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Abstract

The first chapter of this dissertation carries out a multidimensional investigation of weak-
form market efficiency for the stock market indices of the United States, Germany, and
five CEE countries during the years following the 2008 Global Financial Crisis. We
analyze developments over time in the predictable power and potential profitability of
three classes of well known technical trading rules applied to market index prices, sampled
at three different frequencies: daily, hourly, and 15-minute. We approach our analysis
by testing for true abnormal performance of trading rules using White’s Reality Check
procedure as well as by evaluating a simple out of sample investment strategy based on
ex-post best performing trading rules. We find that, while the developed stock markets
of the US and Germany exhibit results strongly consistent with market efficiency at
all three sampling frequencies, some evidence of predictable power of technical analysis
(consistent with the concept of adaptive efficiency introduced by Lo (2005)) is present
for the stock markets of Austria, the Czech Republic, Hungary, Poland, and Slovenia
at the two intraday sampling frequencies. However, the results are challenged when we
take transaction costs into account. Our proposed comparison of developed and emerging
stock markets provides new insights regarding the degree of market efficiency, especially
for intraday data and for countries that have experienced a transition to a market economy
relatively recently.

The second chapter utilizes trade-level data on WTI crude oil futures contracts
during the period 2017 - 2019 to assess the dynamics of market microstructure order
flow toxicity around the weekly regular US crude oil inventory levels announcements.
We estimate order flow toxicity using the Volume-synchronized Probability of Informed
Trading (VPIN) metric devised by Easley, de Prado, and O’Hara (2012) and we
investigate announcements by two different publishers. We find that this probability
metric increases on average by 20% immediately (within seconds) after data publication
and the magnitude of this change is positively associated with the degree to which
the particular announcement can be regarded as surprising. Moreover, for the report
published by the US Department of Energy, we observe 20% smaller average values of
daily VPIN profile during the 30 minutes leading up to the publication time, as opposed
to the same time of day on non-announcement days.

The third chapter investigates risk contagion dynamics within a set of the four most
liquid Eurozone sovereign government bond futures (France, Germany, Italy, and Spain)
during the period 2016 - 2020, applying the Diebold and Yılmaz (2014) connectedness
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framework. We find that the overall system-wide connectedness, as measured by the
Total Spillover Index, varies between 30 and 72 percent, representing a moderately
interconnected system when compared to other benchmark studies. The connectedness
exhibits the tendency to rise sharply following geopolitical or macroeconomic shocks,
represented in our sample mainly by the Italian political crisis of 2018 and the Covid-19
outbreak of 2020. Italian government bond futures are the principal spillovers transmitter
vis-à-vis the rest of the system, despite the fact that the Italian bond market accounts
for a proportionately smaller fraction of the system’s aggregate traded volume. While
the volatility transmitting role of Italy is predominantly associated with its internal
turbulent political development, Germany takes the leading role as the sample’s volatility
transmitter of major global affairs. We additionally find evidence of a significant
association between the degree of a country’s directional spillovers transmission and its
underlying macroeconomic fundamentals, particularly the changes in the country’s debt-
to-GDP ratio.
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Abstrakt

První kapitola této disertační práce provádí vícerozměrnou analýzu slabé formy efek-
tivnosti trhu pro akciové indexy Spojených Států, Německa a pro pět států střední a
východní Evropy v období následujícím Světovou finanční krizi roku 2008. Analyzujeme
časový vývoj predikční schopnosti a potenciální profitability třech tříd populárních
pravidel technického obchodování aplikovaných na ceny trhových indexů, uvažujíc
tři různé frekvence vzorkování cen: denní, hodinovou a 15 minutovou. K analýze
přistupujeme testováním skutečné mimořádné výkonnosti technických pravidel použitím
Whitovy Reality Check procedury a vyhodnocením jednoduché investiční strategie
založené na ex-post nejvýkonnějším obchodovacím pravidle. Zjišťujeme, že zatím co
rozvinuté akciové trhy Spojených Států a Německa vykazují výsledky silně konzistentní s
trhovou efektivností na všech vzorkovacích frekvencích, přítomnost predikční schopnosti
technické analýzy (konzistentní s konceptem adaptivní efektivností uvedené v Lo (2005))
je pozorována pro akciové trhy Rakouska, České Republiky, Maďarska, Polska a Slovinska
na dvou vnitrodenních frekvencích. Výsledky jsou avšak zpochybněny v případě
zohlednění možných transakčních nákladů. Naše porovnání rozvinutých a rozvíjejících
se akciových trhů přináší nové výsledky ohledně rozsahu tržní efektivnosti, obzvlášť pro
vnitrodenní data a pro státy, které absolvovali transformaci na tržní ekonomiku pouze
relativně nedávno.

Ve druhé kapitole používáme data na úrovni jednotlivých obchodů k popisu dynamiky
toxicity objednávkového toku v tržní mikrostruktuře ropných WTI futures kontraktů v
okolí pravidelných týdenních oznámení úrovní amerických ropných zásob v průběhu 2017
- 2019. Toxicitu objednávkového toku odhadujeme pomocí VPIN pravděpodobnostní
metriky vytvořené v Easley, de Prado a O’Hara (2012) a zkoumáme oznámení dvou
rozličných agentur. Zjišťujeme, že tato pravděpodobnostní metrika narůstá v průměru
o 20% okamžitě (řádově v rozmezí sekund) po publikaci dat a velikost této změny je
pozitivně asociována s mírou překvapení daného oznámení. Pro oznámení publikované
americkým ministerstvem energetiky navíc pozorujeme o 20% nižší průměrné hodnoty
denního VPIN profilu během 30 minutového okna vedoucího k času oznámení, v porovnání
se stejnou částí dne ve dnech bez oznámení.

Ve třetí kapitole zkoumáme dynamiku přelévání tržního rizika v rámci skupiny čtyř
nejlikvidnějších evropských futures kontraktů na státní dluhopisy (Francie, Německo,
Itálie a Španělsko) v období 2016 - 2020, aplikujíc rámec metriky propojenosti uveden
v Diebold a Yilmaz (2014). Zjišťujeme, že celková úroveň propojenosti systému,
měřená metrikou Total Spillover Index, se pohybuje v rozmezí 30 až 72 procent,
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představujíc středně propojen systém v kontextu porovnatelných studií. Propojenost
vykazuje tendenci prudkých nárůstů v období po geopolitických a makroekonomických
otřesech, které jsou v naší studii zastoupeny italskou politickou krizí v roku 2018 a
vypuknutím pandemie Covidu-19 v roku 2020. Italské futures státních dluhopisů jsou
hlavním původcem rizika ve vztahu ke zbytku systému, navzdory tomu, že italský
trh státních dluhopisů reprezentuje relativně malý zlomek celkového zobchodovaného
bohatství v rámci námi uvažovaného systému. Zatímco role původce volatility Itálie je
spjatá především s jejím vnitřním turbulentním politickým vývojem, Německo v našem
vzorku přebírá vedoucí roli původce volatility způsobené vývojem celosvětovým. Navíc
nacházíme důkazy o významné asociaci mezi mírou směrového přelévání rizika země a
jejími základními makroekonomickými fundamenty, zejména změnami v poměru dluhu
dané země k HDP.
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Introduction

As the central theme intertwining each of its three chapters, this dissertation thesis presents

empirical investigations of various qualitative aspects of information dissemination dynamics

in financial markets. Each of the three studies examines different asset classes, different time

horizons and frequency granularities, and different varieties and manifestations of information

arrival which I assume affect the asset valuations under consideration.

The first chapter investigates perhaps the most popular (and the most contradictory of main-

stream economic and asset pricing theory) practice of non-professional investing, the practice of

exploiting past prices to forecast future prices, also known as technical trading. Under certain

(admittedly not implausible) assumptions, the Efficient Markets Hypothesis (EMH, originally

formulated by Fama (1970) ) asserts that the returns on asset prices ought to be unpredictable,

that is, it should be impossible to develop a forecasting model based on past price and vol-

ume history data (the so-called technical trading rule) that would consistently generate positive

risk-adjusted expected excess returns.

The key word in the above sentence is ”consistently”. Indeed, because, given a particular time

series of prices, there is a virtually infinite number of possible trading rules one could devise; by

trying long enough, one is certain to find at least one trading rule that outperforms any given

stochastic process ex-post, even if the process is merely a random sequence of numbers, and

the trading rule does not possess any true predictive power. Therefore, in order to properly

assess the validity of market efficiency, suitable statistical methods accounting for the potential

presence of data-snooping bias need to be employed.

Acknowledging these considerations, the first chapter analyzes the performance of a set of

616 mainstream technical trading rules applied to stock market indices of the United States,

Germany, and five Central and Eastern European countries during the years following the 2008
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Great Financial Crisis. We add a dimension to the results by considering three different sampling

frequencies (daily, hourly, and 15-minute), under which signals generated by the trading rules

can be acted upon. We use the White Reality Check procedure, and an out-of-sample investment

performance evaluation of in-sample best-performing trading rules to control for the possibility

of data-snooping bias.

We find that, while the developed stock markets of the United States and Germany exhibit

results strongly consistent with market efficiency at all three sampling frequencies, some evi-

dence of the predictable power of technical analysis is present for the stock markets of Austria,

the Czech Republic, Hungary, Poland, and Slovenia at the two intraday sampling frequencies.

Although the results are challenged when transaction costs are taken into account, certain qual-

itative differences regarding the degree of market efficiency between developed and emerging

stock markets are observed, especially for intraday data and for the countries that have rela-

tively recently transitioned into market economies.

In the second chapter, we analyze the information adaptivity of price discovery processes

from a high-frequency market microstructure perspective. Trade-level data on WTI crude oil

futures contracts are used to investigate the dynamics of order flow toxicity, one of the central

concepts of the academic literature on market microstructure. One of the distinct features of this

market is the presence of regular weekly macroeconomic data announcements with significant

impacts on prices: the publications of the changes in the levels of US crude oil inventories.

We consider two different reports: the Weekly Statistical Bulletin by the American Petroleum

Institute (API) and the Weekly Petroleum Status Report by the Energy Information Association

of the US Department of Energy (DOE).

To assess the manner in which the announced inventory information dissipates in the price

discovery process, we apply the VPIN metric by Easley, de Prado, and O’Hara (2012), a non-

parametric procedure allowing us (in combination with the extremely low granularity of our

data) to identify the changes in order flow toxicity at relatively high frequencies. The VPIN

metric quantifies the order flow toxicity by the estimated probability of informed trade arrival.

We document that the estimated probability of informed trading increases by approximately

20% on average for both types of reports under investigation. Though in both cases it occurs

virtually immediately, the most pronounced VPIN adjustment after publication of a DOE report

takes place, on average, within the first two seconds, about three times faster than after the API

report. Additionally, we find some evidence of a positive association between the magnitude of

the order flow toxicity change around the two types of inventory announcements and the degree

to which these announcements are surprising. Interestingly, on DOE announcement days, we

observe, on average, 20% smaller values of the daily VPIN profile during the 30 minutes leading

up to the publication time than on non-announcement days at the same time of day. We

conjecture that this phenomenon may be associated with relatively greater activity of liquidity
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demanding traders aiming to reduce their oil price exposure due to the upcoming announcement,

as well as with relatively lower activity of informed and speculative traders, who are less willing

to engage in their usual trading activity. This observation may serve as an example of potentially

valuable microstructure-related nuances that can be uncovered by applying the VPIN metric to

electronic limit order book market data.

Finally, we consider the dynamics of information dissemination interactions within a set of

multiple assets in the third chapter of the thesis. We use the connectedness framework of Diebold

and Yılmaz (2014) to evaluate the magnitude and directions of risk contagion within the set of

the four most liquid Eurozone sovereign bond futures (pertaining to France, Germany, Italy, and

Spain) during 2016 - 2020, a period including multiple geopolitical and macroeconomic events

of substantial regional and global significance, including the adoption of protectionist economic

policies by the Trump administration, the Italian political crisis, and the Covid-19 pandemic

outbreak.

We find that the Eurozone sovereign bond market, as represented by our sample, constitutes a

system entailing considerable, although not extreme (compared to other asset classes investigated

in academic literature) degree of risk contagion, ranging between 53 and 60 percent, as measured

by the overall system connectedness indicator (the so-called Total Spillover Index). When we

consider the entire sample, we observe the greatest directional contagion effect for volatility

spillovers in the "from Italy to others" direction. We argue that the turbulent political situation

in Italy present throughout a substantial time period of the sample was associated not only

with greater volatility of Italian government bond futures, but also measurably contributed to

increased volatility of the bond markets of the remaining major Eurozone countries. We find

this particularly interesting, as the Italian bond futures consistently generated only around 10%

of the aggregate system’s traded volume.

Additionally, we observe that particular aspects of the system’s connectedness exhibit sig-

nificant time variation. The total connectedness of the system, for example, tends to increase

rapidly in a response to turbulent and unexpected macroeconomic or geopolitical shocks. Fi-

nally, though we find that the volatility transmitting role of Italy has been mainly caused by its

internal turbulent political development, Germany is the main volatility transmitter of major

global affairs in our sample. The coronavirus outbreak market-wide volatility surge (ignited on

March 12, 2020) represents an event for which this dynamics is observed in the most pronounced

manner.

3
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Chapter 1

Does the Profitability of Technical Analysis
Depend on Trading Frequency? A Comparison
of Developed and Emerging Markets.

1.1 Introduction

How rapidly do stock prices change and adapt to new information? Is it possible to forecast

future price development? The phenomena of price discovery in financial markets and its possible

predictabililty and exploitability with the aim of making economic profits have for long been

receiving considerable attention of both market practitioners as well as academicians.

In the academic sphere, the concept that has been strongly dominant is the Efficient Markets

Hypothesis (EMH), originally postulated by Fama (1970). In order to establish the definition of

market efficiency, the following extended formalization by Jensen (1978) is useful: "A market is

efficient with respect to information set θt if it is impossible to make economic profits by trading

on the basis of information set θt." Therefore, the prices at time t in an efficient market fully

incorporate the content of θt, such that it is impossible to use the information content of θt to

obtain risk-adjusted net returns by forecasting future prices. Effectively, everything that could

be learned from θt has already been incorporated in the price at time t. Jensen’s taxonomy also

uses the three basic types of market efficiency as originally proposed by Fama (1970):

• Weak form efficiency: θt contains only the history of financial market data, such as

stock prices, volume, and open interest available at time t.

• Semi-strong form efficiency: θt contains all publicly available information available at

time t.

5



• Strong form efficiency: θt contains both public and private information available at

time t.

One particular implication of market efficiency is that it is impossible to develop a forecasting

model based on price and volume history (the so-called technical trading rule) that would gen-

erate positive risk-adjusted expected excess returns. However, the activity of developing such

models, known also as the technical analysis, has been extremely popular in the financial sector.

For example, Cheung and Chinn (2001) document that 30% of US foreign exchange traders

may be characterized as technical traders, with the proportion exhibiting an upward trend.

Popularity of technical analysis in financial industry may be illustrated by the large number of

textbooks (for instance, Murphy (1999), Grimes (2012) and Pring (2021)) and popular invest-

ment websites (such as https://www.seekingalpha.com, https://www.marketwatch.com

and https://www.investopedia.com) related to technical analysis. Technical analysis is being

applied in financial markets and it is being applied to a significant extent. Its relevance and ra-

tionale in the investor’s portfolio selection process is therefore interesting also from the academic

perspective.

Despite the dominant position of the EMH in the economic theory during the twentieth

century, by the 1990s, its general acceptance by academic community began to diminish. Jensen

(1978) asserts that EMH is the most vigorously empirically supported hypothesis in economics.

On the other hand, Grossman and Stiglitz (1980) go even as far as to claim that the perfect

efficiency of financial markets is an impossibility, since under the assumption of EMH, no in-

centives to gather information are present. With the onset of behavioural finance (motivated

especially by the experimentally documented irrationality of decision making by Kahneman and

Tversky (2013) and by its manifestations in financial markets by De Bondt and Thaler (1985)),

as well as the increasing number of empirical studies yielding conflicting results (see a survey

of the EMH history by Sewell (2011)), alternative hypotheses began to emerge. Campbell, Lo,

and MacKinlay (2012) introduced the concept of relative efficiency, no longer perceiving the effi-

ciency of markets as an absolute characteristic. Eventually, inspired by concepts in evolutionary

biology and neuroscience, such as the natural selection, competition and mutation, Lo (2005)

proposed the Adaptive Markets Hypothesis (AMH), claiming that the degree of market efficiency

is highly context-dependent and evolving over time. According to the AMH, any examples of

irrationality, such as overconfidence or overreaction are assumed to be consistent with gradual,

iterative adaptation of market participants to the constantly changing market environment and

this process is likely to offer potentially profitable (albeit short lived) market inefficiencies.

While the profitability of technical analysis is in direct contradiction with the EMH, it does

not necessarily violate its alternatives. Therefore, not surprisingly, another branch of academic

research that contributed to the (still ongoing) debate regarding the validity of the EMH tests

for the presence of technical trading rules (TTRs) that might contain true predictive power
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over the stock price process. After the seminal work of Brock, Lakonishok, and LeBaron (1992)

that provided strong evidence of predictable power of simple TTRs applied to the DJIA index,

the popularity of academic literature devoted to technical analysis increased rapidly. In their

excellent survey of this topic, Park and Irwin (2007) note that out of 95 studies dated after

1988 that they consider, 56 studies provide evidence against the EMH, while 20 studies find

that technical analysis does not lead to excess returns. However, the authors note that there

is a large number of methodological issues connected with testing for the predictable power of

technical analysis and the approach in which these issues are considered is not consistent across

different studies.

Among such issues are the proper risk adjustment of the trading strategy returns (since a

possible higher expected return may simply be a compensation for higher risk) or accounting for

transaction costs (since even if a trading rule possesses predictive power over the price process,

in order to obtain economic profits, one needs to be able to trade the given asset as often as the

rule requires, while simultaneously bearing transaction costs that do not wipe out all its excess

returns).

Additionally, as in any other empirical analysis, statistical significance of the results needs

to be addressed properly. In order to investigate market efficiency, technical analysis studies

usually analyze large numbers of TTRs. Indeed, there is virtually an infinite number of possible

trading rules one could devise and apply to data. By trying long enough, one is certain to find

at least one trading rule that outperforms any given stochastic process ex-post, even if such

process is a purely random sequence of numbers and the trading rule does not bear any true

predictive power. When multiple models are applied to the same dataset, the possibility of the

data snooping bias in the results arises.

In this study, we contribute to the market efficiency related debate by evaluating the pre-

dictable power of 616 technical trading rules applied to seven different stock market indices

observed during the time period 2008 - 2015. We are mainly interested in assessing whether the

EMH or the AMH is a better descriptor of the reality. In this respect, we contribute in several

dimensions.

Fistly, we note that while the other studies focus on a wide variety of different markets (such

as developed and emerging stock markets, foreign exchange markets, derivatives or commodity

markets), the emerging markets of the Central and Eastern Europe (CEE) have not been ana-

lyzed sufficiently. We consider five CEE countries, namely, the stock market indices of Austria,

the Czech Republic, Hungary, Poland, and Slovenia. Moreover, the results for the CEE region

are qualitatively compared to the well-developed and highly liquid stock markets of the United

States and Germany. This sample of stock market indices represents an interesting collection of

both developed as well as emerging financial markets that vary in terms of liquidity or market

microstructure characteristics.
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Secondly, while the vast majority of studies usually focus on daily, weekly or even monthly

data, our study utilizes three different sampling frequencies: daily, hourly, and 15-minute. We

therefore consider also intraday sampling frequencies, a feature less often present in technical

trading studies. The main motivation is our hypothesis that even if trading rules prove to be not

useful for trading at lower frequencies (such as on a daily basis, a frequency trading at which may

be pursued by virtually any investor, regardless of their institutional background), an investor

who has the possibility of trading at higher (intraday) frequencies may still be able to uncover

short-lived market inefficiencies that can possibly be exploitable by technical analysis. Indeed,

as Marshall, Cahan, and Cahan (2008) note, surveys reveal that the weight placed on technical

analysis in trading at intraday frequencies almost doubles as opposed to longer horizons and

smaller frequencies. By studing intraday data and three different frequencies, we are able to

evaluate market efficiency not only across markets, but also to study its dependence on the

sampling frequency of the price process.

Thirdly, besides controlling for the presence of the data snooping bias by the means of the

White (2000) Reality Check procedure, the structure of our analysis also enables us to conduct

a simple out of sample predictability evaluation of the trading rules considered in this study.

In particular, we assess how an investor identifying the ex-post best performing trading rules

on a regular basis and subsequently following them in the market (the so-called "Best-Rule"

strategy) performs as opposed to an investor that simply follows the market by passively holding

the market index. Moreover, we also provide a discussion on whether transaction costs are likely

to affect the potential profitability of this strategy.

Finally, because of the non-overlapping subsamples approach this study undertakes, the

development of all results across time might be observed. This feature also contributes to the

market efficiency debate, since under the EMH, technical analysis should not be profitable in

any of the subsamples, while under the AMH, market inefficiencies may arise temporarily.

Our results indicate that our sample of seven stock market indices may be objectively divided

into two groups. The first group, consisting of the S&P 500 and the German DAX, exhibits

results that strongly support market efficiency. For the vast majority of subsamples, White’s

Reality Check fails to reject the null hypothesis of no superior performance of the best rule.

Moreover, using the best performing rules in the "Best-Rule" investment strategy does not yield

excess performance significantly greater than zero. These results are stable over time and robust

with respect to the choice of the performance measure or the sampling frequency of the price

process.

The second group of indices, consisting of the five CEE indices exhibits similar results only

for the daily frequency data. For the two intraday frequencies, we find some evidence of time

varying informational efficiency of the markets with respect to our set of trading rules. More-

over, an investor following the "Best-Rule" investment strategy would be able to expect excess
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performance that is greater than zero in a statistically significant manner for three indices at the

hourly frequency and for all five indices at the 15-minute frequency. This excess performance

varies from 13% p.a. for the Slovenian index and the daily frequency trading to as much as

73.2% p.a. for the Austrian index and the 15-minute frequency, thus offering potentially very

interesting returns before transaction costs.

Overall, we argue that moving from well-developed towards emerging stock markets, as well

as moving from lower to higher intraday frequencies is associated with results that challenge the

concept of market efficiency to a greater degree. Our analysis contributes to the informational

efficiency-related debate that is of great importance, especially for the financial markets that

may still be considered emerging.

The remainder of this paper is organized as follows. Section 1.2 provides a review of studies

that share a common ground with our study. Section 1.3 describes all the methodological aspects

we apply, while section 1.4 introduces the data in a detailed manner. Section 1.5 provides the

results, that we divide into two main parts: the White’s Reality Check resuls and the "Best-Rule"

investment strategy evaluation. Section 1.6 concludes.

1.2 Literature Review

1.2.1 Overview of the Main Studies

Empirical studies devoted to technical analysis have been around for decades. Early works

include Fama and Blume (1966), Jensen and Bennington (1970) and Kaufman (2013). Under-

standably, these early studies focus mostly on developed American stock market indices sampled

at relatively low frequency (such as monthly, weekly or daily).

In their seminal study, Brock, Lakonishok, and LeBaron (1992) (BLL) analyze two of the

most common trading rules, namely, the Moving Average (MA) and the Trading Range Breakout

(TRB). Utilizing over 90 years worth of daily data on the DJIA index and 26 inividual trading

rules, the authors document strong evidence of profitability. The authors are also the first to

apply the model-based bootstrap methodology to assess the statistical significance of the results1

and conclude that each of the 26 trading rules generate returns that outperform the market.

Another study providing evidence of the TTR profitability is Levich and Thomas III (1993).

1The process consists of assuming a null stochastic process for the stock price, estimating its pa-
rameters and randomly resampling the residuals with replacement. BLL use four different assumptions
for the null process: a random walk with drift, an AR(1), a GARCH-M and EGARCH. By performing
500 bootstrap resamplings, the authors estimate the underlying probability distribution of the trading
rules’ returns under each of the null models. This procedure overcomes the usual t-tests, which assume
independent and indentically distributed data, an assumption that is usually violated for asset returns.
However, inconsistent results may be obtained by misspecifying the null models, as noted by Maddala
and Li (1996).
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Focusing on the FX market and analyzing 15 years worth of FX-futures data, the authors report

a large number (60 %) of statistically significant profitable TTRs. These results are robust with

respect to 5-year subperiods, even though a moderate decline in profitability is reported for the

last subperiod.

The BLL study is one of the most important in the area of technical analysis. Because of

their significant results, the intensity of the subsequent research increased rapidly. Bessembinder

and Chan (1998) applied the BLL set of trading rules to the DJIA index adjusted for dividends

and conclude that after transaction costs, the BLL rules do not lead to profitable strategies.

Sullivan, Timmermann, and White (1999) (STW) are the first to apply the White (2000)

Reality Check procedure designed to test for the presence of data snooping. The authors develop

a "universe of trading rules", containing over 7000 individual TTRs and acknowledge that under

such setting, the dangers of data snooping are strongly present. The Reality Check tests the

null hypothesis that the best performing trading rule does not bear predictive power over the

market. Applying the procedure to the DJIA index over 1987 - 1996, as well as to the S&P

500 index futures over 1984 to 1996, the authors report that while the trading rules were indeed

profitable in the original BLL dataset (also after the data-snooping is controlled for), these

properties diminished in the additional 10 years of data (i.e., out of sample of the BLL study).

The Reality Check procedure has gained major attention (not only) in the subsequent technical

analysis related studies.

Other studies focus on more complex technical trading algorithms. Gencay (1999) applies

the nearest-neighbor and the feed-forward neural network algorithms to five currency pairs and

finds that these algorithms are capable of significantly outperforming the market benchmark.

Neely and Weller (2003) use genetic programming to find profitable trading rules at intraday

foreign exchange market data and conclude that the optimal trading rules do not outperform

the market. Recently, Gradojevic and Gençay (2013) analyze the performance of fuzzy-logic

algorithms and find that these algorithms outperform standard moving average rules for the

Euro - US Dollar currency pair, especially during periods of higher volatility.

Bajgrowicz and Scaillet (2012) continue with the analysis of the daily DJIA index data

and the universe of trading rules developed by Sullivan, Timmermann, and White (1999). The

authors focus on mathematically rigorous approach towards the issues of risk-adjustment, data-

snooping as well as transaction costs. The profitability of TTRs is seriously questioned, especially

during the last two decades.

Since its inception by Lo (2005), numerous studies specifically analyzed the extent to which

empirical observations conform to the Adaptive Market Hypothesis (AMH). The literature that

provides evidence on time-varying stock market predictability is expanding (Lim and Brooks

(2011)). Neely, Weller, and Ulrich (2009) compare the ability of EMH and AMH in explaining

foreign exchange market conditions and find evidence in favor of the AMH. Kim, Shamsuddin,
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and Lim (2011) provide another evidence in favor of the AMH. Applying the variance ratio as

well as automatic portmanteau tests to both daily and weekly DJIA data, the authors conclude

that the degree of market efficiency substantially varies over time and is governed by dynamic

market conditions. Fundamental financial, economic and political crises significantly change

the efficiency of financial markets. Zhou and Lee (2013) argue that the AMH provides suitable

framework for the explanation of the US real estate market. Urquhart and McGroarty (2014)

analyze various calendar anomalies and conclude that empirical results based on daily DJIA

data are strongly supportive of the AMH.

1.2.2 Evidence of Emerging Markets

One of the first studies analyzing technical trading in emerging markets is Bessembinder and

Chan (1995). Considering daily data for three developed (Hong Kong, Japan and South Korea)

and three emerging (Malaysia, Taiwan and Thailand) markets, the authors observe that while

simple trading rules are not useful in the developed markets, there is evidence of their predictable

power over the three emerging markets. Lee, Pan, and Liu (2001) apply similar trading rules to

13 daily currency spot rates in Latin America and conclude that the rules are able to predict

movements especially for the currency pairs of Brazil, Mexico and Venezuela. Similar conclusion

for the Brazilian foreign exchange spot rate is also obtained by Tabak and Lima (2009). In

particular, the moving average and trading range breakout rules appear to have predictive ability

during the period 1999 - 2006. However, the authors state that transaction costs are likely to

wipe out all the potential excess returns.

Another emerging market that exhibits certain characteristics suggesting it may be ineffi-

cient, namely, the equity market of New Zealand, is analyzed by Marshall and Cahan (2005).

However, applying 12 popular trading rules, the authors do not find evidence of their profitabil-

ity. Stock markets of Brazil, China, India and Russia are studied by Chong, Cheng, and Wong

(2010). It is documented that simple technical indicators are most profitable in the Russian

stock market, while the Brazilian stock market is found to be the most efficient in this sample.

Yu et al. (2013) focus on four developing and one developed Asian stock markets and analyze

the profitability of the MA and TRB rules during the period 1991 - 2008. These technical

rules are documented to outperform the market for developing stock markets. Nevertheless,

by accounting for transaction costs, economic significance of this profitability diminishes. The

authors highlight the need of constant verification of statements regarding market efficiency,

especially for emerging and growing stock markets. Among other studies that focus on emerging

equity markets and obtain some evidence of profitability we mention the analyses of the African

markets by Ntim et al. (2011), Australian market by Park et al. (2014), the individual stocks

of the Taiwanese market by Ko et al. (2014) and the Ugandan stock market by Katusiime,
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Shamsuddin, and Agbola (2015).

Despite this relatively varied mixture of emerging stock markets and foreign exchange rates

of emerging countries, surprisingly low attention has been devoted to the technical trading

profitability in emerging markets of the Central and Eastern Europe. Fifield, Power, and Don-

ald Sinclair (2005) consider 11 European stock markets during the 1990s and report that while

the developed markets are informationally efficient, the emerging markets considered are ineffi-

cient, even after transaction costs are accounted for. Moreover, the authors find that while the

moving average rules often do not appear to be successful, filter rules consistently outperform

the market.

In their extensive study, Marshall, Cahan, and Cahan (2010) use the MSCI data of 49

countries, including Austria, Czech Republic, Hungary and Poland to study 5806 popular TTRs.

While some qualitative differences between emerging and developed markets are observed, the

authors note that these differences are not particularly strong after data snooping is controlled

for, when daily data are considered. Metghalchi, Marcucci, and Chang (2012), however, report

that moving average rules manage to outperform some of the 16 European stock markets between

1990 and 2006 on a daily basis, even after the White (2000) Reality Check is applied to account

for data snooping. Finally, Heyman, Inghelbrecht, and Pauwels (2012) utilize a large daily

frequency sample of 34 stock market indices, including the Czech Republic, Hungary and Poland.

After transactions costs as well as the effects of data snooping are controlled for, the authors

report significant profitable trading rules only for market indices of Botswana, Jamaica, Kenya

and Oman.

1.2.3 Evidence of Intraday Frequencies

As mentioned earlier, the majority of studies have utilized price data sampled at relatively

low frequencies. The most frequently used sampling frequency is daily, while weekly or even

monthly frequencies were not uncommon in earlier studies. The number of studies utilizing

intraday frequency data remains rather modest. As Park and Irwin (2004) note, out of 92

considered studies, only 6 make use of intraday data and all 6 of them focus on currency pairs.

For example, Osler (2000) investigates the support and resistance levels for multiple currency

pairs sampled at 1-minute frequency and reports that the specific support and resistance levels

bear certain predictive power. Neely and Weller (2003) use genetic programming to devise

trading rules on four major currency pairs data sampled at 30-minute frequency. For all four

currencies, the authors document predictable patterns in the intraday data. This predictability is

found to be exceptionally stable, however, once transaction costs are controlled for, the presence

of excess returns for the devised trading rules disappears.

More recently, several authors have focused also on intraday frequencies in equity markets.

12



Marshall, Cahan, and Cahan (2008) focus on US equity market approximated by the S&P De-

pository Receipts data at 5-minute frequency. By studying more than 7000 simple trading rules,

the authors conclude that even though a small number of rules appears to be profitable, once ac-

counting for data snooping bias, any profitabililty diminishes. Schulmeister (2009) analyzes spot

and futures S&P 500 market and observes qualitative differences in market efficiency between

daily and 30-minute frequency data. In particular, between 1983 and 2000, technical analysis

applied on 30-minute frequency yields on average 8.8% of gross return, while the profitability at

daily frequency gradually disappears during the same period. Finally, Yamamoto (2012) uses

5-minute data on Japanese equity markets and concludes that technical analysis applied in such

setting is not profitable.

Recently, Frömmel and Lampaert (2016) examine the profitability of two classes of TTRs

(the Moving Average and the Relative Strength Indicator) applied on the US Dollar - Russian

Ruble currency pair sampled at 60, 30, 15 and 10 minute frequencies. The authors conclude

that despite the fact that technical analysis seems to possess greater predictive power at higher

frequencies, the profitability of technical trading is highly questionable after accounting for

transaction costs.

To the best of our knowledge, there does not currently exist a study that would analyze

intraday frequency data of CEE equity markets.

1.3 Methodology

1.3.1 Behavioural Justification for Technical Analysis

Why would technical analysis work? The following definition of technical analysis due to Pring

(2021) is illustrative in answering this question:

"The technical approach to investment is essentially a reflection of the idea that prices move

in trends that are determined by the changing attitudes of investors toward a variety of economic,

monetary, political, and psychological forces. The art of technical analysis, for it is an art, is to

identify a trend reversal at a relatively early stage and ride on that trend until the weight of the

evidence shows or proves that the trend has reversed."

Indeed, the common objective of virtually every possible TTR is to identify the direction of

trend in the future price development based on past (and current) information. If, according to

the particular TTR, the price is likely to trend upwards, or if the downward trend is likely to

be reversed in the near future, it is advantageous to be long in a security, therefore, the TTR

provides the buy signal. Conversely, if downward trend is predicted, the sell signal is provided

and entering a short position is advised. Finally, if there is not enough evidence for a trend, the

neutral signal may be present. One of the main justifications for the (hypothesized) trending
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behaviour of prices is that new information is incorporated into prices in a gradual manner, while

being exposed to various accomodative tendencies exhibited by market participants. If such

complicated price discovery arises from behavioural tendencies (such as herding, overreaction or

overconfidence, aspects of human decision making documented in great detail by behavioural

finance literature2), exploitability of systematic patterns in such behaviour by analyzing past

data becomes possible.

The characteristics outlined above provide some justification for heavy employment of tech-

nical analysis in practice.3 Therefore, there might be a strong belief among market practitioners

that analyzing past prices is important, whether it is because it contains true economic infor-

mation or simply because they think that other investors possess these beliefs and a risk of

self-fulfilling prophecies is present.4 Technical trading rules do not just appear out of nowhere.

Instead, they represent a long lasting manifestation of the assumptions some investors make

about the price discovery processes. If markets are informationally efficient, these assumptions

are not valid and technical analysis does not consistently yield risk-adjusted returns that out-

perform the market. It is this market-outperforming power of technical analysis that we aim to

examine in this study.

1.3.2 Performance Evaluation

Before we introduce the particular set of TTRs used in this study, we need to establish the

framework in which the performance of the TTRs will be evaluated. An approach established in

literature is to calculate certain function of the returns that the trading strategy provides and

compare the value to the returns provided by some benchmark strategy.

Assume that by t ∈ {1, 2, . . . , T}, we denote the time indices corresponding to the sample

during which a trading rule k ∈ {1, 2, . . . ,K}, where K = 616 is the total number of TTRs, is

applied and evaluated. As already discussed, the ultimate output of each trading rule is a trade

recommendation by signaling the desired position in an asset. A trading rule k thus provides

an investor at each time period t with a signal S(k)
t , where the interpretation of the signal is as

follows:

S
(k)
t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 during time period t+ 1, hold a long position

0 during time period t+ 1, hold a neutral position

−1 during time period t+ 1, hold a short position

Hence, we assume that upon a trading signal at time t, an investor follows this signal by

2Excellent surveys of behavioural finance literature are provided by Barberis and Thaler (2005) and
De Bondt et al. (2008).

3A very detailed discussion of both the theoretical and empirical justifications for why technical
analysis might be profitable is provided by Park and Irwin (2007).

4Self-fulfilling prophecy argument is also made by Froot, Scharfstein, and Stein (1992).
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executing the corresponding trade (buy/sell/do nothing) at a closing price Pt and the corre-

sponding one-period log-return emanating from this signal is based on prices Pt and Pt+1. Since

at the moment of generation of S(k)
t , the price Pt is not yet known, the signal must be based on

the information available up until (and including) time t−1. The signal S(k)
t is not a function of

Pt in our study, since we wish to account for the possibility of non-synchronous trading (when

an investor is not able to execute the trade at the price based on which the trade decision is

made), that may pose a real problem especially for trading at higher frequencies.

Since market efficiency precludes the existence of trading rules that would be able to consis-

tently outperform the market, we evaluate each trading rule against the buy-and-hold benchmark

strategy consisting of entering a long position at time t = 1 and holding this position until t = T .

Since a long position is assumed to be the default benchmark position, our trading rule signals

will superimpose a position on this buy-and-hold strategy.5 Thus, a long position generated

by a buy signal may be interpreted as doubling the investment in an asset by borrowing the

resources needed to leverage the position, since we have a good reason to believe that the price

will go up. A neutral signal may be interpreted as simply holding an unlevered position in an

asset (equivalent to the buy-and-hold strategy) and a short position emanating from a sell signal

may be interpreted as liquidating the position in an asset and staying out of the market, since

we have a good reason to believe that the price will decline. We also assume that in order to

leverage, investor borrows the required funds at a (continuously compounded) risk-free rate of

return r
(F )
t . This rate of return is also earned by investor while staying out of the market.

Denote the one-period time t continuously compounded rate of return of the market as r(BH)
t ,

where:

r
(BH)
t = log

(︃
Pt

Pt−1

)︃
. (1.1)

The return r
(BH)
t is equivalent to the return of the buy-and-hold strategy, since this strategy

simply follows the market. The corresponding time t gross log return of the trading rule k at

time t is (according to our description above) given by:

r
(k)
t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2r

(BH)
t − r

(F )
t S

(k)
t−1 = 1

r
(BH)
t S

(k)
t−1 = 0

r
(F )
t S

(k)
t−1 = −1

(1.2)

The corresponding net return of the trading rule k in excess of the benchmark buy-and-hold

5This interpretation is also used, for example, in Sullivan, Timmermann, and White (1999) or in
Bajgrowicz and Scaillet (2012).
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strategy is then given by:

r
(k)
EXCESS,t = r

(k)
t − r

(BH)
t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r
(BH)
t − r

(F )
t S

(k)
t−1 = 1

0 S
(k)
t−1 = 0

r
(F )
t − r

(BH)
t S

(k)
t−1 = −1

(1.3)

The first performance measure of the trading rule k ∈ {1, . . . ,K} used in this study is then

simply the particular trading rule’s expected net return (again, in excess of the buy-and-hold

strategy):

f
(k)
M = E

[︂
r
(k)
EXCESS,t

]︂
= E

[︂
r
(k)
t

]︂
− E

[︂
r
(BH)
t

]︂
(1.4)

Note that this test statistic is constructed in such a way that under market efficiency, each trading

rule should not consistently outperform the buy-and-hold strategy, that is, it should hold that

f
(k)
M ≤ 0. The natural estimator of this measure, based on the actual observed sequence of

signals {S(k)
t }Tt=1 and returns {r(BH)

t }Tt=1, {r
(F )
t }Tt=1 is:

ˆ︁f (k)
M =

1

T

T∑︂
t=1

r
(k)
EXCESS,t. (1.5)

Alternatively, another performance measure that we report in this study is based on the

Sharpe Ratio (excess return per unit of risk). Both the benchmark buy-and-hold strategy (rep-

resented by the series of returns r
(BH)
t ) as well as the strategy followed by trading rule k (rep-

resented by the series of returns r
(k)
t ) may be characterized by the mean return generated by

such strategy divided by the standard deviation of these returns. This calculation yields a risk-

adjusted performance measure for both strategies, known as the Sharpe Ratio. This measure

controls for the possibility that greater expected return is just a compensation for the greater

risk of a TTR.6 We follow standard practice in the literature and calculate the returns in ex-

cess of the risk-free rate and obtain the Sharpe Ratios of the trading rule k as well as of the

buy-and-hold strategy as follows:

SR(k) =
E
[︂
r
(k)
t − r

(F )
t

]︂
√︄

E

[︃(︂
r
(k)
t − r

(F )
t

)︂2]︃
−
(︂
E
[︂
r
(k)
t − r

(F )
t

]︂)︂2
SR(BH) =

E
[︂
r
(BH)
t − r

(F )
t

]︂
√︄

E

[︃(︂
r
(BH)
t − r

(F )
t

)︂2]︃
−
(︂
E
[︂
r
(BH)
t − r

(F )
t

]︂)︂2 .
(1.6)

6As noted by Park et al. (2014).
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These Sharpe Ratios are naturally estimated by:

ˆ︂SR(k)
=

1
T

∑︁T
t=1

(︂
r
(k)
t − r

(F )
t

)︂
σ
(︂
r
(k)
t − r

(F )
t

)︂
ˆ︂SR(BH)

=

1
T

∑︁T
t=1

(︂
r
(BH)
t − r

(F )
t

)︂
σ
(︂
r
(BH)
t − r

(F )
t

)︂ ,

(1.7)

where

σ (xt) =

⌜⃓⃓⃓
⎷ 1

T − 1

T∑︂
t=1

⎛⎝xt −
1

T

T∑︂
j=1

xj

⎞⎠2

(1.8)

is the standard deviation estimate of the summand in the numerator, which in our case is a time

series of strategy returns in excess of the risk-free rate.

Under market efficiency, the risk-adjusted performance of the buy-and-hold strategy should

not be smaller than that of any trading rule based strategy. The second performance measure

may thus be defined as the difference of the corresponding two Sharpe Ratios. Denoting this

measure as f
(k)
SR = SR(k) − SR(BH), its estimator is given by:

ˆ︁f (k)
SR = ˆ︂SR(k)

− ˆ︂SR(BH)
(1.9)

We again note that under market efficiency, the following should be satisfied: f
(k)
SR ≤ 0.

1.3.3 A Note on Our Universe of Trading Rules

There are hundreds of studies employing various classes of TTRs and there are even more TTRs

available from a wider set of sources (such as technical analysis related textbooks) to choose

from. Indeed, there is basically an infinite amount of possible rules one could devise and apply

to data. In this study, however, we do not follow such aproach. Instead, we focus on a set of

relatively simple, well-established and widely studied TTRs described below.

The three classes of trading rules (Moving Average, Trading Range Breakout, Filter) belong

to the most widely known and studied in both the academia as well as the commercial investment

sector. From the perspective of our research, Table 1.1 provides a representative7 overview of

studies devoted to the analysis of technical trading together with the particular classes of trading

rules employed.

It needs to be emphasized that the objective of this study is not to artificially create and

discover a new, original technical trading rule that would potentially be successful in terms of

7To the best of our knowledge and ability to provide a representative selection of studies both in
terms of long-run impact and recency.
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Table 1.1: Overview of the literature on profitability of simple technical trading rules.

A checkmark represents the particular TTR being employed in the particular study. Trading
rules legend: MA - Moving Average, TRB - Trading Range Breakout, BB - Bollinger bands, F
- Filter.

Study MA TRB F BB Other
Brock, Lakonishok, and LeBaron (1992) ✓ ✓
Levich and Thomas III (1993) ✓ ✓
Hudson, Dempsey, and Keasey (1996) ✓ ✓
Sullivan, Timmermann, and White (1999) ✓ ✓ ✓ ✓
Leung and Chong (2003) ✓
Marshall, Cahan, and Cahan (2008) ✓
Lento, Gradojevic, and Wright (2007) ✓
Neely, Weller, and Ulrich (2009) ✓ ✓ ✓
Bajgrowicz and Scaillet (2012) ✓ ✓ ✓ ✓
Yu et al. (2013) ✓ ✓
Park et al. (2014) ✓ ✓ ✓ ✓
Katusiime, Shamsuddin, and Agbola (2015) ✓ ✓ ✓
Frömmel and Lampaert (2016) ✓ ✓

outperforming the market by possessing a predictable power over the price process. Instead, in

order to compare the resilience of multiple stock markets, sampled at several frequencies and

analyzed over multiple time periods, we require a set of rules that are reasonably simple and

widely applied. The presented evidence highlights the fact that the three classes of trading rules

analyzed in this study do conform to such criteria.

1.3.4 Technical Trading Rules

We now introduce the three classes of TTRs (Variable Moving Average, Trading Range Breakout,

and Filter) that we employ in this study. We note again that the ultimate goal of all TTRs is

to uncover changes in trend of the underlying price discovery process. The following paragraphs

describe the way in which this goal is achieved in each class separately.

1. Variable Moving Average (VMA): The trend is modelled by comparing two moving

averages of past prices, one based on a longer period of time (long moving average, based

on the last NL ∈ N price observations) and the other one on a shorter period of time (short

moving average, based on the last NS < NL price observations). If the former is smaller

than the latter, the more recent prices are on average greater than the older prices, which

suggests that an upward trend has commenced and one should enter a long position. The

logic for downward trend is analogical. We also consider a sensitivity parameter B > 0,
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which states the minimum possible percentage by which the two moving averages must

differ in order for the signals to be triggered. This band of inactivity allows for a certain

tolerance level in the difference of the two moving averages, as no signal is generated unless

this difference is significant enough so as to exceed the band B and correspondingly, a

neutral position is maintained. To summarize, the VMA rule generates a buy (sell) signal

if the short moving average rises above (falls below) the long moving average by more

than B · 100%.

Each of our VMA rules may be uniquely defined by the three parameters described above.

The class of VMA trading rules is therefore parametrized as:

VMA(NS , NL, B).

2. Trading Range Breakout (TRB): This rule is based on identification of the so-called

trading range, composed of the upper and the lower bounds. We compute these bounds as

the maximum and minimum of the past N ∈ N price observations. While moving within

the trading range, no information about the change in trend is triggered. As soon as the

price increases above (declines below) the upper (lower) bound, possibly also adjusted

by the band of inactivity B > 0, an upward (downward) trend is considered to have

commenced and the buy (sell) signal is triggered. The position is maintained until the

opposite trend is identified. The two levels that compose the trading range are also called

the Resistance and the Support, respectively. Therefore, this class of TTRs is also widely

known as the Support-Resistance class.

Uniquely defined by the two parameters described above, we denote the class of TRB rules

as

TRB(N,B).

3. Filter (F): This class of trading rules focuses on the magnitude of price changes. In

particular, the two percentage filters are used to determine the values of price changes

that are considered to be significant in terms of triggering a signal for opening and closing

a position. These changes are always evaluated with respect to a reference price. If the

price rises above (falls below) the reference price by more than the value of the opening

filter (x > 0), a long (short) position is entered and the reference price is defined as the

most recent maximum (minimum) price. If the price then falls below (rises above) this

reference price by more than the value of the closing filter (y), a position is closed and a

neutral position is taken and the new reference price is defined as the price prevailing at

the time of entering this neutral position. The Filter rule is similar to the previous rules

in the sense that it aims to uncover the underlying bullish and bearish trends in the price
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process and trade on this information accordingly, entering a long position in an upward

trend and a short position in a downward trend, while ignoring small price fluctuations by

using appropriate values of the two filters. If these values successfully correspond to the

timing of the market bullish/bearish behaviour, a profitable strategy is obtained. From

the behavioural perspective, the two filters may be used to emulate the tolerance levels of

market participants in the process of forming their expectations about the nature of the

market movement in the future.

Uniquely defined by the two parameters described above, we denote the class of Filter

rules as

F (x, y).

The particular values of the parameters used, as well as the exact algorithmic prescriptions

of each class of TTRs are provided in Appendix 1.A. Overall, we employ 296 VMA rules, 176

TRB rules and 144 F rules. Therefore, the total number of individual TTRs that the "universe

of trading rules" considered in our study contains is 616.

For an illustration, we demonstrate the underlying mechanics for each class of TTRs on

Figure 1.1. We have simulated a Geometric Brownian Motion (GBM) path with trend 0 and

volatility 0.01 consisting of 500 observations and applied three particular (randomly chosen out

of our universe) TTRs: VMA(5, 30, 0.005), TRB(40, 0.01) and F (0.03, 0.02). The long, short

and neutral positions generated by these rules are represented with the blue, red and white

background, respectively.

Additionally, we repeat the entire procedure for 1000 random trajectories of GBM. The

histograms of the two performance measures, namely, the excess mean returns and excess Sharpe

Ratios for the F (0.03, 0.02) rule are displayed on Figure 1.2. The thick red lines correspond to

the particular GBM path displayed on Figure 1.1.

We may observe that the distributions are centered around (or mildly below) zero, suggest-

ing that on average, the three TTRs are not informative about the changes in trend. This is

not surprising, since the simulated prices are martingales. However, for our particular realiza-

tion on Figure 1.1, the Filter rule yields purely by chance considerably positive values of both

performance measures. It is these random artifacts that the data-snooping tests are meant to

uncover.

1.3.5 Testing for Data-Snooping

If the two performance measures described above (the mean return and the Sharpe Ratio)

have positive values, we have an indication that the trading rule k outperforms the benchmark

buy-and-hold strategy either from the mean return or from the risk-adjusted Sharpe Ratio
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Figure 1.1: The four figures display the simulated stock price of length 500 (upper left figure)
and the functionality of the three class of TTRs: Variable Moving Average (upper right figure),
Trading Range Breakout (lower left figure) and Filter (lower right figure). White, blue and red
background represent trading rule signals at any point in time: neutral, buy and sell, respectively.

perspective (or both). However, an evaluation of the statistical significance of such result is

important. If one tries sufficient number of different trading rules, some of them will indeed

appear as outperforming, even though such result would simply be a statistical artifact, while

the trading rule would not be bearing any true predictive power over the benchmark strategy.

The dangers of data-snooping (as such phenomenon of using the same dataset in the process

of model selection multiple times is named) have been acknowledged in the literature. Brock,

Lakonishok, and LeBaron (1992) evaluate the obtained results by fitting several null models

to the returns data and performing a bootstrap resampling of the residuals. However, as they

acknowledge, they are not able "to compute a comprehensive test across all rules. Such a test

would have to take into account the dependencies between results for different rules." (Brock,

Lakonishok, and LeBaron (1992), p. 1743). Nevertheless, in each study that estimates the

performance of multitude of trading rules, such test is of extreme importance.

The most widely used procedure designed to adress the issue of data-snooping is the White

(2000) Reality Check bootstrap-based test and is applied for the first time by Sullivan, Timmer-

mann, and White (1999) and later by numerous researchers, for example, Marshall, Cahan, and

Cahan (2008), Bajgrowicz and Scaillet (2012) and Park et al. (2014). It tests the null hypothesis

that the best performing trading rule (out of a pre-defined set, or "universe", of trading rules) is

no better than a given benchmark model. As Sullivan, Timmermann, and White (1999) state,
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Figure 1.2: Histograms of mean excess returns and Sharpe Ratios for 1000 random stock price
trajectories of length 500 for the F (0.03, 0.02) trading rule. The vertical red lines represent the
values observed for the particular trajectory displayed on Figure 1.1.

"the idea is to evaluate the distribution of a suitable performance measure giving consideration

to the full set of models that led to the best-performing trading rule." (Sullivan, Timmermann,

and White (1999), p. 1650).

Considering the mean return performance measure f
(k)
M defined above, the null hypothesis

of White Reality Check test may be formulated as follows:

H0 : max
k=1,...,K

f
(k)
M ≤ 0 (1.10)

If we reject the null hypothesis, we will possess an evidence that the best trading rule in our

universe of trading rules (containing K rules) indeed outperforms the benchmark strategy (from

a mean return perspective) in a statistically significant manner.

The test statistic is equal to:

V = max
k=1,...,K

{
√
T f̂

(k)

M } (1.11)

White (2000) shows that the probability distribution of this test statistic under the null hy-

pothesis may be approximated by performing the stationary bootstrap algorithm, originally

introduced by Politis and Romano (1994). The main idea of this algorithm is to re-sample

blocks of original time series of returns of varying length. The exact algorithm is described in

Appendix 1.A. For each bootstrap simulation b, the corresponding test statistic is calculated as

follows:

V ∗b = max
k=1,...,K

{
√
T
(︂
f̂
(k)∗
M,b − f̂

(k)

M

)︂
}, b = 1, . . . , B (1.12)

where f̂
(k)∗
M,b is the mean return performance measure estimate corresponding to the k-th trading

rule applied to the b-th bootstrapped time series of returns. Repeating the stationary bootstrap

B times yields B values of V ∗b , b = 1, . . . , B. The p-value corresponding to the null hypothesis
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is then calculated as:

p-value =

∑︁B
b=1 I(V

∗
b > V )

B
, (1.13)

where I(·) is the indicator function, equal to 1 if the condition in the parentheses is true and zero

otherwise. This procedure allows us to statistically evaluate whether the best performing rule

in our universe of trading rules (containing 616 individual rules) possesses predictive power over

the benchmark buy-and-hold strategy. Under market efficiency, such predictive power should

not be present and the null hypothesis should not be rejected.

The above procedure used estimates of the mean return performance measure, f̂
(k)

M . Alter-

natively, and analogically, we also consider the Sharpe Ratio performance measure f̂
(k)

SR.

Despite the wide usage of White’s Reality Check procedure in the literature, we note that

the method possesses several drawbacks that might to a certain extent affect our results. First,

by construction, the Reality Check only tests whether the single best performing trading rule

beats the benchmark strategy after accounting for data-snooping. Therefore, if there are other

well performing rules in our universe, these are not considered in the procedure. Moreover, as

argued by Hansen (2005), the Reality Check may perform poorly in the cases where the universe

of trading rules contains many rules that perform poorly and some that perform well.8 In this

case, the configuration of the test is "the least favorable to the alternative hypothesis" (Park

et al. (2014)). These facts need to be acknowledged, since we cannot rule out the possibility of

such composition of trading rules prevailing also in our universe.

1.4 Data

Potential profitability of technical analysis is investigated for financial markets of the following

seven countries: Austria (ATX), the Czech Republic (PX50), Germany (DAX), Hungary (BUX),

Poland (WIG), Slovenia (SBITOP), and the United States (SPX).9 The original data is sampled

at the 5-minute frequency, sourced from Bloomberg and covers periods January 2008 - July 2013

for the ATX, SBITOP, and SPX and January 2008 - December 2015 for the BUX, DAX, PX,

and WIG indices.

We use the original 5-minute frequency data to create the three frequencies used in our study:

15-minute, hourly, and daily. We thus obtain 21 time series of closing prices. Additionally, since

we wish to observe the time development of the results, we divide each time series into non-

overlapping subsamples. This division is carried out for each frequency separately as follows:

8Hansen (2005) also proposes an alternative data snooping bias test modification, known as the Supe-
rior Predictive Ability test. In this study, we apply the original White’s Reality Check. As documented
in, for example, Park et al. (2014), the two procedures do not report dramatically different results.
Similarly, an alternative data snooping testing procedure is proposed by Hsu, Hsu, and Kuan (2010).

9Each country’s financial market is proxied by the corresponding stock market index, the abbreviation
of which is stated in parentheses.
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1. Daily: for the daily data, we set the length of one subsample to be equivalent to 52

weeks (approximately one year) worth of data. Consequently, one subsample of daily

data consists of approximately 250 observations.

2. Hourly: for the hourly data, one subsample is equivalent to 12 weeks (approximately

one quarter-year) worth of data. This yields approximately 420 hourly observations per

subsample.

3. 15-minute: for the data sampled at 15-minute frequency, one subsample is equivalent to 4

weeks (approximately one month) worth of data, yielding approximately 560 observations

per subsample.

We choose different subsample sizes for different frequencies for several reasons: for each

subsample, it is desirable to have at least 100 (ideally more) closing price observations to see

how the technical trading rules perform. Moreover, we wish to avoid comparing the results of

subsamples that have dramatically different sample sizes - therefore, our division into subsamples

yields sample sizes that are not orders of magnitude different from each other. Figure 1.3 provides

a graphical illustration of the subsamples creation process described in this section. The first

price of each subsample is the first price at which we assume an investment position may be

taken - if a trading rule requires the knowledge of a certain number of previous prices (as, for

example, the variable moving average rule always does), these prices are not included in the

subsample, but we naturally use them for calculation of trading signals as necessary.

J F M A M J J A S O N D J F M A M J J A S O N D

Q2 Q3 Q4

DAILY DATA

HOURLY DATA

15-MINUTE DATA

...

...

...

YEAR 1 YEAR N

Q1 Q2 Q3 Q4 Q1

Figure 1.3: Scheme of creating subsamples. Each vertical line represents a division into
subsamples. One subsample is equivalent to approximately 1 year for the daily data (top panel),
1 quarter for the hourly data (middle panel) and 1 month for the 15-minute data (bottom panel).

Figure 1.4 displays the price development of the stock market indices used in this study,

while Table 1.2 displays the summary statistics of the corresponding daily log-returns. We

observe that even though all regions share a strong downward trend during 2008, corresponding

to the global financial crisis, there are considerable differences in the post-crisis period price
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development. While the S&P 500 as well as the German DAX rebounded fairly quickly, the

central European indices exhibit range-like movement, while the Slovenian SBITOP continued

the slight downward drift. The Slovenian index also exhibits considerably smaller volatility than

all the other indices. The normality of daily log-returns of all indices is rejected by the Jarque-

Bera test. The log-returns across all indices and subsamples exhibit excess kurtosis and are not

symetrically distributed, as confirmed by the skewness statistic, which suggests, with only a few

exceptions, negatively skewed log-return distributions.

In our calculations, we also use the data on the risk-free rates. For that purpose, we use the

short term interest rate data available at the OECD website.10

We use the data corresponding to the currencies of the countries that are represented by the

stock market indices. The data is provided at the monthly frequency. We convert the annualized

simple interest rate values R
(F )
t to the corresponding one-period logarithmic interest rate r

(F )
t

using the formula:

r
(F )
t =

log(1 +R
(F )
t )

M
, (1.14)

where M = 252 for the daily frequency calculations, M = 252 · 8 for the hourly frequency

calculations and M = 252 · 8 · 4 for the 15-minute frequency calculations.

We also provide additional information (as of June, 2017) about the five Central and Eastern

European indices:

• ATX (Austria): ISIN: AT0000999982. The index represents the 20 largest blue chip

companies traded on Wiener Börse. The index is followed by the corresponding Exchange

Traded Fund (ETF) iShares ATX UCITS (ISIN: DE000A0D8Q23) that is traded at Vienna

and Frankfurt exchanges. The largest constituent of the index is Erste Bank with 19.55%

weight. Index futures and options are traded at the Frankfurt Exchange (Eurex).

• BUX (Hungary): ISIN: XC0009655090. The index representing the 25 largest blue chip

Hungarian companies traded on Budapest Stock Exchange (BSE). The largest constituent

is OTP Bank (33.03%). It is a tradeable index, its derivative contracts are frequently

traded at BSE.

• PX (Czech Republic): ISIN: XC0009698371. Opened on April 5, 1994, based on the

largest companies traded on Prague Stock Exchange. The largest constituent is Erste

Group Bank (21.67%). The index has its own corresponding ETF (managed by Horizon,

ISIN: BE6224091866), though, to the best of our knowledge, this ETF is a passively

managed fund.

10https://data.oecd.org/interest/short-term-interest-rates.htm
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• SBITOP (Slovenia): ISIN: SI0026109882. Launched on March 31, 2006, the index con-

sists of 11 largest traded companies on Ljubljana Stock Exchange. The largest constituent

is KRKA (30%). The index is designed as a tradeable index and is available to financial

institutions as an underlying in derivatives products. To the best of our effort, we have

not found an ETF that would directly follow this index.

• WIG (Poland): ISIN: PL9999999987. Also denoted as WIG20, the Polish index was in-

troduced on April 16, 1991. The largest constituent is PKN Orlen (9.99%). Index futures

(since 1998) and options (since 2003) are traded on Warsaw Stock Exchange. The corre-

sponding index ETF is traded as well as the LYXOR WIG20 ETF (ISIN: LU0459113907).

We note that Vienna Stock Exchange also acts as exclusive sales agent for the indices of

Prague and Ljubljana Stock Exchange. Moreover, trading at stock exchanges in Vienna (since

1999), Prague (since November 2012), Budapest (since December 2013) and Ljubljana (since

December 2010) is organized via the Xetra electronic trading system.
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Figure 1.4: Daily normalized closing prices of the stock market indices considered in this
study. Each original time series is normalized by dividing each element by the first available
corresponding closing price (as of January 2, 2008).
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Table 1.2: Summary statistics of daily log-returns.

The table contains several summary statistics of the stock market closing prices used in this
study for seven different market indices. We report summary statistics of the daily log-returns
for the entire available sample as well as for three subsample periods. Q(1) denotes the first-
order autocorrelation coefficient. JB denotes the p-value of the Jarque-Bera normality test.

ATX BUX DAX PX SBITOP SPX WIG

Region Austria Hungary Germany Czechia Slovenia USA Poland
Start 2008/01/02 2008/01/02 2008/01/02 2008/01/02 2008/01/03 2008/01/02 2008/01/02
End 2013/07/19 2015/12/04 2015/12/04 2015/12/04 2013/07/05 2013/07/19 2015/12/04
# daily 1378 1980 2016 1990 1374 1396 1986
# hourly 12393 17073 18126 16426 6510 11139 17108
# 15-min 49572 68292 72504 65704 26040 44556 68432

Daily log-returns summary statistics:
Entire sample

Mean -0.0005 0.0000 0.0001 -0.0003 -0.0010 0.0001 -0.0003
Stdev 0.0199 0.0173 0.0154 0.0160 0.0135 0.0163 0.0154
Skewness -0.1040 -0.0467 0.0735 -0.5162 -0.3954 -0.2767 -0.2984
Kurtosis 6.5934 10.1825 8.4119 17.8375 9.4200 10.8346 6.7564
Q(1) 0.0796 0.0524 0.0086 0.0594 0.1302 -0.1279 0.0443
JB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Jan 1, 2008 - Dec 31, 2009
Mean -0.0012 -0.0004 -0.0007 -0.0010 -0.0019 -0.0005 -0.0007
Stdev 0.0262 0.0255 0.0214 0.0255 0.0177 0.0222 0.0230
Skewness -0.0477 -0.0550 0.3334 -0.3741 -0.2820 -0.1033 -0.1249
Kurtosis 5.0093 6.8756 7.2979 10.3163 7.4945 7.1016 4.0982
Q(1) 0.0618 0.1038 -0.0389 0.0812 0.1896 -0.1335 0.0568
JB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Jan 1, 2010 - Dec 31, 2011
Mean -0.0006 -0.0004 0.0000 -0.0005 -0.0010 0.0002 -0.0003
Stdev 0.0169 0.0172 0.0150 0.0138 0.0092 0.0141 0.0142
Skewness -0.0237 0.1527 -0.1826 -0.3157 -0.5359 -0.4792 -0.4749
Kurtosis 5.5146 7.1066 5.1916 6.3805 7.8877 9.8116 6.1868
Q(1) 0.1150 -0.0328 0.1081 0.0492 0.0258 -0.1437 0.0222
JB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Jan 1, 2012 - End of sample
Mean 0.0004 0.0003 0.0006 0.0001 0.0001 0.0007 -0.0002
Stdev 0.0130 0.0113 0.0117 0.0095 0.0117 0.0078 0.0104
Skewness -0.1148 -0.0381 -0.2026 -0.1757 -0.1740 -0.1873 -0.4473
Kurtosis 3.9376 4.8798 4.2841 4.5660 4.3071 4.0028 5.4965
Q(1) 0.0762 0.0237 -0.0068 -0.0137 0.0223 -0.0181 0.0335
JB 0.0006 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000
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1.5 Results

1.5.1 Performance and the Reality Check Evaluation

We apply the 616 technical trading rules contained in our universe to each of the seven stock

market indices: Austrian (ATX), Hungarian (BUX), German (DAX), Czech (PX), Slovenian

(SBITOP), American (SPX) and Polish (WIG). For each index, we consider three different

frequencies of closing prices, approximating the trading strategies of three different types of

investors, based on whether they evaluate (and potentially change) their positions on a daily,

hourly, or 15-minute basis. For each index and each frequency, we apply the TTRs to every

subsample created as described earlier.

For each index, for each frequency, for each subsample, and for each trading rule, we eval-

uate the performance of the trading rule using the two measures introduced earlier: the mean

return and the Sharpe Ratio. Both measures are evaluated against the benchmark buy-and-hold

strategy, consisting of entering a long position in the index at the beginning of a subsample and

holding that position until the end of the subsample. If one of these two measures is greater for

a particular trading rule than it is for the benchmark strategy, we have an indication that this

trading rule outperforms the market.

We also take into account the possibility of data-snooping bias and carry out White’s Re-

ality Check procedure to evaluate the statistical significance of our results. For each index, for

each frequency, and for each subsample, White’s Reality Check is performed by testing the null

hypothesis that the best performing trading rule in our universe is not better than the bench-

mark. We perform this Reality Check twice: both for the mean return and for the Sharpe Ratio

entering as the performance measure used to calculate the test statistics.

Benchmark S&P 500 Index

Because of the large quantitative nature of our study, we report the results in graphical form.

Figure 1.5 shows the results for one stock market index and the first performance measure: the

S&P 500 and the mean return performance measure. The S&P 500 is the most widely studied

and developed stock market of the United States, and thus serves as our benchmark index. We

describe how these graphical results are meant to be read in the following paragraphs.

There are 6 plots displayed in Figure 1.5. The first plot shows the performance of each of the

616 TTRs applied to the closing prices sampled at daily frequency. The horizontal axis represents

the beginning of each subsample, while the vertical axis represents the terminal value obtained

by investing $1 in the beginning of the subsample period and following the corresponding trading

strategy. For each subsample period (the beginning of which is labeled on the x-axis), we have

617 different values of these terminal wealths - one for each of the 616 TTRs and one for the
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benchmark buy-and-hold strategy (shown as the thicker black line).
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Figure 1.5: Technical Trading Rules evaluation results summary for the S&P 500 index (SPX)
and the mean return performance measure.

The TTRs are represented in three different colors, based on the particular class of trading

rules (dark blue for the Variable Moving Average, green for the Trading Range Breakout, and

orange for the Filter rule). This terminal wealth evaluation is equivalent to the mean return

performance measure (there is one-to-one mapping between the terminal value of $1 invested

and the mean return).

The right-hand side plots in Figure 1.5 display the p-values of White’s Reality Check proce-

dure applied to each subsample at different frequencies. The dashed line represents the 5 percent

level of significance. Any p-value below this level corresponds to a subsample during which the

best performing TTR contained statistically significant (at the 5 percent level) predictive power

over the price process.

The two plots in the first row show the results for daily frequency data. The plots in the

second and the third rows follow the same logic, but display the results for hourly and 15-minute

frequency data, respectively.11

11We remind the reader that each daily frequency subsample contains 52 weeks (1 year) of data, while
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The results for the S&P 500 index are largely unsurprising. For both daily and hourly

frequencies, the vast majority of TTRs underperformed the benchmark buy-and-hold strategy.

Despite the index exhibiting pronounced trends during our sample (corresponding to the post-

2008 bearish market, followed by gradual post-2009 recovery), few trading rules managed to

outperform the benchmark strategy for each subsample period. Moreover, the daily and hourly

White’s Reality Check test p-values are all well above the 0.05 level for all subsamples.

The results are qualitatively only slightly different for the 15-minute frequency data. Here,

in several subsamples, a large fraction of the TTRs that were outperforming the index appear.

Moreover, the White’s Reality Check p-values are smaller in general, though still mostly far

from the critical 5-percent level.

Overall, the United States stock market, as proxied by the S&P 500 index, exhibits results

that are consistent with the EMH, since we fail to reject the null hypothesis of no excess per-

formance of technical analysis in any case. Though some of our TTRs manage to outperform

the market, we conjecture that such observations are due to chance, and no TTR bears true

predictive power over the price process. We therefore turn now to the European stock market

indices.

We note that the mean return and the Sharpe Ratio results are qualitatively very similar, not

only for the US index, but for all markets and frequencies considered in this study. Therefore,

for the sake of brevity, we report the rest of the results only for the mean return performance

measure. The risk-adjusted Sharpe Ratio results are reported in Appendix 1.A for all indices.

European Indices

Overall, the results for the European stock indices are not exceptionally distant from those of

our benchmark S&P 500 index, especially regarding the daily and hourly frequency data. It is

possible, however, to observe certain systematic differences between the American and German

indices and the remaining five European indices. These differences especially manifest in the

data sampled at the 15-minute frequency.

Considering the indices individually, we observe that the ATX index (Figure 1.6) was fre-

quently beaten by the VMA trading rules (blue lines), while the TRB and F rules performed

comparably to the buy-and-hold strategy. However, in all of the daily and hourly subsamples,

we fail to reject the hypothesis that the performance of the best trading rule is not due to the

data-snooping phenomenon, although in the first daily subsample and two of the hourly subsam-

ples, the p-values are very close to the critical level. Looking at the hourly frequency results, the

p-values are, in general, considerably smaller than for the S&P, though they still fail to reject

each hourly frequency subsample contains 12 weeks (one quarter) of data, and each 15-minute frequency
subsample contains 4 weeks (one month) of data. For each frequency, the adjacent subsamples are
non-overlapping.
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Figure 1.6: Technical Trading Rules evaluation results summary for the Austrian index (ATX)
and the mean return performance measure.

the null hypothesis.

At the 15-minute frequency, however, there are three subsamples that reject the null hypoth-

esis of no abnormal performance of the best trading rule.

The results for the Hungarian BUX market (Figure 1.7) are qualitatively very similar to the

ATX index. After accounting for data-snooping, our trading rules are not able to outperform

the index at the daily and hourly frequencies, though there are three significant subsamples at

the 15-minute frequency.

The German DAX index (Figure 1.8), which is arguably the most liquid and developed

stock market in continental Europe, provides evidence consistent with the EMH. Compared to

the other European indices, we observe much higher occurrence of p-values very close to 1, and

notably smaller number of (nearly) significant White’s Reality Check results. We fail to reject

the null hypothesis in each subsample and at all three frequencies.

The results of the Czech PX index (Figure 1.9) suggest that there existed periods of market

inefficiency during which the stock market could be exploited by using technical analysis. PX is

the only stock market index, for which there exists a daily frequency subsample (starting on May

14, 2008) that rejects the null hypothesis of White’s test. We observe significant Reality Check
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BUX TTR Results (Performance Measure: Mean Return)

Figure 1.7: Technical Trading Rules evaluation results summary for the Hungarian index
(BUX) and the mean return performance measure.

p-values at all three frequencies. However, the number of significant p-values still represents

only a small fraction of the subsamples considered.

The Slovenian SBITOP (Figure 1.10) contains the largest number of subsamples in which

we reject the Reality Check null hypothesis. Even though the market appears to be efficient at

daily frequency, we reject the null hypothesis for three hourly frequency subsamples and for eight

15-minute frequency subsamples. These subsamples are present mostly during the first half of

the period observed, in particular, during the last quarter of 2008, the period corresponding to

the most intense financial crisis stress.

Finally, the Polish WIG index (Figure 1.11) again provides evidence mostly in favor of

the Efficient Markets Hypothesis. We observe a high resemblance between the WIG and DAX

indices. With the exception of one instance in the 15-minute frequency data (again corresponding

to autumn of 2008), all Reality Check p-values are above 0.05 and overall maintain higher values,

especially for daily and hourly frequencies.
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DAX TTR Results (Performance Measure: Mean Return)

Figure 1.8: Technical Trading Rules evaluation results summary for the German index (DAX)
and the mean return performance measure.

Table 1.3: Number of statistically significant Reality Check subsamples.

The table contains the number of subsamples, for which the Reality Check procedure applied to
the mean return performance measure rejects the null hypothesis of no abnormal performance
of the best trading rule.

Frequency SPX DAX ATX BUX PX SBITOP WIG

Daily 0 0 0 0 1 0 0

Hourly 0 0 0 0 2 3 0

15-minute 0 0 3 3 1 8 1

Summarizing the results presented in this section (see also Table 1.3), we find evidence that

all the financial markets (as proxied by their corresponding market indices) have been efficient

with respect to the set of relatively simple trading rules providing signals using daily frequency

data during the period covered in our sample. Moreover, the stock market indices of the United

States and Germany (the two most developed markets in our sample) also exhibit the same

results when both types of higher frequency data (hourly and 15-minute) are considered. For the

remaining five CEE markets, we find some evidence of the existence of trading rules that possess
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Figure 1.9: Technical Trading Rules evaluation results summary for the Czech index (PX)
and the mean return performance measure.

true predictive power over the indices for several hourly and 15-minute subsamples. However,

these subsamples do not occur frequently and are always followed by periods during which

evidence of market efficiency (with respect to our trading rules) again prevails. Nevertheless, for

these five stock markets, we observe periods characterized by mixed evidence of market efficiency.

We must note, however, that to claim that a certain market is truly inefficient, one needs

to be able to actively trade on this market, while simultaneously bearing transaction costs that

do not wipe out all the excess return yielded by a technical trading strategy. Considering the

Slovenian index as an example, even though certain exchange traded funds (ETFs) exist with

Slovenian exposure (such as the iShares MSCI Frontier 100, which is exposed to the emerging

markets), to the best of our knowledge, no ETF exists that would directly be following the

SBITOP index (see section 1.4 for a discussion). It is therefore possible that trading on this

index would be accompanied with considerably high transaction costs that could potentially

wipe out all profits included in a trading strategy, as an investor would have to rebalance every

asset included in this stock index individually, especially considering that such actions would

potentially need to be carried out multiple times per day.
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Figure 1.10: Technical Trading Rules evaluation results summary for the Slovenian index
(SBITOP) and the mean return performance measure.

1.5.2 A Thought Experiment: the "Best Rule" Investment Strat-

egy and Transaction Costs

The non-overlapping subsamples structure of our analysis enables us to observe how all the

results evolve over time. One way in which it is possible to exploit such results is to evaluate how

a hypothetical investor following a certain set of rules would perform over time. Observing the

left-hand side graphs shown on Figures 1.5 - 1.11, we note that, for all subsamples (disregarding

frequency), a multitude of TTRs do outperform the corresponding benchmark buy-and-hold

strategy. Despite the fact that White’s Reality Check procedure does not frequently qualify a

performance of the best trading rule as immune to data-snooping, we note that it is not unusual

to observe two (or more) adjacent subsamples during which the same trading rule outperformed

the market. Visually, this may be expressed as observing a fixed colored line above the thick

black line for a multitude of adjacent subsamples. We are therefore interested in analyzing how

a hypothetical investor observing outperforming rules in the near past, who follows them in the

near future would perform.

We devise the following, simplest possible strategy (and we refer to it as the "Best Rule"
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Figure 1.11: Technical Trading Rules evaluation results summary for the Polish index (WIG)
and the mean return performance measure.

investment strategy): for each subsample, we identify the corresponding best-performing TTR

and denote its index as k∗. In the subsample that follows directly afterwards (indexed by

Ti as the beginning and Tj as the end), we follow this particular TTR and record its excess

performance, denoted as:

φM
Ti→Tj

= exp

⎛⎝ Tj∑︂
t=Ti

r
(k∗)
t

⎞⎠− exp

⎛⎝ Tj∑︂
t=Ti

r
(BH)
t

⎞⎠ (1.15)

The value φM
Ti→Tj

represents the difference between the terminal value of $1 invested in the TTR

k∗ between times Ti and Tj and following the buy-and-hold strategy during the same period.

Thus, it may be thought of as the mean return excess performance of the TTR between Ti and

Tj .

For a given subsample division T0, T1, . . . , TN , this procedure yields the following time series

of values:

φM
T1→T2

, φM
T2→T3

, . . . , φM
TN−1→TN

. (1.16)
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Assuming that these values represent a stationary time series, we formulate the null hypothesis

that the "Best Rule" investment strategy yields the same expected performance as the buy-and-

hold strategy:

H0 : E
[︂
φM
Ti→Tj

]︂
= 0 (1.17)

A rejection of H0 then implies that the expected performances of these two strategies differ in

a statistically significant manner. In order to account for a possible autocorrelation in the time

series, we estimate the sample mean of the time series (denoted as ˆ︂µφ) and the standard error

of the sample mean as:

ˆ︂µφ =
1

N

N∑︂
i=1

φM
Ti→Ti+1

SE (ˆ︂µφ) =
ˆ︁σφ
N

[︄
1 + 2

N−1∑︂
m=1

(︂
1− m

N

)︂ ˆ︁ρ(m)
φ

]︄ (1.18)

where ˆ︁σ is the usual standard deviation estimator. The 95% confidence interval for µφ is then

formed as ˆ︂µφ± 1.96SE (ˆ︂µφ). The null hypothesis is rejected when this interval does not contain

zero.

We also perform a robustness check of the above procedure. Instead of simply estimating the

mean and the standard error that accounts for the possible autocorrelation in the time series, we

fit both the AR(1) and MA(1) models to the time series and evaluate the statistical significance

of the estimated stochastic process means. Moreover, we perform a non-parametric Wilcoxon

signed-rank test to test for the mean value of the time series. All the approaches yield identical

results in terms of statistical significance and we omit them for the sake of brevity.

Testing for µφ provides an insight into the potential prediction power of the "Best Rule"

investment strategy. In order to also evaluate its profitability, for each subsample, we calcu-

late break-even transaction costs. These are the per-trade transaction costs (expressed as the

percentage of the traded value) that would wipe out all the excess performance of the TTR.

Assuming that the TTR during subsample Ti → Ti+1 requires ni trades, and in each trade, the

corresponding one-period return is reduced by TCi, these transaction costs are break-even if

they satisfy the equation:

exp

⎛⎝Ti+1∑︂
t=Ti

r
(k∗)
t − niTCi

⎞⎠ = exp

⎛⎝Ti+1∑︂
t=Ti

r
(BH)
t

⎞⎠ . (1.19)

Solving for TCi,

TCi =

∑︁Ti+1

t=Ti
r
(k∗)
t −

∑︁Ti+1

t=Ti
r
(BH)
t

ni
. (1.20)
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We calculate the break-even transaction costs for each subsample separately (as indexed by i)

and for the entire period observed. In this case, the total number of trades is
∑︁N−1

i=1 ni and the

entire period break-even transaction costs are equal to:

TCTOT =

∑︁TN

t=T1
r
(k∗)
t −

∑︁TN

t=T1
r
(BH)
t∑︁N−1

i=1 ni

(1.21)

In general, the greater the value of TCi, the greater the evidence of profitability of the trading

rule, since in order for the excess performance to disappear, the percentage per-trade transaction

costs need to be relatively large. However, we note that, though helpful, this calculation does

not provide a definitive answer, since the notion of "relatively large" may be difficult to quantify,

especially for the emerging markets considered in our study.

Predictability

The results are displayed in Table 1.4 and, for the 15-minute frequency data, also in graphical

form in Figure 1.12. Figure 1.12 displays time development of the excess performance time series

for each subsample. Thick horizontal lines represent the estimated mean of these time series

(i.e., the estimates ˆ︂µφ) and colored bars cover the corresponding 95% confidence intervals. If

the entire region is above zero, we reject the null hypothesis that the "Best Rule" strategy has

zero expected excess performance. These cases are represented by green confidence bands, while

for cases that do not reject the hypothesis, the intervals are red.

Summarizing Table 1.4 and Figure 1.12 and assuming that the "Best-Rule" strategy provides

a quantifiable measure of the predictable power of technical analysis, we observe that there are

qualitative differences in the results, both across stock market indices and across the frequencies

considered.

With the exception of the Slovenian index, the "Best-Rule" strategy does not yield excess

performance when applied to the daily frequency data. However, we note that the daily fre-

quency results need to be taken with caution, since there are very few observations on which

the statistical inference is carried out. Nevertheless, the results are not surprising, since, as

argued above, true predictive power of our set of TTRs is not confirmed at the daily frequency.

Following the "Best-Rule" strategy at the daily frequency would yield 13% annualized return in

excess of the buy-and-hold strategy for the Slovenian index, while applying this strategy to the

other indices (with the exception of BUX) would actually yield negative excess returns.

Considering the hourly frequency results, there are four indices (Austrian ATX, German

DAX, Slovenian SBITOP, and Polish WIG) for which we document significantly positive values of

the "Best-Rule"’s excess performance. These positive results are observed for the CEE countries,

with the surprising exception of the marginally significant German DAX index. The results for
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the other benchmark index, the SPX, are not significant, and the value ˆ︂µφ is very close to zero

at all three frequencies.12 Nevertheless, we observe that moving from a daily into an hourly

frequency setting may have improved the performance of technical analysis for some of the stock

market indices.

This finding is also consistent with the 15-minute frequency results. In this case, we observe

a clear division of indices into two groups. The first group consists of the two well-developed

benchmark stock markets (SPX and DAX), for which the values ˆ︂µφ are not statistically signifi-

cant, suggesting that the "Best-Rule" strategy is, on average, no better than simply holding the

index. Conversely, the second group consists of the remaining five CEE stock markets. We doc-

ument a statistically excess performance for each of these markets. These results are in line with

our intuition that technical analysis is more likely to possess predictive power for stock markets

that are less liquid and relatively less important from the global perspective. Moreover, this

predictability is present at higher frequencies to a greater extent than with lower frequencies.

Table 1.4 summarizes these results. Panel A displays estimated values of the per-subsample

expected gross13 excess performance ˆ︂µφ of the "Best-Rule" strategy for each of the country-

frequency pairs. The values shown in bold are statistically significant in the positive direction

at the 5% level. The "Best-Rule" strategy yields a 13% per annum excess return when applied

to the daily frequency SBITOP index. At the hourly frequency, the largest excess return is

documented for the ATX index: 9.1% per quarter, equivalent to 36.4% per annum. Similarly, at

the 15-minute frequency, the ATX index yields as much as 6.1% per month, equivalent to 73.2%

per annum.

Profitability - Transaction Costs

Up to this point, the discussion has not taken into account the presence of transaction costs

associated with trading. There are several kinds of transaction costs that an investor incurs

when opening and closing trading positions (including exchange fees, the costs of immediacy,

non-synchronous trading costs, and taxes14). We follow an established practice in the literature15

and calculate the break-even transaction costs, expressed in units of percent-per-trade, that

would erase all of the excess performance of the "Best-Rule" strategy. The results are reported

in Panel C of Table 1.4. We only report results for the statistically significant predictability

cases.

The range of the calculated break-even transaction costs is 2.5 basis points (bps) (WIG

12The results for the SPX index are in line with our intuition and thus serve as a good control group
for our choice of the entire evaluation setting.

13Before transaction costs.
14For a detailed discussion, see, for example, Bajgrowicz and Scaillet (2012).
15For example, Bessembinder and Chan (1999), Neely and Weller (2003) and Bajgrowicz and Scaillet

(2012)
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Table 1.4: "Best Rule" investment strategy predictability results.

Panel A reports the estimates of the expected excess performance of the "Best Rule" strategy
expressed as the difference between the terminal value of $1 invested in the beginning of a
subsample and following either the "Best Rule" strategy or the buy-and-hold strategy. The
highlighted values are statistically significant in the positive direction at the 5% level. Panel
B reports the same values on an annualized basis. Panel C reports the break-even transaction
costs (expressed in percentage points per trade) required to wipe out the excess performance
of the "Best Rule" strategy. The values are reported only for the cases in which we possess
statistically significant evidence of predictability.

Panel A: Estimated Panel B: Excess Panel C: Break-even
per-subsample performance ˆ︂µφ on transaction costs

excess performance ˆ︂µφ an annualized basis (per trade) TCTOT (%)
Frequency Daily Hourly 15-Min Daily Hourly 15-Min Daily Hourly 15-Min
SPX -0.015 0.008 0.004 -0.015 0.032 0.048
DAX -0.091 0.058 0.012 -0.091 0.232 0.144 0.091
ATX -0.007 0.091 0.061 -0.007 0.364 0.732 0.115 0.095
BUX 0.069 0.038 0.026 0.069 0.152 0.312 0.039
PX -0.025 0.046 0.029 -0.025 0.184 0.348 0.054
SBITOP 0.13 0.077 0.046 0.13 0.308 0.552 0.758 0.223 0.179
WIG -0.041 0.033 0.017 -0.041 0.132 0.204 0.06 0.025

at the 15-minute frequency) to 75.8 bps (SBITOP at the daily frequency) per trade. The

degree to which such transaction costs are likely to actually be present is not quantifiable in a

straightforward manner. However, several results may serve as a guideline for determining what

reasonable transaction costs might equal. Bajgrowicz and Scaillet (2012) consider the so-called

high cost scenario, corresponding to 50 bps per trade and the low cost scenario, corresponding

to 25 bps per trade. Neely and Weller (2003) consider 2.5 bps as an estimate of the transaction

costs a large institutional investor would face.

Assuming Neely and Weller’s value of 2.5 bps, we observe that all statistically significant

index-frequency pairs would be profitable even after transaction costs, since in all cases, the

break-even transaction costs are greater than 2.5 bps per trade. However, acknowledging that

such values may be realistic only for large institutional investors (and likely only for liquid stock

markets) and assuming a value of 25 bps instead, the conclusions change considerably, since only

the (arguably least-developed) SBITOP index traded at the daily frequency would offer excess

returns net of transaction costs. The actual profitability of the "Best-Rule" strategy therefore

depends greatly on the particular value of transaction costs an investor would face. Nevertheless,

we conclude that our calculated break-even transaction costs are not so low as to unequivocally

undermine the documented market-outperforming power of technical analysis.
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Figure 1.12: "Best Rule" investment strategy graphical results summary for the 15-minute
frequency and the mean return performance criterion. The graphs display the time series of
excess performance measures φM

Ti→Ti+1
(green line), their estimated mean value (horizontal thick

black line) and the corresponding 95% confidence interval (red and green regions, corresponding
to the cases when the null hypothesis is not rejected and is rejected, respectively).
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1.6 Conclusion

This study carries out a multidimensional investigation of weak-form market efficiency for the

stock market indices of the United States, Germany and five CEE countries during the years

following the 2008 financial crisis. Our aim is to analyze the predictive power and profitability of

three simple classes of well known technical trading rules applied to market index prices sampled

at three different frequencies: daily, hourly, and 15-minute. By dividing our datasets into non-

overlapping subsamples, we are able to assess the developments of all results across time. As

our sample contains indices representing both highly developed financial markets and markets

that can still be considered emerging, we are mainly interested in qualitative comparison of the

results across these two groups in the context of the Efficient and Adaptive markets hypotheses.

We approach this research objective from two perspectives. Firstly, we calculate the perfor-

mance of the set of trading rules on either the mean return basis or the risk-adjusted Sharpe

Ratio basis, and evaluate them relative to the benchmark buy-and-hold strategy. In order to

avoid data snooping bias, we also conduct White’s Reality Check procedure intended to inves-

tigate whether the best performing trading rule possesses true predictive power over the price

process. Secondly, we study the performance of an investment approach that in each subsam-

ple follows the best performing trading rule from the immediately preceding subsample. This

"Best-Rule" investment strategy can easily be conducted in the real world, provided an investor

is allowed to trade the market index as often as the particular sampling frequency requires. We

record the excess performance of this strategy on a subsample basis and test the null hypothesis

that the expected excess performance is less than or equal to zero. Additionally, we discuss how

a potentially profitable "Best-Rule" strategy persists after accounting for transaction costs.

Combining the results of both approaches, we find that our sample of seven stock market

indices can be objectively divided into two groups. The first group, consisting of the US S&P

500 and the German DAX indices exhibits results that strongly point to market efficiency. For

the vast majority of subsamples, the Reality Check fails to reject the null hypothesis of no

superior performance of the best rule. Moreover, using the best performing rules in the "Best-

Rule" investment strategy does not yield excess performance significantly greater than zero.

These results are stable over time, and are robust with respect to the choice of the performance

measure and the sampling frequency of the price process. These results were largely expected

for the two developed stock market indices of the United States and Germany, and we conclude

that these indices exhibit results consistent with weak-form efficiency at all three frequencies.

The second group, consisting of the five CEE indices, exhibits similar results only for daily

frequency data. For the two intraday frequencies, we find some evidence of time varying infor-

mational efficiency of the markets with respect to our set of trading rules. We document several

time periods during which White’s Reality Check rejects the null hypothesis at one daily (the
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Slovenian index) and several intraday frequencies (all three indices). Moreover, an investor fol-

lowing the "Best Rule" investment strategy would obtain statistically significant positive excess

returns for the Austrian, Slovenian, and Polish indices at the hourly frequency and for all five

indices at the 15-minute frequency. However, these results are challenged after the calculated

breakeven transaction costs (varying from 2.5 bps to 75.8 bps) are taken into account, although

we do not rule out the possibility that the net excess returns would also remain positive. Over-

all, we conclude that the results for this second set of indices suggest an adaptive nature of

market efficiency, with the occurrence of periods during which technical analysis might be truly

profitable.

We conclude that this study highlights differences between well-developed and emerging

stock markets. Since analysis of informational efficiency is of great importance, especially for

the financial markets that can still be considered to be emerging, two possible directions for

future research may include a detailed analysis of transaction costs and an investigation of

additional trading strategies as well as of even higher frequency trading profitability.

1.A Appendix

1.A.1 Trading Rules

Three different classes of technical trading rules (TTRs) are employed in this study: the Variable

Moving Average (VMA), the Trading Range Breakout (TRB), and the Filter rule (F).

1. Variable Moving Average (VMA(NS , NL, B)):

• NS ∈ N: number of past closing prices used to calculate the short moving average,

• NL ∈ N: number of past closing prices used to calculate the long moving average,

NL > NS ,

• B ∈ (0, 1): the percentage band of inactivity.

The trading rule works as follows. Denote by Pt the closing price at time t and by St the

trading signal for period t. Start with a neutral position, thus, S0 = 1. At each trading

period t, the two moving averages of past prices are calculated:

SMAt =
1

NS

t−1∑︂
i=t−NS

Pi, LMAt =
1

NL

t−1∑︂
i=t−NL

Pi.

Based on this information, the trading signal for period t, St, is generated based on the

following instructions:
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• If St−1 ∈ {−1, 0} and SMAt ≥ (1 +B)LMAt, then St = 1.

• If St−1 = 1 and SMAt ≥ LMAt, then St = 1.

• If St−1 ∈ {0, 1} and SMAt ≤ (1−B)LMAt, then St = −1.

• If St−1 = −1 and SMAt ≤ LMAt, then St = −1.

Effectively, starting in a neutral position, the first time the short moving average rises

above (falls below) the long moving average adjusted by the band of inactivity B, a long

(short) position is entered. This long (short) position is maintained until the short moving

average stays above (below) the long moving average value (unadjusted by B). As soon

as this condition is violated, a neutral position is taken. This position is maintained until

the short moving average rises above (falls below) the long moving average adjusted by

the band of inactivity B, at which point a long (short) position is entered again.

We set the following values of the parameters:

NS ∈ {2, 3, 5, 10, 15}, NL ∈ {10, 15, 20, 25, 30, 40, 50, 75},

B ∈ {0, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007}

Recognizing that for each rule, it must hold that NS < NL, this parametrization yields in

total 296 individual TTRs.

2. Trading Range Breakout (TRB(N,B)):

• N ∈ N: number of past closing prices used to evaluate the trading range,

• B ∈ (0, 1): the percentage band of inactivity.

We again start in a neutral position, S0 = 0. At each time period t, the following two

values (the resistance and the support, respectively) are calculated:

αt = max
i∈{t−N,...,t−2}

Pi, βt = min
i∈{t−N,...,t−2}

Pi.

Based on this information, the trading signal for period t is generated based on the fol-

lowing instructions:

• If St−1 = 0 and Pt−1 > (1 +B)αt, then St = 1.

• If St−1 = 0 and Pt−1 < (1−B)βt, then St = −1.

• If St−1 = 1 and Pt−1 < (1 +B)βt, then St = 0.

• If St−1 = −1 and Pt−1 > (1−B)αt, then St = 0.
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• Else, St = St−1.

Effectively, starting in a neutral position, the first time the closing price rises above (falls

below) the maximum (minimum) of the past N −1 closing prices, adjusted by the band of

inactivity B, a long (short) position is entered. This long (short) position is maintained

until the closing price gets below a critical level defined as the minimum (maximum) of

past N prices, adjusted by the band of inactivity B. This band of inactivity serves now

as a tolerance level in a sense that in the case of a long position, the closing level is

obtained by multiplying the minimum of the past N prices by (1 + B). As soon as the

price gets below (rises above) this closing level, a neutral position is taken. This position

is maintained until the closing price rises above (falls below) the maximum (minimum) of

the past N − 1 closing prices, adjusted by the band of inactivity B, at which point a long

(short) position is entered again.

We set the following values of the parameters:

N ∈ {5, 7, 10, 12, 14, 16, 18, 20, 22, 25, 30, 35, 40, 45, 50, 75},

B ∈ {0, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01}

This parametrization yields in total 176 individual TTRs.

3. Filter (F (x, y)):

• x > 0: the percentage filter for entering a position,

• y > 0: the percentage filter for exiting a position.

We again start in a neutral position (S0 = 0) and we define the reference price as R = P0.

At each subsequent time period t, the trading signal for period t is generated based on

the following instructions:

• If St−1 = 0 and Pt−1 > (1 + x)R, then St = 1 and define R = Pt−1.

• If St−1 = 0 and Pt−1 < (1− x)R, then St = −1 and define R = Pt−1.

• If St−1 = 1 and Pt−1 < (1− y)R, then St = 0 and define R = Pt−1.

• If St−1 = 1 and Pt−1 > R, then St = 1 and define R = Pt−1.

• If St−1 = 1 and Pt−1 ∈ [(1− y)R,R], then St = 1.

• If St−1 = −1 and Pt−1 > (1 + y)R, then St = 0 and define R = Pt−1.

• If St−1 = −1 and Pt−1 < R, then St = −1 and define R = Pt−1.

• If St−1 = −1 and Pt−1 ∈ [R, (1 + y)R], then St = −1.
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Effectively, starting in a neutral position, the first time the closing price rises above (falls

below) the reference price R adjusted for the opening filter x, a long (short) position is

entered. At the same time, a new reference price is defined as the closing price at which the

position was entered. If during this long (short) position the next period price increases

(decreases), the reference price is updated as this new closing price and the long (short)

position is maintained until the closing price falls below (rises above) the closing-filter-

adjusted reference price (1+y)R ((1−y)R), at which point a neutral position is taken and

the reference price R is again re-defined as this last closing price. This neutral position is

maintained until the closing price rises above (falls below) the level (1 + y)R ((1− y)R),

at which point a long (short) position is entered again.

We set the following values of the parameters:

x ∈ {0.0025, 0.005, 0.0075, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05},

y ∈ {0.0025, 0.005, 0.0075, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05}

This parametrization yields in total 144 individual TTRs.

Our complete "universe" of trading rules thus contains 296+ 176+ 144 = 616 individual TTRs.

1.A.2 Reality Check Stationary Bootstrap

Stationary bootstrap of Politis and Romano (1994) is used to obtain the asymptotic distribution

of the White (2000) Reality Check test statistic V valid under the null hypothesis. We start with

the original time series of prices {P1, . . . , PT }. One stationary bootstrap sample is defined by

the sequence of time indices θ(t) ∈ {1, . . . , T} ∀t. For a given value of the algorithm parameter

q ∈ (0, 1), this sequence is generated as follows:

1. Set t = 1. Draw θ(t) = θ(1) independently and uniformly from the set {1, . . . , T}.

2. Set t = t + 1. If t > T , stop. Otherwise, draw one random independent realization from

the standard uniform distribution U [0, 1] and denote this number by u.

a) If u < q, draw θ(t) independently and uniformly from the set {1, . . . , T}.

b) If u ≥ q, set θ(t) = θ(t− 1) + 1. If θ(t) > T , reset θ(t) = 1.

3. Repeat Step 2.

The bootstrapped time series of prices is then given by {Pθ(1), Pθ(2), . . . , Pθ(T )}. Effectively, the

algorithm samples blocks of original data of varying length, where the length of one block is a

random variable generated from a discrete geometric probability distribution with the (success)
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parameter q. An expected length of one block is therefore 1/q. We follow a standard practice

in the literature (Sullivan, Timmermann, and White (1999), Park et al. (2014)) and set q = 0.1.

For this bootstrapped sample, a universe of TTRs is applied and a bootstrapped value of

the test statistic is calculated as:

V ∗b = max
k=1,...,K

{
√
T
(︂
f̂
(k)∗
M,b − f̂

(k)

M

)︂
}.

This completes one bootstrap repetition of the test. This procedure is repeated B times and

the empirical distribution of V ∗b approximates the probability distribution of the test statistic

V valid under the null hypothesis of no abnormal performance.

1.A.3 Sharpe Ratio Performance Measure Results

The next seven figures (Figures 1.13 to 1.19) display the technical trading rules performance

evaluation for the Sharpe Ratio criterion, which we omitted in the main body of the text for

the sake of brevity. We emphasize that overall, our entire analysis appears to be highly robust

with respect to the particular choice of performance measure. Thus, if a rule is deemed to bear

true outperforming power over the market, the returns emanating from this rule outperform the

buy-and-hold returns also from the risk-adjusted perspective.
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Figure 1.13: Technical Trading Rules evaluation results summary for the Austrian index
(ATX) and the Sharpe Ratio performance measure.
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Figure 1.14: Technical Trading Rules evaluation results summary for the Hungarian index
(BUX) and the Sharpe Ratio performance measure.
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Figure 1.15: Technical Trading Rules evaluation results summary for the German index
(DAX) and the Sharpe Ratio performance measure.

48



−
0.

15
−

0.
05

0.
05

Daily Frequency

Subsample (52 weeks) Start Date

S
ha

rp
e 

R
at

io

VMA
TRB
F
Buy−and−hold

2008−05−14 2011−05−11 2014−05−09

●

● ●

●

●

●

●

0.0

0.2

0.4

0.6

0.8

1.0

Reality Check p−values (Daily)

Subsample (52 weeks) Start Date

p−
va

lu
e

2008−05−14 2011−05−11 2014−05−09
−

0.
15

−
0.

05
0.

05

Hourly Frequency

Subsample (12 weeks) Start Date

S
ha

rp
e 

R
at

io

2008−02−06 2010−08−18 2013−02−27 2015−06−17

●

●
●

●

●

●

● ●

●
●

●

● ● ●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

● ●
●

0.0

0.2

0.4

0.6

0.8

1.0

Reality Check p−values (Hourly)

Subsample (12 weeks) Start Date

p−
va

lu
e

2008−02−06 2010−08−18 2013−02−27 2015−06−17

−
0.

15
0.

00
0.

10

15−minute Frequency

Subsample (4 weeks) Start Date

S
ha

rp
e 

R
at

io

2008−01−24 2010−09−02 2013−04−11 2015−10−22

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●●●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●
●
●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●
●●

●

●

●●

0.0

0.2

0.4

0.6

0.8

1.0

Reality Check p−values (15−minute)

Subsample (4 weeks) Start Date

p−
va

lu
e

2008−01−24 2010−09−02 2013−04−11 2015−10−22

PX TTR Results (Performance Measure: Sharpe Ratio)

Figure 1.16: Technical Trading Rules evaluation results summary for the Czech index (PX)
and the Sharpe Ratio performance measure.
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Figure 1.17: Technical Trading Rules evaluation results summary for the Slovenian index
(SBITOP) and the Sharpe Ratio performance measure.
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Figure 1.18: Technical Trading Rules evaluation results summary for the S&P 500 index
(SPX) and the Sharpe Ratio performance measure.
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Figure 1.19: Technical Trading Rules evaluation results summary for the Polish index (WIG)
and the Sharpe Ratio performance measure.
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Chapter 2

Order Flow Toxicity Around
Oil Inventory Announcements: Evidence of the
VPIN Metric.

2.1 Introduction

One of the main research areas in the market microstructure literature is the relationship between

market makers and market takers, that is, between the passive and the active (aggressor) sides

of each trade in the limit order book market. Traditionally, market makers have been assumed

to be competitive and to face the problem of adverse selection, referring to the possibility that

the aggressive market taker possesses private information about the asset value, and that the bid

and ask prices quoted by market makers may be exploited by such an informed trader, leading

to market maker’s losses. Consequently, an accepted theoretical result is that, in an effort to

contain the risk of order flow toxicity, market makers’ reaction is to adjust their bid-ask spread

accordingly. Greater probability of market makers being adversely selected may therefore cause

wider bid-ask spreads, smaller market depth (the number of contracts passively quoted at the

best bid and offer prices), and an increase in the price impact of trades (Glosten and Milgrom

(1985), Easley and O’Hara (1987)). The relationship between the degree of adverse selection

and various limit order book market characteristics is, therefore, naturally of interest to all

market participants and regulatory authorities, as is the availability of appropriate methodology

by which the presence of informed trading can be quantified in real time.

In their seminal paper, Easley et al. (1996) develop a sequential trading model, in which

competitive market makers use a Bayesian updating technique to protect themselves from the

order flow toxicity imposed by informed traders. The measure of the adverse selection proposed
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by this model, the PIN (the Probability of Informed Trading), is based on order book side

imbalance of the total volume traded, while estimation of the model parameters is carried out

using maximum likelihood. Using transaction level data of multiple stocks listed on the NYSE,

the authors document a positive relationship between PIN and quoted bid-ask spreads.1

The Easley et al. (1996) model became the cornerstone of empirical research into the presence

of adverse selection in limit order book markets and has since been applied to a wide range of

settings (Easley, Hvidkjaer, and O’Hara (2002), Vega (2006), Chen and Zhao (2012) and Chang

and Lin (2015)). Of course, the methodology itself has also been extended and modified, as the

static nature of the original model carries several limitations, especially when applied to modern

and fast electronic markets. In particular, as Weng et al. (2017) assert, in the original model,

the rates of arrival of informed and uninformed traders are assumed to be constant over the

observed period (which, according to the original assumptions, represents several days to several

months worth of data), making a timely identification of the presence of short lived information

virtually impossible.

With the purpose of addressing the limitations of the static parametric PIN model, Easley,

de Prado, and O’Hara (2010) introduced a non-parametric dynamic way to estimate the informed

trading probability. Their measure, called the Volume-synchronized Probability of Informed

Trading (VPIN), enables a researcher to update the estimated degree of adverse selection present

in the market on a sequential basis. This sequentiality is based on a volume-time based approach

of the VPIN metric, producing a new estimate of VPIN after each pre-determined number of

contracts is traded in the market (an approach referred to by the authors as volume bucketing).

A particular feature of volume bucketing is that the rate of VPIN updating is synchronized with

trading intensity, which the authors consider to be the proxy for the rate of the arrival of new

information. Therefore, assuming that the calculation parameters are chosen appropriately, a

researcher may possess relatively frequent updates of VPIN, creating an attractive empirical

research area, especially for today’s highly liquid, competitive, and fast-moving markets.2

Despite numerous studies investigating the VPIN metric in various settings (for example,

Abad and Yagüe (2012), Wei, Gerace, and Frino (2013), (Wu et al. 2013), Cheung, Chou, and

Lei (2015), Lee et al. (2017) and Yildiz, Van Ness, and Van Ness (2020)), there is an ongo-

ing debate regarding its validity in truly capturing the order flow toxicity. Moreover, although

the static PIN and its modified dynamic version have been used in event studies (Vega (2006),

Aktas et al. (2007), Chen and Chung (2007)), to the best of our knowledge, the number of stud-

ies investigating the VPIN dynamics around regularly occurring macroeconomic announcement

events remains relatively low, particularly so in the environment of high frequency limit order

1A more detailed description of this model is presented in section 2.4.
2A more detailed description of this model is presented in section 2.4.
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book markets.3

The aim of this study is to help to fill this gap by investigating the dynamics and the

predictive ability of VPIN during regular, relatively frequent, and significant macroeconomic

announcement events in modern electronic markets. Our asset of choice is one of the most

liquid and frequently traded securities in the world - the WTI crude oil futures contracts traded

on NYMEX.4 One of the distinct features of the crude oil futures market is the presence of

regular and significant macroeconomic data announcements that directly affect the price of

crude oil: the weekly data on the level of US crude oil inventories. In particular, two significant

data announcements are released each week: the Weekly Statistical Bulletin by the American

Petroleum Institute (henceforth, the API report) and the Weekly Petroleum Status Report by the

Energy Information Association of the Department of Energy of the United States (henceforth,

the DOE report).

The API and the DOE reports, though aiming to report the same quantities, differ in the

ways, the means, and the authority by which they collect the underlying data, often resulting in

different reported values of crude oil inventory levels. While the API is a private organization,

and companies involved in the supply chain of crude oil are not required by law to disclose

information to the API, the reverse is true for the US Government’s DOE report. Moreover,

while the API report is usually released each Tuesday after market hours (at 4:30 p.m. Eastern

Time (ET)), the DOE report is usually released the following Wednesday during market hours

(at 10:30 a.m. ET). This unique and regular sequential publishing schedule of the two reports,

combined with the high frequency trade-level data on the WTI futures contract at our disposal,

provide an interesting setting in which the changes in various market microstructure character-

istics (including the estimates of order flow toxicity) occurring at very high frequencies can be

investigated.

We are particularly interested in estimating the dynamics of the order flow toxicity (as mea-

sured by the VPIN metric) around the API and DOE announcements, and its dependence on

the actual quantities announced, and on the degree to which the quantities differ from market

expectations. We measure these market expectations as the DOE report’s survey forecast (avail-

able prior to the release of the API report) for the API report, and as the published API value

for the DOE report.5 We aim to contribute to the academic debate on VPIN and the adverse

selection measurement by answering the following questions: Is the presence of the announce-

ments accompanied by changes in the VPIN dynamics? Do features exist in the VPIN dynamics

that depend on the degree to which the announcements are surprising? Do the estimated VPIN

3A more detailed overview of similar studies is provided in the Literature Review, section 2.2.
4See, for example, https://www.cmegroup.com/education/featured-reports/cme-group-lead

ing-products.html
5A similar approach is taken by Ye and Karali (2016), Armstrong, Cardella, and Sabah (2017) and

Anatolyev, Seleznev, and Selezneva (2018).
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values suggest a potential presence of insider trading? Are the answers to the previous questions

different for the two types of the announcements? Finally, how do the VPIN calculation input

parameters affect the observed results?

We find that the VPIN dynamics observed around oil inventory announcements are in ac-

cordance with the hypothesized presence of greater informed order flow intensity immediately

after new information is published. In particular, the estimated probability of informed trading

increases by approximately 20% on average for both reports under investigation. The recorded

VPIN adjustment, however, occurs notably faster for the DOE report, which is usually released

during the pit trading hours and is accompanied by considerably greater overall trading activ-

ity. Moreover, we find some evidence of a positive association between the magnitude of the

VPIN change around the two types of inventory announcements and the degree to which these

announcements are surprising. However, we note that changes in the informed order flow dy-

namics are observed only after publication, as we find no evidence of an association between

the pre-announcement VPIN dynamics and the degree to which an announcement is surprising.

Because one of the possible reasons for such rapid changes in informed trading activity could be

the presence of inside information (especially of the last minute leakage kind), the fact that we

do not observe such dynamics prior to oil inventory announcements does not provide evidence

of the presence of insider trading.

Interestingly, on DOE announcement days, we observe, on average, 20% smaller values of

VPIN during the 30 minutes leading up to the publication time, as opposed to the same time of

day on non-announcement days. This average observed difference of approximately 3 percentage

points is, however, not observed, when we consider the corresponding time windows pertaining to

the API report. We conjecture that this observation may be associated with relatively increased

activity of liquidity-demanding traders aiming to reduce any oil price exposure they might face

due to an upcoming announcement, as well as with relatively decreased activity on the part

of informed and speculative traders, who are less willing to engage in usual trading activities,

again, because of a pending announcement.

Finally, although differing in the absolute terms (the average non-announcement day VPIN

is equal to 0.175 for the smaller volume bucket size category and 0.125 for the larger bucket

size category), the qualitative nature of the changes observed in VPIN dynamics appears to

be robust with respect to the researcher’s choice of the volume bucket size, which represents

one of the key VPIN metric input parameters. We thus assert that VPIN may, under certain

circumstances, be considered a viable and valuable measure of order flow toxicity, applicable

even in electronic markets with great order flow intensity.

The remainder of this paper is structured as follows. Section 2.2 overviews studies focusing

either on the phenomenon of adverse selection or on crude oil inventory announcements. Section

2.3 describes our three-year sample of WTI futures contracts trade data and the complemen-
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tary data on the API and DOE reports. In section 2.4, we introduce both the original PIN

model and its younger semi-parametric sibling, the VPIN. Further, we provide definitions of all

variables used in hypothesis testing, and describe the empirical strategy we use to evaluate our

hypotheses. Finally, section 2.5 evaluates the dynamics of various market characteristics during

hours surrounding the publication of the inventory reports, the dynamics of the VPIN metric,

and its relationship with the undelying macroeconomic fundamentals in the form of published

oil inventory data.

2.2 Literature Review

2.2.1 Informed Trading, Adverse Selection and VPIN in High-

Frequency Markets

In the Easley et al. (1996) sequential model, both informed and uninformed traders are present

and, at the beginning of each period, an information event impacting the asset value occurs

(good news, bad news, and no news are the three possibilities considered). The aggressors then

arrive according to the Poisson distribution, while the intensity parameter of this distribution

depends on types of traders as well as on the occurrence of the information event.

As mentioned earlier, the original static model has been extended multiple times, most

notably by Easley et al. (2008), in which the authors use a GARCH-type model to assume time

varying rates of arrival of different classes of traders, while retaining the parametric nature of the

model. Studies investigating this dynamic model include Engle and Neri (2010) and Agudelo,

Giraldo, and Villarraga (2015).

Finally, a non-parametric VPIN model was introduced by Easley, de Prado, and O’Hara

(2010). The authors demonstrate the usefulness of the VPIN metric on the E-mini S&P 500

and the WTI crude oil futures contracts, sampled during the period from January 2008 to June

2011. The authors find that the VPIN metric tends to precede a large fraction of periods of

extreme volatility, especially those induced by order flow toxicity accompanied by large risks

of adverse selection. Moreover, the VPIN metric may be useful to distinguish the causes of

volatility. Although mentioning one instance of the DOE report announcement (December 9,

2009), the authors do not systematically evaluate the relationship between VPIN and the weekly

crude oil inventories information events represented by the API and DOE reports.

Easley, de Prado, and O’Hara (2011) focus specifically on the dramatic episode that occurred

on May 6, 2010 (also known as the 2010 Flash Crash), during which various major US stock

market indices experienced a rapid collapse followed by a quick and substantial recovery.6 By

the authors’ calculations, changes in the VPIN metric preceded the dramatic changes in the
6For example, the DJIA index experienced its largest one-day drop to date, falling by 998.5 points.
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E-mini S&P 500 futures contract. Moreover, emphasizing the usefulness of VPIN, the authors

argue that other market volatility measures (such as the VIX index) did not reach levels as

extreme as the VPIN metric soon enough to provide a timely indication of such extreme order

flow toxicity.

Multiple studies investigate the behaviour of VPIN in various settings. Abad and Yagüe

(2012) calculate VPIN for Spanish stock market data. The authors find that the two input

parameters of the VPIN metric provide reasonable flexibility that has the ability to allow a

researcher to extend the VPIN applications beyond the HFT world.

Wei, Gerace, and Frino (2013) apply the VPIN metric to a set of securities traded at the Aus-

tralian Stock Exchange during the period from January 2008 to December 2010. They examine

the causal relationship between VPIN and several market characteristics (quote imbalance, price

volatility and duration), asserting that statistically significant Granger causality in the direction

from VPIN towards these factors is observable. However, Granger causality in the reverse direc-

tion is observable as well, leading the authors to conclude that there exists a dynamic two-way

relationship between the variables.

Wu et al. (2013) investigate the behaviour of various indicators of market microstructure dy-

namics and conclude that VPIN does indeed provide valuable information regarding approaching

periods of market distress. Utilizing a very large dataset (tick data on 93 highly liquid futures

contracts spanning a period of 67 months, including the WTI futures), and the processing power

of the United States’ second most powerful supercomputer, the authors conduct a deep VPIN

investigation, including on its sensitivity to the choice of the underlying parameters. VPIN’s

strong predictive power to anticipate liquidity-induced volatility has been documented. Similar

conclusions regarding the 2010 Flash Crash episode were achieved by Menkveld and Yueshen

(2013).

Cheung, Chou, and Lei (2015) examine the information content of VPIN around the call

events of callable barrier option contracts traded on the Hong Kong exchange spanning 2008 and

2009. Using the bulk classification algorithm proposed by Easley, de Prado, and O’Hara (2012),

the authors document a considerable increase in VPIN around these call events, concluding that

there is a greater market risk surrounding them.

We must note, however, that the VPIN metric considered in this paper has not been uni-

formly accepted in the academic literature. In particular, an interesting dispute between the

VPIN authors and Andersen and Bondarenko (2014b), has occurred. Contrary to the original

authors’ claims, Andersen and Bondarenko (2014b) fail to document significant predictive abil-

ity of VPIN in detecting short-term price volatility. The authors argue that the main source of

seemingly strong predictive power is the strong correlation between VPIN and the underlying

trading intensity, meaning that VPIN has no incremental predictive ability.

Easley, de Prado, and O’Hara (2014) react to these conclusions, stating that "[Andersen and
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Bondarenko] attack a methodology we do not advocate, an analysis we never performed, and

conclusions we did not draw." Finally, Andersen and Bondarenko (2014a) review the reaction’s

claims and collect additional empirical evidence of VPIN being prone to distortions driven by

trading intensity and price volatility. Moreover, the authors document that the VPIN values

are sensitive to the choice of the underlying trade classification technique, the use of which is

necessary whenever the data on the aggressor side of each trade is not available. Due to the fact

that the dataset in our study contains such aggressor side information, these sensitivity issues

are not present and the VPIN results applied to our data are not susceptible to distortions of

this kind.

An alternative to the VPIN was proposed by Chang, Chang, and Wang (2014). The au-

thors assert that their measure of intraday informed trading, called the Dynamic Probability

of Informed Trading (DPIN), is especially well-suited for estimation of order flow toxicity at

finer frequencies, such as 15 minutes. Applying the DPIN metric to the NYSE listed stocks

transaction-level data, they document a statistically significant relationship between the degree

of private information and firm-specific return variation. We note, however, that since our aim

is to investigate informed trading dynamics around very informative and liquid announcement

events, constraining the calculation frequency to 15 minutes might not yield informed trading

estimates with satisfactory granularity. The ability of VPIN to adjust the rate of updating to

the actual trading intensity represents a significant advantage of the VPIN metric in our setting.

Weng et al. (2017) utilize Taiwanese stock market index futures data during the period from

January 2003 to December 2007 and compare the DPIN and VPIN metrics, focusing particu-

larly on both foreign and domestic institutional investors’ informed trading participation and

comparison thereof. Lee et al. (2017) apply the VPIN metric to a unique dataset containing the

information on the locations of institutional investors trading US futures contracts during the

2008-2009 financial crisis. The authors document a significant positive impact of foreign insti-

tutional investors’ VPIN on the assets’ returns. Interestingly, a significant impact of domestic

institutional investors’ VPIN is observed solely on Wednesdays.

Most recently, Yildiz, Van Ness, and Van Ness (2020) study the real-time risk management

potential of the VPIN metric by analyzing moments of sudden liquidity deteriorations in US

equity markets. They document ex-ante predictive ability of VPIN in forecasting market liquidity

and volatility, leading them to suggest that VPIN indicates the adverse selection problem that

liquidity providers face by capturing the valuable information in trade volume data.

2.2.2 Crude Oil Inventories

The relationship between energy commodities inventories announcements and corresponding

market price formation characteristics has been extensively studied in the academic literature.
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Linn and Zhu (2004) focus on natural gas futures prices and weekly natural gas storage change

reports by the Energy Information Association (EIA), documenting a significant increase in intra-

day volatility during announcement days. Chang, Daouk, and Wang (2009) analyze Bloomberg

professionals’ forecasts of inventory level changes and conclude that crude oil futures returns

respond to inventory announcements in an immediate manner. Moreover, the magnitude of the

response is greater if the announced value is unexpected, and even more so if the forecasts were

produced by analysts with good track records.

More recently, Bu (2014) utilizes a GARCH model to investigate the relationship between

the degree of surprise of a DOE report and the magnitude and volatility of crude oil returns.

While a negative relationship between inventory shocks and returns is documented, no dynamics

are observable between the inventory shocks and the announcement day volatility of oil prices.

Bjursell, Gentle, and Wang (2015) focus on the identification of price jumps in three energy

futures markets (crude oil, heating oil, and natural gas) during the period from 1990 to 2008,

focusing particularly on periods surrounding the corresponding inventory announcements. Ap-

plying several non-parametric price jump identification methods, the authors document that the

inventory announcement dates are indeed accompanied by greater price jump components of the

price discovery process. Interestingly, post-announcement volatility tends to return to a normal

level more quickly during announcements with price jumps, as opposed to announcements not

accompanied by price jumps.

Ye and Karali (2016) evaluate the price and volatility reactions of the WTI crude oil futures

market (sampled at the 5-minute frequency) to both API and DOE reports. The API surprise

is defined as the difference between the API report and the Reuters forecast by professional

analysts, while the DOE surprise is defined as the difference between the API and the DOE

reports, that is, the API report value is assumed to be the expected value of the DOE report (in

this case, the same logic is adopted in this study). The authors find that both reports instigate

an immediate and inverse shock to the price of crude oil, observing generally stronger effects for

the DOE report. Moreover, they document a relationship between the size of price changes due

to the DOE surprise and the direction and the strength of the API surprise itself.

Our study is perhaps most closely related to papers by Armstrong, Cardella, and Sabah

(2017) and Bjursell, Wang, and Zheng (2017). Armstrong, Cardella, and Sabah (2017) evaluate

the impact of the weekly DOE report on various oil market liquidity measures. These measures

include the number of trades, the quoted bid-ask spread, the depth of the limit order book, and

the absolute order imbalance. Using WTI futures data during the period from January 2010

to December 2015, the authors find that the publication of the DOE report very quickly moves

prices in the direction of the new information and subsequently leads to increased liquidity (as

measured by the above characteristics). The authors argue that, rather than adverse selection,

these measures capture the degree of information flow into prices and they advise caution when
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interpreting this information flow as the degree of informed trading.

Bjursell, Wang, and Zheng (2017) consider the crude oil and natural gas futures markets

during the 2009 - 2015 period. Utilizing trade-level data (not containing aggressor-side infor-

mation) and considering the announcements by the Energy Information Association only, they

document significant increases in the VPIN metric for the announcements accompanied by price

jumps, as well as for the unexpected price jumps in these futures markets. The authors observe

greater order flow toxicity as measured by VPIN for the natural gas futures market.

Anatolyev, Seleznev, and Selezneva (2018) utilize the unique sequential nature of the API

and DOE reports announcements in characterizing the formation of market participants’ beliefs

around these announcements. The authors conclude that the expectations are formed uniformly

across the futures term structure curve and that there exists a strong and negative relationship

between the announcement surprises and crude oil futures returns.

Based on the studies discussed above, we state that, due to the presence of periodic and

significant announcements, the WTI futures electronic market is an interesting setting in which

to study the dynamics of the VPIN measure and its potential to capture order flow toxicity. We

next describe the WTI futures trade data and the oil inventory announcements data we use in

this study.

2.3 Data

2.3.1 WTI Crude Oil Futures

Our data contains information on all trades in the WTI Light Sweet Crude Oil futures contracts

(CME Globex and Bloomberg product code: CL) traded at the New York Mercantile Exchange

(NYMEX), a commodity futures exchange owned and operated by CME Group (Chicago Mer-

cantile Exchange). The NYMEX electronic order book futures market hours start at 6 p.m.

Eastern Time (ET) and end at 5 p.m. ET, Sunday to Friday. The minimum price fluctuation is

1 cent per barrel, while one unit of the CL futures contract represents 1,000 US barrels. 7 Our

data sample covers a period of three years, from January 3, 2017 to December 31, 2019, yielding

755 trading days.

NYMEX offers monthly futures contracts with expirations listed for the current year, the

next 8 calendar years, and 2 additional consecutive contract months. Therefore, on any given

day, there are at least 99 crude oil futures contracts with different expiration dates available for

trading. For each day, we select the futures contract with the greatest volume traded on that

particular day for our analysis. Figure 2.1 displays the time series of daily closing prices (in US

7The full technical specification can be found at the CME’s website: https://www.cmegroup.com/t
rading/energy/crude-oil/light-sweet-crude_contract_specifications.html
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dollars per barrel) and the daily total traded volume (in contract units, or "lots") of the most

active (in terms of the total traded volume) WTI futures contract. We note that the average

daily volume in our sample is 660,431 contracts. However, there is a considerable variation of

the total daily trade activity present in our sample, as the daily standard deviation of 158,038

contracts documents.

For each trade entry, we possess information about the trade time (stamped to the nearest

millisecond), price, volume, and aggressor side identification (depending on whether the trade

was buyer- or seller- initiated). We note that the knowledge of the side of the order book on

which each trade occurred constitutes valuable information that eliminates the neccessity to

estimate the aggressor side of trade using classification algorithms (i.e., Lee and Ready (1991)).

Figure 2.2 displays the average daily traded volume profile at one-minute aggregation. The

time interval displayed in Figure 2.2 is 3 a.m. - 5 p.m. ET (9:00 - 23:00 Central European

Time (CET)), because this accounts for the absolute majority of the daily traded volume. We

note that, not only does the number of contracts traded vary across days, but there is also

significant variation in trading activity within each trading day. The structure of this intraday

liquidity profile shows a rapid increase in trading activity occuring exactly at 9 a.m. ET, and a

considerable surge just before its rapid decrease after 2:30 p.m. (corresponding to the crude oil

pit opening and closing times at NYMEX, occurring at 9 a.m. and 2:30 p.m. ET). On average,

at the peak time just before the pit closes, more than 4,000 units of the most liquid maturity

contract are traded per minute.

2.3.2 US Crude Oil Inventories

Another type of data used in this study is the weekly announcement data on the levels of

crude oil inventories in the United States. The two main announcements used by investors

to assess changes in the amounts of inventories (and hence, weekly changes in the nation’s

overall demand for and the supply of crude oil) are the Weekly Statistical Bulletin report by

the American Petroleum Institute (API) and the US Department of Energy (DOE) report by

the Energy Information Administration (EIA). We refer to the two reports as the API and the

DOE.

The usual schedule of report releases is as follows: the API report is released each Tuesday

at 4:30 p.m. ET (usually 22:30 CET) and the DOE report is released each Wednesday at 10:30

a.m. ET (usually 16:30 CET). If a Monday is a holiday, the API report is released on the

following Wednesday at 4:30 p.m. ET and the following DOE report is released on Thursday at

11:00 a.m. ET.

The industry group API represents various American manufacturers, producers, distributors,

and refineries of crude oil and petroleum products. The Weekly Statistical Bulletin published by
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Figure 2.1: WTI futures most active contract time series. Panel A displays the daily closing
prices in USD per US barrel. Panel B displays the daily traded volume of the most active futures
contract. One unit (one lot) of the WTI futures contract represents 1,000 US barrels. Time
period observed: January 3, 2017 - December 31, 2019. The horizontal line displays the sample’s
average daily volume of 660,431 lots.

this group is based on information that is disclosed by these companies largely on a voluntary

basis. One of the major variables included in the report is the current overall level of crude oil

inventories. The other related categories include, among others, motor gasoline, kerosene jet

fuel, and distillate fuel oil inventories as well as data on imports, refinery input and container

capacity. At the time of its publication, the data is available solely to subscribers through

Thomson Reuters, however, historical data on the crude oil inventories changes reported in

these documents is readily available online, at, for example, https://www.tradingfloor.com

or https://www.investing.com.

Conversely, the Energy Information Administration publishes its weekly Petroleum Status

Report at the institution’s website and the key figures are immediately published via Bloomberg,

Thomson Reuters, and other information agencies. Contrary to the voluntary information sub-

mission of the API report data, EIA directly requires major oil and petroleum related companies
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Figure 2.2: The average traded volume of the most active WTI futures contract by minute
for the 3 a.m. - 5 p.m. ET (usually 9:00 - 23:00 CET) part of the trading day. This average
daily profile is calculated throughout the January 3, 2017 - December 31, 2019 sample.

to submit their inventory levels information. Any intentional misreporting or non-compliance

with these requirements is punishable by law. Beyond changes in total crude oil inventories,

other published data include, for example, gasoline and distillate fuel inventories and total US

crude oil refinery inputs, gasoline production, and crude oil imports.

We focus on the principal indicator published in both reports, the change in the total US

crude oil inventories (expressed in barrels), excluding the inventories in the Strategic Petroleum

Reserves. We collect the weekly data for the period from 2017 to 2019 for both the API report

(we obtained the data from https://www.investing.com/economic-calendar/api-weekly

-crude-stock-656) and the DOE report (we obtained the data from Bloomberg). The three

year data sample used in this study contains 156 weekly API announcement values and 156

corresponding weekly DOE values. We also possess information on the actual absolute level of

US crude oil inventories at the beginning of our sample - on January 5, 2017, a decrease in the

US commercial inventories of 7.05 million barrels from the previous week was reported, and the

absolute inventories amounted to 479.012 million barrels.8

A graphical and statistical summary of crude oil inventory data appears in Figure 2.3 and

Table 2.1. Panel A in Figure 2.3 displays the overall level of crude oil inventories in the United

States. Throughout our sample period, inventory levels reached a peak of 535.5 million barrels on

April 5, 2017 and a trough of 394.1 million barrels on September 19, 2018. The remaining panels

summarize the time series of the announced weekly changes in US crude oil inventories for the

two reports, and the time series of their cross-differences. Not surprisingly, we observe that the

API and DOE time series exhibit a substantial degree of positive cross-correlation (correlation

coefficient equal to 0.74). However, weeks during which noticeable discrepancies between the

8https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=WCESTUS1&f=W
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Figure 2.3: Upper panels: weekly time series of the level of US crude oil inventories and
the changes in oil inventories as reported by the API and DOE reports. Lower panels: Time
series of the weekly differences between the two reports and their corresponding scatter plot and
histogram.

two reports exist are not uncommon. The largest difference in our sample corresponds to DOE

data published on December 6, 2018, when the data reported a weekly decrease of 7.323 million

barrels of inventories, while the API data published earlier the same week projected an increase

of 5.360 million barrels, resulting in a discrepancy of more than 12 million barrels. The futures

price reacted to this news with a sharp rise of more than 60 cents per barrel within minutes,

equivalent to more than a 1 percent increase in price.

Denoting by APIAw (DOEA
w ) the change in inventory levels as announced in the API (DOE)

report during week w, we infer from Table 2.1 that, while both the API (column APIAw ) and

the DOE (column DOEA
w ) time series exhibit relatively strong significant autocorrelation (of up

to the third order), their cross-differences (column DOEA
w − APIAw ) are negatively first-order

autocorrelated. Moreover, the first differences of both inventory changes time series (columns

APIAw − APIAw−1 and DOEA
w − DOEA

w−1) exhibit strong negative first-order autocorrelation,

suggesting that a positive change in inventories is more likely to be followed by a negative

change over the next week and vice versa. The overall distributions of the API and the DOE

data are reasonably similar, spanning the interval of -14.5 to +14.5 million barrels, being sym-

metric roughly around zero, slightly positively skewed and having the standard deviation of

approximately 5 million barrels.
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Table 2.1: Summary statistics of API, DOE and the surprise candidates time series.

Summary statistics of the time series based on the reported and forecasted API and DOE
inventory changes, and boxplots of the distributions of these time series. For week w, the actual
API (DOE) value is labeled APIAw (DOEA

w ) and the corresponding week’s analysts’ median
forecasts of the DOE value is labeled DOEF

w . The Min, Median, Mean, Max, and Standard
Deviation statistics, as well as the displayed boxplot data, are expressed in thousands of US
barrels. For the ACF, the (*) sign highlights values that are significant at the 5% level. JB
represents the Jarque-Bera test.

Panel A: API Report Time Series & Three Surprise Candidates
Time series: APIAw APIAw −DOEF

w APIAw −DOEA
w−1 APIAw −APIAw−1

No. of Obs. 156

−
10
00
0

0
10
00
0

156

−
10
00
0

0
10
00
0

155

−
10
00
0

0
10
00
0

155

−
10
00
0

0
10
00
0Min -11190 -8250 -11975 -15540

Median -515 136 -105 460
Mean -328 244 -30 -3
Max 14230 11730 15937 13630
St. Dev. 5195 4448 5963 6559
Skewness 0.082 0.226 0.203 -0.081
Kurtosis 2.578 2.270 2.405 2.116
JB p-value 0.513 0.091 0.187 0.074
ACF(1) 0.195* -0.145 -0.450* -0.518*
ACF(2) 0.248* -0.012 -0.019 0.009
ACF(3) 0.270* 0.126 -0.026 0.111

Panel B: DOE Report Time Series & Three Surprise Candidates
Time series: DOEA

w DOEA
w −DOEF

w DOEA
w −APIAw DOEA

w −DOEA
w−1

No. of Obs. 156

−
10
00
0

0
10
00
0

156

−
10
00
0

0
10
00
0

156

●−
10
00
0

0
10
00
0

155 ●

−
10
00
0

0
10
00
0Min -12788 -11647 -12683 -13897

Median -390 405 -55 -209
Mean -287 287 42 10
Max 13830 11330 9024 18469
St. Dev. 5213 4429 3718 6107
Skewness 0.009 -0.049 -0.017 0.146
Kurtosis 2.499 2.748 3.210 2.938
JB p-value 0.441 0.788 0.863 0.750
ACF(1) 0.310* -0.048 -0.255* -0.513*
ACF(2) 0.342* 0.116 -0.110 0.136
ACF(3) 0.188* 0.042 -0.054 -0.087

2.4 Methodology

2.4.1 Defining the Announcement Surprises

The level of crude oil inventories is one of the most closely watched oil market indicators. As is

usually the case with publications of crucial macroeconomic data, these announcements are also

accompanied by ex ante estimates of upcoming values. These estimates are usually based on

surveys of professional analysts, forecasters, and market practitioners, and are released by various
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information agencies during the days leading up to announcements of the official numbers. In

our study, we also possess weekly survey median estimates for the DOE report data published by

Bloomberg. These survey estimates are often used in the literature as prior market expectations

of the announced values and the market reaction to the actual announcement is often evaluated

with respect to market surprise, defined as the difference between the actual and the expected

values of the announcement.9

Before we evaluate the impact of each announcement event, we must, however, specify each

announcement’s prior market expectation. Once the prior expectation is defined, the market

surprise associated with each announcement is then simply calculated as the difference between

the announced value and the prior expectation. In this section, we select the particular definitions

of market prior expectations out of four possible candidates for each type of the report.

We possess three report-related time series: weekly announced API values (denoted APIAw ,

where w = 1, . . . , 156 indexes all weekly values in our three-year sample), as well as the weekly

DOE values, also accompanied by DOE survey forecasts (denoted DOEA
w and DOEF

w ). For each

w, we also denote the set of all values known before the week’s w API (DOE) announcement by

IAPI
w

(︁
IDOE
w

)︁
. Assuming this notation, we consider the following four prior expectations to be

candidates for both reports:

E
[︁
APIAw |IAPI

w

]︁
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0

DOEF
w

DOEA
w−1

APIAw−1

, E
[︁
DOEA

w |IDOE
w

]︁
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0

DOEF
w

APIAw

DOEA
w−1

(2.1)

Therefore, for each report, we consider a naive market expecation of zero, an expectation

equal to the reported median survey forecast of that week’s DOE report, an expectation equal

to the nearest previously announced inventory value (considering both report types pooled to-

gether) and an expectation equal to the previous reported value, considering each report sepa-

rately. We note that, due to the commercial subscription nature of the API report, we do not

possess survey data for the API announcements. However, since the corresponding DOE data

is usually published within 24 hours following the API report, the DOE survey forecasts are

always readily available before the API report is published. Therefore, the value DOEF
w may be

considered an element belonging to IAPI
w and the second possible candidate for the API market

expectation variable can be defined.

When a market expectation is specified, the market surprise associated with the week’s w

9This approach is taken, for example, by Andersen et al. (2003), Bu (2014), Armstrong, Cardella,
and Sabah (2017), and Bjursell, Wang, and Zheng (2017).
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Figure 2.4: Correlation coefficients between the values pt+s−pt and various (non-normalized)
announcement surprise definitions for the range of values s = 1, . . . , 300 and for both types of
reports (Panel A: API, Panel B: DOE), where pt is the log price of the WTI futures contract
just before the announcement release and pt+s is the log price s seconds after. For each panel,
we consider four different surprise definitions as described in equation 2.1 and labeled in the
legend. Each correlation coefficient is calculated based on 156 weekly (surprise value, pt+s − pt)
pairs. We chose the maximum time horizon of 5 minutes for graphical illustration purposes, as
the correlation trajectories stabilize beyond this time horizon.

API announced value is defined as:

SURAPI
w = APIAw − E[APIAw

⃓⃓
IAPI
w

]︁
, (2.2)

and analogously for the DOE report. For the sake of robustness, we consider not only the

surprise defined as the absolute difference between the announced and the expected value, but

also its relative difference relative to the most recent total size of US inventories (denoted as

INVw):

SURNAPI
w =

APIAw − E[APIAw
⃓⃓
IAPI
w

]︁
INVw

, (2.3)

and, again, similarly for the DOE report.

The statistical properties of all four (non-normalized) surprise candidate time series for both

reports are displayed in Table 2.1. We note that all time series are roughly centered around

zero and overall possess similar distributional properties. While the original API and DOE

reported values are significantly positively autocorrelated (at least up to the third lag), their

first differences (APIAw −APIAw−1 and DOEA
w −DOEA

w−1, respectively) are strongly negatively

autocorrelated within the first lag. The other surprise time series are either not autocorrelated

at all, or are negatively first-order autocorrelated.

Out of the four surprise candidates for each report (defined in 2.1), we select the one that
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correlates most closely with the post-announcement price discovery dynamics. Figure 2.4 dis-

plays the correlation coefficients between each of the four considered surprise candidates and the

post-announcement log-returns of the WTI trade prices. The log-returns are calculated relative

to the price prevailing immediately before the announcement, and are evaluated at a sequence of

WTI prices sampled from one second to 300 seconds (5 minutes) after each announcement. The

maximum time horizon of 5 minutes is chosen for graphical illustration purposes, as the corre-

lation trajectories stabilize beyond this time horizon. Panel A considers the API announcement

and the four non-normalized API surprise candidates. We note that all the estimated correlation

coefficients are strongly negative, in line with our expectations, implying that a positive surprise

(higher-than-expected inventory levels) tends to lead to a negative price shock. Not only does

this price shock follow the announcement almost immediately, the price effect is persistent over

the 5 minute period after the announcement as well. Out of the four surprise candidates, the

one that is most strongly negatively correlated with the WTI price returns is the second surprise

candidate, defined as APIAw −DOEF
w (grey line). We conjecture that the second market prior

candidate, the DOE survey forecast (DOEF
w ), is the most suitable choice for the market’s prior

expectations for the API report.

Similarly, Panel B of Figure 2.4 displays the surprise candidate - WTI return correlations for

non-normalized surprise candidates for the DOE announcement. In this case, the third surprise

candidate (green line) appears to be the most strongly negatively correlated in a persistent

manner, with all the estimated correlations below -0.6 during the five minute interval after the

announcement. We therefore choose the third surprise candidate, defined as DOEA
w − APIAw .

When we consider the normalized surprise values, all the estimated correlations are almost

identical, leading us to the same conclusions.

Interestingly, rather than the median value of the survey of professional forecasters (DOEF
w ),

the same-week actual reported API value (APIAw ) is our choice for identifying the market prior

expectation for the corresponding DOE report. We note that this definition of the announcement

surprise is in line with the fact that the nature and the informational content of both reports

should be similar, according to their respective data providers (as the API website states, "API

collects an exact copy of the data submitted to EIA. Respondents send data to API using the

same weekly survey forms that EIA uses. (...) It is true that companies voluntarily send API a

copy of the data they send to EIA; however, the fact that they do so voluntarily is irrelevant.

Both API and EIA are on record stating that their reported weekly data cover roughly 90% of

the industry. Since API and EIA need only estimate the remaining 10%, differences in their

weekly estimates can be largely attributed to statistical noise.").10.

Thus, in this study, we employ the following definitions of the (normalized) surprises associ-

10See the Q&A at https://www.api.org/products-and-services/statistics/api-weekly-stat
istical-bulletin
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ated with the weekly API and DOE report announcements:

SURNAPI
w =

APIAw −DOEF
w

INVw
, SURNDOE

w =
DOEA

w −APIAw
INVw

. (2.4)

2.4.2 The Classical PIN Model

In their seminal work on market microstructure, Easley et al. (1996) develop the following model:

trading is viewed as a periodically repeated game between market makers (liquidity providers)

that quote bid and offer prices, and market takers (aggressive traders), that react to these bid

and offer quotes. Each market maker is assumed to be risk neutral and behaves competitively.

At any point in time, the market maker quotes bid and offer prices, ready to buy or sell one unit

of a risky asset.

We index the periods (for example, days) by i = 1, . . . , I and time within each period by t ∈
[0, T ]. At the beginning of each period, two states of the world may occur: either an information

event has occurred (with probability α ∈ (0, 1)) or a no-information event has occurred (with

probability (1 − α)). These events are generated independently across periods. Assuming that

in period i a "good news" information event has occurred, the underlying asset is assumed to

be worth V̄ i and the probability of the "good news" event equals (1 − δ). Correspondingly,

the probability of a "bad news" event, under which the asset is worth V i < V̄ i, is assumed

to be equal to δ ∈ (0, 1). After the end of each period, the value of the asset is realized and

made public. If no news event has been realized, the prior value of the asset is assumed to be

V ∗i = δV i + (1− δ)V̄ i, satisfying V i < V ∗i < V̄ i.

There are two types of aggressive traders: informed and uninformed. Given the three possible

states of the world (good news, bad news, no news), trade orders from informed investors are

assumed to arrive according to the Poisson process at rate µ. These informed investors always

buy under the good news event, always sell under the bad news event, and do not trade under

the no news event. Uninformed buy and sell traders arrive under all three possible states of the

world according to the Poisson process at rate ε. All Poisson processes are mutually independent.

The market maker knows the values of α, δ, µ, ε and therefore also knows the ex ante infor-

mation events probabilities (equal to 1−α, α(1−δ),and αδ for the good news, bad news, and no

news events, respectively). However, he does not know which state of the world has occurred.

The market maker therefore uses Bayesian updating in order to infer the ex post probabilities of

information events based on the types (buy or sell) and rates of arrival of the aggressive traders’

orders. We denote the market maker’s prior belief about the no news, good news, and bad news

state of the world at time t as P (t) = (Pn(t), Pg(t), Pb(t)).

At time t, the market maker sets the bid and ask prices (Bt, At) in such a way that these

prices correspond to the expected value of the asset conditional on the market maker’s time-t
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prior beliefs P (t) and the fact that a counterparty is willing to sell or buy. For example, assuming

that a sell order arrives at time t (and denoting this event as St), by the Bayes rule, the market

maker’s updated (posterior) belief about the no news event at time t equals:

Pn(t|St) =
Pn(t)ε

ε+ Pb(t)µ
.

The corresponding conditional probabilities of good and bad news events may then be expressed

as:

Pg(t|St) =
Pg(t)ε

ε+ Pb(t)µ
, Pb(t|St) =

Pb(t)(ε+ µ)

ε+ Pb(t)µ
.

The market maker’s bid price on day i at time t is thus equal to:

Bt = Pn(t|St)V
∗
i + Pg(t|St)V̄ i + Pb(t|St)V i =

Pn(t)εV
∗
i + Pb(t)(ε+ µ)V i + Pg(t)εV̄ i

ε+ Pb(t)µ
.

Analogously, the ask price may be written as:

At =
Pn(t)εV

∗
i + Pb(t)εV i + Pg(t)(ε+ µ)V̄ i

ε+ Pg(t)µ
.

Algebraic manipulation of these expressions leads to the following bid-ask spread at time t,

denoted as Σt = At −Bt:

Σt =
Pg(t)µ

ε+ Pg(t)µ

(︁
V̄ i − E[Vi|t]

)︁
+

Pb(t)µ

ε+ Pb(t)µ
(E[Vi|t]− V i) , (2.5)

with the conditional expected value of the asset at time t being equal to:

E[Vi|t] = Pn(t)V
∗
i + Pg(t)V̄ i + Pb(t)V i.

Equation 2.5 implies that the bid-ask spread is equal to the sum of the probability of an

informed buy trade, multiplied by the expected loss incurred due to the fact that the buyer is

informed, and of the symmetric term corresponding to an informed seller. The market maker

thus sets the spread in order to protect against the adverse selection he is exposed to because of

the possibility of the arrival of an informed trader. This probability of an informed trade (PI) is

the central element of the model and may be written as the sum of the probabilities of informed

buy and sell trades expressed in equation 2.5, that is:

PI(t) =
Pg(t)µ

ε+ Pg(t)µ
+

Pb(t)µ

ε+ Pb(t)µ
=

µ(1− Pn(t))

µ(1− Pn(t)) + 2ε
.

Assuming that the probabilities of good and bad events are equal (δ = 0.5), the probability
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of informed trading at time t = 0 equals:

PI(0) =
αµ

αµ+ 2ε
(2.6)

and the spread at the day open becomes:

Σ0 =
αµ

αµ+ 2ε

[︁
V̄ i − V i

]︁
.

In this model, Easley et al. assume that we observe the total numbers of buyer and seller

initiated trades for each day: {Xi, Yi}Ii=1. Based on this observed data, the parameter vector

M = (α, δ, µ, ε) can be estimated by maximizing the product of the daily likelihood functions:

L
(︁
M |{Xi, Yi}Ii=1

)︁
=

I∏︂
i=1

L (M |Xi, Yi) ,

where the daily likelihood function can be written as a weighted sum of observing X buys and

Y sells on the no news, bad news, and good news days, with the weights corresponding to the

probabilities of such days occurring:

L (M |X,Y ) = (1− α)e−εT
(εT )X

X!
e−εT

(εT )Y

Y !
+ αδe−εT

(εT )X

X!
e−(µ+ε)T ((µ+ ε)T )Y

Y !

+ α(1− δ)e−(µ+ε)T ((µ+ ε)T )X

X!
e−εT

(εT )Y

Y !
.

2.4.3 The VPIN Model

The PIN metric assumes that the beginning of day probability of informed trading (denoted

as PI(0), equation 2.6 above) is constant over the observed period i = 1, . . . , I. Therefore,

assuming that the probabilities of information events and the corresponding rates of order flow

are constant as well, such "stationarity" of the model can be used to directly estimate PI(0).

Easley, de Prado, and O’Hara (2010) enhance the PIN metric in a way that enables more

frequent updating of the probability of informed trading throughout the day. This approach

accounts for the fact that information events do not arrive regularly, can arrive multiple times

each day, and can differ in their importance and potential to affect the current value of an asset.

In today’s futures markets, which are dominated by high-frequency trading, such aspects of

information arrival need to be accounted for in any metric that aims to estimate the probability

of informed trading and the degree of adverse selection that it accompanies.

The main result that serves as a transition to the new metric is the analysis by Easley et al.

(2008), in which informed and uninformed traders’ arrival rates are no longer assumed to be

constant, but rather follow a time-varying probability distribution, similar to a GARCH-type
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process. Under these assumptions, the authors show that, for a given time period, the PIN can

be approximated as follows:

PIN =
αµ

αµ+ 2ε
≈ E [VS − VB]

E [VS + VB]
. (2.7)

where VB, VS represent the aggregate volume of buyer and seller initiated trades over the period.

Informed trade intensity αµ from equation 2.6 is therefore approximated by the expected volume

imbalance E [VS − VB] in equation 2.7, while the total trade intensity αµ+ 2ε is approximated

by the expected total volume E [VS + VB].

The second important building block in developing the enhanced metric is the transfer from

clock-time to volume-time. In particular, instead of assuming that the probability of informed

trading remains constant over time, the new metric allows for this probability to be updated each

time a pre-determined amount of volume is traded. Easley, de Prado, and O’Hara (2010) argue

that a given amount of traded volume (also referred to as a volume bucket) represents a given

amount of corresponding new information. When there is relatively little new information, trade

(and volume) intensity is smaller, and it takes a longer period of time before an entire volume

bucket is traded. Likewise, when new information arrives, informed traders have an obvious

incentive to trade on this information as quickly as possible, and trade intensity increases.

Consequently, additional volume buckets are traded in a shorter period of time. Arguably, the

more relevant and more surprising the new information is, the greater the increase in trading

intensity will be, and the volume buckets fill more quickly. The new metric allows for updates of

the estimated probability of informed trading after each volume bucket completion, which, based

on the choice of the volume bucket size, can occur many times per day. Therefore, this enhanced

metric is referred to as the Volume-synchronized Probability of Informed Trading (VPIN).

The VPIN calculation procedure can be summarized as follows:

1. Inputs: The information about trades containing the time, volume, and the aggressor side

(buyer or seller initiated) of each trade.11

Parameters: the size of one volume bucket (B) and the length of the moving average

required to calculate one VPIN measure (n).

2. The trade data is aggregated into consecutive volume buckets, where each volume bucket

contains an equal number of contracts traded (chosen as B). If the volume of a trade that

would complete a volume bucket is greater than the volume remaining in that bucket, the

trade is divided into appropriate sub-trades, and each sub-trade is treated individually.

On any given trading day, this procedure yields, say, N volume buckets b1, . . . , bN . The
11When the information on the aggressor side of the trades is not available, a trade classification algo-

rithm, such as the Lee and Ready (1991), or the Easley, de Prado, and O’Hara (2012) bulk classification
algorithm can be used.
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sum of traded volume of each bucket is equal to B. The remaining trades left at the end

of the day that would not fill an entire volume bucket are disregarded.

3. For each volume bucket bi, we calculate the total volume of buyer initiated trades and

denote it as V
(i)
B . Similarly, the total volume of seller initiated trades will be V

(i)
S =

B − V
(i)
B . The order imbalance corresponding to the volume bucket bi is then defined as

the absolute value of the difference of the total traded volume of buyer and seller initiated

trades:

OI(i) = |V (i)
B − V

(i)
S |

4. The VPIN, known after volume bucket bi has been completed, is then calculated as the

moving average of the last n order imbalances:

V PINi =
1

n

n−1∑︂
j=0

(︂
|V (i−j)

B − V
(i−j)
S |

)︂
(︂
V

(i−j)
B + V

(i−j)
S

)︂ =

∑︁n−1
j=0 OI(i−j)

nB
, i ≥ n.

We note that the VPIN is an asynchronous measure by definition because it is not updated

regularly each predetermined number of seconds. Rather, a predetermined number of contracts

need to be traded before another update of the VPIN value arises.

2.4.4 Hypotheses Formulation

We apply the VPIN calculation procedure described above to the WTI crude oil futures trade

data at our disposal. A particular interest of this study is in quantifying the dynamics of the

VPIN indicator around the US crude oil inventory announcement dates, taking into account the

two kinds of inventory reports (DOE and API) separately. Publication of the crude oil inventory

data is generally accepted as a major macroeconomic event with considerable market impact

(Chang, Daouk, and Wang (2009), Bu (2014), Anatolyev, Seleznev, and Selezneva (2018)).

This study also documents that rapid and substantial changes in the post-announcement price

discovery process are indeed observable in the WTI futures market for both API and DOE

reports. These regular announcement events can therefore function as an appropriate setting

for event study investigation of the VPIN indicator dynamics. In this section, we formulate

the general null hypotheses the validity of which we aim to investigate. We also provide their

testable versions and descriptions of the empirical testing strategies we employ.

• Hypothesis 1

On API (DOE) announcement days, the probability of informed trading as measured by

VPIN before an API (DOE) announcement does not significantly differ from the value

after the API (DOE) announcement.
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Hypothesis 1 aims to test the essential required property of the VPIN metric, that it

is able to capture the dynamics of informed order flow. Because we hypothesize that

inventory data publications are accompanied by an increase in the intensity of informed

order flow, we expect that VPIN will, on average, tend to increase in value shortly after

the announcement. Moreover, we expect that the probability distribution of such VPIN

changes will not be symmetric around zero.

In order to empirically test this hypothesis, we employ two paired tests: the paired Stu-

dent’s t-test and the non-parametric Wilcoxon signed rank test. We note that a similar

approach has been used, for example, in event studies by Dimpfl (2011) and Bash and

Alsaifi (2019). Considering one announcement type, for week w’s announcement day, we

calculate the overall level of VPIN before the announcement as the average of the last m

VPIN values observed immediately before the announcement time, and denote this value

as V PINm,Before
w . Similarly, we calculate the overall post-announcement VPIN as the

average of the first m VPIN values observed immediately after the announcement and

denote it as V PINm,After
w . For a fixed value of m, this procedure yields at most 156 pairs

of (V PINm,Before
w , V PINm,After

w ), indexed by w = 1, . . . , 156, corresponding to the 156

weeks of sample data. For robustness purposes, we consider the following grid of values

of the parameter m : 1, 2, 3, 5, 10.

For a given m and a given inventory report category, the Student’s t-test version of the

null hypothesis then becomes:

H
(1a)
0 : E

[︂
V PINm,Before

w − V PINm,After
w

]︂
= 0. (2.8)

Likewise, we use the non-parametric paired Wilcoxon signed rank test to test the following

null hypothesis:

H
(1b)
0 : The distribution of V PINm,Before

w − V PINm,After
w is symmetric around zero.

(2.9)

The following Hypotheses 2 and 3 are evaluated separately for the API and for the DOE

report using linear regression estimations. We use the Newey-West estimator of the co-

variance matrix of the coefficient estimates to account for possible heteroskedasticity and

autocorrelation in the residuals. In this respect, we follow recent VPIN studies by Che-

ung, Chou, and Lei (2015), Armstrong, Cardella, and Sabah (2017) and Yildiz, Van Ness,

and Van Ness (2020). We describe the definitions of the variables entering each regression

below.

• Hypothesis 2
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a) On API announcement days, the magnitude of the VPIN change around an API

announcement does not depend on the magnitude of the API surprise.

b) On DOE announcement days, the magnitude of the VPIN change around a DOE

announcement does not depend on the magnitude of the DOE surprise and does not

depend on the magnitude of the corresponding previous API surprise.

We thus hypothesize that the more surprising the announced inventory value is relative to

the previously defined market expectation, the greater the incentive of market participants

to trade on the new information as quickly as possible will be, and hence the greater the

magnitude of the post-announcement informed order flow increase will occur. Rejection of

Hypothesis 2 will lead us to assert that the VPIN metric indeed captures the potentially

rapid changes in the informed trading intensity in a continuous and directional manner.

To empirically assess this hypothesis, we estimate the following set of linear regression

models, regressing post-announcement changes in VPIN on the announcement surprises

variables.

Considering first the API announcement, for each announcement day w and for a given

m, we calculate the overall change in the magnitude of VPIN as the difference between

the average of m VPIN values following immediately after the announcement, and the

average of m VPIN values immediately preceding the announcement (this is the same as

for Hypothesis 1) and define this difference as Y (m,API)
w = V PINm,After

w −V PINm,Before
w .

We relate this change in VPIN around the announcement to the normalized API surprise

variable SURNAPI
w , defined in 2.4. In order to establish the robustness of the results, we

again iterate the parameter m over the grid of values 1, 2, 3, 5, 10. Since we hypothesize

that both large positive and large negative values of surprises tend to be associated with

greater increases in informed trading activity, we assume a quadratic relationship between

the announcement surprise and the change in VPIN. Therefore, for a given m, we estimate

the following linear regression:

Y (m,API)
w = α(m,API) + β(m,API)SURNAPI

w + γ(m,API)
(︁
SURNAPI

w

)︁2
+ ε(m,API)

w (2.10)

Similarly, for the DOE report and a given m, we calculate the values Y (m,DOE)
w analogically

to the API case and the magnitude of the DOE surprise SURNDOE
w defined in 2.4. Because

we also aim to estimate the effects of the preceding API surprise on changes in VPIN

around the DOE announcement, we estimate the following regression model:

Y (m,DOE)
w = α(m,DOE) + β(m,DOE)SURNDOE

w + γ(m,DOE)
(︁
SURNDOE

w

)︁2
+ δ(m,DOE)SURNAPI

w + ρ(m,DOE)
(︁
SURNAPI

w

)︁2
+ ε(m,DOE)

w

(2.11)
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The testable versions of the null hypotheses then correspond to joint F-tests of significance

of all the regression coefficients with the exception of the intercept in regression models

2.10 and 2.11:

H
(2,API)
0 : β(m,API) = γ(m,API) = 0. (2.12)

H
(2,DOE)
0 : β(m,DOE) = γ(m,DOE) = δ(m,DOE) = ρ(m,DOE) = 0. (2.13)

• Hypothesis 3

On API (DOE) announcement days, the change in the value of VPIN shortly before an

API (DOE) announcement is not associated with the magnitude of the corresponding API

(DOE) surprise.

In this hypothesis, we are interested in the potential predictive ability of the changes in

the intensity of informed trading shortly before the announcement time on the magnitude

of the corresponding announcement surprise. First, we need to define a metric that will

capture pre-announcement changes in VPIN behaviour. We do this by taking the difference

of the last recorded pre-announcement VPIN value (V PIN
(Last,API)
w ) and the moving

average of the m VPIN values immediately preceding this last recorded pre-announcement

value. We denote this moving average as AV GV PIN
(m),API
w . In this case, we iterate the

parameter m through the values 1, 2, 3, 4, 5. Given m, the dependent variable for the

API regression is then denoted as X(m,API)
w = V PIN

(Last,API)
w −AV GV PIN

(m),API
w . The

values for the DOE report are again calculated analogically.

A relatively large value of X thus represents a relatively large increase in informed trading

activity (as measured by VPIN) occurring shortly before the announcement is released.

The dependent variables, representing the magnitudes of the surprises, are calculated

as the absolute values of the normalized surprises defined in 2.4. Therefore, we do not

distinguish between large positive and large negative surprises, because we assume that

both types of surprises may be exploitable by potential informed traders. We next estimate

the following regression models:

|SURNAPI
w | = α(m,API) + β(m,API)X(m,API)

w + ε(m,API)
w

|SURNDOE
w | = α(m,DOE) + β(m,DOE)X(m,DOE)

w + ε(m,DOE)
w

(2.14)

The testable versions of the null hypotheses thus correspond to the significance tests of

the slope regression coefficients:

H
(3,API)
0 : β(m,API) = 0. (2.15)

H
(3,DOE)
0 : β(m,DOE) = 0. (2.16)
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As noted earlier, we apply the Newey-West standard errors estimator to account for the

potential heteroskedasticity and autocorrelation in the residuals whenever possible. Additionally,

we note that, in all regression models, we also investigate the sensitivity of the results to the

inclusion of additional explanatory variables, insofar as the relatively limited sample sizes of 156

weekly observations permit. In particular, we include quarterly dummy variables and the overall

daily standard deviation of the WTI log-returns as additional regressors. However, we find that

the results are highly robust to the inclusion of these variables and for the sake of brevity, we

report the regression results corresponding to the equations specified above.

2.5 Results

We now analyze potential relationships between the weekly published levels of crude oil in-

ventories for both reports and the WTI futures price discovery process, both from the price

adjustment, as well as from the order flow toxicity (as measured by VPIN) perspectives.

2.5.1 Market Reaction to Announcements

In this section, we graphically summarize the price and volume reactions of the WTI futures

contracts to both announcement events. To illustrate the strength and importance of these events

as perceived by market participants, we also compare these characteristics with the corresponding

time periods on days during which no announcements occurred.

Figure 2.5 displays the time development of the most liquid WTI futures contract price, sam-

pled at one second frequency for the time window starting 30 minutes before the announcement

and ending 30 minutes after the announcement for both API (Panel A) and DOE (Panel B)

announcement events. For comparison purposes, price trajectories on all days without the two

announcement events during the corresponding time windows are displayed in Panel C (non-API

days) and Panel D (non-DOE days). Panels A and B display 156 time series each, while panels

C and D display 599 time series each. Each price time series is normalized so that its value at

the particular reference (event) time equals 1. Therefore, by design, all time series cross the

value of 1 at this reference time.

Time series displayed on Panels A and B are colored according to the magnitude of the

announcement event surprises, defined earlier as APIAw−DOEF
w for the API report and DOEA

w−
APIAw for the DOE report. The positive values of the surprises (representing surplus inventories)

are distinguished using blue shades, while the negative values (representing inventory shortages)

are distinguished with green.

Additionally, Figure 2.6 displays the average traded volume by the number of WTI futures

contracts per minute during the time window starting 30 minutes before and ending 30 minutes
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after each announcement time, again for both types of inventory reports and for the correspond-

ing time windows on non-announcement days. The lower panels show the average traded volume

trajectory as accumulated from the time of the event to the future and to the past.

Figure 2.5: Normalized WTI price trajectories on API (Panel A) and DOE (Panel B) an-
nouncement days during time windows including 30 minutes before and 30 minutes after an-
nouncement times. The corresponding time windows on non-announcement days are displayed
for comparison in Panel C and Panel D. Each time series is normalized so that the price at
the time of the announcement equals 1. Therefore, all time series cross the value of 1 at Event
Time. In the upper panels, the time series are colored according to the surprise value of the
corresponding announcement, defined as APIAw −APIFw for the API report and DOEA

w −APIAw
for the DOE report. The positive values of the surprises (representing surplus inventories) are
designated by the blue end of the spectrum, while the negative values (representing inventory
shortages) are designated by green.

It is apparent (and not surprising) from Figure 2.5 and Figure 2.6 that there exist systematic

differences in WTI futures price discovery and trading activity between days with and without

announcements. In particular, for both types of announcements, a sudden surge in price volatility

(accompanied by a dramatic increase in traded volume immediately following the announcement)

is observed at event time, while no such phenomena are observed for non-announcement days.

The upper panels of Figure 2.5 suggest that the post-announcement price volatility increases are

of the same order of magnitude for both the API and DOE reports, indicating that both reports

are regarded as important gauges of the current state of the oil market.

Moreover, as the color spectrum of the announcement days time series suggests, the price
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C: API: Average Cumulative Volume Relative To Event Time
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D: DOE: Average Cumulative Volume Relative To Event Time
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Figure 2.6: Upper panels: Average traded volume per each minute during the time window
including 30 minutes before and after each announcement, and of the corresponding time win-
dows on non-announcement days. Lower panels: Average cumulative traded volume during the
same time windows. The event time is perceived as the origin, thus, the pre-event time period
displays the average traded volume from the x-axis time until the event time. Left panels: API
report. Right panels: DOE report.

reaction at these announcement times tends to be positive on days with negatively-valued an-

nouncement surprises and vice versa. This observation is also intuitively appealing. For example,

a surprisingly small oil inventory level is associated with surprisingly high demand (or surpris-

ingly low supply) of oil, leading to a price increase. We perceive this as an indication that our

defined surprise measures do, in fact, capture the quality of new information that is being priced

in the market after the announcements.

Although price volatility increases can be considered to be of the same magnitude, this rela-

tionship does not apply to the observed average traded volume trajectories. The approximately

10-fold post-announcement surge in average traded volume (as opposed to non-announcement

days), though present for both reports, represents smaller absolute values of traded volume for

the API than for the DOE report. This is again not surprising, since the DOE data is usually

announced during market hours, at 10:30 a.m. ET and the API data is announced after the

trading pit closes, during times of considerably lower market depth (the number of contracts

quoted in the limit order book at any given price) and activity. Indeed, while on average, ap-

proximately 25,000 contracts are traded in the 30 minutes leading up to the DOE announcement,
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this figure is 10 times smaller for the respective time window before the API announcement. We

assert that the API’s lower post-announcement traded volume is likely not observed because the

report is less significant, but rather is due to lower market depth and greater bid-ask spreads

that are usually present during the API announcement, requiring fewer contracts to be traded

in order to cause price movements of a magnitude similar to that of the DOE report. 12

Interestingly, we note that the price volatility during the DOE pre-announcement time win-

dow on DOE announcement days is considerably smaller than on non-announcement days. Ad-

ditionally, as Panels B and D on Figure 2.6 show, the average pre-announcement traded volume

on announcement days is approximately 30% smaller as well (about 26,000 contracts on DOE

days vs. 40,000 contracts on non-DOE days between 10:00 a.m. and 10:30 a.m. ET). Following

the DOE announcement, this relationship unsurprisingly reverts, leading to almost 100,000 con-

tracts being traded during the following 30 minutes, while on average 35,000 contracts are traded

on non-DOE days during the same period. We suggest that the scheduled DOE publication on

announcement days alters the usual (non-announcement day) structure of market participant

types engaging in trading during this time period. We hypothesize that market participants

have greater incentives to lower their risk exposure to the oil market in the face of approaching

DOE publication. Such behaviour would be associated with overall lower traded volume and

a greater relative proportion of liquidity-demanding non-informed trades. In this sense, we are

particularly interested in the information provided by the VPIN indicator.

Finally, we note that, while both the price and the volume change rapidly and immedi-

ately after the reports are published, no systematic change is observable during the minutes

(or seconds) leading up to announcement times. Therefore, trading activity associated with the

inventories information release appears to be present only after the information is made public,

suggesting no presence of insider trading activity prior to the announcements. The main objec-

tive of the remainder of this paper is to investigate in greater detail whether the VPIN metric

provides additional information about the structure and dynamics of information-based trading

around the two inventory levels announcements.

2.5.2 VPIN

We apply the Volume-synchronized probability of informed trading (VPIN) metric to our WTI

futures trade data spanning the period from January 2, 2017 to December 31, 2019. We reiterate

that calculation of the VPIN metric requires a researcher to choose two input parameters: the

size of one volume bucket B (the number of contracts to be traded before the VPIN metric is

recalculated) and the number of past volume buckets n, used for the calculation of the moving

average required to produce one VPIN value. There is no straightforward rule that would point

12We unfortunately do not possess the data on the structure and depth of the WTI limit order book.
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to an optimal choice of the two parameters. Easley, de Prado, and O’Hara (2010) start with

B corressponding to 2 percent of the average daily volume traded. This procedure therefore

yields on average 50 volume buckets per day. The authors first set n = 50, but later adjust this

parameter to different values.

We fix the value of n = 30, and for robustness purposes consider a grid of 5 different bucket

sizes Bi, i = 1, . . . , 5 corresponding to 0.1%, 0.2%, . . . , 0.5% of average daily traded volume.13

These percentages of daily volume correspond to the following absolute sizes of buckets (in lots):

660, 1,321, 1,981, 2,642 and 3,302. For the sake of brevity, all remaining results are reported

for the first bucket size category: B1 = 660, corresponding to 0.1% of the average daily volume.

Additionally, for robustness purposes, we report all results obtained in this chapter, applied to

the third bucket size category B3 = 1981 (corresponding to 0.3% of the average daily volume)

in the chapter’s Appendix 2.A.

We display the summary visual representation of the VPIN metric dynamics around inven-

tory announcements in Figure 2.7. The first four panels (Panel A - Panel D) display the results

expressed in the clock-time horizontal axis representation. The average VPIN trajectories for

the API report (Panel A) and for the DOE report (Panel B) during a one hour window sur-

rounding announcement times are shown, together with corresponding non-anouncement days

trajectories. Additionally, the point standard deviation bands illustrate the degree of variability

of these VPIN trajectories. Due to the high-frequency nature of the WTI futures market, Pan-

els C and D show the zoomed-in one minute window around the announcement time. Panels E

and F provide an alternative perspective by displaying the results represented in volume-time,

showing the 50 average VPIN values obtained immediately before and immediately after each

announcement.

Several observations can be made from Figure 2.7. Firstly, there clearly exist systematic

differences in informed trading activity as measured by the VPIN metric between announcement

and non-announcement days. While no systematic change in the behaviour of VPIN occurs on

non-announcement days (as documented by the blue elements of Figure 2.7), both kinds of crude

oil inventory reports announcements cause the VPIN to change considerably. The occurrence

of the arrival of this new information causes, on average, an immmediate several percentage

point increase in the estimated informed trading probability. Both reports appear to increase

this probability by at least 3 percentage points, representing approximately a 20% increase.

However, the average profiles of the informed trading activity exhibit different patterns for the

two reports.

In the case of the API report, the pre-announcement VPIN on announcement days maintains,

on average, a value very similar to the value that prevails on non-announcement days (at about

16 percent), while, following the announcement, this value increases to about 19 percent and

13This range is similar to the grid of bucket sizes used in the big-data study by Wu et al. (2013).
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C: API, Bucket Size = 660 lots (Clock Time, Zoom)
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D: DOE, Bucket Size = 660 lots (Clock Time, Zoom)
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F: DOE, Bucket Size = 660 lots (Volume Time)
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Figure 2.7: Average VPIN time series trajectories (solid lines) for the bucket size category B1

and for both types of announcements (API - left panels, DOE - right panels). The shaded bands
represent point intervals of +/- 1 standard deviation of the VPIN trajectories superimposed on
the mean VPIN trajectories. Orange elements show announcement days trajectories, while blue
elements represent non-announcement days during the corresponding time-of-day periods. Pan-
els A - D show the same elements expressed in clock-time. The time window includes 30 minutes
before and after each announcement and a zoomed-in version including one minute before and
after each announcement. Panels E - F provide an alternative perspective by displaying the
results represented in volume-time, including the 50 VPIN values observed immediately before
and the 50 VPIN values observed immediately after each announcement.
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remains at this level until the end of the period. Interestingly, in the case of the DOE report, the

last pre-announcement VPIN tends to be, on average, 3 percentage points smaller when com-

pared to the non-announcement days informed trading activity. An approximate 1 percentage

point drop in the VPIN value occurring during the last 15 minutes before the DOE report release

is also notable. Indeed, during the entire 30 minute pre-announcement time window considered,

we observe systematically smaller (with a slight decreasing trend) average levels of informed

trading probability, implying a greater presence of uninformed (liquidity) traders during these

time periods. We reiterate that one possible reason for such behaviour by liquidity traders may

be their desire to reduce their crude oil price exposure ahead of the expected announcement

event by hedging, reducing, or closing their open positions in WTI futures contracts. Following

the DOE announcement, an approximately 4 percentage point surge in VPIN tends to occur,

reaching the average value of 18 percent roughly 10 minutes after the announcement.

Additional insights appear in the zoomed-in versions of these charts. In particular, while the

most substantial increase in VPIN values occurs for the API report, on average, within the first

10 seconds after the announcement, the VPIN trajectory for the DOE report surges within the

very first second after the DOE report figures are published, suggesting a considerable presence

of algorithmic trading reacting to newly published information with very low latency. We note,

however, that these differences are partly caused by the slower updating of the VPIN metric due

to the relatively lower average volume traded during API announcements.

In order to account for clock-time and volume-time interpretation discrepancies, Panels E

and F offer a volume-time interpretation, as a unit movement along the horizontal axis repre-

sents a constant amount of volume traded (one volume bucket). Considering these panels, we do

observe different increase trajectories between the two reports. For the API report, the average

VPIN increases by about 1 percentage point between the first and the second post-announcement

volume bucket and then increases gradually by about 2 additional percentage points over the

course of the subsequent 25 volume buckets, while, for the DOE report, the most dramatic

increase in VPIN of about 3 percentage points occurs during the first two post-announcement

volume buckets. Subsequently, the average VPIN trajectory continues to increase, as the lower

(pre-announcement) volume imbalance data leave the 30 volume buckets moving average window

used for the VPIN calculation. This increase continues precisely until the 30 post-announcement

volume buckets become filled. Afterwards, the post-announcement average VPIN tends to stabi-

lize at a level that is approximately 4 percentage points higher than the last pre-announcement

VPIN. We conjecture that, in the case of the DOE report, the strongest reaction of informed

traders occurs virtually immediately after the announcement (corresponding to the two volume

buckets, or about 1,300 lots of traded volume) and is followed by a lower (although still higher

than the pre-announcement level) informed order flow intensity.

We emphasize that the above descriptions refer to average VPIN trajectories. The actual
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realized trajectories exhibit much noisier behaviour, as may be observed from the shaded +/- 1

standard deviation bands in Figure 2.7. Moreover, considering the almost flat (or decreasing)

VPIN profiles during the pre-announcement time periods, no systematic presence of increased

informed trading activity (potentially associated with insider trading) is observed. We also

note that no clear relationship between the VPIN trajectory and the particular announcement

surprise value is discernable from this graphical representation. We thus now proceed with

further quantitative investigation of the informed trading activity dynamics around inventory

announcements. With that purpose and on the basis of the above observations, we next test the

three hypotheses formulated in section 2.4.

2.5.3 Hypotheses Testing

Hypothesis 1

On API (DOE) announcement days, the probability of informed trading as measured by VPIN

before an API (DOE) announcement does not significantly differ from the value after the API

(DOE) announcement.

We reiterate that, for a given parameter m (determining the number of volume buckets used

to calculate the quantities in the table) and a given inventory report category, we formulate two

testable versions of the null hypothesis in 2.8 and 2.9 as:

H
(1a)
0 : E

[︂
V PINm,Before

w − V PINm,After
w

]︂
= 0

H
(1b)
0 : The distribution of V PINm,Before

w − V PINm,After
w is symmetric around zero.

We apply these tests for both types of announcements and for the following values of m: 1, 2,

3, 5, 10. Table 2.2 shows the results for the smaller bucket size category B1.

On the basis of the p-values of the two statistical tests used in this procedure and reported

in Table 2.2, we conclude that, on announcement days, the probability of informed trading as

measured by VPIN before the API (DOE) announcement differs from the value observed after

the API (DOE) announcement in a statistically significant manner. For both reports, the aver-

age VPIN observed shortly after the announcement is significantly greater than the one observed

shortly prior to the announcement. This difference, in the case of the bucket size B1 and for

a very short window around the announcement, is approximately equal to 0.5 percentage point

for the API report and 1 percentage point for the DOE report. Considering larger values of

m (corresponding to a less immediate post-announcement changes), the VPIN increase equals

approximately 2 and 2.5 percentage points for the API and DOE reports, respectively. Rela-

tive to the average values observed before the announcement, these increases correspond to an

approximate 15 percent increases in informed trading probability for both reports.
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Table 2.2: Hypothesis 1 results for the smaller bucket size category B1 = 660 lots.

The six rows for each bucket size - announcement type pair show the average values of
V PINm,Before

w , V PINm,After
w , their difference, the p-values of the Student’s t-test (null hy-

pothesis: H(1a)
0 : E

[︂
V PINm,Before

w − V PINm,After
w

]︂
= 0) and the paired Wilcoxon signed rank

test (null hypothesis H
(1b)
0 : the distribution of V PINm,Before

w − V PINm,After
w is symmetric

around zero) and the number of observations available for testing in each setting. Parameter
m determines the number of volume buckets (therefore, the number of VPIN values) used to
calculate the quantities in the table. For greater values of m, the quantities calculated are based
on greater traded volume. The size of one volume bucket equals 660 lots.

No. of volume buckets m: 1 2 3 5 10

Bucket
size B1

API

Mean VPIN Before 0.156 0.156 0.156 0.156 0.163
Mean VPIN After 0.160 0.165 0.167 0.169 0.183
Mean VPIN Change 0.005 0.009 0.011 0.013 0.020
t-test pval 0.000 0.000 0.000 0.000 0.000
Wilcoxon pval 0.000 0.000 0.000 0.000 0.000
No. of obs 155 155 155 155 114

DOE

Mean VPIN Before 0.151 0.151 0.151 0.151 0.152
Mean VPIN After 0.161 0.167 0.171 0.174 0.176
Mean VPIN Change 0.009 0.016 0.019 0.023 0.024
t-test pval 0.000 0.000 0.000 0.000 0.000
Wilcoxon pval 0.000 0.000 0.000 0.000 0.000
No. of obs 156 156 156 156 156

Overall, we reject Hypothesis 1 and conclude that oil inventory publications are associated

with significant and rapid increases in the probability of informed trading in the WTI market.

As is apparent from Table 2.2, this decision is robust with respect to the report type and to the

number of volume buckets m. Moreover, as the results for the larger bucket size category B3

(reported in Appendix 2.A) show, this decision is robust with respect to the bucket size category

as well.

We note that this result is intuitively expected and confirms our observation that the US

crude oil inventory level is perceived as a very important fundamental indicator in the oil market.

The public release of new information causes an immediate increase in informed trading activity

and is timely captured by the VPIN metric.

Hypothesis 2

a) On API announcement days, the magnitude of the VPIN change around an API announce-

ment does not depend on the magnitude of the API surprise.

b) On DOE announcement days, the magnitude of the VPIN change around a DOE an-

nouncement does not depend on the magnitude of the DOE surprise and does not depend

on the magnitude of the corresponding previous API surprise.
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Table 2.3 displays the estimation results for the set of linear models defined by 2.10 and 2.11:

Y (m,API)
w = α(m,API) + β(m,API)SURNAPI

w + γ(m,API)
(︁
SURNAPI

w

)︁2
+ ε(m,API)

w

Y (m,DOE)
w = α(m,DOE) + β(m,DOE)SURNDOE

w + γ(m,DOE)
(︁
SURNDOE

w

)︁2
+ δ(m,DOE)SURNAPI

w + ρ(m,DOE)
(︁
SURNAPI

w

)︁2
+ ε(m,DOE)

w ,

where Y
(m,·)
w = V PINm,After

w − V PINm,Before
w , as defined in section 2.4. We assess Hypothesis

2 by testing the joint significance of the non-intercept coefficients in these regressions. This

procedure is equivalent to the null hypotheses defined in 2.12 and 2.13:

H
(2,API)
0 : β(m,API) = γ(m,API) = 0

H
(2,DOE)
0 : β(m,DOE) = γ(m,DOE) = δ(m,DOE) = ρ(m,DOE) = 0

The results, reported for the smaller bucket size category B1, strongly suggest that the mag-

nitude of the change of informed trading intensity around both announcements is significantly

related to the magnitude of the surprise associated with these announcements. The test statistics

of the respective joint F-tests are significant at least at the 5% level in 8 out of 10 regressions.

The γ coefficients, associated with the quadratic terms, are positive and highly statistically sig-

nificant for 8 out of 10 regressions, as well. The positive signs of all the significant γ coefficients

imply (again in line with our intuition) that, the greater the magnitude of the surprise (in either

a positive or negative direction), the greater the increase in informed trading activity will be.

These results are mostly consistent for both report categories, although in the DOE case, we

note 2 regressions (associated with smaller values of m) that fail to reject H
(2,DOE)
0 .

Considering the DOE results, once the DOE surprise variables are controlled for, we observe

mixed results for the significance of the coefficients pertaining to the preceding API surprise (δ

and ρ coefficients). While the δ coefficients (pertaining to the linear term) are mostly insignif-

icant, the quadratic terms ρ are significant at the 5% level for one regression. We assert that

these results suggest an interesting presence of a mixture effect, under which the true "surprise"

of the DOE announcement depends not only on the preceding API value (the surprise of which

itself depends on the DOE forecast), but also on the DOE forecast itself.

Our estimated regression equations explain up to 8 percent of the total variation for the

DOE report and up to 18 percent for the API report. Finally, we note that the results are

reasonably robust with respect to the range of values m considered and with respect to the two

bucket sizes, B1 and B3 (the results for the latter appear in Appendix 2.A).

Overall, these results lead us to reject Hypothesis 2 for both API and DOE reports. The

more unexpected (surprising) the published inventory value is, the greater increase of the order

flow toxicity as measured by VPIN is observed. If we assume that the greater surprise magnitude
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Table 2.3: Hypothesis 2 results for the smaller bucket size category B1 = 660 lots.

The summary estimates of the regressions Y
(m,API)
w = α(m,API) + β(m,API)SURNAPI

w +

γ(m,API)
(︁
SURNAPI

w

)︁2
+ ε

(m,API)
w (for the API report) and Y

(m,DOE)
w =

α(m,DOE) + β(m,DOE)SURNDOE
w + γ(m,DOE)

(︁
SURNDOE

w

)︁2
+ δ(m,DOE)SURNAPI

w +

ρ(m,DOE)
(︁
SURNAPI

w

)︁2
+ ε

(m,DOE)
w (for the DOE report) are displayed. The standard

errors are estimated using the Newey-West estimator. The regression results that are statis-
tically significant at the 1%, 5% and 10% levels are marked with (***), (**) and (*) signs.
Parameter m determines the number of volume buckets (therefore, the number of VPIN values)
used to calculate the quantities in the table. For greater values of m, the quantities calculated
are based on greater traded volume. The size of one volume bucket equals 660 lots.

No. of volume buckets m: 1 2 3 5 10

Bucket
size B1

API

α 0.003*** 0.005*** 0.006*** 0.007*** 0.012***
β 0.010 -0.092 -0.145 -0.191 -0.193
γ 16.861** 41.120*** 52.961*** 66.932*** 70.837***
No. of obs 155 155 155 155 114
Adj. R squared 0.031 0.142 0.168 0.185 0.121
F-test statistic 3.452** 13.746*** 16.545*** 18.443*** 8.745***

DOE

α 0.010*** 0.016*** 0.019*** 0.022*** 0.023***
β -0.108 -0.056 -0.140 -0.241 -0.416*
γ -2.838 11.105 23.173** 40.601** 62.139**
δ 0.025 -0.073 -0.166 -0.266* -0.453**
ρ -4.282 -7.737 -12.749* -24.328** -29.894*
No. of obs 156 156 156 156 156
Adj. R squared -0.012 -0.004 0.030 0.063 0.078
F-test statistic 0.536 0.856 3.214** 3.626*** 4.258***

86



indeed induces informed market participants to trade on the new information in a more inten-

sive manner, we assert that the Hypothesis 2 results render the VPIN metric useful from the

perspective of assessing not only directional changes, but also overall changes in the magnitude

of the informed order flow.

Hypothesis 3

On API (DOE) announcement days, the change in the value of VPIN shortly before an API

(DOE) announcement is not associated with the magnitude of the corresponding API (DOE)

surprise.

We reiterate that the testable versions of the null hypotheses correspond to the following

regression models and the following null hypotheses 2.15 and 2.16:

|SURNAPI
w | = α(m,API) + β(m,API)X(m,API)

w + ε(m,API)
w

|SURNDOE
w | = α(m,DOE) + β(m,DOE)X(m,DOE)

w + ε(m,DOE)
w

H
(3,API)
0 : β(m,API) = 0

H
(3,DOE)
0 : β(m,DOE) = 0,

where X(m,·)
w = V PIN

(Last,·)
w −AV GV PIN

(m,·)
w is again defined in section 2.4. The regression

results are reported in Table 2.4. We are thus interested in the significance of the β coefficient

estimates, and after examination of Table 2.4, we state that the results do not provide strong

evidence against these null hypotheses. Out of the 10 linear regressions considered for the smaller

bucket size category B1, only one regression reports statistically significant β coefficient at the

5% level of significance. This instance pertains to the DOE announcement and the VPIN moving

average length parameter m = 5. According to the estimated β coefficient value of 0.107, a one

percentage point increase in the difference between the last pre-announcement VPIN value and

the moving average of the preceding 5 VPIN values is associated with an increase of the absolute

value of the normalized DOE announcement surprise by 0.00107, corresponding to a surprise of

0.107% of the prevailing total level of crude oil inventories. However, this relationship, although

intriguing, is not confirmed when a larger bucket size category (results reported in Appendix

2.A) is considered. Moreover, the rather small values of the adjusted R squared coefficients

provide additional evidence in favor of the null hypotheses investigated.

Overall, we do not observe a stable, statistically significant relationship between changes in

informed trading activity shortly before an announcement, and the magnitude of the announce-

ment surprise. Therefore, for both types of reports, we do not reject Hypothesis 3. These

results suggest that "last-minute" pre-announcement changes in informed trading intensity are

not predictive of how unexpected (surprising) the inventories value to be released will be. As a

87



Table 2.4: Hypothesis 3 results for the smaller bucket size category B1 = 660 lots.

The summary estimates of the regressions |SURNAPI
w | = α(m,API)+β(m,API)X

(m,API)
w +ε

(m,API)
w

(for the API report) and |SURNDOE
w | = α(m,DOE) + β(m,DOE)X

(m,DOE)
w + ε

(m,DOE)
w (for the

DOE report). See the main body of the text for the definitions of the regression variables. The
standard errors are estimated using the Newey-West estimator. The regression results that are
statistically significant at the 1%, 5% and 10% levels are marked with (***), (**) and (*) signs.
Parameter m determines the number of volume buckets (therefore, the number of VPIN values)
used to calculate the quantities in the table. For greater values of m, the quantities calculated
are based on greater traded volume. The size of one volume bucket equals 660 lots.

No. of volume buckets m: 1 2 3 4 5

Bucket
size B1

API

α 0.008*** 0.008*** 0.008*** 0.008*** 0.008***
β 0.019 -0.029 -0.015 0.002 0.015
No. of obs 156 156 156 156 156
Adj. R sq. -0.006 -0.005 -0.006 -0.006 -0.006
F-test statistic 0.068 0.223 0.079 0.002 0.109

DOE

α 0.007*** 0.007*** 0.007*** 0.007*** 0.007***
β 0.095 0.111 0.109* 0.110* 0.107**
No. of obs 156 156 156 156 156
Adj. R sq. 0.002 0.010 0.017 0.024 0.029
F-test statistic 1.358 2.625 3.611* 4.861* 5.655**

potential reason for inexplicable ex-ante and ex-post rapid changes in informed trading activity

could be the presence of inside information (especially last-minute leakages), the fact that we

do not observe such dynamics prior to the oil inventory announcements signals no evidence of

insider trading.
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2.6 Conclusion

The properties of measures that aim to quantify order flow toxicity prevailing in modern elec-

tronic limit order book financial markets are of substantial interest to all market participants

(especially market makers) and regulatory authorities. The aim of this study is to contribute

to the existing literature by examining the VPIN metric formulated by Easley, de Prado, and

O’Hara (2010) in a high frequency environment around periodically repeating macroeconomic

announcements of major importance.

We chose the weekly publications of the level of US crude oil inventories of two separate

agencies, the American Petroleum Institute (API) and the US Department of Energy (DOE).

The weekly periodic and sequential publishing schedule of these two reports, combined with

the high frequency trade-level data on the WTI futures contract at our disposal provide an

interesting setting in which changes in order flow toxicity occurring at potentially very high

frequencies can be investigated.

Our estimated VPIN metric dynamics around these inventory announcements suggest that

the probability of informed trading as measured by VPIN increases, on average, by approxi-

mately 20% after report publications. This increase can be observed for both the API and the

DOE report. Although in both cases occurring virtually immediately, the most pronounced

VPIN adjustment after the DOE report publication takes place, on average, within the first two

seconds, about three times faster than after the API report.

In the case of the DOE report, we additionally observe systematically smaller VPIN values

prevailing during the 30 minutes leading up to the report publication time, as opposed to the

same time of day on non-announcement days. We conjecture that this interesting observation

may be associated with relatively greater activity of liquidity-demanding traders aiming to reduce

their oil price exposure due to the upcoming announcement, as well as with relatively lower

activity on the part of informed and speculative traders, willing to engage in their usual trading

activity. A deeper investigation of the association of various order flow toxicity and liquidity

measures (such as the potential widening of the bid-ask spreads caused by risk aversion of market

makers) with this phenomenon may represent one of the possible directions of future research.

Moreover, having defined the market surprise variables based on the differences of the actual

published and expected changes in the oil inventories, we document a significant relationship

between the magnitude of these surprises and associated changes in order toxicity. In particular,

more surprising oil inventory changes are associated with greater post-announcement percentage

increases in informed trading probability, as captured by the VPIN metric.

Finally, we investigate a possible presence of last-minute insider trading activity by relating

pre-announcement VPIN changes with the corresponding announcement surprise magnitudes.

We do not find statistically significant evidence of the presence of such relationship.

89



All of our documented results appear to be considerably robust to the choices of various

estimation-related parameters. We conclude that VPIN represents a potentially useful metric of

adverse selection measurement in high-frequency limit order book markets.

2.A Appendix

In this section, we provide the results for another bucket size category, B3, corresponding to

1981 WTI futures contracts. Figure 2.8 displays the average VPIN trajectories around the

two announcement reports, together with the corresponding time-of-day trajectories on non-

announcement days. Table 2.5, Table 2.6 and Table 2.7 show the respective results for Hypothe-

ses 1, 2, and 3 when the VPIN values based on this larger bucket size category are considered.

Overall, compared with the results in the main body of the text, we note that the results are

considerably robust to the bucket size category choice.

Table 2.5: Hypothesis 1 results for the larger bucket size category B3 = 1981 lots.

The six rows for each bucket size - announcement type pair show the average values of
V PINm,Before

w , V PINm,After
w , their difference, the p-values of the Student’s t-test (null hy-

pothesis: H(1a)
0 : E

[︂
V PINm,Before

w − V PINm,After
w

]︂
= 0) and the paired Wilcoxon signed rank

test (null hypothesis H
(1b)
0 : the distribution of V PINm,Before

w − V PINm,After
w is symmetric

around zero) and the number of observations available for testing in each setting. Parameter
m determines the number of volume buckets (therefore, the number of VPIN values) used to
calculate the quantities displayed in the table. For greater values of m, the quantities calculated
are based on greater traded volume. The size of one volume bucket equals 1,981 lots.

No. of volume buckets m: 1 2 3 5 10

Bucket

size B3

API

Mean VPIN Before 0.104 0.104 0.106 0.113 0.136

Mean VPIN After 0.108 0.109 0.111 0.122 0.150

Mean VPIN Change 0.003 0.005 0.005 0.009 0.014

t-test pval 0.000 0.000 0.000 0.000 0.003

Wilcoxon pval 0.000 0.000 0.000 0.000 0.005

No. of obs 155 155 150 79 14

DOE

Mean VPIN Before 0.105 0.105 0.105 0.106 0.107

Mean VPIN After 0.109 0.111 0.111 0.112 0.113

Mean VPIN Change 0.004 0.006 0.006 0.006 0.007

t-test pval 0.000 0.000 0.000 0.000 0.000

Wilcoxon pval 0.000 0.000 0.000 0.000 0.000

No. of obs 156 156 156 156 156
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Figure 2.8: Average VPIN time series trajectories (solid lines) for the bucket size category B3

and for both types of announcements (API - left panels, DOE - right panels). The shaded bands
represent point intervals of +/- 1 standard deviation of the VPIN trajectories superimposed on
the mean VPIN trajectories. Orange elements show announcement days trajectories, while blue
elements represent non-announcement days during the corresponding time-of-day periods. Pan-
els A - D show the same elements expressed in clock-time. The time window includes 30 minutes
before and after each announcement and a zoomed-in version including one minute before and
after each announcement. Panels E - F provide an alternative perspective by displaying the
results represented in volume-time, including the 50 VPIN values observed immediately before
and the 50 VPIN values observed immediately after each announcement.
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Table 2.6: Hypothesis 2 results for the larger bucket size category B3 = 1981 lots.

The summary estimates of the regressions Y
(m,API)
w = α(m,API) + β(m,API)SURNAPI

w +

γ(m,API)
(︁
SURNAPI

w

)︁2
+ ε

(m,API)
w (for the API report) and Y

(m,DOE)
w =

α(m,DOE) + β(m,DOE)SURNDOE
w + γ(m,DOE)

(︁
SURNDOE

w

)︁2
+ δ(m,DOE)SURNAPI

w +

ρ(m,DOE)
(︁
SURNAPI

w

)︁2
+ ε

(m,DOE)
w (for the DOE report) are displayed. The standard

errors are estimated using the Newey-West estimator. The regression results that are statis-
tically significant at the 1%, 5% and 10% levels are marked with (***), (**) and (*) signs.
Parameter m determines the number of volume buckets (therefore, the number of VPIN values)
used to calculate the quantities in the table. For greater values of m, the quantities calculated
are based on greater traded volume. The size of one volume bucket equals 1,981 lots.

No. of volume buckets m: 1 2 3 5 10

Bucket
size B3

API

α 0.002*** 0.002*** 0.003*** 0.006*** 0.009
β -0.113** -0.131** -0.117* -0.112 -0.351
γ 16.217*** 23.419*** 23.362*** 20.270*** 41.366
No. of obs 155 155 150 79 14
Adj. R squared 0.084 0.121 0.086 0.034 -0.014
F-test statistic 8.061*** 11.619*** 7.966*** 2.371* 0.908

DOE

α 0.004*** 0.006*** 0.006*** 0.007*** 0.008***
β 0.044 -0.066 -0.096 -0.082 -0.105
γ 17.703*** 24.427*** 25.806** 25.013** 17.937
δ 0.021 -0.055 -0.084 -0.082 -0.068
ρ -12.234** -20.535*** -20.858*** -20.097*** -21.891**
No. of obs 156 156 156 156 156
Adj. R squared 0.064 0.121 0.103 0.067 0.031
F-test statistic 3.630*** 6.327*** 5.429*** 3.770*** 2.222*
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Table 2.7: Hypothesis 3 results for the larger bucket size category B3 = 1981 lots.

The summary estimates of the regressions |SURNAPI
w | = α(m,API)+β(m,API)X

(m,API)
w +ε

(m,API)
w

(for the API report) and |SURNDOE
w | = α(m,DOE) + β(m,DOE)X

(m,DOE)
w + ε

(m,DOE)
w (for the

DOE report). See the main body of the text for the definitions of the regression variables. The
standard errors are estimated using the Newey-West estimator. The regression results that are
statistically significant at the 1%, 5% and 10% levels are marked with (***), (**) and (*) signs.
Parameter m determines the number of volume buckets (therefore, the number of VPIN values)
used to calculate the quantities in the table. For greater values of m, the quantities calculated
are based on greater traded volume. The size of one volume bucket equals 1,981 lots.

No. of volume buckets m: 1 2 3 4 5

Bucket
size B3

API

α 0.008*** 0.008*** 0.008*** 0.008*** 0.008***
β 0.166 0.167 0.140* 0.093 0.069
No. of obs 156 156 156 156 156
Adj. R sq. 0.006 0.009 0.007 0.001 -0.002
F-test statistic 1.940 2.396 2.168 1.171 0.753

DOE

α 0.007*** 0.007*** 0.007*** 0.007*** 0.007***
β 0.096 0.062 0.050 0.037 0.027
No. of obs 156 156 156 156 156
Adj. R sq. 0.001 -0.003 -0.004 -0.005 -0.006
F-test statistic 1.083 0.521 0.406 0.251 0.147
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Chapter 3
Spillovers in the Eurozone Sovereign Bond

Market: Causes and Dynamics.

3.1 Introduction

One of the key properties of well-functioning and effective risk management practices in modern

globalized and highly interconnected financial markets is the ability to quantify the potential for

a price shock transmission among individual assets within a portfolio. Unsurprisingly, due to

its growing importance from both the risk management and regulatory points of view, studies

of the interconnectedness of financial markets have gained considerable attention in academic

literature, from the perspective of introducing innovative concepts and of devising new metrics

aiming to quantify the degree of interconnectedness (Adrian and Brunnermeier (2011), Engle

and Kelly (2012), Acharya, Engle, and Richardson (2012), Diebold and Yılmaz (2014), Han et al.

(2016), and Baruník and Kley (2019)) and in terms of empirically applying these concepts to a

wide variety of scenarios, settings, and asset classes (Christiansen (2007), Costantini, Fragetta,

and Melina (2014), Baruník, Kočenda, and Vácha (2016), Fernández-Rodríguez, Gómez-Puig,

and Sosvilla-Rivero (2016), and Tan et al. (2020)).

The aim of this study is to contribute to the empirical stream of literature on financial

contagion by focusing on the European sovereign bond market. We utilize daily data on the

four most liquid Eurozone sovereign bond futures markets during the time period spanning

October 2015 to July 2020. The daily closing prices of futures contracts on long-term government

bonds of France, Germany, Italy, and Spain are used in our analysis. Our chosen setting offers an

investigation of potentially interesting spillover relationships within the European sovereign bond

market, as the time period under consideration contains several geopolitical, macroeconomic, and

social events of substantial regional and global significance, including the adoption of economic
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policies by the Trump administration, the Italian political crisis, and the Covid-19 pandemic.

We utilize the connectedness framework proposed in the seminal study by Diebold and Yil-

maz (2012) and enhanced later by Diebold and Yılmaz (2014). The authors propose several

measures based on generalized forecast error variance decomposition (GFEVD) matrices of var-

ious vector autoregressive (VAR) processes. Depending on the particular type of the variables

entering the underlying VAR processes used for estimation, overall magnitude and directional

relationships of spillover dynamics in either log-returns or volatilities within the system can be

quantified by applying various transformations to the estimated GFEVD matrices. Moreover,

we provide the time development of these spillover characteristics by performing a rolling sub-

sample analysis. Finally, we investigate potential associations of such spillover dynamics with

underlying macroeconomic and geopolitical developments using panel data regression analysis.

We document the following findings. On the basis of the entire available sample, the main

indicator of the overall system’s connectedness (the so-called Total Spillover Index) ranges be-

tween 53 and 60 percent, based on whether log-returns or volatilities are considered the VAR

process input variables. This suggests that the Eurozone bond futures market as represented by

our sample constitutes a system that entails a considerable degree of risk contagion. However,

when contrasted to major studies on other asset classes (such as the extreme example of 97%

volatility connectedness of international financial markets documented by Diebold and Yılmaz

(2014)), we state that the degree of financial contagion in the European sovereign bond mar-

ket is moderate. The greatest directional contagion effect (the so-called Net Spillover Index)

is observed for volatility spillovers in the "from Italy to others" direction. We argue that the

turbulent political situation in Italy that was present throughout a substantial portion of the

sample was associated not only with greater volatility of Italian government bond futures, but

measurably contributed to increased volatility of the bond markets of the remaining major Eu-

rozone countries as well. We deem this finding particularly interesting, as Italian bond futures

consistently represented only around 10% of the aggregated system’s traded volume.

However, when utilizing the rolling subsample approach and considering the results from a

more detailed perspective, we state that there are several dimensions in which the characteris-

tics of the spillover relationships differ substantially. Firstly, the degree of total connectedness

exhibits considerable time variation, ranging between slightly above 30% and 72% (recorded for

volatility connectedness in July, 2019 and mid-March, 2020, respectively) and increasing rapidly

in response to turbulent and unexpected macroeconomic and geopolitical shocks. There are

two shocks in our sample for which we observe these dynamics in the most pronounced form:

the Italian political crisis (culminating on May 29, 2018) and the coronavirus outbreak volatil-

ity surge (ignited on March 12, 2020). Moreover, as the panel data regression analysis results

suggest, during these shock-related crisis periods, we find evidence of a significant association

between a country’s Net Spillover Index and its underlying macroeconomic fundamentals (in
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particular, the changes in the debt to GDP ratio and the consumer confidence indicator).

Additionally, we observe differences with respect to the choice of the VAR estimation set-

ting, depending on whether log-returns or volatilities are considered. These differences manifest

both in aggregate connectedness measures and in measures quantifying directional relationships

between the variables in the system. The results for our sample of countries offer an interest-

ing distinction between the "central" countries of Germany and France and the "peripheral"

countries of Italy and Spain. Additionally, while France is documented to be the overall prin-

cipal transmitter of log-return spillovers and the main receiver of volatility spillovers, opposite

properties are observed for Italy, the sample’s major volatility spillovers transmitter.

Finally, we document Germany’s bond market as the sample’s predominant receiver of

spillovers in log-returns, despite being decisively the most liquid market in our study. However,

we assert that Germany may represent at various time periods as strongly a role of the major

transmitter of volatility spillovers as of their receiver. Germany’s volatility transmitting role is

most pronounced during periods of heightened global tensions, such as late 2018 and early 2019

(the main US-China trade war dispute and the Brexit deal negotiations), and the most dramatic

worldwide volatility shock in decades (the Covid-19 pandemic outbreak). These observations

lead us to conclude that, while the volatility transmitting role of Italy was driven mainly by its

internal turbulent political development, Germany is the sample’s primary volatility transmitter

of the effects of major global affairs.

Overall, we assert that the connectedness measures investigated in this study produce nu-

anced and elaborate insights into the risk contagion structure present in financial markets.

Within the context of our analysis, we assert that the dynamics of the cross-country risk con-

tagion present in the Eurozone sovereign bond market system deserves the attention of both

policymakers and market participants, particularly during episodes of increased geopolitical or

macroeconomic tensions.

The remainder of this paper is structured as follows. Section 3.2 reviews relevant risk conta-

gion studies, particularly in the context of sovereign bond markets. In section 3.3, we introduce

the connectedness measures we apply. Section 3.4 describes the European bond market data

available for estimation and overviews the main macroeconomic and geopolitical developments

during the period. The connectedness results are described and discussed from multiple per-

spectives in section 3.5. Section 3.6 concludes.

3.2 Literature Review

Due to its growing importance from investment, risk management and regulatory perspec-

tives, the study of the interconnectedness of financial markets, especially in terms of volatility

spillovers, has gained considerable attention in academic literature.
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Several different research strategies aiming to quantify the concept of connectedness of fi-

nancial assets have been proposed. A substantial set of studies utilize and enhance the intuitive

concept of correlation. Engle and Kelly (2012), for instance, introduce the equi-correlation

methodology, focusing on average pairwise correlations and providing a relatively simple estima-

tion strategy of arbitrarily large covariance matrices. Adrian and Brunnermeier (2011) define

the CoVaR (conditional Value at Risk) metric, while Acharya, Engle, and Richardson (2012)

propose the MES (marginal expected shortfall) metric, both quantifying the relationship be-

tween the individual riskiness of a financial asset and variations in global market fundamentals.

Additional focus has been dedicated to analyzing non-average quantile-based measures, such

as the cross-quantilogram approach introduced by Han et al. (2016) or the quantile coherence

measure proposed by Baruník and Kley (2019).

Another way of quantifying cross-asset spillovers has been introduced and defined in the sem-

inal study by Diebold and Yilmaz (2009) in which the metrics of volatility spillovers are based

on the connectedness framework. The authors utilize the concept of forecast error variance de-

composition (FEVD) of a VAR process. Since an (i, j) element of the FEVD matrix represents

the fraction of the variable i’s forecast error variance that may be attributed to shocks in an-

other variable j of that same system, spillover measures based on FEVD matrices represent an

intuitive way to quantify the degree and the direction of financial contagion prevailing within

the system. Diebold and Yilmaz (2012) and Diebold and Yılmaz (2014) further enhance con-

nectedness metrics by adopting the concept of generalized FEVD matrices (Koop, Pesaran, and

Potter (1996), Pesaran and Shin (1998)). Introducing the generalized FEVD matrices accounts

for the inherent property of the original FEVD matrices not being robust to the ordering of

variables in the VAR system.

Since its inception, connectedness methodology has been applied to numerous research set-

tings, an exhaustive account of which is beyond the scope of this section. Nevertheless, we aim

to provide a representative overview. Among the studies analyzing stock market performance,

Diebold and Yilmaz (2015) characterise return and volatility spillovers across a universe of ma-

jor European and American financial institutions, utilizing 10 years of daily data. While they

document a strong unilateral direction of spillovers from America to Europe during the 2007

- 2008 financial crisis. starting in late 2008, the relationship becomes increasingly bilateral,

especially during the onset of the European sovereign debt crisis. Jiang et al. (2020) investigate

the volatility spillovers at different frequencies across different industry sectors in China. The

authors state that the main direction of volatility spillovers in China occurs from the industrial

and construction sectors towards the banking and real estate sectors.

Another important universe of assets analyzed within the connectedness framework is the

forex market. Diebold and Yılmaz (2015) study nine major currency pairs, documenting a

moderate post-2007 crisis increase in their overall connectedness. Other studies analyzing the
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connectedness of the forex market include Antonakakis (2012), Greenwood-Nimmo, Nguyen, and

Rafferty (2016), and Baruník, Kočenda, and Vácha (2017). Do, Brooks, and Treepongkaruna

(2015) examine a universe of assets including the stock and forex markets. Employing high

frequency data, the authors find positive spillover effects between these two markets, occuring

in both directions, especially in turbulent periods. Finally, Yi, Xu, and Wang (2018) examine

the popular universe of cryptocurrencies. Among the 52 cryptocurrencies they analyze, they

find that Bitcoin is an important, albeit not a dominant net transmitter of connectedness.

Among studies focusing on risk contagion in energy markets, Zhang (2017) applies con-

nectedness framework to investigate the relationships between shocks to the world’s oil market

and six globally important equity indices. Although the importance of oil market spillovers is

documented as being overall relatively weak, the author concludes that, during the periods of

extraordinary oil market volatility, risk contagion in the direction to the equity indices becomes

significant. Ji, Zhang, and Geng (2018) analyze the energy market universe, including crude

oil, carbon emissions, coal, clean energy, and electricity markets, and find that the oil market is

dominant in terms of both return and volatility spillovers transmission. Conversely, the electric-

ity market is shown to be the main net spillover receiver. Connectedness of the carbon emissions

market to energy and financial markets is studied by Tan et al. (2020). The authors document

a substantial time variation of all of the network connectedness measures, also driven by the

presence of a structural break in the spillover effect of the carbon emissions market.

Several studies enhance and refine the connectedness methodology to identify more elaborate

aspects of financial contagion. For example, Baruník, Kočenda, and Vácha (2016) decompose

volatility into "good" and "bad" volatility, applying the concept of the realised semi-variance of

Barndorff-Nielsen, Kinnebrock, and Shephard (2008) to US stock market data. Subsequently,

utilising high-frequency intraday prices of the most liquid forex futures contracts, Baruník,

Kočenda, and Vácha (2017) find that the volatility spillovers associated with "bad" volatility

(negative shocks) dominate "good" volatility spillovers. While the positive spillovers are asso-

ciated with the 2007 subprime crisis, the negative spillovers are mostly tied to the European

sovereign debt crisis. Antonakakis, Gabauer, and Gupta (2019) combine the connectedness

framework with the Bayesian time-varying parameter vector autoregressions and measure the

spillover time dynamics of four developed stock markets without the need for rolling subsamples.

While they find that the US and EU stock markets are major transmitters of monetary policy

spillovers, the UK and Japanese markets are mostly their net receivers. Finta and Aboura (2020)

examine higher moments spillovers among the world’s most liquid stock markets, focusing not

only on volatility, but also on skewness risk premium spillovers. The authors find that these two

kinds of risk premia exhibit substantial bi-directional spillovers.

In line with the focus of this study, we next overview the research on financial contagion

within the universe of sovereign bond markets. Earlier studies document mostly relatively strong
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common determinants of either global or regional co-movements of interest rates. Ilmanen

(1995) investigates the predictable component of time-varying expected returns in six long-term

government bond markets. They find that a small set of global instruments forecasts up to 12

percent of bond returns’ monthly variation. Clare and Lekkos (2000) examine the relationship

between the US, UK and German sovereign bond markets, and find the existence of common

international factors influencing all three government yield curves, especially during periods of

financial distress. Laopodis (2004) provides empirical evidence of the impact of globalization on

greater synchronization of interest rates and examines the implications of this phenomenon on the

conduct of monetary policy. This convergence in interest rate dynamics is particularly observed

for the European Union, though the special status of Germany is maintained throughout the

sample, as acknowledged by the author. In terms of bond volatility spillovers, Christiansen

(2007) applies a volatility spillover model based on a GARCH framework to investigate contagion

channels between the aggregate US and EU bond markets and bond markets of individual

European countries. Existence of strong spillover effects towards the individual markets is

documented. Furthermore, while the US market is a strong volatility transmitter to the non-

Eurozone European countries, its effect on the Eurozone markets appears to be substantially

weaker.

Balli (2009) investigates the degree of European sovereign bond market integration and

concludes that, in the Eurozone, various macroeconomic and fiscal factors cannot explain the

variation in sovereign bond yields in the monetary union era, making a case for almost perfect

financial integration of these markets. However, the author observes post-global shock dis-

crepancies among Eurozone bond markets. Other studies examining possible determinants of

Eurozone’s sovereign bond yield spreads have been carried out by Favero and Missale (2012) and

Costantini, Fragetta, and Melina (2014). In the latter study, the authors find that the different

fiscal imbalances in the form of debt-to-GDP ratios explain the variation in the corresponding

sovereign yield spreads to a considerable degree. Sibbertsen, Wegener, and Basse (2014) exam-

ine the persistence of French, Italian, and Spanish bond yield spreads (against German interest

rates) and find the existence of structural breaks in the persistence of these spreads occurring

between 2006 and 2008. They document an evolution towards stronger persistence of the yield

spreads, arguably due to the Eurozone debt crisis.

The following studies apply the connectedness methodology based on FEVD matrices to

bond markets and can therefore be considered the most closely related to the aim of our study.

Antonakakis and Vergos (2013) investigate more than 5 years of daily data on 9 Eurozone

sovereign bond yields. Spillovers originating from the destabilizing shocks in periphery countries

are observed to be more prevalent than those from core countries. Moreover, stronger within-

effects of spillovers are documented for the periphery countries. Claeys and Vašíček (2014) use

a factor-augmented VAR framework to examine 16 European Union bond markets. Fernández-
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Rodríguez, Gómez-Puig, and Sosvilla-Rivero (2015) study eleven European bond markets, both

from the core and from the periphery of the region, using almost 15 years worth of daily bond

yield data covering the subprime mortgage crisis and the European sovereign bond crisis. The

authors document that approximately 55% of the forecast error variance can be attributed to

cross-country shocks, while Italy and Spain are the prevalent net transmitters of shocks to bond

yields, and Portugal and Ireland are their primary net receivers. Moreover, the authors find

that the key macroeconomic determinants of connectedness differ between core and periphery

countries.

More recently, Fernández-Rodríguez, Gómez-Puig, and Sosvilla-Rivero (2016) extend their

study of net pairwise connectedness and conclude that, following the sovereign debt crisis, the

possibility of a volatility contagion from periphery countries to core countries increased consid-

erably. Ahmad, Mishra, and Daly (2018) analyze almost 20 years of weekly bond market data of

BRICS countries, together with US, European and Japanese bond market indices. The authors

find that the most active net transmitters of volatility are South Africa, Russia, and Brazil,

which also show greater pairwise connectedness measures relative to the rest of the sample. Fi-

nally, Hamill et al. (2021) investigate the connectedness dynamics of eleven Eurozone sovereign

bond markets from 2005 to 2011, focusing particularly on the potential indicative ability of con-

nectedness with respect to the global financial crisis and the European debt crisis that followed.

The authors document the tendency of the system’s connectedness to decrease with the onset

of these crises, with peripheral countries approaching almost complete isolation from the rest of

the system.

3.3 Methodology

We consider an N -dimensional time series, observed at daily frequency and indexed by the

"day" index d, Xd = (X1d, . . . , XNd)
′, d = 1, . . . , D. We assume that Xd is governed by a

covariance-stationary vector autoregressive process of order p:

Xd =

p∑︂
i=1

ΦiXd−i + εd, (3.1)

with the iid disturbance vector εd ∼ N(0,Σε) and the (N × N) AR coefficient matrices Φi.

This VAR structure implies the existence of contenporaneous and intertemporal dependencies

among the various pairs of variables in the system, incorporated in the particular elements of the

coefficient matrices. We are primarily interested in quantifying the strength and directions of

these dependencies, especially in the context of financial contagion emanating from innovation

(shock) spillovers. Following that objective, we express the VAR process 3.1 by its corresponding

101



moving average (MA) representation:

Xd =

∞∑︂
i=0

Ψiεd−i, (3.2)

where the following recursive relationships hold for the (N ×N) MA coefficient matrices Ψi (0N
and IN denote the (N ×N) zero and identity matrix, respectively):

Ψi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0N , i < 0

IN , i = 0∑︁p
j=1ΦjΨi−j , i > 0

(3.3)

Diebold and Yılmaz (2014) calculate the spillover index based on the H-steps-ahead generalized

forecast error variance decomposition (GFEVD) matrix introduced by Koop, Pesaran, and Potter

(1996) and Pesaran and Shin (1998). ΩH denotes the H-steps-ahead GFEVD matrix of the above

process 3.2. For a given forecast horizon H, the (i, j)-th element of ΩH is equal to:

ωH
ij =

σ−1jj

∑︁H−1
h=0

(︁
eTi ΨhΣεej

)︁2∑︁H−1
h=0

(︁
eTi ΨhΣεΨT

h ei
)︁ , i, j = 1, . . . , N, (3.4)

where σjj , j = 1, . . . , N are the diagonal elements of the non-orthogonalized disturbance covari-

ance matrix Σε and ei is an N -dimensional column vector with the i-th element equal to one

and zero otherwise.

Unlike the usual FEVD matrices, which assume orthogonal shocks and are dependent on

the ordering of the variables entering the VAR process, the GFEVD matrices do not necessarily

implicitly correspond to orthogonal shocks. Therefore, the row-wise sums of the elements of these

matrices are generally not equal to one. By normalizing each element of ΩH by its corresponding

row-wise sum, we obtain the H-steps-ahead N ×N connectedness matrix CH with the (i, j)-th

element equal to:

cHij =
ωH
ij∑︁N

j=1 ω
H
ij

. (3.5)

The (i, j)-th element of the normalized GFEVD matrix CH can be therefore interpreted as

the fraction of the H-steps-ahead forecast error variance of the i-th variable that arises due to

shocks to the j-th variable of the system. In this sense, the elements of this connectedness matrix

operate as measures of the overall degree of the connectedness of variables within the system,

as well as of the direction and strength of potential spillover effects among these variables. Note

that, due to normalization, the row-wise sum of the elements of matrix CH is always equal to

1 and the overall sum of all elements of matrix CH is equal to N . Based on the connectedness
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matrix CH , the following spillover quantities are then readily defined (Diebold and Yılmaz

(2014)):

• Total Spillover Index (ρHTOT ): The fraction of the aggregated forecast error variance

(across all variables) that can be attributed to shock spillovers between variables and not

to shocks to the variables themselves. This quantity is therefore equal to the normalized

sum of all the off-diagonal elements of the connectedness matrix. Hence, its value is always

between zero and one:

ρHTOT =
100 ·

∑︁N
i,j=1,i ̸=j c

H
ij

N
(3.6)

• Directional Spillover Index "From" (ρHi←·): The fraction of the variable’s i forecast

error variance that can be attributed to shocks to all other variables in the system (except

the variable i itself):

ρHi←· =

N∑︂
j=1,i ̸=j

cHij (3.7)

• Directional Spillover Index "To" (ρHi→·): The amount determining how much shocks

to variable i contribute to the forecast error variances of all the other variables in the

system (except to the variable i itself):

ρHi→· =

N∑︂
j=1,i ̸=j

cHji (3.8)

• Net Spillover Index (ρHi ): The net amount of spillovers transmitted by variable i,

defined as the difference between the variable i’s "To" and "From" Directional Spillover

Indices:

ρHi = ρHi→· − ρHi←· (3.9)

• Own Spillover Index cHii : These are the diagonal elements of the connectedness matrix

CH . Each element cHii represents the fraction of the forecast error variance of variable i

arising due to shocks to variable i itself. The value of the Own Spillover Index can be

interpreted as the variable i’s degree of isolation, because the greater the Own Spillover

Index, the smaller the values of the matrix CH row-i’s off-diagonal entries, which represent

the cross-variable connectedness.

For a given N -dimensional VAR system estimate (based on a given sample of data) and a given

forecast horizon H, we observe one (N×N) connectedness matrix CH . This matrix identifies one

Total Spillover Index ρHTOT , quantifying the overall connectedness of the system. Additionally,

there are N Directional Spillover Indices "From" (ρHi←·, i = 1, . . . , N), as well as N Directional
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Spillover Indices "To" (ρHi→·, i = 1, . . . , N), one of each for each of the variables in the system.

Therefore, there also exist N Net Spillover Indices (ρHi , i = 1, . . . , N), which can be interpreted

as the difference between the total amount of spillovers variable i contributes to the system

and the total amount of spillovers this variable receives from the other variables in the system.

Variables with positive (negative) values of the Net Spillover Indices act as the system’s net

transmitters (net receivers) of spillovers.

In practice, we estimate the above connectedness quantities on a data sample of a predeter-

mined length. We index the day-d estimation sample of length D by time indices d−D, d−D+

1, . . . , d − 1, d. To assess the statistical significance of the estimated connectedness measures,

we apply the non-parametric bootstrap methodology as outlined in Diebold and Yılmaz (2015).

We describe the procedure as follows:

1. For a given sample and a given estimation of the VAR process, we record the estimation

residuals. We obtain a time series of D N -dimensional residual vectors.

2. One bootstrap repetition involves:

(a) Drawing a random sample of size D with replacement from the original time series

of residual vectors.

(b) Utilizing this bootstrapped residual series and the coefficient estimates of the original

VAR estimation in order to generate a new bootstrapped vector time series.

(c) Performing a VAR estimation on this new bootstrapped vector time series.

(d) Calculating and recording the bootstrapped GFEVD matrix as well as the implied

bootstrapped connectedness matrix and the corresponding spillover measures.

3. Performing B bootstrap repetitions yields B connectedness matrices and B spillover mea-

sures of each kind. We use this bootstrapped sample to calculate the bootstrap standard

errors for each spillover measure in isolation.

Within the scope of our literature review, we note that, with the exception of the Diebold and

Yılmaz (2015) textbook, we did not find any connectedness study containing a similar discussion

on the statistical significance of the obtained results.

Additionally, since we are also interested in observing the dynamics of the evolution of

financial contagion within our set of assets, we include a rolling-subsample methodology in our

estimations, in which, for each period, we fix the length D of the preceding data sample used

for estimation. For a given day d > D, this yields the day-d estimated connectedness matrix

as well as all the spillover measures. We then iterate the rolling-subsample dataset one period

forward by dropping the data for the most distant past day and adding the data for the next day

(d+1). The estimation procedure is then applied to this altered subsample, yielding the updated
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estimate of the connectedness matrix (and that of all the corresponding spillover measures) for

day (d+ 1).

To apply the methodology in practice, several choices regarding the nature of the data and

the hyperparameter values need to be made:

• Variables entering the system: The original VAR system is based on an N -dimensional

time series process Xd. We are interested in analyzing the log-return spillovers, both in

terms of their overall level and of their volatility. Therefore, we estimate the VAR processes

for the following three classes of variables (and denote these variables as Y
(·)
i,d :

– Log-Returns: Denoting the day-d closing price of asset i by Pi,d, we set:

Y
(1)
i,d = ri,d = log(Pi,d)− log(Pi,d−1). (3.10)

– Volatilities: In our study, the second choice of the variable entering the VAR process

corresponds to the day-d estimated value of the asset i’s historical volatility of daily

log-returns, calculated as:

Y
(2)
i,d = sdi,d =

⌜⃓⃓⎷ 1

K − 1

K∑︂
k=1

(︄
ri,d−k −

1

K

K∑︂
k=1

ri,d−k

)︄2

. (3.11)

We set the value of K equal to 30. We also experimented with different reasonable

values of K and find that the results are robust with respect to the choice of this

parameter.

– Log-Volatilities: For robustness purposes, as our third choice of the VAR variables,

we consider the logarithms of the above calculated volatilities. We made this choice

to approximately accommodate the normality assumption of the GFEVD matrix

estimation:

Y
(3)
i,d = log(sdi,d). (3.12)

• Order of the VAR process p: in line with the well-established approach in existing

literature,1 we choose the order of the estimated VAR process according to information

criteria. For each VAR estimation in our study, we set p equal to the arithmetic average

(rounded to the nearest natural number) of the optimal lag lengths suggested by the

Akaike, Schwarz and Hannah-Quinn Information criteria. Nevertheless, we also check the

robustness of the rolling-window results for the Total Spillover Index with respect to the

choice of the lag order. The robustness results are reported in Appendix 3.A.

1See, for example, Zhang (2017), among many others.
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• Length of the estimation window D: We set D = 252, that is, for each day, the fore-

cast error variance decomposition matrix is estimated on a sample covering the preceding

252 business days, corresponding to approximately one calendar year.

• Forecast error horizon H: We set the value of H equal to 20, that is, we are analyz-

ing the error variance decomposition of the estimated model forecasts 20 business days

(approximately one calendar month) into the future. To examine the robustness of the

calculations, we also experiment with the values H = 10, H = 30. The robustness results

are reported in Appendix 3.A.

3.4 Data & History Overview

We analyze daily closing prices of futures contracts on government bonds of four Eurozone

countries: France, Germany, Italy, and Spain. More formally, we focus on futures contracts

delivering at maturity notional long-term debt instruments (the practitioners’ abbreviations

of which are stated in parentheses) issued by the Republic of France (the OATs), the Federal

Republic of Germany (the BUNDs), the Republic of Italy (the BTPs) and the Kingdom of Spain

(the BONOs).2 The futures contracts considered in this study are quoted at the Eurex electronic

exchange and the data is sourced from Bloomberg. The Eurex Product IDs are FOAT, FGBL,

FBTP and FBON, for the French, German, Italian, and Spanish bond futures. We refer to these

contracts by the country names, and report the results in corresponding alphabetical order. Our

daily data covers the period starting on October 26, 2015 (the first day of trading of the Spanish

BONO futures contracts) and ending on July 31, 2020, yielding 1,212 daily observations in total.

According to the Eurex official contract specifications3, the notional amount of one futures

contract is equal to 100,000 EUR. Moreover, at any point in time, the underlying government

bonds have remaining terms to maturity ranging from 8 to 11 years, and are paying coupons of

6% per year. At any point in time, there are three futures contracts available for each of the

four underlying securities, maturing in the three nearest quarterly months of the March, June,

September, and December cycles. We collect daily price and volume data for all maturities

available on any given day. Subsequently, for each security and each day, the futures contract

with the largest daily volume traded is considered in this study. We note that this selection

procedure yields in all cases a "monotonic" progression of maturities, that is, for any two con-

secutive trading days, the corresponding futures contracts have either the same maturity, or the

maturity date moves into the future for the second day’s contract and afterwards, the preceding

2The abbreviations of these long-term sovereign bonds have the following origins: OAT - Obligation
assimilable du Trésor, BUND - Bundesanleihen, BTP - Buoni del Tesoro Poliannuali, BONO - Bonos del
Estado.

3https://www.eurexchange.com/exchange-en/markets/int/fix/government-bonds
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maturity date is never observed again.
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Figure 3.1: Time development of prices of the most liquid (in terms of daily volume traded)
futures contracts on long-term government bonds of the four Eurozone countries considered
in this study. The vertical labeled lines highlight selected political and macroeconomic events
discussed in the main body of the text. Time period observed: October 26, 2015 - July 31, 2020.
Source: Bloomberg.

We display the price history of the most liquid futures contract for each of the four countries

in Figure 3.1. Additionally, Figure 3.2 complements the price data by displaying the time

development of daily yields to maturity (YTM) for the on-the-run underlying government bonds

during the same period.4 Not surprisingly, the price and yield series move largely in unison for all

four countries, reflecting the fundamental commonalities of the corresponding four economies,

including their common Eurozone membership. Moreover, starting from the second half of

2016, at any day d. the prices of these government bond futures satisfy the following set of

inequalities: PGER
d > PFRA

d > PSPA
d > P ITA

d , with the corresponding yield series satisfying

Y TMGER
d < Y TMFRA

d < Y TMSPA
d < Y TM ITA

d . These inequalities and the dynamic nature

of the corresponding yield spreads arguably primarily reflect the different prevailing levels of

sovereign credit risk across the four countries. Our dataset offers an interesting opportunity to

study EU fixed income market connectedness, as several stylized features, along with interesting

events with considerable market impact during this period (highlighted with the "A" - "I"

4The yield to maturity data is sourced from Bloomberg as well.
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Figure 3.2: Time development of yields to maturity (expressed in percentage per annum) of
the long-term government bonds of the four Eurozone countries considered in this study. The
vertical labeled lines highlight selected political and macroeconomic events discussed in the main
body of the text. Time period observed: October 26, 2015 - July 31, 2020. Source: Bloomberg.

letter-marked vertical lines in the Figures whenever applicable) are observable, a brief overview

of which we now present.

While several global and regional events (the negative interest rate adoption by the Bank of

Japan at the end of January, the surprising results of the June 23 Brexit referendum (A) and

bad loans plaguing some of the largest European banks) were driving bond prices higher during

the first nine months of 2016, a negative trend followed, exacerbated by the positive market

perception of the election of Donald Trump, the resulting optimism regarding tax cuts (B) and

the OPEC oil cuts announced in November.5

Perhaps the most persistent source of price volatility in the bond futures considered in this

study, prevailing throughout a major segment of our sample, was the turbulent political develop-

ment in Italy, the Eurozone’s third largest economy (after Germany and France) and the second

largest public debtor (after Greece). At the beginning of December 2016, the reforms-rejecting

results of the Italian constitutional referendum were announced, triggering the resignation of the

country’s prime minister, Matteo Renzi. Among the first political shocks during the government

led by his successor, Paolo Gentiloni, was the collapse of an electoral reform accord (originally

5https://www.ft.com/content/6d24125c-c066-11e6-9bca-2b93a6856354
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agreed between the main political parties) that occurred on June 8, 2017 (C), leading multiple

party leaders to call for immediate snap elections. Eventually, Gentiloni’s government remained

in place until the March 2018 general election. As this election resulted in a hung parliament

and negotiations on forming a government lasted for several months, a substantial change in

the level of both Italy’s and Spain’s sovereign credit risk occurred during the second quarter of

2018, reflecting the increasing market fears of the prospect of another election in Italy, the pos-

sibility of eurosceptic parties strengthening their position in the Italian government, and a vote

of no confidence against the Spanish government. During this period, the Italian yields almost

doubled, increasing from 1.8 % p.a. to approximately 3.4 % p.a (during a particularly volatile

session on May 29 (D), the Italian BTP futures price dropped by 4.6%), while the Spanish bond

yields increased by approximately one third (from 1.3 % p.a. to 1.7 % p.a.).6 The "safe haven"

French and German bonds, however, experienced a moderate decline in yields during the same

period.

The Italian yields continued an upward trend in a very volatile fashion until the end of

November, 2018, as the turmoil in the EU-Italy relationship regarding the country’s budget

deficit levels continued. Another particularly volatile period of several weeks was initiated on

September 29 (E), with the publication of the news that the Italian government intended to

run deficits as large as 2.4% of GDP, as opposed to the original planned 0.8%.7 By the end

of 2018, however, prevailing global fears about a potential US-China trade war dispute, and

decreasing worries about Eurozone stability (with the Italian government’s eventual willingness

to negotiate deficit levels with Brussels) and the increasing uncertainty regarding the post-Brexit

EU-UK relationship contributed to flight to safety in the form of all EU government bonds, and

resulted in a gradual downward trend in the yields of all four countries, with the BTP-BUND

spread narrowing by almost 50% from its October 2018 peak of 3.4 percentage points.

2019 was a year of overall monetary policy-easing rhetoric, proclaimed by both the Federal

Reserve (while in 2018, the FED carried out 4 hikes of its Federal Funds target range, starting

in 2019, rate hikes were put on hold and a rate cut sequence was initiated in the summer) and

by the ECB (which, for example, signalled on June 18 (G) a fresh round of monetary stimulus

in June8). In combination with the Brexit negotiation uncertainty (manifesting, for example, on

May 29 (F), when the British Prime Minister Theresa May’s Brexit deal proposal was rejected by

members of parliament across the political spectrum9), and the prospect of global currency wars

6https://www.theguardian.com/business/live/2018/may/29/markets-eurozone-italian-spa
nish-political-turmoil-business-live

7https://www.theguardian.com/business/2018/sep/28/italy-budget-drama-all-you-need-t
o-know

8https://www.bloomberg.com/news/articles/2019-06-18/draghi-says-further-interest-ra
te-cuts-remain-part-of-ecb-tools-jx1j9wch

9https://www.theguardian.com/politics/2019/may/21/may-offers-mps-vote-on-second-ref
erendum-in-new-brexit-deal
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(with the Chinese Renminbi depreciating against the US dollar to a 10-year low), the bond yields

continued the downward trend initiated in late 2018, resulting in a record $17 trillion worth of

debt trading in the negative yield territory by the end of August 2019 (including the German

and the French long-term sovereign debt).10 This negative trend, however, reversed during the

final months of 2019. Among the four countries in our sample, the Italian BTP bonds were

the ones exhibiting the greatest volatility throughout the year, notably on August 9 (H), as

the no confidence motion announced by Deputy Prime Minister Salvini against Prime Minister

Conte resulted in government coallition collapse. Subsequently, government-forming negotiations

between the opposition Democratic Party and the anti-establishment 5-Star Movement unfolded,

and a new government (however, again under Conte’s leadership) won confidence in September.11

More recently, during the coronavirus outbreak at the beginning of 2020, a sharp increase

in the yields and a surge in the futures price volatility can be observed (I). With the gradual

resolution of the uncertainty regarding both the outbreak’s severity and the monetary and fiscal

packages aimed at attenuating the negative shocks associated with the rapid and extensive

lockdown measures, all four bond yields gradually returned to their pre-outbreak levels by the

end of July, 2020. 12

Apart from the price and yield data, the traded volume data offer interesting insights into the

Eurozone sovereign fixed income futures market as well. Figure 3.3 shows the aggregate number

of the most liquid futures contracts traded each day (the left panel, 5-day moving average) and

the share of this aggregated volume that can be attributed to each of the four countries considered

(the right panel, 15-day moving average). On average, approximately 900,000 contracts were

traded each day, with pronounced quarterly peaks surrounding the futures contracts maturities in

March, June, September, and December cycles. As the maturity of a futures contract approaches,

investors interested in maintaining their positions need to close their positions in the maturing

contracts and open the corresponding positions in the subsequent maturities, a procedure known

as the "roll-over". During these periods, it was not uncommon to observe more than 1.5 million

daily contracts being traded on aggregate.

Out of this aggregate daily volume, the share of volume that can be attributed to German

futures is always greater than 70% . The French OATs represent approximately 15% of the

aggregate daily volume (with a slight increasing trend in this proportion) and the Italian BTPs

represent approximately 10%. Overall, the share of the Spanish BONO futures is always smaller

than 0.5%, and is only marginally visually discernible in Figure 3.3. There are relatively stable

10https://www.ft.com/content/7ddaf4b6-d8e2-11e9-8f9b-77216ebe1f17
11https://www.reuters.com/article/us-italy-politics-zingaretti/italy-pd-party-tells-

president-ready-to-form-government-with-5-star-idUSKCN1VI1SJ?il=0
12https://www.ecb.europa.eu/press/pr/date/2020/html/ecb.pr200318_1~3949d6f266.en.htm

l
https://www.cnbc.com/2020/04/13/coronavirus-update-here-is-everything-the-fed-has-do
ne-to-save-the-economy.html
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Figure 3.3: The left panel displays the 5-day moving average of the daily aggregated number
of the most liquid maturity contracts traded for the French (OAT), German (BUND), Italian
(BTP), and Spanish (BONO) government bond futures combined. The right panel displays the
15-day moving average of the aggregated daily volume proportion that can be attributed to each
of the four countries’ bond futures.

and considerable differences in the daily liquidity of the contracts considered in our study, with

the German futures market unsurprisingly taking the decisive first place. Moreover, as the

literature strongly suggests (McCauley et al. (1999), Ejsing and Sihvonen (2009) and Pelizzon

et al. (2014)), the European sovereign bond futures market has been considerably more liquid

for many years than the corresponding cash bond market. Because our study aims to document

the return and volatility connectedness as well as the degree and direction of spillovers between

the four major European sovereign bond markets, a comparison of the results with the futures

market liquidity shares will also be of interest.

We transform the four non-stationary price series into daily log-return series by taking the

first differences of the logarithms of daily closing prices. To avoid creating artificial "jumps" in

daily log-returns on roll-over days, on each first day of the new maturity contract, we do not

use the closing price of the previous maturity contract as the previous price. Instead, we use

the closing price of the same contract, even though on previous day, that contract was not the

most liquid one.

The summary descriptive statistics of the log-return series are displayed in Table 3.1. Panel

A reports the statistics for the entire sample. We observe that, while all four securities recorded

very similar average daily returns, the Italian BTP futures exhibit the greatest return variability,

with a daily standard deviation of 0.55%. As Panels B and C suggest, considering the first
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Table 3.1: Summary statistics of daily log-returns.

The table shows a selection of summary statistics for the daily log-returns of four long-term
government bond futures considered in this study. While Panel A summarizes the entire sample
period, Panels B and C display the statistics for two roughly equally divided subsamples. Mean,
Median, Min, Max, and Standard Deviation statistics are expressed in percent. Kurtosis does
not represent excess kurtosis. "Jarque Bera" shows the test statistics of the Jarque-Bera test of
normality (null hypothesis: data is normally distributed). "ADF" displays the test statistic of the
Augmented Dickey-Fuller test of covariance stationarity (null hypothesis: data is not covariance
stationary). ACF(1) displays the lag-1 autocorrelation of log-returns. For the Jarque-Bera test,
the ADF test and the ACF(1), the asterisk signs (*), (**) and (***) highlight the estimates that
are statistically significant at the 10%, 5% and 1% level.

Panel A: Whole Sample
Time series: FRANCE GERMANY ITALY SPAIN
No. of Observations 1212 1212 1212 1212
Mean 0.02 0.02 0.02 0.02
Median 0.03 0.03 0.04 0.04
Min -1.90 -1.84 -4.64 -2.41
Max 1.80 1.47 4.06 3.00
Standard Deviation 0.30 0.30 0.55 0.36
Skewness -0.49 -0.44 -0.82 0.05
Kurtosis 4.29 2.85 11.62 10.79
Jarque-Bera 982(***) 451 (***) 6982 (***) 5906 (***)
ADF -11.7 (***) -12.2 (***) -10.4 (***) -11.5 (***)
ACF(1) 0.01 0.01 0.08 (***) 0.06 (**)

Panel B: October 26, 2015 - February 28, 2018
Time series: FRANCE GERMANY ITALY SPAIN
No. of Observations 599 599 599 599
Mean 0.01 0.01 0.01 0.01
Median 0.03 0.02 0.03 0.04
Min -1.63 -1.48 -1.89 -1.80
Max 1.17 1.24 1.09 1.26
Standard Deviation 0.31 0.30 0.39 0.33
Skewness -0.51 -0.42 -0.51 -0.47
Kurtosis 2.15 1.59 1.61 1.95
Jarque-Bera 143 (***) 81 (***) 91 (***) 118 (***)
ADF -8.1 (***) -8.3 (***) -7.9 (**) -8.8 (***)
ACF(1) -0.05 -0.02 0.00 -0.01

Panel C: March 1, 2018 - July 31, 2020
Time series: FRANCE GERMANY ITALY SPAIN
No. of Observations 613 613 613 613
Mean 0.02 0.02 0.03 0.02
Median 0.04 0.04 0.04 0.04
Min -1.90 -1.84 -4.64 -2.41
Max 1.80 1.47 4.06 3.00
Standard Deviation 0.29 0.30 0.66 0.38
Skewness -0.45 -0.46 -0.82 0.37
Kurtosis 6.77 4.05 9.73 15.09
Jarque-Bera 1204 (***) 444 (***) 2507 (***) 5876 (***)
ADF -10.2 (***) -9.9 (***) -8.3 (***) -9.6 (***)
ACF(1) 0.07 0.03 0.10 (**) 0.11 (***)
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and the second half of the sample, the increase in volatility of the BTP futures occurs in the

second half of the sample, corresponding to the development of Italian political turbulence and

the coronavirus outbreak. Moreover, with the exception of the Spanish BONO futures in the

second half of the sample, all return series are negatively skewed (the BTPs to the greatest

extent) and exhibit excess kurtosis. As the Jarque-Bera (JB) and the Augmented Dickey-Fuller

(ADF) test results strongly suggest, all log-return series are non-normally distributed and are

weakly stationary. Interestingly, during the second half of our sample, the Spanish and Italian

futures log-returns are significantly positively first-order autocorrelated, with autocorrelation

levels equal to approximately 10%.
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Figure 3.4: Cross-correlation coefficients of the four daily log-return series for the entire
sample and for two roughly equally divided subsamples.

The cross-correlations of log-returns are displayed in Figure 3.4, again for the whole sample

and for the two subsamples. The German and French bond futures are the most strongly

correlated, with the coefficient equal to 87% for the entire sample, though not exhibiting much

variability between the two subsamples. Italian bond futures are correlated with those of the

other three countries to a lesser extent, especially in the second half of the sample. During this

period, BUND and BTP futures are virtually uncorrelated, reflecting dynamic changes in the

BTP-BUND yield spread occurring mostly due to the political developments in Italy.

We therefore continue our analysis of the stationary daily log-returns data. Apart from the

return connectedness, we are also interested in investigating the spillovers of volatility. For each

country, we take a non-parametric approach and estimate daily volatilities by calculating the

rolling 30-day standard deviations of the log-returns. We then annualize these estimated daily

standard deviations (assuming 252 trading days per year) and plot them in Figure 3.5.13 Because

the generalized forecast error variance decompositions assume normally distributed shocks, for

robustness purposes, we also consider the logarithms of the volatility series, because, unlike the

volatilities, the shape of the distribution of log-volatilities tends to be bell-shaped. We note

that all 12 final time series (the four log-return series, the four volatility series, and the four

13By denoting the estimated daily standard deviation of log-returns as sd, the annualized values
expressed in percet per annum plotted in Figure 3.5 correspond to 100 ·

√
252 · sd2.
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log-volatility series) are deemed to be weakly stationary, as strongly suggested by the ADF test.

However, none of the series is deemed to be normally distributed according to the JB test, even

though the log-volatility series reports smaller test statistic values than the volatility series.
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Figure 3.5: Estimated volatilities of the four daily log-return series. The volatilities are esti-
mated as the 30-day rolling standard deviations of the daily log-return series. These estimated
values are then annualized, assuming 252 trading days per year and expressed in percent per an-
num. The vertical labeled lines highlight selected political and macroeconomic events discussed
in the main body of the text.

3.5 Results

3.5.1 The Static Whole Sample

We begin by estimating the VAR processes on the entire sample period and for two non-

overlapping subsamples, setting March 1, 2018 as the division date. Table 3.2 displays the

resulting 20-day forecast error horizon static connectedness matrices as well as the resulting

static directional, net, and total spillover indices, considering all three types of input variables -

log-returns, volatilities, and log-volatilities, as defined in 3.10, 3.11 and 3.12. We also report the

lag orders of the estimated VAR processes as suggested by the combination of three information

criteria. Further, we estimate the statistical significance of all connectedness measures using
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bootstrapped standard errors. A vast majority of values is statistically significant at the 5%

level, with the remaining insignificant values reported with an underscore.

We note that, in all three approaches, the Own Spillover Index explains the dominant part

of the forecast error variance of each variable, as the diagonal terms of all three connectedness

matrices are the maximum terms in each row. The greatest own-variable spillover share of 66.1%

(62.8%) occurred in Italy’s log-volatility during the second subsample (volatility during the entire

sample). Conversely, French volatility appears to be the most affected by the volatility shocks

of the other variables in the system, as only 28.3% of the forecast error variance is explained by

shocks to French volatility itself across the entire subsample, particularly originating from the

second subsample, when this reading changes to 23.9%.

Considering the spillovers in the log-return setting (Panel A of Table 3.2), we observe that

Italian and German bond futures appear to be net log-return connectedness receivers, as opposed

to Spanish and French bonds, for which we document positive net spillover values. For example,

while the French OAT receives 60.3% of its error variance from the other variables, it contributes

to the other variables by a total of 71.6% error variance, making it an 11.3% net transmitter of

the log-returns error variance. We observe the largest pairwise spillover value of 37% from the

French OAT to the German BUND forecast error variance, and document the smallest pairwise

spillover of only 2.5% from German to Italian futures. Italy is also the country with the greatest

own-variable spillovers, as 54% of the error variance in log-return forecasts is explained by

shocks to the Italian log-returns themselves. Because Italy also reports the smallest directional

"To" and "From" spillover indices, it appears to be the most isolated market in terms of log-

return connectedness. The rationale for this isolation may be the turbulent national political

developments that occurred during a significant period in our sample; particularly in the second

half, as the second subsample spillover measures confirm.

We obtain dramatically different results, however, when we investigate the connectedness

in volatility. As the volatility connectedness matrix reported in Panel B of Table 3.2 shows,

the Italian BTP futures market appears to be the system’s major volatility transmitter, with a

whole sample net volatility spillover measure equal to 50.3%. Indeed, while the BTP receives

37.2% of the forecast error variance from others, it contributes by as much as 87.5% to the rest

of the system in total. Albeit contrasting the log-return setting results in their magnitude, we

propose the same rationale to the volatility results as well. Considering the fact that Italy’s

political crisis was a major factor present throughout our sample, and Eurozone membership

of its third largest and second most indebted country was seriously in question during various

stages of this political turmoil, our results suggest that the uncertainty in the form of greater

forecast error variance was transmitted within the volatility setting to a considerably greater

extent relative to the log-return setting. Therefore, the volatility of the bond futures of the other

countries appears to be affected by Italian price dynamics more strongly than the actual levels
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Table 3.2: Whole and (first half/second half) sample connectedness.

The table displays the estimated connectedness matrices CH , as well as various spillover measures
for the VAR processes estimated on the entire sample, starting on October 29, 2015 and ending
on July 31, 2020 (top row for each country) and for two subsamples (October 29, 2015 - February
28, 2018 / March 1, 2018 - July 31, 2020, bottom row for each country). The forecast error
horizon is H = 20 days. The information criteria - suggested lag order values are displayed for
each VAR estimation. Panels A, B and C employ variables Y (1)

i,d , Y
(2)
i,d , Y

(3)
i,d , defined in equations

3.10, 3.11 and 3.12. See section 3.3 for the definitions of all measures reported. The statistical
significance of the values reported in the table is assessed using the non-parametric bootstrap
methodology (described in section 3.3) with 3,000 repetitions. Values deemed insignificant at
the 5% level are underlined. For the sake of brevity, we do not report the standard errors in
this table (see Table 3.4 in Appendix 3.A for the standard errors of estimations for the entire
sample).

Panel A: Static Log-Return Connectedness
FRANCE GERMANY ITALY SPAIN Dir. From Others ρHi←·

FRANCE 39.7 30.2 9.9 20.1 60.3
(36.4/40.7) (27.4/31) (19.2/6.5) (17/21.8) (63.6/59.3)

GERMANY 37.0 48.6 2.7 11.7 51.4
(33.2/38.6) (44/48.6) (11.7/1.8) (11.1/11) (56/51.4)

ITALY 13.0 2.5 54.0 30.5 46.0
(20.5/8.4) (10.3/0.5) (38.9/60) (30.3/31.1) (61.1/40)

SPAIN 21.6 10.0 24.9 43.5 56.5
(18.7/23.1) (10.2/8.9) (31.2/23.7) (40/44.3) (60/55.7)

Dir. To Others ρHi→· 71.6 42.7 37.5 62.3 TSI ρHTOT : 53.6
(72.4/70.1) (47.9/40.3) (62.1/32) (58.4/63.9) (60.2/51.6)

Net Spillovers ρHi 11.3 -8.7 -8.5 5.8 Lag Order: 4
(8.8/10.7) (-8.1/-11.0) (1.0/-7.9) (-1.7/8.2) (1/4)

Panel B: Static Volatility Connectedness
FRANCE GERMANY ITALY SPAIN Dir. From Others ρHi←·

FRANCE 28.3 20.5 24.5 26.6 71.7
(38.6/23.9) (26.9/21.1) (17.8/22.7) (16.7/32.3) (61.4/76.1)

GERMANY 20.8 29.4 26.0 23.9 70.6
(24.1/20.5) (32.5/30.4) (21.2/23.5) (22.2/25.7) (67.5/69.6)

ITALY 6.1 9.2 62.8 21.8 37.2
(14.1/3.4) (11.0/14.5) (42.8/62.7) (32.1/19.4) (57.2/37.3)

SPAIN 11.6 11.8 37.0 39.5 60.5
(9.7/13.5) (11.1/14) (32.3/34.5) (47/38.1) (53/61.9)

Dir. To Others ρHi→· 38.5 41.6 87.5 72.4 TSI ρHTOT : 60.0
(47.9/37.4) (49/49.6) (71.3/80.6) (70.9/77.4) (59.8/61.2)

Net Spillovers ρHi -33.2 -29.0 50.3 11.9 Lag Order: 8
(-13.5/-38.7) (-18.5/-20.1) (14.0/43.3) (17.9/15.5) (3/8)

Panel C: Static Log-Volatility Connectedness
FRANCE GERMANY ITALY SPAIN Dir. From Others ρHi←·

FRANCE 35.2 24.5 15.6 24.8 64.8
(40.0/30.5) (27.2/22.8) (14.8/16) (18.1/30.7) (60.0/69.5)

GERMANY 25.7 36.3 16.6 21.4 63.7
(25.2/25.4) (32.5/35.1) (18.9/16.1) (23.4/23.5) (67.5/64.9)

ITALY 7.0 10.1 58.8 24.0 41.2
(11.1/3.2) (7.7/10.8) (47.1/66.1) (34.1/19.9) (52.9/33.9)

SPAIN 12.7 12.0 27.6 47.6 52.4
(9.4/13.8) (7.4/11.9) (31.7/27.9) (51.5/46.4) (48.5/53.6)

Dir. To Others ρHi→· 45.4 46.6 59.8 70.2 TSI ρHTOT : 55.5
(45.7/42.4) (42.3/45.5) (65.3/60.0) (75.6/74.1) (57.2/55.5)

Net Spillovers ρHi -19.4 -17.0 18.6 17.8 Lag Order: 5
(-14.4/-27.1) (-25.2/-19.4) (12.4/26.0) (27.2/20.4) (2/6)
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of log-returns.

Moreover, considering the relatively small overall share of volume traded in the Italian BTPs

(discussed in section 3.4), documenting such large and strong net spillover values suggests one

possible way in which our connectedness measures may provide additional useful information

regarding the system’s risk contagion structure. Indeed, despite being the most liquid assets

in our sample, both the German and the French futures act as overall net volatility receivers,

as their net spillovers measures (equal to -29% and -33.2%, respectively, for the whole sample

and appearing to be robust between the two subsamples) strongly suggest. Among the pairwise

volatility spillovers, the largest value of 37% can be observed in the "from Italy to Spain"

direction, while the smallest pairwise spillover of 6.1% in the "from France to Italy" direction

(which declines into statistically insignificant territory during the second subsample) underlines

Italy’s major volatility transmitter status. French OAT futures contribute to the rest of the

system with the smallest share of the forecast error variance at 38.5%. Overall, we observe

considerably greater absolute values of the net volatility spillover indices than in the log-return

setting. However, we note that the bootstrapped standard errors of these indices are greater

as well, rendering the Spanish whole sample Net Spillover Index value positive, but statistically

insignificant at the 5% level.14

For robustness purposes, we also report the log-volatility connectedness results in Panel

C. Overall, though the results are qualitatively comparable to the spillovers in volatility, we

observe some differences. For instance, although the net log-volatility spillovers maintain the

same ordering among the variables, the absolute values of the spillovers are approximately 50%

smaller. Nevertheless, Italy still acts as the major log-volatility transmitter, though the Spanish

BONO reports only marginally smaller, though statistically insignificant, positive net spillover

index. German and French bond futures remain the net log-volatility receivers, as the fraction of

the forecast error variance they contribute to the Spanish and Italian futures is about two thirds

of what is contributed in the opposite direction. The largest and smallest pairwise spillovers are

observed for the identical pairs of variables as in the volatility setting.

We also note that, for all three settings, the value of the Total Spillover Index ranges from

53.6% to 61.2%, does not differ much between the two subsamples, and is greater for the two

volatility settings, suggesting that the Eurozone bond futures market as represented by our

sample constitutes a considerably interconnected system, and the possibility of risk contagion

needs to be taken into account by both investors and regulatory institutions. However, when

contrasted with the 78.3% total volatility connectedness of US financial institutions (as esti-

mated by Diebold and Yılmaz (2014)), or with the extreme 97.2% volatility connectedness of

international financial markets (Diebold and Yilmaz (2015)), we state that the degree of finan-

14See Table 3.4 in Appendix 3.A for the standard errors.
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cial contagion in European major sovereign bond markets is moderate.15 However, apart from

the static results, it is of substantial interest to investigate the dynamic development of these

spillover measures over time more closely. It is that form of analysis with which we now proceed.

3.5.2 The Dynamics of Connectedness

Total Spillover Index

We apply the VAR estimation to the 252-day rolling window subsamples to investigate the

dynamics of the connectedness over time. For each subsample, this estimation produces the

entire table of results, analogous to the results reported in Table 3.2. However, since displaying

the entire connectedness matrix for every estimation (and for all three settings) is intractable, in

this section, we focus on the time development of the following key spillover indicators: the Total

Spillover Index, the country-wise "Own" Spillover Indices, and the directional "To", "From" and

Net Spillover Indices.

Firstly, we turn our attention to the dynamics of the Total Spillover Index (ρHTOT ). Figure 3.6

displays the evolution of this index for each of the three settings considered in this study,

depending on the variable modelled by the VAR process. Even though all three variables (the log-

return levels, their volatilities, and log-volatilities) share certain features of the overall dynamics

of total spillovers, noticeable differences can be seen.

Until May, 2018, very similar dynamics for all three types of variables were observable.

The Total Spillover Index of all three systems oscillated around the level of 60%, recording

two spikes in the second half of January, 2017 (B) and in June, 2017 (C). In the first case, the

largest increase in the log-return (volatility) connectedness of 1.59 percentage points (p.p.) (1.64

p.p.) occured between January 23 and 24, 2017. On January 23, President Trump’s remarks

on the substantial planned tax cuts in the United States resulted in a surge in volatility across

asset classes worldwide.16. During the upcoming days, our sample’s connectedness continued to

increase slightly, resulting in an approximately 5 p.p. increase overall in a one week period for

all three classes of variables. A similar spike in connectedness measures occured in mid-June. In

particular, on June 8, as the Italian electoral reform deal unravelled, the Total Spillover Index

of volatility increased by 4 p.p. 17

Subsequently, while the total volatility spillovers continued to increase until September,

2017, the log-return spillovers stalled. All three classes of variables then exhibited similar and

relatively stable total connectedness until the end of May, 2018 (D), when a rapid selloff of

15Fernández-Rodríguez, Gómez-Puig, and Sosvilla-Rivero (2016) report a value of 54.23% for the
volatility connectedness of 11 European sovereign bond markets, as estimated on daily 10-year bond
yields during the period 1999 - 2014.

16https://www.bloomberg.com/news/videos/2017-01-23/trump-we-will-cut-taxes-massively
17https://www.reuters.com/article/us-italy-politics-idUSKBN18Z1JE
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Figure 3.6: The time development of the Total Spillover Index ρHTOT estimated on rolling
subsample windows for the forecast error horizon of 20 days. The length of one subsample is
252 days, thus, the subsample start date is approximately one year earlier than the subsample
end date (displayed on the x-axis). We plot all three classes of variables entering the underlying
VAR processes: the log-return levels, their volatility, and their log-volatility. We chose the lag
order of each of the VAR process estimations according to the procedure described in section
3.3. The vertical labeled lines highlight selected political and macroeconomic events discussed
in the main body of the text.

Italian BTPs (accompanied to a lesser extent by Spanish BONO futures) resulted in a surge

of volatility across all four assets, which continued for the next several weeks. However, while

the volatility of the French, German, and Spanish futures returned to their pre-May levels by

July, 2018 (as shown in Figure 3.5), the volatility of Italian futures maintained levels more

than double of those of the other countries until March, 2019. This period of Italian bond

market turbulence is accompanied by intriguing dynamics in the Total Spillover Indices. The

most apparent feature is the divergence of the log-return and volatilities settings. Indeed, the

total connectedness in log-returns exhibited a gradual, but substantial decrease of almost 20

p.p., declining to a minimum of about 44% by March, 2019. However, by the same date, the

volatility connectedness maintained its long-term levels of around 60%, despite recording two

rapid daily increases of about 4 p.p. (on May 29 and July 9), that were corrected within several

days.

Interestingly, during the second quarter of 2019, the dynamics in the trends of the Total

Spillover Indices changed markedly. The log-return connectedness gradually, but persistently,

bounced upwards from its March minimum levels, reaching 61% by the end of the year. Mean-

while, the connectedness of both volatility measures experienced a pronounced U-shaped trajec-
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tory. Firstly, during the period accompanied by increasing Brexit deal uncertainty (F) and the

ECB’s monetary policy easing signals (G), both volatility spillover indices declined by more than

40% (or approximately 20 p.p.) over the course of several weeks, reaching the overall minimum

levels of 33.5% (30.3%) on July 24, 2019 (shortly before another volatile political development in

Italy, starting with the successful no-confidence vote on August 9 (H)) and dropping below the

log-return connectedness a few weeks earlier. Subsequently, their trends briskly reversed and the

indices started climbing in a gradual, less volatile, but substantial manner. The upward trend

of all three indices continued until the end of February, 2020, when the log-returns (volatility)

connectedness measures reached the levels of 63% (56%).

On March 12, 2020 (I), the greatest daily increase in volatility, as well as log-volatility con-

nectedness of 12.1 (9.7) p.p. was recorded, as fears of a severe global impact of the coronavirus

Covid-19 outbreak continued to manifest in global financial markets (the S&P 500 Index, for

example, plunged 9.5 percent on this day, its steepest one-day fall since 1987). The log-return

connectedness, however, increased by only 0.6 p.p. on this day. Overall, over the course of one

week, the log-return, volatility and log-volatility Total Spillover Indices rose by 2, 16, and 15 per-

centage points, respectively, marking an unprecedented increase in the volatility connectedness

of the entire system. By the end of July, 2020, all three spillover indices had declined moderately

(albeit remaining at historically large levels), as the monetary and the fiscal rescue packages in

all major economies managed to tame the considerable anxiety prevailing in financial markets

worldwide.

Having commented on their time development, we state that our results for the Total

Spillover Indices vary considerably over time, corresponding to regional as well as global tur-

bulence, with a tendency to increase when unanticipated news with a significant price impact

(notably B, C, D, and I) arrives. Moreover, as the period 2018 - 2019 suggests, the log-return

and the volatility spillover indices are not necessarily correlated and may diverge due to being

driven by different market characteristics. Finally, the volatility and the log-volatility connected-

ness are correlated to a significant degree and do not exhibit substantial qualitative differences.

Because of this observation and for the sake of brevity, for the remainder of our analysis, we will

focus only on the log-return and the volatility connectedness settings.18

Analyzing the Total Spillover Index is appealing, since the entire complexity of a connect-

edness matrix is conveniently summarized in one number. However, important features of the

nature and origins of connectedness may remain unnoticed. Therefore, we now turn to investi-

gating more closely the dynamics of the country-wise Directional "From", "To", as well as the

Net and Own spillover indices.

18The remaining results for the log-volatility setting are reported in Appendix 3.A.
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Figure 3.7: Development over time of the Directional Spillover Index "From" ρHi←·, "To"
ρHi→·, the Net Spillover Index ρHi , and the Own Spillover Index cHii estimated for each of the four
securities on rolling subsample windows for the forecast error horizon of 20 days. The variables
entering the VAR estimations are the securities’ log-returns. The length of one subsample is
252 days, thus, the subsample start date is approximately one year earlier than the subsample
end date (displayed on the x-axis). We chose the order of each of the VAR process estimations
according to the procedure described in section 3.3. The positive (negative) values of the Net
Spillover Index correspond to variable i being a net transmitter (net receiver) of spillovers within
the system. The vertical labeled lines highlight selected political and macroeconomic events
discussed in the main body of the text.

Figure 3.7 and Figure 3.8 display the time development of the two directional spillover indices

("From" and "To"), their difference (the Net Spillover Index), as well as the Own Spillover Index

for all four countries. An asset with a positive value of the Net Spillover Index can be regarded as

the net spillover transmitter, because it contributes more overall forecast error variance shares to

the system than it receives from the system. Conversely, an asset with a negative Net Spillover

Index acts as the net spillover receiver. Figure 3.7 considers the log-return spillovers setting,

while Figure 3.8 displays the results for the volatility spillovers VAR estimations.

Considering first the log-return setting shown in Figure 3.7, we state that, in line with the
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whole sample results reported in Table 3.2, France appears to be the principal net log-return

connectedness transmitter, as its value of the net spillovers remained positive throughout our

sample, increasing in a step-wise fashion following the May 2018 Italian political (D) and May

2019 (F) Brexit deal turbuleces, and the March 2020 coronavirus stress period (I). Similar

behaviour of net spillovers, albeit to a lesser extent, are evident for Spain, as is also suggested

in Table 3.2. Conversely, until May 2018, and despite its dominant liquidity position (in terms

of overall trading volume), Germany consistently recorded net spillover levels of around -10%.

Germany’s role as the main net receiver of log-return spillovers was, however, taken over by

Italy, following the May 2018 turbulence (D). Interesting dynamics may be observed especially

during the two system-wide shocks discussed above - the BTP and BONO selloff on May 29,

2018 (D) and the coronavirus outbreak in mid-March 2020 (I).

During the first shock, on May 29, 2018, Italy’s net return connectedness jumped from

-3% to about 9%, immediately reversing the next day to a sub-zero level of -6% and then

remaining negative. Similarly, Span’s net return connectedness increased by approximately 6

p.p., while the French Net Spillover Index recorded a negative one-day spike of about 8 p.p..

We also note that the events of May 29 can be considered to have been the main triggers of

greater isolation of the log-return dynamics for all four countries, as the increasing trajectories

of the Own Spillover Indices starting on this day (and lasting for almost two years) document.

The greatest isolation may be decidedly observed for the "periphery" countries, particularly

Italy (which almost doubled its Own Spillover Index, peaking in mid-2019), and Spain (which

experienced an approximately 50% increase of its own spillovers). Overall, this period of greater

isolation unsurprisingly corresponds to the wide U-shaped trajectory of the total log-return

connectedness discussed earlier. As these net spillover data suggest, even though Italy isolated

to the greatest extent, its Directional Index "From" declined more than the Directional Index

"To". Hence, after May, 2018, Italy became the strongest net receiver of log-return forecast

error variance. We note that, in mid-2019, the overall system-wide isolation began to weaken,

as the own spillovers of all four countries gradually decreased, resulting in the system’s greater

total log-return connectedness.

The other major shock to the system, starting on March 12, 2020 and lasting for about 4

business days, took place in the midst of the first European wave of Covid-19. While French

and German net log-return connectedness spiked downwards during this period, the trajectory

was reversed for Italy and Spain. The magnitude of spikes was the greatest for Germany (-15

p.p.) and Italy (+13.5 p.p.). Again, these rapid changes in connectedness were corrected within

several business days. Nevertheless, this episode highlights the already observed differentiation

of our sample into two groups of countries, namely, the "central" countries of Germany and

France, and the "periphery" countries of Italy and Spain.

It is interesting to contrast these observations with the dynamics of volatility spillovers,
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Figure 3.8: Development over time of the Directional Spillover Index "From" ρHi←·, "To"
ρHi→·, the Net Spillover Index ρHi , and the Own Spillover Index cHii estimated for each of the four
securities on rolling subsample windows for the forecast error horizon of 20 days. The variables
entering the VAR estimations are the securities’ volatilities. The length of one subsample is
252 days, thus, the subsample start date is approximately one year earlier than the subsample
end date (displayed on the x-axis). We chose the order of each of the VAR process estimations
according to the procedure described in section 3.3. The positive (negative) values of the Net
Spillover Index correspond to variable i being a net transmitter (net receiver) of spillovers within
the system. The vertical labeled lines highlight selected political and macroeconomic events
discussed in the main body of the text.

shown in Figure 3.8. Due to the noisier estimates and the overall greater standard errors for the

volatility setting (also documented in Appendix 3.A), we focus primarily on the major peaks,

troughs, and sudden changes in the Net Spillover Indices. Therefore, we reiterate the importance

of the following major shocks observed in our sample: the Italian political events on June 8,

2017 (C) and May 29, 2018 (D), the mid-2019 mixture of Brexit-, ECB-, and Italy-related

developments (F) and the coronavirus outbreak volatility shock ignited on March 12, 2020 (I).

The Italian net volatility spillover index recorded values in the range of 15% - 30% for the

majority of days until May 15, 2018 (rendering Italy the main volatility spillovers transmitter

during this period, while Germany served as the main volatility spillovers receiver), holding

a historically unremarkable value of 20% on this day. Subsequently, the value of this index
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more than doubled over the next four days, and then maintained levels around 42% until May

28. On May 29 (D), the Italian Net Spillover Index soared to an unprecedented level of 166%

and remained above 100% for the next five days, while the Italian BTP market transmitted a

remarkable amount of uncertainty to the system and the other three countries all became major

receivers of volatility spillovers, with their Net Spillover Indices recording substantial negative

jumps at magnitudes of approximately 40 percentage points. Following these events, however,

Italy’s Net Spillover Index dropped to statistically insignificant territory within several weeks,

while Germany gradually took over the role of the main transmitter of volatility until mid-2019.

Similarly to the trajectory of the log-returns setting, the Total Spillover Index in the volatility

setting also recorded a pronounced "isolationist" U-shaped path, though it occurred in a different

time period, starting a downward trend in the beginning of 2019, reaching a trough in mid-2019,

and returning to original levels by the end of 2019. We state that both U-shaped trajectories are

driven mainly by the corresponding inversely U-shaped dynamics of the individual Own Spillover

Indices. Among these, the Italian and Spanish Own Spillover Indices again play dominant roles.

Therefore, unlike the log-return setting isolation that started immediately after the shock of

May 29, 2018, in the case of the volatility setting, this period of heightened isolation took place

in its entirety during 2019.

Regarding the second interesting spike episode that occurred during the first wave of Covid-

19-related market distress, German net volatility spillovers jumped from 3.5% to 24% on March

12, 2020 (I). Subsequently, the index rapidly increased to about 80% and reached a record

high of 103% on May 12, 2020. As of July 31 (the end of our data sample), the German net

volatility spillover index equalled approximately 58%, still rendering Germany the main volatility

transmitter, followed by Italy. Conversely, France and Spain were the system’s net receivers of

volatility spillovers during the same period.

Based on our analysis, we state that prior to, and especially during the shock of May, 2018,

Italian internal political affairs dramatically affected not only the prices of Italian government

bonds, but significantly contributed to the forecast error variances of both the log-returns levels

and the volatilities of the other three EU sovereign bond markets. Subsequently, until the

second shock, the majority of volatility spillovers was transmitted either by Germany or by

France, and received by the other markets. Because this period corresponds to the development

of multitude of global geopolitical and economic affairs (including US-China trade tarrifs, Brexit

deal negotiations and the monetary policy-easing rhetoric of the FED and the ECB), the bond

markets of the "central" countries of Germany and France can be considered to be the channels

through which these events contributed to the price discovery in the "periphery" EU sovereign

bond markets of Italy and Spain. In this respect, we assert that Germany takes the leading role

of the sample’s volatility transmitter of global affairs, as the second shock, corresponding to the

coronavirus outbreak and its development, strongly documents.
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We therefore conclude that log-return and volatility spillovers settings do not neccessarily

produce equivalent results in terms of the origins, magnitudes, and directions of system-wide

connectedness. Indeed, while individual net spillovers in the log-returns setting never exceeded

the level of 20% in their absolute value, it was not uncommon to observe levels beyond this

threshold for the net volatility spillovers setting, especially during the more turbulent periods.

Moreover, we note that opposite characteristics of spillovers directions can be observed during

crisis periods (such as the initial coronavirus shock period, when Germany and Italy received

most of the log-return spillovers and simultaneously transmitted most of the volatility spillovers,

while the opposite behaviour was exhibited by France and Spain). Additionally, as illustrated on

the two major shocks present in our sample, the dynamics of these net directional characteristics

are especially interesting and may deserve particular attention during periods of such significant

market distress. Therefore, an investigation of the possible association between these dynamics

and fundamental macroeconomic and financial indicators follows.

3.5.3 Determinants of Directional Spillovers

The association between underlying macroeconomic conditions and European sovereign bond

market characteristics presents a popular focus of academic studies; for example, see Balli (2009),

Favero and Missale (2012), Costantini, Fragetta, and Melina (2014), Gómez-Puig, Sosvilla-

Rivero, and del Carmen Ramos-Herrera (2014), Afonso et al. (2015), and Fernández-Rodríguez,

Gómez-Puig, and Sosvilla-Rivero (2016). We join this stream of literature by investigating

the potential association of bond market connectedness calculated in this study (within our

set of four EU countries) and the variables capturing the contemporary economic conditions.

Considering the sample size at our disposal and following this stream of recent relevant studies,19

for each country and each calendar month, we collect the following set of macroeconomic and

market sentiment variables:

• Real GDP growth (GDPGrowth),

• General government consolidated gross debt as a percentage of GDP (DebtToGDP ),

• Harmonized Index of Consumer Prices (CPI),

• Unemployment rate as a percentage of active population (Unem),

• Consumer confidence indicator (ConsConf),

19Especially Fernández-Rodríguez, Gómez-Puig, and Sosvilla-Rivero (2016).

125



• The standard deviation of daily log-returns of the corresponding country’s stock market

index during the corresponding calendar month (MarketSD).20

We source the macroeconomic variables from Eurostat and the daily stock market data

from Bloomberg. We use seasonally adjusted data, whenever applicable. For GDPGrowth

and DebtToGDP , which are sourced at quarterly frequency, we use linear interpolation for the

within-quarter months to obtain monthly data. Additionally, based on exploratory analysis,

we transform selected variables as follows: we take the first differences of the DebtToGDP

and Unem variables to account for the strong persistence and the presence of unit roots (as

confirmed by Augmented Dickey-Fuller tests) and thereby create variables D(DebtToGDP )

and D(Unem). Finally, due to its high skewness and asymmetric distribution, we take the

logarithms of the MarketSD variable and create the variable Log(MarketSD).

Since a comparison of the spillover dynamics between more turbulent and more tranquil

episodes is of considerable interest, we additionally create a monthly dummy variable Crisis,

equal to 1 if the particular calendar month belongs to a more turbulent episode and 0 otherwise.

Based on our earlier estimation results, and combined with geopolitical and macroeconomic

developments, we consider two disjointed periods to be more turbulent periods: April, 2018

until October, 2018 and January, 2020 until July, 2020 (the end of our sample). The first

"crisis" period contains the turbulent Italian political developments, including the rapid BTP

selloff culminating on May, 29, and the onset of the potential US-China trade war dispute and

the Brexit deal negotiations. The second period contains the worldwide Covid-19 outbreak.

Regarding the dependent variables, for each country and each calendar month, we calculate

the arithmetic averages of the daily Net Spillover Indices obtained in the preceding rolling sub-

sample analysis (and displayed in Figure 3.7 and Figure 3.8), both for the log-return setting

(NetSpilloverLogR) and for the volatility setting (NetSpilloverV ol). Since we aim to investi-

gate the possible macroeconomic determinants of these net spillover indices, we use panel data

regressions, allowing for both time-specific and country-specific fixed effects.21 To account for

the possibly complicated (and fully general) clustering structure of the residual covariance ma-

trix, we assess the statistical significance of the estimates using White heteroskedasticity-robust

standard errors as proposed by Arellano et al. (1987).

The regression results for both types of dependent variables are reported in Table 3.3. For

each dependent variable, we follow the general-to-specific approach (introduced by Hendry et al.

(1995) and described in detail by Faust and Whiteman (1997)). We start with the most general

20We choose the following stock market indices: CAC40 for France, DAX for Germany, FTSEMIB for
Italy and IBEX for Spain. The daily data are sourced from Bloomberg, tickers: CAC Index, DAX Index,
FTSEMIB Index, IBEX Index.

21We apply the F-test to test for the presence of fixed effects in both dimensions to assess whether the
fixed effects or the pooled OLS approach is relevant in our setting. The results of the F-tests suggest the
presence of fixed effects in both dimensions.
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representation, containing all the regressors listed above and estimating the regressions both

with and without the Crisis interaction effects. We proceed by sequentially dropping the sta-

tistically insignificant variables and applying diagnostic checks to ensure the validity of model

specification and residual properties. For the regressions that contain the Crisis interaction

terms, we drop the non-interaction terms only when both the non-interaction term and the

corresponding interaction term are jointly insignificant, as identified by the F statistic.

Based on the reported results, in accordance with the observations made in the previous

sections, that the log-return and volatility settings exhibit qualitatively different results. Con-

sidering firstly the "Without Dummy" regressions reported in columns (1) and (3), we note that

the directional spillovers in log-returns and in volatility appear to be strongly associated with

changes in the DebtToGDP variable. However, while the estimated direction of the effect is pos-

itive for log-return spillovers, its direction in the volatility setting is reversed, such that a positive

change in a country’s indebtedness is associated with greater values of the log-return directional

spillovers (making the country more likely to be a net transmitter of log-return spillovers) and

smaller values of the directional spillovers of volatility (making the country more likely to be a

net receiver of volatility spillovers). Moreover, for both types of spillovers, we document a rela-

tively strong (at the 10% significance level) positive association with the corresponding country’s

stock market volatility. Therefore, we state that volatile stock market conditions accompany

enhanced volatility in the corresponding country’s sovereign bond market in a manner that also

transmits spillovers into sovereign bond markets of the other countries. In the case of the volatil-

ity spillovers setting, we document an additional positive association between inflation and net

volatility connectedness.

Moreover, dynamics of the association between directional spillovers and the economic funda-

mentals appears to differ between tranquil and turbulent periods, as the statistically significant

interaction terms in regressions reported in columns (2) and (4) document. We state that the

turbulent periods marked with the Crisis attribute signal when this association dominates. In

particular, we note that the directional differences between the log-return and volatility settings

for the D(DebtToGDP ) remain, although they are now reflected in the opposite signs of the

strongly statistically significant interaction term D(DebtToGDP ) ∗ Crisis, while the signifi-

cance of the original slope variable coefficient disappears. This observation is in accordance with

the connectedness dynamics we have discussed earlier. Another interesting effect is observed

for the consumer confidence indicator: during non-crisis periods, its effect is slightly negative

for the log-return connectedness and insignificant for the volatility connectedness, but during

crisis periods, the observed association is positive (and statistically significant) for both types

of spillovers.

Additionally, we observe negative and statistically significant interaction terms pertaining to

the GDPGrowth and CPI variables for the volatility connectedness regression. We assert that
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Table 3.3: Determinants of the Net Spillover Index.

The table displays the results of the panel data regressions for both types of dependent variables
(NetSpilloverLogR and NetSpilloverV ol) and for combinations of the explanatory variables
that both include and exclude Crisis dummy variable interaction terms. The Crisis dummy
variable is equal to 1 for periods of increased market distress (April 2018 - October 2018 and
January 2020 - July 2020) and 0 otherwise. Please see the main text for more detailed description
of the variables included. The data is sampled at monthly frequency. All models are estimated
using time and country-wise fixed effects. The White heteroskedasticity-robust standard errors
that account for possible complex clustering structure of the residual covariance matrix (due
to Arellano et al. (1987)) are reported in parentheses. The asterisk signs (*), (**) and (***)
highlight estimates that are statistically significant at the 10%, 5% and 1% level, respectively.

Dependent variable:

NetSpilloverLogR NetSpilloverVol

(1) (2) (3) (4)

Without Dummy With Dummy Without Dummy With Dummy

D(DebtToGDP) 0.039∗∗∗ 0.018 −0.315∗∗∗ −0.033
(0.007) (0.015) (0.096) (0.050)

D(DebtToGDP) * Crisis 0.049∗∗ −0.492∗∗∗

(0.023) (0.099)

GDPGrowth 0.132∗

(0.078)

GDPGrowth * Crisis −0.119∗∗

(0.056)

CPI 0.082∗∗∗ 0.073
(0.028) (0.057)

CPI * Crisis −0.135∗

(0.072)

ConsConf −0.007∗∗ 0.002
(0.003) (0.011)

ConsConf * Crisis 0.006∗∗∗ 0.021∗∗∗

(0.002) (0.007)

Log(MarketSD) 0.061∗ 0.071∗∗ 0.164∗

(0.033) (0.030) (0.091)

Log(MarketSD) * Crisis −0.056∗

(0.031)

Observations 184 184 176 176
R2 0.098 0.310 0.184 0.356
Adjusted R2 −0.241 0.006 −0.133 0.084
F Statistic 7.222∗∗∗ 7.145∗∗∗ 9.498∗∗∗ 11.355∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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during crisis periods, greater values of GDP growth and faster growth of the price level tend

to decrease the (likely already present) levels of market distress, also decreasing the magnitude

of the volatility spillovers a country’s sovereign bond market is transmitting to the rest of the

system. However, we acknowledge that, due to the negative sign of the D(DebtToGDP ) and

the positive sign of the ConsConf interaction terms, a similar reasoning does not apply to these

two fundamental variables.

Nevertheless, we find some evidence that the documented relationships between macroe-

conomic and market sentiment variables vary between crisis and non-crisis periods. These

observations are in line with the recent literature (for example, Gómez-Puig, Sosvilla-Rivero,

and del Carmen Ramos-Herrera (2014), Afonso et al. (2015), and Fernández-Rodríguez, Gómez-

Puig, and Sosvilla-Rivero (2016)). In particular, the Fernández-Rodríguez, Gómez-Puig, and

Sosvilla-Rivero (2016) study documents significant relationships between the connectedness of

several European sovereign bond markets and underlying economy fundamentals. Moreover,

these relationships vary between peripheral and central countries, and between crisis and non-

crisis periods. Our findings are similar, and we therefore conclude that the dynamics of the

cross-country risk contagion present in the markets analyzed in this study deserve careful atten-

tion from all relevant institutions. Particular attention is advisable during episodes of increased

geopolitical, macroeconomic, or financial distress.

3.6 Conclusion

This study aims to complement the existing stream of empirical academic literature on spillovers

in financial markets by carrying out a risk contagion analysis of the EU sovereign bond market

during 2016 - 2020, a period including a wide range of macroeconomic and geopolitical events. In

pursuit of this objective, we utilize the connectedness framework of Diebold and Yilmaz (2012)

to study the developments over time and potential macroeconomic determinants of multiple

directional and aggregate spillover measures on a set of the four most liquid European sovereign

bond futures contracts (France, Germany, Italy, and Spain), focusing especially on the directions

in which shocks to individual assets contribute to forecast error variances of the log-returns and

volatility dynamics of the rest of the system.

We find that, although we observe a strong association between macroeconomic and geopo-

litical developments and spillover dynamics within the sovereign bond market, there are several

dimensions in which the characteristics of the documented relationships differ substiantially.

Firstly, the results differ with respect to the choice of the VAR estimation setting, depending

on whether log-returns or volatilities are considered. Secondly, even within a particular set-

ting (log-returns or volatilities), considerable differences between the spillover dynamics of the

"central" countries of Germany and France and the "peripheral" countries of Italy and Spain
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are not uncommon. While France appears to be the overall main transmitter of spillovers in

the log-return setting and the main receiver of volatility spillovers, we observe the opposite

characteristics for Italy, the sample’s major volatility spillovers transmitter. Germany, despite

being decisively the most liquid market in our study, appears to be a predominant receiver

of log-return spillovers. However, we assert that, in various time periods, Germany may play

the role of the major transmitter of volatility spillovers as strongly as that of their receiver.

Interestingly, we note that Germany assumes the leading role as the sample’s major volatility

transmitter particularly during periods of increased global turbulence, as the periods including

the late 2018 and early 2019 (the main US-China trade dispute and Brexit deal negotiations),

and the most dramatic worldwide volatility shock in decades (the Covid-19 pandemic outbreak)

strongly document. We conjecture that, while the volatility transmitting role of Italy was caused

mainly by its internal turbulent political development, Germany takes the leading role as the

sample’s volatility transmitter of major global affairs.

Finally, as our panel data regression analysis suggests, the nature of the association of

directional Net Spillover Index with underlying macroeconomic fundamendals appears to depend

on the presence of crisis period as well as on the type of spillover considered. In particular, a

change in a country’s indebtedness appears to possess strong explanatory power, being positively

associated with log-returns spillovers and negatively associated with volatility spillovers during

crisis periods. A deeper investigation into the nature of this relationship is definitely worth

pursuing and, together with extending the analysis by quantifying the spillovers using quantile-

based measures, we suggest these as two possible directions for future research.

As we always report values of the Total Spillover Index below 72%, we deem the degree

of risk contagion within the Eurozone sovereign bond market to be moderate with respect to

the other benchmark studies. We find that all connectedness measures react rapidly to new

information, as the spikes in their trajectories corresponding to major geopolitical shocks in our

sample illustrate.

Our results appear to be robust with respect to our choices of hyperparameter values needed

for the connectedness estimation procedure. Additionally, as the Italian sovereign bond market

in our study demonstrates, we note that it is not unusual for a considerable amount of spillovers

to be transmitted by a market whose liquidity, in terms of average traded volume, represents

only a relatively small fraction of the system’s aggregate liquidity. In this sense, we conclude

that the connectedness measures investigated in this study can produce nuanced and elaborate

insights into the structure of risk contagion dynamics potentially present in financial markets.

Within the context of our analysis, we assert that the dynamics of cross-country risk contagion

present in the European sovereign bond market deserve serious attention by fiscal and mon-

etary policymakers, and of all market participants, particularly during episodes of increased

geopolitical, macroeconomic, or financial distress.
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3.A Appendix

In this section, we report the following additional results: Figure 3.9 shows developments over

time of the Directional, Net, and Own Spillover Indices for the rolling subsample analysis that

employs time series of log-volatilities as the main variables entering the VAR estimations. In this

sense, Figure 3.9 complements Figure 3.7 (log-returns) and Figure 3.8 (volatilities). Table 3.4

complements Table 3.2 by containing standard errors based on the non-parametric bootstrap

methodology using 3,000 bootstrap repetitions. With several exceptions (the underlined values),

all estimated connectedness measures are statistically significant at the 5% level. Finally, Fig-

ure 3.10 displays the sensitivity of the estimated Total Spillover Index trajectory to the choice

of the lag length of the uderlying VAR process (parameter p) and to the choice of the forecast

horizon (parameter H). Overall, the resulting Total Spillover Index trajectories appear to be

highly robust to the choices of these parameters.
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Table 3.4: Whole sample connectedness with standard errors.

The table displays the estimated connectedness matrices CH , and the defined spillover measures
for the VAR processes estimated on the entire sample, starting on October 29, 2015 and ending
on July 31, 2020. The forecast error horizon is H = 20. The information criteria - suggested
lag order values are displayed for each VAR estimation. Panels A, B and C employ variables
Y

(1)
i,d , Y

(2)
i,d , Y

(3)
i,d , defined in equations 3.10, 3.11 and 3.12. See section 3.3 for the definitions

of these variables as well as of all the spillover measures reported. The standard errors are
based on non-parametric bootstrap methodology (described in section 3.3) with 3,000 bootstrap
repetitions.

Panel A: Static Log-Return Connectedness
FRANCE GERMANY ITALY SPAIN Directional From Others ρHi←·

FRANCE 39.7 30.2 9.9 20.1 60.3
Standard Error 1.24 1.45 1.38 0.98 1.24
GERMANY 37.0 48.6 2.7 11.7 51.4
Standard Error 1.20 1.84 0.89 1.50 1.84
ITALY 13.0 2.5 54.0 30.5 46.0
Standard Error 1.62 0.95 2.45 1.17 2.45
SPAIN 21.6 10.0 24.9 43.5 56.5
Standard Error 0.92 1.49 1.43 1.54 1.54
Directional To Others ρHi→· 71.6 42.7 37.5 62.3 Total Spillover Index ρHTOT : 53.6
Standard Error 1.78 2.67 2.80 1.96 1.52
Net Spillovers ρHi 11.3 -8.7 -8.5 5.8 Lag Order: 4
Standard Error 0.82 1.33 1.16 0.92

Panel B: Static Volatility Connectedness
FRANCE GERMANY ITALY SPAIN Directional From Others ρHi←·

FRANCE 28.3 20.5 24.5 26.6 71.7
Standard Error 2.48 3.52 3.32 2.67 2.48
GERMANY 20.8 29.4 26.0 23.9 70.6
Standard Error 2.62 3.57 3.56 2.72 3.57
ITALY 6.1 9.2 62.8 21.8 37.2
Standard Error 2.69 3.27 6.16 3.81 6.16
SPAIN 11.6 11.8 37.0 39.5 60.5
Standard Error 2.88 3.16 3.86 3.17 3.17
Directional To Others ρHi→· 38.5 41.6 87.5 72.4 Total Spillover Index ρHTOT : 60.0
Standard Error 7.49 9.04 9.95 8.27 1.90
Net Spillovers ρHi -33.2 -29.0 50.3 11.9 Lag Order: 8
Standard Error 9.34 12.08 14.06 10.53

Panel C: Static Log-Volatility Connectedness
FRANCE GERMANY ITALY SPAIN Directional From Others ρHi←·

FRANCE 35.2 24.5 15.6 24.8 64.8
Standard Error 2.67 3.06 2.71 2.82 2.67
GERMANY 25.7 36.3 16.6 21.4 63.7
Standard Error 2.70 3.09 2.79 2.71 3.09
ITALY 7.0 10.1 58.8 24.0 41.2
Standard Error 2.40 2.94 4.96 3.08 4.96
SPAIN 12.7 12.0 27.6 47.6 52.4
Standard Error 2.80 2.82 3.07 4.01 4.01
Directional To Others ρHi→· 45.4 46.6 59.8 70.2 Total Spillover Index ρHTOT : 55.5
Standard Error 6.54 7.33 7.64 7.36 2.25
Net Spillovers ρHi -19.4 -17.0 18.6 17.8 Lag Order: 5
Standard Error 8.16 9.23 8.65 9.60
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Figure 3.9: Development over time of the Directional Spillover Index "From" ρHi←·, "To"
ρHi→·, the Net Spillover Index ρHi , and the Own Spillover Index cHii estimated for each of the four
securities on rolling subsample windows for the forecast error horizon of 20 days. The variables
entering the VAR estimations are the securities’ log-volatilities. The length of one subsample is
252 days, thus, the subsample start date is approximately one year earlier than the subsample
end date (displayed on the x-axis). We chose the order of each of the VAR process estimations
according to the procedure described in section 3.3. The positive (negative) values of the Net
Spillover Index correspond to variable i being a net transmitter (net receiver) of spillovers within
the system. The vertical labeled lines highlight selected political and macroeconomic events
discussed in the main body of the text.
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Figure 3.10: Robustness analysis: the developments over time of the Total Spillover Index
ρHTOT estimated on rolling subsample windows for multiple choices of the VAR process lag order
p and forecast horizon H parameters. The left-hand (right-hand) side graphs report the results
for the forecast horizon H = 10 (H = 30). Each graph displays the rolling-subsample results
for the Total Spillover Index corresponding to the lag order values ranging from p = 1 to p = 10
(shaded area). The highlighted line corresponds to the lag order p = 5. The length of one
subsample is 252 days, thus, the subsample start date is approximately one year earlier than
the subsample end date (displayed on the x-axis). We plot all three classes of variables entering
the underlying VAR processes: log-returns (top row), their volatility (middle row), and their
log-volatility (bottom row).
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