, and What Makes Us Human.

Rosales-Rueda, M. (2018). The impact of early life shocks on human capital formation:

Evidence from el niño floods in ecuador. Journal of health economics 62, 13–44.

Rosales-Rueda, M. F. (2014). Family investment responses to childhood health condi-

tions: Intrafamily allocation of resources. Journal of health economics 37, 41–57.

132



Rutter, M. (2006). Genes and Behavior: Nature-Nurture Interplay Explained. Oxford,

UK: Blackwell Publishers.

Sahm, C. R. (2012). How much does risk tolerance change? The quarterly journal of

finance 2 (04), 1250020.

Sanz-de Galdeano, A. and A. Terskaya (2019). Sibling differences in educational polygenic

scores: How do parents react? Technical report.

Schmitz, L. and D. Conley (2016a). The long-term consequences of vietnam-era con-

scription and genotype on smoking behavior and health. Behavior genetics 46 (1),

43–58.

Schmitz, L. and D. C. Conley (2016b, jun). The Impact of Late-Career Job Loss and

Genotype on Body Mass Index. NBER working paper 1 (22348).

Schmitz, L. L. and D. C. Conley (2016c, jun). The Impact of Late-Career Job Loss and

Genotype on Body Mass Index. NBER Working Paper (22348).

Schmitz, L. L. and D. C. Conley (2016d, jan). The Long-Term Consequences of Vietnam-

Era Conscription and Genotype on Smoking Behavior and Health. Behavior Genet-

ics 46 (1), 43–58.

Schmitz, L. L. and D. C. Conley (2017a). Modeling Gene-Environment Interactions With

Quasi-Natural Experiments. Journal of Personality 85 (1), 10–21.

Schmitz, L. L. and D. C. Conley (2017b, dec). The effect of Vietnam-era conscription

and genetic potential for educational attainment on schooling outcomes. Economics

of Education Review 61, 85–97.

Schutz, A. (1962). Common-sense and scientific interpretation of human action. In

Collected papers I, pp. 3–47. Springer.

Solon, G., S. J. Haider, and J. M. Wooldridge (2015). What are we weighting for?

Journal of Human resources 50 (2), 301–316.

133



Sonnega, A. and D. R. Weir (2014, oct). The Health and Retirement Study: A Public

Data Resource for Research on Aging. Open Health Data 2 (1).

Sudlow, C., J. Gallacher, N. Allen, V. Beral, P. Burton, J. Danesh, P. Downey, P. Elliott,

J. Green, M. Landray, B. Liu, P. Matthews, G. Ong, J. Pell, A. Silman, A. Young,

T. Sprosen, T. Peakman, R. Collins, D. Clayton, P. McKeigue, W. Willett, W. Blot,

G. Colditz, A. Folsom, B. Henderson, M. Stampfer, F. Collins, T. Manolio, R. Doll,

R. Peto, W. Ollier, T. Peakman, P. Burton, A. Hansell, I. Fortier, M. Khoury, A. Hat-

tersley, M. McCarthy, R. Collins, P. Elliott, T. Peakman, B. Liu, H. Young, F. Crowe,

V. Benson, E. Spencer, R. Clarke, M. Shipley, S. Lewington, L. Youngman, J. Pell,

J. Valentine, H. Inskip, P. Downey, and V. Barbour (2015, mar). UK Biobank: An

Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases

of Middle and Old Age. PLOS Medicine 12 (3), e1001779.

The Tobacco and Genetics Consortium, H. Furberg, Y. Kim, J. Dackor, E. Boerwin-

kle, N. Franceschini, D. Ardissino, L. Bernardinelli, P. M. Mannucci, F. Mauri, P. A.

Merlini, D. Absher, T. L. Assimes, S. P. Fortmann, C. Iribarren, J. W. Knowles,

T. Quertermous, L. Ferrucci, T. Tanaka, J. C. Bis, C. D. Furberg, T. Haritunians,

B. McKnight, B. M. Psaty, K. D. Taylor, E. L. Thacker, P. Almgren, L. C. Groop,

C. Ladenvall, M. Boehnke, A. U. Jackson, K. L. Mohlke, H. M. Stringham, J. Tuomile-

hto, E. J. Benjamin, S.-J. Hwang, D. Levy, S. R. Preis, R. S. Vasan, J. Duan, P. V.

Gejman, D. F. Levinson, A. R. Sanders, J. Shi, E. H. Lips, J. D. McKay, A. Agudo,

L. Barzan, V. Bencko, S. Benhamou, X. Castellsagué, C. Canova, D. I. Conway,

E. Fabianova, L. Foretova, V. Janout, C. M. Healy, I. Holcátová, K. Kjaerheim, P. La-

giou, J. Lissowska, R. Lowry, T. V. Macfarlane, D. Mates, L. Richiardi, P. Rudnai,

N. Szeszenia-Dabrowska, D. Zaridze, A. Znaor, M. Lathrop, P. Brennan, S. Bandinelli,

T. M. Frayling, J. M. Guralnik, Y. Milaneschi, J. R. B. Perry, D. Altshuler, R. Elosua,

S. Kathiresan, G. Lucas, O. Melander, C. J. O’Donnell, V. Salomaa, S. M. Schwartz,

B. F. Voight, B. W. Penninx, J. H. Smit, N. Vogelzangs, D. I. Boomsma, E. J. C.

de Geus, J. M. Vink, G. Willemsen, S. J. Chanock, F. Gu, S. E. Hankinson, D. J.

Hunter, A. Hofman, H. Tiemeier, A. G. Uitterlinden, C. M. van Duijn, S. Wal-

ter, D. I. Chasman, B. M. Everett, G. Paré, P. M. Ridker, M. D. Li, H. H. Maes,

J. Audrain-McGovern, D. Posthuma, L. M. Thornton, C. Lerman, J. Kaprio, J. E.

134



Rose, J. P. A. Ioannidis, P. Kraft, D.-Y. Lin, and P. F. Sullivan (2010, may). Genome-

wide meta-analyses identify multiple loci associated with smoking behavior. Nature

Genetics 42 (5), 441–447.

Tishkoff, S. A., F. A. Reed, F. R. Friedlaender, C. Ehret, A. Ranciaro, A. Froment, J. B.

Hirbo, A. A. Awomoyi, J.-M. Bodo, O. Doumbo, M. Ibrahim, A. T. Juma, M. J. Kotze,

G. Lema, J. H. Moore, H. Mortensen, T. B. Nyambo, S. A. Omar, K. Powell, G. S.

Pretorius, M. W. Smith, M. A. Thera, C. Wambebe, J. L. Weber, and S. M. Williams

(2009, may). The genetic structure and history of Africans and African Americans.

Science 324 (5930), 1035–44.

Trejo, S. and B. W. Domingue (2019). Genetic nature or genetic nurture? quantifying

bias in analyses using polygenic scores. BioRxiv , 524850.

Tropf, F. C., S. H. Lee, R. M. Verweij, G. Stulp, P. J. Van Der Most, R. De Vlaming,

A. Bakshi, D. A. Briley, C. Rahal, R. Hellpap, et al. (2017). Hidden heritability due

to heterogeneity across seven populations. Nature human behaviour 1 (10), 757–765.

Turkheimer, E. (2000). Three laws of behavior genetics and what they mean. Current

Directions in Psychological Science 9 (5), 160–164.

Turkheimer, E., A. Haley, M. Waldron, B. M. D’Onofrio, and I. I. Gottesman (2003,

nov). Socioeconomic status modifies heritability of IQ in young children. Psychological

Science 14 (6), 623–628.

Vilhjálmsson, B. J., J. Yang, H. K. Finucane, A. Gusev, S. Lindström, S. Ripke, G. Gen-

ovese, P.-R. Loh, G. Bhatia, R. Do, T. Hayeck, H.-H. Won, S. Kathiresan, M. Pato,

C. Pato, R. Tamimi, E. A. Stahl, N. Zaitlen, B. Pasaniuc, G. Belbin, E. E. Kenny,

M. H. Schierup, P. L. De Jager, N. A. Patsopoulos, S. McCarroll, M. J. Daly, S. M.

Purcell, D. Chasman, B. Neale, M. Goddard, P. M. Visscher, P. Kraft, N. Patterson,

and A. L. Price (2015, oct). Modeling Linkage Disequilibrium Increases Accuracy of

Polygenic Risk Scores. The American Journal of Human Genetics 97 (4), 576–592.

Visscher, P. M., M. A. Brown, M. I. McCarthy, and J. Yang (2012, jan). Five years of

GWAS discovery. American journal of human genetics 90 (1), 7–24.

135



Visscher, P. M., N. R. Wray, Q. Zhang, P. Sklar, M. I. McCarthy, M. A. Brown, and

J. Yang (2017). 10 years of gwas discovery: biology, function, and translation. The

American Journal of Human Genetics 101 (1), 5–22.

Wasserman, L. and K. Roeder (2009). High-dimensional variable selection. The Annals

of Statistics 37 (5A), 2178–2201.

Wedow, R., M. Zacher, B. M. Huibregtse, K. Mullan Harris, B. W. Domingue, and J. D.

Boardman (2018). Education, Smoking, and Cohort Change: Forwarding a Multi-

dimensional Theory of the Environmental Moderation of Genetic Effects. American

Sociological Review 83 (4), 802–832.

Yang, J., T. Ferreira, A. P. Morris, S. E. Medland, P. A. Madden, A. C. Heath, N. G. Mar-

tin, G. W. Montgomery, M. N. Weedon, R. J. F. Loos, T. M. Frayling, M. I. McCarthy,

J. N. Hirschhorn, M. E. Goddard, and P. M. Visscher (2012, apr). Conditional and

joint multiple-SNP analysis of GWAS summary statistics identifies additional variants

influencing complex traits. Nature genetics 44 (4), 369–75, S1–3.

Yang, J., S. H. Lee, M. E. Goddard, and P. M. Visscher (2011, jan). GCTA: A tool

for genome-wide complex trait analysis. American Journal of Human Genetics 88 (1),

76–82.

Yengo, L., J. Sidorenko, K. E. Kemper, Z. Zheng, A. R. Wood, M. N. Weedon, T. M.

Frayling, J. Hirschhorn, J. Yang, P. M. Visscher, et al. (2018). Meta-analysis of

genome-wide association studies for height and body mass index in 700000 individuals

of european ancestry. Human molecular genetics 27 (20), 3641–3649.

Young, A. I., S. Benonisdottir, M. Przeworski, and A. Kong (2019). Deconstructing the

sources of genotype-phenotype associations in humans. Science 365 (6460), 1396–1400.

Zhao, B. and H. Zhu (2021). On genetic correlation estimation with summary statistics

from genome-wide association studies. Journal of the American Statistical Association,

1–11.

136


	Abstract
	Abstrakt
	Acknowledgments
	Introduction
	Chapter 1
	Genetic Data in the Social Sciences
	The Current PGS approach in GxE models
	Data
	Outcomes
	The ROSLA Policy 
	Genetic Data

	The Gene-Environment Model
	Results
	Robustness Checks
	Conclusion
	Appendices
	Extensions of section 1.2
	Measurement Error Bias in the GxE Model
	Additional Figures


	Chapter 2
	Introduction
	Genetic Markers in Economic Research
	Data
	Analytical Sample
	Measurement of the Variables of Interest

	Empirical Model
	Identification and Basic Concepts

	Results
	Robustness Checks
	Conclusion

	Chapter 3
	The Role and Usage of Genetic Data in Social Sciences
	The current PGS approach in the GxE models
	New Method to Estimate GxE Models
	Empirical Application

	Data
	HRS Sample
	UK Biobank Sample

	Results
	Conclusion
	Appendices
	Derivations of formulae of section 3.2
	Extensions of section 3.2
	Measurement Error Bias in the GxE Model



