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Abstract

In the first chapter of this dissertation I propose and study the properties of a model av-
eraging estimator with ridge regularization. Model averaging is an increasingly popular
alternative to model selection. Ridge regression serves a similar purpose as does model
averaging, i.e., the minimization of mean squared error through shrinkage, though they
work in different ways. In this chapter, I propose the ridge-regularized modifications of
Mallows model averaging (Hansen 2007) and heteroskedasticity-robust Mallows model
averaging (Liu and Okui 2013) to leverage the capabilities of averaging and ridge regular-
ization simultaneously. Via a simulation study, I examine the finite-sample improvements
obtained by replacing least-squares with a ridge regression. Ridge-based model averaging
is especially useful when one deals with sets of moderately to highly correlated predic-
tors, because the underlying ridge regression accommodates correlated predictors without
blowing up estimation variance. A two-model theoretical example shows that the relative
reduction of mean squared error is increasing with the strength of the correlation. I also
demonstrate the superiority of the ridge-regularized modifications via empirical examples
focused on wages and economic growth.

The second chapter focuses on the use of elastic-net regression for instrumental vari-
able estimation. Instrumental variables (IV) are commonly applied for identification of
treatment effects and subsequent policy evaluation. The use of many informative in-
struments improves estimation accuracy. However, dealing with high-dimensional sets
of instrumental variables of unknown strength can be complicated, and requires model
selection or regularization of the first stage regression. Currently, lasso has been estab-
lished as one of the most popular regularization techniques relying on the assumption of
approximate sparsity. I investigate the relative performance of the lasso and elastic-net
estimators for fitting the first-stage as part of IV estimation. Because elastic-net includes
a ridge-type penalty in addition to a lasso-type penalty, it generally improves upon lasso
in finite samples when correlations among the instrumental variables are not negligible.
I show that IV estimators based on the lasso and elastic-net first-stage estimates can be
asymptotically equivalent. Via a Monte Carlo study, I demonstrate the robustness of
the sample-split elastic-net IV estimator to deviations from approximate sparsity, and to
correlation among instruments that may be high-dimensional. Finally, I provide an em-
pirical example that demonstrates potential improvement in estimation accuracy gained
by the use of IV estimators based on elastic-net.
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The third chapter, a joint work with S. Anatolyev, contributes to wider use of advanced
conventional methods for dealing with instrumental variable regression with many, pos-
sibly weak, instruments in Stata. We introduce a STATA command, mivreg, that imple-
ments consistent estimation and testing in linear IV regressions with many instruments,
which may be weak. The command mivreg covers both homoskedastic and heteroskedas-
tic environments, estimators that are both non-robust and robust to error non-normality
and projection matrix limit, and both parameter tests and specification tests, both with
and without correction for the existence of moments. We also run a small simulation
experiment using mivreg and illustrate how mivreg works with real data.
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Introduction

Increasing availability of covariate-rich datasets creates new challenges encountered in

applied econometrics. While classic model selection methods have been predominant for

dealing with model uncertainty for decades, more modern methods with embedded reg-

ularization often have favourable asymptotic and finite-sample properties. Each chapter

of this thesis presents a setup in which data dimensionality deteriorates the performance

of traditional methods, and highlights ways to address the issues.

The first chapter contributes to the literature on model uncertainty and model

averaging for prediction problems. When a model for determination of a specific variable

is not precisely dictated by theory, one often faces a trade-off between a parsimonious

model with few variables and a sophisticated model with potentially high-dimensional sets

of predictors. While a parsimonious model delivers estimates with a low variance and

large bias, a sophisticated model tends to do exactly the opposite. Therefore, combining

models with different numbers of variables generally reduces the mean squared error of

the resulting predictions. Many methods for finding the optimal combination exist. A

leading method is based on generalization of the Mallows (1973) model selection criterion

to the Mallows model averaging criterion by Hansen (Hansen, 2007).

I propose a ridge-regularized Mallows model averaging estimator. The ridge model

averaging estimator (RMA) ensures better finite-sample properties via ridge regulariza-

tion of the design matrices corresponding to the models being averaged. In principle,

ridge regression and model averaging serve a similar purpose, minimization of the mean

squared error through shrinkage, though in different ways. While model averaging, e.g., as

1



in Hansen (2007), reduces the asymptotic mean squared error, ridge regularization leads

to finite-sample improvements. Therefore, combining model averaging with ridge regu-

larization results in an estimator that inherits asymptotic optimality, and, in addition,

yields better finite-sample properties due to ridge regularization.

I suggest ridge-based modifications of both Mallows model averaging (Hansen, 2007)

and heteroskedasticity-robust Mallow model averaging (Liu and Okui, 2013). A tractable

theoretical example with two models demonstrates that the relative reduction of the mean

squared error is increasing with the strength of predictor correlatedness. Via a simulation

study, I examine the finite-sample improvements obtained by replacing ordinary least-

squares with a ridge regression for model averaging prediction. Ridge-based model aver-

aging is shown to be superior when one deals with sets of moderately to highly correlated

predictors, because underlying ridge regressions accommodate correlated predictors with-

out blowing up estimation variance. I also show the superiority of the ridge-regularized

estimator modifications via empirical examples focused on wages and economic growth.

The second chapter contributes to the literature on estimation of treatment effects

in a non-experimental setting with many instrumental variables (IV). While the use of

many instruments improves estimation accuracy, dealing with high-dimensional sets of

instrumental variables can be complicated, and often requires instrument selection or

regularization of the first-stage regression. Currently, lasso is established as the most

popular method for simultaneous variable selection and regularization.

I advocate the use of elastic-net in place of lasso in the first-stage regression. The

motivation is twofold. First, elastic-net combines lasso regularization with ridge penal-

ization, and thus it generally improves over lasso in finite samples if correlations among

the instrumental variables are significant. Second, by attaining a balance between lasso

and ridge penalties, elastic-net accommodates deviations of the first-stage equation from

a sparse structure, and thus is a robust alternative to lasso, which relies heavily on the

sparsity assumption.

I claim that IV estimators that employ lasso and elastic-net first-stage predictions

under sparsity are asymptotically equivalent. Via a Monte Carlo study, I demonstrate

the robustness to correlation among the instruments and deviations from sparsity of the

sample-split IV estimation based on elastic-net first-stage estimates. The cross-fitted

elastic-net IV estimator tends to performs similarly to the sample-split version, though

sometimes it results in minor test size distortions. Finally, I provide an empirical example

2



that employs the proposed methods to estimation of returns to schooling. The example

demonstrates the cross-fitted elastic-net IV estimator that results in the point estimate

without a clear bias towards the OLS estimate, while delivering the smallest standard

errors. As expected, the sample-split elastic-net IV estimator appears to be more vulner-

able to random splits of the real data. However, similarly to the cross-fitted elastic-net

IV estimator, it continues to produce reasonable estimates even when its lasso-based

counterpart does not select any variables into the first-stage regression, and thus fails to

deliver any estimates.

The third chapter, a joint work with S. Anatolyev, contributes to wider use of

advanced conventional methods to deal with instrumental variable regression with many

instruments, which may be weak, in Stata. Over recent decades, econometric tools for

handling instrumental variable regressions with many instruments have been developed.

However, practitioners rarely use appropriate tools because they are not available in

popular econometric packages, STATA in particular. We introduce a STATA command,

mivreg, that implements consistent estimation and testing in linear IV regressions with

many (possibly weak) instruments. The command mivreg covers both homoskedastic

and heteroskedastic environments, estimators that are both non-robust and robust to

error non-normality and projection matrix limit, both parameter tests and specification

tests, and both with and without correction for the existence of moments. We also run

a small simulation experiment using mivreg and illustrate how mivreg works with real

data.

3
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Chapter 1

Model Averaging with Ridge Regularization1

1.1 Introduction

Model uncertainty is a challenge that is frequently encountered in applied econometrics.

The two most common approaches to addressing model uncertainty are model selec-

tion and model averaging. While model selection has been the predominant method for

decades, the sensitivity of results to the choice of model selection criteria has contributed

to the increasing popularity of model averaging techniques.2The central question of model

averaging is how to assign weights to candidate models optimally. Many different solu-

tions coexist in the literature.3

Although model averaging was initially developed within the Bayesian paradigm, the

literature on frequentist model averaging (FMA) is currently growing rapidly. Within

FMA, early contributions were made by Buckland, Burnham, and Augustin (1997) who

suggested that the weight for each model be a function of its value of the Akaike infor-

mation criterion (hereafter AIC; Akaike 1974) or the Schwarz-Bayes information criteria

(BIC; Schwarz 1978). Yang (2001) introduced a way to combine candidate models with

weights found via sample splitting, thus making weighting schemes more flexible. Hansen

(2007, 2008) adopted the Mallows criterion (Mallows 1973) to model averaging under

error homoskedasticity (Mallows model averaging, or MMA), thereby providing a way to
1Published as CERGE-EI Working Paper Series No 758.

2See also Breiman (1996) where subset selection is shown to be unstable, thus resulting in poor
prediction accuracy.

3Moral-Benito (2015) and Steel (2020) provide comprehensive reviews of model averaging in
economics.

5



find optimal weights without efficiency losses caused by sample splitting. Later, Liu and

Okui (2013) introduced a heteroskedastiticty-robust Mallows criterion for model averag-

ing (hereafter HR-MMA).

In this paper, I propose ridge-regularized versions of the MMA and HR-MMA estima-

tors that provide better finite-sample prediction performance in terms of the mean squared

error (MSE): the ridge model averaging (RMA) estimator and the heteroskedasticity-

robust ridge model averaging (HR-RMA) estimator, respectively. The ridge regression,

introduced by Hoerl and Kennard (1970), is a generalization of the OLS regression that

aims to reduce the MSE by penalizing large coefficients. A penalization parameter gov-

erns the amount of shrinkage (and thus the coefficient biasness) that, in general, makes

it possible to trade off a small bias for a significant reduction in variance of estimates,

thereby lowering the mean squared error. The gain from ridge regularization tends to be

larger in the case of high correlation among predictors.

Building on the idea of least squares averaging by Hansen (2007), I replace ordinary

least-squares estimation with a ridge regression to minimize the consequences of corre-

lation among predictors. Our proposed estimators differ from the MA-Ridge estimator

by Zhao, Liao, and Yu (2020), which averages across varying regularization parameter

values for a single model specification (i.e. across estimators instead of models), and

obtains the optimal weights through minimization of the jackknife criterion. Another

possible benchmark for our estimator is the jackknife model averaging (JMA) estimator

by Hansen and Racine (2012), which is a regularization-free baseline of the MA-Ridge

estimator by Zhao, Liao, and Yu (2020). However, the jackknife model averaging by

Hansen and Racine (2012) is based on OLS regressions, and thus is not suited for the

cases when the number of predictors approaches or exceeds the sample size.

In a Monte Carlo study I compare the finite sample performance of the RMA and

HR-RMA estimators with that of the MMA and HR-MMA estimators, as well as several

other estimators including weighted BIC (WBIC), Bates-Granger (by Bates and Granger

1969), and JMA. Our simulation design is close to that adopted in Hansen (2007, 2008),

while I also examine separately the cases of medium and high correlation among predic-

tors. Although the ridge model averaging estimator does not uniformly MSE-dominate

all alternative estimators for all considered specifications, it typically has the best per-

formance over considerable intervals of population R2.

The reduction in MSE achieved by the RMA can be viewed through the lens of

optimal weights. Basically, the set of alternative models includes those with parsimonious

6



specifications (with few regressors), and sophisticated models (with many regressors), as

well as moderately parametrized models. The optimal weights found via RMA tend to be

higher for more sophisticated models, while the weights obtained via different procedures

are predominantly distributed between low and moderately parametrized specifications.

This is because the ridge model averaging estimator can use more information from highly

parametrized models without inflating the estimation variance, whereas this property is

not shared by estimators based on simple least squares estimators.

I demonstrate how the proposed estimator works in two empirical examples. I employ

the cross-section earning data used by Hansen and Racine (2012) and the Barro and

Lee (1994) data on cross-country determinants of long-term economic growth. In both

examples, there are many possible predictors to be used relative to the sample size. In

both examples, ridge-regularized modifications of the MMA and HR-MMA estimators

tend to perform better than the baselines, especially in small samples.

This paper proceeds as follows: Section 1.2 introduces a general model averaging

estimator, and a ridge-regularized model averaging estimator. Section 1.3 presents a

two-model example that demonstrates the reduction in MSE achieved via the use of

ridge regularization. Section 1.4 shows the results of a Monte Carlo study that examines

the relative performance of several competing estimators in finite samples. Section 1.5

presents empirical examples. Section 1.6 concludes.

1.2 Model Averaging

The setup and notation are taken from Hansen (2007). Consider {(yi, xi)}, i = 1, ..., n.

Let µi = µ (xi) = E (yi |xi ) be the conditional mean so that

yi = µi + ei, (1.1)

where E (ei |xi ) = 0. For further use of matrix notation define y = (y1, ..., yn)′, µ =

(µ1, ..., µn)′, e = (e1, ..., en)′. The conditional variance σ2 (xi) = E (e2i |xi ) may depend

on xi.

Consider a set of competitive linear estimators
{
µ̂1, ..., µ̂M

}
for the conditional mean

µ.4 Every estimator from this set can be written as µ̂m = Pmy, where operator Pm does

not depend on y. Then the model selection problem is about picking a single estimator
4The number of competitive estimators M may grow with n but we omit the subscript from Mn for

the sake of simpler notation.
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from the set
{
µ̂1, ..., µ̂M

}
. When the selection is guided by the mean-squared error (MSE)

criterion, the traditional bias-variance trade-off arises, and thus in principle the model of

any complexity may attain a balance.

Compared to model selection, model averaging involves averaging across
{
µ̂1, ..., µ̂M

}
to attain further reduction of the MSE. Consider w =

(
w1, ..., wM

)′, a vector of non-

negative weights such that
∑M

m=1w
m = 1. Then for any admissible w, the averaging

estimator for µ takes the form

µ̂ (w) ≡
M∑
m=1

wmµ̂m = µ̂w = P (w)y, (1.2)

where µ̂ =
(
µ̂1, ..., µ̂M

)
is the n×M matrix of first-step estimates, and

P (w) ≡
M∑
m=1

wmPm. (1.3)

For least-squares estimators, Pm = PLS
m ≡ Xm (Xm′Xm)−1Xm′, where xmi is the i’th

row of Xm, xmi is 1× km for m = 1, 2, ...,M . In the case of ridge estimators,

PR
m ≡ Xm (Xm′Xm + λmIkm)

−1
Xm′

for a tuning parameter λm ∈ (0,∞). A particular model corresponds to a choice of

predictors xmi together with the optimal value of λm.

The averaging residual is

ê (w) = y − µ̂ (w) =
M∑
m=1

wmêm = êw,

where êm = y − µ̂m and ê =
(
ê1, ..., êM

)
. The Mallows model averaging (MMA) crite-

rion of Hansen (2007) for weight selection is a penalized sum of squared residuals. The

weighted average of least-squares residuals is complemented by a penalty term that in-

creases in both error variance, and a complexity of an average model that is conveyed by

the trace of the matrix P (w):

Cn (w) = w′ê′êw + 2σ̂2tr (P (w))

ŵMMA = arg min
w∈H

Cn (w) ,

8



where H =
{
w ∈ [0, 1]M :

∑
wMm=1 = 1

}
, σ̂2 is a consistent estimate of the error vari-

ance.5

Define the in-sample mean-squared error

Ln (w) = (µt − µ̂ (w))′ (µt − µ̂ (w)) .

Lemma 3 from Hansen (2007) shows unbiasedness (up to a constant) of Cn (w) for in-

sample mean-squared error, Ln (w), for iid observations. Specifically, he shows that

E [Cn (w)] = E [Ln (w)] + nσ2,

so that the weights found through minimization of Cn (w) also minimize Ln (w), in expec-

tation. In addition, Theorem 1 from Hansen (2007) shows the asymptotic optimality of

Mallows’ criterion for model selection with independent data if the weights are restricted

to a discrete set, in the sense that Ln (ŵ) / infw∈Hn(N) Ln (w) →p 1, where Hn (N) re-

stricts the weights wm to the set
{

0, 1
N
, 2
N
, ..., 1

}
. Notably, the asymptotic optimality of

the Mallows’ criterion relies on homoskedasticity of the error term.6

To address the case of the heteroskedastic error term, Liu and Okui (2013) introduced

a modification of the Mallows’ criterion that is heteroskedasticity-robust, the so called

HRCp criterion:

HRCp (w) ≡ ‖y −P (w)y‖2 + 2tr (ΩP (w)) ,

where Ω is an n×n diagonal matrix with σ2
i being the ith diagonal element. The weights

obtained through minimization of the HRCp criterion are shown to be asymptotically

optimal (see Theorem 2.1 from Liu and Okui, 2013). The same property is shared by

its feasible version7 (under more assumptions, see their Theorem 2.2).8 For the sake

of consistent notation within this paper, the weights obtained via minimization of the

ĤRCp criterion will be denoted as ŵHR−MMA.

5Hansen (2007) suggests employing σ̂2 from the “largest” approximating model.
6Wan, Zhang, and Zou (2010) provide an alternative proof of the asymptotic optimality that extends

the result to a non-discrete weight set.
7The authors discuss various possibilities for obtaining êi. For instance, in the case of nested models,

they recommend using the residuals from the largest model, and this paper follows their recommendation.
8Anatolyev (2021) proposes using individual variance estimates that are robust to regressor

numerosity.
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Ridge Model Averaging

I define the ridge-regularized MMA estimator (hereafter RMA) as

ŵRMA = arg min
w∈H

[
w′ê′RêRw + 2σ̂2tr

(
PR (w)

)]
,

where PR (w) =
∑M

m=1w
mPR

m and êR =
(
ê1R, ..., ê

M
R

)
is a matrix of stacked residuals from

ridge regressions for each specification. Thus, ridge regularization affects both terms of

the criterion simultaneously. Correspondingly, the heteroskedasticity-robust ridge model

averaging (HR-RMA) estimator is defined by

ŵHR−RMA = arg min
w∈H

[
w′ê′RêRw + 2

n∑
i=1

ê2iRp
R
ii (w)

]
,

where êiR is the residual from a preliminary estimation of the largest ridge regression,

and pRii (w) is the ith diagonal element of PR (w). For both the RMA and HR-RMA

estimators, PR (w) is a function of optimal shrinkage values for all models being averaged,

i.e. PR (w) = PR (w, λopt). For each separate model m, I estimate λoptm via leave-one-out

cross-validation that results in asymptotically optimal λ̂optm (Li 1987).

Having in mind the results on asymptotic optimality of the Mallows criterion for model

averaging by Hansen (2007), and its heteroskedasticity-robust counterpart by Liu and

Okui (2013) in the class of linear estimators, I investigate the finite-sample benefits of the

proposed regularized modifications from the same class, RMA and HR-RMA, relative to

the baselines of MMA and HR-MMA. For most applications, the right hand side variables

tend to be correlated with each other,9 so the Mallows criterion with underlying ridge

regularization of a design matrix is expected to deliver better finite sample properties of

the estimates. In the next section, I provide a toy example demonstrating the relative

performance of the RMA estimator.

9For example, in a high-dimensional dataset, there might be large sample correlations even when the
variables are independent, see Fan and Lv (2008).
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1.3 Theory: A Two-Model Example

In this subsection I consider a toy theoretical example that illustrates the mechanics of

the MMA and RMA estimators under homoskedasticity of the error term. First, I derive

the MSE for the averaged least-squares and ridge estimates. Then, I derive the optimal

shrinkage parameters for two models estimated via the ridge regression, and plug them

into the MSE for the averaged ridge estimate. That allows us to find the optimal weights

for both estimators.

Let the true unknown model be

Y = X1β1 +X2β2 + e, E [e|X1, X2] = 0, E
[
e2|X1, X2

]
= σ2.

Two alternative approximations are Y = X1β1 + e1 and Y = X2β2 + e2, i.e. each

approximating model includes only a part of the regressors from the true model. The

column dimensions of X1 and X2 are assumed to be equal, rank (X1) = rank (X2) = p.

Two options are considered: (1) averaging the LS estimates or (2) averaging the ridge

estimates for both approximations. Two OLS estimates are given by

β̂ols1 = (X ′1X1)
−1
X ′1Y and β̂ols2 = (X ′2X2)

−1
X ′2Y,

and the average least-squares estimate is

β̃ = wols

(
β̂ols1

0

)
+
(
1− wols

)( 0

β̂ols2

)
=

(
wolsβ̂ols1(

1− wols
)
β̂ols2

)

where wols is the optimal OLS weight to be determined later.10 Similarly, two ridge

estimates are given by

β̂r1 (λ1) = (X ′1X1 + λ1Ip)
−1
X ′1Y and β̂r2 (λ2) = (X ′2X2 + λ2Ip)

−1
X ′2Y

10I assume here that whenever the regressor is missing from the approximating model, the correspond-
ing coefficient is set to 0, as is usually done within the FMA.
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and the average ridge estimate is

β̃ (λ1, λ2) = wr

(
β̂r1 (λ1)

0

)
+ (1− wr)

(
0

β̂r2 (λ2)

)
=

(
wrWλ1 β̂

ols
1

(1− wr)Wλ2 β̂
ols
2

)

where Wλ1 = (X ′1X1 + λ1I)−1X ′1X1, Wλ2 = (X ′2X2 + λ2I)−1X ′2X2 and wr is the optimal

ridge weight.

From now on let us assume, for the sake of illustration, that X1 and X2 are orthonor-

mal, i.e. X ′1X1 = X ′2X2 = Ip, and also X ′1X2 = ρIp, where ρ mirrors the degree of

correlation among the predictors. Then the mean squared error of the average least-

squares estimate is

MSEols
(
wols

)
= pσ2

[(
wols

)2
+
(
1− wols

)2]
+ βT1

[((
wols

)2 − 2wols + 1
)

+
(
1− wols

)2
ρ2
]
β1

+ βT1 ρ
[
2wols

(
wols − 1

)
− 2wols

(
1− wols

)]
β2

+ β′2

[(
wols

)2
ρ2 +

((
1− wols

)2 − 2
(
1− wols

)
+ 1
)]
β2,

where p is the common column rank of X1 and X2, while the mean squared error of the

average ridge estimate is

MSEr (λ1, λ2, w
r) = pσ2

[
(wr)2

(1 + λ1)
2 +

(1− wr)2

(1 + λ2)
2

]
+

+ βT1

[
(wr)2 − 2wr (1 + λ1) + (1 + λ1)

2

(1 + λ1)
2 +

(1− wr)2

(1 + λ2)
2 ρ

2

]
β1

+ βT1 ρ

[
2wr (wr − 1− λ1)

(1 + λ1)
2 − 2 (wr + λ2) (1− wr)

(1 + λ2)
2

]
β2

+ β′2

[
(wr)2

(1 + λ1)
2ρ

2 +

(
(1− wr)2

(1 + λ2)
2 −

2 (1− wr)
1 + λ2

+ 1

)]
β2.

Derivations are provided in Appendix 1.E, Part 1. For bothMSEols
(
wols

)
andMSEr (λ1, λ2, w

r),

the first term of the sum corresponds to the variance, while the other three terms represent

the squared bias.

Before finding the optimal weights for the ridge averaging estimator, the optimal

values of λ1 and λ2 should be plugged in separately for each ridge regression. Under the
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assumption that I made earlier,

λoptj =
pσ2 + ρβ′1β2
β′jβj + ρβ′1β2

, j = 1, 2.

Derivations are provided in Appendix 1.E, Part 2.

Finally, one can use MSEr
(
λopt1 , λopt2 , wr

)
to find the optimal weights, 0 ≤ wr,opt ≤ 1,

similar to the optimal weights for the least-squares averaging estimator, 0 ≤ wols,opt ≤ 1.

Since the resulting expressions are complicated11, let us look at the comparative statics.

As a baseline case, consider p = 3, σ2 = 2, β′1β1 = 1, β′2β2 = 1, β′1β2 =
√
β′1β1 · β′2β2 − 0.1 =

0.948. The correlation among the predictors varies between 0 and 1. Figure 1.1 shows the

resulting difference between MSEols
(
wols,opt

)
and MSEr

(
λopt1 , λopt2 , wr,opt

)
for ρ ∈ [0, 1],

in absolute terms (left) and relative toMSEr
(
λopt1 , λopt2 , wr,opt

)
(right). Despite the differ-

ence itself not being monotonic (in this case, U-shaped), the relative difference is mono-

tonically increasing with the correlation among the predictors. In other words, higher

correlation implies larger reduction in the MSE due to ridge regularization, in relative

terms.

Figure 1.1: Difference in MSE given the optimal weights: in absolute terms (left) and
normalized over the MSE of the RMA estimator (right). Baseline case: p = 3, σ2 = 2,
β′1β1 = β′2β2 = 1.

Figures 1.2, 1.3, and 1.4 demonstrate similar outcomes for alternative parameter com-

binations. In particular, Figure 1.2 shows the differences in MSE for β′1β1 = 0.2, keeping

the other parameters the same. In general, the pattern is similar to that

11Available upon request.
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Figure 1.2: Difference in MSE given the optimal weights: in absolute terms (left) and
normalized over the MSE of the RMA estimator (right). β′1β1 = 0.2

for β′1β1 = β′2β2 = 1, although the magnitude ofMSEols
(
wols,opt

)
−MSEr

(
λopt1 , λopt2 , wr,opt

)
is higher in the case of unequal model coefficients. Figure 1.3 presents the results for the

baseline case with the variance of the error term changed to σ2 = 1 and σ2 = 5, respec-

tively. Overall, the magnitude of the reduction in the MSE is increasing with the error

variance. Finally, Figure 1.4 shows the results for the baseline case with the number of

predictors changed to p = 10. An increase in the number of predictors also leads to a

higher magnitude of the reduction in the MSE due to ridge regularization.

Figure 1.3: Difference in MSE given the optimal weights: in absolute terms (left) and
normalized over the MSE of the RMA estimator (right). σ2 = 1 (top) and σ2 = 5
(bottom)
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Figure 1.4: Difference in MSE given the optimal weights: in absolute terms (left) and
normalized over the MSE of the RMA estimator (right). p = 10

In the next section I compare the finite-sample performance of the canonical Mallows

model averaging with that also taking advantage of ridge regularization.

1.4 Finite-Sample Comparison

I now examine the finite-sample performance of the proposed RMA and HR-RMA es-

timators relative to their closest competitors, the MMA and JMA estimators (Hansen,

2007; Hansen and Racine, 2012), and the HR-MMA estimator (Liu and Okui, 2013),

in terms of MSE. Apart from the correlation pattern among predictors, our simulation

design combines the features of those from Hansen (2007) and Hansen and Racine (2012).

The infinite-order regression model is

yi = θ0 +
∞∑
k=1

θkxki + ei,

where xki are identically distributed N (0, 1). All the regressors are equicorrelated with

a correlation coefficient 0.5 in case [M](moderate correlation) and 0.75 in case [H](high

correlation).12 The error term ei is conditionally distributed as N (0, σ2 (x2i)), where

σ2 (x2i) = x42i. The parameters are set by the rule

θk = cγk

γk =
kαβk∑K

j=1 j
2αβ2j

12Except for an intercept, x1.
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to model various specifications of θk. I consider several combinations of α and β. First,

for α = 0.5, the considered values of β are [.6, .7, .8, .9]. Then I fix β at β = 0.7, and

consider [.25, .5, 1] as values for α. The population R2 varies on a grid from 0.1 to 0.9,

so the parameter c is set by the rule c =
√
R2/ (1−R2). I examine three sample sizes,

n = 25, 50, 100 with the maximum model lengths p = 9, 11, 15, respectively. In the

experiment I also include the weighted BIC criterion (WBIC)13 and the equal weighting

(EW) scheme.14

Figure 1.5: n = 25. Case [M] of moderate correlation among predictors.

13The least squares model average estimator with the weights wm =
exp

(
− 1

2BICm
)
/
∑M
j=1 exp

(
− 1

2BICm
)
, where BICm = n ln σ̂2

m + ln (n)m.
14The least squares model average estimator with the weights wm = 1/M . EW is uniformly dominated

so I do not show it on our graphs for the sake of their better readability.
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I compare the competing methods based on the mean squared error

MSE =
1

n
(µ− µ̂)′ (µ− µ̂)

that is averaged across 5000 simulation draws. Figures 1.5, 1.6 and 1.7 present the results

for the sample sizes of 25, 50, and 100, respectively, under moderate correlation among

the regressors.15 Each panel of graphs displays average MSE across different values of R2,

varied from 0.1 to 0.9. Overall, the ridge-based model averaging estimators nearly uni-

formly outperform their alternatives for all sample sizes. In addition, heteroskedasticity

robust RMA has a lower MSE than non-robust RMA unless the true R2 is very

Figure 1.6: n = 50. Case [M] of moderate correlation among predictors

15The shape of coefficients γk is shown in Appendix 1.C.
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low (below about 0.2). The reduction in MSE from using HR-RMA instead of HR-MMA

varies between 10% and 53% for n = 25, between 6% and 44% for n = 50 and between 1%

and 44% for n = 100. Appendix 1.H presents the results for n = 100 in the case [H] of high

correlation among the predictors. Although higher correlation does not change the results

qualitatively, the improvement achieved by the ridge-based RMA estimators relative to

other estimators tends to be more uniformly pronounced under stronger correlation of

the regressors.

Figure 1.7: n = 100. Case [M] of moderate correlation among predictors

In Appendix 1.W I show the distributions of the optimal weighs over the set of com-

peting models for n = 100 with moderately correlated predictors. One can easily see that

the weights obtained for the ridge-based estimators tend to favor the larger models, while

the optimal weights found via JMA/MMA favor small or moderate model lengths for
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low and high values of R2, respectively. The reason is the ability of RMA and HR-RMA

to accommodate larger models without inflating the variance, while this property is not

shared by estimators based on ordinary least-squares regressions.

In the next section I examine the relative performance of the ridge-based averaging

estimators via two real-data examples.

1.5 Empirical Examples

1.5.1 Wage Prediction

Similarly to Hansen and Racine (2012), I employ Wooldridge’s (2003, pg. 226) ‘wage1’

cross-sectional dataset, a random sample (526 observations) from the US Current Popu-

lation Survey for the year 1976.16 There is uncertainty about the best model for the

log of average hourly earnings, so a set of thirty models ranging from the uncondi-

tional mean (k = 1) through a full model that includes k = 30 variables is considered.

Explanatory variables include non-dummy variables educ, exper, tenure and dummy

variables female, married, nonwhite, numdep, smsa, northcen, south, west, construc,

ndurman, trcommpu, trade, services, profserv, profoss, clerocc, servocc, and interaction

terms nonwhite×educ, nonwhite×exper, nonwhite×tenure, female×educ, female×exper,
female×tenure, married×educ, married×exper, married×tenure.

Then, as in Hansen and Racine (2012), the sample is randomly split into a train-

ing portion n1 and an evaluation portion of size n2 = n − n1. I compare the same

methods mentioned in the previous section: MMA, HR-MMA, JMA, WBIC, RMA and

HR-RMA. For each model I compute its average square prediction error (ASPE) using

the evaluation set of observations. The procedure is repeated for 100 splits, then the

median ASPE over 100 random splits is reported. The size of the training portion is

varied, n1 = 50, 75, 100, 200, 300, 400, 500. All numbers in the Table 1.1 are normalized

by the corresponding ASPE of HR-MMA, so the entries lower than 1 indicate superior

performance relative to the HR-MMA estimator.

Table 1.1 shows that both ridge-based model averaging estimators (RMA and HR-

RMA columns) deliver improvement in predictive efficiency comparable to that achieved

by the MMA, HR-MMA and JMA methods in finite samples. The benefits of RMA and

HR-RMA are especially pronounced for smaller sample sizes, though they tend to persist

16See http://fmwww.bc.edu/ec-p/data/wooldridge/WAGE1.des for a full description of the data.
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Table 1.1: Out-of-sample predictive efficiency. Entries less than one indicate superior
performance relative to the HR-MMA estimator.

n1 MMA JMA WBIC RMA HR-RMA
50 0.7131 0.6935 0.8066 0.6047 0.6272
75 0.9338 0.9012 1.1341 0.8473 0.8731
100 0.9540 0.9389 1.1850 0.9034 0.9214
200 0.9966 0.9952 1.0266 0.9857 0.9903
300 1.0014 1.0018 1.0081 0.9970 0.9929
400 1.0020 1.0044 1.0073 0.9939 0.9946
500 0.9987 1.0052 1.0453 1.0074 1.0072

for larger samples as well. Moreover, for smaller samples (n1 = 50, 75, 100) random

splits result relatively often in the singular design matrix, thus increasing the motivation

for regularization from a practitioner’s perspective. HR-RMA tends to have marginally

lower out-of-sample predictive efficiency relative to RMA, thus demonstrating a price to

pay for robustness to heteroskedasticity.

Figure 1.8: Correlation heatmap and correlation histogram for the wage predictors, in-
sample portion of the data n1 = 500. The absolute values of correlations are employed.

This example illustrates the scope of the benefit achieved by the use of ridge-regularized

model averaging estimators under relatively low correlations among the predictors. Fig-

ure 1.8 presents a heatmap and histogram for pairwise correlations17 among the variables

for n1 = 500. Notably, the variables are mostly low to moderately correlated, though

the correlations are high enough for the ridge regularization to be beneficial. The next

subsection presents another example, with moderately to highly correlated predictors,
17Absolute values of pairwise correlations are used for the sake of visibility.
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where the relative benefits from using the ridge-based model averaging estimators are

even larger.

1.5.2 Growth Determinants

Next, I work with the dataset collected by Barro and Lee (1994) on cross-country de-

terminants of long-term economic growth. Overall, the dataset includes 60 potential

predictors of the average growth rate of GDP between 1960 and 1985 for 90 countries. I

use this dataset to predict the growth rate via averaging across different combinations of

predictors in the model. The intercept and the logarithm of the initial GDP are always

included,18 and only nested models are considered.

I employ three different schemes for sample-splitting to compare the performance of

all estimators:

(Leave-one-out) use all but one country for model estimation to make the predictions

for the remaining country, do this for each country,

(Out-of-sample-5) randomly select 85 (out of 90) countries for model estimation to

make the predictions for the remaining 5 countries, make 500 draws, then average the

results across them,

(Out-of-sample-10) randomly select 80 countries for model estimation to make the

predictions for the remaining 10 countries, make 500 draws, then average the results

across them.

For each scheme, I compute the average squared prediction error across 1/5/10 coun-

tries, respectively. I compare the same methods as before, and all presented statistics are

again normalized with respect to the HR-MMA. Table 1.2 shows that all methods out-

perform the HR-MMA estimator. Both the RMA and HR-RMA tend to deliver smaller

prediction error than the MMA, while the performance of the RMA is similar to that of

the JMA. Remarkably, the oldest method, WBIC, does especially well in this example.

18Similarly to Belloni, Chernozhukov, and Hansen (2011) and Giannone, Lenza, and Primiceri (2021)
who employ the same dataset for the purpose of prediction.
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Table 1.2: Average squared prediction error in long-run growth regression (all numbers
are normalized over those for HR-MMA)

MMA JMA WBIC RMA HR-RMA

Leave-one-out 0.7489 0.4193 0.3324 0.4851 0.7815

Out-of-sample-5 0.6347 0.4422 0.3718 0.4770 0.6109

Out-of-sample-10 0.5861 0.4043 0.3312 0.4369 0.5294

Figure 1.9 presents the correlation heatmap and histogram, similarly the previous

empirical example. Unlike in the previous example, here the predictors are moderately

to highly correlated. Correspondingly, in this example I observe bigger improvement

attained by the RMA and HR-RMA methods relative to that in the previous example,

where the predictors are low to moderately correlated (say, for the sample sizes n1 = 75

and n1 = 100 in the wage prediction example, which are close to the sample sizes employed

in the example of the current subsection).

Figure 1.9: Correlation heatmap and correlation histogram for the growth predictors.
The absolute values of correlations are employed.

1.6 Conclusion

This paper promotes the use of ridge-regularized model averaging estimation. Although

the proposed RMA and HR-RMA estimators do not dominate the alternatives uniformly

over the parameter space, in most cases they outperform others over a considerable in-

terval of the population R2. The improvement achieved by ridge regularization may be

partially attributed to changes of the weight distribution: the optimal weights found
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via RMA/HR-RMA tend to be higher for more sophisticated models, while the weights

obtained via other procedures are predominantly distributed among low and moderately

parametrized specifications.

Two empirical examples demonstrate the benefits of the ridge-regularized model av-

eraging estimators. Specifically, the RMA tends to deliver better predictions than the

MMA, while the HR-RMA outperforms the HR-MMA, especially in small samples. No-

tably, in both examples the RMA performs better or comparably to the JMA, which may

be more computationally intensive. Although in this paper I utilize a rather demanding

cross-validation procedure to select the optimal degree of regularization, there are alter-

native ways to set up the shrinkage parameter (see, for example, Hansen and Kozbur

2014). While other data-driven approaches may result in the shrinkage parameter devi-

ating from the optimal value, their use may still be beneficial, as shown by Hansen and

Kozbur, in particular.
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Appendix 1.C

Figure 1.10: Simulation study: regression coefficients (all graphs are truncated along
the horizonal axis)
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Appendix 1.E

Part 1

The averaged OLS estimate:

β̃ =wols

(
β̂ols1

0

)
+
(
1− wols

)( 0

β̂ols2

)
=

(
wolsβ̂ols1(

1− wols
)
β̂ols2

)

=

[
wols 0

0 1− wols

](
β̂ols1

β̂ols2

)
= W olsβ̂ols

=

(
wolsβ1 + wols (X ′1X1)

−1X ′1 (X2β2 + e)(
1− wols

)
β2 +

(
1− wols

)
(X ′2X2)

−1X ′2 (X1β1 + e)

)

The bias of the averaged OLS estimate:

E
[
β̃ − β

]
=E

[
wols

(
β̂ols1

0

)
+
(
1− wols

)( 0

β̂ols2

)
−

(
β1

β2

)]

=E

[(
β1
(
wols − 1

)
+ wols (X ′1X1)

−1X ′1X2β2 + wols (X ′1X1)
−1X ′1e

−β2wols +
(
1− wols

)
(X ′2X2)

−1X ′2X1β1 +
(
1− wols

)
(X ′2X2)

−1X ′2e

)]

=E

[
β1
(
wols − 1

)
+ wols (X ′1X1)

−1X ′1X2β2

−β2wols +
(
1− wols

)
(X ′2X2)

−1X ′2X1β1

]

The variance of the averaged OLS estimate, V ar
[
β̃
]
:

V ar

[(
wols (X ′1X1)

−1X ′1e(
1− wols

)
(X ′2X2)

−1X ′2e

)]

=

[ (
wols

)2
σ2 (X ′1X1)

−1 wols
(
1− wols

)
σ2 (X ′1X1)

−1X ′1X2 (X ′2X2)
−1

wols
(
1− wols

)
σ2 (X ′2X2)

−1X ′2X1 (X ′1X1)
−1 (

1− wols
)2
σ2 (X ′2X2)

−1

]

The average of ridge estimates:

β̃ (λ1, λ2) =wrWλ1

(
β̂ols1

0

)
+ (1− wr)Wλ2

(
0

β̂ols2

)
=

(
wrWλ1 β̂

ols
1

(1− wr)Wλ2 β̂
ols
2

)

=

[
wrWλ1 0

0 (1− wr)Wλ2

](
β̂ols1

β̂ols2

)
= W r

λ1λ2
β̂ols
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=

(
wrWλ1β1 + wrWλ1 (X ′1X1)

−1X ′1 (X2β2 + e)

(1− wr)Wλ2β2 + (1− wr)Wλ2 (X ′2X2)
−1X ′2 (X1β1 + e)

)

where Wλ1 = (X ′1X1 + λIp)
−1X ′1X1 and Wλ2 = (X ′2X2 + λIp)

−1X ′2X2. The bias of the

averaged ridge estimate:

E
[
β̃ (λ1, λ2)− β

]
=E

[(
wrWλ1 β̂

ols
1

(1− wr)Wλ2 β̂
ols
2

)
−

(
β1

β2

)]

=E

[(
(wrWλ1 − Ip) β1 + wrWλ1 (X ′1X1)

−1X ′1 (X2β2 + e)

((1− wr)Wλ2 − Ip) β2 + (1− wr)Wλ2 (X ′2X2)
−1X ′2 (X1β1 + e)

)]

=E

[(
(wrWλ1 − Ip) β1 + wrWλ1 (X ′1X1)

−1X ′1X2β2

((1− wr)Wλ2 − I) β2 + (1− wr)Wλ2 (X ′2X2)
−1X ′2X1β1

)]

The variance of the averaged ridge estimate:

V ar
[
β̃ (λ1, λ2)

]
=V ar

[
wrWλ1 (X ′1X1)

−1X ′1e

(1− wr)Wλ2 (X ′2X2)
−1X ′2e

]

=

[
V11 V ′21

V21 V22

]

where

V11 = (wr)2 σ2Wλ1 (X ′1X1)
−1
W ′
λ1

V21 =wr (1− wr)σ2Wλ2 (X ′2X2)
−1
X ′2X1 (X ′1X1)

−1
W ′
λ1

V22 = (1− wr)2 σ2Wλ2 (X ′2X2)
−1
W ′
λ2

The mean squared error of the averaged ridge estimate β̃ (λ1, λ2):

MSE
(
β̃ (λ1, λ2)

)
= tr

(
V ar

[
β̃ (λ1, λ2)

]]
+
[
E
(
β̃ (λ1, λ2)− β

))2

The variance component is the trace of the variance matrix:

tr
(
V ar

[
β̃ (λ1, λ2)

])
=tr (V11) + tr (V22)

=tr
(

(wr)2Wλ1 (X ′1X1)
−1
W ′
λ1

)
+ tr

(
(1− wr)2Wλ2 (X ′2X2)

−1
W ′
λ2

)
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From now on assume X ′1X1 = Ip = X ′2X2 and X ′1X2 = X ′2X1 = ρIp:

tr
(

(wr)2Wλ1 (X ′1X1)
−1
W ′
λ1

)
= (wr)2 tr

(
Wλ1 (X ′1X1)

−1
W ′
λ1

)
= (wr)2 tr

(
Wλ1W

′
λ1

)
= (wr)2

p

(1 + λ1)
2

tr
(

(1− wr)2Wλ2 (X ′2X2)
−1
W ′
λ2

)
= (1− wr)2 p

(1 + λ2)
2

Therefore,

tr
(
V ar

[
β̃ (λ1, λ2)

])
= (wr)2

p

(1 + λ1)
2 + (1− wr)2 p

(1 + λ2)
2 (1.4)

Now its squared bias:

[
E
(
β̃ (λ1, λ2)− β

)]2
=E

[
(wrWλ1 − I) β1 + wrWλ1ρIpβ2

((1− wr)Wλ2 − I) β2 + (1− wr)Wλ2ρIpβ1

]T
×

× E

[
(wrWλ1 − I) β1 + wrWλ1ρIpβ2

((1− wr)Wλ2 − I) β2 + (1− wr)Wλ2ρIpβ1

]

[
E
(
β̃ (λ1, λ2)− β

)]2
=βT1

[
(wr)2 − 2wr (1 + λ1) + (1 + λ1)

2

(1 + λ1)
2 +

(1− wr)2

(1 + λ2)
2 ρ

2

]
β1 (1.5)

+ βT1 ρ

[
2wr (wr − 1− λ1)

(1 + λ1)
2 − 2 (wr + λ2) (1− wr)

(1 + λ2)
2

]
β2 (1.6)

+ β′2

[
(wr)2

(1 + λ1)
2ρ

2 +

(
(1− wr)2

(1 + λ2)
2 −

2 (1− wr)
1 + λ2

+ 1

)]
β2 (1.7)

So, the desired MSE is (1.4) + (1.5) + (1.6) + (1.7).

Part 2

For the first model estimated via ridge:

MSE
[
β̂r1 (λ1)

]
=E

[(
Wλ1 β̂

ols
1 − β1

)′ (
Wλ1 β̂

ols
1 − β1

)]
=E

[
β̂ols1

′W ′
λ1
Wλ1 β̂1

]
− E

[
β′1Wλ1 β̂

ols
1

]
− E

[
β̂ols1

′W ′
λ1
β1

]
+ E

[
β
′

1β1

]
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=E
[
β̂ols1

′W ′
λ1
Wλ1 β̂
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− β′1Wλ1E
[
β̂ols1

]
− E

[
β̂ols1

′
]
W ′
λ1
β1 + β

′

1β1

MSE
[
β̂r1 (λ1)

]
=E

[(
β̂ols1 − β1

)′
W ′
λ1
Wλ1

(
β̂ols1 − β1

)]
− β′1W ′

λ1
Wλ1β1 + β′1W

′
λ1
Wλ1β1 + β′1W

′
λ1
Wλ1β1

− β′1Wλ1β1 − β′1W ′
λ1
β1 + β

′

1β1

+ β′1W
′
λ1
Wλ1B +B′W ′

λ1
Wλ1β1

− β′1Wλ1B −B′W ′
λ1
β1

=E

{(
β̂ols − β

)′
W ′
λWλ

(
β̂ols − β

)}
+ β′ (Wλ − Ipp)′ (Wλ − Ipp) β

+ β′1W
′
λ1
Wλ1B +B′W ′

λ1
Wλ1β1 − β′1Wλ1B −B′W ′

λ1
β1

where B = (X ′1X1)
−1X ′1X2β2. Under X ′1X1 = I,

MSE
[
β̂r1 (λ1)

]
=

pσ2

(1 + λ1)
2 +

λ21
(1 + λ1)

2β
′
1β1

+ β′1 (I + λ1I)−1 (I + λ1I)−1X ′1X2β2

+ β2X
′
2X1 (I + λ1I)−1 (I + λ1I)−1 β1

− β′1 (I + λ1I)−1X ′1X2β2

− β′2X ′2X1 (I + λ1I)−1 β1

=
pσ2

(1 + λ1)
2 +

λ21
(1 + λ1)

2β
′
1β1

+
1

(1 + λ1)
2β
′
1X
′
1X2β2 +

1

(1 + λ!)
2β2X

′
2X1β1

− 1

1 + λ1
β′1X

′
1X2β2 −

1

1 + λ1
β′2X

′
2X1β1
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MSE
[
β̂r1 (λ1)

]
=

pσ2

(1 + λ1)
2 +

λ21
(1 + λ1)

2β
′
1β1

+
2

(1 + λ1)
2β
′
1X
′
1X2β2

− 2

1 + λ1
β′1X

′
1X2β2

The derivative w.r.t. λ1 provides us with the optimal value of shrinkage for the first

model:

− 2pσ2

(1+λ1)
3 +

2λ1(1+λ1)
2−2λ21(1+λ1)

(1+λ1)
4 β′1β1 − 4

(1+λ1)
3β′1X

′
1X2β2 + 2

(1+λ1)
2β′1X

′
1X2β2 = 0

λopt1 =
pσ2 + β′1X

′
1X2β2

β′1β1 + β′1X
′
1X2β2

.

Similarly, for the second model:

λopt2 =
pσ2 + β′1X

′
1X2β2

β′2β2 + β′1X
′
1X2β2

.
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Appendix 1.H

Figure 1.11: n = 100. The case [H] of high correlation among predictors
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Appendix 1.W

Figure 1.12: Optimal weights, α = 0.5, β = [0.6, 0.7] (left to right), R2 = [0.1, 0.5, 0.9]
(top to bottom). The case [M] of moderate correlation among predictors.
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Figure 1.13: Optimal weights, α = 0.5, β = [0.8, 0.9] (left to right), R2 = [0.1, 0.5, 0.9]
(top to bottom). The case [M] of moderate correlation among predictors.
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Figure 1.14: Optimal weights, α = [0.25, 1] (left to right), β = 0.7, R2 = [0.1, 0.5, 0.9]
(top to bottom). The case [M] of moderate correlation among predictors.
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Chapter 2
Instrumental Variable Estimation with Many

Instruments Using Elastic-Net IV1

2.1 Introduction

The instrumental variables (IV) regression is a common tool for identification of treatment

effects under regressor endogeneity. From the theoretical perspective, researchers would

like to utilize as much exogenous variation in the explanatory variables as possible, as it

increases the precision of IV estimates: Newey (1990), Amemiya (1974) and Chamberlain

(1987) motivate the use of many instruments for the purpose of nonparametric estimation

of optimal instruments. However, conventional GMM-type estimators, such as 2SLS, tend

to be substantially biased when the number of instrumental variables is not small relative

to the sample size: see Bekker (1994a) and Newey and Smith (2004).

The problem of many instruments may be circumvented in various ways. The use of

statistical methods with imbedded regularization is increasingly popular among economists.

Regularization techniques allow one to deal with ill-posed inverse problems, and date

back to Tikhonov (1943). Such methods include the ridge regression (Hoerl and Kennard

1970), lasso (Tibshirani 1996), the penalized maximum likelihood estimation (Hastie et al.

2009), and boosting (Buhlmann 2006), among others. There are several alternative regu-

larization procedures used as part of IV estimators: ridge and James-Stein type shrinkage

applied to the first stage by Hansen and Kozbur (2014) and Spiess (2017), respectively;

lasso for estimation of both the first stage and the reduced form by Belloni, Chen, Cher-
1Published as CERGE-EI Working Paper Series No 759.

35



nozhukov and Hansen (2012, hereafter BCCH); applications of random forests and deep

neural networks by Wager and Athey (2018) and Farrell, Liang, and Misra (2021), re-

spectively. In this list, BCCH stands out due to the extreme popularity of lasso as a

regularization technique that is often employed under sparsity. In sparse models, there

is a small number of variables2 that convey most of the impact of all covariates in the

response variable. Lasso represents the simplest sparse modeling approach that allows

simultaneous variable selection and coefficient estimation.

The key assumption needed for lasso to produce a meaningful solution is the spar-

sity of the underlying model (see Section 2.1 for the definition of sparsity). The sparsity

assumption may be justified in structural economic equations, where few variables partici-

pate in determinating an outcome variable. However, the lasso estimator is also promoted

as a universal workhorse for pure prediction tasks. Despite the popularity of the sparse

modeling framework, the adequacy of the sparsity (or approximate sparsity) assumption

is often questionable. For example, Giannone, Lenza, and Primiceri (2021) find evidence

against sparsity for a collection of empirical applications from macroeconomics, microe-

conomics, and finance, where sparsity is routinely assumed without pretesting.

Furthermore, the simplicity of the lasso approach has its costs even under sparsity.

For example, Zou and Hastie (2005, hereafter ZH) stress three limitations of classical

lasso: (1) if predictors are highly correlated as a whole, the prediction performance of

the ridge regression dominates that of lasso (first observed in Tibshirani 1996), as with

highly correlated predictors the lasso solution paths tend to be unstable ; (2) in the

p > n case, when the number of variables p exceeds the number of observations n, lasso

selects at most n variables; (3) if there are groups of predictors within which pairwise

correlations are high, lasso generally selects only one variable from each group. ZH

propose an alternative estimator – elastic-net (EN) – that successfully eliminates these

shortcomings of lasso.3 Through a simulation study and empirical examples they show

that elastic-net often outperforms lasso in terms of prediction accuracy. In addition, EN

essentially combines the properties of lasso and ridge , thus being able to accommodate

some DGP’s deviations from sparsity.

Of the three above-mentioned conditions under which the performance of lasso may

be improved, at least the first two directly relate to IV estimation. Economists often

estimate a causal effect based on a dataset at hand with many characteristics available

2s = o (n) ,where n is the sample size.
3Elastic-net reduces to lasso in an orthogonal design, where lasso is optimal, see Donoho et al. (1995).
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for every unit (possibly p > n), where many serve as potential instruments (including the

basic instrumental variables, their interactions and transformations). These instruments,

however, tend to be moderately or highly correlated, leading to unstable lasso solution

paths.4 Thus, by using lasso to tackle the first-stage prediction problem, one faces exactly

the scenario under which the performance of lasso may be improved via an additional

ridge-type regularization, therefore justifying the use of the elastic-net technique.

This paper contributes to the literature on IV estimation with many instruments

by considering the use of the elastic-net approach for estimating the first-stage regres-

sion. While the lasso (and post-lasso) IV estimator by BCCH and the ridge jackknife IV

estimator by Hansen and Kozbur (2014) stem from the sparsity and the density of the

first-stage relationship, respectively, I propose the elastic-net IV estimator (ENIV), which

fits between those two. Similarly to lasso, elastic-net with a properly selected penalty

parameter is shown to have oracle properties5 under sparsity. Consequently, the results

of BCCH on consistency and asymptotic normality (under possible non-Gaussianity and

heteroskedasticity of the error term) of a generic sparsity-based IV estimator can be

applied to the proposed elastic-net IV estimator. At the same time, in the case of no

sparsity, elastic-net is by construction capable of acting like a ridge regression. Thus,

for elastic-net with data-driven parameters (a penalty level, and a weighting parameter

reflecting the degree of DGP sparsity), the proposed estimator should be robust to the

unknown degree of sparsity of first-stage relationships.

To address the issue of overfitting (see, for example Chernozhukov et al. 2018), I

consider sample-split and cross-fit versions of the basic elastic-net IV estimator (SS-

ENIV and CF-ENIV, respectively), and compare them with the lasso-based analogues. I

study the relative performance of the proposed estimators via simulations. Specifically, I

compare the resulting IV estimates in terms of the median absolute bias, median absolute

deviation and rejection rate. The SS-ENIV and CF-ENIV estimators perform well relative

to the lasso-based alternatives, regardless of the signal’s sparsity.

Additionally, I demonstrate the potential gains of the EN-based IV estimation based

on the classic empirical investigation from Angrist and Krueger (1991), who look at

the causal effect of schooling on earnings. The identification strategy and data from

Angrist and Krueger (1991) provide many available instrumental variables for schooling.

4Under high dimensionality of the problem, even when the instrumental variables are independent,
there might be large sample correlations, see Fan and Lv (2008).

5i.e. to achieve the rate of convergence that is very close to the oracle rate
√
s/n achievable when

the true model is known.
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While employing as many of them as possible potentially leads to higher accuracy of the

estimated causal effect, it also leads to biases and inferential problems. Therefore, the use

of instrument selection or regularization techniques is justified, thus making the example

suitable for testing the performance of the EN-based IV estimators.

The plan of this paper is as follows. In Section 2.2 I describe an instrumental vari-

ables setup and overview the regularization-based methods for estimation of optimal

instruments. In Section 2.3 I present and discuss the results of a simulation study that

examines the performance of the proposed estimator relative to its closest competitors.

Section 2.4 provides an empirical example to demonstrate potential improvement in es-

timation accuracy gained by the use of IV estimators based on elastic-net.

2.2 The Instrumental Variables Model

The problem setup is similar to that from BCCH, simplified to the case of a scalar

endogenous variable. The model is yi = d′iδ0 + ei, where yi is a scalar outcome, di is a

kd-vector of variables, and δ0 denotes the true value of a vector-valued parameter δ. The

first element of di is endogenous, while the remaining elements of di constitute a vector

of exogenous covariates wi. The disturbance term ei is such that E [ei |zi ] = 0, where zi
is a kz-vector of instrumental variables.

As a motivation, suppose the disturbance term is conditionally homoskedastic, E [e2i |zi ] =

σ2. For a kd-vector of instruments A (zi), the standard IV estimator of δ0 takes the form

δ̂ = (En [A (zi) d
′
i])
−1 En [A (zi) yi] ,

where {(zi, di, yi) , i = 1, ..., n} is i.i.d. sample, En [f ] := En [f (zi)] :=
∑n

i=1 fi/n. Given

instruments A (zi),
√
n
(
δ̂ − δ0

)
→d N

(
0, Q−10 Ω0Q

−1
0

)
,

where Q0 = E [A (zi) d
′
i] and Ω0 = σ2E

[
A (zi)A (zi)

′]. Employing the optimal instrument

A (zi) = D (zi) = E [di |zi ] achieves the semiparametric efficiency bound for estimating

δ0, with the asymptotic variance Λ∗ = σ2
{
E
[
D (zi)D (zi)

′]}−1 (see Chamberlain 1987).
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2.2.1 Regularized Estimation Methods for Optimal Instruments

In practice, the optimal instrument D (zi) is not known, and many ways to estimate it

exist in the literature. Suppose there is a large set of instruments,

fi := (fi1, ..., fip)
′ := (f1 (z1) , ..., fp (z1))

′

available for estimation of conditional expectation D (zi), and the number of instruments

p is possibly larger than the sample size n. In BCCH, the optimal instrument D (zi)

is assumed to be approximately sparse, i.e. a function D (zi) is deemed to be well-

approximated by a function of unknown 1 ≤ s� n instruments:

D (zi) = f
′

iβ0 + a (zi) ,

‖β0‖0 ≤ s = o (n) ,
[
Ena (zi)

2]1/2 ≤ cs .P

√
s/n,

where ‖·‖0 denotes the number of nonzero components of a vector. The identities of

s relevant instruments, i.e. T = support (β0) = {j ∈ {1, ..., p} : |β0j| > 0}, are meant

to be a priori unknown. The sparsity assumption requires that at most s instruments

approximate the conditional expectation D (zi) so that the approximation error a (zi)

does not exceed the conjectured size
√
s/n of the error of the infeasible estimator that

“knows” the identity of these s relevant instruments (the “oracle estimator”).

Lasso

The first stage regression equation is

di = D (zi) + vi, E [vi|zi] = 0.

For the sample {(zi, di) , i = 1, ..., n} , consider estimators of the optimal instrumentD (zi)

of the form

D̂i := D̂ (zi) = f ′i β̂,

where β̂ is the sparse estimator based on regressors fi and di as the dependent variable.

The sparse estimator sets all but a small fraction of the coefficient estimates β̂j to 0.

Let Q (β) denote the least squares criterion function, Q̂ (β) := En
[
(di − f ′iβ)2

]
, then the
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lasso estimator employed in BCCH is defined as a solution to

β̂L ∈ arg min
β∈Rp

Q̂ (β) + λL
∥∥∥Υ̂β

∥∥∥
1
,

where λL is the penalty level, ‖·‖1 denotes the l1 norm, and Υ̂ = diag (γ̂1, ..., γ̂p) is a

diagonal matrix with data-dependent weights, also called penalty loadings. The basic

lasso estimator, with all penalty loadings set to 1, was introduced by Tibshirani (1996)

as a technique for simultaneous estimation and variable selection. Basically, lasso shrinks

the coefficients toward 0 as λL increases, and some coefficient estimates are set to 0 for

large enough λL.

Lasso has been shown to be variable selection consistent, i.e. to be able to discover the

correct model specification, under suitable conditions (see Meinshausen and Buhlmann

2004). Initially, the weighted/adaptive version of lasso (with data-dependent penalty

loadings) was proposed in Zou (2006) in response to debates about whether the lasso

estimator is an oracle procedure (Fan and Li 2001; Meinshausen and Buhlmann 2004).

For the data-dependent and cleverly chosen loadings6, the adaptive lasso estimator is

shown to enjoy oracle properties. Relatively recently, BCCH have proposed novel penalty

loadings that result in sharp convergence rates for the lasso estimator under possible non-

Gaussianity and heteroskedasticity.

Having estimated the optimal instrument via lasso, let D̂i be a vector of instruments

that also includes the vector of exogenous covariates wi

D̂i =
(
D̂ (zi) , w

′
i

)′
.

Then the resulting lasso-IV estimator

δ̂L = En
[
D̂id

′
i

]−1
En
[
D̂iyi

]
(2.1)

is shown to achieve the efficiency bound asymptotically,
√
n
(
δ̂L − δ0

)
→d N (0,Λ∗). The

IV estimator with the lasso-based optimal instrument is root-n consistent and asymptoti-

cally normal (see Theorem 3 of BCCH). Moreover, consistency and asymptotic normality

continues to hold for any generic sparsity-based method achieving specific near-oracle

6Zou (2006) suggests the weight vector ŵ = 1/
∣∣∣β̂∣∣∣γ , where β̂ is a root-n consistent estimator for β,

and γ > 0.
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performance bounds (see Theorem 4 of BCCH), and I exploit this result in the next

section.

Elastic-Net IV Estimator

Although lasso is aimed at high-dimensional problems, its performance may be deterio-

rated by the correlation among predictors, which often takes place in high-dimensional

settings. Zou and Hastie (2005, hereafter ZH) point out that the lasso solution paths

are unstable (i.e. not smooth) when predictors are highly correlated. The relevance of

this issue is stressed by Fan and Lv (2008) who show that even with the independent

predictors the maximum sample correlation can be large, as long as the dimensionality

is high. In addition, ZH notice that for high-dimensional problems with p � n, lasso is

incapable of selecting more than p variables into the model. Consequently, they propose

an alternative penalized estimator, elastic-net (EN),

β̂EN = arg min
β


N∑
i=1

(
di −

p∑
j=1

fijβj

)2

+ λEN
p∑
j=1

(
α |βj|+ (1− α) β2

j

) ,

which involves an l2-penalty in addition to lasso’s l1-penalty. The first term of the penalty,

λEN
∑p

j=1 α |βj| encourages a sparse solution, as does the lasso penalty, while the second

term, λEN
∑p

j=1 (1− α) β2
j , regularizes the covariance matrix, and encourages equality

of the coefficients on highly correlated predictors. ZH shows that elastic-net may be

interpreted as a stabilized7 version of lasso (p. 308, Theorem 2), and can therefore

improve upon lasso.

In the statistical literature, the performance of the elastic-net estimator is usually an-

alyzed under a restrictive assumption of the Gaussian and homoskedastic error term. For

example, when Gaussian and homoskedastic noise is assumed, Jia and Yu (2010) study

the model selection properties of the elastic-net estimator in the asymptotic framework

where the number of variables p grows with the sample size n. They provide sufficient

conditions for elastic-net to be model selection consistent8, as well as theoretical and sim-

ulation examples demonstrating when elastic-net can consistently select the true model,

while lasso fails to do so.9 Further, Ghosh (2011) considers adaptive elastic-net that gen-

7Stabilization is achieved via replacement of the sample covariance matrix Σ̂ with its shrunken (to-
wards the identity matrix) version.

8Jia and Yu (2010) also state a specific condition for the inconsistency of the elastic-net estimator.
9See also Yuan and Lin (2007) for a similar study for fixed p.
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eralizes elastic-net in the same way that adaptive lasso generalizes lasso, thus expanding

the set of conditions under which elastic-net performs consistent variable selection. The

adaptive elastic-net estimator uses a more flexible l1-penalty for consistent variable se-

lection, while the ridge-type penalty term stays unchanged10 and continues to regularize

the solution path:

β̂ENada = arg min
β


N∑
i=1

(
di −

p∑
j=1

fijβj

)2

+ λEN1

p∑
j=1

wj |βj|+ λEN2

p∑
j=1

β2
j

 ,

where the weight estimate ŵj = 1/|β̂j|γ, j = 1, ..., p, for some γ > 0, with the ordinary

least squares estimator β̂OLS being a possible choice of β̂. Under suitable conditions,

the adaptive elastic-net estimator is shown to have oracle properties (variable selection

consistency and asymptotic normality, see Theorem 3.2).

However, the breakthrough results of Theorem 4 in BCCH on root-n consistency and

asymptotic normality apply to a wide class of sparsity-based methods that encompasses

the elastic-net estimator. Consequently, to get the desired asymptotic properties of the

elastic-net estimator under possible non-Gaussianity and heteroskedasticity of the error

term, it is enough to establish the near-oracle bounds that are required by BCCH’s

Theorem 4. I use the result from Zou and Hastie (2006) about transformation of the

elastic-net problem into an equivalent lasso problem on augmented data to show that the

elastic-net estimator performs closely enough to the oracle under sparsity, in the sense of

meeting sufficient conditions of BCCH’s Theorem 4.

Proposition 1. For
(
λEN1 , λEN2

)
such that γ = λEN1 /

√
1 + λEN2 = λLopt, where λLopt

denotes the optimal penalty for the lasso-estimator, the elastic-net estimator obeys the

near-oracle performance bounds:

∥∥∥D̂EN
i −Di

∥∥∥
2,n

.P

√
s log (n+ p)

n+ p∥∥∥δ̂EN − δ0∥∥∥
1
.P

√
s2 log (n+ p)

n+ p
,

where
∥∥∥D̂EN

i −Di

∥∥∥
2,n

:=

√
En
[(
D̂EN
i −Di

)2]
. Therefore, the elastic-net estimator

10In principle, adaptive weights can also be placed on an l2 penalty, but it is not necessary to guarantee
the oracle properties of the adaptive elastic-net estimator examined in Ghosh (2011).
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can perform a variable selection and estimation similarly to the lasso estimator. Once

the sufficient conditions of Theorem 4 in BCCH continue to hold, one can rely on the

existing results regarding consistency and asymptotic normality of generic sparsity-based

IV estimators obtained in BCCH. In other words, the IV estimators based on elastic-net

and lasso can be asymptotically equivalent under sparsity and the appropriate choice of

the penalty parameters
(
λEN1 , λEN2

)
. At the same time, ridge regularization often leads to

finite-sample improvement, so the relative finite-sample performance of the IV estimators

based on elastic-net (with a ridge-type penalty) and lasso (without a ridge-type penalty)

is of interest, and is investigated in Section 3 of this paper.

Sample-Split and Cross-Fit Elastic-Net IV Estimator

In principle, one could employ D̂i = f ′i β̂
EN for D̂i in (2.2.1) to define an IV estimator

with a EN-regularized first stage. However, as noted in Hansen and Kozbur (2014),

among others, this direct approach would typically introduce a so-called regularization

bias (similar to other methods involving regularization ).11 In general, the least shrunk

coefficients correspond to the instruments that are most highly correlated with the first

stage noise, thus contaminating the exclusion restriction. The use of sample-splitting or

jackknifing is a common way of lowering the regularization bias. I employ the sample-

splitting technique to preserve the exclusion restriction, thus defining

β̂ENI1 = arg min
β

∑
i∈I1

(
di − β0 −

p∑
j=1

fijβj

)2

+ λEN
p∑
j=1

(
α |βj|+ (1− α) β2

j

) ,

which is the elastic-net estimate from an elastic-net regression of d on f with regulariza-

tion parameters
(
λEN , α

)
using the random subset of observations I1 (a half of the sample,

in the simplest case). The estimator D̂i for the ith unit is then defined as D̂i = f ′i β̂
EN
I1

.

Finally, I define the sample-split ENIV estimator as

δ̂SS−ENIV =

∑
i∈Ic1

f ′i β̂
EN
I1

d′i

−1∑
i∈Ic1

f ′i β̂
EN
I1

yi,

where Ic1 ∩ I1 = ∅.
By splitting the sample into halves, I break the correlation between D̂i and ei that

11See Chernozhukov et al. (2018) for an extended discussion of the regularization bias and de-biased
estimation.
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is not asymptotically negligible. Although the elastic-net regularization causes some

loss of signal due to coefficient shrinkage (similar to other regularization methods), a

data-driven choice of
(
λEN , α

)
is expected to result in quality signal extraction from a

high-dimensional set of instruments, whether sparse or dense. For example, for α = 0

and positive λEN , the elastic-net IV estimator reduces to the ridge IV estimator. I

suggest choosing the shrinkage parameter based on the optimization of a first stage

cross-validation criterion due to popularity and availability of cross-validation tools in

R, Python, Stata, etc.12 In general, for not very large datasets one can replace a sample-

splitting approach with a jackknifing procedure to fit the first stage, thus generalizing the

sample-split ENIV estimator to the jackknife ENIV estimator.

Another possible approach is cross-fitting. Cross-fitting estimators are also based on

the idea of sample-splitting. First, the sample is partitioned into I1 and I2, and only obser-

vations from I1 are used to get β̂ENI1 , whereas only observations from I2 are used to produce

δ̂12 =
(∑

I2
f ′i β̂

EN
I1

d′i

)−1
×
∑

i∈I2 f
′
i β̂

EN
I1

yi . Then the subsamples are swapped so that β̂ENI2

and δ̂21 =
(∑

I1
f ′i β̂

EN
I2

d′i

)−1
×
∑N

i∈I1 f
′
i β̂

EN
I2

yi are obtained in an analogous way. Conse-

quently, the cross-fit elastic-net IV estimator is defined as δ̂CF−ENIV =
(
δ̂12 + δ̂21

)
/2.

This way both subsamples (symmetrically) contribute to the resulting estimate, thus in-

creasing its efficiency. I adopt the algorithm by Anatolyev and Mikusheva (2022, Section

3.2) to estimate the variance of δ̂CF−ENIV in a way that accounts for the correlation be-

tween δ̂12 and δ̂21.13 Finally, sample-split and cross-fit lasso-based IV estimators, which

act as benchmarks in the following section, are defined analogously.

2.3 Simulation study

The design of this simulation study closely follows that of Hansen and Kozbur (2014). I

demonstrate the performance of the IV estimators employing elastic-net, and compare it

with the performance of lasso-based IV estimators, and the ridge jackknife IV estimator

(RJIVE) by Hansen and Kozbur (2014). Let the data generating process be

yi = xiδ0 + ei

12The use of cross-validation is yet to be theoretically justified for elastic-net, despite being a widely
spread practice. See Chetverikov, Liao, and Chernozhukov (2021), which justifies the practice of using
cross-validation to choose the penalty parameter for lasso.

13Anatolyev and Mikusheva (2022) propose the algorithms for constructing a four-split estimator. I
use a version simplified to a case with only two splits.
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xi = Z ′iΠ + ui

with

(ei, ui) ∼ N

(
0,

(
σ2
e σeu

σeu σ2
u

))
,

where xi is the scalar treatment variable, and δ0 = 1 is the parameter of interest. The

sample size n = 100, σ2
e = 2, and corr (ei, ui) = 0.6. The remaining parameters are varied

within the simulation study.

I consider two instrument designs: binary and continuous (Gaussian). Real datasets

typically employ very different combinations of both binary and continuous instruments,

thus motivating examination of the two extreme cases: (i) all instruments are binary, and

(ii) all instruments are continuous. The continuous instrument design considers correlated

Gaussian instruments drawn with mean 0 and variance var (Zij) = 0.3. The correlation

between Gaussian instruments is given by corr (Zij, Zik) = 0.8|j−k|. The binary design

is motivated by the presence of many categorical variables, which often takes place in

practice. In this design, all instruments are drawn from Zij ∈ {0, 1} with Pr (Zij = 1) =

0.8 such that the pairwise correlations are close to corr (Zij, Zik) = 0.8|j−k|.14 For each

design, the number of instruments is set to K = 95 or K = 190.

In addition to alternation of the instrument design, I also vary the first-stage coeffi-

cients Π to generate dense, sparse, and mixed first-stage signal structures. In the dense

scenario, Π = (ι0.4K , 00.6K)′, where ιp is a 1 × p vector of ones, and 0q is a 1 × q vector

of zeros. In the sparse scenario Π = (3ι5, 0K−5)
′, so only five instruments are relevant.

Finally, in the mixed scenario, Π = (3ι5, ι0.4K , 00.6K−5)
′. By varying the noise σ2

u in the

first-stage regression, I control the strength of the instrument set measured by the con-

centration parameter µ2 = nΠ′E [Z ′iZi] Π/σ2
u. To model the cases of the weak and strong

signal provided by the instruments, I set µ2 = 30 and µ2 = 150, respectively.

I consider three IV estimators based on elastic-net: elastic-net IV estimator (ENIV),

sample-split elastic-net IV estimator (SS-ENIV), and cross-fit elastic-net IV estimator

(CF-ENIV). Their lasso-based counterparts are Lasso-IV, SS-Lasso-IV, and CF-Lasso-

IV. I also report the results for RJIVE and the 2SLS estimator. In addition, I present the

results for the post-Lasso-IV estimator described in BCCH15, as well as its sample-split

14First, I make draws from the standard normal distribution, and apply Cholecky decomposition to
generate the Gaussian instruments Z0

ij with correlations corr
(
Z0
ij , Z

0
ik

)
= 0.8|j−k|. Then I set Zij =

I{Z0
ij>0.8}.

15BCCH recommend the penalty level to be proportional to
√
n logK. I employ the same penalty as
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version (SS-post-Lasso-IV). The penalty levels for ENIV, SS-ENIV, and CF-ENIV are

chosen through cross-validation.

The reported results are obtained by averaging across 1500 draws for each setting. For

each estimator, I present the median bias (Med. Bias), the median absolute deviation

(MAD), and the rejection rate for a 5%-level test of H0 : δ0 = 1 (RP 5%). For the

post-Lasso estimator with lasso sometimes selecting no instruments into the first stage

regression, I calculate the median bias and the median absolute deviation conditional on

the lasso estimator selecting at least one variable. In such a case, a failure to reject the

null is recorded.

Table 2.1 shows the results for K = 95. Panels A and B focus on the results for weak

instruments (µ2 = 30), Panels C and D report the results for a stronger signal (µ2 = 150).

For the weak sparse signal, Lasso-IV, post-Lasso-IV, RJIVE, SS-ENIV, and CF-ENIV

result in reasonable rejection frequencies, with RJIVE and SS-ENIV being among the

most accurate. However, for the dense weak signal, only RJIVE, SS-ENIV and CF-ENIV

continue to have approximately the correct size (CF-ENIV tends to over-reject but not

as much as the Lasso-based estimators).

For the mixed design, only RJIVE and SS-ENIV deliver accurate test size. Overall,

SS-ENIV tends to produce more precise rejection rates when the true non-zero coefficients

on the instruments vary in magnitude (the case of a mixed signal), compared to the case of

the equal coefficient magnitude16, which is often examined as part of simulation exercises

in the literature (e.g. in Hansen and Kozbur, 2014, among others). In practice, there is

often no good reason to expect a signal to be evenly distributed across all instruments

that explain a decent share of variance in xi, the treatment variable. Whereas RJIVE

tends to result in rejection frequencies slightly above the nominal test size, the opposite

is true for SS-ENIV.

With a strong sparse signal, most Lasso-based estimators produce adequate rejection

frequencies, as expected. RJIVE, SS-ENIV and CF-ENIV retain rather accurate test size

irrespective of the data structure when the signal is strong. Notably, CF-ENIV performs

better with strong signals (sparse, dense, or mixed) than with weak signals. The SS-ENIV

estimator proves to be a good alternative to RJIVE when dealing with a strong mixed

signal, similarly to the case of a weak mixed signal discussed above.

in Hansen and Kozbur (2014), namely 2.2
√

2n log (2K)σuσe.
16All first-stage variables are standardized before ridge/lasso/elastic-net estimation is performed.
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Table 2.1. Simulation Results many instruments K = 95

Sparse Signal Dense Signal Mixed Signal

Med. Bias MAD RP 5% Med. Bias MAD RP 5% Med. Bias MAD RP 5%

A. Concentration parameter = 30. Binary Instruments

Lasso-IV 0.009 0.015 0.091 0.017 0.018 0.237 0.012 0.013 0.201

SS-Lasso-IV 0.003 0.023 0.009 0.004 0.04 0.011 0.000 0.024 0.007

post-Lasso-IV 0.010 0.015 0.111 0.016 0.017 0.253 0.012 0.013 0.249

SS-post-Lasso-IV 0.003 0.023 0.008 0.004 0.038 0.013 0.000 0.024 0.009

CF-Lasso-IV 0.014 0.015 0.000 0.002 0.025 0.000 0.007 0.015 0

RJIVE -0.001 0.020 0.047 -0.001 0.011 0.055 -0.001 0.010 0.052

ENIV 0.022 0.022 0.405 0.020 0.020 0.448 0.015 0.015 0.466

SS-ENIV 0.000 0.028 0.038 0.001 0.020 0.056 0.000 0.015 0.048

CF-ENIV 0.001 0.022 0.104 0.000 0.015 0.098 -0.001 0.012 0.095

B. Concentration parameter = 30. Gaussian Instruments

Lasso-IV 0.005 0.011 0.076 0.011 0.012 0.210 0.007 0.008 0.177

SS-Lasso-IV 0.002 0.016 0.031 0.002 0.030 0.005 0.002 0.015 0.012

post-Lasso-IV 0.007 0.011 0.104 0.011 0.012 0.224 0.008 0.009 0.215

SS-post-Lasso-IV 0.002 0.016 0.029 0.001 0.030 0.005 0.003 0.015 0.011

CF-Lasso-IV 0.004 0.010 0.001 0.004 0.022 0.000 0.006 0.009 0.000

RJIVE -0.001 0.014 0.051 -0.002 0.010 0.041 0.000 0.008 0.053

ENIV 0.012 0.014 0.284 0.013 0.013 0.421 0.010 0.010 0.459

SS-ENIV 0.001 0.019 0.041 0.001 0.018 0.037 0.002 0.013 0.043

CF-ENIV 0.001 0.014 0.101 0.001 0.014 0.123 0.001 0.010 0.119

C. Concentration parameter = 150. Binary Instruments

Lasso-IV 0.005 0.014 0.065 0.012 0.014 0.133 0.008 0.010 0.130

SS-Lasso-IV 0.000 0.022 0.047 0.000 0.022 0.048 -0.001 0.016 0.043

post-Lasso-IV 0.005 0.014 0.068 0.013 0.014 0.155 0.009 0.010 0.144

SS-post-Lasso-IV -0.001 0.022 0.047 0.001 0.020 0.047 0.000 0.016 0.047

CF-Lasso-IV -0.001 0.016 0.000 -0.001 0.016 0.000 -0.001 0.013 0.000

RJIVE -0.002 0.017 0.052 0.000 0.011 0.063 -0.001 0.009 0.063

ENIV 0.012 0.016 0.149 0.016 0.016 0.218 0.012 0.012 0.233

SS-ENIV 0.000 0.022 0.052 0.001 0.016 0.060 -0.001 0.013 0.057

CF-ENIV -0.001 0.015 0.054 0.000 0.012 0.053 -0.001 0.010 0.071

D. Concentration parameter = 150. Gaussian Instruments

Lasso-IV 0.002 0.010 0.064 0.010 0.011 0.175 0.005 0.007 0.113

SS-Lasso-IV 0.000 0.015 0.058 0.000 0.02 0.045 -0.001 0.012 0.048

post-Lasso-IV 0.004 0.010 0.076 0.010 0.011 0.186 0.006 0.007 0.145

SS-post-Lasso-IV 0.000 0.015 0.057 0.001 0.018 0.045 -0.001 0.012 0.048

CF-Lasso-IV -0.001 0.011 0.006 0.000 0.014 0.000 0.000 0.009 0.002

RJIVE 0.000 0.011 0.057 0.000 0.009 0.065 -0.001 0.006 0.055

ENIV 0.008 0.011 0.132 0.012 0.012 0.251 0.008 0.009 0.225

SS-ENIV 0.000 0.015 0.054 0.001 0.013 0.060 0.000 0.010 0.047

CF-ENIV -0.001 0.011 0.056 0.000 0.010 0.079 0.000 0.007 0.070
Note: Results are based on 1500 simulation replications. I report Median Bias (Med. Bias), Median absolute deviation

(MAD) and rejection frequency for a 5% level test (RP 5%) for nine different estimators: the Lasso IV and post-Lasso IV

estimators of Belloni et al. (2012, Lasso-IV and post-Lasso-IV), their sample-split versions (SS-Lasso-IV and SS-post-Lasso-

IV), the cross-fit Lasso IV estimator, the RJIVE by Hansen and Kozbur (2014, RJIVE), and three estimators proposed

in this paper: the elastic-net IV estimator (ENIV), the sample-split elastic-net IV estimator (SS-ENIV) and the cross-fit

elastic-net IV estimator (CF-ENIV).
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Table 2.2 shows the results for K = 190. Panels A and B again focus on the results

for weak instruments (µ2 = 30), Panels C and D report the results for a stronger signal

(µ2 = 150). For the weak sparse signal, some Lasso-based estimators have reasonable

rejection frequencies, although RJIVE and SS-ENIV tend to be superior in terms of

bias and rejection rate, irrespective of sparsity. With the weak signal and mixed data

structure, RJIVE and SS-ENIV perform similarly, although the sample-split elastic-net

IV estimator seems to be more prone to under-rejection. With the strong sparse signal,

Lasso-based estimators (Lasso-IV, SS-Lasso-IV, post-Lasso-IV, SS-post-Lasso-IV) most

often result in relatively adequate rejection frequencies, the same holds for RJIVE, SS-

ENIV, and CF-ENIV. With the strong mixed signal, binary or Gaussian, SS-ENIV tends

to produce slightly lower rejection frequencies than RJIVE, including the case of Gaussian

instruments when both estimators slightly over-reject.

To sum up the results of the simulation study, the IV estimators based on elastic-

net constitute a safe alternative to those based on lasso under an unknown degree of

sparsity. In particular, the sample-split elastic-net IV estimator tends to dominate its

lasso-based counterpart, the sample-split lasso IV estimator, as well as other lasso-based

IV estimators, in terms of bias and test accuracy. In addition, the performance of the

sample-split elastic-net IV estimator is comparable to that of the ridge jackknife IV es-

timator. SS-ENIV tends to result in slightly lower rejection frequencies than RJIVE,

thus being superior in the settings when both estimators over-reject. RJIVE shows mi-

nor over-rejection in most settings considered with the mixed signal, thereby motivating

further investigation of the relative performance of RJIVE and SS-ENIV estimators in

various settings with uneven distribution of explanatory power across the instrumental

variables. Finally, data generating processes with alternative degrees of sparsity are also

worth examining.

Figure 2.1 presents frequency plots for the penalty ratio from first-stage regressions

estimated via elastic-net. The elastic-net penalty ratio is a/ (a+ b) where a and b come

from representing the elastic-net penalty term λ
(
α |βj|+ (1− α) β2

j

)
as a |βj|+ bβ2

j . The

penalty ratio is chosen through cross-validation.17 For the ratio 1.0 the penalty is an

l1-penalty (lasso-type), whereas for the ratio 0.0 it is an l2-penalty (ridge-type).
17I use a Python package, sklearn.linear_model.ElasticNetCV, to fit the first-stage via elastic-net,

with a prespecified grid [0.01, 0.03, .05, .07, .1, .2, .5, .8, .9, 0.93, .95, 0.97, .99, 1]. For each value of the
penalty ratio, the grid for a parameter α, which is also estimated through cross-validation, consists of
100 values and is defined automatically as part of the ElasticNetCV package.
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Table 2.2. Simulation Results many instruments K = 190

Sparse Signal Dense Signal Mixed Signal

Med. Bias MAD RP 5% Med. Bias MAD RP 5% Med. Bias MAD RP 5%

A. Concentration parameter = 30. Binary Instruments

Lasso-IV 0.010 0.015 0.103 0.016 0.016 0.329 0.013 0.013 0.290

SS-Lasso-IV 0.001 0.032 0.009 0.007 0.038 0.003 0.004 0.025 0.001

post-Lasso-IV 0.010 0.015 0.120 0.015 0.015 0.359 0.013 0.013 0.333

SS-post-Lasso-IV 0.001 0.032 0.008 0.005 0.039 0.003 0.003 0.026 0.002

CF-Lasso-IV 0.025 0.025 0.000 0.009 0.027 0.000 0.006 0.012 0.000

RJIVE 0.000 0.025 0.042 0.000 0.009 0.043 0.000 0.008 0.048

ENIV 0.026 0.026 0.498 0.018 0.018 0.720 0.016 0.016 0.729

SS-ENIV 0.001 0.034 0.037 0.000 0.015 0.043 0.002 0.013 0.043

CF-ENIV 0.001 0.026 0.132 0.000 0.012 0.108 0.001 0.010 0.124

B. Concentration parameter = 30. Gaussian Instruments

Lasso-IV 0.005 0.011 0.074 0.010 0.01 0.275 0.007 0.008 0.231

SS-Lasso-IV 0.000 0.016 0.031 0.010 0.025 0.001 0.002 0.019 0.005

post-Lasso-IV 0.007 0.011 0.124 0.010 0.01 0.315 0.008 0.274

SS-post-Lasso-IV 0.000 0.016 0.030 0.011 0.023 0.001 0.002 0.019 0.005

CF-Lasso-IV 0.005 0.010 0.000 0.015 0.015 0.000 0.007 0.009 0.000

RJIVE -0.001 0.017 0.052 0.000 0.008 0.050 -0.001 0.007 0.042

ENIV 0.013 0.015 0.348 0.011 0.011 0.688 0.009 0.009 0.641

SS-ENIV 0.001 0.019 0.044 0.002 0.013 0.045 0.001 0.013 0.025

CF-ENIV 0.001 0.015 0.110 0.002 0.011 0.129 0.001 0.010 0.141

C. Concentration parameter = 150. Binary Instruments

Lasso-IV 0.005 0.014 0.069 0.011 0.012 0.208 0.010 0.01 0.180

SS-Lasso-IV -0.001 0.021 0.049 0.000 0.023 0.039 0.001 0.018 0.029

post-Lasso-IV 0.005 0.014 0.074 0.012 0.012 0.235 0.010 0.011 0.217

SS-post-Lasso-IV 0.000 0.021 0.051 0.001 0.020 0.042 0.001 0.016 0.032

CF-Lasso-IV 0.001 0.015 0.001 0.001 0.016 0.002 0.000 0.014 0.001

RJIVE -0.001 0.018 0.053 0.000 0.008 0.059 0.000 0.007 0.049

ENIV 0.015 0.018 0.201 0.015 0.015 0.400 0.014 0.014 0.430

SS-ENIV 0.001 0.021 0.052 0.000 0.012 0.061 0.000 0.010 0.042

CF-ENIV 0.000 0.015 0.047 0.000 0.009 0.053 0.000 0.007 0.055

D. Concentration parameter = 150. Gaussian Instruments

Lasso-IV 0.003 0.010 0.055 0.009 0.010 0.239 0.007 0.008 0.207

SS-Lasso-IV -0.001 0.016 0.043 0.002 0.018 0.021 0.000 0.014 0.036

post-Lasso-IV 0.004 0.010 0.060 0.010 0.010 0.274 0.008 0.008 0.259

SS-post-Lasso-IV 0.000 0.015 0.043 0.001 0.016 0.024 0.000 0.014 0.033

CF-Lasso-IV -0.001 0.011 0.002 0.002 0.015 0.001 0.000 0.010 0.002

RJIVE 0.000 0.012 0.045 -0.001 0.006 0.053 0.000 0.006 0.064

ENIV 0.009 0.012 0.146 0.012 0.012 0.440 0.010 0.010 0.444

SS-ENIV 0.000 0.016 0.037 0.000 0.010 0.039 0.000 0.009 0.053

CF-ENIV 0.000 0.011 0.046 0.000 0.007 0.083 0.000 0.006 0.088
Note: Results are based on 1500 simulation replications. I report Median Bias (Med. Bias), Median absolute deviation

(MAD) and rejection frequency for a 5% level test (RP 5%) for nine different estimators: the Lasso IV and post-Lasso IV

estimators of Belloni et al. (2012, Lasso-IV and post-Lasso-IV), their sample-split versions (SS-Lasso-IV and SS-post-Lasso-

IV), the cross-fit Lasso IV estimator, the RJIVE by Hansen and Kozbur (2014, RJIVE), and three estimators proposed

in this paper: the elastic-net IV estimator (ENIV), the sample-split elastic-net IV estimator (SS-ENIV) and the cross-fit

elastic-net IV estimator (CF-ENIV).
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A combination of both l1 and l2 penalties is employed when the cross-validation procedure

results in a value between 0 and 1. The results for a sparse, dense, and mixed DGP are

shown in the first, second and third column of plots, respectively. As before, panels A,

B, C and D correspond to various instrument designs. Only the case with p = 95 is

presented, since the results for the case with p = 190 look very similar.

When fitting the right combination of both l1 and l2 penalties to a first-stage rela-

tionship, the elastic-net estimator is quite successful in detecting a sparse structure, and

thus often sets the penalty ratio to 1 in this case. When dealing with non-sparse first-

stage relationships, the distribution of the penalty ratio is more even, with massive point

mass on 0 and 1, and also on the intermediate values if the signal is strong (µ = 150).

Thus, the elastic-net estimator is performing better in combining l1 and l2 penalties when

facing a strong signal, whereas it tends to often converge to a corner solution (imposing

no ridge-type penalty, or no lasso-type penalty at all) when dealing with a weak signal

(µ = 30). In addition, the graphs presented indicate the need for a finer grid to search

over for the best penalty ratio (especially around the middle value), for a better fit to the

unknown sparsity of the data at hand.

2.4 Empirical Example

In this section, I demonstrate the application of the EN-based IV estimators to the

classic example from the many-instrument literature – Angrist and Krueger (1991). The

coefficient of interest in this example is the causal effect of schooling on earnings, and

the schooling endogeneity is addressed through the use of instrumental variables. The

data from Angrist and Krueger (1991) potentially allow one to employ many instruments

for identification of the treatment effect, and there is a rich literature on consequences of

alternative IV-choice decisions, in terms of both point estimate’s and inference quality,

driven by the numerosity and weakness of the available instrumental variables (Bound,

Jaeger, and Baker 1995; Angrist, Imbens, and Krueger 1999; Staiger and Stock 1997;

Hansen, Hausman, and Newey 2008a).

The simple model under consideration is

log (wagei) = α Schoolingi +W ′
iγ + εi
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Figure 2.1: The penalty ratio chosen through cross-validation as part of the first-stage elastic-
net regression. Cross-validation is performed on a grid from 0 to 1. Graphs show the frequency
of each value being selected. For the penalty ratio 1 the penalty is an l1-penalty; for the penalty
ratio 0 it is an l2-penalty; for the penalty ratio between 0 and 1 it is a combination of both. The
case with p = 95 instruments and n = 100 observations is presented.
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Schoolingi = Z ′iΠ1 +W ′
iΠ2 + ui

where εi and ui satisfy E [εi|Wi, Zi] = E [ui|Wi, Zi] = 0, log (wagei) is a log of individual

wage, Schoolingi is individual years of completed schooling, Wi is a vector of control

variables and Zi is a vector of instrumental variables that affect the wage only through

the education channel. The data come from the 1980 U.S. Census and represent 329,509

men born between 1930 and 1939. The control set consists of 510 variables: a constant,

9 year-of-birth dummies, 50 state-of-birth dummies and 450 state-of-birth × year-of-

birth cross-products. I employ three alternative sets of instruments, varying from three

quarter-of-birth dummies to a full set of interactions with state-of-birth and year-of-birth

control variables Wi, i.e. a total of 1,527 instrumental variables. By the identification

argument of Angrist and Krueger (1991), α, the IV coefficient on Schoolingi, is a causal

effect of education on earnings.

I report the results for three instrument sets in Table 3.3. For each set of instrumental

variables, I present the estimates from conventional 2SLS, post-Lasso, SS-post-Lasso,

ENIV, SS-ENIV, and CF-ENIV. For the estimators involving sample-splitting, I report

two estimates (separated by / in Table 3.3) that result from swapping the sample halves

used for fitting the first stage. This way I demonstrate the sensitivity of the point

estimates that takes place despite the large sample at hand.

Table 3.3
2SLS post-Lasso SS-post-Lasso RJIVE ENIV SS-ENIV CF-ENIV

A. 3 instruments

Coefficient 0.108 0.111 0.097 / 0.112 0.109 0.108 0.098 / 0.118 0.108

St. error 0.020 0.0205 0.034 / 0.039 0.020 0.020 0.027 / 0.029 0.020

B. 180 instruments

Coefficient 0.093 0.112 0.097 / 0.112 0.106 0.093 0.103 / 0.114 0.108

St. error 0.010 0.017 0.034 / 0.039 0.016 0.010 0.026 / 0.027 0.009

C. 1527 instruments

Coefficient 0.071 0.086 0.097 0.107 0.074 0.079 / 0.145 0.112

St. error 0.005 0.025 0.039 0.017 0.005 0.061 / 0.064 0.004

Panel A uses the three main quarter-of-birth dummies from Angrist and Krueger

(1991). As expected, all estimators considered result in similar point estimates and

standard errors. Due to the high strength of each of the small number of instrumental

variables being used, the methods involving regularization impose a small regularization
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penalty, thus leading to nearly identical results as 2SLS.

Panel B employs 180 instruments including the three quarter-of-birth dummies and

their cross-products with the 9 year-of-birth dummies and 50 state-of-birth dummies.

This set is also used in Angrist and Krueger (1991), with the aim of increasing the

efficiency of the estimates. As expected, the 2SLS estimate is biased toward the OLS

estimate of 0.0673. The same applies to ENIV that actually employs approximately as

many instruments as 2SLS does. Post-Lasso, SS-post-Lasso, SS-ENIV, and CF-ENIV

tend to deliver adequate estimates, though the instability of the estimators involving

sample splitting is noticeable. The post-Lasso estimator does not have a downward bias,

while CF-ENIV results in the smallest estimated standard error.

In Panel C, I show results based on the full set of 1527 instrumental variables. Even

stronger bias of the 2SLS estimate towards the OLS estimate is observed. In this case,

the SS-post-Lasso estimator tends to select no variables into the first stage regression

(therefore, only a single number is provided). The post-Lasso, SS-post-Lasso, ENIV

estimators now also result in a substantial downward bias. However, the CF-ENIV still

delivers a reasonable point estimate, and also the smallest estimated standard error as

well.

2.5 Conclusion

In this paper, I propose elastic-net instrumental variable estimators to deal with high-

dimensional sets of instruments. The proposed estimators can be asymptotically equiva-

lent to the lasso-based IV estimators but have better sampling properties if correlations

among the instruments are not negligible. In addition, the IV estimators based on elastic-

net are robust to deviations of the first-stage regression from sparsity. These features

make the elastic-net IV estimators a valuable alternative to the lasso IV estimators for

policy evaluation.
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Appendix 2

Proof of Proposition 1.

Lemma 1 from Zou and Hastie (2006) shows that the naive elastic-net criterion

L
(
λEN1 , λEN2 , β

)
= |y −Xβ|2 + λEN1 |β|1 + λEN2 |β|2

can be written as the lasso criterion

L (γ, β∗) = |y∗ −X∗β∗|2 + γ |β∗|1 ,

where γ = λEN1 /
√

1 + λEN2 , β∗ =
√

1 + λEN2 β, and an augmented data set (y∗, X∗) is

defined by

X∗(n+p)×p =
(
1 + λEN2

)−1/2( X√
λEN2 I

)
, y∗(n+p) =

(
y

0

)
.

Then, for β̂∗ = arg minβ L (γ, β∗) ,

β̂EN =
1√

1 + λEN2

β̂∗.

Having the elastic-net problem represented as the lasso problem, we can directly apply

the results from Corollary 1 by BCCH on lasso’s convergence rates under non-Gaussian

and heteroskedastic errors. For a properly chosen γ,

∥∥∥D̂∗i −D∗i ∥∥∥
2,n

.P

√
s log (p ∨ (n+ p))

n+ p
=

√
s log (n+ p)

n+ p

and therefore, ∥∥∥D̂EN
i −Di

∥∥∥
2,n

.P

√
s log (n+ p)

n+ p
.

Similarly, using the second inequality from Corollary 1,

∥∥∥β̂∗ − β∗∥∥∥
1
.P

√
s2 log (n+ p)

n+ p
,

54



and it can be written as

∥∥∥β̂EN − β∥∥∥
1
.P

1√
1 + λEN2

√
s2 log (n+ p)

n+ p
≤

√
s2 log (n+ p)

n+ p
,

thus giving us a sufficient condition for Theorem 4 by BCCH to hold.
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Chapter 3

Many Instruments: Implementation in
STATA1

3.1 Introduction

Instrumental variables (IV) estimation and inference have long been a distinctive method

in applied microeconometric analysis and have often spurred advances in econometric

theory. The IV methods were designed to address endogeneity bias from OLS in estimat-

ing a causal/treatment effect in structural models (such as an effect of smoking on health,

returns to education, or demand elasticity), see Angrist and Krueger (2001). At the dawn

of the 21st century, both theory and practice were extended to accommodate such com-

plications as weak instruments, numerous instruments, and combinations thereof. It was

established that the empiricist’s workhorse, the two-stage least-squares (2SLS) estimator,

fails to deliver consistent estimates and results in invalid inference when such complica-

tions arise, and alternative approaches to estimation and inference were proposed. The

quick progress in econometric theory did not, however, carry over to empirical practice

as fast.

The seminal article by Bekker (1994b) proposed an alternative asymptotic approxi-

mation for linear normal homoskedastic IV regressions with many instrumental variables,

together with consistent estimation and construction of valid standard errors within the

new paradigm of dimension asymptotics. Since then, there has been a significant progress

1Published as Anatolyev, Stanislav, and Alena Skolkova. 2019. "Many instruments:
Implementation in Stata." The Stata Journal 19(4), 849-866.
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in the theory of estimation and testing in IV regressions with many, possibly weak, instru-

ments. Many new or modified versions of old estimators and tests have been proposed,

including, among others, limited information maximum likelihood (LIML), bias-corrected

2SLS, several versions of jackknife IV estimators, and so on. In an important article,

Hansen, Hausman, and Newey (2008b) proposed extensions of estimation and inference

methods based on LIML, when, in particular, the structural and first stage errors are

not necessarily normal and when the instruments may be weak as a group. More re-

cently, Hausman et al. (2012) showed that the leading ‘homoskedastic’ estimators fail to

deliver consistency in heteroskedastic models, and proposed their ‘heteroskedastic’ modi-

fications. Specification testing tools were developed in Anatolyev and Gospodinov (2011)

and Lee and Okui (2012) for the homoskedastic case and in Chao et al. (2014) for the

heteroskedastic case.

The state-of-the-art theoretical literature has converged to suggesting estimation based

on LIML and its (Fuller 1977)-type correction that remedies the problem of non-existence

of moments. Parameter inference is based on consistent estimation of up to four terms in

the asymptotic variance, while specification testing is based on asymptotically normal (or

asymptotically equivalent possibly adjusted chi-squared) distribution of the overidentify-

ing test statistic. The literature has shown that all these tools are robust to weakness of

the instruments as a group (though weakness of a lesser degree than that would jeopardize

identification). We describe these tools in brief in the following sections; see the recent

survey (Anatolyev 2019) for more technical details as well as the history of theoretical

developments and suggestions of empirical strategies.

Despite the theoretical advances, practitioners rarely use appropriate tools because of

their non-availability in popular econometric packages, STATA in particular. The present

contribution aims at filling this void. We introduce a STATA command, mivreg, that

implements consistent estimation and testing in linear IV regressions with many, possibly

weak, instruments. This command covers both homoskedastic and heteroskedastic en-

vironments, estimators that are both non-robust and robust to error non-normality and

projection matrix limit, both parameter tests and specification tests. Even though, as

noted above, a number of other consistent estimators have been proposed, we build up

mivreg around the leading LIML estimator and its (Fuller 1977) correction as suggested

by the state-of-the-art literature.

In Section 2, we set out the model and introduce necessary notation. In Sections

3 and 4, we describe estimation and testing tools pertaining to the homoskedastic and
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heteroskedastic models, respectively. In Section 5, we present the new command, mivreg.

In Section 5, we illustrate how mivreg works in simulations and compare it with the

classical command ivregress in Section 6. Finally, in Section 7, we illustrate how

mivreg works with real data.

3.2 Model

The structural equation is

yi = x′iβ0 + ei,

where β0 is k × 1 vector of structural coefficients of interest, or in matrix notation,

Y = Xβ0+e, where Y = (y1, ..., yn)′ is n×1, X = (x1, ..., xn)′ is n×k, and e = (e1, ..., en)′

is n× 1. The first stage equation is

xi = z′iΓ + ui,

where zi is `× 1 vector of instruments and Γ is `× k matrix of first stage coefficients, or

in matrix notation, X = ZΓ + U, where U = (u1, ..., un)′ is n × k. We assume that the

rank of instrument matrix Z = (z1, ..., zn)′ equals its column dimension `. The structural

and first stage errors follow

(
ei
ui

)
|zi ∼ D

((
0

0

)
,

(
σ2
i Ψ′i

Ψi Ωi

))
,

for some distribution D, normal N being a possibility. Under conditional homoskedas-

ticity, σ2
i = σ2, Ψi = Ψ and Ωi = Ω for all i = 1, ..., n.

Introduce the projection matrices associated with the instruments

P = Z (Z ′Z)
−1
Z ′, M = In − P.

The (i, j)th element of P is denoted Pij. Let us also denote by D the diagonal matrix

with diagonal elements of P on the main diagonal: D = diag {Pii}ni=1 . By P
2
ii we denote

an average of diagonal elements of P squared: P 2
ii = n−1tr (D2) .
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3.3 Homoskedastic case

In the conditionally homoskedastic case, correct parameter estimation and inference was

developed in (Bekker 1994b) and (Hansen, Hausman, and Newey 2008b). Specification

testing was dealt with in (Anatolyev and Gospodinov 2011) and (Lee and Okui 2012).

3.3.1 Point estimation

Under many instruments, 2SLS estimation is inconsistent. The leading consistent esti-

mator is the limited information maximum likelihood (LIML) estimator

β̂LIML = arg min
β

(Y −Xβ)′ P (Y −Xβ)

(Y −Xβ)′ (Y −Xβ)
.

Numerically, instead of the above optimization problem, it can be found via the eigenvalue

problem:

β̂LIML = H̄−1X ′P̊ Y,

where

H̄ = X ′P̊X,

and P̊ = P − ᾱIn, and ᾱ is the smallest eigenvalue of the matrix (X̊ ′X̊)−1X̊ ′PX̊, where

X̊ = (Y,X) .

The LIML estimator has a disadvantage that even its low order moments do not exist.

A simple (Fuller 1977) adjustment solves the moment problem:

α̃ =
ᾱ− (1− ᾱ) ς/n

1− (1− ᾱ) ς/n
. (3.1)

This adjustment leads to the FULL estimator, where ᾱ is replaced by α̃ everywhere. It

is usually advised to use the value ς = 1 in practice.

Denote the vector of LIML or FULL residuals by ê, then

σ̂2 =
ê′ê

n− k

is the residual variance.
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3.3.2 Variance estimation

Under error normality and/or asymptotically constant diagonal of P , the asymptotic

variance is estimated by

V̄ = nH̄−1Σ̄0H̄
−1,

where

Σ̄0 = σ̂2
(
(1− ᾱ)2 X̄ ′PX̄ + ᾱ2X̄ ′ (In − P ) X̄

)
,

and

X̄ = X − ê ê
′X

ê′ê

(Bekker 1994b, Hansen, Hausman, and Newey 2008b).

Under error non-normality and asymptotically variable diagonal of P , the asymptotic

variance is estimated by

V̄R = nH̄−1
(
Σ̄0 + Σ̄A + Σ̄′A + Σ̄B

)
H̄−1,

where the subscript R stands for ‘robust’, and in addition

Σ̄A =

(
n∑
i=1

(
Pii −

`

n

)
(PX)i

)(
1

n

n∑
i=1

ê2i
(
MX̄

)
i

)′

and

Σ̄B =
P 2
ii − (`/n)2

1− 2`/n+ P 2
ii

n∑
i=1

(
ê2i − σ̂2

) (
MX̄

)
i

(
MX̄

)′
i

(Hansen, Hausman, and Newey 2008b).

The variance estimates V̄ and V̄R are a basis of parameter inference. For example,

the standard error for jth parameter can be computed as
√
V̄jj/n.

3.3.3 Specification testing

Consider the conventional J statistic

J =
ê′P ê

σ̂2
= (n− k) ᾱ,
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and the bias-corrected J statistic

JR = J − `

n

ê′ê

σ̂2
= (n− k)

(
ᾱ− `

n

)
,

where the subscript R stands for ‘robust’.

Under error normality and/or asymptotically constant diagonal of P , the Anatolyev

and Gospodinov (2011) test prescribes rejecting correct model specification at significance

level φ when the value of J exceeds qχ
2(`−k)

φ∗ , the (1− φ∗)-quantile of the chi-squared with

`− k degrees of freedom, where

φ∗ = Φ

(√
1− `

n
· Φ−1 (φ)

)
.

Under error non-normality and asymptotically variable diagonal of P , the (Lee and

Okui 2012) test prescribes rejecting correct model specification at significance level φ

when the value of
JR√
nV̂ J

exceeds qN (0,1)
φ , the (1− φ)-quantile of the standard normal. Here,

V̂ J = 2
`

n

(
1− `

n

)
+

(
P 2
ii −

(
`

n

)2
)(

ê4i
σ̂4
− 3

)
.

3.4 Heteroskedastic case

In the conditionally heteroskedastic case, correct parameter estimation and inference were

developed in Hausman et al. (2012). Specification testing was dealt with in Chao et al.

(2014).

3.4.1 Point estimation

The HLIM (‘heteroskedastic LIML’) estimator is

β̂HLIM = arg min
β

(Y −Xβ)′ (P −D) (Y −Xβ)

(Y −Xβ)′ (Y −Xβ)

62



Numerically, it can be found via the eigenvalue problem:

β̂HLIM = H̄−1X ′P̊ Y,

where

H̄ = X ′P̊X,

and P̊ = P−D−ᾱIn, and ᾱ is the smallest eigenvalue of the matrix (X̊ ′X̊)−1X̊ ′(P−D)X̊,

where X̊ = (Y,X) . Similarly to FULL, the Fuller (1977) adjustment (3.1) leads to HFUL

(‘heteroskedastic FULL’) estimation.

Denote the vector of HLIM or HFUL residuals by ê, then

σ̂2 =
ê′ê

n− k

is the residual variance.

3.4.2 Asymptotic variance estimation

Hausman et al. (2012) provide a valid and robust variance estimator for the HLIM esti-

mator:

V̄ = nH̄−1Σ̄H̄−1,

where

Σ̄ =
n∑
i=1

((PX̄)i(PX̄)′i − PiiX̄i(PX̄)′i − Pii(PX̄)iX̄
′
i)ê

2
i +

n∑
i=1

n∑
j=1

P 2
ijX̄iX̄

′
j êiêj, (3.2)

where

X̄ = X − ê ê
′X

ê′ê
.

The variance estimate V̄ is a basis of parameter inference. For example, the standard

error for jth parameter can be computed as
√
V̄jj/n.
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3.4.3 Specification testing

Chao et al. (2014) generalize the specification J test for the heteroskedastic case. Their

statistic is based on the jackknife modification of J statistic’s quadratic form:

J =
ê′(P −D)ê√

V̂ J
+ `,

where

V̂ J =
1

`

∑
i 6=j

ê2iP
2
ij ê

2
j =

1

`

(
n∑
i=1

n∑
j=1

ê2iP
2
ij ê

2
j −

n∑
i=1

P 2
iiê

4
j

)
(3.3)

is an estimate of the variance of the modified quadratic form.

The test is one-sided, and the decision rule is reject the null of instrument validity if

the value of J exceeds qχ
2(`−k)

φ , the (1− φ)-quantile of the χ2 (`− k) distribution.

3.5 Command mivreg

3.5.1 Functionality

The command mivreg implements estimation, inference on individual parameters and

specification testing under many, possibly weak, instruments. The default ‘hom’ (for

‘homoskedastic’) option is based on the LIML or FULL estimators, the ‘het’ (for ‘het-

eroskedastic’) option is based on the HLIM or HFUL estimators. Within the ‘hom’

version, the ‘robust’ option leads to the Hansen–Hausman–Newey variance estimator

and Lee–Okui specification test, while the default non-robust variation computes the

Bekker variance estimator and Anatolyev–Gospodinov specification test. The ‘hetero’

version implements the Hausman–Newey–Woutersen–Chao–Swanson variance estimator

and Chao–Hausman–Newey–Swanson–Woutersen specification test. By default, the es-

timators used are LIML or HLIM; the ‘fuller’ option makes the Fuller correction with

parameter ς = 1, and so the FULL or HFUL estimators are used instead.

3.5.2 Syntax

mivreg depvar
[
indepvars

] (
varlist1 = varlist2

) [
if
] [

in
] [

, hom het robust fuller

level(#)
]

by, rolling, statsby and xi are allowed.
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3.5.3 Description

The command mivreg performs estimation, inference on individual parameters and spec-

ification testing under many possibly weak instruments. The dependent variable depvar

is modeled as a linear function of indepvars and varlist1, using varlist2 (along with inde-

pvars) as instruments for varlist1.

3.5.4 Options

hom uses the LIML (default) or FULL (in combination with full option) estimator.

het uses the HLIM (default) or HFUL (in combination with full option) estimator.

robust leads, under hom option, to the Hansen–Hausman–Newey variance estimator and

the Lee–Okui specification test, while the default non-robust variation computes the

Bekker variance estimator and the Anatolyev–Gospodinov specification test; under het

option, to the Hausman–Newey–Woutersen–Chao–Swanson variance estimator and the

Chao–Hausman–Newey–Swanson–Woutersen specification test.

fuller makes the Fuller correction with parameter ς = 1, which leads to the FULL (in

combination with hom option) or HFUL (in combination with het option) estimator.

level(#) sets the confidence level; the default is level(95).

3.5.5 Saved results

mivreg saves the following in e():
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Scalars

e(N) number of observations e(F1) first-stage F statistic

e(rmse) root mean squared error e(df_m_F1) first-stage model degrees of freedom

e(F) model F statistic e(df_r_F1) first-stage residual degrees of freedom

e(df_m) model degrees of freedom e(r2_1) first-stage R2

e(df_r) residual degrees of freedom e(jval) model J statistic

e(r2) R2 e(jpv) J-test p-value

e(r2_a) adjusted R2

Macros

e(model) hom or het e(instd) instrumented variables

e(title) title in estimation output e(insts) instruments

e(depvar) name of dependent variable e(properties) b V

Matrices b V

e(b) coeffcient vector e(V) variance-covariance matrix of the estimators

Functions

e(sample) marks estimation sample

3.5.6 Computational notes

First, throughout we avoid storing n × n matrices like P and In in the memory. For

example, we compute H̄ = X ′ (P − ᾱIn)X as

H̄ = X ′Z (Z ′Z)
−1
Z ′X − ᾱX ′X.

Second, the last term in (3.2) can be alternatively computed without double summations

over n observations (Hausman et al. 2012):

∑̀
p=1

∑̀
r=1

(
n∑
i=1

Z̃ipZ̃irX̄iêi

)(
n∑
j=1

ZjpZjrX̄j êj

)′
,

where Z̃ = Z(Z ′Z)−1. Similarly, the full double summation in (3.3) can analogously be

computed as ∑̀
p=1

∑̀
r=1

(
n∑
i=1

Z̃ipZ̃irê
2
i

)(
n∑
j=1

ZjpZjrê
2
j

)
.
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3.6 Simulations

3.6.1 Artificial data

We demonstrate how mivreg works with two sets of artificial data. The artificial data are

generated from the Monte-Carlo setup in Hausman et al. (2012). The estimated equation

is

y = β1 + β2x2 + e,

and the first stage equation is

x2 = γz1 + u2,

where z1 ∼ N (0, 1) and u2 ∼ N (0, 1) . The instrument vector is

z =
(
1, z1, z

2
1 , z

3
1 , z

4
1 , z1d1, ..., z1d`−5

)′
,

where dj ∈ {0, 1} with Pr {dj = 1} = 1
2
independent of z1. The structural disturbance is

given by

e = 0.30u2 +

√
1− 0.302

φ2 + 0.864
(φv1 + 0.86v2) ,

with v1 ∼ N (0, 1) in the homoskedastic case and v1 ∼ N (0, z21) in the heteroskedastic

case, and v2 ∼ N (0, 0.862) , both v1 and v2 being independent of u2. Samples of size

n = 400 are generated, with ` = 30 instruments, the instrument strength γ is chosen so

that the concentration parameter equals nγ2 = 32. The parameter φ is set at the value 0.8

which in the heteroskedastic case corresponds to R2 ≈ 0.25 in the skedastic regression.

The true values of β1 and β2 are set at 1.

Note that the instrument vector is such that the diagonal of P is asymptotically het-

erogeneous (see Anatolyev and Yaskov 2017). In the homoskedastic case, simplifications

due to error normality pertaining to variance estimation and specification testing (see

subsections 3.2 and 3.3) are applicable.

3.6.2 Simulation results

In this section, we report output statistics resulting in simulations from using mivreg and

compare it with that when the STATA command ivregress was used.2 The reported

2For example, to compute 2SLS-related statistics, ivregress 2sls y one (x = z*), nocons
robust was used.
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Table 3.1. Percentiles of simulated distribution of various estimators.

Estimator Homoskedastic case Heteroskedastic case

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

command ivregress

2SLS 0.93 1.06 1.14 1.23 1.35 0.85 1.02 1.14 1.26 1.43
GMM 0.91 1.05 1.14 1.23 1.37 0.85 1.02 1.14 1.26 1.42
LIML 0.47 0.83 1.00 1.16 1.42 −4.08 −0.27 0.49 1.07 4.48

command mivreg

LIML 0.47 0.83 1.00 1.16 1.42 −4.08 −0.27 0.49 1.07 4.48
FULL 0.52 0.84 1.01 1.17 1.41 −1.14 −0.03 0.56 1.09 2.77
HLIM 0.43 0.82 1.00 1.17 1.43 0.15 0.76 1.01 1.22 1.62
HFUL 0.52 0.84 1.01 1.17 1.43 0.30 0.79 1.02 1.22 1.60

Note: The true value of the parameter is unity.

results are obtained from 10,000 simulations.

First, we focus on point estimates. Table 3.1 collects percentiles of simulated distri-

butions of 2SLS, LIML and GMM estimators produced by ivregress, and LIML, FULL,

HLIM and HFUL estimators produced by mivreg. Naturally, the LIML rows coincide.

The 2SLS and GMM estimators (whose results are very similar) are always right-

ward biased, as expected. In the homoskedastic case, all the other estimators deliver

unbiased estimation. The LIML estimator is a bit more concentrated towards the cen-

ter than HLIM, which reflects higher efficiency of the former. The Fuller versions are

more concentrated away from the tails, which reflects their resistance to outliers. In the

heteroskedastic case, LIML and FULL have severe negative biases, which reflects their

inconsistency. Their ‘heteroskedastic’ versions, HLIM and HFUL, are both median unbi-

ased. While the HLIM estimator is susceptible to outliers, especially in the left tail, its

Fuller version, HFUL, exhibits much tighter and more symmetric distribution.

Table 3.2 contains actual rejection rates corresponding to the 5% nominal rate for

the two sided t-test of the null H0 : β2 = 1 marked as tβ2=1, the Wald test of the null

H0 : β1 = β2 = 1 marked as Wβ1=β2=1, and the specification test marked as JE[ze]=0. The

2SLS and LIML tests produced by ivregress come in two forms: non-robust and robust

to heteroskedasticity. In the specification tests (which are available only for efficient

estimators), the Basmann (1957) variance estimator is used. The test statistics produced
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Table 3.2. Actual rejection rates for parameter and specification tests

Estimator Homoskedastic case Heteroskedastic case

tβ2=1 Wβ1=β2=1 JE[ze]=0 tβ2=1 Wβ1=β2=1 JE[ze]=0

command ivregress

non-robust 2SLS 22.0% 17.7% 6.2%
robust 2SLS 14.9% 13.1% −
GMM 33.9% 31.8% 2.5% 26.8% 24.4% 2.1%
non-robust LIML 12.0% 9.6% 3.0%
robust LIML 1.6% 1.3% −

command mivreg

non-robust LIML 4.1% 4.3% 3.0% 9.4% 4.6% 60.1%
non-robust FULL 4.2% 4.5% 2.4% 9.3% 4.7% 56.8%
robust LIML 4.0% 4.3% 2.1% 9.2% 4.5% 54.2%
robust FULL 4.2% 4.5% 1.7% 9.2% 4.6% 50.9%
HLIM 4.7% 4.9% 2.8% 5.4% 4.9% 3.5%
HFUL 5.0% 5.2% 2.9% 5.7% 5.1% 3.4%

Note: The nominal significance level of all tests is 5%.

by mivreg use the following estimators and robustness regimes:3 non-robust LIML, non-

robust FULL, robust LIML, robust FULL, HLIM, and HFUL.

As expected, severe size distortions are exhibited by conventional parameter tests

based on 2SLS, GMM and LIML.4 In the homoskedastic case, all the mivreg tests exhibit

similar behavior, with much smaller distortions, though the ‘heteroskedastic’ versions

seem to be more reliable. In the heteroskedastic case, the latter are the only valid ones

theoretically, and do deliver rejection rates close to nominal. The Fuller correction does

not significantly affect these rejection rates. The results of specification testing point

at huge distortions if one relies on ‘homoskedastic’ specification tests when in fact the

homoskedasticity assumption is violated. One must avoid using them in heteroskedastic

environments as one is too much likely to receive a signal of instrument invalidity when

in fact the instruments are valid.

3Note again the different use of the term ‘robust’: the classical tests produced by ivregress may be
robust to heteroskedasticity; of course, they are not robust to instrument numerosity. The tests produced
by mivreg may or may not be robust, within natural robustness to many possibly weak instruments, to
error non-normality and asymptotically variable diagonal of the projection matrix.

4The conventional specification tests do not exhibit too much of distortions in this particular design;
however, in general they may well do; see Anatolyev and Gospodinov (2011).
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3.7 Example with real data

We illustrate the use of mivreg using real data from a well-known application to the

married female labor supply of Mroz (1987). The number of observations is 428.5

The left-side variable is working hours hours, the only endogenous right-side variable

is log wages lwage; there are also 6 exogenous controls: nwifeinc, educ, age, kidslt6,

kidsge6, and the constant one. The list of basic instruments includes, in addition to

the 6 exogenous controls, 8 exogenous variables: exper, expersq, fatheduc, motheduc,

hushrs, husage, huseduc, and mtr, resulting in 14 instruments in total. The basic in-

struments are pretty strong as a group: the first-stage F statistic equals 183.5. We

also consider an extended set of instruments – the basic instruments plus all their cross-

products (‘interactions’), the total numerosity amounting to 92. The use of the extended

instrument set is meant to possibly enhance estimation efficiency by exploiting informa-

tion in the instruments more actively. However, while the conventional tools are suitable

for the basic set of instruments, the extended instrument set evidently requires handling

via many-instrument asymptotics: the ratio of the number of instruments to the sample

size is sizable: `/n ≈ 0.215.

Table 3.3 presents various estimates for the slope coefficient of log wages: OLS,

heteroskedasticity-robust 2SLS (employing the basic and extended instrument sets), as

well as three many-instrument-robust estimators – LIML, FULL and HFUL (employing

the extended instrument set) – whose STATA output will appear below.

Evidently, due to unaccounted endogeneity, OLS estimation from applying the reg

command is inconsistent; the numerical value of the OLS estimate is even negative re-

vealing a big endogeneity bias. The (more than twofold!) difference between the two

2SLS estimates points at invalidity of conventional tools and the ivregress command

when instruments are many. The LIML, FULL and HFUL point estimates produced by

the mivreg command are quite in line with the 2SLS estimate that uses only the ba-

sic instruments.6 There is a small difference between ‘homoskedastic’ LIML and FULL

point estimates and the ‘heteroskedastic’ HLIM point estimate. Though not too big, this

difference makes the HFUL estimate more trustworthy.7 The smaller standard error of

5The data can be found at http://www.stata.com/data/jwooldridge/eacsap/mroz.dta. We use
only the records that correspond to women in labor force.

6Note also from the STATA outputs that all three corresponding specification tests produce very high
p-values and agree on the model validity.

7Mroz (1987) reports a similar 2SLS estimate using a short list of instruments (line 2 in his Table
IV), but 2SLS estimates also get a lot smaller with longer lists of instruments (lines 3–6 in Table IV).
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Table 3.3. Various estimates of wage coefficient for married female labor supply

Options Estimator Instruments Estimate (Standard error)

command reg

robust OLS − −17.4 (81.4)

command ivregress

robust 2SLS basic only 1179.1 (185.2)
robust 2SLS extended 536.4 (101.5)

command mivreg

hom LIML extended 1120.6 (195.3)
hom robust fuller FULL extended 1110.0 (197.2)
het robust fuller HFUL extended 1058.3 (170.5)

HLIM compared to that of 2SLS may be interpreted as a gain in efficiency from using

the extended instrument set.

The STATA outputs produced by the command mivreg to deliver the three many-

instrument-robust estimators appear next.

Example

The STATA output for LIML estimation with option hom:

Eventually, Mroz (1987) adopts smaller estimates than ones seeming correct from our experiments.
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The STATA output for FULL estimation with options hom robust fuller:
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The STATA output for HFUL estimation with options het robust fuller:
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