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Abstrakt

Rozsáhlá literatura odhaduje r̊uzné efekty přijet́ı a absolvováńı škol s využit́ım variace v
bodových výsledćıch student̊u. Při odhadech je předpokládáno quasi-náhodné přijet́ı stu-
dent̊u kolem spodńı hranice přijet́ı. V této disertaci se zaměřuji na teoretické I praktické
aspekty těchto odhad̊u.

V prvńım článku předkládám d̊ukazy naznačuj́ıćı, že vzorky odpov́ıdaj́ıćı obvyklým ap-
likaćım nespojité regrese (dále RDD z anglického regression discontinuity design) v rele-
vantńı literatuře nesplňuj́ı předpoklady náhodného přǐrazeńı. Rozlǐsuji ex-post random-
izaci (odpov́ıdaj́ıćı loterii uchazeč̊u na hraně přijet́ı) od ex-ante randomizace, odrážej́ıćı
nejistotu ohledně struktury všech uchazeč̊u v centralizovaném systému, která může být
přirozeně kvantifikována opakovaným výběrem z populace uchazeč̊u. S využit́ım dat z
chorvatského centralizovaného systému přij́ımaćıch ř́ızeńı na vysoké školy ukazuji, že ex-
ante pravděpodobnosti přijet́ı se významně lǐśı mezi přijatými a odmı́tnutými studenty
nacházej́ıćımi se v obvyklém vzorku použ́ıvaném pro RDD analýzy. Takový nepoměr
v rozděleńı pravděpodobnosti přijet́ı naznačuje, že š́ı̌rka pásma v okoĺı hranice přijet́ı,
tj. velikost výběru pro analýzu kvazi-náhodných přǐrazeńı, by měla být oproti současné
praxi významně redukována s ćılem vyhnout se výběrovému zkresleńı. Také ukazuji,
že značný pod́ıl kvazi-náhodných přǐrazeńı do přijet́ı a nepřijet́ı se nacháźı mimo typ-
ickou š́ı̌rku RDD pásma, což naznačuje, že odhady nejsou vydatné. Jako alternativu k
RDD metodám navrhuji novou odhadovaćı metodu Propensity Score Discontinuity De-
sign (PSDD), která využ́ıvá všechna pozorováńı s kvazi-náhodným přǐrazeńım a srovnává
výsledky uchazeč̊u porovnatelných co do ex-ante pravděpodobnost́ı přijet́ı do daného pro-
gramu, tj. pravděpodobnost́ı přijet́ı podmı́něných bodovými výsledky př́ıj́ımaćıch ř́ızeńı.

V druhém článku zaznamenáváme, že v centralizovaných systémech páruj́ıćıch studenty
a univerzity, kde je student přǐrazen k nevyhovuj́ıćımu studijńımu programu, obvykle
následuje zápis do preferovaného programu v roce následuj́ıćım po prvotńım přǐrazeńı. To
vytvář́ı významné náklady plynoućı z neshody studenta a studijńıho programu. Ukazu-
jeme, že s těmito náklady na neshodu docháźı k porušeńı kĺıčového předpokladu LATE
(local average treatment effect) theoremu a může potenciálně vést ke zkresleným RDD
odhad̊um. Využ́ıváme data z chorvatského systému páruj́ıćıho studenty a univerzity k
ilustraci empirického významu tohoto potenciálńı zdroje zkresleńı a navrhujeme metodu
inspirovanou Leem (2009), která umožňuje odhadnout interval treatment efektu za předpokladu,
že náklady neshody nesouviśı s konkrétńım přǐrazeńım.

Třet́ı článek analyzuje vliv rodinných vazeb na volbu univerzity. Zat́ımco se obecně
předpokládá, že rodina a sociálńı śıtě mohou ovlivnit d̊uležitá životńı rozhodnut́ı, iden-
tifikace jejich kauzálńıch efekt̊u je pověstně obt́ıžná. Tento článek předkládá d̊ukazy
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kauzálńıho vlivu, kdy studijńı směřováńı starš́ıch sourozenc̊u může významně ovlivnit
volbu univerzity a studijńıho programu u mladš́ıch sourozenc̊u. Využ́ıváme institucionálńı
charakteristiky systémů přij́ımaćıch ř́ızeńı z Chile, Chorvatska a Švédska, které generuj́ı
quazi-náhodnou variaci ve studijńım směřováńı starš́ıch sourozenc̊u. S použit́ım RDD
ukazujeme, že mladš́ı sourozenci se významně častěji přihláśı a zaṕı̌si na stejnou školu a
studijńı program jako jejich starš́ı sourozenci, kteř́ı byli náhodně přǐrazeni. Zjǐsťujeme,
že tento sourozenecký vliv je silněǰśı, pokud se starš́ı sourozenci zaṕı̌śı a jsou úspěšńı
ve studijńıch oborech, které jsou v́ıce výběrové, maj́ı nižš́ı pod́ıl neúspěšných student̊u
a absolventi maj́ı vyšš́ı pr̊uměrné př́ıjmy. Výsledky ze Švédska a Chile naznačuj́ı, že
sourozenecký efekt je větš́ı, pokud starš́ı sourozenec je muž. Zkoumáme řadu možných
mechanismů a srovnáváme výsledky např́ıč zeměmi, které maj́ı výrazné odlǐsné sociálńı
a ekonomické charakteristiky. Po shromážděńı d̊ukaz̊u docháźıme k závěru, že výsledky
jsou nejv́ıce konzistentńı s mechanismem, kdy starš́ı sourozenec poskytuje jinak nedos-
tupné informace o zkušenostech s univerzitou a potenciálńıch výnosech ze studia.



Abstract

A large literature estimates various school admission and graduation effects by employing
variation in student admission scores around schools’ admission cutoffs, assuming (quasi-
) random school assignment close to the cutoffs. In this dissertation I focus on this
variation, both from the theoretical and practical standpoints.

In the first paper, I present evidence suggesting that the samples corresponding to typical
applications of regression discontinuity design (RDD) fail to satisfy these assumptions.
I distinguish ex-post randomization (as in admission lotteries applicable to those at the
margin of admission) from ex-ante randomization, reflecting uncertainty about the mar-
ket structure of applicants, which can be naturally quantified by resampling from the
applicant population. Using data from the Croatian centralized college-admission sys-
tem, I show that these ex-ante admission probabilities differ dramatically between treated
and non-treated students within typical RDD bandwidths. Such unbalanced admission
probability distributions suggest that bandwidths (and sample sizes) should be drastically
reduced to avoid selection bias. I also show that a sizeable fraction of quasi-randomized
assignments occur outside of the typical RDD bandwidths, suggesting that these are also
inefficient. As an alternative, I propose a new estimator, the Propensity Score Discontinu-
ity Design (PSDD), based on all observations with random assignments, which compares
the outcomes of applicants matched on ex-ante admission probabilities, conditional on
admission scores.

In the second paper, we note that, in centralized student-college matching markets, non-
compliance with the matching assignment typically corresponds to enrolling in one’s pre-
ferred program a year after the initial assignment, introducing significant non-compliance
costs. We show that with costly non-compliance, the exclusion restriction, the key as-
sumption of the LATE theorem, is violated, potentially leading to biased RDD estimates.
We use data from a student-college matching market in Croatia to illustrate the empir-
ical importance of this potential source of bias and propose a method inspired by Lee
(2009), which recovers the treatment effect bounds under the assumption that the costs
of non-compliance are not related to the treatment assignment.

The third paper analyzes family ties behind the college choice. While it is widely believed
that family and social networks can influence important life decisions, identifying their
causal effects is notoriously difficult. This paper presents causal evidence from three
countries indicating that the educational trajectories of older siblings can significantly
influence the college and major choices of younger siblings. In this analysis, we exploit
institutional features of the college admissions systems in Chile, Croatia and Sweden
that generate quasi-random variation in the educational paths followed by older siblings.
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Using regression discontinuity design, we show that younger siblings are significantly more
likely to apply and enroll in the same college and major to which their older siblings are
randomly assigned. We find that these sibling effects are stronger when older siblings
enroll and are successful in majors that are more selective, have lower dropout rates and in
which graduates have higher average earnings. We explore several potential mechanisms
and compare results across countries that have very different social and economic contexts.
Taking the evidence together we conclude the results are most consistent with older
siblings transmitting otherwise unavailable information about the college experience and
its potential returns.



Contents

1 Identification of School Admission Effects Using Propensity Scores Based
on a Matching Market Structure 14
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 RDD Meets the Matching Market . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Propensity Score Discontinuity Design . . . . . . . . . . . . . . . . . . . 22
1.4 Empirical Application - DA in Croatia . . . . . . . . . . . . . . . . . . . 29

1.4.1 Institutional Setup and the Data . . . . . . . . . . . . . . . . . . 29
1.4.2 Propensity Scores and the RDD . . . . . . . . . . . . . . . . . . . 30

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 LATE Estimators under Costly Non-compliance in Student-College Match-
ing Markets 37
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2 Treatment Effect Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3 Empirical Application to Croatian College Matching Market . . . . . . . 49

2.3.1 Empirical Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.2 Institutional Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3.3 Data and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5 Appendix - Tables and Figures . . . . . . . . . . . . . . . . . . . . . . . 55

3 Siblings’ Spillover Effects on College and Major Choice: Evidence from
Chile, Croatia and Sweden 58
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Institutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.1 College Admission System in Chile . . . . . . . . . . . . . . . . . 63
3.2.2 College Admission System in Croatia . . . . . . . . . . . . . . . . 64
3.2.3 Higher Education Admission System in Sweden . . . . . . . . . . 65

3.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4 Empirical Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.1 Major Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.2 College Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.4.3 Field of Study Sample . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4.4 Identifying Assumptions . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8



3.5.2 Effects of Older Siblings on Major Choice . . . . . . . . . . . . . . 77
3.5.3 Effects of Older Siblings on College and Field of Study Choices . . 80
3.5.4 Effects on Applications to Major and College by Gender: . . . . . 83
3.5.5 Effects on Applications to Major and College by Differences in Age

and in Academic Potential . . . . . . . . . . . . . . . . . . . . . . 84
3.5.6 Effects on Application to College and Major by Older Siblings’

Major Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.5.7 Effects on Application and Enrollment by the College Experience

of Older Siblings . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.5.8 Effects on Academic Performance . . . . . . . . . . . . . . . . . . 87

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
.1 Identification Strategy: Further Discussion . . . . . . . . . . . . . . . . . 103
.2 Robustness Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

.2.1 Manipulation of the Running Variable . . . . . . . . . . . . . . . 106

.2.2 Discontinuities in Potential Confounders . . . . . . . . . . . . . . 107

.2.3 Different Bandwidths . . . . . . . . . . . . . . . . . . . . . . . . . 107

.2.4 Placebo Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

.2.5 Alternative Specifications and Total Enrollment . . . . . . . . . . 108
.3 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9



List of Tables

1.1 Summary statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Summary statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.2 Probability of re-application and re-enrollment . . . . . . . . . . . . . . . 57

3.1 Differences across Countries . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3 Probability of Applying and Enrolling in the Target Major-College of Older

Siblings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.4 Probability of Applying and Enrolling in the Target Major-College of Older

Siblings by Younger Siblings’ Eligibility . . . . . . . . . . . . . . . . . . . 93
3.5 Probability of Applying and Enrolling in the Target College of Older Siblings 94
3.6 Probability of Applying and Enrolling in the Target College of Older Sib-

lings: Large Cities Sample . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.7 Probability of Applying and Enrolling in the Target Field of Study of Older

Siblings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.8 Probability of Applying to the Target Major and Target College of Older

Siblings by Older Siblings’ Gender . . . . . . . . . . . . . . . . . . . . . . 97
3.9 Probability of Applying in the Target Major and College of Older Siblings

by Siblings’ Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.10 Probability of Applying in the Target Major and Target College of Older

Siblings by Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.11 Probability of Applying and Enrolling in the Target Major-College of Older

Siblings by Quality Difference with respect to Counterfactual Alternative 100
3.12 Probability of Applying and Enrolling in the Target Major and Target

College of Older Siblings by Older Siblings’ Dropout . . . . . . . . . . . 101
3.13 Effect of Older Siblings’ Enrollment in the Target Major-College on Aca-

demic Performance (Major Sample) . . . . . . . . . . . . . . . . . . . . . 102
B1 Probability of Applying and Enrolling in the Target Major of Older Siblings

- Reweighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
B2 Probability of Applying and Enrolling in the Target College of Older Sib-

lings - Reweighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
B3 Probability of Applying and Enrolling in the Target Field of Older Siblings

- Reweighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
B4 Probability of Enrolling in any College Depending on the Admission to

Target Major-College of Older Siblings . . . . . . . . . . . . . . . . . . . 126
B5 Probability of Applying and Enrolling in the Target Major-College of Older

Siblings - Different Slope for each Admission Cutoff . . . . . . . . . . . . 127

10



B6 Probability of Applying and Enrolling in the Target College of Older Sib-
lings - Different Slope for each Admission Cutoff . . . . . . . . . . . . . . 128

B7 Probability of Applying and Enrolling in the Target Field of Older Siblings
- Different Slope for each Admission Cutoff . . . . . . . . . . . . . . . . . 129

B8 Probability of Applying and Enrolling in the Target Major-College of Older
Siblings - Target × Counterfactual Major Fixed Effects . . . . . . . . . . 130

B9 Probability of Applying and Enrolling in the Target College of Older Sib-
lings - Target × Counterfactual Major Fixed Effects . . . . . . . . . . . . 131

B10 Probability of Applying and Enrolling in the Target Field of Older Siblings
- Target × Counterfactual Major Fixed Effects . . . . . . . . . . . . . . . 132

C1 Probability of Enrolling in the Target Major and Target College of Older
Siblings by Older Siblings’ Gender . . . . . . . . . . . . . . . . . . . . . . 134

C2 Probability of Applying and Enrolling in the Target Field of Study of Older
Siblings by Older Siblings’ Gender . . . . . . . . . . . . . . . . . . . . . . 135

C3 Probability of Enrolling in the Target Major and Target College of Older
Siblings by Siblings’ Similarity . . . . . . . . . . . . . . . . . . . . . . . . 136

C4 Probability of Applying and Enrolling in the Target Field of Study of Older
Siblings by Siblings’ Similarity . . . . . . . . . . . . . . . . . . . . . . . . 137

C5 Probability of Enrolling in the Target Major and College of Older Siblings
by Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

C6 Probability of Applying and Enrolling in Older Sibling’s Target Field of
Study by Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

C7 Probability of Enrolling in the Target Major and College of Older Siblings
by Quality Difference respect to Counterfactual Alternative . . . . . . . . 140

C8 Probability of Applying and Enrolling in the Target Field of Study of Older
Siblings by Difference in Quality respect Counterfactual Alternative . . . 141

C9 Effect of the Enrollment in the Target Program of Older Siblings on Aca-
demic Performance (College Sample) . . . . . . . . . . . . . . . . . . . . 142

C10 Effect of the Enrollment in the Target Program of Older Siblings on Aca-
demic Performance (Field of Study Sample) . . . . . . . . . . . . . . . . 143

C11 Effect of Older Siblings’ Enrollment in the Target Major-College on Aca-
demic Performance by Age Difference . . . . . . . . . . . . . . . . . . . . 144

11



List of Figures

1.1 Distributions of propensity scores for the treated and the non-treated group
by RDD bandwidths choice . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.2 Histogram of admission scores for the applications with random assignment 32
1.3 Density of the standardized admission score . . . . . . . . . . . . . . . . 36

2.1 LATE bounds vs. 2SLS estimates - varying non-compliance probabilities 47
2.2 LATE bounds vs. 2SLS estimates - varying γ . . . . . . . . . . . . . . . 48
2.3 Re-application probability at the initial-application admission cutoff . . . 55
2.4 Re-enrollment probability at the initial-application admission cutoff . . . 55

3.1 Older Siblings’ Admission and Enrollment Probabilities in Target Major-
College at the Admission Cutoff (First Stage) . . . . . . . . . . . . . . . 67

3.2 Probabilities of Applying and Enrolling in the Target Major-College of the
Older Siblings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 Probabilities of Applying and Enrolling in the Target College of Older
Siblings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4 Probabilities of Applying and Enrolling in the Target Field of Study of
Older Siblings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B1 Density of Older Siblings’ Application Scores at the Target Major-College
Admission Cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

B2 Discontinuities in other Covariates at the Cutoff . . . . . . . . . . . . . . 110
B3 Probabilities of Applying and Enrolling in the Target Major-College of

Older Siblings - Different Bandwidths . . . . . . . . . . . . . . . . . . . . 111
B4 Probabilities of Applying and Enrolling in the Target College of Older

Siblings - Different Bandwidths . . . . . . . . . . . . . . . . . . . . . . . 112
B5 Probabilities of Applying and Enrolling in the Target Field of Study of

Older Siblings - Different Bandwidths . . . . . . . . . . . . . . . . . . . . 113
B6 Placebo - Probabilities of Applying and Enrolling in the Target Major-

College of Younger Siblings . . . . . . . . . . . . . . . . . . . . . . . . . 114
B7 Placebo - Probabilities of Applying and Enrolling in the Target College of

Younger Siblings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
B8 Placebo - Probabilities of Applying and Enrolling in the Target Field of

Study of Younger Siblings . . . . . . . . . . . . . . . . . . . . . . . . . . 116
B9 Placebo Cutoffs - Probabilities of Applying and Enrolling in the Target

Major-College of Older Siblings . . . . . . . . . . . . . . . . . . . . . . . 117
B10 Placebo Cutoffs - Probabilities of Applying and Enrolling in the Target

College of Older Siblings . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
B11 Placebo Cutoffs - Probabilities of Applying and Enrolling in the Target

Field of Study of Older Siblings . . . . . . . . . . . . . . . . . . . . . . . 119

12



B12 Probabilities of Applying and Enrolling in the Target Major-College of
Older Siblings (Polynomial of degree 2) . . . . . . . . . . . . . . . . . . . 120

B13 Probabilities of Applying and Enrolling in the Target College of Older
Siblings (Polynomial of degree 2) . . . . . . . . . . . . . . . . . . . . . . 121

B14 Probabilities of Applying and Enrolling in the Target Field of Study of
Older Siblings (Polynomial of degree 2) . . . . . . . . . . . . . . . . . . . 122

13



Chapter 1

Identification of School Admission
Effects Using Propensity Scores
Based on a Matching Market
Structure

14



1.1 Introduction
The deferred acceptance (DA) algorithm, a major result in market design, has numerous
important practical applications. Several countries operate centralized matching mar-
kets that implement the DA algorithm to assign students to colleges. In these markets,
college applicants submit their school preferences (rankings) along with their (poten-
tially school-specific) admission scores. A growing empirical literature exploits a feature
of these college admission systems whereby students with similar admission scores in a
neighborhood of a school’s admission threshold are or are not offered admission to the
schools based on small differences in admission scores. For students at the margin of ad-
mission, treatment (school assignment) is driven by uncertainty in their admission scores
(Lee, 2008). The literature relies on data from such centralized markets and on regression
discontinuity design (RDD) to estimate the causal effects of attending specific schools on
various outcomes.1

In a typical matching market setting, students submit their preferences (school rankings)
knowing their exact admission scores. The matching market mechanism then compares
test scores of the whole population of applicants in the order of their rankings and, given
school-specific limits on the number of admitted students, it determines the school-specific
admission score cutoffs. At the time of the application, there is therefore no individual-
level admission score uncertainty; instead, uncertainty of admission (the source of quasi-
random assignments to schools) corresponds to the uncertainty of school-specific score
cutoffs, which in turn, are entirely determined by the market-level structure of applica-
tions, i.e., by the test scores and school rankings of all applicants in the market. From
an analyst’s perspective, it is natural to quantify the extent of randomness in this struc-
ture (and in the implied score cutoffs) by resampling from the applicant population and
recording the simulated matching market outcomes.2 Such resampling then allows one
to form an ex-ante probability of admission for each student-school pair — an admission
propensity score.

The RDD approach assumes that students’ applications within a limiting neighborhood
of the cutoffs, defined by a particular bandwidth, have similar admission probabilities
regardless of the admission outcome.3 Abdulkadiroglu et al. (2019) show that the RDD
estimator can identify causal effects in matching-market settings only after controlling

1Kirkeboen et al. (2016) and Hastings et al. (2014) estimate labor-market returns of specific fields
of study, Lucas and Mbiti (2014) and Abdulkadiroglu et al. (2014) study effects on standardized test
scores, and Angrist et al. (2016) evaluate high school attendance effects on college choice. Dustan (2018),
Fernandez (2019) and Altmejd et al. (2019a) use this research design to ask about the role of family ties
in school choice.

2This is feasible in most existing applications of the RDD design to matching markets, in which
analysts typically work with the entire applicant population.

3In RDD applications outside of the matching market literature, observations away from the cutoffs
are often used, after conditioning on local polynomial regressions, to aid in the prediction of conditional
means on either side of the cutoff, even if these away-from-the-cutoff observations are not subject to
assignment risk themselves. In matching markets, however, these techniques are less applicable, since
typically hundreds of schools are pooled to obtain a multi-cutoff RDD estimator, where cutoffs are
endogenously determined by the market level structure of applicants. In such a setup, conditioning on
school-specific polynomials (i.e. Altmejd et al., 2019b) might be overlooking confounding factors tied to
the choice process at a specific school (i.e. higher-ranked schools might have different outcomes than
lower-ranked schools) - see Abdulkadiroglu et al. (2019).
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for admission propensity scores. However, Abdulkadiroglu et al. (2019) do not estimate
propensity scores and instead rely on their limiting distributions. Specifically, they as-
sume that within the bandwidth-defined neighborhoods around admission cutoffs, propen-
sity scores are constant: they assume that the bandwidths are sufficiently narrow so that
the random-assignment assumption holds. In this paper, I provide a direct test of the key
RDD assumption in these settings, that close to admission cutoffs, admission probabil-
ities are similar regardless of the admission outcome thanks to randomized assignment.
The test is based on estimating and comparing the distributions of propensity scores for
the treated and non-treated groups. To the best of my knowledge, this is the first study
to assess this key identifying assumption of the RDD approach.

Most RDD school-choice studies choose a constant arbitrary bandwidth around all school
admission cutoff thresholds.4 To demonstrate that bandwidth choices do not drive the
results, these studies typically employ robustness checks repeating the estimation for
alternative values of the bandwidth. As an example, Abdulkadiroglu et al. (2014) use
bandwidths ranging from roughly a third of the standard deviation up to the full standard
deviation, while Kirkeboen et al. (2016) use all data (impose no bandwidths) in their
main specification. Propensity scores, constructed by resampling from the applicant
population, allow one to also assess whether these bandwidth choices lead the analyst to
study outcomes of students who face no (quasi-) randomness in their school assignment.

For example, it could be the case that applicants to small schools face more uncertainty in
their admission offers than applicants to large programs or schools. Therefore, propensity
scores can also be used to inspect whether there are quasi-random assignments outside
of the typical bandwidths used in RDD studies.

To illustrate the use of propensity scores in these settings, I calculate (and validate)
propensity scores for each student-college pair using data from the Croatian college choice
matching market from 2014 to 2018.5 Next, I evaluate the propensity scores of appli-
cants near school-specific admission cutoffs using bandwidth values typically found in the
literature and obtain results that are not consistent with the assumptions of the RDD
approach. First, I find that the propensity score distributions within typical bandwidths
differ considerably across the treated and the non-treated groups. When considering ap-
plications of students who have admission scores at most half a standard deviation away
from the school admission cutoffs, the average propensity score for the treated group is
85.8%, compared with 7.6% in the non-treated group. Second, I show that a substantial
fraction of applications (roughly 40% in the case of half a standard deviation bandwidth)
within the typical bandwidths faces no assignment risk at all (i.e., propensity score equal
to 1 or 0). Such extensive differences between propensity score distributions for the ap-
plications of the treated and the non-treated students contradict the assumed random
assignment to treatment near the admission threshold. Furthermore, the fact that al-
most half of the applications in RDD comparisons face no assignment uncertainty at all
directly violates the Lee (2008) non-trivial assignment probability assumption.

4To improve the efficiency of the RDD approach, Abdulkadiroglu et al. (2019) use school-specific
optimal bandwidths based on Imbens and Kalyanaraman (2012). However, optimality requires the inde-
pendence of observations assumption, which is not satisfied in the school-choice framework as students
apply to multiple schools.

5Propensity scores are estimated by adopting the Agarwal and Somain (2018) approach.
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I find that only a drastic reduction in bandwidths — considering observations at most
0.01 standard deviations away from the cutoff (i.e., applying a bandwidth size that is
10 to 50 times smaller than those employed in Abdulkadiroglu et al. (2014) — results
in comparable distributions of propensity scores, and less than 1% of students with a
deterministic assignment. Focusing on narrow neighborhoods around the admission cut-
offs, however, comes at the expense of neglecting observations with non-trivial propensity
scores that are located outside of the chosen bandwidths. As an example, suppose that we
are studying all students who have a probabilistic assignment to school u (i.e., non-trivial
propensity score at school u). A student who has a non-trivial propensity score at some
school ranked higher than school u, which implies a non-trivial propensity score also at
school u, has a probabilistic assignment to school u, despite being far above the u-school
cutoff. When identifying the effects of admission to school u, a typical RDD estimator will
ignore these observations. To illustrate the extent of this, in the Croatian data I employ
here, around 1.7% of the total applicant-school dyadic population has a propensity score
between 40% and 60%. However, less than 30% of these highly randomized observations
are captured within (RDD) samples defined by a 0.01 standard deviation bandwidth.

In sum, to adhere to the RDD assumptions, one needs to use smaller bandwidths, which,
however, lead one to ignore much of the quasi-random applications available in match-
ing market data. Hence, the application of the RDD design to matching market data
faces fundamental obstacles. As an alternative approach, I propose a new estimator, the
propensity score discontinuity design (PSDD), which applies the Rosenbaum and Rubin
(1983) propensity score theorem to the matching market setting. By considering the
propensity scores, the PSDD extracts the ex-ante uncertainty contained in the market-
level structure of applications, and instead of choosing an arbitrary bandwidth, focuses
only on the applications whose assignment is (quasi-) random. Crucially, the PSDD
takes advantage of the timing of the matching market, recognizing that any potential
selection into treatment must be embedded in the students’ submitted preferences and in
the admission score. Therefore, the selection-on-observables assumption in the standard
propensity score theorem, which might seem unrealistic in the school choice setting, is
not needed to employ the PSDD, as I show in Section 3. The PSDD estimator studies
the outcomes of only those applications that face ex-ante (quasi-) randomness in their
school assignment. Identification is therefore, by construction, based on observations
with random assignments, both close to and away from the admission cutoff, and not on
assuming randomized assignments as a function of distance from admission cutoffs as in
the usual RDDs.

The remainder of this paper is structured as follows. Section 2 develops the matching
market framework and proves that admission probabilities do not depend on the admis-
sion score in a limiting neighborhood around the cutoff. Section 3 develops the PSDD.
Section 4 calculates propensity scores using Croatian matching market data and evaluates
the typical bandwidths used in the literature. Section 5 concludes.
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1.2 RDD Meets the Matching Market
In this section, I formally define a model of a student-school matching market inspired by
Fack et al. (2019), which I then use to apply the quasi-experimental interpretation of RDD
(Lee, 2008). The aim is to develop an evaluation tool to assess the appropriateness of the
bandwidths used in studies employing the RDD in matching market settings. I adapt
the model in Fack et al. (2019) by considering a potentially general form of students’
preferences over schools in a market characterized by a finite number of students, and
by modelling a student’s type as a collection of his admission scores, preferences over
schools, and observable and unobservable covariates.6

Consider a matching market defined by a set of students I and a set of schools U . Denote
the cardinality of the set of students with |I| and suppose that I is constructed by
independently drawing |I| students from the distribution H. Next, suppose that a set of
schools U is fixed. The objective of the market is to match each student i ∈ I to exactly
one school u ∈ U .

Student i ∈ I is described by a random vector i = {Ri,v v∈U , >i,Wi, Xi}, where Ri,v is
the admission score of the student i at school v, >i describes preferences of student i
over (some) schools in U ,7 and Wi and Xi are students i’s unobservables and observables,
respectively. School u ∈ U is described by a fixed scalar u = {qu}, where qu is a fixed
quota for school u. Given two applications by students i and j, school u gives admission
priority to student i if and only if Ri,u > Rj,u.

The timeline of the matching market is as follows:

1. A set of students I is constructed by |I| independent draws from the distribution
H.

2. Each student i learns his admission scores Ri,v, v∈U .

3. Each student i, based on his preferences >i, admission score Ri,v, v∈U , observ-
able (Xi) and unobservable (Wi) covariates, submits an ordered priority list Si :=
Si,l, l ∈ {1, ..., Li}, where l denotes the priority of the school, and Li denotes car-
dinality of the set of schools submitted by student i. For example, if students i’s
admission score exceeds the school’s Si,1 cutoff, he is offered admission to school
Si,1. If it is below the school’s Si,1 cutoff, he is considered for eligibility in school
Si,2 and so on.

4. Given observed students’ priority lists {Si,l},∀i, l, and schools’ quotas {qu},∀u ∈ U ,
the matching market defines a mapping Ti : I 7→ U , assigning exactly one school
u ∈ U to each student i ∈ I. Denote with cu the admission cutoff for school u,

6In Fack et al. (2019), the student’s type does not include observable and unobservable covariates
and preferences are assumed to be guided by the von Neumann-Morgenstern utilities. The results do
not depend on these extensions of the original model; they are implemented solely due to expositional
purposes.

7The outside option for a student is not going to any school. If a student’s preference over a particular
school is not defined, I assume that the outside option is preferred to this school.
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which takes a non-zero value only for programs that filled its quota8:

cu(I) =

mini:Ti=uRi,u if ∑i 1Ti=u = qu

0 if ∑i 1Ti=u < qu

Assume the following properties of the mapping Ti:

• Non-wastefulness: @i ∈ I such that ∃u ∈ U so that Si,k = u and Si,l = Ti while
k < l and Ri,u > cu. In words, schools are required to admit students until there
are no unfilled vacancies.

• Transparent assignment: @ a pair of students i ∈ I and j ∈ I such that Ri,u >
Rj,u and Ti = p, for some p ∈ U , and Tj = u while Si,k = u and Si,l = p while
k < l. In words, schools are allowed to rank the students only with respect to the
(school-specific) admission score.

Denote with I−i the set of students excluding student i. Then, the admission offer of
student i at school u is defined as:

au(Si, Ri, I−i) =

1(if Si,l = u for some l and Ri,Si,r
< cSi,r

(I) ∀r < l and Ri,u ≥ cu(I))
0 otherwise

In words, student i is only offered admission at school u if he listed school u on his priority
list, was rejected by all the schools listed above school u, and finally met admission criteria
for school u. Further, given that the admission decision for student i, given his submitted
priority list and admission scores, depends exclusively on the set of students I, the (ex-
ante) probability of student i receiving an admission offer at school u is:

P (Ti = u) =
∫
au(Si, Ri, J−i) dH(J−i). (1.1)

The matching market implementing the deferred acceptance algorithm corresponds to
this framework.

Next, I use the framework described above to adapt the quasi-experimental interpretation
of RDD (Lee, 2008) to the case of the matching market. Denote with g(·) the density of
the unobservable Wi and introduce the following definition:

Definition 1: Selection on unobservables. The treatment is subject to selection on
unobservables if there is a non-zero correlation between unobservable Wi and the treatment
assignment Ti.

Lee (2008) assumes that there are no discontinuities in the density of unobservables when
the admission score equals the cutoff:

Assumption 1: Continuity of unobservables. The conditional density g(·|Ri,u = cu)
is continuous at cu.

8The cutoffs depend on the market level structure of applicants, as the student with the lowest
admission score admitted to a particular school defines that school’s cutoff.
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In Lee (2008), the cutoff is perfectly known before the treatment assignment, and thus
the assumption essentially assumes away selection on unobservables. In contrast, in
our framework, cutoffs are not known at the time of the application — there is a cutoff
uncertainty. For example, suppose that the admission score Ri,u at school u is drawn from
the continuous distribution for each student i. Then the distribution of the cutoff cu, the
qu-order statistics of school-u applicants, is also continuous. In this case, the Continuity
of unobservables assumption is satisfied almost surely if the conditional density g(·|R) is
discontinuous for, at most, a finite number of admission score values R.

Suppose that we are interested in measuring the effect of attending school u on some
outcome Y . RDD strategies focus on those applications, for which au(Si, Ri, I−i) ≡
1Ri,u>cu , where the assignment to school u is, from the ex-post perspective, a function
of the school u specific admission score Ri,u (from now on I refer to these observations as
the RDD estimation sample).9 More formally, the RDD estimation sample is defined as
follows:

Definition 2: RDD Estimation Sample. Suppose that student i is assigned to school
Si,k, Ti = Si,k for some k. Application Si,l is included in the RDD estimation sample only
if l ≤ k.

As recognized in Kirkeboen et al. (2016), the outcome Y for student i who enrolled at
school u, can only be estimated relative to the outcome at the counterfactual school,
which the student would be admitted to if he was rejected admission to school u. To
formalize this idea, denote with Di a dummy variable indicating student i’s treatment
status (enrolling at school u), i.e. Di := 1Ti=u. Suppose that the outcome Yk at any school
k is a function of the unobservable Wi, i.e. Yk = Y (Wi|Ti = k). Specifically, for students
with applications in the RDD estimation sample, denote with Y1 and Y0 the outcomes
when attending and not-attending school u, respectively: Y1 := Y (Wi|Di = 1) and
Y0 := Y (Wi|Di = 0). Using the law of iterated expectations, we obtain E[Y1 − Y0|Ri,u =
cu] = ∑

k∈U(Ŷi,u − Ŷi,k)P (Ti = k|Ti 6= k) where P (Ti = k|Ti 6= u) is the probability of
student i being admitted to school k, given that he was marginally rejected admission to
school u.

The following proposition provides the experimental interpretation of the RDD:

Proposition 1. Suppose that the Continuity of unobservables assumption holds. Then,
the following holds for each school-student pair in the RDD estimation sample:

E[Y |Ri,u = cu]− lim
x→c−u

E[Y |Ri,u = x] = E[Y1 − Y0|Ri,u = cu]

Proof. See Lee (2008).

Under the continuity assumption, the proposition establishes causality by comparing the
outcomes of students, with different treatment assignments, in the RDD estimation sam-
ple with the school u-specific admission scores within a limiting neighbourhood around
the cutoff. A critical aspect of the RDD implementation is choosing a bandwidth to de-
fine this limiting neighbourhood — reducing the bandwidths excessively, while improving
the credibility of Proposition 1, results in diminishing sample sizes. To compromise this

9The usual justification for this is that assignment to these schools is not possible.
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empirical tradeoff, a series of papers have proposed procedures to calculate optimal band-
widths (i.e., Imbens and Kalyanaraman, 2012). This literature concentrates on cases in
which there is only one running variable and does not cover our case of multiple (po-
tentially correlated) cutoffs and admission scores. Therefore, studies applying RDD to
the matching markets setting generally use arbitrary bandwidths that are not supported
with theory. The following simple adaptation of Proposition 1 can be used to assess the
appropriateness of the bandwidth. Intuitively, in the limiting neighbourhood of Proposi-
tion 1, as long as the student’s admission scores are continuous, the admission score does
not change the admission probability significantly. Therefore, to support the bandwidth
choice, an analyst can verify that the admission probability distributions of those just
above the cutoff (treated students) are similar to admission probability distributions of
those just below the cutoff (non-treated students).

Lemma 1. Suppose that the school u-specific admission score Ri,u is drawn from the con-
tinuous distribution for each student i. Then, for any application in the RDD estimation
sample the following holds:

P (Ti = u|Ri,u = cu) = lim
x→c−u

P (Ti = u|Ri,u = x).

Proof. In the RDD estimation sample, the ex-ante probability of admission to school u
for a student with admission score Ri,u = cu,

P (Ti = u|Ri,u = cu) =
∫
au(Si, cu, J−i) dH(J−i),

which simplifies to
P (Ti = u|Ri,u = cu) =

∫
1cu>ĉu

dH(J−i),

where the integral goes over the support of possible cutoffs ĉu defined by the distribution
of H(J−i) through:10

cu(I) = min
j:Tj=u

Rj,u where
∑
j

1Tj=u = qu

Note that, as the cutoff cu is simply a qu-order statistic, the continuity of Rj,u for each j,
implies the continuity of cu, so that:∫

1cu>ĉu
dH(J−i) =

∫
1cu>ĉu

dQ(ĉu)),

for some continuous distribution Q. The lemma now follows from the continuity of Q.

10Note that the schools where the cutoff is not imposed do not belong to the RDD estimation sample.
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1.3 Propensity Score Discontinuity Design
A key empirical challenge for the identification of school admission effects is accounting for
the potential selection on unobservables. For example, unobservable levels of motivation
of students might confound the estimate of school-specific labour market returns. In
practice, there are two distinct RDD approaches used to account for the selection on
unobservables. The more common one is nonparametric, which estimates a local linear
regression around the cutoff using pre-defined bandwidth values. This approach assumes
that the unobservables Wi are balanced in a local neighbourhood of a fixed admission
score:

Assumption 2: Nonparametric identification. For each school u-specific admission
score ĉu, there exists δ such that Y0, Y1 ⊥ Wi, ∀i ∈ I for Ri,u ∈ 〈ĉu − δ, ĉu + δ〉.11

Alternatively, there is a parametric regression approach typically using polynomials to
model the running variable (in our case the admission score) over its entire support. This
approach assumes that the outcome is orthogonal to the unobservables Wi conditional
on polynomials in the admission score:

Assumption 3: Parametric identification. Outcome is orthogonal to the unobserv-
ables conditional on polynomials in admission score: Y0, Y1 ⊥ Wi|Ri,u, R

2
i,u, . . . R

p
i,u, ∀i ∈

I.

As discussed in the previous section, the RDD uses the RDD estimation sample, ex-
cluding all the alternatives ranked below a student’s (ex-post) admission outcome (as the
student did not compete at these schools, the assignment was impossible from the ex-post
perspective.) This is because the RDD assumes, through Assumption 2 or Assumption
3, that students around the cutoff are “the same” in every aspect except the admission
outcome, which is deterministically linked to the school-specific admission score (i.e. a
student is offered admission if and only if his admission score is above the school-specific
cutoff). For schools ranked below the ex-post admission outcome, this deterministic link
between admission score and the assignment is broken — the student is never considered
for admission (even if he is above the cutoff for these schools). For this reason, these
observations are not included in the RDD estimation sample. However, from the ex-ante
perspective, excluding these observations is unnecessary as students who are randomly
accepted to a higher-ranked school are also randomly not assigned to a lower-ranked
school.

For example, suppose a student ranked school A as his first choice, followed by school B.
Suppose that ex-ante he had a 50% probability of being admitted to school A, and a 50%
chance of being admitted at school B, and assume that, ex-post, he was just above school
A’s cutoff. The RDD concludes that the assignment to school B is ex-post impossible, and
therefore excludes this choice from the estimation sample to ensure that the assignment
is a deterministic function of only the admission score and the school-specific cutoff. The
estimator I am proposing below understands that the assignment to school A was ex-ante
just as probable as the assignment to school B, and thus it includes both choices in the

11All results provided in this section hold under the weaker Continuity of unobservables assumption
from the previous section, which would require showing that the local PSDD is well defined (analogously
to Proposition 1). I decided to focus on the stronger assumption, due to the intuitive appeal, and elegant
exposition.
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estimation sample. In the following paragraph, I provide the motivation for the new
estimator, by naturally generalizing simple estimators used in settings where admissions
are resolved using a lottery at the margin of admission, to incorporate also the uncertainty
in cutoffs at the time of the application.

In a typical high-school admission system, admission scores are coarse, and students are
divided into a small number of groups with different admission priorities. Admission
decisions for the students in the group at the margin of admission are then implemented
by breaking the ties (within the group) by an admission lottery. The literature on high-
school admission effects typically focuses only on the marginal group where the assignment
is explicitly random (e.g., Abdulkadiroglu et al., 2017), which effectively conditions on
the market structure of applications that assigned a specific group of applicants to the
marginal group. While this ex-post assignment randomization is clearly ideal for the
purpose of identification within the marginal group, there are additional sources of ex-
ante assignment uncertainty corresponding to uncertainty at the time of the application.
In settings where admission scores are highly coarse, the additional ex-ante uncertainty
is negligible. To illustrate this, suppose that there are only two admission-score groups:
A and B, and only one school prioritizing group A over group B. Suppose also that
the school capacity is such that everybody in group A is highly likely to be admitted,
while a lottery determines admission from group B. In this case, for a specific student in
group B, the dominant component of total ex-ante admission uncertainty is the ex-post
lottery draw, since group B is almost certainly the marginal group. In contrast, when
admission scores are less coarse, such that there are numerous admission groups, the ex-
ante probability depends not only on the ex-post lottery draw applicable to the (smaller)
group of marginal applicants, but significantly also to the ex-ante uncertainty of ending up
in the marginal group, which depends on the market-level structure of applications. The
method I propose below incorporates the ex-ante uncertainty, employing larger sample
sizes than the conventional lottery-based estimators since it considers students facing ex-
ante probabilistic assignments outside of the marginal admission group. In other words,
the method also includes the applications of students outside of the marginal group, as
long as their admission is ex-ante sufficiently probabilistic. The remainder of this section
formalizes this intuition and generalizes it to the case of a continuous admission score (a
typical case in college-admission systems).

Assume the matching market from the previous section and suppose we are interested in
the effect of attending a college u on student i’s outcome Yi, i ∈ I. Denote with Di a
dummy variable indicating treatment assignment, Di = 1Ti=u and let Y1 = Y (Wi|Di = 1)
and Y0 = Y (Wi|Di = 0). Assume the following:

Assumption 4: Ignorability of cutoffs. The outcome Y is independent of the cutoff
cu, conditional on the submitted priority list Si and admission scores Ri,v v∈U :

Y1, Y0 ⊥ Cu|(Si, Ri,v v∈U)).

In words, the Ignorability of cutoffs assumes that the outcome Y (Wi) does not depend
on the realization of the cutoff, conditional on the student’s observable characteristics.
For example, this will hold if student i’s outcome Y (Wi) does not depend on the other
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students’ school assignments, i.e. Y (Wi) ⊥ Tj, j ∈ I−i. It is worth noting that this
assumption is also crucial for the identification of the conventional RDD.12

Notice that the original Rosenbaum and Rubin (1983) propensity theorem requires the
strong ignorability of treatment assumption — it assumes that the selection into treat-
ment is not affected by unobservables.13 In Proposition 2 below, I adopt the propensity
score theorem (Rosenbaum and Rubin, 1983) to the school choice setting, acknowledging
that unobservables are reflected in the submitted ordered priority lists and the admis-
sion scores. More precisely, given the student’s submitted ordered priority list and his
admission scores, the admission decision depends only on the realization of the cutoff.
Therefore, the student’s observable characteristics Xi and the student’s unobservable
characteristics Wi do not affect his admission outcome Di, other than through his admis-
sion score Ri,v v∈U and submitted priority list Si. Consequently, under the assumption
that the cutoff realization does not influence the outcome, matching on the propensity
scores accounts for the possible selection on unobservables. In other words, unlike in the
original propensity score theorem where it is assumed, strong ignorability of treatment
follows from the Ignorability of cutoffs.

Proposition 2. Suppose Ignorability of cutoffs holds. Then treatment assignment is
strongly ignorable, in the sense of Rosenbaum and Rubin (1983), given the submitted
ordered priority list and the student’s admission score:

Y1, Y0 ⊥ Di|(Si, Ri,v v∈U).

Therefore, the expected difference in observed outcomes conditional on P (Di|(Si, Ri,v v∈U))
is equal to the average treatment effect at P (Di|(Si, Ri,v v∈U)):

E[Y1|T = 1, P (Di|(Si, Ri,v v∈U))]− E[Y0|T = 0, P (Di|(Si, Ri,v v∈U))] =

E[Y1 − Y0|P (Di|(Si, Ri,v v∈U))]

.

Proof. The treatment assignmentDi is determined by a mapping Ψ, whereDi ≡ Ψ(Si, Ri,v v∈U , cv,v∈U);
that is, knowing the student’s submitted priority list Si, his admission scores Ri,v v∈U and
the school-specific cutoffs cv,v∈U , one can determine treatment assignment with certainty.
Therefore, we obtain:

Y1, Y0 ⊥ Di|(Si, Ri,v v∈U) ⇐⇒
Y1, Y0 ⊥ Ψ(Si, Ri,v v∈U , cv,v∈U)|(Si, Ri,v v∈U)

By assuming Ignorability of cutoffs, i.e. Y1, Y0 ⊥ cv, v∈U |(Si, Ri,v v∈U), the second line
above follows directly. Therefore, treatment assignment Di is strongly ignorable given

12If the Ignorability of cutoffs does not hold, the RDD treatment effect could be driven by the cutoff
proximity of the treated students, as their counterfactuals (schools they are assigned if they are just
below the treatment) are not necessarily around the cutoff. For example, a student who was marginally
declined admission to the cutoff school may be well above the cutoff at his next highest ranked school.

13In the school choice setting this might seem unrealistic. For example, suppose that a student is
incentivized into a law school, being brought up by a lawyer mother and a lawyer father.

24



(Si, Ri,v v∈U), in the sense of Rosenbaum and Rubin (1983). Using theorem 3 from the
same paper, and the Strong ignorability of treatment just obtained, we get:

E[Y1|T = 1, P (Di|(Si, Ri,v v∈U))]− E[Y0|T = 0, P (Di|(Si, Ri,v v∈U))] =

E[Y1 − Y0|P (Di|(Si, Ri,v v∈U))].

While Proposition 2 uncovers the treatment effect for students with a particular value
of the propensity score, it does not guarantee that there is no heterogeneity in ad-
mission scores among these students. More precisely, Theorem 1 in Rosenbaum and
Rubin (1983) says that the propensity score is a balancing score, i.e., (Si, Ri,v v∈U) ⊥
D1, D0|P (Di|(Si, Ri,v v∈U)). Intuitively, given a particular value of the propensity score,
the distributions of the submitted priority lists and the admission scores do not dif-
fer depending on the treatment assignment. Proposition 2 uses this fact, after prov-
ing that submitted priority lists and the admission scores are strongly ignorable, i.e,
Y1, Y0 ⊥ Di|(Si, Ri,v v∈U), to identify the treatment effect at a particular value of the
propensity score (by applying Theorem 3 in Rosenbaum and Rubin, 1983). Therefore,
the identification of the average treatment effect at the specified propensity score value
is guaranteed due to the balancing property of the propensity score, even though the
students who have the same propensity score could potentially have different submitted
priority lists and different values of the admission scores. The resulting treatment effect
in Proposition 2 is therefore the average over all students with the same propensity score.
The following example demonstrates that admission scores can be significantly different
for students with the same propensity score.

Example 1. Suppose that there are two schools A and B, which rank students according
to the same admission score. Suppose that student 1, with admission score 100, lists
school A as his first priority. Suppose that school A’s cutoff is uniformly distributed, with
the mean value of 100, so that student 1 has a propensity score for school A of 50%.
Suppose that student 2, with admission score 200, lists school A as his second priority,
only after school B, which has a uniformly distributed cutoff with the mean value of 200.
Even though student 2 has an admission score two times larger than student 1, their
propensity scores for school A are the same.

Example 1 shows that students with the same propensity score can have uncomparable
values of the admission score. Therefore, to account for the potential admission score
heterogeneity conditional on propensity score (henceforth referred to as heterogeneity),
similarly to the conventional RDD, I propose controlling for the admission score, therefore
adding the admission score to the conditioning set of Proposition 2:

E[Y1 − Y0|P (Di|(Si, Ri,v v∈U)), Ri,v v∈U ] (1.2)

Note that, while the RDD utilizes admission scores to deal with both the selection on
the unobservables and the heterogeneity, Equation 1.2 eliminates selection by matching
on propensity scores, and uses the admission score only to account for the heterogeneity
of students.

Depending on the treatment of the admission score, I define two versions of the PSDD:
Local PSDD which, similarly to the Nonparametric identification assumption, identifies
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effects for students with similar admission scores, and the Global PSDD which, similarly
to the Parametric identification assumption, utilizes the whole sample while controlling
for the admission score.

Definition 3: PSDD. Fix the school u-specific admission score ĉ, the propensity score
value k and an admission score bandwidth δ. There are two versions of the PSDD,
depending on the admission score treatment:

• Local PSDD:

PSDD(u, k, ĉ, δ) = E[Y1 − Y0|P (Di) = k,Ri,u ∈ 〈ĉ− δ, ĉ+ δ〉],

and

• Global PSDD:

PSDD(u, k) = E[Y1 − Y0|P (Di) = k,Ri,u].

In applications, since there is a limited number of observations at the exact specified
propensity score value k, I evaluate the average PSDD over an interval of propensity
score values around k. Fix a propensity score bandwidth ε and define the average global
PSDD, PSDD(u, k, ε):

PSDD(u, k, ε) =
∫ k+ε

k−ε
PSDD(u, k̂) dk̂. (1.3)

Average local PSDD, PSDD(u, k, ĉ, δ, ε) is defined analogously:

PSDD(u, k, ĉ, δ, ε) =
∫ k+ε

k−ε
PSDD(u, k̂, ĉ, δ) dk̂. (1.4)

To estimate the average local PSDD(u, k, ĉ, δ, ε), I run the following regression:

yi = α + ρ ·Di,where PSi ∈ 〈k − δ, k + δ〉 and Ri,u ∈ 〈ĉ− ε, ĉ+ ε〉 , (1.5)

where ε is the admission score bandwidth for some fixed value of the admission score ĉ, δ
is the propensity score bandwidth for some fixed value of the propensity score k, PSi is
the propensity score of individual i and propensity score, respectively, and ρ is the global
average PSSD(u, k, δ) defined in Equation (1.4). From a practical perspective, to imple-
ment the local PSDD, an analyst can run the usual RDD specification, while restricting
the sample to the applications with similar propensity scores. However, unlike in the
RDD, where proximity to the cutoff is assumed to eliminate the potential selection on
unobservables into schools, the average local PSDD (Equation (1.5)) eliminates selection
on unobservables by restricting the sample to the applications who also have a similar
propensity score. Therefore, some applications that are close to the cutoff in the RDD
sense, might not be included in the PSDD sample. The purpose of restricting the sample
to applications with a similar admission score is thus only eliminating heterogeneities in
admission scores of students who have similar propensity scores.
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To estimate the average global PSDD(u, k, δ), denote with Plw(·) an operator trans-
forming a variable to a polynomial of a fixed degree w, i.e. Pl3(PSi) = α1 · PSi + α2 ·
PS2

i + α3 · PS3
i , and run the following regression:

yi = α + Plw(Ri,u) + Plw(PSi) + ρ ·Di,where PSi ∈ 〈k − δ, k + δ〉 (1.6)

In some applications, analysts use the Parametric identification assumption 1.3 employing
RDD on the whole data, without using a bandwidth to restrict the RDD sample to
those close to the cutoff. In these cases, RDD uses polynomials in the admission score
to account for selection into schools. In contrast, the global PSDD (equation (1.6))
considers only applications with similar propensity scores, i.e. PSi ∈ 〈k − δ, k + δ〉, thus
explicitly modelling selection on unobservables. Similarly to the above, the purpose of
the polynomial in the admission score is thus only to pick up heterogeneity in students’
admission scores. In other words, the global PSDD can move away from the cutoff
and identify treatment effects by comparing only the applications of students whose
assignment, from the ex-ante perspective, is (quasi-) random.

I conclude the section with outlining the procedure for calculating propensity scores,
which is a direct adoption of the Agarwal and Somain (2018). As demonstrated in the
previous section, the (ex-ante) probability of student i receiving admission to school u is:

P (Ti = u) =
∫
au(Si, Ri,u, J−i) dH(J−i).

Consider the following estimator of the admission probability:

̂P (Ti = u) =
∑Nb
r=1 au(Si, Ri, J−i,r)

Nb

, (1.7)

where J−i,r are independent draws from H |I−1|, H is the student’s distribution (i.e., H de-
termines the student’s admission scores and unobservable and observable characteristics),
and |I| is the number of students in the application year. The central limit theorem then
guarantees the consistency of the estimator (1.7) as Nb → ∞. Since the set of students
I corresponds to the whole population, I assume that the distribution H is completely
determined by I, i.e. H = I. Then, the independent H |I−1| draws can be constructed
by bootstrapping students with replacement from the set of students I. Below, I provide
steps for calculating propensity scores.

Procedure: Calculating assignment probability. Denote with N the cardinality of
the set of students I, N := |I| and create a vector of zeros Ai,u = 0 for each i ∈ I, u ∈ U .
Repeat the following steps Nb times :

1. Draw N students with replacement from the set I. Denote the generated student
sample with Î.

2. Given the school’s quotas {qu},∀u ∈ U assign exactly one school to each student
i ∈ Î using the matching algorithm Ti : Î 7→ U .

3. For each student i, matched with some school u, update value Ai,u according to
Ai,u = Ai,u + 1.
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The bootstrapped probability estimate of student i’s assignment to a school u is then
P (Ti = u) = Ai,u/Nb.

To implement the proposed bootstrapping procedure, one has to observe a population
of schools with their admission quotas (maximum number of admitted students) and a
population of students with their submitted priority lists and school-specific admission
scores. Since the school-students matching markets under consideration are centralized,
this information is usually available to analysts.
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1.4 Empirical Application - DA in Croatia
A large literature estimates various school-graduation effects by employing the RDD
around school admission score cutoffs, assuming (quasi-) random school assignment within
the implemented RDD bandwidths. In this section, I present evidence suggesting that
this key assumption is violated for the bandwidths typically used, using data from the
Croatian centralized college admission system from 2014 to 2018. After describing the
institutional setup and data, I calculate the propensity scores and evaluate various band-
widths using Lemma 1.

1.4.1 Institutional Setup and the Data
In Croatia, admissions to all college programs are implemented through a national on-
line platform. Since its introduction in 2010, this platform operates a deferred acceptance
(DA) algorithm that ranks students based on their high-school grades and subject-specific
elective national-level exams that take place in June, a month after high-school gradua-
tion. Students register on the platform in the early spring of their high-school graduation
year when universities also list on the platform their program admission quotas along
with program-specific weights of subject-specific grades and exams. Students are free
to submit their ranked priority lists of up to 10 programs as of registration and update
these preference rankings until the system closes for clearing at a predetermined date in
mid-July (in 2019, the final deadline was 2 pm on 15th July).

Students first receive information on their position in various admission queues one week
before the final deadline, immediately after receiving their state exam scores and hence,
admission scores. The DA algorithm is then regularly updated to show students their
current admission position.

I analyze the first preference submission after receiving national exam scores when stu-
dents are fully aware of their admission scores but do not yet receive the signal about
market demand from observing their position in admission queues. This choice is meant
to focus on a decision referencing the one-off preference ranking decision in a conventional
static DA mechanism with no updating. In addition, by focusing on the first applications
students submit after learning their exam performance, I avoid endogeneity issues in ad-
mission results that may arise from some students learning about their current admission
rankings and being more active in modifying their applications before the deadline. 14

In a recent multi-national study, Altmejd et al. (2019b) argue that the Croatian first
preference submissions are structurally similar to the static DA submissions in Sweden
and Chile, and find similar sibling spillover effects on college applications and enrollment
in each of these countries.

Appendix Table 1.1 shows basic summary statistics for the Croatian DA matching market
throughout 2014-2018. The year 2015 is excluded as only the RDD estimation sample
is available, which excludes the observations ranked below the admission school — this
is not sufficient to calculate propensity scores. Annually, approximately 35,000 students
enter the matching market, choosing between approximately 620 programs belonging to
49 distinct colleges. An average student applies to approximately six programs, and

14I obtained virtually the same results when focusing on the last preference submission.
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the average admission rate, calculated as the number of admissions over the number of
applications, is just under 0.2.

1.4.2 Propensity Scores and the RDD
In this section, I generate a function15 that takes program-specific quotas, and student-
specific preferences and admission scores as inputs, performs the DA algorithm, and
returns, as output, the matched program Ti for each student i. I validate the function
by correctly and completely replicating the actual DA assignments in Croatia. I calcu-
late propensity scores as described in procedure 1.3, iteratively redrawing the student
population, running the DA algorithm, and recording simulated admission outcomes.
Student-program-specific propensity scores are then calculated as simple averages of the
simulated admission outcomes.16 The goal of the propensity scores is to extract the ex-
ante admission probability for each student-program pair from the complex probability
space generated by different programs (and their sizes), students’ admission scores, and
students’ submitted preferences.

The propensity scores predict the actual DA assignments almost perfectly (propensity
scores explain 97% of the variation in admission offers), in large part since the majority
of the sample (almost 85%) has a deterministic assignment (i.e., propensity score either
0 or 1). In these cases, the propensity score is, by construction, a perfect indicator of the
admission.17

The RDD approach assumes that students within a limiting neighbourhood of the cutoff
have similar admission probabilities regardless of the admission outcome. Using calcu-
lated propensity scores and Lemma (1) I evaluate the random assignment assumption
using samples of Croatian data defined by the bandwidths typically used in the litera-
ture.18 Most of the RDD studies in the literature choose a constant arbitrary bandwidth,
applied to each program-specific cutoff to define a limiting neighborhood. To demonstrate
that the bandwidth choice does not drive the results, these studies typically employ ro-
bustness checks repeating the estimation for alternative values of the bandwidth. As an
example, Abdulkadiroglu et al. (2014) use bandwidths ranging from roughly a third of
the standard deviation up to the full standard deviation, while Kirkeböen et al. (2016)
use all data (impose no bandwidths) in their main specification.

Figure 1.1 plots the distribution of propensity scores for the treated and the non-treated
group separately19, and strongly suggests that the bandwidths exceeding half a standard
deviation are excessively large, since using them results in samples in which a sizeable
fraction of students is deterministically assigned to a program. More precisely, when
considering students with applications that have admission scores at most half a stan-

15Codes in Python and R are available upon request
16I use 10,000 iterations, ensuring that at the end of the algorithm each additional iteration changes

a particular propensity score by at most 0.0001.
17After restricting the sample to applications with propensity scores between 10% and 90%, propensity

scores are still a very strong predictor of the admission offer, explaining 81% of the variation
18In the appendix I perform the typical Cattaneo et al. (2019) manipulation test around the cutoff,

which finds no evidence of discontinuity.
19If an application of student i to school s resulted in an admission offer (student i was offered a place

in school s), I consider the application treated. Otherwise, I consider the application non-treated.
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dard deviation away from the school admission cutoffs, 36% of the applications face no
assignment risk at all (i.e., their propensity score equals either 1 or 0). When using a
full standard deviation bandwidth, 56% of the applications have trivial (0 or 1) propen-
sity scores. Even reducing the bandwidth to 0.1 of the standard deviation results in a
sample in which a sizeable fraction of applications face almost no admission risk - 20%
of applications have a propensity score higher than 90%.

Figure 1.1: Distributions of propensity scores for the treated and the non-treated group
by RDD bandwidths choice

The figure plots the kernel density of propensity scores in RDD estimation samples defined by different
bandwidth values around the cutoffs. The blue (red) histogram plots the distribution for students who
were (not) offered admission to the applied school — (non-)treated students. According to Lemma (1),
these two distributions should be similar. As we increase the bandwidths (to the values typically em-
ployed in the literature), the differences between these two distributions become striking.

Further, motivated by Lemma (1), which says that the propensity score, in the limiting
neighbourhood around the cutoff, does not depend on the admission score, Figure 1.1
compares the distributions of the propensity score for the treated and the non-treated
groups.20 It is impossible to compare the applications exactly at the cutoff (all of these
applications belong to the treated group). However, one would expect that in a reasonable
RDD estimation sample, defined by an appropriate bandwidth, the distributions of the
propensity score for the treated and the non-treated groups, as per Lemma (1), are similar.
Again, Figure 1.1 suggests that using a bandwidth of 0.5 standard deviations or more
is inappropriate as it results in entirely unbalanced propensity score distributions. For
example, when using the bandwidth of 0.5 standard deviations, the average propensity
score for the treated group is 85.8%, compared with the 7.6% in the non-treated group.
Only a drastic reduction of the bandwidth to a value of around 0.01 standard deviations
results in comparable propensity score distributions. Additionally, the figure indicates
that the implementation of PSDD is feasible for propensity score values close to 50%,
since, for these values, both treated and non-treated applications are common (i.e., it is
a common support).

20By construction (definition of the cutoff), there is a mass of applications exactly at the cutoff (at
least 1 application per program). I exclude these applications before plotting the figure.
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The extensive differences between propensity score distributions for the treated and the
non-treated students contradict the assumption of random assignment to treatment near
the admission threshold. Furthermore, that almost half of applications in “RDD” com-
parisons face no assignment uncertainty at all directly violates the Lee (2008) non-trivial
assignment probability assumption. Since bandwidths used for robustness checks are typ-
ically in the range from 0.1 standard deviations to 1 standard deviation, these conclusions
hold for them too. Therefore, even if the RDD estimates look stable across robustness
checks typically employed, they could be different when using the sample of (quasi-)
randomized applications, as the estimation samples differ significantly.

Applying a drastically reduced bandwidth is not a solution either, as any constant band-
width cannot reflect potentially program-specific cutoff uncertainty. For example, con-
sidering only the applications that are at most 0.01 standard deviations away from the
cutoff (i.e., 10-50 times smaller bandwidth than in Abdulkadiroglu et al., 2014), which
results in 99% of applications within the bandwidths having non-trivial propensity scores,
still leaves only 35% of propensity scores between 40% and 60%, as Figure 1.1 suggests.

Additionally, focusing on narrow neighborhoods around the admission cutoffs comes at
the expense of neglecting observations with non-trivial propensity scores that are located
outside of the chosen bandwidths. Figure 1.2 plots the histogram of the distance of
the absolute admission score (divided by the standard deviation) from the cutoff for the
observations with the propensity scores between 40% and 60% (around 1.7% of the whole
sample). Less than 30% of these “highly randomized” observations are captured within
the RDD estimation sample defined by a bandwidth of 0.01 standard deviation.

Figure 1.2: Histogram of admission scores for the applications with random assignment

The figure plots the distribution of the absolute value of the standardized (divided by its standard
deviation) admission score for the observations with propensity scores between 40% and 60%. The figure
shows that there is a sizeable portion of applications with randomized assignment whose admission score
is far from the cutoff. Therefore, the figure suggests that reducing the bandwidths excessively comes at
the expense of excluding randomized observations.

In the Croatian case, to adhere to RDD assumptions, one needs to use smaller bandwidths,
which, however, leads one to ignore much of the quasi-random assignments available in
matching market data. Hence, the application of the RDD design to matching market
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data faces fundamental obstacles. As described in the previous section, by considering
both the admission score and the propensity score, the PSDD, in particular the global
PSDD, extracts the ex-ante uncertainty contained in the market-level structure of appli-
cations, and instead of choosing an arbitrary bandwidth, focuses on all the applications
of students whose assignment is quasi-random, similarly to the lottery-based estimators.

1.5 Conclusion
This paper provides a new empirical perspective on the nature of assignment uncer-
tainty in centralized matching markets by distinguishing between ex-post randomization
reflecting uncertainty after submitting an application, and ex-ante randomization cap-
turing uncertainty at the time of the application. In a typical student-school matching
market setting, students submit their applications after learning their admission scores.
Therefore, at the time of submitting the application, students are aware of their admission
score, and thus the ex-ante uncertainty of admissions is contained in the school-specific
score cutoff uncertainty, which in turn, is determined by the admission scores and submit-
ted applications of all the market participants. Using this insight, I propose a resampling
procedure, which generates the uncertainty of cutoffs by redrawing with replacement
from the applicant population and recording the simulated matching market outcomes,
to calculate the propensity score for each student-school pair.

I use data from the Croatian DA matching market to compare the distributions of ad-
mission propensity scores for treated and non-treated applicants within RDD bandwidths
typically used in the literature. I find striking differences that are not in line with the
randomized assignment assumption employed in RDD studies, which is particularly im-
portant in multi-cutoff settings where cutoffs are endogenously determined. This suggests
a drastic reduction of RDD bandwidths and sample sizes. However, the data also implies
that the sizeable fraction of quasi-randomized assignments occurs outside of the typical
RDD bandwidths. This introduces a trade-off into the RDD implementation. To comply
with the RDD assumptions, smaller bandwidths need to be employed. However, small
bandwidths ignore a considerable portion of quasi-random variation available in matching
market data.

As an alternative approach, I propose a new estimator, the propensity score discontinuity
design (PSDD), which applies the Rosenbaum and Rubin (1983) propensity score theorem
to the matching market setting. Instead of running the regression using an (arbitrary)
bandwidth, identification in PSDD is based on propensity score matching. Therefore, the
PSDD focuses exclusively on applications with (quasi-) random treatment assignment, re-
gardless of the proximity to cutoff, extracting the whole ex-ante uncertainty contained in
the matching market. Furthermore, while the original propensity score theorem utilizes a
strong selection-on-observables assumption, the PSDD elegantly avoids this by acknowl-
edging that any potential selection into treatment must be embedded in the student’s
submitted preferences and the admission score.

A natural direction for future research is to replicate the results of this paper on a dataset
with an outcome variable of interest, such as the Norway college choice dataset where
Kirkeboen et al. (2016) estimate labor market returns on different fields of study, and
assess the sensitivity of treatment effects with respect to propensity scores. Typical
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studies run a series of robustness checks, attempting to replicate the main estimates
often using bandwidths that are not sufficiently narrow to exclude all the applications
with non-randomized assignments. Therefore, the PSDD estimates might look different
from the RDD estimates, even if the RDD estimates look stable across robustness checks
typically employed.

Other than being based on ex-ante randomness in assignments, the PSDD offers two
advantages over the standard RDD. First, as argued in Kirkeboen et al. (2016), the RDD
identifies attendance effects relative to a counterfactual school at the cutoff. To approxi-
mate the choice margin, they control for the next most preferred school. In the possible
case the next most preferred school is not the correct counterfactual, because this can
bias the estimates. As an example, consider a student who was marginally declined in
school A, with school B as his next preference. If the student has no chance of being
admitted to it, school B bears no information about his counterfactual. Since the propen-
sity scores generate the distribution of all the possible counterfactuals, future research
can also concentrate on inspecting and resolving this potential bias. Second, unlike the
RDD, which identifies treatment effects only around the cutoffs, the global PSDD spec-
ification incorporates all applications with a probabilistic assignment, including those
that are potentially well above the cutoff. Future research can use this feature of the
PSDD for quasi-experimental identification of away-from-the-cutoff treatment effects.21

Furthermore, since the PSDD is not tied to the (existence of) cutoffs, it could be used for
identification of school-specific treatment effects even in undersubscribed schools that do
not have a cutoff.

21Angrist and Rokkane (2016) present a method for estimating treatment effects away from the cutoffs
in the college choice setting. However, their technique is based on the strong assumption that, conditional
on the available covariates, the running variable is ignorable.
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1.6 Appendix

Table 1.1: Summary statistics

Year 2014 Year 2016 Year 2017 Year 2018
(1) (2) (3) (4)

Number of programs 616 620 620 614
Number of colleges 49 49 49 49
Number of applicants 34, 305 34, 518 36, 466 33, 503

Avg. admission score 632.22 648.95 624.47 636.02
(122.44) (118.66) (117.83) (120.60)

Avg. length of choice list 6.40 6.23 5.58 5.13
(3.53) (3.45) (3.23) (3.01)

Avg. admission rate 0.15 0.15 0.16 0.18
Notes: The first panel shows the number of programs, colleges and students
for each year. The second panel shows the average admission score calculated
over all applications in a particular year. The third panel shows the average
length of the submitted choice list in a particular year. The final panel shows
the average admission rate calculated as the ratio between the number of all
applications over the number of all admissions in a particular year. The values
in the brackets are standard deviations.
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Figure 1.3: Density of the standardized admission score

The figure implements the manipulation test around the cutoffs employing the local polynomial density
estimation method as in Cattaneo et al. (2019). The figure plots a kernel density of standardized
admission score centered around school-specific cutoff values using all applications in the data.
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Chapter 2

LATE Estimators under Costly
Non-compliance in Student-College
Matching Markets

Co-authored with Štepan Jurajda (CERGE-EI)
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2.1 Introduction
The instrumental variable (IV) estimator is widely used to account for unmeasured con-
founding factors and to identify causal effects (Angrist and Krueger, 1991). It is predomi-
nantly implemented in the form of the 2SLS estimator, which, under certain assumptions,
identifies the local average treatment effect (LATE) for individuals whose treatment is
manipulated by (quasi-) random instrumental variation—the so-called compliers. In this
paper, we consider the properties of the 2SLS estimator in a setup where non-compliance
with quasi-random treatment assignment is costly, which violates the exclusion restric-
tion, one of the crucial assumptions necessary for the causal interpretation of the 2SLS
estimator. We build on the LATE theorem (Imbens and Angrist, 1994) to show that
in the case of costly non-compliance, the IV estimator can be interpreted as LATE only
after assuming that both the costs and the probabilities of non-compliance do not depend
on the instrument’s value. Intuitively, if the costs depend on the instrument’s value, the
instrument affects non-compliers through the costs of non-compliance, and becomes cor-
related with the outcome not only for compliers, but also for non-compliers, which biases
the 2SLS estimator.

We apply this insight to the growing literature exploiting a feature of centralized college
admission systems where students with similar admission scores in a neighbourhood of a
school’s admission threshold are or are not offered admission based on small differences
in admission scores. Assuming that the students at the margin of admission differ only
in their treatment assignment, this literature relies on an indicator of whether a student
is above the school-specific admission threshold (admission score cutoff) to instrument
for graduation or admission. The LATE theorem is then invoked to interpret these IV
estimates (e.g., Kirkeboen et al. (2016)).

A basic feature of centralized college admission systems (as operated, e.g., in Chile,
Croatia, Norway, and Sweden) is that a student who intends to not comply with his
school assignment can choose to drop out of the system or can accept the initial admission
offer, but apply to and enrol in his preferred school in the following year(s). The former
happens rarely as it typically means not enrolling in any college in a given year; the latter
happens frequently and it delays graduation and labor market entry by at least a year.
Hence, in centralized matching markets of this type, non-compliance costs arise naturally,
at least for always takers, i.e., those ultimately enrolling in a given school regardless of
the initial application outcome.

Our analysis implies that when the admission offer is used to instrument for graduation
(as in, e.g., Kirkeboen et al., 2016), these non-compliance costs originate before treat-
ment status (graduation) is resolved, and therefore bias the LATE estimator. A plausible
strategy to solve the problem of non-compliance is to change the treatment of interest. In
the context of school-program evaluation, instead of estimating the effect of graduation,
this would correspond to estimating the effect of admission into the first year of a given
program. This strategy may trade off gains in terms of identification credibility with eco-
nomic relevance of the treatment effect. When the admission offer is used to instrument
for admission (as in, e.g., Altmejd et al., 2019a), non-compliance costs originate only
after initial-application admission treatment status is determined. In this case, there is
no bias since the instrument-treatment mapping occurs before costs are realized, and is
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thus unaffected by the non-compliance costs. Nevertheless, when studies in the literature
interpret admission as extended attendance, the interpretation of the treatment effect is
similarly impaired as in the case of graduation effects.

As a prime example of this literature, consider Kirkeboen et al. (2016), who estimate
the returns to graduating in different fields of education in Norway by instrumenting for
graduation with the initial quasi-random admission offer, and by measuring labor market
returns eight years after the initial application. Enrolling in a program other than the one
initially assigned a year or more after the initial application (we refer to such situation
as ‘re-enrolling’) results in deferred graduation and thus reduces labor market experience
as labor market returns are measured eight years after the initial application regardless
of the actual graduation date. This in turn implies costly non-compliance.1 Therefore,
according to the results provided here, the estimates in Kirkeboen et al. (2016) can
be interpreted as returns to fields of study only if the costs of foregoing labor market
experience are not field-specific and if the probability of non-compliance with the initial
assignment does not depend on the initial assignment. Using data from the centralized
college-student matching market in Croatia spanning the period from 2012 to 2018, we
show this is not the case by documenting that the probabilities of non-compliance do
depend on the initial assignment.

Using the Croatian data, we consider the same instrument as Kirkeboen et al. (2016) and
document a sizeable re-application rate.2 Importantly, the rate of applying to programs
other than the one initially assigned within two years of the initial application (referred
to as re-applying) for those just below the treatment program’s admission score cutoff
is 18.3% compared with 12% for those just above the treatment program’s cutoff.3 This
discontinuity in the re-application rate at the cutoff translates into discontinuity in the
non-compliance (re-enrollment) rate at the cutoff: there are 14.6% of non-compliers just
below the cutoff, compared with 10.1% just above the cutoff. The higher share of non-
compliers just below the cutoff compared with non-compliers just above the cutoff breaks
the exclusion restriction, as the instrument now affects the outcome through channels
other than the treatment assignment since it also affects the non-compliers due to non-
compliance costs.

To deal with this issue, we propose a method inspired by Lee (2009), which recovers the
treatment effect bounds under the homogenous non-compliance costs assumption, i.e.,
when all non-compliers pay the same cost. The method consists of two steps. The first
involves trimming the data (excluding observations) until the non-compliance rates for
those assigned and those not assigned to the treatment program are the same. For exam-
ple, suppose that the fraction of always takers (those ultimately receiving the treatment

1Non-compliance implies net costs if the negative effect of lower labor market experience outweighs
the potential benefits of temporary enrolment in a non-preferred program. Providing evidence on this
issue is beyond the scope of our analysis; for the purpose of our analysis, we assume the benefits are
small.

2In order to re-enroll in the year(s) after the initial college application, a student needs to re-apply.
Therefore, we analyze the re-application rate (intent to non-comply) and the re-enrollment rate (non-
compliance) separately.

3Following Dustan (2018), Fernandez (2019) and Kirkeboen et al. (2016), we define the treatment
program for a particular applicant as the program for which he was close to the admission score cutoff,
i.e., either just above the cutoff or just below the cutoff.
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regardless of the instrument’s value from the initial application year) is larger than the
fraction of never takers (those never getting the treatment) so that the fraction of non-
compliers who were assigned not to get the treatment is disproportionally large. The first
step of the proposed method balances the fraction of always takers assigned away from
the treatment and the fraction of never takers assigned to the treatment by dropping
a fraction of always takers assigned away from the treatment. Due to the homogenous
non-compliance costs assumption, the effect of the non-compliance costs of the remaining
always takers is then offset by (the same amount of) non-compliance costs of never takers.

However, excluding the non-compliers based on their treatment assignment and treatment
indicator induces selection bias (as selection into non-complying can generally be non-
random). By selectively excluding only the always takers who are not assigned to the
treatment, the instrument now gains predictive power over outcomes of non-compliers—
the probability of an individual being an always taker becomes higher for those assigned
to the treatment in the trimmed sample, compared to the original sample, and always
takers may have different outcomes than never takers. Therefore, the second step of
the proposed procedure accounts for the sample selection by adapting the Lee (2009)
treatment effect bounds, additionally trimming individuals in order to ensure that the
instrument does not predict the outcome for non-compliers; in our case, this involves
trimming individuals who were assigned to the treatment. The final ingredient of the
method is to select individuals for trimming in each stage from the upper/lower tails
of the outcome distribution in order to ensure the most conservative treatment effect
bounds.

The homogenous costs assumption is plausible in the school choice setting since non-
compliance costs here originate in large part in reduced labor market exerience due to
re-enrolling in another program a year or more after the initial quasi-random assignment,
and therefore postponing graduation. 4 Whether these costs are homogenous can be
tested empirically by asking whether the slopes of experience wage profiles of always
takers and never takers who did not comply with the treatment assignment are similar.

This paper contributes to several strands of the literature. First, it is relevant to the
literature employing 2SLS-type estimators in centralized school-student matching mar-
kets, in which non-compliance costs arise naturally. Using 2SLS near admission cutoffs
or the closely related regression discontinuity design (RDD) estimators, Kirkeboen et al.
(2016) analyze school-specific labor-market returns, Lucas and Mbiti (2014) and Ab-
dulkadiroglu et al. (2014) study school-specific attendance achievement effects (measured
through standardized test scores), Kaufmann et al. (2013) study marriage market re-
turns, while Dustan (2018), Fernandez (2019) and Altmejd et al. (2019a) analyze the
role of family ties in school choice. These applications are potentially affected by the
non-compliance cost issue.

More generally, this approach can be applied in other empirical settings. For example,
when programs are offered through a randomized list and applicants can apply to sev-
eral lotteries (de Chaisemartin and Behaghel (2020)), or in college applications without

4Postponing graduation could also produce certain gains (i.e maturation effect), or different types of
costs (i.e. the (cognitive) costs of preparing and re-taking the state exam). In this paper, we interpret the
net costs after ”aggregating” all gains and costs, thus abstracting away from potential cost breakdowns.
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matching markets (see e.g. Zimmerman, 2014, Goodman et al. (2017), Goodman et al.
(2020) and Kozakowski (2020)).

Second, it adds to the literature on exclusion restriction violation. Heckman (1997) es-
tablishes that any selection into treatment based on individual-specific unobserved char-
acteristics breaks the exclusion restriction and results in economically un-interesting pa-
rameters. Similarly, Jones (2015) identifies economically plausible potential violations
of exclusion restriction for infra-marginal individuals (always takers and never takers)
in cases where treatment may change their outcomes, which loosely fits our framework.
However, Jones (2015) only constructs isolated theoretical examples, in which the exclu-
sion restriction is likely violated, without presenting empirical content or developing a
solution, while we develop a general non-compliance setup and tie it directly to a large
literature. We also provide an alternative estimator, which addresses the underlying is-
sue. Moreover, in our setup the cost is generated endogenously to the IV model - by the
decision of agents to not comply - and not by external spillovers of treatment assignment
as in Jones (2015).

The remainder of this paper is structured as follows. In the next section, we develop
the procedure for bounding the treatment effect in the case of costly non-compliance. In
the third section, we demonstrate that the Croatian college-student matching market is
subject to differing probabilities of complying depending on the college assignment. The
fourth section concludes.
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2.2 Treatment Effect Bounds
In this section, we develop a general framework that supports the assumption of costly
non-compliance and analyzes the behavior of the LATE estimator. We use the typical
LATE notation and introduce an additional parameter γ, which denotes non-compliance
costs. As a result, we produce a practical framework that can be straightforwardly used
in typical LATE applications.

Our illustrative empirical school-choice analysis presented in the next section is based on
a dynamic setup where the costs of non-compliance are embodied in the time needed to
alter the treatment assignment by re-enrolling at another school. A more complicated,
structural model could attempt to elicit the gains (i.e., maturation effects) and losses
(i.e., foregone labor-market experiences) from this non-compliance process. Our model
collapses the net non-compliance costs into the parameter γ, and applies the newly de-
veloped LATE framework. Such an approach allows one to divide the analysis into two
steps. First, to analyze the components of the non-compliance costs embodied in the
parameter γ, and second, to analyze the LATE conditional on a specific value of the
non-compliance costs γ.

We show that in presence of non-compliance costs, the exclusion restriction is likely vio-
lated, thus biasing the LATE estimator. We address this issue by developing a treatment-
bounds method inspired by Lee (2009), and discuss the assumptions needed to recover
treatment effect bounds.

Suppose we are interested in the causal effect of treatment Di on the outcome yi. Denote
with Y1i (Y0i) potential outcomes of individual i when Di = 1 (Di = 0). An instrument
Zi = {0, 1} (treatment assignment) is assumed to shift the treatment indicator Di. In
particular, denote with D1i (D0i) the treatment indicator of individual i when Zi = 1
(Zi = 0). The outcome of interest yi is now indexed against two variables, the value of
the treatment indicator Di and the value of the instrument Zi as yi = Yi(Di, Zi).

Define an indicator ti describing an individual i’s type as:

ti =


N if D1i = 0 and D0i=0 (Never taker),
A if D1i = 1 and D0i=1 (Always taker),
C if D1i = 1 and D0i=0 (Complier),
D if D1i = 0 and D0i=1 (Defier),

and denote with P (ti = x) the probability that individual i’s type is x. The LATE
theorem of Imbens and Angrist (1994) is widely used to identify local average treatment
effects in (quasi-) experimental studies:

Theorem 1. Assume the following LATE assumptions:

• Independence - The instrument is independent:

{Yi(D1i, 1), Yi(D0i, 0), Di(1), Di(0)} ⊥ Zi
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• Exclusion restriction - The instrument affects the outcome only through the treat-
ment indicator:

Yi(d, 0) = Yi(d, 1) ≡ Ydi for d = 0, 1

• First stage - The instrument has predictive power over assignment:

E[D1i −D0i] 6= 0

• Monotonicity - There are no defiers:

D1i −D0 ≥ 0 or vice versa,∀i

Then, the Wald estimator equals the average treatment effect on the treated:

E[yi|Z = 1]− E[yi|Z = 0]
E[Di|Z = 1]− E[Di|Z = 0] = E[Y1i − Y0i|D1i −D0i > 0]

Proof. See Imbens and Angrist (1994).

Under the LATE assumptions, the Wald estimator equals the average treatment effect for
compliers (individuals with ti = C). Intuitively, non-compliers, i.e., always takers (those
with ti = A) and never takers (those with ti = N), do not contribute to the IV estimator
for two reasons. First, this is due to the exclusion restriction as the instrument does
not change their treatment assignment. Second, this is due to the independence assump-
tion, as the instrument is independent from their treatment decisions Di. Therefore, the
instrument has no predictive power over the outcomes of non-compliers.

In contrast, if non-compliance with the quasi-random treatment assignment is costly, non-
compliers generally do contribute to the IV estimator of LATE. For example, if always
takers with Z = 0 have to pay a cost to get treatment, they are no longer the same as
the always takers with Z = 1 (the exclusion restriction does not hold). Generally, this
implies predictive power of the instrument over the outcome for the non-compliers, which
violates the assumptions of the LATE theorem.

Proposition 1. Assume that Independence, First stage and Monotonicity assumptions
from Theorem 1 hold and assume heterogenous non-compliance costs accross t:

E[Yi(1, 1)− Yi(1, 0)] = γA and E[Yi(0, 1)− Yi(0, 0)] = γN , γA 6= γN .

Let γ̄ = γA+γN

2 . The Wald estimator now equals:

E[yi|Z = 1]− E[yi|Z = 0]
E[Di|Z = 1]− E[Di|Z = 0] =E[Y1i − Y0i|D1i −D0i > 0]

+ γ̄ · (P (ti = A)− P (ti = N))
P (ti = C)

+
P (ti=A)+P (ti=N)

2 · (γA − γN)
P (ti = C) .
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Proof. Applying the Independence and Monotonicity assumption to the first term of the
Wald estimator we obtain:

E[yi|Z = 1] = E[Y1i|D1i = 1, D0i = 1] ·
Always takers, ti =A︷ ︸︸ ︷

P [D1i = 1, D0i = 1]

+ E[Y1i|D1i = 1, D0i = 0] ·
Compliers, ti =C︷ ︸︸ ︷

P [D1i = 1, D0i = 0]

+ E[Y0i|D1i = 0, D0i = 0] ·
Never takers, ti =N︷ ︸︸ ︷

P [D1i = 0, D0i = 0] .

After performing an analogous decomposition of E[yi|Z = 0], and using the Heteroge-
nous non-compliance costs assumption, the numerator of the Wald estimator, after some
algebra, becomes:

E[Y1i − Y0i|D1i −D0i > 0]+γ̄ · (P (ti = A)− P (ti = N))

+P (ti = A)− P (ti = N)
2 · (γA − γN).

A similar argument shows that

E[Di|Z = 1]− E[Di|Z = 0] = E[D1i −D0i] = P [D1i = 1, D0i = 1]) = P [ti = C].

Proposition 1 says that under costly non-compliance with the (quasi-) random treatment
assignment, the Wald estimator equals the average treatment effect for compliers if the
costs as well as the probabilities of non-compliance are the same for always takers and
never takers (i.e., if γA = γN and P (ti = A) = P (ti = N)).

In the remainder of this section we propose sharp bounds of the LATE5 for the simple
homogenous non-compliance costs case (i.e, γA = γN).6 In the next section, we apply
the bounding procedure to the Croatian centralized student-school matching system,
arguing that in these types of settings assuming homogenous non-compliance costs may
be reasonable.

At an intuitive level, the proposed bounding method mechanically equates the probabili-
ties P (ti = A) and P (ti = N) by excluding individuals leading to the highest upper (low-
est lower) bound. Suppose, WLOG, that P (ti = A) > P (ti = N) - there are more always
takers than never takers. Therefore, to calculate the upper LATE bound, we trim a pro-
portion of always takers (individuals with D = 1 and Z = 0) until P (ti = A) = P (ti = C),
starting with those with the highest Y values (to obtain the highest possible value of the
Wald estimator). This solves the problem of differing probabilities of non-compliance for

5The bounds are sharp in the Lee (2009) sense that they are the largest (smallest) lower (upper)
LATE bounds consistent with the data.

6The homogenous costs assumption in the school choice setting is testable with data on labor market
outcomes since the costs originate in large part in the reduced labor market experience due to re-enrolling
in another program. One can test the equality of slopes of the experience profiles of always takers and
never takers who did not comply with the initial treatment assignment by comparing their realized
experience curves.
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always takers and never takers, but it also introduces a selection problem by selectively
excluding always takers with Z = 0 values. Intuitively, in the new sample, individuals
with Z = 0 are less likely to be always takers than individuals with Z = 1. Therefore, in
addition to predicting treatment, the instrument now predicts the non-compliance types,
and potentially also the outcome (if the selection into non-compliance is non-random),
which breaks the exclusion restriction.

To account for this, we aim to drop the same number of always takers who were assigned
to treatment (i.e., Z = 1). The problem is that among the individuals with Z = 1, we
cannot distinguish compliers from always takers — both of them accept the treatment
assignment. However, by trimming individuals with the lowest Y values (of those with
Z = 1), we generate the upper LATE bound. This result is formalized in the following
adaptation of Proposition 1 from Lee (2009).

Proposition 2. Let Y be a continuous random variable. Assume that Independence,
First stage and Monotonicity assumptions from Theorem 1 hold and assume Homogenous
non-compliance costs:

E[Yi(1, 1)− Yi(1, 0)] = γ = E[Yi(0, 1)− Yi(0, 0)]

Assume, WLOG, that P (ti = A) > P (ti = N) and introduce R = P (ti=A)−P (ti=N)
P (ti=A) . Next,

set yq|E = G−1(q), where G is the cdf of Y conditional on an event E, which defines the
value of treatment Di and instrument Zi. Under these assumptions, ∆LB and ∆UB are
sharp lower and upper bounds for the average LATE effect E[Y1i − Y0i|D1i −D0i > 0]:

∆LB =
E
[
Y |Z = 1, Y ≤ y1−R·p(ti=A)|Z=1

]
− E

[
Y |(Z = 0, D = 0) ∪ (Z = 0, D = 1, Y ≥ yR|(Z=1,D=0))

]
PL(Ti = C) ,

∆UB =
E
[
Y |Z = 1, Y ≥ yR·p(ti=A)|Z=1

]
− E

[
Y |(Z = 0, D = 0) ∪ (Z = 1, D = 0, Y ≤ y1−R|(Z=1,D=0))

]
PU (Ti = C)

and PL (PU) is a probability measure evaluated on the trimmed sample used when cal-
culating ∆LB (∆UB). The bounds are sharp in the sense that ∆LB (∆UB) is the largest
(smallest) lower (upper) bound that is consistent with the observed data.

Proof. First, draw a random proportion R of individuals with Z = 0 and D = 1 and
assign them values S0ir = 0, where r indexes the random seed generating this variable.
Assign the remaining individuals with values S0ir = 1. To simplify notation, assume that
the variable S1ir = 1 for each individual i and introduce:

Sir =S1irZ + S01r(1− Z)
Y ∗i =Sir · {Y1iZ + Y0i(1− Z)}

(2.1)

Next, assume that the variable Y ∗i is only observed when Sir = 1 and is, in that case,
equal to Yi. In other words, model 2.1 treats Sir as a sample selection indicator. Denote
with Y ∗1i (Y ∗0i) the outcome of the individual i when Zi = 1 (Zi = 0). According to the
Lee (2009) theorem, the sharp lower (∆LB,r) and upper (∆UB,r) bounds for the intention
to treat estimator (E[Yi|Z = 1, S1i = 1, S0i = 1]− E[Yi|Z = 0, S1i = 1, S0i = 1]) are:

∆LB,r = E
[
Y |Z = 1, S = 1, Y ∗ ≤ y∗1−R·p(ti=A)

]
− E [Y |Z = 0, S = 1] ,

∆UB,r = E
[
Y |Z = 1, S = 1, Y ∗ ≥ y∗R·p(ti=A)

]
− E [Y |Z = 0, S = 1] .
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We index the bounds with r to emphasize the dependence on the seed corresponding to
the random draw of R individuals.

Note that on the sample of individuals with Sir = 1, P (ti = A) = P (ti = N). Therefore,
according to Proposition 1:

∆LB,r

PL(Ti = C) ≤ E[Y1i − Y0i|D1i −D0i > 0, S1ir = 1, S0ir = 1] ≤ ∆UB,r

PU(Ti = C)
=⇒

min
r

(
∆LB,r

PL(Ti = C)

)
≤ E[Y1i − Y0i|D1i −D0i > 0] ≤ max

r

(
∆UB,r

PU(Ti = C)

)
,

where PL (PU) is the probability evaluated on the trimmed sample used when calculating
∆LB (∆UB). Finally, note that the treatment bounds depend on the random draw R
only through the outcome values of randomly sampled individuals with Z = 1 and D =
0 (i.e., they do not the depend on the randomly sampled subset of those with D =
1). The proposition now follows from observing that, for example, the lowest ∆LB,r is
achieved when trimming those individuals with Z = 1 and D = 0 who have the highest
y values.

To demonstrate the value of Proposition 2, we compare the 2SLS estimator to the pro-
posed LATE bounds on a simulated dataset. We generate N individuals according to the
following steps:7

• The type of individual i is drawn from the following distribution:

ti =


A with probability pa,
N with probability pn,
C with probability 1− pa − pn.

(2.2)

• The treatment assignment Zi is a Bernoulli random variable with parameter 0.5.

• The outcome of interest yi is defined as:

yi = ε− γ · 1Zi 6=Di
,

where ε is N(0, 1).

The procedure generates a population with no treatment effect (i.e., the treatment effect
is zero) where assignment to treatment is equiprobable for each individual. Individuals
differ only with respect to their type, which defines their attitude towards treatment
assignment (i.e., ti = A individuals always get treated regardless of the assignment status,
ti = N never get treated and ti = C comply with the assignment).

We conduct two exercises: First asking about the performance of the 2SLS estimator
and of the treatment-effect bounds under fixed costs of non-compliance and varying gaps
between pa and pn, second allowing the cost of non-compliance to vary but keeping non-
compliance probabilities fixed. Specifically, in the first exercise we set the non-compliance

7N is set at 50,000 to resemble Kirkeboen et al. (2016), where N = 50, 083.

46



cost to equal the outcome standard deviation (γ = 1). Next, we set pn at 0.128 and for
each value pa ∈ {0.05, 0.075, . . . , 0.175, 0.2}, we generate 1,000 independent populations
and plot the average LATE bounds and the average of the 2SLS estimates in Figure 1.
Even though the treatment effect is 0 by construction, the 2SLS estimator reflects the
asymptotic bias γ·(pa−pn)

1−pa−pn
and would lead one to reject the zero treatment effect even

for small differences between pa and pn, while the LATE bounds correctly include 0 and
remain smaller than one half of the treatment standard deviation even for large differences
between pa and pn.

Figure 2.1: LATE bounds vs. 2SLS estimates - varying non-compliance probabilities

Note: The figure plots 2SLS estimates and LATE bounds (y-axis) against the probability (of being
an always taker) pa, holding the probability (of being a never taker) pn fixed at 0.125 on a series
of simulated datasets. For each parameter value pa ∈ {0.05, 0.075, . . . , 0.175, 0.2} we generate 1,000
independent populations using parameters γ = 1, N = 50000, pn = 0.125 under no treatment effect
(LATE= 0), and plot the average LATE bounds from Proposition 2 and the average 2SLS estimates as
well as the corresponding average 95% confidence intervals.

In the second exercise presented in Figure 2.2, we vary non-compliance costs γ while
holding pa fixed at 18.3% and pn at 12%.9 Again, the 2SLS estimator coincides with its
asymptotic bias and reports significant estimates even for reasonably small values of γ,
while the LATE bounds correctly include 0.10

8This probability correspond to an empirical estimate obtained in section 2.3.
9Again, these probabilities correspond to empirical estimates obtained in section 2.3.

10The LATE bounds do not depend on the γ value, since they neutralize the effect of the non-
compliance cost by trimming enough individuals so that the costs of always takers and never takers
cancel.
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Figure 2.2: LATE bounds vs. 2SLS estimates - varying γ

Note: The figure plots 2SLS estimates and LATE bounds (y-axis) against the costs of non-compliance
γ, while holding fixed the probability (of being a never taker) pn = 0.12 as well as the probability
(of being an always taker) pa = 0.183 on a series of simulated datasets. For each parameter value
γ ∈ {−2,−1, 5, . . . , 2} we generate 1,000 independent populations using parameters pa = 0.183, pn =
0.12, N = 50000 under no treatment effect (LATE= 0), and plot the average LATE bounds from Propo-
sition 2 and the average 2SLS estimates as well as the corresponding average 95% confidence intervals.
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2.3 Empirical Application to Croatian College Match-
ing Market

In a recent study, Kirkeboen et al. (2016) use RDD to instrument for graduation and
estimate returns to graduating in different fields of education in Norway by instrumenting
for the graduation with the initial admission offer and measuring labor market returns
eight years after the initial college application. In such a setup, re-enrolling in another
field, potentially years after the initial application, results in deferred graduation and
reduces labor market experience. In the likely case that the length of labor market
experience affects labor market returns, Proposition 1 implies that Kirkeboen et al. (2016)
identify unbiased returns to fields only in the homogenous non-compliance costs case and
if the probabilities of non-compliance do not depend on the initial treatment-program
assignment. In this section, we show that the latter is not the case in Croatia, where
the probabilities of non-compliance do depend on the initial assignment. Therefore, the
LATE bounds from Proposition 2 should be applied when estimating LATE effects in
the Croatian matching market. A similar issue arises naturally in studies that rely on
quasi-random admission offers to instrument for graduation or other outcomes occuring
years after the initial offer of admission (e.g. Hastings et al., 2014; Lucas and Mbiti,
2014; Abdulkadiroglu et al., 2014; Kaufmann et al., 2013; Dustan, 2018; Fernandez,
2019; Altmejd et al., 2019a).

We begin the section with a brief summary of the estimation strategy employed in Kirke-
boen et al. (2016) and similar student-school assignment studies. We proceed with a note
on the institutional setup in Croatia, followed by a subsection rejecting equal probabilities
of non-compliance for students who were or were not (quasi-randomly) offered admission
to their treatment program (i.e., the program where they were just below or just above
the program-specific admission cutoff). We conclude the section with a discussion of the
homogeneous non-compliance costs assumption.

2.3.1 Empirical Strategy
The literature studying school-student centralized matching markets frequently exploits a
feature of these systems in which students with similar admission scores in a neighborhood
of a school’s admission threshold are or are not offered admission to the schools based
on small differences in admission scores. Taking advantage of these discontinuities, the
literature typically uses regression discontinuity design (RDD) to instrument for admis-
sion/graduation , assuming that students around the cutoff are ‘the same’ in every aspect
except the assigned school (program). The assigned school is assumed to be determinis-
tically linked to the school-specific admission score (i.e., a student is offered admission if
and only if his admission score is above the school-specific admission score cutoff). For
schools ranked below the assigned school, this deterministic link between admission score
and the assignment is broken — the student is never considered for admission even if he
is above the cutoff for these schools. For this reason, applications to these schools are
not included in the RDD estimation sample, which consists of applications at the margin
of admission, i.e., within a bandwidth neighbourhood of school-specific admission score
cutoffs.

More formaly, let cjt be the admission score cutoff of program j in year t. If program
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j is ranked above program j′ in student i’s preference list, we write (j) �i (j′). Denote
the school-j-specific application score of individual i as aijt. Student i’s application to
program j belongs to the RDD estimation sample if student i:

1. listed program j as his choice, such that all programs preferred to j had a higher
cutoff score than cjt (otherwise assignment to j is impossible):
cjt < cj′t ∀ (j′) �i (j),

2. had a score aijt sufficiently close to j’s cutoff score to be within a given bandwidth
bw around the cutoff:
|aijt − cjt| ≤ bw.

The following regression, applied to the RDD estimation sample, is a typical specification
used in the school-choice literature to estimate various graduation effects:

yiτ = β · graduatedijt + f(aijt; γ) + µτ + µjt + εijt (2.3)

where yiτ is the outcome of interest measured at time τ > t of student i who was near
the program j admission cutoff in year t, graduatedijt is an indicator variable that takes
value 1 if student i graduated from program j where he initally applied in year t, f(aijt; γ)
is a function of the application score of student i for program j in year t, µjt and µτare
fixed effects corresponding to application year-program combinations and outcome years,
respectively, and where εijt is an error term. Since graduatedijt is likely influenced by
various unobserved, potentially endogenous factors, researchers typically use admission
offer (1aijt≥cjt

) to instrument for graduation. In the language of the previous section,
being just above the cutoff corresponds to the instrument value Z = 1, and being just
below the cutoff corresponds to the instrument value Z = 0.

2.3.2 Institutional Setup
In Croatia, admissions to all college programs are implemented through a national on-
line platform. Since its introduction in 2010, this platform operates a deferred acceptance
(DA) algorithm that ranks students based on their high-school grades and subject-specific
elective national-level exams that take place in June, a month after high-school gradu-
ation. Students register on the platform in early spring of their high-school graduation
year when universities also list on the platform their program-specific admission quotas
along with program-specific weights of subject-specific grades and exams. Students are
free to submit their ranked priority lists of up to 10 programs as of registration and
update these preference rankings until the system closes for clearing at a predetermined
date in mid-July (i.e., in 2019, the final deadline was 2 pm on July 15th).

Students first receive information on their position in various admission queues one week
before the final deadline, immediately after receiving their admission scores. Admission
scores, which are a function of student’s high school grades and national exam scores,
are the only factor determining admission rankings. The DA algorithm is then regu-
larly updated to show students their current admission rankings. Students update their
preference rankings continuously until the system closes for clearing in mid-July.

During the application period applicants often drop their previously highly ranked alter-

50



natives they are unlikely to get admitted to.11 Therefore, in order to study a case similar
to the typical centralized college admission system, where students are not able to get
signals on the current school-specific demand, we analyze admission outcomes implied by
the first preference submissions after receiving the national exam scores (5 days before
the system closes), when students are fully aware of their admission scores but are not
yet able to learn about the market demand structure. We thus consider that a student
applied to a particular program if this program was on the student’s preference list five
days before the admission deadline.

In centralized college admission systems, it is not feasible for always takers to not comply
with their initial assignment out of their treatment program within the year of initial
application. They can, however, apply to their preferred program in the following years.
Further, in Croatia, there is only limited scope for never takers to not comply with
their initial-application assignment to their treatment program.12 Therefore, since we do
not observe enrollment, we assume that the final admission offer translates to enrollment
one-to-one. Hence, we abstract from non-compliance within the year of initial application
and focus on non-compliance through re-applications in years following the initial college
application.

In sum, we analyze applications (based on the ranking lists submitted 5 days before the
system closes) which resemble the applications at typical centralized college admission
systems, and enrollments (based on the final ranking lists) separately. We consider that a
student re-applied (attempted non-compliance) if he applied to a program different from
the one initially assigned in the two years following the initial application year. While
we observe re-applications, we do not observe re-enrollment, so again, we assume that
a re-applying student always re-enrolled in a particular program if this program was his
final DA admission assignment.

2.3.3 Data and Results
We use complete administrative data corresponding to the Croatian centralized college
admission system from years 2012-2018. In these data, we consider a student to be
a non-complier if, following a re-application, he was assigned by the DA algorithm to a
program different from the one initially assigned at most two years after his initial college
enrollment. As the re-application window is two years, we exclude the boundary years
of the data13 and generate the RDD estimation sample using applications from 2014-
2016 that are at most 0.4 standard deviations (60 admission score points) away from

11Due to the dynamic nature of the admission system, students can get hourly updates about their
admission rankings, and therefore resolve a significant part of the admission uncertainty. They can do
this only after they receive their admission scores, approximately 1 week before the admission deadline.

12According to the Ministry of Science and Education, 95% of Croatian college applicants comply with
their DA admission assignment, enrolling at their assigned program. If they decide not to comply, they
lose their tuition waiver, otherwise covered by the Ministry. This introduces an additional (constant)
cost of non-compliance.

13We exclude the first two years to ensure that we work with only initial college applicants who have
not applied in previous years. We exclude the last two years to observe re-applications following initial
applications.
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program-specific admission cutoffs.14

Table 2.1 shows basic summary statistics for the Croatian DA matching market and the
RDD estimation sample defined by a 60 admission score points bandwidth, throughout
2014-2016. Annually, approximately 35,000 students enter the system, choosing between
about 600 programs belonging to 49 distinct universities. The RDD estimation sample
appears to have similar average characteristics to the unrestricted sample.

Using the RDD estimation sample, we estimate the following regression:

yi = α0 · aij + α1 · aij1aij≥cj
+ δ · 1aij≥cj

+ f(aij) + µj + εi, (2.4)

where yi is a non-compliance indicator for applicant i (i.e., a dummy variable taking the
value 1 if the applicant i re-enrolled into a program different from the initially quasi-
randomly assigned program within two years of his initial enrollment), aij is the initial-
application admission score of applicant i at program j, cj is the cutoff of program j,
f(aij) is a polynomial in admission scores, and µj are program fixed effects. The time
index, which should denote the year of the applicant’s first (initial) college application, is
surpressed. We study not only re-enrollment, but also re-application (non-compliance in-
tent) by estimating a version of regression (2.4) with the dependent variable yi indicating
if applicant i re-applied after his initial enrollment. These regressions are also estimated
on subsamples where program j is (or is not) the applicant’s first priority, and where
the applicant re-applies to program j (or not). A significant estimate of δ is interpreted
as evidence that the probabilities of non-complying (re-applying) depend on the initial
assignment.

The first column of Table 2.2 shows statistically as well as economically significant esti-
mates of δ both when considering re-application (-6.2 p.p. compared to the baseline of
18.3%) and re-enrollment (-4.5 p.p. compared to the baseline of 14.6%).15 Hence, there
are 14.6% of non-compliers just below the admission cutoff, compared with 10.1% just
above the cutoff. Approximately half of these non-compliance gaps is attributable to
students who re-apply to the same program after they were marginally declined at their
initial application (i.e., always takers). The effects are most pronounced when students
are around the cutoff at their initial-application-ranking top-priority program (-7.9 p.p.
when considering re-applications and -6.4 p.p. when considering re-enrollment). These
results can also be seen in Figure 2.3 (Figure 2.4), which plots the re-application (re-
enrollment) probability against the application score distance from the initial-application
cutoff.16

In sum, being just below the admission score cutoff of a program during one’s initial
college application disproportionately incentivizes students to re-apply, and subsequently
re-enroll, relative to students just above an initial-application program cutoff. If Croatian

14Each cutoff is defined as the admission score of the applicant with the lowest admission score who
was offered admission. The optimal bandwidth according to Imbens and Kalyanaraman (2012) is 60
admission points. We replicated the analysis for numerous bandwidth values (10, 20, 30, 40, 50, 60, 70,
80, 90 and 100) and obtained similar results.

15On average, around 70% of the re-applying students succeed in changing their initial school assign-
ment, such that the re-application effects largely translate into re-enrollment effects.

16The distance from cutoff is defined as admission score centered around the cutoff.

52



students are subject to non-complying (re-application and re-enrollment) costs, Proposi-
tion 1 implies that RDD induced estimates cannot be interpreted simply as graduation
treatment effects.

2.3.4 Discussion
In the Croatian case, the probabilities of non-compliance for applicants just above the
cutoff (Z = 1) are significantly lower (4.5 p.p.) than for those just below the cutoff
(Z = 0). This, according to Proposition 1 violates the LATE theorem, invoked in, e.g.,
Kirkeboen et al. (2016). In order to apply the LATE bounds from Proposition 2, one
needs to assume the homogenous non-compliance costs assumption. In our case, the costs
of non-compliance originate in the reduced labor market experience due to re-enrolling
in another program.17 For example, an always taker with Z = 1 is expected to graduate
five years after admission, while an always taker with Z = 0 is going to use at least
one additional year due to re-enrollment. Therefore, the homogenous costs assumption
translates into assuming equal slopes of the experience wage profiles of always takers
and never takers who did not comply with the treatment assignment—this can be tested
empirically by directly comparing experience profiles of always takers and never takers
who did not comply. If the gradients of these experience profiles are not the same, one
can assume that the experience profile is multiplicative, and perform the same test using
the logarithm of returns (or some other transformation of the outcome variable)

2.4 Conclusion
In this paper, we consider a quasi-experimental intention-to-treat setup where non-
compliance with treatment assignment is costly (affects the outcome), which violates
the exclusion restriction — one of the crucial LATE assumptions. We generalize the
LATE theorem to include the case of costly non-compliance and show that the IV esti-
mator can be interpreted as LATE only under the strong assumption that both the costs
and the probability of non-compliance do not depend on treatment assignment. We re-
cover treatment effect bounds with an alternative method, inspired by Lee (2009), under
the homogenous non-compliance costs assumption, i.e., if the costs do not depend on the
initial assignment.

To illustrate the relevance of this design, we consider the recent study by Kirkeboen et al.
(2016), who estimate returns to graduating in different fields of education in Norway by
instrumenting for graduation with the initial (random) admission offer and measuring
labor market returns eight years after the initial application. In such a setup, re-enrolling
in another field year(s) after the initial application results in deferred graduation, which
reduces labor market experience (as labor market returns are measured eight years after
the initial application regardless of the actual graduation date). In the likely case that
the length of the labor market experience affects labor market returns, the estimates in
Kirkeboen et al. (2016) can be interpreted as returns to fields of study only if the cost
of foregoing labor market experience is not field-specific and if the probabilities of non-
compliance do not depend on the initial assignment. We show that the latter is not the
case in Croatia, using data on the Croatian student-college matching market from 2012 to

17If Croatian students re-enroll, they also lose their national-level tuition waiver (otherwise covered by
the Ministry of Science and Education), which is constant (homogenous) across programs.
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2018, where both the probability of non-compliance (re-enrollment) and the probability
of re-taking the national exam (re-application) do depend on the initial assignment.

It is reasonable to assume that in the school-college matching market framework, non-
compliance with the initial assignment comes at a cost. Not only does it likely imply
deferred graduation, but, as demonstrated in the case of Croatia, it also often results in
retaking the national exam which is, potentially, also costly (in terms of the cognitive
costs of preparation).

The bounding method developed in this paper can be applied in other empirical settings
where non-compliance costs arise. For example, when programs are offered through ran-
domized list and applicants can apply to several lotteries (de Chaisemartin and Behaghel
(2020)), or in college applications without matching markets (see e.g. Zimmerman, 2014,
Goodman et al. (2017), Goodman et al. (2020) and Kozakowski (2020)).

Therefore, our analysis suggests that RDD based IV studies relying on centralized student-
school matching markets should first test whether the probabilities of non-compliance
with treatment assignment depend on the assignment. If treatment assignment does af-
fect the probability of non-compliance, and if the homogenous costs assumption is not
rejected, we suggest employing sharp LATE bounds.
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2.5 Appendix - Tables and Figures

Figure 2.3: Re-application probability at the initial-application admission cutoff

Notes: The graphs show re-application probabilities, defined using a two-year window following
on the initial-application year, around the admission cutoff in the initial application year. The
bandwiths used for the local polynomials correspond to optimal bandwidths according to Imbens
and Kalyanaraman (2012). The three graphs show cases when the cutoff school (the school where
an applicant was near the school admission cutoff at the initial application) was anywhere on the
student’s ranked choice list, when it was the student’s first priority, and when it was his lower-ranked
priority, respectively.

Figure 2.4: Re-enrollment probability at the initial-application admission cutoff

Notes: The graphs show re-enrollment probabilities, defined using a two-year window following
on the initial-application year, around the admission cutoffs in the initial application year. The
bandwiths used for the local polynomials correspond to optimal bandwidths according to Imbens
and Kalyanaraman (2012). The three graphs show cases when the cutoff school (the school where
an applicant was near the school admission cutoff at the initial application) was anywhere on the
student’s ranked choice list, when it was the student’s first priority, and when it was his lower-ranked
priority, respectively.
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Table 2.1: Summary statistics

All data RDD estimation sample
(1) (2)

Number of programs 620 620

Number of universities 49 49

Number of applicants 101,484 22,383

Number of applications 571,354 80,702

Average admission score 634.53 619.19
(122.76) (143.98)

Average GPA 4.01 3.96
(0.62) (0.58)

Fraction male 0.47 0.45

Average re-applying rate 0.13 0.16
(0.33) (0.36)

Average re-enrolling rate 0.10 0.13
(0.31) (0.34)

Notes: The table presents summary statistics calculated for the entire
administrative dataset and for the RDD estimation sample (based on
the bandwidth of 60 admission score points corresponding to 0.5 of
standard deviations, calculated on the ranking lists reported 5 days
before the final admission deadline). Standard errors are in the paren-
theses. The first panel shows the number of programs, universities,
applicants, and applications. The second panel shows the average ad-
mission score calculated over all applicant-program pairs and the av-
erage GPA and fraction male calculated over all applicants. The third
panel shows the rates of re-applying and re-enrolling (within a two-year
window after the initial-application year) calculated over applicant-
program pairs.
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Table 2.2: Probability of re-application and re-enrollment

Cutoff program : Any priority Cutoff program : 1st priority Cutoff program : 2nd or lower priority

Any program Same program Different program Any program Same program Different program Any program Same program Different program
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A - Probability of re-applying
Admission offer −0.062∗∗∗ −0.036∗∗∗ −0.025∗∗∗ −0.079∗∗∗ −0.050∗∗∗ −0.028∗∗∗ −0.043∗∗∗ −0.018∗∗∗ −0.025∗∗

(0.008) (0.003) (0.007) (0.009) (0.004) (0.009) (0.013) (0.003) (0.013)

Observations 59,495 59,495 59,495 28,966 28,966 28,966 30,529 30,529 30,529
Baseline 0.183 0.036 0.148 0.178 0.054 0.123 0.192 0.016 0.175

(0.005) (0.002) (0.005) (0.007) (0.003) (0.006) (0.007) (0.002) (0.007)

Panel B - Probability of re-enrolling
Admission offer −0.045∗∗∗ −0.029∗∗∗ −0.016∗∗ −0.064∗∗∗ −0.041∗∗∗ −0.023∗∗∗ −0.024∗∗ −0.013∗∗∗ −0.011

(0.007) (0.002) (0.007) (0.009) (0.004) (0.008) (0.012) (0.003) (0.011)

Observations 59,495 59,495 58,216 28,966 28,966 28,345 30,529 30,529 29,871
Baseline 0.146 0.030 0.116 0.153 0.045 0.108 0.140 0.014 0.126

(0.004) (0.002) (0.004) (0.006) (0.003) (0.006) (0.006) (0.002) (0.006)

Program FE Y Y Y Y Y Y Y Y Y

Notes: The table presents RDD estimates corresponding to equation (4) of the effect of students’ marginal admission to a program (in the initial application
year) on the probability of re-application (Panel A) and re-enrollment (Panel B) in the following two years. The first three columns of the table consider marginal
admissions to all programs, the middle three columns focus on marginal admissions to programs ranked as top priority on students’ school choice lists, and the last
three columns focus on lower-ranked programs from students’ ranked choice lists. For each of these specifications, we consider separately re-applying/re-enrollment
to any program, to the ‘cutoff program’, i.e. the program where in their initial-application year they were near the program’s admission score cutoff, and to
a program other than the cutoff program. All specifications use bandwidths calculated according to the Imbens and Kalyanaraman (2012) optimal bandwidth
procedure. All specifications control for a local quadratic polynomial in students’ admission score centered around program admission cutoffs. Application year
fixed effects and program fixed effects are also used in all specifications. A triangular kernel is used to give more weight to observations close to the cutoffs.
*p-value<0.1 **p-value<0.05 ***p-value<0.01.
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Chapter 3

Siblings’ Spillover Effects on College
and Major Choice: Evidence from
Chile, Croatia and Sweden

Co-authored with Adam Altmejd (Stockholm School of Economics and SOFI), Andrés
Barrios-Fernández (Centre for Economics Performance (LSE)), Dejan Kovac (Princeton
University, Woodrow Wilson) and Christopher Neilson (Princeton University, Depart-
ment of Economics).
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3.1 Introduction

The choice of specialization in higher education is one of the most complex and conse-
quential that an individual can make (Altonji et al., 2012; Oreopoulos and Petronijevic,
2013).1 Despite its importance for future earnings, employment and life trajectories, we
know little about how the preferences and the beliefs that drive this decision are formed
and if they can be changed. Recent evidence indicates that family background and social
context are important in shaping college and major choices (see for instance Hoxby and
Avery, 2013), suggesting that relatives and social networks could significantly influence
them. However, it is generally very difficult to establish causally whether a shock to one
member of the family group would affect others and whether the observed correlation in
behavior across social groups is a product of deeper structural differences.

In this paper, we investigate how college applications and enrollment decisions are in-
fluenced by the higher education trajectories of one of the most important social peers
a person has when growing up: older siblings. Using a regression discontinuity design,
we show that younger siblings are significantly more likely to apply and enroll in the
same major and college to which their older sibling are randomly assigned. We document
this significant within-family spillover effect in three countries with different education
systems, culture and levels of economic development: Chile, Croatia, and Sweden.

Establishing the existence of these family spillovers has important policy implications.
First, they could help to explain inequality in education uptake and trajectories across
families and socio-economic groups. Second, policies that change the pool of students
admitted to specific programs and institutions, such as affirmative action, would have
an indirect multiplier effect on members of the social network of their beneficiaries. Fi-
nally, if the reason why individuals respond to their older siblings’ choices is incomplete
information, there is scope to improve the match of students and educational programs
through information provision.

To causally identify spillover effects, we exploit the fact that all three countries have
centralized admission systems that employ a deferred acceptance (DA) mechanisms to
allocate applicants to majors depending on their stated preferences and previous aca-
demic performance. These selection systems give rise to sharp admission cutoffs in all
oversubscribed majors. Taking advantage of the quasi-random variation generated by

1Average returns to higher education can be substantial, but there is considerable heterogeneity in
earnings by both institution and field of study. Growing empirical evidence shows that these differential
returns have an important causal component (see for example Hastings et al. (2013); Kirkebøen et al.
(2016)), highlighting the relevance of the college and major choice. However, as pointed out by Oreopou-
los and Petronijevic (2013), choosing the right institution and field of study can be extremely complex.
Optimal decisions are different for each applicant, who, in order to make the best decision, should be
able to anticipate future labor market earnings, the likelihood of completion, and the costs and funding
opportunities available.
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these cutoffs, we implement a fuzzy Regression Discontinuity Design to investigate how
having an older sibling enrolling in a specific major, college or field of study affects indi-
viduals’ probabilities of applying and enrolling in them.

A key challenge for the identification of peer effects is to distinguish between social
interactions and correlated effects. In our setting, correlated effects arise because siblings
share genetic characteristics and a social environment. Thus, it is not surprising that
their outcomes are correlated. Our empirical strategy compares individuals whose older
siblings are marginally admitted or rejected from specific majors. Since these individuals
are very similar both in their observable and unobservable characteristics, we can isolate
the social interaction effect. In addition, if siblings simultaneously affect each other’s
decision, the so called reflection problem (Manski, 1993) arises. But, since siblings apply
and enroll in college sequentially, the lagged structure of their decisions and the fact that
the variation that we exploit in older siblings’ enrollment comes only from admission
cutoffs allow us to abstract from this issue.

Despite the differences that exist between Chile, Croatia and Sweden, we find similar
spillover magnitudes in all three countries. Having an older sibling marginally enrolling2

in their preferred alternative (major-college combination) increases the likelihood of ap-
plying there between 1 and 4 percentage points. We also show that individuals are
between 10 and 16 percentage points more likely to apply to the college where their
sibling is enrolled, and between 4 and 9 percentage points more likely to enroll there.

The effects that we document are stronger when individuals resemble their older siblings
in terms of gender and academic potential. They seem to be driven by individuals whose
older siblings “marginally enroll” in relatively selective institutions and persist even when
the age difference between siblings makes it unlikely that they will be attending college
at the same time.

Our main results are consistent with three broad classes of mechanisms. First, the ef-
fects could be driven by a change in the cost of attending specific majors and colleges.
Alternatively, they could be driven by changes in individuals’ preferences. Finally, the
effects could be driven by changes in the choice set of individuals, something that could be
triggered by salience or by information transmission. We discuss all of these alternatives,
and present suggestive evidence that information is an important driver of our results.

Despite all the research on family and peer effects in education, little is known about how
siblings affect human capital investment decisions.3 Recent evidence shows that older

2We use the term marginal enrollment to highlight the fact that these results come from a fuzzy
RD that compares individuals whose older siblings were marginally admitted or rejected from specific
majors.

3Björklund and Salvanes (2011) and Black and Devereux (2011) review the literature studying the role
of family, while Sacerdote (2011) and Sacerdote (2014) review the literature on peer effects in education.
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siblings can affect high school related choices. Dustan (2018) uses an approach similar to
ours and finds that older siblings’ influence the choice of high school in Mexico. Joensen
and Nielsen (2018), on the other hand, exploit quasi-random variation induced by a policy
change in Denmark and find that siblings affect participation in advanced mathematics
and science courses during high school.

Much less is known about the role of siblings in higher education specialization choices.
Goodman et al. (2015) investigate the relationship between siblings’ college choices in the
United States and find that the correlation between siblings’ applications is much stronger
than among similar classmates.4 Barrios-Fernandez (2018) studies spillovers from both
neighbors and siblings in the access to university in Chile, and finds that having a close
neighbor or sibling going to university increases the probability of reaching this level of
education, especially in areas where university attendance has traditionally been low.
Our paper complements this work by exploiting a different source of variation and by
focusing on the choice of college and major, rather than in the decision to attend college.
Aguirre and Matta (2019) and Goodman et al. (2019), two contemporaneous working
papers, also investigate siblings’ spillovers in college choices in Chile and the US and
provide similar results.

More generally, this paper also contributes to the literature that studies how individuals
choose colleges and majors. This has been an active area of research in recent decades
that has investigated the role of costs, information, and more recently, of some behavioral
barriers.5 This paper adds a new element by analyzing the role of family networks on

4In Sociology, Kaczynski (2011) presents a qualitative analysis in line with our findings. She argues
that educational experience can decrease the choice set due to fear of competition, but also increase it
through transmission of institution-specific knowledge and general encouragement. Shahbazian (2018)
studies the correlation of siblings’ education choices in Sweden, focusing on gender differences in STEM
subjects. He reports a positive association in STEM education, especially for girls.

5The role of funding and liquidity constraints has been investigated by Dynarski (2000), Seftor and
Turner (2002), Dynarski (2003), Long (2004), van der Klaauw (2002), and Solis (2017). Misinformation
and biased beliefs can also be important determinants of college and major choices Wiswall and Zafar,
2015. Hoxby and Avery (2013) show that low-income, high-achieving students do not apply to selective
colleges in the US, even if they are likely to be admitted and would receive more generous funding
than they receive from the non-selective colleges to which they currently apply. Mismatches in higher
education have also been studied by Griffith and Rothstein (2009), Smith et al. (2013), Black et al.
(2015) and Dillon and Smith (2017). Hoxby and Turner (2013) find that providing low-income students
with targeted information on their college options, the application process and funding opportunities
significantly increased their applications and actual enrollment in selective institutions. In the context of
Chile, Hastings et al. (2016) and Hastings et al. (2015), respectively, show that students are uninformed
about the costs and benefits of majors and colleges, and that individuals from lower socioeconomic
backgrounds are more likely to choose majors with lower earnings. The latter also shows that providing
disadvantaged applicants with information about the labor market outcomes of graduates in different
programs changed their applications towards majors with higher net of costs earnings. Similarly, Busso
et al. (2017) find that information on funding and labor market opportunities improves the quality
of the majors to which Chilean students apply in comparison to their baseline preferences. However,
there is also research indicating that only providing information is not enough to change applicants’
decisions. Bettinger et al. (2012) find that a pure information intervention in the US does not increase
college applications or enrollment, and Pekkala Kerr et al. (2015) find that information on labor market
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these choices.

The rest of the paper is organized in seven sections. Section 3.2 describes the higher
education systems of Chile, Croatia and Sweden, Section 3.3 the data, and Section 3.4
the empirical strategy and the samples that we use. Section 3.5 presents the main results
and Section 3.6 places them in the context of previous findings and discusses potential
mechanisms. Finally, Section 3.7 concludes.

3.2 Institutions

This section describes the college admission systems of Chile, Croatia and Sweden, em-
phasizing the rules that generate the discontinuities that we later exploit to identify
spillovers among siblings. Despite the differences that exist among these three countries
in terms of size, economic development and inequality (Table 3.1), a common feature is
that a significant share of each countries’ universities select students using centralized ad-
mission systems that allocate applicants to majors only considering their preferences rank
and previous academic performance. These systems generate sharp admission cutoffs in
all oversubscribed programs that we later exploit to identify siblings’ spillovers.

prospects of postsecondary education programs does not significantly affect Finnish students’ applications
or enrollment decisions. Lavecchia et al. (2016); French and Oreopoulos (2017) discuss a host of frictions
and behavioral barriers that could explain why some individuals do not take full advantage of educational
opportunities. Along this line, Carrell and Sacerdote (2017) argue that college-going interventions work
not because of their information component, but because they compensate for the lack of support that
disadvantaged students receive from their families and schools.
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Table 3.1: Differences across Countries

Chile Croatia Sweden
(1) (2) (3)

A. Countries Characteristics

Population 17,969,353 4,203,604 9,799,186
Area (km2) 756,700 56,590 447,430
GDP per Capita $22,688,01 $23,008.21 $48,436.98
GDP Growth (2000-2015) 285.60% 227.47% 185.25%
GINI Index 47.7 31.1 29.2
Human Development Index 0.84 0.827 0.929
Adults w/ Postsecondary Ed. 15.2% 18.3% 34.6%
Main Religious Affiliation Christian (78%) Christian (91%) Christian (69%)
Official Language Spanish Croatian Swedish

B. University System Characteristics

Colleges 33/60 49/49 35/36
Majors 1,423 564 2,421
Tuition Fees Yes Yes No
Funding Student loans and scholarships Fee waiver when accepting offer∗. NA

Notes: The statistics presented in Panel A come from the World Bank (https://data.worldbank.org/indicator/NY.
GDP.PCAP.PP.CD) and from the United Nations (http://hdr.undp.org/en/data) websites. All the statistics reported in
the table correspond to the values observed in 2015, the last year for which we observe applications in Chile (in Croatia
we observe them until 2018 and in Sweden until 2016). The only exceptions are the share of adults with complete
postsecondary education and religious affiliation. We only observe these statistic in 2011 for the three countries. The
share of adults with complete postsecondary education is computed by looking at the level of education completed by
individuals who were at least 25 years old in 2011. In the row “Colleges” the first number refers to colleges selecting
students through the centralized admission system, while the second to the total number of colleges in the system. The
row “Majors” on the other hand, reports the total number of major-college combinations available for students through
the centralized admission system in 2015. (*) Although in Croatia there are tuition fees, all students accepting the offer
they receive the first time that they apply to university receive a fee waiver. They only loss the fee waiver if they reject
the offer.

3.2.1 College Admission System in Chile

In Chile, all of the public universities and 9 of the 43 private universities are part of
the Council of Chilean Universities (CRUCH).6 All CRUCH institutions, and since 2012
an additional eight private colleges, select their students using a centralized deferred
acceptance admission system that only takes into account students’ academic performance
in high school and in a college admission exam similar to the SAT (Prueba de Selección
Universitaria, PSU).7 Students take the PSU in December, at the end of the Chilean
academic year, but they typically need to register before mid-August.8 As of 2006, all
public and voucher school graduates are eligible for a fee waiver that makes the PSU free

6The CRUCH is an organization that was created to improve coordination and to provide advice to
the Ministry of Education in matters related to higher education.

7The PSU has four sections: language, mathematics, social sciences and natural sciences. The scores
in each section are adjusted to obtain a normal distribution of scores with a mean of 500 and a standard
deviation of 110. The extremes of the distribution are truncated to obtain a minimum score of 150 and
a maximum score of 850. In order to apply to university, individuals need to take the language, and
the mathematics sections and at least one of the other sections. Universities set the weights allocated to
these instruments for selecting students in each program.

8In 2017, the registration fee for the PSU was CLP 30,960 (USD 47).
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for them.9

Colleges publish the list of majors and vacancies offered for the next academic year well
in advance of the PSU examination date. Concurrently, they inform the weights allocated
to high school performance and to each section of the PSU to compute the application
score for each major.

With this information available and after receiving their PSU scores, students apply to
their majors of interest using an online platform. They are asked to rank up to 10
majors according to their preferences. Places are then allocated using an algorithm of
the Gale-Shapley family that matches students to majors using their preferences and
scores as inputs. Once a student is admitted to one of her preferences, the rest of her
applications are dropped. As shown in panel (a) of Figure 3.1, this system generates a
sharp discontinuity in admission probabilities in each major with more applicants than
vacancies.

Colleges that do not use the centralized system have their own admission processes.10

Although they could use their own entrance exams, the PSU still plays an important role
in the selection of their students, mostly due to the existence of strong financial incentives
for both students and institutions.11 For instance, the largest financial aid programs
available for university studies require students to score above a certain threshold in the
PSU.

The coexistence of these two selection systems means that being admitted to a college
that uses the centralized platform does not necessarily translate into enrollment. Once
students receive an offer from a college, they are free to accept or reject it without any
major consequence. This also makes it possible for some students originally rejected from
a program to receive a later offer. Panel (d) of Figure 3.1 illustrates how the admission
to a major translates into enrollment.

3.2.2 College Admission System in Croatia

In Croatia, there are 49 universities. Since 2010, all of them select their students using a
centralized admission system managed by the National Informational System for College
Application (NISpVU).

9Around 93% of high school students in Chile attend public or voucher schools. The entire registration
process operates through an online platform that automatically detects the students’ eligibility for the
fee waiver.

10From 2007, we observe enrollment at all colleges in Chile independent of the admission system they
use.

11Firstly, creating a new test would generate costs for both the institutions and the applicants. Sec-
ondly, for the period studied in this paper, part of the public resources received by higher education
institutions depended on the PSU performance of their first-year students. This mechanism, eliminated
in 2016, was a way of rewarding institutions that attracted the best students of each cohort.
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As in Chile, NISpVU uses a deferred acceptance admission system that focuses primar-
ily on students’ high-school performance and in a national-level university exam.12 The
national exam is taken in late June, approximately one month after the end of the Croa-
tian academic year. However, students are required to submit a free-of-charge online
registration form by mid-February.

Colleges disclose the list of programs and vacancies, along with program-specific weights
allocated to high school performance and performance in each section of the national exam
roughly half a year before the application deadline. This information is transparently
organized and easily accessible through an interactive online platform hosted by NISpVU.

Once registered, students are able to submit a preference ranking of up to 10 majors. The
system allows them to update these preferences until mid-July. At this point, students
are allocated to programs based on their current ranking. As in Chile, vacancies are allo-
cated using a Gale-Shapley algorithm, giving rise to similar discontinuities in admission
probabilities (Figure 3.1).

Before the final deadline, the system allows students to learn their position in the queue
for each of the majors to which they applied. This information is regularly updated
to take into account the changes that applicants make in their list of preferences. In
this paper, we focus on the first applications submitted by students after receiving their
scores on the national admission test. Since some of them change their applications before
the deadline, admission based on these applications does not translate one-to-one into
enrollment (Figure 3.1).13

There are two important differences between the Chilean and Croatian systems. First,
all Croatian colleges use the centralized admission system and second, rejecting an offer
is costly since it invalidates eligibility for the enrollment fee waiver.

3.2.3 Higher Education Admission System in Sweden

Almost all higher academic institutions in Sweden are public. Neither public nor pri-
vate institutions are allowed to charge tuition or application fees. Our data include 40
academic institutions, ranging from large universities to small specialized schools.14

12In rare cases, certain colleges are allowed to consider additional criteria for student assessment.
For example, the Academy of Music assigns 80% of admission points based on an in-house exam. These
criteria are known well in advance, and are clearly communicated to students through NISpVU. Students
are required to take the obligatory part of the national exam, comprising mathematics, Croatian and
a foreign language. In addition, students can choose to take up to 6 voluntary subjects. Students’
performance is measured as a percentage of the maximum attainable score in a particular subject.

13We focus on the first applications students submit after learning their exam performance to avoid
endogeneity issues in admission results that may arise from some students learning about the system
and being more active in modifying their applications before the deadline.

14We exclude from our sample small art schools and other specialized institutions with non-standard
admission systems.
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Each institution is free to decide which majors and courses to offer, and the number of
students to admit in each alternative. As in Chile and Croatia, the admission system is
centrally managed and students are allocated to programs using a deferred acceptance
admission system.

The Swedish admission system has a few important differences compared to the Chilean
and Croatian systems. For one thing, the same system is open to applications to full
majors and shorter courses alike. To simplify, we will henceforth refer to all these al-
ternatives as majors. Moreover, applicants are ranked by different scores separately in
a number of admission groups. Their best ranking is then used to determine their ad-
mission status.15 Finally, the Swedish admission system has two rounds. After the first
round, applicants learn their admission status and they place in the waiting list for all
their applications. At this point, they can decide wether to accept the best offer they
have or to wait and participate in a second application round. Their scores and lists of
preferences do not change between the two rounds, but the cutoffs might. In this project
we focus on the variation generated by the cutoff of the second round. Since some ap-
plicants decide to accept the offers they received after the first round instead of waiting
for the second round, not all applicants above the second round admission cutoff end up
receiving an offer. Those who dropout from the waiting list after the first round cannot
receive a second round offer, even if their score was above the final admission cutoff. This
explains why, in the case of Sweden, the jump in older siblings’ admission and enrollment
probabilities is smaller than in the other two countries (see Figure 3.1).

For each program, at least a third of the vacancies are reserved for the high school
GPA admission group. No less than another third is allocated based on results from the
Högskoleprovet exam. The remaining third of vacancies are mostly also assigned by high
school GPA, but can sometimes be used for custom admission.16

Högskoleprovet is a standardized test, somewhat similar to the SAT. Unlike the college
admission exams of the other countries, Högskoleprovet is voluntary. Taking the test
does not affect admission probabilities in the other admission groups, and therefore never
decreases the likelihood of acceptance.

Students can apply to majors starting in the fall or spring semesters, and the application
occurs in the previous semester. In each application, they rank up to 20 alternatives
(students were able to rank 12 alternatives until 2005). Full-time studies correspond to

15Admission is essentially determined by a max function of high school GPA and Högskoleprovet score,
as compared to a weighted average in Chile and Croatia. In the analysis, we collapse these admission
groups and use as our running variable the group-standardized score from the admission group where
the applicant performed the best.

16This is the case in some highly selective majors, where an additional test or an interview is sometimes
used to allocate this last third of vacancies. We do not include admissions through such groups in our
analysis.
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30 credits per semester, but students who apply to both full-time majors and courses in
the same application receive offers for the highest-ranked 45 credits in which they are
above the threshold.

After receiving an offer, applicants can either accept or decide to stay on the waiting
list for choices which they have not yet been admitted. Should they decide to wait,
admissions after the second round will again only include the highest-ranked 45 ECTS,
and all lower-ranked alternatives will be discarded, even those that they were previously
admitted to.17

Finally, the running variables used in the Swedish admission are far coarser than those
in Chile and Croatia. This generates a lot of ties in student rankings. In some cases, ties
exactly at the cutoff are broken by lottery.

Figure 3.1: Older Siblings’ Admission and Enrollment Probabilities in Target Major-
College at the Admission Cutoff (First Stage)
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(c) Admission - Sweden
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(f) Enrollment - Sweden

This figure illustrates older siblings’ admission and enrollment probabilities around the admis-
sion cutoffs of their target majors in Chile, Croatia and Sweden. Figures (a) and (d) illustrate these
probabilities for the case of Chile, figures (b) and (e) for Croatia and figures (c) and (f) for Swe-
den. Blue lines and the shadows in the back represent local linear polynomials and 95% confidence
intervals. Green dots represent sample means of the dependent variable at different values of older
siblings’ own application score.

17As in Croatia, we focus on first-round submissions. As many applicants stay on the waiting list for
the second round and are admitted to higher ranked alternatives, Sweden has a substantially lower first
stage compared to the other two countries.
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3.3 Data

In this paper we exploit administrative data provided by various public agencies in Chile,
Croatia and Sweden. In these three countries, the main data sources are the agencies
in charge of the centralized college admission system: DEMRE in Chile, NISpVU and
ASHE (AZVO) in Croatia, and UHR in Sweden.

From DEMRE we obtani individual-level data on all the students registered to take the
PSU between 2004 and 2015. These datasets contain information on students’ perfor-
mance in high school and in the different sections of the college admission exam. They
also contain student-level demographic and socioeconomic characteristics, information
on students’ application, college acceptances through the centralized application system,
and college enrollment. To identify siblings, we exploit the fact that when registering for
the exam, students provide the national identification number of their parents. Using
this unique identifier we can match all siblings that correctly reported this number for at
least one of their parents.18

For Chile, we complement this information with registers from the Ministry of Education
and from the National Council of Education. In these data we observe enrollment for all
the institutions offering higher education in the country between 2007 and 2015. This
information allows us to build program-year specific measures of retention for the cohorts
entering the system in 2006 or later. In these registers, we also observe some program
and institution characteristics, including past students’ performance in the labor market
(i.e. employment and annual earnings). Finally, using the registers of the Ministry of
Education we are also able to match students to their high schools and observe their
academic performance before they start higher education.

NISpVU and ASHE provided us with similar data for Croatia. These individual registers
contain information on students’ performance in high school and in the various sections
of the college admission exam, and on applications and enrollment at all Croatian colleges
between 2012 and 2018. These registers include the home address of students and their
surnames, information that we exploit to identify siblings. We define as siblings two
individuals if they have the same surname and if they live at exactly the same address
at the moment of registration for the college admission exam.

The data for Sweden comes from the Swedish National Archives, the Swedish Council for
Higher Education (UHR) and Statistics Sweden (SCB).

The Swedish application data consists of two parts. We obtain data on applications from
18For the period that we study, 79.2% of the students in the registers report a valid national identifi-

cation number for at least one of their parents. 77.0% report the national identification number of their
mother.
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the modern system, for the years 2008 to 2016, directly from the Swedish Council for
Higher Education (UHR). Applications for the years 1992–2005 are from an older system
and are obtained from the Swedish National Archives (Riksarkivet). While the modern
system contains the universe of applications to higher education in Sweden, institutions
were not required to participate in centralized admissions before 2006.19 Family con-
nections and all demographic and socioeconomic variables that we use are provided by
Statistics Sweden.

Using these data, we identify around 83, 000, 17, 000, and 300, 000 pairs of siblings in
Chile, Croatia, and Sweden, respectively, where the older sibling had at least one active
application to an oversubscribed major with an application score within the minimum
bandwidth used in each country. Table 3.2 presents summary statistics for these subsets
of siblings and also for the full set of potential applicants.20

In the three countries, the sample of siblings is very similar to the rest of the applicants in
terms of gender. Individuals with older siblings who already applied to higher education
seem slightly younger at application than the rest of the applicants and, not surprisingly,
they come from larger households. Greater differences arise when looking at socioeco-
nomic and academic variables. In Chile and Sweden, where we observe socioeconomic
characteristics, the individuals in our sample come from wealthier and more educated
households than the rest of the potential applicants. This difference is clearer in Chile,
where the “Whole Sample”column consists of all students who registered for the admis-
sion exam, irrespective of whether they end up applying to college or not. In Chile and
Croatia, we observe that individuals with older siblings applying to university are more
likely to have followed the academic track in high school. Finally, in all three countries,
these individuals perform better in high school and in the college admission test than the
rest of the applicants.

These differences are not surprising. The sibling samples contain individuals from families
in which at least one child had an active application to a selective major (i.e. oversub-
scribed programs) in the past. On top of this, the institutions that use the centralized
admission system in Chile are on average more selective than the rest. Thus, individuals
with active applications to these colleges are usually better candidates than the average
student in the population.

19Institutions with local admission are not included in our data. Most of these programs had special
admission groups and would have been excluded from our analysis in any case. The only larger exception
is Stockholm University, where admissions to some of the larger programs were managed locally for almost
the whole period. It is unlikely that this fact has any strong bearing on our results. The results do not
change much qualitatively when the sample is restricted to only include the later period.

20In the case of Chile “All potential applicants” includes all students registered for the university
admission exam (they do not necessarily take it). In Croatia and Sweden, the column includes all
students applying to college or higher education, respectively.
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Table 3.2: Summary Statistics

Chile Croatia Sweden
Siblings Sample Whole Sample Siblings Sample Whole Sample Siblings Sample Whole Sample

(1) (2) (3) (4) (5) (6)

A. Demographic characteristics

Female 0.521 0.520 0.563 0.567 0.579 0.595
(0.500) (0.499) (0.496) (0.495) (0.493) (0.490)

Age when applying 18.786 19.829 18.880 19.158 20.589 20.872
(0.606) (2.484) (0.654) (0.963) (2.374) (2.562)

Household size1 4.756 4.625 2.790 1.925 3.086 2.946
(1.498) (1.607) (1.243) (1.198) (1.142) (1.186)

B. Socioeconomic characteristics

High income2 0.279 0.128 0.349 0.339
(0.449) (0.334) (0.477) (0.473)

Mid income2 0.403 0.325 0.262 0.290
(0.490) (0.469) (0.440) (0.454)

Low income2 0.318 0.546 0.389 0.371
(0.466) (0.498) (0.488) (0.483)

Parental ed: < high school 0.095 0.254 0.038 0.056
(0.294) (0.435) (0.191) (0.229)

Parental ed: high school 0.333 0.386 0.339 0.481
(0.471) (0.487) (0.471) (0.481)

Parental ed: vocational HE 0.149 0.115 0.067 0.063
(0.356) (0.319) (0.250) (0.244)

Parental ed: university 0.413 0.234 0.562 0.517
(0.492) (0.423) (0.496) (0.500)

C. Academic characteristics

High school track: academic3 0.846 0.673 0.439 0.416
(0.361) (0.469) (0.496) (0.496)

High school: vocational3 0.154 0.327 0.561 0.584
(0.361) (0.469) (0.496) (0.496)

Takes admission test 0.956 0.868 0.835 0.835 0.679 0.628
(0.204) (0.338) (0.371) (0.372) (0.467) (0.483)

High school GPA score -0.107 -0.465 -1.191 -1.238 0.673 0.432
(1.235) (1.357) (2.728) (2.763) (0.766) (0.773)

Admission test avg. score 0.241 -0.512 -0.779 -1.027 0.281 -0.061
(1.619) (1.708) (1.835) (2.034) (0.991) (1.000)

Applicants 83,379 2,823,897 16,721 199,475 301,967 3,822,188

Notes: The table presents summary statistics for Chile, Croatia and Sweden. Columns (1), (3) and (4) describe individuals in the siblings
samples used in this paper, while columns (2), (4) and (6) describe all potential applicants. While in Chile “potential applicants” include
all students who register for the admission exam, even if they end up not taking it, in Croatia and Sweden the term refers to all students
applying to higher education.
1 In Croatia, Household Size only refers to the number of siblings within a household.
2 In Chile, we only observe income brackets. The High Income category includes households with monthly incomes greater or equal than
CLP 850K (USD 2,171 of 2015 PPP); the Mid Income category includes households with monthly incomes between CLP 270K - 850K;
and the Low Income category includes households with monthly incomes below CLP 270K (USD 689.90 of 2015 PPP). In Sweden, the
High Income category includes households in the top quintile of the income distribution; the Mid Income category includes households in
quintiles 3 and 4; and the Low Income category households in quintiles 1 and 2. The average disposable income in the Swedish sibling
sample is USD 5,664 (2015 PPP), while in the whole set of applicants USD 5,265 (2015 PPP).
3 In Croatia, high school academic performance is only available from 2011 to 2015. This sample has 155,587 observations (the corresponding
siblings sample has 8,398 observations).

3.4 Empirical Strategy

The identification of siblings’ effects is challenging. In the first place, since siblings share
genetic characteristics and grow up under very similar circumstances, it is not surprising
to find that their outcomes —including the major and college that they attend— are
highly correlated. Thus, the first identification challenge consists in distinguishing these
correlated effects from the effects generated by interactions among siblings. In addition, if
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siblings’ outcomes simultaneously affect each other, this gives rise to what Manski (1993)
described as the reflection problem. In our setting, given that older siblings decide to
apply and enroll in college before their younger siblings, this is less of a concern (i.e.
decisions that have not yet taken place should not affect current decisions). However,
there could still be cases in which siblings decide together the college and major that
they want to attend and therefore we need an empirical strategy to address this potential
threat.

To overcome these identification challenges, we exploit thousands of cutoffs generated
by the deferred acceptance admission (DA) systems that Chilean, Croatian and Swedish
universities use to select their students. Taking advantage of the discontinuities created by
these cutoffs on admission, we use a Regression Discontinuity (RD) design to investigate
how older siblings’ admission to their target major affects the probability that their
younger siblings will apply and enroll in the same major, college or field of study.21

Since individuals whose older siblings are marginally admitted or rejected from a specific
major are very similar, the RD allows us to rule out the estimated effects being driven by
differences in individual or family characteristics, eliminating concerns about correlated
effects. Moreover, considering that the variation we exploit in the major-college in which
older siblings enroll comes only from their admission status and cannot be affected by
the choices that their younger siblings will make in the future, we can abstract from the
reflection problem.22

As discussed in Section 3.2, rejecting an offer does not have any major consequence for
Chilean students. As a result, there is a non-negligible share of applicants who, despite
being admitted to a particular college or major, decide not to enroll. Thus, when studying
how older siblings’ actual enrollment affects their younger siblings, we use a fuzzy RD in
which older siblings’ enrollment in a specific major is instrumented with an indicator of
admission.

We follow a similar approach for Croatia. Although in this setting rejecting an offer is
costly, we use a fuzzy and not a sharp RD because, as explained in Section 3.2, we focus
our attention on the first application students submit after receiving their results in the
college admission exam. Since some individuals modify their applications in the weeks
following the exam results, admission to the first set of preferences does not translate

21We define a major as a specific combination of major and college. For brevity we refer to this
combination simply as major. On the other hand, we define a field of study as the three digit-level
ISCED category to which a major belongs. If we consider economics for instance, its ISCED code is
0311. Thus, an individual whose older sibling enrolls in economics at the University of Chile is said to
choose the same field of study as her older sibling if she applies in economics (0311) in any college. She
is said to choose the same major as her older sibling only if she applies to economics at the University
of Chile.

22We show that this is indeed the case in a series of placebo exercises that we present in Appendix .2.
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one-to-one into enrollment.23

For Sweden, we focus our attention on the applications submitted during the first round of
the admission process. Since students can reject these offers there is no perfect compliance
either.24 Thus, as in the previous two cases, we also use a fuzzy-RD to identify the siblings’
spillovers.

This paper investigates how individuals’ probabilities of applying and enrolling in spe-
cific majors, colleges and fields of study change when their older siblings are marginally
admitted and enroll in them. The basic idea behind our empirical design consists in
defining for each major, college and field of study the sample of older siblings marginally
admitted and marginally rejected from them, and then comparing how this affects their
younger siblings’ choices. Therefore, each observation in our estimation sample corre-
sponds to a pair of siblings in which the older one is close enough to the admission cutoff
of a specific major. Given that in the three countries individuals are allowed to apply
to multiple programs, this means that the same pair of siblings could eventually appear
several times in the sample. In cases where multiple older siblings are identified, we focus
on the one close in age to the potential applicant of interest. In addition, if older siblings
have applied multiple times to college, we only take the first set of applications he or she
submitted.

We define major as a specific combination of major and college, and field of study as
the three digit-level ISCED code of these majors.25 This means that in each country we
consider around 80 different fields of study.

Next, we discuss the restrictions used to identify the groups of marginal older siblings in
each case.

3.4.1 Major Sample

This section describes the restrictions applied to the data in order to build the sample
used to study how older siblings’ marginal admission and enrollment in their target majors
affects their younger siblings’ probabilities of applying and enrolling in the same major.

As discussed earlier, the assignment mechanism used in Chile, Croatia and Sweden results
in cutoff scores for each major with more applicants than available places; these cutoffs

23We focus on the first applications submitted after learning the exam scores to avoid endogeneity
issues in admission results that may arise from some types of students being more active in modifying
their applications in the weeks following the exam.

24In addition, in the Swedish setting ties at the cutoff are decided through lotteries. When implement-
ing the RD we modify the score of students at the cutoff by score−ε for individuals who lose the lottery.
We set ε to the minimum computer detectable number.

25In the case of Sweden, the definition of major is slightly different. We pool together all the programs
in the same field and define a major as the combination of field-institution.
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correspond to the lowest score among the admitted students. Let cjfut be the cutoff
for major j belonging to field of study f in college u in year t. If the major j of field
f offered in college u is ranked before the major j′ of field f ′ offered by college u′ in
student i’s preference list, we write (j, f, u) � (j′, f ′, u′).26 Denoting the application
score of individual i as aijfut, we can define marginal students in the major sample as
those whose older siblings:

1. listed major j of field f offered in college u as a choice, such that all majors preferred
to j had a higher cutoff score than j (otherwise assignment to j is impossible):
cjfut < cj′f ′u′t ∀ (j′, f ′, u′) � (j, f, u).

2. had a score sufficiently close to j’s cutoff score to be within a given bandwidth bw

around the cutoff:
|aijfut − cjfut| ≤ bw.

This means that in the major sample, the field and college attended by older siblings
does not necessarily change by being above or below the admission cutoff. As far as the
exact major-college combination in which they are admitted changes, they will be in the
sample.

Note that this sample includes individuals whose older siblings were rejected from (j, u)
(aijfut < cjfut) and those whose older siblings scored above the admission cutoff (aijfut ≥
cjfut). Since the application list in general contains more than one preference, this means
that the same individual may belong to more than one major-college marginal group.
Figure 3.1 illustrates the probability of admission and enrollment in a given major around
the admission cutoff in Chile, Croatia and Sweden.

3.4.2 College Sample

In addition to studying the effect older siblings on the choice of major, we study how
individuals’ probability of applying and enrolling in a specific college changes when an
older sibling is marginally admitted and enrolls in that college. The sample used in this
case is similar to the one described in the previous section, but in this case we need to
add an additional restriction. Thus, we define marginal students in the college sample as
those whose older siblings apart from restrictions 1 and 2, also:

3.A. listed major j in college u as a choice, such that majors not preferred to j are
dictated by an institution different from u (otherwise being above or below the
cutoff would not generate variation in the college attended).

26This notation does not say anything about the optimality of the declared preferences. It only reflects
the order stated by individual i.
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3.4.3 Field of Study Sample

Finally, we also study how the field of study to which the older siblings’ major belongs
affects the field of study chosen by younger siblings.

To generate the sample used to study this margin, we follow the same logic behind the
creation of the college sample, but we slightly modify the third restriction to the one
below:

3.B. listed major j in field f as a choice, such that majors not preferred to j belong to a
field different from f (otherwise being above or below the cutoff would not generate
variation in the field of study attended).

This means that the field sample only contains individuals whose older siblings’ marginal
admission or rejection from their target major changes the field of study to which they
are allocated.

3.4.4 Identifying Assumptions

As in any other RD setting, the validity of our estimates relies on two key assumptions.
First, individuals should not be able to manipulate their application scores around the
admission cutoff. The structures of the admission systems in Chile, Croatia and Sweden
make the violation of this assumption unlikely. However, to confirm this, we show that the
distribution of the running variable (i.e. older sibling’s application score) is continuous
at the cutoff (see Appendix .2 for more details).

Second, in order to interpret changes in individuals’ outcomes as a result of the ad-
mission status of their older siblings, there cannot be discontinuities in other potential
confounders at the cutoff (i.e. the only relevant difference at the cutoff must be older
siblings’ admission). Appendix .2 shows that this is indeed the case for a rich set of
socioeconomic and demographic characteristics.

As previously mentioned, we use a fuzzy RD to study the effect of older siblings’ en-
rollment (instead of admission) on younger siblings’ outcomes. This approach can be
thought of as an IV strategy, meaning that in order to interpret our estimates as a local
average treatment effect (LATE) we need to satisfy the assumptions discussed by Imbens
and Angrist (1994).27 In this setting, in addition to the usual IV assumptions, we also
need to assume that receiving an offer for a specific major does not make the probability

27Independence, relevance, exclusion and monotonicity. In this setting, independence is satisfied
around the cutoff. The existence of the first stage is shown in Figure 3.1. The exclusion restriction
implies that the only way through which older siblings’ admission to a major affects younger siblings’
outcomes is by the increase it generates in older siblings’ enrollment in that major. Finally, the mono-
tonicity assumption means that admission to a major weakly increases the probability of enrollment in
that major (i.e. being admitted into a major does not reduce the enrollment probability in that major).
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of enrolling in a different major bigger than in the absence of the offer. 28 Given the
structure of the admission systems that we study, this additional assumption does not
seem very demanding.29

An additional issue related to the interpretation of our estimates is that as noted by
Cattaneo et al. (2016), by pooling together different cutoffs, our estimates correspond
to a weighted average of LATEs across programs. This weighted average gives more
importance to programs with more applicants in the vicinity of the admission cutoff. Since
there could be heterogeneity in the characteristics of individuals around each admission
cutoff, and also on the effect of admission and enrollment at each admission cutoff, we
need to be careful with the interpretation of this weighted average. 30

A final consideration for the interpretation of our results relates to the findings of Barrios-
Fernandez (2018). According to these, the probability of attending university increases
with close peers’ enrollment. If marginal admission to the programs that we study trans-
lates into an increase in total university enrollment, then our estimated results could
simply reflect that individuals whose older siblings attend college are more likely to en-
roll. We address this concern in Appendix .2 where we show that older siblings’ marginal
admission to their target majors does not generate a difference in younger siblings’ total
enrollment. 31

Appendix .2 presents multiple additional robustness checks. We show that, as expected,
changes in the admission status of younger siblings do not have an effect on older siblings;
that our estimates are robust to different bandwidth choices and that placebo cutoffs do
not significantly effect any of the outcomes that we study.

28Appendix .1 presents a detailed discussion of the the identification assumptions.
29In Chile, where not all colleges use the centralized admission system and rejecting an offer is not costly

for students, this assumption could be violated if, for instance, colleges that do not use the centralized
admission system were able to offer scholarships or other types of incentives to attract students marginally
admitted to colleges that do use it. Although it does not seem very likely that colleges outside the
centralized system would define students’ incentives based on marginal offers to other institutions, we
cannot completely rule out this possibility. In the case of Croatia —where students lose their funding
in the event of rejecting an offer— and Sweden —where there are no tuition fees— violations of this
assumption seem unlikely.

30In order to understand what is driving our results we perform a detailed heterogeneity analysis along
multiple dimensions including both individual and program characteristics. In Appendix .2 we study how
our results vary when we re-weight observations around each cutoff by the inverse of the total number
of applicants around it. Although the estimates are slightly smaller, the main conclusions still hold.

31In Chile, we find only a small increase in the total enrollment of older siblings. This result is not
surprising. As discussed in Section 3.2, the colleges that use the centralized admission system in Chile
are, on average, more selective than the rest. This means that individuals rejected from these institutions
still have many other alternatives available. In Croatia, we find that marginal admission translates into a
more significant increase in older siblings total enrollment. However, we do not find an extensive margin
response among younger siblings. Finally, in Sweden we once again find a small increase in older siblings’
total enrollment, but as in the previous cases it does not translate into any significant difference in the
total enrollment of their younger siblings.
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3.5 Results

This section begins by providing additional details about the empirical approach used
to estimate the effects of interest. It then discusses how the probabilities of applying
and enrolling in a specific major-college combination change when an older sibling is
marginally admitted and enrolls in it. The section continues by investigating how col-
lege and field of study choices are affected. Next it discusses how these responses vary
depending on the characteristics of siblings and majors, and concludes by looking at the
effect on individuals’ academic performance.

3.5.1 Method

In all of the specifications used in this paper, we pool together observations from all
over-subscribed majors and center older siblings’ application scores around the relevant
admission cutoff. The following expression describes our baseline specification:

yijutτ = βadmittedijuτ + f(aijuτ ; γ) + µt + µjuτ + εijutτ (3.1)

where,

yijutτ is the outcome of interest of the younger sibling of the sibling-pair i applying to
college in year t whose older sibling was near the admission cutoff of major j in college u
in year τ .

admittedijuτ is a dummy variable that takes value 1 if the older sibling of the siblings-pair
i was admitted to major j offered by college u in year τ (aijuτ ≥ cujτ )

f(aijuτ ; γ) is a function of the application score of the older sibling of the siblings-pair i
for major j offered by college u in year τ .

µt and µjuτ are the younger sibling’s birth year and older sibling’s target major-application
year fixed effects, respectively; and εijut is an error term.

We estimate two versions of this specification. In both cases, f(aijutτ ; γ) corresponds to a
linear or a quadratic polynomial of aijuτ whose slope is allowed to change at the admission
cutoff. However, while in one specification we use a uniform kernel, in the second one we
use instead a triangular kernel to give more weight to observations close to the cutoff.32

Our analysis of younger siblings’ responses to older siblings’ marginal enrollment focuses
on three levels: first preference in the application list, all the preferences in the application

32In Appendix Tables B5 , B6, and B7 we also present a specification in which we allow the slope of
the running variable to be different for each admission cutoff. The estimation of these specifications is
costly in computing time. In addition to the fixed effects included in the baseline specification, we need
to include interactions between the running variable aijuτ and µjuτ , and also between aijuτ , µjuτ and
admittedijutτ . The estimates obtained with this specification are very similar to the ones discussed in
this section.
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list, and enrollment. Depending on the margin of interest (i.e. major, college or field)
we use one of the samples described in Section 3.4. We compute optimal bandwidths
according to Calonico et al. (2014) for each sample and level being investigated , but
then we use a single bandwidth per sample: the smallest one among the three computed.
33

Since all the specifications that we use focus on individuals whose older siblings are near
an admission cutoff, our estimates represent the average effect of older siblings’ marginal
admission compared to the counterfactual of marginal rejection from a target major.34

To study the effect of enrollment —instead of the effect of admission— we instrument
older siblings’ enrollment (enrollsijuτ ) with an indicator of admission (admittedijuτ ).

Standard errors must account for the fact that each older sibling may appear several times
in our estimation sample if she is near two or more cutoffs. To deal with this situation
we cluster standard errors at the family level.

To study heterogeneous effects, we add to the baseline specification an interaction be-
tween older siblings’ admission and the characteristic along which heterogeneous effects
are being investigated (i.e. admittedijuτ × xijutτ ). This interaction is also used as an
instrument for the interaction between the older sibling’s enrollment and xijutτ . In both
cases, xijutτ is also included as a control.

3.5.2 Effects of Older Siblings on Major Choice

This section discusses how older siblings’ admission and enrollment in a specific major-
college combination affect their younger siblings’ probabilities of applying to and enrolling
in it. To investigate changes in this margin, we use the Major Sample defined in Section
3.4.2.

The RD estimates illustrated in Figure 3.2 provide consistent causal evidence that stu-
dents are more likely to apply to and enroll in a major if an older sibling was admitted
to it before.35

As discussed in Section 3.4, receiving an offer for a specific major does not translate one-
33In principle, optimal bandwidths should be estimated for each admission cutoff independently. How-

ever, given the number of cutoffs in our sample, doing this would be impractical. Therefore, we compute
optimal bandwidths pooling together all the cutoffs. Appendix Figures B3, B4 and B5 illustrate how
sensitive our estimates are to the choice of bandwidth.

34Strictly speaking, our estimates represent a weighted average of multiple LATEs. See Section 3.4.4
for additional details. In addition, Appendix Tables B8, B9 and B10 present the results of an additional
specification that controls by target major × counterfactual major fixed effect. The effects are very
similar to the ones presented in the main section of the paper.

35In the case of Sweden, ties at the cutoff are broken through lotteries. For estimation and illustration
purposes, we subtracted ε from the running variable of lotteries’ losers. We set ε at the smallest machine
detectable number.
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to-one into enrollment in any of the settings that we study. Thus, in order to estimate the
effect of older siblings’ enrollment on individuals applications and enrollment decisions, we
combine the reduced form results discussed in the previous paragraph with the respective
first stages illustrated in Figure 3.1, and obtain the fuzzy-RD estimates presented in
Table 3.3. Under the identification assumptions discussed in Section 3.4, these fuzzy-RD
provide consistent estimates for the effects of interest.

We find that in Chile, having an older sibling “marginally enrolling” 36 in a specific
major increases the likelihood of applying to that major in the first preference by 0.8
percentage points (40%) and in any preference by around 2.8 pp (55%). These changes
in applications also translate into an increase of around 0.3 pp (30%) in enrollment
(although this last figure is not statistically significant). The results for Croatia are very
similar. Individuals are 1.4 pp (45%) more likely to apply to their older siblings’ target
major in the first preference, 3.4 pp (33%) more likely to apply to it in any preference
and 1.4 pp (58%) more likely to enroll in it. Finally, in Sweden, the likelihood of ranking
older siblings’ target major in the first place increases by around 2 pp (180%), while the
likelihood of ranking it in any position increases by around 3 pp (63.8%). We also show
that enrollment in older siblings’ major increases by roughly 0.4 pp (100%).

Since in the three settings that we investigate, applicants know their scores before sub-
mitting their applications, their responses may depend on how likely they believe it is to
be admitted in their

36“marginally enrolling” means that the individual was marginally admitted to the major in which she
enrolled. We emphasize this to remind the reader that the estimates come from comparing individuals
whose older siblings were marginally admitted and marginally rejected from specific majors.
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Figure 3.2: Probabilities of Applying and Enrolling in the Target Major-College of the
Older Siblings

-100 -80 -60 -40 -20 0 20 40 60 80 100

0.005

0.010

0.015

0.020

0.025

0.030

0.035

(a) 1st preference - Chile
-100 -80 -60 -40 -20 0 20 40 60 80 100

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

(b) 1st preference - Croatia
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.007
0.008
0.009
0.010
0.011
0.012
0.013
0.014
0.015
0.016

(c) 1st preference - Sweden

-100 -80 -60 -40 -20 0 20 40 60 80 100

0.035
0.040
0.045
0.050
0.055
0.060
0.065
0.070
0.075
0.080
0.085

(d) Any preference - Chile
-100 -80 -60 -40 -20 0 20 40 60 80 100

0.070
0.080
0.090
0.100
0.110
0.120
0.130
0.140
0.150
0.160

(e) Any preference - Croatia
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.042
0.044
0.046
0.048
0.050
0.052
0.054
0.056
0.058
0.060
0.062

(f) Any preference - Sweden

-100 -80 -60 -40 -20 0 20 40 60 80 100
-0.005

0.000

0.005

0.010

0.015

0.020

0.025

(g) Enrolls - Chile
-100 -80 -60 -40 -20 0 20 40 60 80 100

-0.010
-0.005
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035

(h) Enrolls - Croatia
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.0020
0.0025
0.0030
0.0035
0.0040
0.0045
0.0050
0.0055
0.0060
0.0065
0.0070

(i) Enrolls - Sweden

This figure illustrates the probabilities that younger siblings apply to and enroll in the target major
of their older siblings in Chile, Croatia and Sweden. Figures (a), (d) and (e) illustrate the case of Chile,
figures (b), (e) and (h) the case of Croatia, while figures (c), (f) and (i) the case of Sweden. Blue lines
and the shadows in the back of them correspond to local polynomials of degree 1 and 95% confidence
intervals. Green dots represent sample means of the dependent variable at different values of older
siblings’ admission score.

older siblings’ target major once they learn their application score. In Table 3.4 we present
additional results that come from specifications that expand the baseline specification
by adding an interaction between older siblings’ marginal enrollment and a proxy of
younger siblings’ eligibility for their older siblings target major.37. According to the

37These specifications also control by the main effect of the eligibility proxy. In Chile and Croatia the
eligibility proxy is an indicator that takes value 1 if the younger sibling average score in the admission
exam is equal or greater than the average score obtained by the older sibling. In Sweden, given that the
scale of the GPA and of the admission exam change during the period that we study, we use instead a
variable that indicates if given their high school GPA, younger siblings are likely to be admitted in the
target program of their older siblings.
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results presented in columns (1) to (3) of Table 3.4, younger siblings are more likely to
apply and enroll in their older siblings’ target major if they are eligible for it.38

In order to gain a deeper understanding about what is behind this “major following”behavior,
in columns (4) to (6) of Table 3.4 we estimate the same specifications just discussed, but
this time focusing on the sub-sample of older siblings whose target and counterfactual
majors were offered by the same college. For these older siblings, being rejected from
their target major does not change the college in which they end up being admitted.
Finding that even in this restricted sample younger siblings are more likely to apply to
and enroll in their older siblings target major, suggests that the effects discussed in this
section are not only driven by an increase in applications and enrollment in the older
sibling’s target college.

Despite the differences that exist among the three countries that we study, the results of
this section are quite consistent. They indicate that especially when younger siblings are
eligible for their older siblings’ specific major-college combination, they are more likely
to apply and enroll in it.

3.5.3 Effects of Older Siblings on College and Field of Study
Choices

While the focus of the previous section was on the specific major-college choice, this
section independently investigates how younger siblings’ choices of college and field of
study are affected by older siblings. To study these margins, we slightly modify the
baseline specification of the previous section by replacing the outcome for a dummy
variable that indicates if the younger sibling applies or enrolls in the target college or in the
target field of study of the older sibling.39 Depending on the margin being investigated,
we focus our attention on the College Sample or on the Field Sample defined in Section
3.4.2.40

Table 3.5 summarizes the results of siblings’ spillovers on the choice of college. In Chile,
individuals are 7.2 pp (45%) more likely to rank their older siblings’ target college first
and 10.1 pp (30%) more likely to apply to it in any preference. They are also 4.4 pp (44%)
more likely to enroll in that college. For Croatia, the same figures are 7.5 pp (23%), 10.9
pp (19%) and 8.4 pp (29%), respectively, and for Sweden they are 15 pp (170%), 15.3 pp
(79%) and 6.4 pp (188%).

38In section 3.5.8, we show that older siblings’ enrollment on their target major does not increase
younger siblings’ academic performance in high school or in the university admission exam. These
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Figure 3.3: Probabilities of Applying and Enrolling in the Target College of Older Siblings
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This figure illustrates the probabilities that younger siblings apply to and enroll in the target college
of their older siblings in Chile, Croatia and Sweden. Figures (a), (d) and (e) illustrate the case of Chile,
figures (b), (e) and (h) the case of Croatia, while figures (c), (f) and (i) the case of Sweden. Blue lines and
the shadows in the back correspond to local polynomials of degree 1 and 95% confidence intervals. Green
dots represent sample means of the dependent variable at different values of older siblings’ admission
score.

One hypothesis that may explain the large effects that we find on the choice of college is
that they reflect at least in part geographic preferences. This would mean that individuals
follow their older siblings to the city and not to the institution or major in which they
enroll. To address this concern, we take advantage of the fact that in Chile there are three
large cities —Santiago, Valparáıso and Concepción— that not only contain an important

results attenuate selection concerns that could have arisen by adding eligibility into the analisys.
39We define target college as the college offering the target major of the older sibling. Similarly, we

define target field as the 3-digits ISCED code category to which the older sibling’s target major belongs.
40Note that by changing the sample, we change the type of individuals that enter the estimations,

something that could potentially affect the comparability of our results across samples.
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share of the population, but also multiple universities.41.

Figure 3.4: Probabilities of Applying and Enrolling in the Target Field of Study of Older
Siblings
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This figure illustrates the probability that younger siblings apply to and enroll in a program in the
same field of study as the target program of their older siblings in Chile, Croatia and Sweden. Figures
(a), (d) and (e) illustrate the case of Chile, figures (b), (e) and (h) the case of Croatia, while figures (c),
(f) and (i) the case of Sweden. Blue lines and the shadows in the back correspond to local polynomials
of degree 1 and 95% confidence intervals. Green dots represent sample means of the dependent variable
at different values of older siblings’ admission score.

Table 3.6 presents the results of an exercise in which we estimate the baseline specification
on a sample of Chilean students from Santiago, Valparáıso and Concepción whose older
siblings apply to institutions in their hometowns. If the effects documented in Table 3.5
were driven only by geographic preferences, we should not find sibling spillovers on the
choice of college for this subsample. However, the coefficients that we obtain in this case
are very similar to the main results previously discussed.

41In Santiago, there are campuses of 33 universities, in Valparáıso 11 and in Concepción 12
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On the other hand, when investigating how the choice of field of study —defined by the
three- digit level code of the ISCED classification— is affected, we only find a marginally
significant effect on younger siblings’ applications in the case of Chile. In Croatia and
Sweden none of the estimated coefficients is statistically significant (Table 3.7). Con-
sidering that the comparison of results across samples must be treated with caution,
the results discussed so far suggest that individuals’ major choice is only affected when
younger siblings are likely to be admitted in their older siblings’ specific major-college
combination.

Since the choices of major and college seem to be the margins more affected by older
siblings’ higher education decisions, in the rest of the paper we will focus on these mar-
gins.42

3.5.4 Effects on Applications to Major and College by Gender:

This section explores if the responses in major and college choice documented in the
previous sections vary depending on siblings’ gender.43

The results of this section are summarized in Table 3.8. The first three columns look
at differences in applications to majors, while the following three columns look at dif-
ferences in applications to colleges. To perform these analyses we expand the baseline
specification by adding an interaction between the treatment and a dummy variable that
indicates whether the gender of both siblings is the same. The main effect of the “same
gender”dummy is also included as a control in all these specifications.

While columns (1) and (4) present results using the whole sample, the rest of the columns
split the sample according to the gender of the older sibling. Thus, columns (2) and (5)
look at pairs of siblings in which the older sibling is female, while columns (3) and (6)
look at pairs of siblings where the older sibling is male.

According to these results, older brothers are more likely to be followed to their specific
major by males than by females. This difference is less clear when looking at older sisters.
Apart from Sweden, where older sisters seem to generate stronger responses in their
younger brothers, we find no significant differences in how male and female applicants
respond to their major choice.

When looking instead at the college choice, we find no significant difference in how male
and female applicants respond to the choices of their older brothers or sisters. Being of
the same gender as younger siblings does not seem to increase the likelihood of being

42Appendix C includes similar results for the field choice.
43The analyses presented in this section focus on applications to majors and colleges. Similar results

for enrollment and for decisions related to the field of study are presented in Appendix Tables C1 and
C2.
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followed by them. However, in this case, independently of their gender, younger siblings
seem to be more responsive to older brothers than to older sisters.

Overall, the results discussed in this section indicate that males are more likely to apply
to the same major and college of an older brother than of an older sister. However, their
applications are also affected by the higher education decisions of their older sisters. In
the case of females, the pattern is less clear. They seem to be more responsive to what
happens with their older sisters when choosing a major, but the opposite is true when
looking at applications to college.

3.5.5 Effects on Applications to Major and College by Differ-
ences in Age and in Academic Potential

In this section we investigate how the applications to major and college change depending
on how close siblings are in terms of age and academic potential.44 To investigate differ-
ential effects by age, we expand the baseline specification with an interaction between the
treatment and a dummy variable indicating whether siblings were born 5 or more years
apart. To investigate if the effects change depending on differences in academic poten-
tial, we proceed in a similar way by adding an interaction with the absolute difference in
siblings’ high school GPA.45 In Croatia, we only observe high school GPA for students
completing their secondary education before 2015; this explains the smaller sample used
in this part of the analysis for Croatia.

Table 3.9 summarizes the results of this section. The first two columns look at the choice
of major, while the last two at the choice of college. In Chile and Croatia, the effects do
not significantly decrease with the age difference between siblings. In the case of Sweden,
the effects are stronger for siblings who are closer in age. However, even for those who
are more than 5 years apart the effects are significant both statistically and economically.

The difference in siblings academic potential only seems to make a difference in Chile
and Croatia (columns (2) and (4)). In Chile, a difference of 1σ in siblings’ high school
GPA score reduces the effect on applications to majors by 51.2% and on applications to
colleges by 44.7%. In the case of Croatia, the estimates point in the same direction, but
are less precisely estimated. A difference of 1σ in siblings’ high school GPA decreases
the effect on applications to majors by 44% and on applications to colleges by 15.9%.
Finally, in Sweden we find no relevant differences in the effects on major and college

44We present similar analyses for enrollment and for the choice of field of study in Appendix Tables
C3 and. C4.

45Note that if younger siblings are still in high school when their older siblings apply to higher educa-
tion, their high school GPA could be an outcome of the treatment. However, as shown in Section 3.5.8
“marginal enrollment”of older siblings in their target major does not seem to affect individuals’ academic
performance.
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choices depending on siblings’ academic potential.

3.5.6 Effects on Application to College and Major by Older
Siblings’ Major Quality

This section studies how the effects documented in Section 3.5.2 change depending on the
quality of the target major of the older sibling.46 We measure quality in terms of admitted
students’ academic potential, first-year dropout rates and graduates’ earnings.47

Student quality is the only variable in this section that we observe for the three countries.
We define the quality of the students in a program in a given year using the average
performance of admitted students in the college admission exams in Chile and Croatia,
and as the average high school GPA of admitted students in Sweden. We are able to
compute dropout rates and graduates earnings only for Chile and Sweden. We compute
dropout rates for each major using individual level data provided by the Ministry of
Education (Chile) and by the Council for Higher Education (Sweden). The data from
Chile allow us to compute dropout rates for all college cohorts beginning in 2006;48 in
Sweden we observe dropout rates for the entire sample period. Variables measuring the
labor market performance of former students in Chile are available at the major-college
level. They are computed by the Ministry of Education with the support of the National
Tax Authority.49 In the case of Sweden, information on earnings comes from Statistics
Sweden.

The main results of this section are summarized in Table 3.10. All variables, except for
dropout rates, are standardized to facilitate the interpretation of the results. The first
three columns of the table investigate heterogeneous effects on applications to majors,
while the last three on applications to colleges.

When looking at heterogeneous effects on the major choice by the quality of the students
admitted to that major, we only find a significant difference in Sweden. In this country,
a difference of 1σ in the quality of the applicants admitted to the older siblings’ major
increases the younger sibling’s applications to that major by 1.2 pp. Differences are more

46Appendix Tables C5 and C6 present similar results for enrollment and for the choice of field of study
respectively.

47We only observe earnings for Chile and Sweden. In the case of Chile, graduates average earnings are
measured four years after graduation and reported by the Ministry of Education. We observe them only
once for each major-college. This means that in our analysis this variable does not change over time.
In the case of Sweden, we compute average earnings one year after graduation. We use as reference the
cohort graduating the year in which older siblings apply to their target major.

48The cohorts of older siblings applying to university in 2004 and 2005 are assigned the dropout rates
observed for their target programs in 2006. Since some programs disappear from one year to the next,
this means that we are not able to complete information for all programs offered in 2004 and 2005.

49These figures are only available for majors that were offered in 2018 and that had more than 4
cohorts of graduates. In addition, the Tax Authority only reports employment and earnings statistics
for majors in which they observe at least 10 graduates.
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clear when looking instead at the college choice. In this case, an increase in the quality of
the students admitted to the older siblings major increases younger siblings’ applications
to the college offering that major by 2.4 pp in Chile, 2.7 pp in Croatia and 3.6 pp in
Sweden. 50

Higher dropout rates seem to reduce younger siblings’ applications to both the major and
the college of the older sibling. However, this difference is only significant when looking
at the college choice.

Finally, when looking at heterogeneity by graduates’ labor market outcomes we find
that younger siblings are more likely to apply to their older siblings’ major when past
graduates’ earnings are higher. A similar pattern arises when focusing on the college
choice, but in this case the coefficients are unprecisely estimated.

Our results show that individuals do not follow their older siblings to all majors and
colleges. The responses seem to be stronger when the quality of the major attended by
the older sibling is higher.

Table 3.11 presents results of a similar exercise, but in which we study heterogeneous
effects by the difference in the quality indexes of older siblings’ target and counterfactual
majors (counterfactual major is the major in which they would have been admitted in
the event of being rejected from their target choice).51 This forces us to restrict the
sample to older siblings for whom it is possible to identify a counterfactual alternative.
Therefore, those not admitted to any program are not part of this analysis. We find no
heterogeneous effects by differences in any of the quality measures we use. In part, this
could be due to the smaller sample size used for this exercise and to the fact that on
average there is no significant difference between the quality of the target program and
the quality of the next best option.

3.5.7 Effects on Application and Enrollment by the College Ex-
perience of Older Siblings

This section investigates whether the effects on the choice of major and college depend
on the experience of older siblings in their target major. Table 3.12 provides evidence
consistent with the hypothesis that individuals learn from their older siblings’ experience
if a specific major or college would be a good match for them. Siblings are similar in
many dimensions, and therefore if an older sibling has a negative experience in a specific
major or college, their younger siblings may infer that applying and enrolling in that

50Note that since our sample only includes majors with a positive number of individuals on the waiting
list, our estimates are not valid for non-selective programs. This is particularly relevant in Chile, where
the less selective institutions are not part of the sample at all.

51Appendix Tables C7 and C8 present results for major and college enrollment and for the choice of
field of study.
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alternative is not necessarily good for them. In our data, the best available proxy for
older siblings’ experience in college is dropout. We are only able to compute dropout for
Chile and Sweden, and therefore this section only presents results for these countries.

We add to the baseline specification an interaction between the treatment and a dummy
that indicates whether the older sibling drops out from the major or college in which
she first enrolls,52 and the main effect of older siblings’ dropout.53 The results of this
exercise should be interpreted with caution. Dropping out from college is not random,
and although controlling by dropout helps to capture some of the differences that may
exist between individuals who remain at and leave a particular college, there could still
be differences that we are not able to control for.54 In addition, the dropout variable
can only be built for older siblings who actually enroll in some major. Appendix Table
B4 shows that in Chile and Sweden, marginal admission does not translate into relevant
increases in older siblings’ total enrollment. However, only focusing on applicants whose
older siblings enroll in a program affects the composition of the sample used in this
analysis.

Bearing these caveats in mind, the results of this exercise show that individuals whose
older siblings dropout from their major or college are significantly less likely to follow
them. Indeed, the effects documented in previous sections on both the choice of major
and college virtually disappear if the older sibling drops out.

3.5.8 Effects on Academic Performance

In this section we study if the increase in the likelihood of applying and enrolling in the
major attended by an older sibling could be driven by an improvement in younger siblings’
academic performance. To study this we use the same fuzzy-RD strategy discussed in
Section 3.4, but this time we look at younger siblings’ high school GPA and at their scores
in the admission exams. Since not all potential applicants take the admission exam, we
replace missing values by zero. This means that when looking at effects on exams scores,
our estimates capture differences in performance, but also differences in the probability
of taking the exam. The bandwidths used in this section are the same as those used in
Section 3.5.2.

Table 3.13 summarizes these results. We show that, having an older sibling “marginally
52Note that the majors in which older siblings enroll are not necessarily the ones to which they are

admitted.
53We study dropout in the 4 years following enrollment. To be able to do this, we restrict the sample to

sibling pairs in which the older sibling applies to college before 2011 in Chile and before 2012 in Sweden.
54In addition, note that with this specification we are comparing the effects found for admitted and

rejected individuals who remain in the college in which they enroll, with the ones found when comparing
admitted and rejected individuals who dropout from the college in which they enroll. In general, admitted
and rejected individuals attend different majors.
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enrolling” in her target major does not seem to generate significant changes in younger
siblings’ high school performance or in their performance in the university admission
exams.

These results hold for the three countries in our study, and suggest that the effects
documented on the choice of program are not driven by an improvement in the academic
performance of younger siblings.55

3.6 Discussion

The results presented in Section 3.5 show that the path followed by older siblings in
higher education affects the major and college choice of their younger siblings. Although
documenting the existence of sibling spillovers in the choice of major and college in three
settings as different as Chile, Croatia and Sweden is interesting in itself, from a policy
perspective it is also relevant to understand the mechanisms behind these responses. In
the rest of this section, we discuss three broad classes of mechanisms that could drive our
results using a simple framework of discrete choice and utility maximization.

Let Mi be the set of majors m that form part of the alternatives to which individual i
is considering to apply and ~xm a vector of the attributes that characterize each major.
Individuals have different preferences over these attributes and chose to apply to the
major that maximizes their utility subject to a budget constraint Bi. Pm is the cost of
enrolling in major m and it includes tuition fees, commuting costs and living costs.

max
m∈Mi

Ui(~m), m = (x1m, ..., xnm)

s.t. Pm ≤ Bi

With this simple framework in mind, the first way in which older siblings could affect the
decision of applying and enrolling in a specific major or college is by affecting the costs of
that option. For instance, by attending the same college as an older sibling, individuals
might save in commuting and living costs. However, we find that the effects persist even
among siblings who, due to age differences, are unlikely to attend college at the same
time. This result, and the fact that the effects look very similar when we focus on a group
of individuals whose older siblings apply to majors offered in their hometown, suggest
that this convenience channel is not the main driver of our results. 56

55We reach the same conclusion when investigating changes in academic performance in the Institution
and Field samples. These results are presented in Appendix Tables C9 and C10. One reason why we
may not detect changes in academic performance is that individuals may need some time after their older
sibling’s enrollment in order to respond. We explore this possibility in Appendix Table C11, but we find
no significant effects even when looking at siblings born 5 or more years apart.

56In some settings, the admission systems give an advantage to siblings of current or former students.
This, however, is not a concern in our case. In Chile, Croatia and Sweden universities use centralized
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Alternatively, having an older sibling enrolling in a specific college could affect individuals’
preferences. Preferences could change if individuals enjoy spending time with their older
siblings or if they perceive them as role models and are inspired by them. Preferences
could also be affected if siblings are competitive or if parental expectations are changed
by the college choices of older siblings.

The persistence of the effects among siblings with large age differences suggests that our
results are not driven by them enjoying each other’s company. In addition, finding no
heterogeneous effects by differences in the quality of target and counterfactual majors of
older siblings and finding no effects on younger siblings’ academic performance, suggests
that individuals’ aspirations are not affected. If this were the case, we would expect to see
them exerting additional effort in preparation for college, something that is not reflected
in their applications, nor in their high school and college admission exam performance.

Joensen and Nielsen (2018) argue that the fact that their results are driven by brothers
who are close in age and in academic performance is evidence in favor of competition
being the main driver of their results. As previously discussed, in our case the results
persist even among siblings born more than 5 years apart, and also among sisters and
different-gender siblings, suggesting that if competition mostly arises between brothers
close in age, it cannot be the only driver of our results.

The preferences of individuals could also be influenced by changes in their parents’ expec-
tations. However, we do not find heterogeneous effects based on differences in selectivity
between target and counterfactual majors (i.e. the majors to which students would have
enrolled in the event of being rejected from their target option). We interpret this as
evidence against the parental expectations channel. The intuition behind this argument
is that if counterfactual majors are similarly selective, then having a child admitted to
one or the other should not generate a gap in parental expectations.

Finally, older siblings’ enrollment in a specific major-college could affect the choice set of
their younger siblings by making some options more salient or by providing information
about relevant attributes of the available options.57 Considering the amount of major-
college combinations from which applicants can choose, both hypothesis could play a
relevant role. However, we find stronger effects when older siblings’ majors are of higher
quality, which goes against a pure salience story. If salience were the main driver of

admission systems that select students based only on their academic performance in high school and on a
national level admission exam. Although in Chile some colleges offer discounts in tuition fees when many
siblings simultaneously attend the same program, finding that the effect persists even when looking at
siblings born 5 or more years apart makes this an unlikely driver of our results. In Croatia, students do
not pay tuition fees if they accept the offer they receive the first time that they apply and in Sweden all
higher education institutions are free.

57Since, in this framework, a major is defined by its vector of attributes, any information that changes
the perceived values of these attributes also modifies the choice set.
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our results, we should see individuals following their older siblings independently of the
quality of their majors. On the other hand, we show that the effects are driven by older
siblings who enroll in majors that are better in terms of student quality, retention and
graduates’ labor market performance. In addition, the difference found on the effects
depending on older siblings’ dropout suggest that the experience that they have in higher
education matters, and that younger siblings are more likely to follow their older siblings
when they have a good experience in higher education.

Even though the evidence discussed in this section does not allow us to perfectly distin-
guish the exact mechanisms behind our results, they suggest that information, particu-
larly information about the college experience of someone close, might play a relevant
role in college choices. Further research is required to investigate the precise information
that individuals acquire through their close peers.

3.7 Conclusions

Despite the difference that a good college and major match can make on an individ-
ual’s life, we know little about how the preferences and beliefs driving these choices are
formed. The heterogeneity in colleges’ and majors’ characteristics, and the difficulty to
observe some of their attributes make these decisions challenging. In this context, close
relatives and other members of an individual’s social network could significantly influence
college related choices. However, causally identifying the effects of social interactions is
notoriously challenging.

In this paper, we investigate how college application and enrollment decisions are af-
fected by the higher education choices of older siblings. We study these sibling spillovers
in Chile, Croatia and Sweden, where universities select students using centralized de-
ferred acceptance systems that allocate students to majors and colleges only considering
their declared preferences and academic performance. These admission systems create
thousands of discontinuities that we exploit in a fuzzy Regression Discontinuity Design
framework that allows us to overcome the main identification challenges that arise in the
context of peer effects (i.e. correlated effects and the reflection problem).

Despite the differences that exist between the three countries, we consistently find statis-
tically and economically significant spillovers. In the three settings studied, we show that
individuals are more likely to apply and enroll in the same major-college combination as
their older siblings. In Chile, we document an increase of 2.8 pp (55%) in applications
and 0.3 pp (30%) in enrollment; the same figures for Croatia are 3.4 pp (33%) and 1.4
pp (58%); and 3 pp (63.8%) and 0.4 pp (100%) for Sweden. These effects are stronger
when individuals are more likely to be admitted in their older siblings’ target major and
persist even for individuals whose target and next best majors are offered by the same
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institution. This suggests that the spillovers we find in the specific major-college choice
are not only driven by increased preferences for older siblings’ colleges.

When looking at spillovers on the choice of college we find even larger effects. Having older
sibling enrolling in a particular institution increases the probability that their younger
sibling applies there by between 8 pp and 15 pp and increases the likelihood of enrolling
in that institution by 5 pp (50%) in Chile, 9 pp (30%) in Croatia and 6.4 pp in Sweden
(188%). We find no significant spillovers on the field of study in any of the three countries.
This and the results discussed in the previous paragraph suggest that the choice of field
of study is only affected when individuals are likely to be admitted in their older siblings’
major-college combination.

We discuss three broad classes of mechanisms consistent with our results: a change in
the costs, in the preferences or in the choice set of individuals. Firstly, attending the
same college with a sibling could result in important savings (i.e. living or commuting
costs). Alternatively, individuals could follow their siblings if, for instance, they enjoy
spending time with them. Finally, individuals’ choice sets could change as a consequence
of salience or of information transmission.

We show that individuals only follow their older siblings to “high” quality colleges and
that the experience that older siblings have in higher education makes an important
difference in the observed response. We interpret these findings as suggestive evidence
that information about the quality of colleges and majors and about the potential quality
of the match for potential applicants is an important driver of our results.

Our findings suggest that, especially in contexts of incomplete information, policies that
change the pool of students admitted to a specific college or major could have an indirect
effect on their siblings and potentially on other members of their social networks. Our
results also suggest that providing information about the experience that individuals
would have in college, could improve their application and enrollment decisions.

Further research is needed to identify the type and accuracy of the information trans-
mitted by siblings, and to find effective ways of closing the information gaps between
applicants with different levels of exposure to college.
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Table 3.3: Probability of Applying and Enrolling in the Target Major-College of Older
Siblings

Applies 1st Applies Enrolls
(1) (2) (3) (4) (5) (6)

Panel A - Chile

2SLS 0.008** 0.007* 0.028*** 0.025*** 0.003 0.002
(0.003) (0.003) (0.005) (0.006) (0.002) (0.003)

Reduced form 0.004** 0.003* 0.015*** 0.012*** 0.002 0.001
(0.001) (0.002) (0.002) (0.003) (0.001) (0.001)

First stage 0.521*** 0.488*** 0.521*** 0.488*** 0.521*** 0.488***

(0.004) (0.005) (0.004) (0.005) (0.004) (0.005)

2SLS (Triangular kernel) 0.008* 0.008* 0.028*** 0.028*** 0.003 0.003
(0.003) (0.004) (0.005) (0.006) (0.003) (0.003)

Observations 136364 214840 136364 214840 136364 214840
Outcome mean 0.018 0.018 0.056 0.055 0.012 0.012
Bandwidth 20.000 35.000 20.000 35.000 20.000 35.000
F-statistics 13867.401 9520.717 13867.401 9520.717 13867.401 9520.717

Panel B - Croatia

2SLS 0.015*** 0.014** 0.036*** 0.038*** 0.013** 0.015**

(0.004) (0.005) (0.009) (0.011) (0.004) (0.005)

Reduced form 0.012*** 0.012** 0.030*** 0.031*** 0.011** 0.013**

(0.004) (0.004) (0.007) (0.009) (0.003) (0.004)

First stage 0.826*** 0.820*** 0.826*** 0.820*** 0.826*** 0.820***

(0.007) (0.008) (0.007) (0.008) (0.007) (0.008)

2SLS (Triangular kernel) 0.014** 0.013* 0.040*** 0.042*** 0.014** 0.015**

(0.005) (0.006) (0.009) (0.011) (0.004) (0.005)

Observations 36757 48611 36757 48611 36757 48611
Outcome mean 0.029 0.029 0.129 0.130 0.024 0.024
Bandwidth 80.000 120.000 80.000 120.000 80.000 120.000
F-statistics 14512.301 10444.128 14512.301 10444.128 14512.301 10444.128

Panel C - Sweden

2SLS 0.020*** 0.023*** 0.029*** 0.032*** 0.004** 0.004**

(0.003) (0.003) (0.005) (0.006) (0.001) (0.002)

Reduced form 0.004*** 0.005*** 0.006*** 0.007*** 0.001** 0.001**

(0.001) (0.001) (0.001) (0.001) (0.000) (0.000)

First stage 0.217*** 0.214*** 0.217*** 0.214*** 0.217*** 0.214***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

2SLS (Triangular kernel) 0.025*** 0.027*** 0.034*** 0.035*** 0.006*** 0.006***

(0.003) (0.003) (0.006) (0.006) (0.002) (0.002)

Observations 730187 1034047 730187 1034047 730187 1034047
Outcome mean 0.011 0.010 0.047 0.046 0.004 0.003
Bandwidth 0.510 0.750 0.510 0.750 0.510 0.750
F-statistics 10817.599 8481.389 10817.599 8481.389 10817.599 8481.389

Notes: All the specifications in the table control for a linear or quadratic polynomial of older siblings’ application
score centered around target majors admission cutoff. Older siblings’ application year, target major-year and younger
siblings’ birth year fixed effect are included as controls. 2SLS (Triangual Kernel) specifications use a triangular
kernel to give more weight to observations close to the cutoff. Bandwidths were computed according to Calonico
et al. (2014) for each outcome independently. The smallest one among the three is used for all the outcomes. In
parenthesis, standard errors clustered at family level. *p-value<0.1 **p-value<0.05 ***p-value<0.01.
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Table 3.4: Probability of Applying and Enrolling in the Target Major-College of Older
Siblings by Younger Siblings’ Eligibility

Major Sample Major Sample Fixing College

Applies 1st Applies Enrolls Applies 1st Applies Enrolls
(1) (2) (3) (4) (5) (6)

Panel A - Chile

Older sibling enrolls 0.007** 0.024*** 0.0004 0.002 0.010 -0.002
(0.003) (0.005) (0.002) (0.006) (0.009) (0.004)

Older sibling enrolls × Eligible = 1 0.004 0.019*** 0.012*** 0.010* 0.019* 0.014**
(0.003) (0.005) (0.003) (0.006) (0.010) (0.006)

Observations 136,364 136,364 136,364 39,343 39,343 39,343
Outcome mean 0.018 0.056 0.012 0.024 0.075 0.015
Bandwidth 20 20 20 20 20 20
F-statistics 6662.969 6662.969 6662.969 2794.937 2794.937 2794.937

Panel B - Croatia

Older sibling enrolls 0.009* 0.024** -0.005 -0.004 -0.0004 -0.008
(0.005) (0.012) (0.004) (0.007) (0.015) (0.005)

Older sibling enrolls × Eligible = 1 0.011** 0.024** 0.029*** 0.011* 0.035** 0.023***
(0.005) (0.011) (0.004) (0.006) (0.014) (0.005)

Observations 33,823 33,823 33,823 21,771 21,771 21,771
Outcome mean 0.031 0.141 0.026 0.032 0.150 0.027
Bandwidth 80 80 80 80 80 80
F-statistics 6770.281 6770.281 6770.281 4126.185 4126.185 4126.185

Panel C - Sweden

Older sibling enrolls 0.033*** 0.046*** 0.005** 0.008 -0.001 -0.005
(0.005) (0.010) (0.003) (0.012) (0.022) (0.007)

Older sibling enrolls × Eligible = 1 0.011** 0.010 0.014*** 0.013 0.010 0.013*
(0.004) (0.009) (0.003) (0.011) (0.019) (0.007)

Observations 292,970 292,970 292,970 44367 44367 44367
Outcome mean 0.022 0.096 0.008 0.035 0.0133 0.014
Bandwidth 0.51 0.51 0.51 0.051 0.051 0.051
F-statistics 3270.581 3270.581 3270.581 830.621 830.621 830.621

Notes: These specifications use the same set of controls and bandwidths used in the 2SLS specifications described in
Table 3.3. In addition, they have an interaction between the treatment and a proxy of younger siblings’ eligibility for
their older siblings’ target program. Columns (1) to (3) focus on the major sample, while columns (4) to (6) on the
subset of individuals whose older siblings target and counterfactual major are offered by the same college. In parenthesis,
standard errors clustered at family level. *p-value<0.1 **p-value<0.05 ***p-value<0.01.
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Table 3.5: Probability of Applying and Enrolling in the Target College of Older Siblings

Applies 1st Applies Enrolls
(1) (2) (3) (4) (5) (6)

Panel A - Chile

2SLS 0.072*** 0.081*** 0.101*** 0.095*** 0.044*** 0.044***

(0.012) (0.011) (0.015) (0.014) (0.010) (0.009)

Reduced form 0.033*** 0.038*** 0.047*** 0.045*** 0.020*** 0.020***

(0.006) (0.005) (0.007) (0.007) (0.005) (0.004)

First stage 0.466*** 0.467*** 0.466*** 0.467*** 0.466*** 0.467***

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

2SLS (Triangular Kernel) 0.080*** 0.081*** 0.103*** 0.103*** 0.051*** 0.050***

(0.013) (0.013) (0.017) (0.016) (0.011) (0.010)

Observations 73331 152301 73331 152301 73331 152301
Outcome mean 0.161 0.157 0.302 0.292 0.101 0.097
Bandwidth 15.000 35.000 15.000 35.000 15.000 35.000
F-statistics 5441.604 5905.708 5441.604 5905.708 5441.604 5905.708

Panel B - Croatia

2SLS 0.075*** 0.070** 0.109*** 0.102*** 0.084*** 0.090***

(0.019) (0.023) (0.019) (0.024) (0.018) (0.023)

Reduced form 0.063*** 0.058** 0.091*** 0.085*** 0.070*** 0.075***

(0.016) (0.019) (0.016) (0.020) (0.015) (0.019)

First stage 0.835*** 0.828*** 0.835*** 0.828*** 0.835*** 0.828***

(0.010) (0.013) (0.010) (0.013) (0.010) (0.013)

2SLS (Triangular Kernel) 0.086*** 0.089*** 0.105*** 0.104*** 0.092*** 0.095***

(0.020) (0.024) (0.021) (0.025) (0.020) (0.024)

Observations 12950 17312 12950 17312 12950 17312
Outcome mean 0.321 0.322 0.555 0.559 0.287 0.287
Bandwidth 80.000 120.000 80.000 120.000 80.000 120.000
F-statistics 6459.562 4214.087 6459.562 4214.087 6459.562 4214.087

Panel C - Sweden

2SLS 0.149*** 0.151*** 0.153*** 0.155*** 0.064*** 0.060***

(0.009) (0.009) (0.013) (0.013) (0.006) (0.006)

Reduced form 0.030*** 0.030*** 0.031*** 0.031*** 0.013*** 0.012***

(0.002) (0.002) (0.003) (0.002) (0.001) (0.001)

First stage 0.201*** 0.198*** 0.201*** 0.198*** 0.201*** 0.198***

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

2SLS (Triangular Kernel) 0.184*** 0.169*** 0.181*** 0.169*** 0.081*** 0.071***

(0.010) (0.010) (0.014) (0.013) (0.006) (0.006)

Observations 443931 856200 443931 856200 443931 856200
Outcome mean 0.088 0.084 0.193 0.186 0.034 0.032
Bandwidth 0.370 0.730 0.370 0.730 0.370 0.730
F-statistics 6140.057 6084.386 6140.057 6084.386 6140.057 6084.386

Notes: All the specifications in the table control for a linear or quadratic polynomial of older siblings’ applica-
tion score centered around target majors admission cutoff. Older siblings’ application year, target major-year
and younger siblings’ birth year fixed effect are included as controls. 2SLS (Triangual Kernel) specifications
use a triangular kernel to give more weight to observations close to the cutoff. Bandwidths were computed
according to Calonico et al. (2014) for each outcome independently. The smallest one among the three is used
for all the outcomes. In parenthesis, standard errors clustered at family level. *p-value<0.1 **p-value<0.05
***p-value<0.01.
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Table 3.6: Probability of Applying and Enrolling in the Target College of Older Siblings:
Large Cities Sample

Applies Enrolls
(1) (2)

2SLS 0.097*** 0.042**

(0.020) (0.013)

Reduced form 0.053*** 0.023**

(0.011) (0.007)

First stage 0.546*** 0.546***

(0.009) (0.009)

Observations 32818 32818
Outcome mean 0.337 0.115
Bandwidth 15.000 15.000
F-statistics 3711.283 3711.283

Notes: The table presents 2SLS esti-
mates for the effect of older siblings’
marginal enrollment in their target col-
lege on younger siblings’ probabilities of
applying to and enrolling in the same
college. The controls and bandwidths
used in these specifications are the same
described in Table 3.5. The sample only
includes pairs of siblings who live in
cities with at least 10 colleges and in
which the older sibling target college is
located in the same city. *p-value<0.1
**p-value<0.05 ***p-value<0.01.
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Table 3.7: Probability of Applying and Enrolling in the Target Field of Study of Older
Siblings

Applies 1st Applies Enrolls
(1) (2) (3) (4) (5) (6)

Panel A - Chile

2SLS 0.011 0.011 0.023* 0.021* 0.001 -0.002
(0.007) (0.007) (0.011) (0.010) (0.006) (0.006)

Reduced form 0.005 0.005 0.010* 0.009* 0.000 -0.001
(0.003) (0.003) (0.005) (0.005) (0.003) (0.003)

First stage 0.442*** 0.442*** 0.442*** 0.442*** 0.442*** 0.442***

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

2SLS (Triangular Kernel) 0.012 0.011 0.021 0.023* 0.002 0.000
(0.008) (0.008) (0.012) (0.011) (0.007) (0.006)

Observations 74012 153713 74012 153713 74012 153713
Outcome mean 0.049 0.049 0.113 0.112 0.032 0.032
Bandwidth 15.000 35.000 15.000 35.000 15.000 35.000
F-statistics 4833.499 5187.871 4833.499 5187.871 4833.499 5187.871

Panel B - Croatia

2SLS 0.008 0.005 0.010 0.015 0.004 0.005
(0.007) (0.008) (0.012) (0.014) (0.006) (0.008)

Reduced form 0.007 0.004 0.008 0.012 0.003 0.004
(0.005) (0.007) (0.009) (0.012) (0.005) (0.006)

First stage 0.807*** 0.803*** 0.807*** 0.803*** 0.807*** 0.803***

(0.008) (0.009) (0.008) (0.009) (0.008) (0.009)

2SLS (Triangular Kernel) 0.002 0.000 0.015 0.022 0.005 0.006
(0.008) (0.010) (0.015) (0.017) (0.007) (0.009)

Observations 31698 42421 31698 42421 31698 42421
Outcome mean 0.059 0.059 0.218 0.219 0.054 0.054
Bandwidth 80.000 120.000 80.000 120.000 80.000 120.000
F-statistics 10158.245 7440.903 10158.245 7440.903 10158.245 7440.903

Panel C - Sweden

2SLS 0.000 -0.004 -0.001 -0.009 0.000 -0.001
(0.008) (0.008) (0.010) (0.011) (0.004) (0.005)

Reduced form 0.000 -0.001 0.000 -0.002 0.000 0.000
(0.002) (0.002) (0.002) (0.002) (0.001) (0.001)

First stage 0.201*** 0.199*** 0.201*** 0.199*** 0.201*** 0.199***

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

2SLS (Triangular Kernel) -0.004 -0.006 -0.012 -0.013 0.000 -0.001
(0.008) (0.008) (0.011) (0.011) (0.005) (0.005)

Observations 398036 624877 398036 624877 398036 624877
Outcome mean 0.040 0.039 0.087 0.085 0.014 0.013
Bandwidth 0.390 0.610 0.390 0.610 0.390 0.610
F-statistics 5103.422 4455.739 5103.422 4455.739 5103.422 4455.739

Notes: All the specifications in the table control for a linear or quadratic polynomial of older siblings’ application
score centered around target majors admission cutoff. Older siblings’ application year, target major-year and
younger siblings’ birth year fixed effect are included as controls. 2SLS (Triangual Kernel) specifications use a
triangular kernel to give more weight to observations close to the cutoff. Bandwidths were computed according
to Calonico et al. (2014) for each outcome independently. The smallest one among the three is used for all
the outcomes. In parenthesis, standard errors clustered at family level. *p-value<0.1 **p-value<0.05 ***p-
value<0.01.
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Table 3.8: Probability of Applying to the Target Major and Target College of Older
Siblings by Older Siblings’ Gender

Major College

Older Siblings’ Gender Older Siblings’ Gender
All Female Male All Female Male
(1) (2) (3) (4) (5) (6)

Panel A - Chile

Older sibling enrolls 0.023*** 0.023*** 0.023** 0.094*** 0.061** 0.124***
(0.005) (0.007) (0.008) (0.016) (0.023) (0.023)

Older sibling enrolls × Same gender 0.010** 0.001 0.019** 0.014 0.032 -0.001
(0.004) (0.005) (0.006) (0.012) (0.017) (0.017)

Observations 136364 73014 61982 73331 39129 32302
Outcome mean 0.056 0.051 0.062 0.012 0.010 0.014
Bandwidth 20.000 20.000 20.000 15.000 15.000 15.000
F-statistics 6933.231 3310.962 3530.694 2719.593 1278.857 1337.943

Panel B - Croatia

Older sibling enrolls 0.026** 0.031* 0.025 0.114*** 0.098** 0.124***
(0.009) (0.013) (0.015) (0.022) (0.031) (0.033)

Older sibling enrolls × Same gender 0.023* 0.007 0.044** -0.007 -0.027 0.001
(0.009) (0.012) (0.016) (0.020) (0.027) (0.032)

Observations 36757 22239 14203 12950 7545 5008
Outcome mean 0.129 0.123 0.141 0.555 0.552 0.556
Bandwidth 80.000 80.000 80.000 80.000 80.000 80.000
F-statistics 7220.184 3662.675 4025.070 3229.534 1651.529 1405.970

Panel C - Sweden

Older sibling enrolls 0.025*** 0.036*** 0.013 0.143*** 0.154*** 0.139***
(0.006) (0.008) (0.009) (0.014) (0.019) (0.024)

Older sibling enrolls × Same gender 0.008* -0.019** 0.045*** 0.011 -0.003 0.040*

(0.004) (0.006) (0.007) (0.011) (0.014) (0.019)

Observations 732025 438419 281549 444203 273981 160086
Outcome mean 0.047 0.042 0.057 0.193 0.183 0.211
Bandwidth 0.510 0.510 0.510 0.370 0.370 0.370
F-statistics 5419.139 2441.736 2717.178 3075.133 1484.510 1330.244

Notes: The table presents 2SLS estimates for the effect of older siblings’ marginal enrollment in their target major
and college by siblings’ gender. These specifications use the same set of controls and bandwidths used in the 2SLS
specifications described in Tables 3.3 and 3.5. Specifications also control by a dummy variable that indicates if the
siblings are of the same gender. In parenthesis, standard errors clustered at family level. *p-value<0.1 **p-value<0.05
***p-value<0.01.
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Table 3.9: Probability of Applying in the Target Major and College of Older Siblings by
Siblings’ Similarity

Major College

∆ Age > 5 ∆ GPA ∆ Age > 5 ∆ GPA
(1) (2) (3) (4)

Panel A - Chile

Older sibling enrolls 0.030*** 0.056*** 0.112*** 0.170***

(0.005) (0.006) (0.015) (0.017)

Interaction -0.004 -0.029*** -0.027* -0.076***

(0.004) (0.002) (0.012) (0.007)

Observations 135777 133703 73030 71865
Outcome mean 0.056 0.057 0.302 0.308
Bandwidth 20.000 20.000 15.000 15.000
F-statistics 6904.432 6789.416 2710.198 2664.690

Panel B - Croatia

Older sibling enrolls 0.039*** 0.075** 0.109*** 0.195***

(0.009) (0.025) (0.020) (0.052)

Interaction -0.018 -0.033* 0.000 -0.031
(0.013) (0.014) (0.026) (0.032)

Observations 36756 8567 12950 2588
Outcome mean 0.129 0.160 0.555 0.609
Bandwidth 80.000 80.000 80.000 80.000
F-statistics 7225.706 1567.759 3230.667 648.627

Panel C - Sweden

Older sibling enrolls 0.035*** 0.032*** 0.162*** 0.179***

(0.005) (0.007) (0.013) (0.017)

Interaction -0.015*** 0.005 -0.030** -0.002
(0.004) (0.003) (0.011) (0.008)

Observations 732025 591599 444203 359012
Outcome mean 0.047 0.055 0.193 0.222
Bandwidth 0.510 0.510 0.370 0.370
F-statistics 5255.957 4573.374 2975.652 2610.561

Notes: The table presents 2SLS estimates for the effect of older siblings’ marginal
enrollment in their target major and college by siblings’ similarity. Columns (1)
and (3) investigate heterogeneous effects by age difference, while columns (2)
and (4) by difference in high school GPA. These specifications use the same set
of controls and bandwidths used in the 2SLS specifications described in Tables
3.3 and 3.5. In addition, we add as control the main effect of the interaction
used in each column. In parenthesis, standard errors clustered at family level.
*p-value<0.1 **p-value<0.05 ***p-value<0.01.

98



Table 3.10: Probability of Applying in the Target Major and Target College of Older Siblings by Quality

Major College

Admitted students quality Dropout Earnings Admitted students quality Dropout Earnings
(1) (2) (3) (4) (5) (6)

Panel A - Chile

Older sibling enrolls 0.021* 0.027*** 0.026*** 0.027 0.117*** 0.099***

(0.009) (0.006) (0.005) (0.029) (0.015) (0.016)

Interaction 0.002 -0.004 0.007*** 0.024*** -0.139* 0.010
(0.002) (0.029) (0.002) (0.006) (0.069) (0.006)

Observations 136364 121676 129847 73331 72642 69927
Outcome mean 0.056 0.057 0.057 0.302 0.302 0.304
Bandwidth 20.000 20.000 20.000 15.000 15.000 15.000
F-statistic 4914.155 5831.462 5732.572 1872.447 2459.612 2183.694

Panel B - Croatia

Older sibling enrolls 0.038 -0.010
(0.025) (0.058)

Interaction -0.001 0.027*
(0.005) (0.013)

Observations 34510 10693
Outcome mean 0.130 0.537
Bandwidth 80.000 80.000
F-statistic 6833.719 2598.965

Panel C - Sweden

Older sibling enrolls 0.019** 0.015** 0.019*** 0.120*** 0.118*** 0.110***
(0.006) (0.005) (0.006) (0.015) (0.013) (0.016)

Interaction 0.012*** -0.028 0.010*** 0.036*** -0.126** 0.010
(0.003) (0.015) (0.003) (0.008) (0.044) (0.008)

Observations 732023 535714 358644 444203 320107 218552
Outcome mean 0.047 0.046 0.045 0.193 0.186 0.193
Bandwidth 0.510 0.510 0.510 0.370 0.367 0.367
F-statistic 4508.761 5465.470 2462.490 2577.150 2678.503 1380.629

Notes: The table presents 2SLS estimates for the effect of older siblings’ marginal enrollment in their target major or college by different
quality measures of their target majors. Columns (1) and (4) investigate heterogeneous effects by the average quality of admitted
students, columns (2) and (5) by first year dropout rates and columns (3) and (6) by graduates average earnings. Students’ quality is
measured by the average scores of admitted students in the admission exam. The measure of students quality and graduates average
earnings are standardized. These specifications use the same set of controls and bandwidths used in the 2SLS specifications described
in Tables 3.3 and 3.5. In addition, we add as control the main effect of the interaction used in each column. In parenthesis, standard
errors clustered at family level. *p-value<0.1 **p-value<0.05 ***p-value<0.01.
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Table 3.11: Probability of Applying and Enrolling in the Target Major-College of Older Siblings by Quality Difference with respect to
Counterfactual Alternative

Major College

∆ Admitted students quality ∆ Dropout ∆ Earnings ∆ Admitted students quality ∆ Dropout ∆ Earnings
(1) (2) (3) (4) (5) (6)

Panel A - Chile

Older sibling enrolls 0.028*** 0.028*** 0.025*** 0.108*** 0.101*** 0.103***

(0.006) (0.005) (0.005) (0.017) (0.016) (0.016)

Interaction 0.000 -0.003 0.006* -0.005 -0.165 -0.013
(0.005) (0.037) (0.003) (0.015) (0.105) (0.021)

Observations 99652 90784 90082 45082 41229 40836
Outcome mean 0.062 0.062 0.062 0.319 0.322 0.323
Bandwidth 20.000 20.000 20.000 15.000 15.000 15.000
F-statistics 7674.012 7397.956 7219.418 3153.688 2959.387 2908.442

Panel B - Croatia

Older sibling enrolls 0.034*** 0.107***

(0.009) (0.021)

Interaction -0.003 0.007
(0.005) (0.010)

Observations 34510 10693
Mean y 0.130 0.537
Bandwidth 80.000 80.000
F-statistics 6854.732 2607.328

Panel C - Sweden

Older sibling enrolls 0.033*** 0.017** 0.233*** 0.185*** 0.116*** 0.142***
(0.006) (0.006) (0.008) (0.015) (0.014) (0.020)

Interaction -0.015*** -0.002 -0.004 -0.053*** -0.009 -0.021**
(0.003) (0.002) (0.003) (0.010) (0.007) (0.009)

Observations 472966 309934 210261 262275 172027 117555
Mean y 0.054 0.053 0.051 0.200 0.196 0.201
Bandwidth 0.510 0.510 0.510 0.367 0.367 0.367
F-statistics 4439.812 4419.105 2264.171 4439.812 4419.105 1125.23

Notes: The table presents 2SLS estimates for the effect of older siblings’ marginal enrollment in their target major and college by the gap between older
siblings’ target and counterfactual major in different quality measures. Columns (1) and (4) investigate heterogeneous effects by the difference in the
average quality of admitted students, columns (2) and (5) by the difference in first year dropout rates and columns (3) and (6) by the difference in
graduates average earnings. Students’ quality is measured by the average scores of admitted students in the admission exam. The measure of students
quality and graduates average earnings are standardized. These specifications use the same set of controls and bandwidths used in the 2SLS specifications
described in Table 3.3. In addition, we add as control the main effect of the interaction used in each column. In parenthesis, standard errors clustered at
family level. In this table, the sample is restricted to older siblings with counterfactual programs in their application lists. *p-value<0.1 **p-value<0.05
***p-value<0.01.
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Table 3.12: Probability of Applying and Enrolling in the Target Major and Target College
of Older Siblings by Older Siblings’ Dropout

Chile Sweden

Applies Enrolls Applies Enrolls
(1) (2) (3) (4)

Panel A - Major

Older sibling enrolls 0.024*** 0.007* 0.046*** 0.007***

(0.008) (0.004) (0.008) (0.002)

Older sibling enrolls × Older sibling drops-out -0.024** -0.005* -0.037*** -0.005***

(0.007) (0.003) (0.007) (0.002)

Observations 49823 49823 732025 732025
Outcome mean 0.067 0.015 0.047 0.004
Bandwidth 20.000 20.000 0.510 0.510
F-statistics 4210.832 4210.832 3413.123 3413.123

Panel B - College

Older sibling enrolls 0.116*** 0.044** 0.212*** 0.088***

(0.024) (0.017) (0.019) (0.009)

Older sibling enrolls × Older sibling drops-out -0.070** -0.060*** -0.139*** -0.055***

(0.023) (0.015) (0.017) (0.008)

Observations 24753 24753 444203 444203
Outcome mean 0.348 0.126 0.193 0.034
Bandwidth 15.000 15.000 0.370 0.370
F-statistics 1516.263 1516.263 1945.998 1945.998

Notes: The table presents 2SLS estimates for the effect of older siblings’ marginal enrollment in
their target major on younger siblings’ probability of applying to and enrolling in that major. The
specifications include the same controls and use the same bandwidths described in Tables 3.3 and
3.5. They also control for a dummy variable that indicates if older siblings dropout from the major
in which they initially enroll. The samples used in these last columns only include individuals whose
older siblings enroll in a major. In parenthesis, standard errors clustered at family level.*p-value<0.1
**p-value<0.05 ***p-value<0.01.
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Table 3.13: Effect of Older Siblings’ Enrollment in the Target Major-College on Academic
Performance (Major Sample)

Takes admission exam (AE) Applies to college/higher ed. High School GPA Average Score AE
(1) (2) (3) (4)

Panel A - Chile

Older sibling enrolls 0.002 0.014 0.014 0.036
(0.004) (0.010) (0.025) (0.024)

Observations 136,364 136,364 136,364 136,364
Outcome mean 0.957 0.583 -0.105 0.256
Bandwidth 20.000 20.000 20.000 20.000
F-statistic 13867.401 13867.401 13867.401 13867.401

Panel B - Croatia

Older sibling enrolls -0.013 -0.120 -0.102
(0.017) (0.127) 0.085

Observations 12,443 12,443 12,443
Outcome mean 0.825 -1.298 -0.834
Bandwidth 80.000 80.000 80.000
F-statistic 4498.481 4498.481 4498.481

Panel C - Sweden

Older sibling enrolls -0.056*** -0.034** 0.007 0.032
(0.012) (0.011) (0.025) (0.035)

Observations 732,025 732,025 613,294 344,442
Outcome mean 0.484 0.577 0.219 0.051
Bandwidth 0.510 0.510 0.510 0.510
F-statistic 10838.800 10838.800 9529.889 6498.021

Notes: The table presents 2SLS estimates for the effect of older siblings’ marginal enrollment in their target major on younger
siblings’ probability of taking the admission exam and applying to college (columns 1 and 2), and on different measures of
academic performance: high school GPA (column 3), reading and math sections of the admission exam (columns 4 and 5)
and average performance on the admission exam (column 6). While in Chile and Croatia we only observe applications to
college degrees, in Sweden we also observe applications to other higher education programs. These analyses focus on the
Major Sample. This means that in this case, marginal admission or rejection from their target major, changes the major,
but not necessarily the college or field in which older siblings are admitted. These specifications use the same set of controls
and bandwidths used in the 2SLS specifications described in Table 3.5. In parenthesis, standard errors clustered at family
level. *p-value<0.1 **p-value<0.05 ***p-value<0.01.
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.1 Identification Strategy: Further Discussion

This section discusses the assumptions under which our identification strategy provides
us with a consistent estimator of the effects of interest. As discussed in Section 3.4.4, a
fuzzy RD can be thought of of as an IV. In what follows, and for ease of notation, we
drop time and individual indices t, i, τ and focus our analysis on a specific major-college
u. Following this notation, the treatment in which we are interested is:

ATE = E[Yu|Ou = 1]− E[Yu|Ou = 0],

where Yu is the probability of younger sibling applying to major u, and Ou takes value
1 if the older sibling enrolls in major u and 0 otherwise. In an RD setting, in order
to overcome omitted variable bias, we focus only on older siblings who are within a
bandwidth bw neighborhood of the major-college u cutoff. For this purpose, denote with
admu the dummy variable indicating whether older siblings with an application score
equal to au, were admitted to major-college u with cutoff cu, and define the following
operator:

Ê[Yu] = E[Yu| |au − cu| ≤ bw, admu ≡ 1au≥cu ].

In other words, Ê is an expectation that restricts the sample to older siblings who are
around the cutoff cu and whose risk of assignment is solely determined by the indicator
function 1au≥cu . Finally, to eliminate concerns related to selection into enrollment, we
use admu as an instrument for Ou. Denote with Ijk a dummy variable that takes value

1 if the younger sibling enrolls in major j when his older sibling enrolls in k, and let’s
introduce the following notational simplification:

R(z) := R|Z=z,

where R ∈ [Yu, Ou, Ijk]. Introduce now the usual LATE assumptions discussed by Imbens
and Angrist (1994), adapted to our setting:

1. Independence of the instrument:

{Ou(1), Ou(0), Ijk(1), Ijk(0)} ⊥ admu, ∀j, k
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2. Exclusion restriction:

Ijk(1) = Ijk(0) = Ijk, ∀j, k

3. First stage:

Ê[Ou(1)−Ou(0)] 6= 0

4. Monotonicity:

(a) Admission weakly increases the likelihood of attending major u

Ou(1)−Ou(0) ≥ 0

(b) Admission weakly reduces the likelihood of attending non-offered major j 6= u

Oj(1)−Oj(0) ≤ 0, ∀j 6= u

In addition to the usual monotonicity assumption that requires that admission to
major u cannot discourage students from enrolling in program u, we need to assume
an analogous statement affecting other majors j 6= u. In particular, we assume that
receiving an offer for major u does not encourage enrollment in other majors j 6= u.

Proposition 3. Under assumptions 1− 4:

Ê[Yu|admu = 1]− Ê[Yu|admu = 0]
Ê[Ou|admu = 1]− Ê[Ou|admu = 0]

=
∑
k 6=u Ê[Iuu − Iuk|Ou(1) = 1, Ok(0) = 1]× P (Ou(1) = 1, Ok(0) = 1)

P (Ou(1) = 1, Ou(0) = 0) .

Proof. Start with simplifying the first term of the Wald estimator:

Ê[Yu|admu = 1] = Ê[Yu(1)× admu + Yu(0)× (1− admu)|admu = 1] by assumption 2

= Ê[Yu(1)] by assumption 1.

Applying analogous transformation to all four Wald estimator terms, we obtain:

Ê[Yu|admu = 1]− Ê[Yu|admu = 0]
Ê[Ou|admu = 1]− Ê[Ou|admu = 0]

= Ê[Yu(1)− Yu(0)]
Ê[Ou(1)−Ou(0)]

. (2)
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The numerator of equation 2, after applying the law of iterated expectations, becomes:

Ê[Yu(1)− Yu(0)] = (3)

∑
k 6=u

Ê[Iuu − Iuk|Ou(1) = 1, Ok(0) = 1]× P (Ou(1) = 1, Ok(0) = 1)

−
∑
k 6=u

Ê[Iuu − Iuk|Ou(1) = 0, Ou(0) = 1, Ok(1) = 1]

× P (Ou(1) = 0, Ou(0) = 1, Ok(1) = 1)

+
∑

k 6=u,j 6=u
Ê[Iuk − Iuj|Ok(1) = 1, Oj(0) = 1]× P (Ok(1) = 1, Oj(0) = 1).

Assumption 4.1. implies that there are no defiers, cancelling the second term in the
above equation. In addition, assumption 4.2. implies that instrument does not encourage
enrollment into major j 6= u, cancelling the third term.

Similarly, by virtue of assumption 4.1., the denominator of equation 2 becomes:

Ê[Ou(1)−Ou(0)] = P (Ou(1) = 1, Ou(0) = 0). (4)

Taken together, 3 and 4 imply:

Ê[Yu|admu = 1]− Ê[Yu|admu = 0]
Ê[Ou|Zu = 1]− Ê[Ou|admu = 0]

=
∑
k 6=u Ê[Iuu − Iuk|Ou(1) = 1, Ok(0) = 1]× P (Ou(1) = 1, Ok(0) = 1)

P (Ou(1) = 1, Ou(0) = 0) .

As asymptotic 2SLS estimator converges to Wald ratio, we interpret the β2SLS as the
local average treatment effect identified through compliers (students enrolled to cutoff
major when offered admission).
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.2 Robustness Checks

This section investigates if the identification assumptions of our empirical strategy are
satisfied. We start by investigating if there is any evidence of manipulation of the running
variable. Next, we check if other variables that could affect individuals’ application and
enrollment decisions present jumps at the cutoff and if the results are robust to different
bandwidths. We continue by performing two types of placebo exercises. In the first, we
study if similar effects arise when looking at placebo cutoffs (i.e. cutoffs that do not
affect older siblings’ admission). In the second, we analyze if similar effects arise when
looking at the effect of the younger sibling enrollment on older siblings decisions. We
then investigate if our conclusions change when allowing the slope of the running variable
to vary by major-college and year and when re-weighting the observations around each
cutoff by the number of applicants around them (i.e. to make all the cutoffs that we
are pooling together equally relevant in the estimation). Finally, we end this section by
showing that there are no extensive margin responses (i.e. increases in total enrollment)
that could explain our findings.

.2.1 Manipulation of the Running Variable

A first condition for the validity of our RD estimates is that individuals should not be
able to manipulate their older siblings’ application scores around the admission cutoff.
The structures of the admission systems in Chile, Croatia and Sweden make the violation
of this assumption unlikely. However, to confirm this we study whether the distribution
of the running variable (i.e. older sibling’s application score centered around the relevant
cutoff) is continuous at the cutoff. We do this by implementing the test suggested by
Cattaneo et al. (2018), the results of which are presented in Figure B1. As expected, we
do not detect discontinuities in the distribution of the running variable at the cutoff for
any of the three countries.58 In Sweden, Figure B1 only focuses on the distribution of the
high school GPA. As discussed in Section 3.2, the admission exam is voluntary in Sweden,
and institutions select their students using two independent pools that consider either the
applicants’ high school GPA or the applicants’ scores in the admission exam. Considering
that the distribution of admission exam scores is coarser, to investigate manipulation of
these scores we present histograms of these variables.

Strictly speaking, the density of the running variable needs to be continuous around each
admission cutoff. In our analysis, we pool them together because there are thousands of
cutoffs in our samples and studying them independently would be impractical.

58The density tests illustrated in Figure B1 omit observations exactly at the cutoff. This explains
the pattern of confidence intervals close the cutoff. We omit observations exactly at 0 because pooling
together multiple cutoffs mechanically generates an excess of mass at that point.
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.2.2 Discontinuities in Potential Confounders

A second concern in the context of an RD is the existence of other discontinuities around
the cutoff that could explain the differences we observe in our outcomes of interest.

Taking advantage of a rich vector of demographic, socioeconomic and academic variables,
we study if there is evidence of discontinuities in any of them around the threshold.

Figure B2 summarizes this result. It plots the estimated discontinuities at the cutoff
and their 95% confidence intervals. To estimate these discontinuities we control for a
linear polynomial of the running variable and allow for the slope to change at the cutoff.
Using the same bandwidths reported for linear specifications in Section 3.5, we find no
statistically significant jump at the cutoff for any of the potential confounders being
investigated.

The only exception is the age at which individuals apply to higher education in Sweden.
In this case, we find that individuals with older siblings marginally admitted to their
target major in the past are older than those with older sibling marginally rejected.
However, this difference is very small. They are less than 14.6 days older.

.2.3 Different Bandwidths

In this section, we study how sensible our main results are to the bandwidth used. Opti-
mal bandwidths try to balance the loss of precision suffered when narrowing the window
of data points used to estimate the effect of interest, with the bias generated by using
points that are too far from the relevant cutoff.

Figures B3, B4 and B5 show how the estimated coefficients change when reducing the
bandwidth used in the estimations. Although the standard errors increase as the sample
size is reduced, the coefficients remain stable.

.2.4 Placebo Exercises

This setting allows us to perform two types of placebo exercises. First, in Figures B9,
B10 and B11 we study if younger siblings’ enrollment affect the application decisions of
their older siblings. Since younger siblings apply to college after their older siblings, being
marginally admitted or rejected from a major or college should not affect what happens
with older siblings. These figures show that this is indeed the case. Even though when
looking at the placebo on college choice in Sweden we find some discontinuities at the
cutoff, their size is considerably smaller than the ones documented in the main body of
the paper. In addition, in Figures B6, B7 and B8 we show that only at the real cutoff we
observe a discontinuity on younger siblings’ outcomes This is not surprising since these
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fake cutoffs do not generate any increase in older siblings’ admission.

.2.5 Alternative Specifications and Total Enrollment

Figures B12, B13 and B14 and Tables B1, B2, B3, B5, B6 and B7 study how robust our
estimates are to the degree of the local polynomial used, to re-weighting the observations
by the inverse of the total number of applicants in the proximity of each cutoff and to
allowing the running variable to have different slopes for each cutoff-major. In addition,
Tables B8, B9 and B10 present results in which target × counterfactual major fixed
effects are used. The results are robust to these changes, and although the magnitude of
the coefficients is smaller when re-weighting the observations, the general picture remains
unchanged.

Finally, Table B4 investigates if the marginal admission of older siblings translates into
an increase in total enrollment (i.e. enrollment in any college in the system) for them
or for their younger siblings. We do not find evidence of extensive margin responses in
any of the countries studied. Thus, our findings are not driven by a general increase on
younger siblings enrollment. In terms of older siblings’ enrollment, we observe a small
increase in total enrollment in Chile relative to Croatia. This is not surprising because
the group of universities studied in Chile is more selective than the ones we study in
Croatia. This means that in Chile, older siblings still have many available colleges in the
event of rejection.
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Figure B1: Density of Older Siblings’ Application Scores at the Target Major-College
Admission Cutoff
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This figure illustrates the density of older siblings’ application scores around the cutoff. Figure
(a) illustrates this density for Chile, figure (b) for Croatia and figure (c) for Sweden. In Sweden,
students can apply to college using their high school GPA or their score in an admission exam
(SAT score). In this figure we consider only the students who applied with GPA score, since it is
dense enough to be understood as a continuous variable. In the appendix Figure ??, we present
the distribution of SAT scores as well. Green lines represent local quadratic polynomials and the
blue shadows 95% confidence intervals. In all cases, triangular kernels are used. Bandwidths are
estimated according to Cattaneo et al. (2018). The p-values associated to the null hypothesis of no
discontinuity at the cutoff are 0.379 , 0.725 and 0.250, respectively.

109



Figure B2: Discontinuities in other Covariates at the Cutoff
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This figure illustrates the estimated jumps at the cutoff for a vector of socioeconomic and demographic characteristics. These estimates come from
parametric specifications that control for a linear polynomial of the running variable. As the main specifications, these also include program-year fixed
effects. Panel (a) illustrates this for Chile, panel (b) for Croatia, and panel (c) for Sweden. The points represent the estimated coefficient, while the lines
95% confidence intervals.
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Figure B3: Probabilities of Applying and Enrolling in the Target Major-College of Older
Siblings - Different Bandwidths
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(i) Enrolls - Sweden

This figure illustrates how being admitted to a specific program changes younger siblings’ proba-
bilities of applying and enrolling in the same major. The x-axis corresponds to different bandwidths
used to build these figures, chosen as multiples of the optimal bandwidths computed following
Calonico et al. (2014). Blue points illustrate estimated effect, and the blue bars denote the 95%
confidence intervals. Figures (a), (d) and (g) illustrate the case of Chile, figures (b), (e) and (h)
the case of Croatia, while figures (c), (f) and (i) the case of Sweden. The coefficients and their
confidence intervals come from parametric specifications that control for a linear polynomial of the
running variable.
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Figure B4: Probabilities of Applying and Enrolling in the Target College of Older Siblings
- Different Bandwidths
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This figure illustrates how being admitted to a specific institution changes younger siblings’
probabilities of applying and enrolling in the same college. The x-axis corresponds to different
bandwidths used to build these figures, chosen as multiples of the optimal bandwidths computed
following Calonico et al. (2014). Blue points illustrate estimated effect, and the blue bars denote the
95% confidence intervals. Figures (a), (d) and (g) illustrate the case of Chile, figures (b), (e) and
(h) the case of Croatia, while figures (c), (f) and (i) the case of Sweden. The coefficients and their
confidence intervals come from parametric specifications that control for a linear polynomial of the
running variable.
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Figure B5: Probabilities of Applying and Enrolling in the Target Field of Study of Older
Siblings - Different Bandwidths
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This figure illustrates how being admitted to a major in a specific field of study changes younger
siblings’ probabilities of applying and enrolling in a major in the same field. The x-axis corresponds
to different bandwidths used to build these figures, chosen as multiples of the optimal bandwidths
computed following Calonico et al. (2014). Blue points illustrate estimated effect, and the blue bars
denote the 95% confidence intervals. Figures (a), (d) and (g) illustrate the case of Chile, figures (b),
(e) and (h) the case of Croatia, while figures (c), (f) and (i) the case of Sweden. The coefficients and
their confidence intervals come from parametric specifications that control for a linear polynomial of
the running variable. Standard errors are clustered at the family level.
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Figure B6: Placebo - Probabilities of Applying and Enrolling in the Target Major-College
of Younger Siblings
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This figure illustrates a placebo exercise that investigates if younger siblings marginal admission
to a specific major-college affects the college-major to which older siblings apply to and enroll in.
Blue lines and the shadows in the back correspond to local polynomials of degree 1 and 95%
confidence intervals. Green dots represent sample means of the dependent variable for different
values of the running variable.
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Figure B7: Placebo - Probabilities of Applying and Enrolling in the Target College of
Younger Siblings
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This figure illustrates a placebo exercise that investigates if younger siblings marginal admission to a
college affects the institution to which older siblings apply to and enroll in. Blue lines and the shadows in
the back correspond to local polynomials of degree 1 and 95% confidence intervals. Green dots represent
sample means of the dependent variable for different values of the running variable.
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Figure B8: Placebo - Probabilities of Applying and Enrolling in the Target Field of Study
of Younger Siblings
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This figure illustrates a placebo exercise that investigates if younger siblings marginal admission to
a major in a specific field of study affects the field of study to which older siblings apply to and enroll in.
Blue lines and the shadows in the back correspond to local polynomials of degree 1 and 95% confidence
intervals. Green dots represent sample means of the dependent variable for different values of the running
variable.
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Figure B9: Placebo Cutoffs - Probabilities of Applying and Enrolling in the Target Major-
College of Older Siblings

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

−90 −60 −30 0 30 60 90

Bandwidth

(a) 1st preference - Chile

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

−90 −60 −30 0 30 60 90

Bandwidth

(b) 1st preference - Croatia

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

Bandwidth

(c) 1st preference - Sweden

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

−90 −60 −30 0 30 60 90

Bandwidth

(d) Any preference - Chile

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

−90 −60 −30 0 30 60 90

Bandwidth

(e) Any preference - Croatia

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

Bandwidth

(f) Any preference - Sweden

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

−90 −60 −30 0 30 60 90

Bandwidth

(g) Enrolls - Chile

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

−90 −60 −30 0 30 60 90

Bandwidth

(h) Enrolls - Croatia

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

Bandwidth

(i) Enrolls - Sweden

This figure illustrates the results of a placebo exercise that investigates if effects similar to the
ones documented in figure 3.2 arise at different values of the running variable. Therefore, the x-axis
corresponds to different (hypothetical) values of cutoffs - 0 corresponds to the actual cutoff used in
the main body of the paper. The other values correspond to points where older siblings’ probability
of being admitted to their target major is continuous. Blue points illustrate estimated effect, and
the blue bars denote the 95% confidence intervals. Figures (a), (d) and (g) illustrate the case of
Chile, figures (b), (e) and (h) the case of Croatia, while figures (c), (f) and (i) the case of Sweden.
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Figure B10: Placebo Cutoffs - Probabilities of Applying and Enrolling in the Target
College of Older Siblings
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This figure illustrates the results of a placebo exercise that investigates if effects similar to the
ones documented in figure 3.3 arise at different values of the running variable. Therefore, the x-axis
corresponds to different (hypothetical) values of cutoffs - 0 corresponds to the actual cutoff used in
the main body of the paper. The other values correspond to points where older siblings’ probability
of being admitted to their target majors is continuous. Blue points illustrate estimated effect, and
the blue bars denote the 95% confidence intervals. Figures (a), (d) and (g) illustrate the case of
Chile, figures (b), (e) and (h) the case of Croatia, while figures (c), (f) and (i) the case of Sweden.
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Figure B11: Placebo Cutoffs - Probabilities of Applying and Enrolling in the Target Field
of Study of Older Siblings
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This figure illustrates the results of a placebo exercise that investigates if effects similar to the
ones documented in figure 3.4 arise at different values of the running variable. Therefore, the x-axis
corresponds to different (hypothetical) values of cutoffs - 0 corresponds to the actual cutoff used in
the main body of the paper. The other values correspond to points where older siblings’ probability
of being admitted to their target major is continuous. Blue points illustrate estimated effect, and
the blue bars denote the 95% confidence intervals. Figures (a), (d) and (g) illustrate the case of
Chile, figures (b), (e) and (h) the case of Croatia, while figures (c), (f) and (i) the case of Sweden.
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Figure B12: Probabilities of Applying and Enrolling in the Target Major-College of Older
Siblings (Polynomial of degree 2)
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This figure illustrates the probabilities that younger siblings apply to and enroll in the target
major-college combination of their older siblings in Chile, Croatia and Sweden.Figures (a), (d) and
(g) illustrate the case of Chile, figures (b), (e) and (h) the case of Croatia, while figures (c), (f) and
(i) the case of Sweden. Blue lines and the shadows in the back correspond to local polynomials of
degree 1 and 95% confidence intervals. In all cases triangular kernels are used. The bandwidths
used to build these figures correspond to optimal bandwidths computed following Calonico et al.
(2014) for estimating the discontinuities at the cutoff. Green dots represent sample means of the
dependent variable at different values of the older sibling’s admission score.
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Figure B13: Probabilities of Applying and Enrolling in the Target College of Older Sib-
lings (Polynomial of degree 2)
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This figure illustrates the probabilities that younger siblings apply to and enroll in the target
college of their older siblings in Chile, Croatia and Sweden. Figures (a), (d) and (g) illustrate the
case of Chile, figures (b), (e) and (h) the case of Croatia, while figures (c), (f) and (i) the case of
Sweden. Blue lines and the shadows in the back of them correspond to local polynomials of degree
2 and 95% confidence intervals. In all cases triangular kernels are used. The bandwidths used to
build these figures correspond to optimal bandwidths computed following Calonico et al. (2014) for
estimating the discontinuities at the cutoff. Green dots represent sample means of the dependent
variable at different values of the older sibling’s admission score.

121



Figure B14: Probabilities of Applying and Enrolling in the Target Field of Study of Older
Siblings (Polynomial of degree 2)
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This figure illustrates the probabilities that younger siblings apply to and enroll in a program
in the same field of study as the target program of their older siblings in Chile, Croatia and Sweden.
Figures (a), (d) and (e) illustrate the case of Chile, figures (b), (e) and (h) the case of Croatia,
while figures (c), (f) and (i) the case of Sweden. Blue lines and the shadows in the back of them
correspond to local polynomials of degree 2 and 95% confidence intervals. In all cases, triangular
kernels are used. The bandwidths used to build these figures correspond to optimal bandwidths
computed following Calonico et al. (2014) for estimating the discontinuities at the cutoff. Green
dots represent sample means of the dependent variable at different values of the older sibling’s
admission score.
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Table B1: Probability of Applying and Enrolling in the Target Major of Older Siblings -
Reweighting

Applies 1st Applies Enrolls
(1) (2) (3) (4) (5) (6)

Panel A - Chile

2SLS 0.003 0.003 0.024*** 0.016 0.001 0.002
(0.003) (0.004) (0.007) (0.008) (0.003) (0.004)

Reduced form 0.001 0.001 0.011*** 0.007 0.000 0.001
(0.002) (0.002) (0.003) (0.004) (0.001) (0.002)

Observations 136364 214840 136364 214840 136364 214840
Outcome mean 0.014 0.014 0.050 0.049 0.011 0.011
Bandwidth 20.000 35.000 20.000 35.000 20.000 35.000
F-statistics 5791.853 3479.052 5791.853 3479.052 5791.853 3479.052

Panel B - Croatia

2SLS 0.019*** 0.020*** 0.026** 0.021 0.012** 0.013*

(0.005) (0.006) (0.009) (0.011) (0.005) (0.006)

Reduced form 0.015*** 0.016*** 0.021** 0.017 0.010** 0.011*

(0.004) (0.005) (0.007) (0.009) (0.004) (0.005)

Observations 36757 48611 36757 48611 36757 48611
Outcome mean 0.020 0.020 0.093 0.094 0.017 0.018
Bandwidth 80.000 120.000 80.000 120.000 80.000 120.000
F-statistics 8076.129 5369.296 8076.129 5369.296 8076.129 5369.296

Panel C - Sweden

2SLS 0.007** 0.010*** 0.012* 0.012* 0.000 0.001
(0.002) (0.003) (0.005) (0.006) (0.002) (0.002)

Reduced form 0.002** 0.002*** 0.003* 0.003* 0.000 0.000
(0.001) (0.001) (0.001) (0.001) (0.000) (0.000)

Observations 732025 1033985 732025 1033985 732025 1033985
Outcome mean 0.007 0.007 0.033 0.032 0.003 0.003
Bandwidth 0.510 0.750 0.510 0.750 0.510 0.750
F-statistics 7710.134 5944.291 7710.134 5944.291 7710.134 5944.291

Notes: All the specifications in the table control for a linear or quadratic polynomial of older siblings’
application score centered around target majors admission cutoff. Observations are re-weighted by
the inverse of the number of observations around the cutoff in each major-year. Older siblings’
application year, target cutoff-year and younger siblings’ birth year fixed effect are included as
controls. In parenthesis, standard errors clustered at family level. *p-value<0.1 **p-value<0.05
***p-value<0.01.
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Table B2: Probability of Applying and Enrolling in the Target College of Older Siblings
- Reweighting

Applies 1st Applies Enrolls
(1) (2) (3) (4) (5) (6)

Panel A - Chile

2SLS 0.061*** 0.067*** 0.082*** 0.067** 0.030* 0.043**

(0.016) (0.018) (0.020) (0.022) (0.014) (0.015)

Reduced form 0.025*** 0.027*** 0.033*** 0.027** 0.012* 0.017**

(0.007) (0.007) (0.008) (0.009) (0.006) (0.006)

Observations 73331 152301 73331 152301 73331 152301
Outcome mean 0.157 0.155 0.292 0.286 0.102 0.099
Bandwidth 15.000 35.000 15.000 35.000 15.000 35.000
F-statistics 2576.800 2319.288 2576.800 2319.288 2576.800 2319.288

Panel B - Croatia

2SLS 0.090*** 0.085** 0.102*** 0.095** 0.087*** 0.113***

(0.024) (0.030) (0.024) (0.030) (0.024) (0.030)

Reduced form 0.074*** 0.070** 0.084*** 0.078** 0.071*** 0.093***

(0.020) (0.025) (0.020) (0.025) (0.019) (0.025)

Observations 12950 17312 12950 17312 12950 17312
Outcome mean 0.344 0.347 0.582 0.587 0.307 0.307
Bandwidth 80.000 120.000 80.000 120.000 80.000 120.000
F-statistics 3981.458 2474.691 3981.458 2474.691 3981.458 2474.691

Panel C - Sweden

2SLS 0.095*** 0.085*** 0.097*** 0.089*** 0.034*** 0.032***

(0.010) (0.010) (0.013) (0.014) (0.006) (0.007)

Reduced form 0.022*** 0.020*** 0.022*** 0.021*** 0.008*** 0.008***

(0.002) (0.002) (0.003) (0.003) (0.001) (0.002)

Observations 444203 856457 444203 856457 444203 856457
Outcome mean 0.081 0.077 0.167 0.158 0.033 0.032
Bandwidth 0.370 0.730 0.370 0.730 0.370 0.730
F-statistics 4819.332 4601.144 4819.332 4601.144 4819.332 4601.144

Notes: All the specifications in the table control for a linear or quadratic polynomial of older siblings’
application score centered around target majors admission cutoff. Observations are re-weighted by
the inverse of the number of observations around the cutoff in each major-year. Older siblings’
application year, target cutoff-year and younger siblings’ birth year fixed effect are included as
controls. In parenthesis, standard errors clustered at family level. *p-value<0.1 **p-value<0.05
***p-value<0.01.
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Table B3: Probability of Applying and Enrolling in the Target Field of Older Siblings -
Reweighting

Applies 1st Applies Enrolls
(1) (2) (3) (4) (5) (6)

Panel A - Chile

2SLS 0.011 0.008 0.016 0.025 0.006 0.001
(0.010) (0.011) (0.014) (0.015) (0.009) (0.010)

Reduced form 0.004 0.003 0.006 0.010 0.002 0.001
(0.004) (0.004) (0.006) (0.006) (0.003) (0.004)

Observations 74012 153713 74012 153713 74012 153713
Outcome mean 0.051 0.051 0.113 0.114 0.035 0.036
Bandwidth 15.000 35.000 15.000 35.000 15.000 35.000
F-statistics 2655.255 2310.756 2655.255 2310.756 2655.255 2310.756

Panel B - Croatia

2SLS 0.023** 0.027* 0.027 0.035 0.007 0.008
(0.008) (0.011) (0.015) (0.019) (0.008) (0.010)

Reduced form 0.018** 0.021* 0.021 0.028 0.006 0.006
(0.007) (0.008) (0.012) (0.015) (0.007) (0.008)

Observations 31698 42421 31698 42421 31698 42421
Outcome mean 0.051 0.052 0.198 0.198 0.048 0.048
Bandwidth 80.000 120.000 80.000 120.000 80.000 120.000
F-statistics 6215.082 4240.732 6215.082 4240.732 6215.082 4240.732

Panel C - Sweden

2SLS -0.014* -0.015* -0.020* -0.018 -0.003 -0.002
(0.006) (0.007) (0.009) (0.010) (0.004) (0.004)

Reduced form -0.003* -0.004* -0.005* -0.004 -0.001 0.000
(0.001) (0.002) (0.002) (0.002) (0.001) (0.001)

Observations 398220 625535 398220 625535 398220 625535
Outcome mean 0.030 0.028 0.067 0.065 0.011 0.011
Bandwidth 0.390 0.610 0.390 0.610 0.390 0.610
F-statistics 4402.932 3898.206 4402.932 3898.206 4402.932 3898.206

Notes: All the specifications in the table control for a linear or quadratic polynomial of older siblings’
application score centered around target majors admission cutoff. Observations are re-weighted by
the inverse of the number of observations around the cutoff in each major-year. Older siblings’
application year, target cutoff-year and younger siblings’ birth year fixed effect are included as
controls. In parenthesis, standard errors clustered at family level. *p-value<0.1 **p-value<0.05
***p-value<0.01.
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Table B4: Probability of Enrolling in any College Depending on the Admission to Target
Major-College of Older Siblings

Younger siblings Older siblings
(1) (2) (3) (4)

Panel A - Chile

Older sibling admitted to target major = 1 -0.002 -0.004 0.017*** 0.019***

(0.006) (0.006) (0.004) (0.004)

Observations 101955 206940 69170 139469
Outcome mean 0.529 0.526 0.929 0.916
Bandwidth 15.000 35.000 15.000 35.000

Panel B - Croatia

Older sibling admitted to target major = 1 -0.003 0.000 0.123*** 0.131***

(0.007) (0.008) (0.007) (0.008)

Observations 36757 48611 36757 48611
Outcome mean 0.90 0.90 0.88 0.85
Bandwidth 80 120 80 120

Panel C - Sweden

Older sibling admitted to target major = 1 0.004 0.003 0.046*** 0.039***

(0.004) (0.003) (0.003) (0.004)

Observations 239690 387184 431007 704370
Outcome mean 0.342 0.338 0.326 0.292
Bandwidth 0.550 1.040 0.550 1.040

Notes: The table presents estimates for the effect of older siblings’ marginal admission in
their target major on their own and on their younger siblings’ probability of enrolling in any
institution of the system. The specifications controls for a linear or quadratic local polynomial
of older siblings’ application score centered around their target major admission cutoff. While
older siblings’ application year fixed effects are used in all specifications, younger siblings’
birth year fixed effects are only used in columns (1) and (2). The slope of the running
variable is allowed to change at the cutoff. In addition, target major-year fixed effects are
included in all specifications. In the case of Chile, we observe enrollment for all the colleges
of the system from 2007 onwards. Thus, the sample is adjusted accordingly. In parenthesis,
standard errors clustered at family level. *p-value<0.1 **p-value<0.05 ***p-value<0.01.
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Table B5: Probability of Applying and Enrolling in the Target Major-College of Older
Siblings - Different Slope for each Admission Cutoff

Applies 1st Applies Enrolls
(1) (2) (3) (4) (5) (6)

Panel A - Chile

2SLS 0.010** 0.009* 0.029*** 0.027*** 0.003 0.000
(0.003) (0.004) (0.005) (0.007) (0.002) (0.003)

Reduced form 0.005** 0.004* 0.016*** 0.014*** 0.001 0.000
(0.002) (0.002) (0.003) (0.003) (0.001) (0.002)

Observations 136364 214840 136364 214840 136364 214840
Outcome mean 0.018 0.018 0.056 0.055 0.012 0.012
Bandwidth 20.000 35.000 20.000 35.000 20.000 35.000
F-statistics 12251.360 7965.265 12251.360 7965.265 12251.360 7965.265

Panel B - Croatia

2SLS 0.016** 0.016* 0.044*** 0.051*** 0.014** 0.017**

(0.005) (0.007) (0.010) (0.013) (0.005) (0.006)

Reduced form 0.013** 0.013* 0.036*** 0.042*** 0.012** 0.014**

(0.004) (0.006) (0.008) (0.011) (0.004) (0.005)

Observations 36757 48611 36757 48611 36757 48611
Outcome mean 0.029 0.029 0.129 0.130 0.024 0.024
Bandwidth 80.000 120.000 80.000 120.000 80.000 120.000
F-statistics 12626.492 7917.659 12626.492 7917.659 12626.492 7917.659

Panel C - Sweden

2SLS 0.024*** 0.036*** 0.034*** 0.047*** 0.007*** 0.010***

(0.003) (0.005) (0.007) (0.009) (0.002) (0.003)

Reduced form 0.005*** 0.007*** 0.007*** 0.009*** 0.002*** 0.002***

(0.001) (0.001) (0.001) (0.002) (0.000) (0.001)

Observations 718979 1020696 718979 1020696 718979 1020696
Outcome mean 0.011 0.010 0.048 0.047 0.004 0.003
Bandwidth 0.510 0.750 0.510 0.750 0.510 0.750
F-statistics 6882.985 3855.300 6882.985 3855.300 6882.985 3855.300

Notes: All the specifications in the table control for a linear or quadratic polynomial of older siblings’
application score centered around target majors admission cutoff. The slope of the running variable
is allowed to change at the cutoff and for each target major-year. Older siblings’ application year,
target cutoff-year and younger siblings’ birth year fixed effect are included as controls. In parenthesis,
standard errors clustered at family level. *p-value<0.1 **p-value<0.05 ***p-value<0.01.
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Table B6: Probability of Applying and Enrolling in the Target College of Older Siblings
- Different Slope for each Admission Cutoff

Applies 1st Applies Enrolls
(1) (2) (3) (4) (5) (6)

Panel A - Chile

2SLS 0.076*** 0.075*** 0.106*** 0.092*** 0.048*** 0.040***

(0.014) (0.014) (0.018) (0.017) (0.012) (0.011)

Reduced form 0.037*** 0.037*** 0.052*** 0.045*** 0.023*** 0.020***

(0.007) (0.007) (0.009) (0.009) (0.006) (0.006)

Observations 73331 152301 73331 152301 73331 152301
Outcome mean 0.161 0.157 0.302 0.292 0.101 0.097
Bandwidth 15.000 35.000 15.000 35.000 15.000 35.000
F-statistics 4228.409 4390.981 4228.396 4390.993 4228.409 4390.978

Panel B - Croatia

2SLS 0.080** 0.081* 0.107*** 0.115** 0.085*** 0.096**

(0.024) (0.037) (0.025) (0.038) (0.023) (0.036)

Reduced form 0.068*** 0.067* 0.090*** 0.096** 0.072*** 0.080**

(0.020) (0.031) (0.021) (0.031) (0.020) (0.030)

Observations 12950 17312 12950 17312 12950 17312
Outcome mean 0.321 0.322 0.555 0.559 0.287 0.287
Bandwidth 80.000 120.000 80.000 120.000 80.000 120.000
F-statistics 4398.579 1945.206 4398.579 1945.206 4398.579 1945.206

Panel C - Sweden

2SLS 0.193*** 0.227*** 0.186*** 0.217*** 0.086*** 0.102***

(0.014) (0.016) (0.019) (0.021) (0.009) (0.010)

Reduced form 0.036*** 0.041*** 0.035*** 0.039*** 0.016*** 0.018***

(0.003) (0.003) (0.003) (0.004) (0.002) (0.002)

Observations 432924 843955 432924 843955 432924 843955
Outcome mean 0.088 0.084 0.193 0.187 0.034 0.032
Bandwidth 0.370 0.730 0.370 0.730 0.370 0.730
F-statistics 2985.240 2446.559 2985.240 2446.559 2985.240 2446.559

Notes: All the specifications in the table control for a linear or quadratic polynomial of older
siblings’ application score centered around target majors admission cutoff. The slope of the run-
ning variable is allowed to change at the cutoff and for each target major-year. Older siblings’
application year, target cutoff-year and younger siblings’ birth year fixed effect are included as
controls. In parenthesis, standard errors clustered at family level. *p-value<0.1 **p-value<0.05
***p-value<0.01.
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Table B7: Probability of Applying and Enrolling in the Target Field of Older Siblings -
Different Slope for each Admission Cutoff

Applies 1st Applies Enrolls
(1) (2) (3) (4) (5) (6)

Panel A - Chile

2SLS 0.011 0.007 0.016 0.014 0.000 -0.007
(0.009) (0.009) (0.013) (0.013) (0.007) (0.007)

Reduced form 0.005 0.005 0.010* 0.009* 0.000 -0.001
(0.003) (0.003) (0.005) (0.005) (0.003) (0.003)

Observations 74012 153713 74012 153713 74012 153713
Outcome mean 0.049 0.049 0.113 0.112 0.032 0.032
Bandwidth 15.000 35.000 15.000 35.000 15.000 35.000
F-statistics 3612.147 3682.283 3612.147 3682.307 3612.147 3682.307

Panel B - Croatia

2SLS 0.004 -0.005 0.012 0.011 0.006 0.002
(0.007) (0.010) (0.013) (0.018) (0.007) (0.010)

Reduced form 0.004 -0.004 0.010 0.009 0.005 0.001
(0.006) (0.008) (0.011) (0.014) (0.006) (0.008)

Observations 31698 42421 31698 42421 31698 42421
Outcome mean 0.059 0.059 0.218 0.219 0.054 0.054
Bandwidth 80.000 120.000 80.000 120.000 80.000 120.000
F-statistics 8616.156 5280.547 8616.156 5280.521 8616.156 5280.547

Panel C - Sweden

2SLS -0.000 -0.000 -0.004 -0.011 0.002 -0.000
(0.011) (0.015) (0.016) (0.020) (0.006) (0.008)

Reduced form -0.000 -0.000 -0.001 -0.002 0.000 -0.000
(0.002) (0.003) (0.003) (0.004) (0.001) (0.001)

Observations 386777 612955 386777 612955 386777 612955
Outcome mean 0.041 0.039 0.087 0.086 0.014 0.014
Bandwidth 0.390 0.610 0.390 0.610 0.390 0.610
F-statistics 2261.735 1424.370 2261.735 1424.370 2261.735 1424.370

Notes: All the specifications in the table control for a linear or quadratic polynomial of older
siblings’ application score centered around target majors admission cutoff. The slope of the run-
ning variable is allowed to change at the cutoff and for each target major-year. Older siblings’
application year, target cutoff-year and younger siblings’ birth year fixed effect are included as
controls. In parenthesis, standard errors clustered at family level. *p-value<0.1 **p-value<0.05
***p-value<0.01.
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Table B8: Probability of Applying and Enrolling in the Target Major-College of Older
Siblings - Target × Counterfactual Major Fixed Effects

Applies 1st Applies Enrolls
(1) (2) (3) (4) (5) (6)

Panel A - Chile

2SLS 0.012*** 0.013*** 0.029*** 0.026*** 0.003 0.001
(0.004) (0.005) (0.007) (0.008) (0.003) (0.004)

Reduced form 0.006*** 0.006*** 0.015*** 0.013*** 0.002 0.001
(0.002) (0.002) (0.004) (0.004) (0.002) (0.002)

Observations 92821 154561 92821 154561 92821 154561
Outcome mean 0.019 0.020 0.058 0.057 0.013 0.013
Bandwidth 20.000 35.000 20.000 35.000 20.000 35.000
F-statistics 7232.029 5490.28 7232.029 5490.28 7232.029 5490.28

Panel B - Croatia

2SLS 0.012 0.010 0.038*** 0.40** 0.011 0.015
(0.008) (0.009) (0.014) (0.017) (0.007) (0.008)

Reduced form 0.010 0.009 0.033*** 0.035** 0.010 0.013
(0.006) (0.008) (0.012) (0.014) (0.006) (0.007)

Observations 23076 32230 23076 32230 23076 32230
Outcome mean 0.033 0.032 0.144 0.143 0.027 0.027
Bandwidth 80.000 120.000 80.000 120.000 80.000 120.000
F-statistics 10630.120 7653.077 10630.120 7653.077 10630.120 7653.077

Panel C - Sweden

2SLS 0.017*** 0.020*** 0.026*** 0.029*** 0.006*** 0.008***

(0.002) (0.002) (0.004) (0.003) (0.001) (0.001)

Reduced form 0.004*** 0.005*** 0.006*** 0.007*** 0.002*** 0.002***

(0.001) (0.001) (0.001) (0.001) (0.0003) (0.0003)

Observations 567548 818146 567548 818146 567548 818146
Outcome mean 0.011 0.010 0.047 0.046 0.004 0.003
Bandwidth 0.510 0.745 0.510 0.745 0.510 0.745
F-statistics 14168.46 18488.9 14168.46 18488.9 14168.46 18488.9

Notes: All the specifications in the table control for a linear or quadratic polynomial of older siblings’
application score centered around target majors admission cutoff. The slope of the running variable is
allowed to change at the cutoff. Older siblings’ application year, target × counterfactual cutoff-year
and younger siblings’ birth year fixed effect are included as controls. In parenthesis, standard errors
clustered at family level. *p-value<0.1 **p-value<0.05 ***p-value<0.01.
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Table B9: Probability of Applying and Enrolling in the Target College of Older Siblings
- Target × Counterfactual Major Fixed Effects

Applies 1st Applies Enrolls
(1) (2) (3) (4) (5) (6)

Panel A - Chile

2SLS 0.067*** 0.086*** 0.106*** 0.0110*** 0.043*** 0.039***

(0.017) (0.016) (0.018) (0.019) (0.014) (0.013)

Reduced form 0.030*** 0.038*** 0.047*** 0.049*** 0.019*** 0.017***

(0.008) (0.007) (0.009) (0.009) (0.006) (0.005)

Observations 50076 111993 50076 111993 50076 111993
Outcome mean 0.173 0.167 0.313 0.301 0.108 0.102
Bandwidth 15.000 35.000 15.000 35.000 15.000 35.000
F-statistics 2790.058 3442.876 2790.058 3442.876 2790.058 3442.876

Panel B - Croatia

2SLS 0.053 0.042 0.106*** 0.092** 0.078** 0.068*

(0.033) (0.039) (0.032) (0.037) (0.033) (0.038)

Reduced form 0.047 0.037 0.094*** 0.081** 0.069*** 0.060*

(0.030) (0.034) (0.028) (0.033) (0.029) (0.034)

Observations 6743 9596 6743 9596 6743 9596
Outcome mean 0.355 0.352 0.588 0.592 0.319 0.318
Bandwidth 80.000 120.000 80.000 120.000 80.000 120.000
F-statistics 2517.738 3540.023 2517.738 3540.023 2517.738 3540.023

Panel C - Sweden

2SLS 0.134*** 0.141*** 0.133*** 0.142*** 0.056*** 0.061***

(0.008) (0.006) (0.011) (0.007) (0.005) (0.004)

Reduced form 0.029*** 0.034*** 0.028*** 0.034*** 0.012*** 0.015***

(0.002) (0.001) (0.002) (0.002) (0.001) (0.001)

Observations 353602 697976 353602 697976 353602 697976
Outcome mean 0.089 0.085 0.193 0.186 0.035 0.033
Bandwidth 0.367 0.733 0.367 0.733 0.367 0.733
F-statistics 7604.52 15313.80 7604.52 15313.80 7604.52 15313.80

Notes: All the specifications in the table control for a linear or quadratic polynomial of older siblings’
application score centered around target majors admission cutoff. The slope of the running variable
is allowed to change at the cutoff. Older siblings’ application year, target × counterfactual cutoff-
year and younger siblings’ birth year fixed effect are included as controls. In parenthesis, standard
errors clustered at family level. *p-value<0.1 **p-value<0.05 ***p-value<0.01.
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Table B10: Probability of Applying and Enrolling in the Target Field of Older Siblings -
Target × Counterfactual Major Fixed Effects

Applies 1st Applies Enrolls
(1) (2) (3) (4) (5) (6)

Panel A - Chile

2SLS 0.014 0.015 0.021 0.023 -0.001 -0.008
(0.012) (0.011) (0.017) (0.015) (0.009) (0.008)

Reduced form 0.005 0.005 0.010* 0.009* 0.000 -0.001
(0.003) (0.003) (0.005) (0.005) (0.003) (0.003)

Observations 47027 107632 47027 107632 47027 107632
Outcome mean 0.051 0.051 0.114 0.112 0.033 0.033
Bandwidth 15.000 35.000 15.000 35.000 15.000 35.000
F-statistics 1944.226 2482.383 1944.226 2482.383 1944.226 2482.383

Panel B - Croatia

2SLS -0.010 -0.017 -0.005 -0.001 -0.007 -0.007
(0.012) (0.014) (0.019) (0.023) (0.011) (0.013)

Reduced form -0.009 -0.014 -0.004 -0.001 -0.006 -0.005
(0.010) (0.011) (0.016) (0.019) (0.009) (0.011)

Observations 18862 26932 18862 26932 18862 26932
Outcome mean 0.064 0.064 0.229 0.229 0.057 0.057
Bandwidth 80.000 120.000 80.000 120.000 80.000 120.000
F-statistics 6159.354 4672.655 6159.354 4672.655 6159.354 4672.655

Panel C - Sweden

2SLS -0.0002 0.004 0.003 0.002 0.002 0.001
(0.006) (0.004) (0.008) (0.006) (0.003) (0.003)

Reduced form -0.000 -0.000 -0.001 -0.002 0.000 -0.000
(0.002) (0.003) (0.003) (0.004) (0.001) (0.001)

Observations 310122 495991 310122 495991 310122 495991
Outcome mean 0.040 0.039 0.086 0.084 0.013 0.013
Bandwidth 0.389 0.606 0.389 0.606 0.389 0.606
F-statistics 6632.403 11502.85 6632.403 11502.85 6632.403 11502.85

Notes: All the specifications in the table control for a linear or quadratic polynomial of older siblings’
application score centered around target majors admission cutoff. The slope of the running variable
is allowed to change at the cutoff. Older siblings’ application year, target-counterfactual cutoff and
younger siblings’ birth year fixed effect are included as controls. In parenthesis, standard errors
clustered at family level. *p-value<0.1 **p-value<0.05 ***p-value<0.01.
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.3 Additional Results

The heterogeneity analyses presented in the main body of the paper focus on applications
to major and college. This appendix presents similar results looking at heterogeneous
effects in major and college enrollment, as well as in applications to and enrollment
in fields of study. The results that we find in terms of major and college enrollment
follow a similar pattern to the ones we find when focusing on applications. Something
similar happens with the results we obtain when looking instead at the choice of field
of study. However, since average effects on the choice of field of study (i.e. applications
and enrollment) are smaller, few of the interactions we document are significant. As in
the case of the major and college choices, when looking at the field of study our results
suggest that males are more likely to follow older brothers than sisters, and that for
females the gender of the older sibling seems less relevant. Effects also seem stronger for
siblings who are closer in age and in academic potential. We find no significant differences
on applications or enrollment in older siblings’ field of study depending on the quality of
older siblings’ target major.

Finally, we investigate changes in younger siblings’ academic performance by the age
difference they have with their older siblings in the three samples that we use in this
project (i.e. major, college and field). These results are consistent with the ones presented
in the main body of the paper and provide additional evidence that the effects we find in
major and college enrollment are not driven by an improvement of individuals’ academic
performance.
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Table C1: Probability of Enrolling in the Target Major and Target College of Older
Siblings by Older Siblings’ Gender

Major College

Older Siblings’ Gender Older Siblings’ Gender
All Female Male All Female Male
(1) (2) (3) (4) (5) (6)

Panel A - Chile

Older sibling enrolls 0.001 0.001 0.001 0.037*** 0.027 0.042**

(0.002) (0.003) (0.004) (0.010) (0.015) (0.015)

Older sibling enrolls × Same gender 0.005** 0.000 0.011*** 0.013 0.015 0.020
(0.002) (0.002) (0.003) (0.008) (0.011) (0.012)

Observations 136364 73014 61982 73331 39129 32302
Outcome mean 0.012 0.010 0.014 0.101 0.102 0.099
Bandwidth 20.000 20.000 20.000 15.000 15.000 15.000
F-statistics 6933.231 3310.962 3530.694 2719.593 1278.857 1337.943

Panel B - Croatia

Older sibling enrolls 0.007 0.006 0.008 0.065** 0.044 0.066
(0.004) (0.006) (0.007) (0.021) (0.029) (0.034)

Older sibling enrolls × Same gender 0.013** 0.004 0.031*** 0.037 0.046 0.014
0.004) (0.005) (0.008) (0.019) (0.026) (0.031)

Observations 36757 22239 14203 12950 7545 5008
Outcome mean 0.024 0.022 0.029 0.287 0.284 0.290
Bandwidth 80.000 80.000 80.000 80.000 80.000 80.000
F-statistics 7220.184 3662.675 4025.070 3229.534 1651.529 1405.970

Panel C - Sweden

Older sibling enrolls 0.002 0.001 0.002 0.056*** 0.061*** 0.059***

(0.001) (0.002) (0.003) (0.006) (0.009) (0.011)

Older sibling enrolls × Same gender 0.006*** 0.003* 0.009*** 0.014** 0.013 0.015
(0.001) (0.001) (0.002) (0.005) (0.007) (0.009)

Observations 732025 438419 281549 444203 273981 160086
Outcome mean 0.004 0.003 0.005 0.034 0.032 0.038
Bandwidth 0.510 0.510 0.510 0.370 0.370 0.370
F-statistics 5419.139 2441.736 2717.178 3075.133 1484.510 1330.244

Notes: The table presents 2SLS estimates for the effect of older siblings’ marginal enrollment in their target major
and college by siblings’ gender. These specifications use the same set of controls and bandwidths used in the 2SLS
specifications described in Tables 3.3 and 3.5. Specifications also control by a dummy variable that indicates if the
siblings are of the same gender. In parenthesis, standard errors clustered at family level. *p-value<0.1 **p-value<0.05
***p-value<0.01.
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Table C2: Probability of Applying and Enrolling in the Target Field of Study of Older
Siblings by Older Siblings’ Gender

Older Siblings’ Gender
All Female Male All Female Male

Applies Enrolls
(1) (2) (3) (4) (5) (6)

Panel A - Chile

Older sibling enrolls 0.014 0.020 0.010 -0.002 -0.002 0.001
(0.011) (0.015) (0.017) (0.006) (0.008) (0.010 )

Older sibling enrolls × Same gender 0.019* 0.002 0.033* 0.006 0.003 0.009
(0.008) (0.011) (0.013) (0.005) (0.006) (0.008)

Observations 74012 40123 31964 74012 40123 31964
Outcome mean 0.113 0.103 0.124 0.032 0.026 0.039
Bandwidth 15.000 15.000 15.000 15.000 15.000 15.000
F-statistics 2416.376 1201.441 1111.501 2416.376 1201.441 1111.501

Panel B - Croatia

Older sibling enrolls 0.012 0.020 0.004 0.003 0.007 0.002
(0.015) (0.017) (0.020) (0.008) (0.010) (0.012)

Older sibling enrolls × Same gender 0.009 -0.019 0.040 -0.001 -0.011 0.018
(0.015) (0.017) (0.022) (0.008) (0.009) (0.012)

Observations 31698 19269 12085 31698 19269 12085
Outcome mean 0.218 0.206 0.238 0.054 0.049 0.062
Bandwidth 80.000 80.000 80.000 80.000 80.000 80.000
F-statistics 5027.422 2501.951 2815.384 5027.422 2501.951 2815.384

Panel C - Sweden

Older sibling enrolls 0.001 0.033* -0.032 -0.002 0.004 -0.007
(0.011) (0.016) (0.018) (0.004) (0.006) (0.008)

Older sibling enrolls × Same gender -0.010 -0.056*** 0.052*** 0.003 -0.007 0.016**

(0.009) (0.012) (0.014) (0.004) (0.005) (0.006)

Observations 398220 240016 148034 398220 240016 148034
Outcome mean 0.087 0.077 0.104 0.014 0.012 0.017
Bandwidth 0.390 0.390 0.390 0.390 0.390 0.390
F-statistics 2558.556 1064.952 1253.694 2558.556 1064.952 1253.694

Notes: The table presents 2SLS estimates for the effect of older siblings’ marginal enrollment in their target field
of study by siblings’ gender. These specifications use the same set of controls and bandwidths used in the 2SLS
specifications described in Table 3.5. Specifications also control by a dummy variable that indicates if the siblings
are of the same gender. In parenthesis, standard errors clustered at family level. *p-value<0.1 **p-value<0.05
***p-value<0.01.
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Table C3: Probability of Enrolling in the Target Major and Target College of Older
Siblings by Siblings’ Similarity

Major College

∆ Age > 5 ∆ GPA ∆ Age > 5 ∆ GPA
(1) (2) (3) (4)

Panel A - Chile

Older sibling enrolls 0.002 0.012*** 0.047*** 0.091***

(0.002) (0.003) (0.010) (0.012)

Interaction 0.003 -0.010*** -0.007 -0.052***

(0.002) (0.001) (0.008) (0.005)

Observations 135777 133703 73030 71865
Outcome mean 0.012 0.012 0.101 0.103
Bandwidth 20.000 20.000 15.000 15.000
F-statistics 6904.432 6789.416 2710.198 2664.690

Panel B - Croatia

Older sibling enrolls 0.013** 0.053*** 0.089*** 0.189***

(0.004) (0.012) (0.019) (0.055)

Interaction 0.001 -0.028*** -0.029 -0.040
(0.006) (0.007) (0.026) (0.032)

Observations 36756 8567 12950 2588
Outcome mean 0.024 0.030 0.287 0.338
Bandwidth 80.000 80.000 80.000 80.000
F-statistics 7225.706 1567.759 3230.667 648.627

Panel C - Sweden

Older sibling enrolls 0.035*** 0.032*** 0.067*** 0.087***

(0.005) (0.007) (0.006) (0.008)

Interaction -0.015*** 0.005 -0.010 -0.017***

(0.004) (0.003) (0.005) (0.003)

Observations 732025 591599 444203 359012
Outcome mean 0.047 0.055 0.034 0.039
Bandwidth 0.510 0.510 0.370 0.370
F-statistics 5255.957 4573.374 2975.652 2610.561

Notes: The table presents 2SLS estimates for the effect of older siblings’ marginal
enrollment in their target major and college by siblings’ similarity. Columns (1)
and (3) investigate heterogeneous effects by age difference, while columns (2)
and (4) by difference in high school GPA. These specifications use the same set
of controls and bandwidths used in the 2SLS specifications described in Tables
3.3 and 3.5. In addition, we add as control the main effect of the interaction
used in each column. In parenthesis, standard errors clustered at family level.
*p-value<0.1 **p-value<0.05 ***p-value<0.01.
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Table C4: Probability of Applying and Enrolling in the Target Field of Study of Older
Siblings by Siblings’ Similarity

Applies Enrolls

∆ Age > 5 ∆ GPA ∆ Age > 5 ∆ GPA
(1) (2) (3) (4)

Panel A - Chile

Older sibling enrolls 0.024* 0.047*** 0.002 0.008
(0.011) (0.013) (0.006) (0.007)

Interaction -0.006 -0.025*** -0.002 -0.007*

(0.008) (0.005) (0.005) (0.003)

Observations 73665 72463 73665 72463
Outcome mean 0.113 0.115 0.032 0.033
Bandwidth 15.000 15.000 15.000 15.000
F-statistics 2411.227 2363.090 2411.227 2363.090

Panel B - Croatia

Older sibling enrolls 0.021 -0.019 0.002 0.017
(0.014) (0.044) (0.008) (0.021)

Interaction -0.034 -0.014 -0.001 -0.024
(0.020) (0.026) (0.011) (0.013)

Observations 31697 7167 31697 7167
Outcome mean 0.218 0.251 0.054 0.061
Bandwidth 80.000 80.000 80.000 80.000
F-statistics 5058.433 1063.448 5058.433 1063.448

Panel C - Sweden

Older sibling enrolls 0.002 -0.023 0.001 -0.001
(0.011) (0.014) (0.004) (0.006)

Interaction -0.012 0.033*** -0.004 0.000
(0.009) (0.006) (0.004) (0.003)

Observations 398220 320212 398220 320212
Outcome mean 0.087 0.101 0.014 0.016
Bandwidth 0.390 0.390 0.390 0.390
F-statistics 2482.598 2129.958 2482.598 2129.958

Notes: The table presents 2SLS estimates for the effect of older siblings’ marginal
enrollment in their target field of study by siblings’ similarity. Columns (1) and
(3) investigate heterogeneous effects by age difference, while columns (2) and
(4) by difference in high school GPA. These specifications use the same set of
controls and bandwidths used in the 2SLS specifications described in Table 3.5.
In addition, we add as control the main effect of the interaction used in each
column. In parenthesis, standard errors clustered at family level. *p-value<0.1
**p-value<0.05 ***p-value<0.01.
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Table C5: Probability of Enrolling in the Target Major and College of Older Siblings by Quality

Major College

Admitted students quality Dropout Earnings Admitted students quality Dropout Earnings
(1) (2) (3) (4) (5) (6)

Panel A - Chile

Older sibling enrolls -0.006 0.004 0.003 -0.017 0.057*** 0.040***

(0.004) (0.003) (0.002) (0.019) (0.010) (0.010)

Interaction 0.003** -0.006 0.002* 0.020*** -0.112* 0.011**

(0.001) (0.014) (0.001) (0.004) (0.046) (0.004)

Observations 136364 121676 129847 73331 72642 69927
Outcome mean 0.012 0.012 0.012 0.101 0.101 0.102
Bandwidth 20.000 20.000 20.000 15.000 15.000 15.000
F-statistic 4914.155 5831.462 5732.572 1872.447 2459.612 2183.694

Panel B - Croatia

Older sibling enrolls 0.021 -0.024
(0.058) (0.012)

Interaction -0.002 0.029*

(0.003) (0.012)

Observations 34510 10693
Outcome mean 0.024 0.268
Bandwidth 80.000 80.000
F-statistic 6833.719 2598.965

Panel C - Sweden

Older sibling enrolls 0.000 0.005** 0.002 0.043*** 0.059*** 0.053***
(0.002) (0.002) (0.002) (0.007) (0.007) (0.008)

Interaction 0.005*** -0.006 0.003** 0.026*** -0.079*** 0.008*
(0.001) (0.005) (0.001) (0.004) (0.023) (0.004)

Observations 732023 535714 358644 444203 320107 218552
Outcome mean 0.004 0.004 0.004 0.034 0.036 0.038
Bandwidth 0.510 0.510 0.510 0.370 0.367 0.367
F-statistic 4508.761 5465.479 2462.490 2577.150 2678.503 1380.629

Notes: The table presents 2SLS estimates for the effect of older siblings’ marginal enrollment in their target major and college by
different quality measures of their target majors. Columns (1) and (4) investigate heterogeneous effects by the average quality of
admitted students, columns (2) and (5) by first year dropout rates and columns (3) and (6) by graduates average earnings. Students’
quality is measured by the average scores of admitted students in the admission exam. The measure of students quality and graduates
average earnings are standardized. These specifications use the same set of controls and bandwidths used in the 2SLS specifications
described in Tables 3.3 and 3.5. In addition, we add as control the main effect of the interaction used in each column. In parenthesis,
standard errors clustered at family level. *p-value<0.1 **p-value<0.05 ***p-value<0.01.
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Table C6: Probability of Applying and Enrolling in Older Sibling’s Target Field of Study by Quality

Applies Enrolls

Admitted students quality Dropout Earnings Admitted students quality Dropout Earnings
(1) (2) (3) (4) (5) (6)

Panel A - Chile

Older sibling enrolls 0.031 0.015 0.024* 0.005 0.000 0.002
(0.020) (0.012) (0.011) (0.011) (0.007) (0.006)

Interaction -0.003 0.061 -0.003 -0.002 0.012 -0.004
(0.005) (0.048) (0.005) (0.003) (0.026) (0.003)

Observations 74012 72888 69487 74012 72888 69487
Outcome mean 0.113 0.113 0.115 0.032 0.032 0.033
Bandwidth 15.000 15.000 15.000 15.000 15.000 15.000
F-statistic 1824.898 2308.953 1953.139 1824.898 2308.953 1953.139

Panel B - Croatia

Older sibling enrolls -0.007 0.001
(0.035) (0.020)

Interaction 0.003 0.000
(0.007) (0.004)

Observations 29466 29466
Outcome mean 0.218 0.053
Bandwidth 80.000 80.000
F-statistic 4664.494 4664.494

Panel C - Sweden

Older sibling enrolls -0.008 0.011 -0.001 -0.002 0.001 -0.002
(0.012) (0.011) (0.013) (0.005) (0.005) (0.006)

Interaction 0.006 -0.077** -0.001 0.001 -0.018 0.002
(0.006) (0.029) (0.006) (0.003) (0.013) (0.003)

Observations 398220 283534 190647 398220 283534 190647
Outcome mean 0.087 0.083 0.085 0.014 0.015 0.016
Bandwidth 0.389 0.389 0.389 0.389 0.389 0.389
F-statistic 2206.902 2408.936 1064.776 2206.902 2408.936 1064.776

Notes: The table presents 2SLS estimates for the effect of older siblings’ marginal enrollment in their target field by different quality
measures of their target programs. Columns (1) and (4) investigate heterogeneous effects by the average quality of admitted students,
columns (2) and (5) by first year dropout rates and columns (3) and (6) by graduates average earnings. Students’ quality is measured
by the average scores of admitted students in the admission exam. The measure of students quality and graduates average earnings are
standardized. These specifications use the same set of controls and bandwidths used in the 2SLS specifications described in Table 3.7.
In addition, we add as control the main effect of the interaction used in each column. In parenthesis, standard errors clustered at family
level. *p-value<0.1 **p-value<0.05 ***p-value<0.01.
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Table C7: Probability of Enrolling in the Target Major and College of Older Siblings by Quality Difference respect to Counterfactual
Alternative

Major College

∆ Admitted students quality ∆ Dropout ∆ Earnings ∆ Admitted students quality ∆ Dropout ∆ Earnings
(1) (2) (3) (4) (5) (6)

Panel A - Chile

Older sibling enrolls 0.005 0.006* 0.005 0.044*** 0.042*** 0.042***

(0.003) (0.002) (0.002) (0.011) (0.011) (0.011)

Interaction -0.001 0.017 0.000 -0.002 -0.120 -0.016
(0.002) (0.016)) (0.001) (0.010) (0.066) (0.013)

Observations 99652 90784 90082 45082 41229 40836
Outcome mean .013 0.013 0.013 0.105 0.106 0.106
Bandwidth 20.000 20.000 20.000 15.000 15.000 15.000
F-statistics 7674.012 7397.956 7219.418 3153.688 2959.387 2908.442

Panel B - Croatia

Older sibling enrolls 0.013** 0.101***

(0.004) (0.020)

Interaction 0.002 0.007
(0.002) (0.010)

Observations 34510 10693
Outcome mean 0.024 0.268
Bandwidth 80.000 80.000
F-statistics 6854.732 2607.328

Panel C - Sweden

Older sibling enrolls 0.006*** 0.004** 0.005** 0.071*** 0.049*** 0.056***
(0.002) (0.002) (0.002) (0.007) (0.007) (0.009)

Interaction -0.002 0.000 0.000 -0.016*** -0.005 -0.000
(0.001) (0.001) (0.001) (0.005) (0.004) (0.005)

Observations 472966 309934 210261 262275 172027 117555
Outcome mean 0.004 0.005 0.004 0.032 0.036 0.036
Bandwidth 0.510 0.510 0.510 0.367 0.367 0.367
F-statistics 4439.812 4419.105 2264.171 2282.347 2063.087 1125.23

Notes: The table presents 2SLS estimates for the effect of older siblings’ marginal enrollment in their target major and college by the gap between older
siblings’ target and counterfactual major in different quality measures. Columns (1) and (4) investigate heterogeneous effects by the difference in the average
quality of admitted students, columns (2) and (5) by the difference in first year dropout rates and columns (3) and (6) by the difference in graduates average
earnings. Students quality is measured by the average scores of admitted students in the admission exam. The measure of students quality and graduates
average earnings are standardized. These specifications use the same set of controls and bandwidths used in the 2SLS specifications described in Tables 3.3
and 3.5. In addition, we add as control the main effect of the interaction used in each column. In parenthesis, standard errors clustered at family level. In
this table, the sample is restricted to older siblings with counterfactual programs in their application lists. *p-value<0.1 **p-value<0.05 ***p-value<0.01.
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Table C8: Probability of Applying and Enrolling in the Target Field of Study of Older Siblings by Difference in Quality respect Counter-
factual Alternative

Applies Enrolls

∆ Admitted students quality ∆ Dropout ∆ Earnings ∆ Admitted students quality ∆ Dropout ∆ Earnings
(1) (2) (3) (4) (5) (6)

Panel A - Chile

Older sibling enrolls 0.012 0.013 0.012 -0.002 -0.006 -0.006
(0.013) (0.012) (0.012) (0.007) (0.007) (0.007)

Interaction 0.006 0.022 0.001 0.000 0.059 -0.001
(0.012) (0.077) (0.005) (0.006) (0.040) (0.003)

Observations 45591 40142 39660 45591 40142 39660
Outcome mean 0.122 0.124 0.125 0.034 0.035 0.035
Bandwidth 15.000 15.000 15.000 15.000 15.000 15.000
F-statistics 2608.326 2397.713 2325.023 2608.326 2397.713 2325.023

Panel B - Croatia

Older sibling enrolls 0.005 0.000
(0.012) (0.007)

Interaction 0.010 0.005
(0.006) (0.004)

Observations 29466 29466
Outcome mean 0.218 0.053
Bandwidth 80.000 80.000
F-statistics 4707.803 4707.803

Panel C - Sweden

Older sibling enrolls 0.012 -0.006 0.009 0.006 0.003 0.009
(0.014) (0.013) (0.018) (0.006) (0.006) (0.008)

Interaction -0.023*** -0.005 -0.005 -0.004 0.001 -0.002
(0.007) (0.004) (0.005) (0.003) (0.002) (0.002)

Observations 207042 126204 85936 207042 126204 85936
Outcome mean 0.094 0.090 0.091 0.015 0.016 0.016

Bandwidth 0.390 0.390 0.390 0.390 0.390 0.390
F-statistics 1746.185 1454.422 746.375 1746.185 1454.422 746.375

Notes: The table presents 2SLS estimates for the effect of older siblings’ marginal enrollment in their target field of study by the gap between older
siblings’ target and counterfactual program in different quality measures. Columns (1) and (4) investigate heterogeneous effects by the difference in
average quality of admitted students, columns (2) and (5) by the difference in first year dropout rates and columns (3) and (6) by the difference in
graduates average earnings. Students’ quality is measured by the average scores of admitted students in the admission exam. The measure of students
quality and graduates average earnings are standardized. These specifications use the same set of controls and bandwidths used in the 2SLS specifications
described in Table 3.5. In addition, we add as control the main effect of the interaction used in each column. In parenthesis, standard errors clustered at
family level. In this table, the sample is restricted to older siblings with counterfactual programs in their application lists. *p-value<0.1 **p-value<0.05
***p-value<0.01.
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Table C9: Effect of the Enrollment in the Target Program of Older Siblings on Academic
Performance (College Sample)

Takes admission exam (AE) Applies to college/higher ed. High School GPA Average Score AE
(1) (2) (3) (4)

Panel A - Chile

Older sibling enrolls 0.000 0.028 0.026 0.021
(0.006) (0.016) (0.039) (0.038)

Observations 73,741 73,741 73,741 73,741
Outcome mean 0.957 0.580 -0.103 0.272
Bandwidth 15.000 15.000 15.000 15.000
F-statistic 5446.004 5446.004 5446.004 5446.004

Panel B - Croatia

Older sibling enrolls -0.023 -0.329 -0.027*
(0.031) (0.228) (0.150)

Observations 4,170 4,170 4,170
Outcome mean 0.824 -1.313 -0.909
Bandwidth 80.000 80.000 80.000
F-statistic 2008.201 2008.201 2008.201

Panel C - Sweden

Older sibling enrolls -0.064*** -0.043** 0.009 0.113*

(0.016) (0.015) (0.034) (0.049)

Observations 444,203 444,203 372,578 206,613
Outcome mean 0.484 0.584 0.232 0.055
Bandwidth 0.367 0.367 0.367 0.367
F-statistic 6151.602 6151.602 5451.560 3681.775

Notes: The table presents 2SLS estimates for the effect of older siblings’ marginal enrollment in their target major on younger
siblings’ probability of taking the admission exam and applying to college (columns 1 and 2), and on different measures of
academic performance: high school GPA (column 3), reading and math sections of the admission exam (columns 4 and 5)
and average performance on the admission exam (column 6). While in Chile and Croatia we only observe applications to
college degrees, in Sweden we also observe applications to other higher education programs. These analyses focus on the
College Sample. This means that in this case, marginal admission or rejection from their target major, changes the college
in which older siblings are admitted. These specifications use the same set of controls and bandwidths used in the 2SLS
specifications described in Table 3.5. In parenthesis, standard errors clustered at family level. *p-value<0.1 **p-value<0.05
***p-value<0.01.
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Table C10: Effect of the Enrollment in the Target Program of Older Siblings on Academic
Performance (Field of Study Sample)

Takes admission exam (AE) Applies to university/higher ed. High School GPA Average Score AE
(1) (2) (3) (4)

Panel A - Chile

Older sibling enrolls 0.003 0.004 -0.027 0.024
(0.007) (0.017) (0.041) (0.040)

Observations 74,012 74,012 74,012 74,012
Outcome mean 0.955 0.567 -0.149 0.200
Bandwidth 15.000 15.000 15.000 15.000
F-statistic 4833.498 4833.498 4833.498 4833.498

Panel B - Croatia

Older sibling enrolls -0.004 -0.051 -0.043
(0.020) (0.146) (-0.099)

Observations 10,719 10,719 10,719
Outcome mean 0.822 -1.328 -0.851
Bandwidth 80.000 80.000 80.000
F-statistic 3147.714 3147.714 3147.714

Panel C - Sweden

Older sibling enrolls -0.074*** -0.055*** -0.014 0.052
(0.018) (0.017) (0.038) (0.053)

Observations 398,220 398,220 331,901 182,819
Outcome mean 0.481 0.577 0.226 0.058
Bandwidth 0.389 0.389 0.389 0.389
F-statistic 5116.605 5116.605 4430.987 3023.592

Notes: The table presents 2SLS estimates for the effect of older siblings’ marginal enrollment in their target field on younger
siblings’ probability of taking the admission exam and applying to university (columns 1 and 2), and on different measures of
academic performance: high school GPA (column 3), reading and math sections of the admission exam (columns 4 and 5) and
average performance on the admission exam (column 6). While in Chile and Croatia we only observe applications to university
degrees, in Sweden we also observe applications to other higher education programs. These specifications use the same set of
controls and bandwidths used in the 2SLS specifications described in Table 3.7. In parenthesis, standard errors clustered at
family level. *p-value<0.1 **p-value<0.05 ***p-value<0.01.
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Table C11: Effect of Older Siblings’ Enrollment in the Target Major-College on Academic
Performance by Age Difference

Major Sample College Sample Field Sample
High School GPA Average Score AE High School GPA Average Score AE High School GPA Average Score AE

(1) (2) (3) (4) (5) (6)

Panel A - Chile

Older sibling enrolls 0.011 0.034 -0.017 0.039 -0.088* 0.026
(0.029) (0.028) (0.042) (0.041) (0.052) (0.051)

∆ Age ≤ 2 -0.014 -0.004 0.048** -0.010 0.051* -0.013
(0.025) (0.024) (0.024) (0.022) (0.028) (0.027)

2 < ∆ Age ≤ 2 0.022 0.006 0.072** -0.049 0.089*** -0.005
(0.024) (0.006) (0.028) (0.028) (0.032) (0.032)

Observations 136364 136364 73,741 73,741 62,011 62,011
Outcome mean -0.105 0.256 -0.103 0.272 -0.165 0.195
Bandwidth 20.000 20.000 15.000 15.000 15.000 15.000
F-statistics 4614.009 4614.009 1812.148 1812.148 1184.061 1184.061

Panel B - Croatia

Older sibling enrolls -0.146 -0.133 -0.327 -0.302* -0.145 -0.114
(0.139) (0.093) (0.239) (0.157) (0.157) (0.106)

∆ Age ≤ 2 0.066 0.093 0.007 0.097 0.285* 0.207**
(0.170) (0.111) (0.202) (0.134) (0.152) (0.102)

2 < ∆ Age ≤ 2 0.211 0.125 -0.235 0.280 0.032 0.233
(0.568) (0.392) (0.590) (0.402) (0.422) (0.295)

Observations 12,433 12,443 4,170 4,170 10,719 10,719
Outcome mean -1.300 -0.834 -1.313 -0.909 -1.328 -0.851
Bandwidth 80.000 80.000 80.000 80.000 80.000 80.000
F-statistics 1461.978 1461.978 659.829 659.829 1022.964 1022.964

Panel C - Sweden

Older sibling enrolls 0.288 0.015 0.015 0.080 -0.015 0.027
(0.027) (0.038) (0.038) (0.055) (0.041) (0.058)

∆ Age ≤ 2 0.010 0.070** 0.007 0.106 0.059 0.068
(0.024) (0.035) (0.038) (0.055) (0.038) (0.055)

2 < ∆ Age ≤ 2 -0.057** -0.017 -0.008 -0.006 -0.030 0.006
(0.024) (0.036) (0.037) (0.055) (0.038) (0.056)

Observations 613,294 344,442 372,578 206,613 331,901 182,819
Outcome mean 0.219 0.051 0.232 0.055 0.226 0.058
Bandwidth 0.51 0.51 0.367 0.367 0.389 0.389
F-statistics 3070.585 2086.53 1747.338 1177.487 1441.458 969.494

Notes: The table presents 2SLS estimates for the effect of older siblings’ marginal enrollment in their target major on high school GPA (column 1) and
on average performance on the admission exam (column 2). The effect is allowed to vary with age difference between siblings. These specifications
use the same set of controls and bandwidths used in the 2SLS specifications described in Table 3.3. Age difference between siblings is added as
control. In parenthesis, standard errors clustered at family level. *p-value<0.1 **p-value<0.05 ***p-value<0.01.
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