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Abstract

This thesis studies the behavior of interbank interest rates in the aftermath of the
global financial crisis. This crisis and its macroeconomic consequences led to a
sharp break in how monetary policy is conducted, with unconventional tools such
as quantitative easing (QE) programs gaining prominence. One consequence of
such policies is a change in the behavior of interbank interest rates. This behavioral
change is due to the emergence of excess reserves, which are a side effect of many
unconventional policies including quantitative easing.

The first chapter explores the nexus between the QE program conducted by the
European Central Bank, its policy of negative policy rates and the interbank inter-
est rates. It starts with data analysis that demonstrates two salient features of the
behavior of interbank interest rates in the presence of excess reserves. First, when
excess reserves are present interbank interest rates are anchored by the deposit
rate rather than by the main refinancing rate, as was the case before emergence
of excess reserves. Second, the amount of excess reserves is negatively correlated
with the level of interbank interest rates whenever excess reserves are present.
The chapter proposes a structural time series model that links interbank interest
rates to the two policy rates in a two-regime structure with a threshold variable
- the amount of excess reserves - determining the prevalence of each regime. The
resulting model provides a very good fit for the observed historical time series
and confirms that the amount of excess reserves is a statistically significant factor
influencing interbank interest rates. I then use the model to answer the policy
question of the chapter: What was the effect of the QE program on interbank in-
terest rates? Since the QE program led to a large increase in excess reserves, which
in turn led to a decrease in interbank interest rates, the effect on these rates was
substantial. Quantitatively speaking, the effect is on par with changes in policy
rates of standard size, and the same order of magnitude as a typical estimate of
the effect that the announcement the QE program by the ECB had on bond yields.
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Given the combination of its size and the absence of academic investigation, I call
this effect ’the neglected channel of quantitative easing’.

The second chapter analyzes the importance of the factors identified in the first
chapter, as well as the value of the structural model, in the context of (pseudo) out-
of-sample forecasting. It starts by comparing the forecasting performance of the
structural model with forecasting performance of all plausible benchmark models
encompassed by the universe of linear reduced form models. This comparison
reveals that, in a ex-post setting, the structural model substantially outperforms
all benchmark models, especially at longer horizons. While the ex-ante forecasting
exercise shows that this substantially better performance is true only when excess
reserves can be forecast well, this condition is satisfied during period when a QE
program is operational. The overall conclusion is that the structural model and the
factors embedded in it are important for forecasting interbank interest rates. This
result then serves as a basis for more general discussion of which model features are
important for forecasting interbank interest rates in the presence of excess reserves.
The heterogeneity in forecasting performance is then explained by the econometric
nature of eurozone interbank interest rates, which are both nonstationary and
cointegrated with monetary policy variables. Models that forecast interbank rates
in either their stationary or nonstationary transformation are unable to account
for this nature and hence produce forecasts that are problematic.

The third chapter presents the Eviews add-in - that is, user created package
- I have developed as part of the work on the second chapter and subsequently
published for public use under name SpecEval. The chapter is an excerpt from a
longer document provided with the package which demonstrates how the package
can be leveraged in developing and evaluating time series models used for forecast-
ing. It does this by following the model development process illustrated in one of
the applications presented in the full version of the document.

The fourth chapter of this thesis is dedicated to a separate research topic of
experiment in rational inattention. The chapter presents experimental design and
empirical results on rationally inattentive behavior of subjects in an interactive
environment. Specifically, the experiment features pairs of subjects playing a sim-
ple game in which one player - the Sender - exerts costly attention effort to collect
information, which is then communicated to a second player; meanwhile, the sec-
ond player needs to exert costly effort to process the information provided by the
Sender and then takes action that will determine the payoff of both players. The
empirical analysis of the experimental data confirms the theoretical predictions.
The main result is that subjects in both roles react to information about a proxy
for the attention costs of their partners in the expected direction: when partner’s
attention costs are higher, subjects exert effort that is on average significantly
smaller, both statistically and economically. Apart from attention effort the chap-
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ter also presents results indicating that subjects reflect on information about the
likely precision of the signal they have at their disposal when they take action. This
can be seen in the fact that Receivers take actions that are closer to their prior
belief if they know that the information communicated by the Sender is likely to
be imprecise. Taken together, these results provide the first experimental evidence
of rationally inattentive behavior in response to the inattention of other players.
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Introduction

The global financial crisis of 2007-2008 and the Great Recession that followed

marked a sharp break in how monetary policy is conducted. While before central

banks relied almost exclusively on steering market interest rates using adjustments

to their policy rate instruments, afterwards many central banks expanded their

toolkit by adding unconventional policy instruments. Primary among these were

large-scale asset purchases, more commonly known as quantitative easing (QE)

programs. These were complemented by explicit forward guidance, and in the

case of the European Central Bank (ECB), also long-term refinancing operations

(LTROs) and negative policy rates.

This shift in the conduct of monetary policy has not been lost on academic

literature, with a large body of articles studying the effects of unconventional

monetary policy. Most of the existing literature focuses on the direct effects of the

policies as standalone instruments. In the case of quantitative easing programs,

the focus is primarily on their effects on government bond yields, given that the

programs entail purchases of medium- and long-term government bonds. Mean-

while, negative policy rates are studied mostly in terms of their pass-through to

bank deposit/lending rates and the effect on loan origination. However, relatively
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little attention has been paid to links between QE programs and interbank interest

rates, or to the interaction between quantitative easing and negative policy rates,

and the role this interaction plays in the emergence of negative interbank interest

rates. This thesis aims to fill this gap.

The first chapter explores the nexus between the QE program conducted by

the European Central Bank, its policy of negative policy rates, and the interbank

interest rates. It starts by analyzing the key data series, focusing on how the

link between the policy and interbank interest rates is influenced by the presence

of excess reserves. Relying on event and correlation analyses, it shows that the

emergence of excess reserves leads to a relationship that is fundamentally different

from the relationship that prevailed before the emergence of excess reserves. The

event analysis shows that, while prior to the emergence of excess reserves the

interbank interest rates depended on the main refinancing rate, afterwards the

interbank interest rates were anchored by the deposit rate. I demonstrate this by

using high-frequency data on the behavior of interbank interest rates around dates

on which the ECB changed its policy rates asymmetrically. This event analysis

shows that, in the presence of excess reserves, changes in the main refinancing rate

do not influence interbank interest rates, while changes in deposit rate do.

Meanwhile, I complement the event analysis by conducting a correlation anal-

ysis that highlights a second role played by excess reserves: while the presence

of excess reserves changes the policy rate anchoring interbank interest rates, the

amount of excess reserves influences the spread between interbank interest rates

and the deposit rate. This is what one would expect based on a model of the

market for excess reserves: the interbank interest rates are the price for lending

or borrowing (excess) reserves, so that an exogenous increase in excess reserves

should lead to a decrease in their price.

The data analysis raises an interesting question: What was the overall effect

of the QE program conducted by the ECB on interbank interest rates? While

this question is analogical to the question on which most academic literature has

focused - the effect of the QE program on bond yields - the effect on interbank
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interest rates has not been explored. To answer this question, I propose a semi-

structural time series model that reflects the conclusions drawn from the previous

data analysis. The model links interbank interest rates to the two policy rates in

a two-regime structure with a threshold variable - the amount of excess reserves

- determining the prevalence of each regime. In addition to playing a role in

determining the regime, the amount of excess reserves also influences the level of

interbank interest rates in the excess reserve regime. The resulting model provides

a very good fit for the observed historical time series and confirms that the amount

of excess reserves is a statistically significant factor influencing interbank interest

rates.

I then use the model to create a path for interbank interest rates under the

observed path for excess reserves and under the counterfactual path for excess

reserves that could be expected to prevail in the absence of the QE program.

Since the QE program was the main driver of changes in excess reserves during

the period of its operation, the difference in the amount of excess reserves with

and without the program is large. Correspondingly, the interbank interest rates

in the absence of the QE program would have been significantly different, with

a peak effect of between 20 and 30 basis points depending on the maturity in

question. This effect is on par with changes in policy rates of standard size, and

the same order of magnitude as - even if smaller than - the typical estimate of

the announcement effect of the QE program on bond yields. Despite its apparent

size, and despite the fact that this impact channel of the QE program is known

in policy circles, this effect has not been previously quantified, and hence I call it

’the neglected channel of the QE’.

The first chapter focuses on explaining the observed behavior of interbank

interest rates, and shows that it can be explained very well with the relevant

factors, while also demonstrating that ignoring the relevant structure leads to

a substantially worse fit. This raises the question of whether the same factors

and structure are also valuable in forecasting interbank interest rates in out-of-

sample context, in addition to just explaining the behavior within given sample.
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The second chapter of this dissertation addresses this question by performing an

extensive set of forecasting exercises. These exercises compare the out-of-sample

forecasting performance of the structural model proposed in the first chapter with

the performance of all linear reduced-form models that could be considered relevant

benchmarks. This includes the standard univariate ARMA models, as well as single

equation multivariate models of the ARDL family and multi-equation models of

the VAR family.

I then analyze the performance of all considered models both in terms of ex-

post forecasts - where forecasts are made using observed values of independent

variables - and ex-ante forecasts, where independent variables are also forecasted.

The results of ex-post forecasting exercises demonstrate the value of the factors

included in the structural model and the structure imposed by this model: the

forecasting performance of the model is substantially better than any class of the

reduced form models or any individual model when all horizons are taken into con-

sideration. This is especially true at longer forecast horizons, with performance

being an order of magnitude better, while for shortest horizons, some individual

reduced form models can match or even exceed the performance of the structural

model. However, the ex-ante forecasting exercise shows that this better perfor-

mance depends on knowledge of the future path of policy variables, and especially

excess reserves. When this is not the case, the forecasting performance of the

structural model is either only slightly better or becomes worse than the perfor-

mance of best reduced form models. The overall conclusion is that the structural

model and the factors embedded in it are valuable for forecasting as long as path

for excess reserves is known with some degree of certainty. The chapter shows

that this is indeed the case during period when a quantitative easing program is

operational.

The comparison of the forecasting performance of the structural model and

plausible benchmark models forms the basis for the main value added of the sec-

ond chapter, which is its analysis of what factors are linked to good forecasting

performance for interbank interest rates in general. This analysis shows that vari-
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ations in forecasting performance of individual models can be explained by the

specific statistical nature of the series under consideration. The key insight is

that the interbank interest rates at medium frequency are both nonstationary and

cointegrated with policy variables. Since reduced form models cannot capture the

complex nature of the data, they are effectively modelling the series in terms of

its non-stationary transformation or in terms of its stationary transformation. Of

course, neither of these choices is fully satisfactory and hence both lead to problem-

atic forecasts in particular parts of the sample. In contrast, the structural model is

able to account for the complex nature of the data and hence avoids pitfalls faced

by other types of models.

The brief third chapter of the thesis is in essence a technical appendix to the

second chapter. It presents the Eviews add-in - a user created package - developed

as part of the work on the second chapter and subsequently published for public

use under the name SpecEval. The SpecEval package is focused on creation, visu-

alization, and evaluation of forecasts from equations or VAR models estimated in

Eviews software. Correspondingly the package can be used as a tool for performing

forecasting exercises such the one presented in the second chapter. Nevertheless,

the third chapter is not motivated by the use of SpecEval for forecasting exercises

aimed at the comparing performance of alternative models. Instead, it offers a

short demonstration of how the package can be leveraged in developing and eval-

uating time series models used for forecasting. Of course, forecasting exercises are

a bedrock of such evaluations, where they are called backtesting exercises. How-

ever, academic forecasting exercises typically focus on reporting numerical results.

In contrast, SpecEval is not limited to numerical measures of forecasting perfor-

mance, but also includes numerous graphical representations of the forecasting

performance, some of which appeared in chapter 2. The idea behind this is that

graphical information often provides more useful information for model develop-

ment than information summarized in a single summary statistic.

The functionality of the SpecEval package, though, is not limited to backtesting

exercises. There are two other types of exercises SpecEval can perform. First,
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SpecEval has the functionality to create and compare scenario forecasts, assuming

that the information about scenario values of some exogenous variables is available.

Second, SpecEval can create graphs of shock responses for multiple types of shocks.

While this is standard feature of the evaluation of VAR models, it is less common

for single equation models and statistical packages typically do not include any

such functionality. This is a hard-to-justify omission and hence SpecEval provides

a valuable service.

The fourth chapter of this thesis is dedicated to a separate research topic of

experiment in rational inattention. Rational inattention has received increasing

attention in economic literature. While this literature has been primarily focused

on theoretical advances, more recently there has also been interest in providing val-

idation for the theoretical models through empirical and, especially, experimental

work. The fourth chapter contributes to this.

The chapter presents an experimental design and empirical results on rationally

inattentive behavior of subjects in an interactive environment. The experiment

features pairs of subjects playing a simple game in which one player - the Sender -

exerts costly attention effort to collect information that is then communicated to a

second player; meanwhile, the second player needs to exert costly effort to process

the information provided by the Sender and then to take action that will determine

the payoff of both players. This game has several important features that allow us

to study whether the experimental subjects behave in accordance with theoretical

predictions based on rational inattention theory. First, the attention effort of

each player is a strategic complement for the attention effort of the other player,

but neither player can shirk in hope that the other player will pick up the slack.

Second, both players agree on value of information and the desired action given

collected information. Thus the game is fully co-operative.

The empirical analysis of collected experimental data confirms the theoretical

predictions. The main result is that subjects in both roles react to information

about the proxy for attention costs of their partners in the expected direction:

when the partner’s attention costs are higher, given subject exerts effort that is on
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average significantly smaller, both statistically and economically. In addition to

attention effort, the chapter also presents results indicating that subjects reflect on

information about the likely precision of the signal they have at their disposal when

they choose an action. This can be seen in the fact that Receivers take actions

that are closer to their prior belief if they know that the information communicated

by the Sender is likely to be imprecise. Taken together, these results provide the

first experimental evidence on rationally inattentive behavior in response to the

inattention of other players.
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Chapter 1
Negative policy rates

and interbank interest rates: The neglected
channel of Quantitative Easing

"[C]entral bankers and academics have only started to systematically capture and

quantify the various impact channels... [M]ore analysis is certainly needed and

forthcoming to better understand the instruments’ transmission channels at work,

and in particular their interaction." (Altavilla, Carboni, and Motto 2021)

"...many of the favourable cross externalities among tools ... are largely

ignored in available analyses, but are in fact what has made them so powerful

and probably indispensable within the ECB’s multidimensional easing strategy."

(Rostagno et al. 2019)
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1.1 Introduction

The global financial crisis of 2007-2009 and macroeconomic developments since

then have led central banks to dramatically change the tools they use to influence

the economy. While the focus before was on changes in monetary policy rates, since

then the focus has shifted towards unconventional monetary policy instruments.

These instruments include large-scale asset purchases (commonly referred to as the

policy of quantitative easing), forward guidance, and in the case of the European

Central Bank (ECB), also long-term refinancing operations (LTROs) and negative

policy rates. This chapter studies the effect of these policies on financial markets,

and specifically on interbank interest rates (IIRs). Its key focus is on the interaction

between the two most significant unconventional policies, quantitative easing (QE)

and negative policy rates, and what role this interaction plays in the emergence of

negative IIRs.

This chapter contributes to existing literature in two fields: empirical modeling

of IIRs, and analysis of unconventional monetary policy. On the modeling front, I

propose and estimate a novel semi-structural model for IIRs. The main innovation

of the model is to suggest that the relationship between policy rates and IIRs is

fundamentally altered by the presence of excess reserves in a way that causes there

to be two different regimes of operation for IIRs. In the normal regime - which

prevails when there are no excess reserves and hence had been prevailing in period

before the global financial crisis - the IIRs depend only on the interest rate at which

banks can regularly obtain liquidity from the central bank, the main refinancing

rate. In excess reserves regime - which prevails in the presence of excess reserves

and hence has applied since the global financial crisis - the IIRs depend only on the

rate at which commercial banks can deposit their excess reserves with the central

bank: the deposit rate (DR). Apart from changing the regime and hence the policy

rate anchoring the IIRs, excess reserves also affect the IIRs through their effect

on the spread between the IIRs and deposit rate. Specifically, in excess reserves

regime, the spread between IIRs and the DR decreases as the amount of excess
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reserves increases.

This relationship between policy rates, excess reserves and the IIRs suggests

that two roles are played by the policy of QE, which directly leads to the emergence

of and/or increases in excess reserves. First, if prior to the QE there are no excess

reserves, the program can lead to switch from the normal regime to the excess

reserves regime as the QE instigates the emergence of excess reserves. Second,

as excess reserves increase due to continued asset purchases, the IIRs are pushed

further towards the deposit rate, something that has been acknowledged in policy

circles (e.g. Altavilla, Carboni, and Motto (2021) or Rostagno et al. (2019)), but

never quantified.1

This leads to the policy contribution of this chapter. I use this novel semi-

structural model to answer following policy question: What was the effect of the

QE program of the ECB on IIRs? The estimates of the model suggest that there

is statistically and economically significant effect of the QE program on the IIRs.

If the ECB had not implement its the QE program, the Eonia rate would be, on

average, 6bps higher since the start of the program, with a peak effect of 16-22bps,

depending on the model used. Moreover, the effect on longer-maturity IIRs is

possibly even larger.

Insofar as it is IIRs that matter for the wider economy, this is a sizeable ef-

fect, comparable to a standard-sized decrease in policy rates. It is even significant

relative to various estimates of the effect of other unconventional monetary policy

tools. For example, the announcement of the QE program by the ECB in Jan-

uary 2015 led to a similar decrease in long-term interest rates, even though the

cumulative effect of the program was likely several times larger (see e.g. Altavilla,

Carboni, and Motto (2021); Greenlaw et al. (2018) provide a more skeptical view

of the effects of QE programs). The effect is also similar to the peak effect of

forward guidance (Rostagno et al. 2021). Despite its apparent size, and despite

1Note that this channel did not initially feature prominently in the discussions of the effects
of the QE program. For example, early assessment of the QE program by Hartmann and Smets
(2015) does not mention it at all.
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the fact that this impact channel of the QE program is known in policy circles,

this effect has not been previously quantified, and hence I term it ’the neglected

channel of QE’.

Turning to negative interest rates, the effect of the QE program on IIRs also

suggests that it plays a role in the emergence of negative interbank interest rates

(as opposed to negative policy rates, which are purely under the control of the

ECB). Since the model suggests that IIRs would be significantly higher in the

absence of the QE, it also suggests that they would either remain positive or only

mildly negative for all of 2015. While they would turn negative at the end of 2015

irrespective of the QE program, they would reach substantially less negative values

in the following years.

Moreover, this discussion potentially understates the importance of the QE in

the emergence of negative the IIRs, as the ECB’s the QE program was initiated

when excess reserves were already present thanks to other policies, and even in-

creased during the period of the QE program. Since only the deposit rate was

lowered into negative territory, the emergence of negative IIRs crucially depends

on the presence of excess reserves: in the absence of excess reserves IIRs would

have remained slightly above the main refinancing rate and hence positive through-

out the last decade. If the QE program had been the only policy causing excess

reserves during the relevant period, we would not observe negative IIRs in the

absence of the QE program. Hence, negative policy rates and the QE policy (or

an alternative policy leading to excesss reserves) are complementary to each other

- as only their combination leads to negative IIRs.

Corresponding to its two contributions, this chapter is related to two strands

of literature. First, there is a large literature studying the behaviour of IIRs,

especially overnight rates. Green et al. (2016) provide a recent survey of this

literature, most of which focuses on the high-frequency behaviour of overnight

interest rates and its relationship to policy interest rates and liquidity management

by central banks. In contrast, this chapter focuses on medium- and long-term

movements in IIRs. The closest work is that of Marquez, Morse, and Schlusche
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(2013). They focus on the exit strategies of the Federal Reserve (Fed) and hence

model the overnight rate as a function of excess reserves, among other things. The

paper finds a presence of the same negative effect of excess reserves on overnight

rate. Nevertheless, they focus on the somewhat different institutional environment

of the United States and hence their model is very different. Specifically, due to the

institutional differences, they do not postulate the existence of different regimes

for IIRs.

Second, a more closely related strand of literature is the burgeoning litera-

ture on unconventional monetary policy, and specifically on the ECB’s multiple

novel instruments introduced since 2014. Altavilla et al. (2021b) provide a de-

tailed overview of these instruments and survey of literature analyzing them. This

literature is mostly organized around the instruments and their primary impact

channel. A large number of articles studies various QE programs and their impact

on long-term interest rates, see D’Amico et al. (2012) and Gagnon et al. (2011)

in the case of the US, and Altavilla, Carboni, and Motto (2021) and Eser et al.

(2019) in the case of euro zone.2 These studies focus on the two main channels of

QE programs, the portfolio-rebalancing channel induced by a decrease in supply of

long-term bonds, and the signaling channel. A more closely related study is that

by Christensen and Krogstrup (2016), who highlight that portfolio rebalancing

and the corresponding decline in bond yields can also be induced by an increase

2There is also literature on central banks intervention during the global financial crisis, be it
liquidity infusions or (indirect) purchases or risky assets. Examples include Adrian, Kimbrough,
and Marchioni (2010), Berger et al. (2015), Boyson, Helwege, and Jindra (2015) and Duygan-
Bump et al. (2013). This literature is separate, though, because the policy instruments were
addressing malfunctioning financial markets, which likely makes their effects conditional on the
state of financial markets. In contrast, the ECB’s unconventional instruments discussed in this
chapter were activated to address the combination of deteriorating macroeconomic outlook and
the absence of space for conventional monetary policy tools, not to address stress in financial
markets (Rostagno et al. 2019).

Yet another strand of literature studies the macroeconomic impacts of unconventional policies,
using either the approach of shadow interest rate, e.g. Wu and Xia (2016), or VAR approach
augmented by information from high-frequency analysis, e.g. Rostagno et al. (2021). Here I
focus only on the impact on IIRs, and do not address the implications for the wider economy. As
such, the literature on the estimation of shadow rates is not related to this paper: for observed
IIRs it is the actual policy rates that are relevant.
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in excess reserves caused by purchases of other assets than long-term bonds. Like

this chapter, they highlight that excess reserves created by asset purchases impact

market interest rates, an impact that is independent and in addition to the im-

pact of asset purchases. In other words, the liability of the central bank balance

sheet also plays an important role in determining the impact of asset purchases.

However, the focus of these studies is firmly on long-term bond yields and they do

not discuss IIRs.

Another unconventional monetary policy tool receiving substantial attention is

the policy of negative interest rates.3 Jackson (2015), Bech and Malkhozov (2016)

and Jobst and Lin (2016) provided early discussions of the policy around the world,

including basic discussions of pass-through to market interest rates and how it

relates to excess reserves. Nevertheless, none of these papers develops a model for

the behaviour of IIRs, which constitutes the first contribution of this chapter, or

discuss quantitatively the role played by the QE program, what constitutes the

second contribution of this chapter. Later studies focus on the transmission of

negative policy interest rates to bank funding and its effect on lending behavior

(Altavilla et al. 2021a; Bottero et al. 2019; Eggertsson et al. 2019; Heider, Saidi,

and Schepens 2019). However, these studies focus on bank-level data and hence do

not aim to model the aggregate IIRs or to quantify the effect of the QE program on

those rates. Insofar as bank funding/lending partly reflects the aggregate level of

IIRs, this chapter studies the earlier link in the chain of effects leading to lending.4

There is also slowly emerging literature on interaction among the unconven-

tional tools and their impacts through secondary channels, to which this chapter

is most closely related. The importance of this interaction of tools is emphasized

3The other two unconventional policies were (targeted) long-term refinancing operations
(LTROs) and forward guidance. See for example Andreeva and Garcia-Posada (2019) for LTROs
and Altavilla et al. (2019) for the effects of forward guidance. Altavilla et al. (2021b) provides
an overview of relevant literature.

4The discussion of negative policy rates also links this chapter to the issue of zero lower bound
and literature focusing on existence of such bound (e.g. Brunnermeier and Koby (2016, Rognlie
(2015)). However, the empirical facts of negative interest rates addressed here make it clear that
the chapter is more related to the absence of zero lower bound, than to its existence, similarly
to Altavilla et al. (2021a).

14



by Rostagno et al. (2019) and Altavilla, Carboni, and Motto (2021) (see quotes at

beginning of this chapter), who also provide a helpful classification of all channels

and interactions. Among these studies Rostagno et al. (2019) and Rostagno et al.

(2021) demonstrate that decreases in policy rates into negative territory were as-

sociated with abnormally large decreases in expected future IIRs and bond yields

with medium and long maturity, and relate this to, among other things, the in-

teraction between negative policy rates and forward guidance; see also Wu and

Xia (2020). Meanwhile, Ryan and Whelan (2021) discuss the interaction between

the QE program and negative policy rates that arises thanks to the emergence of

excess reserves caused by the QE program. However, these studies either focus

only on expected IIRs, or do not discuss IIRs at all, and hence are silent on the

connection between current IIRs and the QE program. While Demiralp, Eisen-

schmidt, and Vlassopoulos (2021) highlight the importance of excess reserves in

the transmission of negative policy rates to bank behavior, they are only interested

in the cross-section of bank lending and not in IIRs.

Finally, the most closely related paper is by Arrata et al. (2020), who study

the effect of the QE program on money market rates (a broader category than

IIRs). Their investigation shows the link between money market rates and asset

purchases under the QE program. However their focus is on the role of scarcity

induced by asset purchases and hence study special repo rates. This leads them to

perform their empirical analysis at daily frequency and to exploit cross-sectional

variation, both features that make their analysis quite different from mine. While

their results also point towards the role played by excess reserves, they downplay

the role and hence do not explore it in more detail.

The remainder of the chapter is organized as follows. Section 1.2 describes

three key aspects of the data. Section 1.3 describes and discusses the modelling

approach and section 1.4 presents the results of the estimation. Section 1.5 presents

the estimates of the effects of the QE program. Finally, section 1.6 concludes.
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1.2 Data analysis

In this section I document and discuss three main features of the data which

serve as motivation for my latter formal econometric analysis. First, I discuss

the emergence of negative interest rates in the euro zone, focusing both on policy

rates and, more importantly, interbank interest rates (IIRs). Second, I present and

analyze the evolution of excess reserves of commercial banks and outline the role

played by quantitative easing (QE) policy in their evolution. Finally, I will show

how these two phenomena are connected.

1.2.1 Negative interest rates

The European Central Bank (ECB) introduced a negative deposit rate (DR) in

June 2014 in response to falling inflation and inflation expectations (Draghi 2014a;

Rostagno et al. 2019). Initially, the DR was set at -10 basis points and was lowered

to -20 basis points in September 2014 (see Figure 1.1), which was at that time

considered the effective lower bound (Draghi 2014b; Draghi 2014c; Rostagno et al.

2019). Nevertheless, following the experience of other countries throughout 2015,

the ECB lowered the DR to -30 basis points in December 2015 and to -40 basis

points in March 2016, where it remained until September 2019.5 Meanwhile, the

other policy rate, the main refinancing rate (MRR), was decreased from 0.75% to

0% in a series of steps spanning 2013-2016. This points towards aspect of the data

that I will exploit later and which also visible in Figure 1.1: during this period we

can observe several asymmetric changes to the two policy rates.

Turning to interbank interest rates6 , the left panels of Figure 1.2 show that
5In this section and throughout the chapter, I limit the sample to end in August 2019. This

is because in September 2019 the ECB introduced a two-tiered system for remunerating excess,
reserves and in beginning of October the Eonia rate, which will be my main variable of interest,
was replaced by the Euro Short-Term Rate rate (ESTR); both of these changes potentially
influenced the mechanisms described in this chapter.

6I use the term of "interbank interest rates" - rather than the term "money market rates" -
to indicate that I focus on banks on the interbank lending market specifically. Money market
is broader term than intebank market, and money market rates encompass greater universe of
rates than just interbank interest rate. For example, they also include repo rates.
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Figure 1.1: ECB policy rates

these slowly trended downwards, following the DR into negative territory. Never-

theless, both the Eonia rate and the Euribor rates went negative with a substantial

delay compared to the DR. The Eonia rate and Euribor rates with shortest matu-

rity became negative for the first time only at the beginning of September 2014,

after the second decrease in the DR, and remained relatively stable for the next six

months, before decreasing dramatically after the start of QE purchases in March

2015. Meanwhile, Euribor rates with longer maturities remained positive through-

out 2014 and turned negative only in March and April 2015, after QE purchases

started. Later in this section and throughout the chapter I will argue that this

timing reflects a causal relationship between excesss reserves and the IIRs.

It is instructive to translate the observed the behavior of levels of the IIRs

into behavior of spreads from the DR (see right hand side panels of Figure 1.2).

Before the start of QE purchases, the spreads were volatile, but did not display

any clear upward or downward trend. In contrast, all the IIR spreads decreased

dramatically following the start of QE purchases, halving in span of three months

between March and June 2015. Afterwards, the spreads continued their downward

path, but the magnitude of the decrease was much smaller. Finally, in last years

of the sample the spreads were stable at levels of around one third of their value
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prior to the start of QE purchases.

1.2.2 Excess reserves

The autumn of 2008 marks the emergence of the phenomenon of excess balances

of the euro zone commercial banks at their accounts with the ECB (I will refer

to these as excess reserves in the interbank market, or simply as excess reserves),

defined as the sum of current and deposit account balances of commercial banks

with the ECB minus the reserve requirements. The rest of this subsection briefly

describes the evolution and sources of excess reserves over past decade. More

detailed discussion is relegated to Appendix 1.A.

Substantial excess reserves in the euro zone interbank market were observed

for the first time in October 2008 (see Figure 1.3), right after the ECB switched

from fixed allotment to full allotment tender procedures. This switch meant that

the ECB was no longer determining or limiting the amount of liquidity commercial

banks could obtain in refinancing operations. After jump in fall of 2008, excess

reserves were fluctuating throughout 2009 and 2010, staying in between 40 and

300 billion euro until the beginning of 2011. During that year, excess reserves first

almost disappeared, then again increased substantially in the autumn. Finally, at

the end of 2011 and the beginning of 2012, excess reserves recorded several large

jumps which left them at almost 800 billion. The main reason for the increases in

excess reserves were the two Very Long-Term Refinancing Operations (VLTROs),

executed in December 2011 and February 2012. Concurrently with the VLTROs

the ECB lowered the reserve ratio from 2% to 1%, effective from January 18th

2012, causing a decrease in required reserves and a corresponding jump in excess

reserves.7

Implementation of the second VLTRO marked a local peak in excess reserves,

after which they began gradual decline lasting until the middle of 2014, when they

7The effect of a decrease in reserve requirements can be seen in a decrease in the current
account holdings and an offsetting increase in deposit account holdings around the effective
date.

18



Figure 1.2: Interbank interest rates

Notes: In this and other figures in this section, the vertical lines indicate the timing of
relevant policy interventions by the ECB. The interventions are:

• Large dashed lines indicate the announcement of the shift to full allotment tender
procedures (October 2008).

• Dashed-dot lines indicate announcement and implementation of VLTROs in
2011-2012.

• The solid line indicates change in reserve requirements in 2012.

• Small dashed lines indicate announcements and implementations of changes in
asset purchase programs, startingin 2014.
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Figure 1.3: Excess reserves

Left panel shows the current and deposit account balances of commercial banks with ECB, as
captured in the ECB balance sheet statements. Right panel shows excess reserves as defined in
text.

briefly dropped below 100 billion. April 2014 then marks a local minimum of

excess reserves, which first jumped back to above 100 billion for the rest of 2014,

and then started increasing rapidly from March 2015.

The figure highlights that the dramatic break in the trend of excess reserves

observed in March 2015 coincides with the start of asset purchases under the

QE program. Under this program, the ECB purchased large quantities of finan-

cial assets, mainly government bonds (see Claeys, Leandro, and Mandra (2015)

or Hammermann et al. (2019) for more details). Crucially, these purchases were

unsterilised, meaning that their effect on the size of the ECB balance sheet was

not reversed through other ECB’s actions, which was one of the motivations for

launching the program (Rostagno et al. 2019). Effectively, these purchases replaced

private sector holdings of government bonds with commercial banks’ balances at

the ECB and hence are causally related to excess reserves (Boucinha and Burlon

2020); see a detailed discussion in Appendix 1.A.2, which illustrates this point

using accounting techniques. As Figure 1.3 shows, since the start of the QE pro-

gram, excess reserves continued to increase at a steady pace, reaching almost two

trillion in 2017, where they remained until the end of the sample.

Before discussing the connection between negative IIRs and excess reserves, it

is useful to highlight an important aspect of the evolution of excess reserves over
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the QE period: the fact that the changes in excess reserves (i.e. asset purchases

under the QE program) are exogenous with respect to the behavior of commer-

cial banks (ECB 2015) and with respect to determinants of short-term interbank

interest rates in general. Not only is the primary goal of these asset purchases

their effect on inflation, but the primary channel through which they are meant to

affect the economy is their effect on medium-to-long-term bond yields (Rostagno

et al. 2019), not short-term IIRs.8 Even more importantly, the monthly increases

are almost deterministic, with the amount of assets to be purchased each month

specified ahead of time for prolonged periods. This is in contrast to changes in

excess reserves in the pre-QE period, which were determined to a large degree by

the commercial banks themselves, and hence are potentially endogenous to IIRs.

Correspondingly, the exogeneity of QE-related excess reserves will be a key aspect

of my empirical strategy. Ryan and Whelan (2021) offer similar arguments with

respect to the exogeneity of excess reserves during the QE program.

1.2.3 Policy rates, excess reserves and the IIRs nexus

The previous two subsections discussed the two key aspects of data relevant for this

chapter: negative interest rates and the presence of excess reserves. Before turning

to the developing model that links these two aspects together, this subsection

provides preliminary data analysis that highlights how the relationship between

policy rates and interbank interest rates is fundamentally altered by the presence

of excess reserves. To do this, it presents an analysis of the relationship between

the Eonia rate and policy rates before and after the emergence of excess reserves.

Figure 1.4 shows that, before the emergence of excess reserves in October 2008,

the Eonia rate was consistently just above the MRR, which is equivalent to a small

positive the spread between these two rates. This has changed starting in October

2008, when the Eonia rate dropped below the MRR where it has remained ever

8Note that most of the empirical analysis of effect of QE program on financial markets assumes
that the program does not affect short-term IIRs. See for example Altavilla et al. (2019) or
Rostagno et al. (2021).
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Figure 1.4: Eonia rate - full sample

since, which translates into a negative spread between these two rates over the

whole period after 2008. In contrast, the Eonia rate never dropped below DR, so

that the spread between the Eonia rate and the DR remained positive at all times.

In terms of the volatility of the spread between the Eonia rate and either the

ECB rate, the period after 2008 witnessed much higher volatility than the period

before 2008. These observations clearly suggest a change in regime in October

2008, which affected both the level and the volatility of these spreads, something

I confirm formally in Appendix 1.F.1.

The higher volatility of the spread of the Eonia rate from either policy rate

masks one important fact: in the period after 2008, the spread between the Eonia

rate and the DR was visibly more stable than the spread between the Eonia rate

and the MRR. This chapter will argue that the reason for this greater stability in

the DR spread is that the Eonia rate (and other IIRs) are anchored by the DR

rather than by the MRR whenever excess reserves are present. To support this

hypothesis, it is natural to analyze the asymmetric changes in the ECB policy

rates, as those can shed light on how IIRs change when the ECB changes just one

of policy rates, and hence whether both rates influence the IIRs in presence of

the excess reserves. Since September 2008, we have witnessed 5 such asymmetric

changes in policy rates: 2 decreases in the MRR without a change in the DR, 1

decrease in the DR without a change in the MRR, and 2 decreases in both rates but

of different size. Figure 1.5 shows policy rates together with the Eonia rate during
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these 5 changes, while Table 1.1 shows the change in the Eonia rate following the

changes in policy rates.

Table 1.1: Assymetric changes in policy rates

Date Change in given interest rate

MRR DR Eonia rate 1-day Eonia rate 3-day 1w Euribor

21/01/2009 -50 -100 -64.9 -94.3 -57.4
08/05/2013 -25 0 -1.1 -0.1 0
13/11/2013 -25 0 -0.4 0.5 -0.5
09/12/2015 0 -10 -8.8 -8.4 -6.1
16/03/2016 -5 -10 -9.1 -9.7 -6.9

22/01/2015 – – 4.9 4.8 2.6

Notes: Changes in policy rates and the IIRs, in basis points, corresponding to policy changes
effective on specified datea. For the Eonia rate the changes are calculated as difference between
interest rate prevailing 1 and 3 days after the change in policy rates minus the interest rate
prevailing on the day before the change in policy rates. For 1-week Euribor rate the changes are
calculated as difference between interest rates prevailing 1 day after the change in policy rates
minus the interest rate prevailing 5 days prior to the policy decision. Last row captures change
around the first announcement of the QE program.

aNote that the changes in monetary policy rates are effective with few days delay. Throughout
the chapter I use the effective date as the relevant timing for the policy changes.

Both the figure and the table clearly establish that, in a period with excess

reserves, changes in the MRR do not influence the Eonia rate, while changes in

the DR cause an almost equivalent decrease in the Eonia rate. When the MRR

decreased twice in 2013 by 25 basis points, the Eonia rate reacted only minimally

in either 1-day or 3-day window (2nd and 3rd panel/row). In contrast, the decrease

in the DR in December 2015, at which time the MRR was left unchanged, resulted

in an almost equivalent decrease in the Eonia rate (4th panel/row). Finally, when

both the MRR and the DR decreased by different magnitudes, the decrease in

the Eonia rate was substantailly closer to the decrease in the DR (1st and 5th

panel/row).

I complement these results with a brief analysis for the 1-week Euribor, numbers
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Figure 1.5: Effects of assymetric changes in policy rates

for which are in the last column of Table 1.1. Broadly speaking, the results for

the 1-week Euribor indicate the same relationship as with the Eonia rate, with the

Euribor rate not reacting to changes in the MRR, and reacting strongly to changes

in the DR. Overall, the data in Table 1.1 and Figure 1.5 establish the first effect

of excess reserves on relationship between the IIRs and the ECB policy rates: for

both overnight and longer-maturity the IIRs it is the level of DR, rather than the

level of MRR, that influences the level of various interbank interest rates in the

presence of excess reserves.

The change in anchor - from the MRR to the DR - is not the only effect of

excess reserves. Additionally, the amount of excess reserves also plays a role in

the size of the spread between IIRs and the DR. There are two ways to establish

this claim. First, Figure 1.6 combines time series data from Figures 1.2 and 1.3 to

suggest a clear negative correlation between the evolution of excess reserves and

level of the spread between the IIRs and the DR. For example, as discussed in

section 1.2.1, the level of different IIRs turned substantially negative only with the

onset of the QE program, which led to dramatic increase in excess reserves. In

Figure 1.6 this is captured by large decrease in the spread between the Eonia rate

and the DR after the start of the QE program. This clearly suggests relationship

between the amount of excess reserves and the spread between the IIRs and the

DR.
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Figure 1.6: Excess reserves and the Eonia rate the spread

Second, this relationship and its strength can best be seen in the scatter plot

of the spread between the IIRs and the DR plotted against the amount of excess

reserves, presented in Figure 1.7. Not only is the relationship clearly negative, but

it seems to be very strong, especially at low levels of excess reserves.9 Moreover, the

relationship is also very close in the case the Eonia rate, which is uncontaminated

by additional factors, and reasonably close in the case of the IIRs with longer

maturity.

Does negative correlation between excess reserves and IIRs reflect

causation? Before turning to the modeling strategy based on these empirical

observations, it is worthwhile to highlight that the negative relationship between

9Similar graph can be found in Valiante (2015). However, he misinterprets the causality be-
tween excess reserves and the spread. Specifically, sometimes it is (wrongly) argued that excess
reserves mean that banks are hoarding reserves. This is incorrect for following reason: While indi-
vidual banks can decrease their amounts of reserves, they can do so only by lending/transferring
them out to other banks, and hence the banking system as a whole cannot decrease the amount
of excess reserves (apart from collectively forcing the public to hold more deposits). Therefore,
the amount of excess reserves is, to a large degree, determined by the actions of the central bank.
See Appendix 1.A for an explanation.
Corresponding to this misconception that the banking system as such decides how much excess
reserves it holds, Valiante (2015) concludes that excess reserves increase as the spread decreases,
thus reversing the causality. In contrast, Marquez, Morse, and Schlusche (2013) interpret iden-
tical graph in the same way as I do.
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Figure 1.7: Effect of excess reserves on the IIRs

Notes: The horizontal axis corresponds to excess reserves in billion euros at a monthly frequency.
Vertical axes are spreads in basis points. The sample covers 2009M01-2019M08.

excess reserves and IIRs is very likely of a causal nature. I support this by two

arguments, one based on theory and one based on observed historical data.

First, from a theoretical perspective, it is not surprising that excess reserves

cause lower IIRs. At the most basic level, IIRs measure the price of lending/borrowing

reserves between banks. Standard microeconomic theory clearly indicates that the

supply of (excess) reserves should play a key role in determining such price. There-

fore, the basic argument explaining why excess reserves cause movements in IIRs

is the standard supply and demand argument, which is indeed at the center of

exposition of modern central banking; see for example Ennis and Keister (2008).

These general considerations have found their expression in theoretical micro-

founded models starting with Poole (1968). Section 4 of Green et al. (2016) pro-

vides a recent review of this literature. The most relevant work with respect to the

current analysis is Bech and Monnet (2016), who depart from similar data analysis

and then provide a micro-founded theoretical model of IIRs, explicitly accounting
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for excess reserves. Their conclusion is that "when the surplus of reserves is large

then the [Eonia] rate tends to the deposit facility rate" ((Bech and Monnet 2016),

p. 50), supporting the empirical analysis I perform here.

Meanwhile, from an empirical perspective, the most likely reservation about

the causality of the relationship rests on the role played by the QE program: one

could consider the relationship in Figure 1.7 to be a side-effect of the effect that

asset purchases have on other market interest rates; lower bond yields caused by

the QE program might have also pushed down IIRs, with no role played by excess

reserves. There are two reasons such a conclusion is hardly warranted. First, the

negative relationship is present also before asset purchases under the QE program,

reflecting the fact that the source of excess reserves is of second order importance

from the perspective of the theory. This suggests that excess reserves play a role

in determining IIRs.

Second, there is important difference between the effect of the QE program on

bond yields and the effect of excess reserves on IIRs. The effect on bond yields is

immediate thanks to the forward-looking nature of the pricing of long-term bonds

and hence occurs at announcement of the policy (Altavilla et al. 2019). In contrast,

the effect on IIRs, which have short maturity, occurs only once excess reserves are

actually infused into the interbank system. That is why we do not observe any

decreases in the IIRs at the announcement of the QE program (see last row of

Table 1.1). Instead, the declines in IIRs occur as the excess reserves increase,

something I document in more detail in section 1.4.10 I return to this difference in

section 1.5.

Finally, if excess reserves causally impact IIRs, while the QE program causes

an increase in excess reserves, then the QE program causes a decrease in IIRs

(see also Boucinha and Burlon (2020)). This effect of the QE program on IIRs

then constitutes a separate channel through which the QE program affects market

10Another way to see this is by observing that the co-movement between IIRs and short-term
bond yields is rather weak and likely reflects the impact of IIRs on bond yields, see the discussion
in Appendix 1.C.6. There, I also show empirically that the movements in IIRs are not driven by
the movements in short-term bond yields.
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interest rates, which goes above and beyond the effect on bond yields: while the

duration channel of the QE affects medium- and long-term interest rates through

decreasing the supply of corresponding bonds (Hammermann et al. 2019), the

effect on excess reserves affects the short-term IIRs. This mirrors discussion in

Christensen and Krogstrup (2016) and Christensen and Krogstrup (2019), who

show that the creation of excess reserves via asset purchases leads to a decrease in

bond yields independently of the effect of asset purchases themselves, which they

call the reserve-induced channel of the QE program.

1.3 Modelling approach

Following the conclusions from previous section, this section proceeds by proposing

a regime switching model for the IIRs. The model has two regimes, which are

determined according to a threshold-switching mechanism, with excess reserves

playing the role of an (exogenous) threshold variable. In both regimes the IIRs

are anchored by two main policy rates: the main refinancing rate, and the deposit

rate, but which policy rate acts as an anchor differs across regimes.

The remainder of this section is separated into three parts: a detailed part

dedicated to the Eonia rate, a brief part dedicated to rates with longer maturities,

and a concluding discussion.

1.3.1 Eonia rate

The key idea for modelling IIRs in a normal regime is the substitutability between

funds obtained from the ECB and funds obtained from other commercial banks.

Specifically, commercial banks always have an option to obtain funds from the

ECB through regular refinancing operations, the price of which is given by the

main refinancing rate (MRR). At the same time, banks can in principle always

borrow from other commercial banks through overnight interbank market, with

averaged prices of such transactions recorded as the Eonia rate. This suggests
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that the Eonia rate should not be significantly higher than the MRR, as otherwise

banks would profit from an arbitrage opportunity by borrowing from the ECB and

lending to other commercial banks. Therefore, the Eonia rate should be equal to

the MRR plus the spread to compensate banks for the associated risk of lending

funds to other commercial bank. Denoting the Eonia rate in the given period

with the general label IIRt we obtain the following simple model:

IIRt = β0 +MRRt + ϵt (1.1)

Though this equation seems quite innocuous, it embodies three important assump-

tions: (1) the absence of other policy rates and excess reserves, (2) the absence of

future (or past) values of the MRR, (3) the assumption that the IIR move one-

for-one with the MRR, i.e., that the spread does not vary with the level of MRR.

The first and third assumption reflect theoretical and empirical considerations;11

I discuss the second assumption in greater detail in Appendix 1.B.3.

The relationship captured by equation (1.1), however, should be expected to

hold only in situations when the ECB is adjusting the amount of liquidity to

ensure that the Eonia rate is close to the MRR and, therefore, when there are

no excess reserves. The arbitrage argument above explained why the Eonia rate

should not be significantly above the MRR. However, since excess reserves are

remunerated by the DR, and since the DR is always below the MRR, there is

potential for the Eonia rate to be below the MRR when there are excess reserves.

Simply, the opportunity cost of lending to other commercial banks is the DR, not

the MRR. This means that when commercial banks have excess reserves, they are

willing to lend to other commercial banks at rates below the MRR, as long as

11Specifically, prior to the switch to a full-allotment policy, the ECB had been continuously
adjusting its liquidity provisions to ensured that the Eonia rate is close to the MRR, which ensures
both the irrelevance of other policy rates (assumption 1) and the one-for-one co-movement with
the MRR (assumption 3). It also ensured that there were no excess reserves during the normal
regime. See Figure 1.4 for empirical support for these assumptions. Appendix 1.F provides
formal tests of the first and third assumptions, showing that it is indeed the case that other
policy rates and excess reserves do not influence IIRs in the normal regime, and that in that
regime IIRs move one-for-one with the MRR.

29



they receive a rate above the DR. This suggests that in the presence of excess

reserves, the Eonia rate is anchored by the DR rather than the MRR, something

I have empirically established in the previous section. Overall, we are left with a

two-regime relationship between the Eonia, the MRR and the DR:

IIRt =

⎧⎨⎩β10 +MRRt + ϵt if DER
t = 0

β20 + β21DRt + ϵt if DER
t = 1

(1.2)

Here DER
t is regime dummy variable indicating whether excess reserves are present

or not, so that the equation (1.2) is an exogenous regime-switching model, with the

presence of excess reserves determining the prevalent regime. Correspondingly, I

label the regimes normal regime and excess reserves regime. Postulation of this

regime-switching specification is the first main contribution of this chapter in terms

of modelling approach.

Two comments are in order with respect to equation (1.2). First, note that I

allow for the spread between the IIR and the DR to depend on the level of DR, in

contrast to the normal regime captured in equation (1.1). Second, as in equation

(1.1), I assume that other policy rates do not influence the IIR in excess reserves

regime, a restriction that is tested in Appendix 1.F.

Equation (1.2) omits the second channel of excess reserves stressed in section

1.2.3: the effect of the amount of excess reserves on the size of the spread between

the IIR and the DR. This means that equation (1.2) is somewhat incomplete: we

need to include amount of excess reserves as one of the regressors. Assuming a

general functional form linking excess reserves and the IIR, we obtain the following

specification:

IIRt =

⎧⎨⎩β10 +MRRt + ϵt if DER
t = 0

β20 + β21DRt + β22g(ERt) + ϵt if DER
t = 1

(1.3)

where ERt is the amount of excess reserves. To estimate (1.3) we need to specify
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Figure 1.8: Log excess reserves and the Eonia rate the spread

Notes: The horizontal axes corresponds to a logarithm of excess reserves in billion euros at
monthly frequency. The vertical axes are spreads in basis points (left panel) and a logarithm of
this the spread (righ panel). The linear fit corresponds to linear regression with a constant. The
sample covers 2009M01-2019M08.

the exact functional form of function g(·) linking IIRt and excess reserves. Figure

1.7 suggests that the effect of additional excess reserves should be decreasing in the

amount of already accumulated excess reserves, indicating a concave function. A

logarithmic function is a natural choice. Indeed, the left panel of Figure 1.8 shows

that when we display a scatter plot of the Eonia rate the spread vs the logarithm

of excess reserves, we achieve a reasonably good linear fit.

While using a logarithmic function ensures that the effect is concave, it does

not ensure that the IIR does not go below the DR. Both theory and international

experience reviewed by Bowman, Gagnon, and Leahy (2010) strongly suggests that

IIRs in the eurozone should not decrease below the DR. This would suggest that

the specification above is globally invalid and hence potentially misspecified as it

allows for such possibility for high enough values of excess reserves. To obtain a

fully correct specification we would have to allow the effect of additional excess
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reserves to approach zero not only with the level of excess reserves, but also with

the size of the spread between the IIR and the DR. One simple way to do this,

suggested by the superior fit of the right panel of Figure 1.8, is to use a logarithmic

transformation of the spread between the IIR and the DR in excess reserves regime

as the dependent variable, yielding following specification

f(IIRt) =

⎧⎨⎩IIRt −MRRt = β10 + ϵt if DER
t = 0

log(IIRt −DRt) = β20 + β22g(ERt) + ϵt if DER
t = 1

(1.4)

In this specification the dependent variable is either the spread between the

Eonia rate and the MRR, or log-spread between the Eonia rate and DR. I use

both equation (1.3) and (1.4) in the following sections.

1.3.2 Euribor rates

While the primary focus of this chapter is on the Eonia rate, I also provide indica-

tive results for IIRs with longer maturity, i.e. the Euribor rates. There are two

main differences between the Eonia rate and the Euribor rates that should be re-

flected in any model. First, while the overnight Eonia rate should (mostly) reflect

only the current value of policy rates, rates with longer maturity should reflect ex-

pectations about future policy rates (and other policy instruments), in accordance

with the expectational hypothesis. Second, the longer maturity of these rates also

means that their risk component explains a much larger fraction of the variation

in these rates: over longer periods, there is a greater chance that liquidity or credit

risk will materialize.

In light of these considerations, can models (1.3) and (1.4) be used for the

Euribor rates? If one were to use these models also for Euribor rates, one would

be omitting the two expectations and risk components from the model. Effectively,

one would be modeling the long-run (steady state or equilibrium) component of

the Euribor and ignoring the transitory components related to expectations and
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risk components. From the perspective of estimation, there is a risk that this will

lead to biased coefficients due to the omitted variable bias. Nevertheless, this is

the approach I follow in the main text; meanwhile, in Appendix 1.B.3, I show that

when I use proxy variables for the two missing components, the results are virtually

unchanged.12 This is not surprising given that in the main sample of interest there

were no fluctuations in the risk component and almost no fluctuations in the

component related to expectations of future changes in policy rates. Moreover,

even if these components were present, not including them in the model does not

have to be problematic from the perspective of the main empirical question of

this chapter; only if these components were systematically correlated with excess

reserves would this cause bias in relevant coefficients. I discuss this issue further

in the following subsection.

1.3.3 Potential sources of bias

The modelling approach presented above warrants further discussion of potential

sources of bias in coefficient estimates. Here, I address two such potential sources,

(i) endogeneity of excess reserves and (ii) endogeneity of policy rates. Meanwhile,

in Appendix 1.B.3, I also discuss two more potential sources: (iii) the absence

of expectations of the future path of policy rates and (iv) the use of the proxy

for financial market stress.13 These other two concerns are relevant for IIRs with

longer maturity but unlikely to significantly affect the Eonia rate given its 1-day

maturity.

Before the discussion it is important to point out that the interest of this

chapter lies in effect of changes in the IIR due to changes in excess reserves resulting

from the QE program. This means that even if some coefficients are biased, the

conclusions would remain intact. To see this, consider defining the effect of the

12The appendix also explains why using overnight index swaps as proxy for policy rate ex-
pectations is not viable option. Correspondingly I use actual realized future policy rates as a
proxy.

13The appendix first argues that these issues are unlikely to invalidate the empirical results
and then shows that when I control for them the results are indeed unchanged.
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QE (EQE) as the difference in the IIR prevailing with and without QE:

EQEt ≡ IIRQE
t − IIRNOQE

t = (1.5)

=
{︂
(1−DER,QE

t ) [β01 + β11MRRt] +DER
t

[︂
β02 + β12DRt + β22f(ERQE

t )
]︂}︂

−

−
{︂
(1−DER,NOQE

t ) [β01 + β11MRRt] +DER
t

[︂
β02 + β12DRt + β22f(ERNOQE

t )
]︂}︂

= β02 + β12DRt + β22f(ERQE
t − β02 + β12DRt + β22f(ERNOQE

t

= β22

(︂
f(ERQE

t )− f(ERNOQE
t )

)︂
where QE indicates values of variables under QE, while NOQE indicates values

of variables without QE. The first line follows from defintion of the model in

equation (1.3). The second-to-last equation follows from assuming that DER,QE
t =

DER,NOQE
t , which amounts to assuming that a change in excess reserves due to the

QE did not lead to a change in regime. This is indeed the case for all the results

presented in following sections. Finally, the last equation follows from assuming

that the coefficients capturing the relationship between IIRs and monetary policy

variables is unchanged by the sole presence of the QE program, which is supported

both by theoretical considerations and empirical evidence presented in Appendix

1.F. The main takeaway is that all coefficients except for β22 are eliminated in the

comparison, so that we should be concerned only about factors that bias β22; bias

in any other coefficient will not influence our estimate of the effect of the QE on

IIRs.

Endogeneity of excess reserves. Equations (1.3) and (1.4) include excess

reserves as an independent variable, indicating that excess reserves affect interbank

interest rates. However, it is plausible that there is also a reverse relationship: the

amount of excess reserves could also respond to the level of IIRs. This is because

excess reserves are partly determined by the actions of commercial banks via their

borrowing from a central bank in refinancing operations. Since obtaining liquidity

from central bank or from other commercial banks are partly substitutes, then a

decrease in the Eonia rate should lead to lower demand for refinancing from the

34



ECB and hence lower amount of excess reserves. In econometrics terminology this

implies that the IIRs and excess reserves form a simultaneous equation system,

creating the possibility of biased coefficient estimates.

This is the main reason why in estimation I primarily focus on the QE pro-

gram period: in this period it was the actions of the ECB that were clearly the

main driver behind the evolution of excess reserves, weakening the potential for

simultaneity bias driving my results. Moreover, when estimating the equations I

eliminate this possible source of endogeneity so that I eliminate this as a poten-

tial driver behind my results. Finally, note that the simultaneity bias in the QE

period is likely to be positive - excess reserves should be lower when the IIRs are

lower - which means that if true coefficients in (1.3) and (1.4) are negative then

the estimated coefficients will be attenuated towards zero. Hence, finding negative

coefficients is likely to occur despite the estimation bias.

Endogeneity of policy rates. Another potential source of estimation bias

is the reverse causality between IIRs and the ECB policy rates: It is possible that

outside shocks to IIRs could prompt the central bank to adjust its monetary policy

rates. In such a situation, the coefficient estimated from the model linking IIRs

and policy rates could be biased. However, as argued above, the only coefficient

that will be important in our empirical analysis is the coefficient on excess reserves,

which is unlikely to be influenced by this possible endogeneity of policy rates with

respect to IIRs, especially in the main estimation sample covering the period of

the QE program. During that period, excess reserves were continuously increasing

more-or-less according to the pre-determined profile of asset purchases, making

correlation with any non-trending factor statistically impossible. Moreover, if such

correlation is present it is most likely positive, and hence would cause upward bias

in our coefficient of interest and correspondingly smaller estimated effects of excess

reserves. Hence, as above, finding negative coefficients is likely to occur despite

the estimation bias.

There is another possible, more complex relationship between IIRs and policy

rates, resting on the endogeneity of monetary policy instruments to macroeconomic
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developments. The stance of monetary policy, and hence the values of its instru-

ments, responds to macroeconomic developments, and specifically to the inflation

outlook. Insofar as it is IIRs that influence these macroeconomic developments,

one could imagine that shocks to IIRs influence monetary policy instruments, in-

cluding the size of balance sheet, indirectly. Further, in this case, the resulting

correlation and bias are unlikely to be strong, and if anything more likely to be

positive.

1.4 Estimation

In this section, I discuss estimation results for models (1.3-1.4) together with their

fit. I discuss results from two different estimation exercises, corresponding to

two estimation samples. First, I present the estimates based only on the period

of the QE program, during which the variation in excess reserves was, to a large

degree, reflecting actions of the ECB, rather than the actions of commercial banks.

Hence excess reserves are closer to being exogenous with respect to the dependent

variable, as I discussed above. Then I present results estimated on the whole

sample. Here I focus only on the non-linear model (1.4) for brevity. The discussion

is more detailed in the case of the Eonia rate, as that forms my primary focus,

and relevant conclusions also apply to Euribor rates.

In the main text I use monthly frequency of the data for expositional conve-

nience.14 There are two reasons for this choice of frequency. First, the purchases of

assets under the QE program were targeted to be constant at monthly, not weekly,

frequency, leading to higher volatility of excess reserves when viewed at weekly

frequency. Second, the focus of this chapter is on the effect of medium- and long-

term developments in excess reserves, and hence monthly frequency corresponds

more closely: in addition to more volatile values for excess reserves, the IIR also

feature significantly more volatility at weekly frequency. It is unlikely that the

14The results for other frequencies are presented in Appendix 1.B. They are qualitatively and
quantitatively not different from results at monthly frequency.
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short-term volatility in these series is related to the QE program.

1.4.1 Robust estimation sample

I start with estimation results for a sample in which excess reserves varied mostly

for exogenous reasons and hence coefficient estimates should be most robust. This

is the sample covering the period of asset purchases under the QE program, March

2015 until August 2019, yileding 56 observations. Since the QE program was

initiated in a period when there was already a large amount of excess reserves,

estimation of models based only on this period have a single regime, excess reserves

regime. During this regime equations (1.3) and (1.4) simplify to the following:

IIRt = β0 + β1DRt + β2log(ERt−1) + ϵt (1.6)

log(IIRt −DRt) = β0 + β2log(ERt−1) + ϵt (1.7)

I refer to equation (1.6) as a linear model and to equation (1.7) as a non-linear

model. Two comments are in order. First, I used the lagged value of excess

reserves. Since theory does not provide strong suggestions about the timing of

the effect, I experimented with three different specifications of the timing of this

regressor - concurrent, lagged, and both - and chose the lagged timing as it led to

the overall best model fit across various estimation methods. Appendix 1.C shows

that the results are broadly unchanged when different timing is used. Second, I

allow ϵt to follow a general ARMA process when applicable.15

I use several different estimation methods to address potential issues with the

estimation strategy and to highlight the robustness of the results. I start with

simple OLS, therefore ignoring the (potential) endogeneity of excess reserves and

15The ARMA structure is selected based on model fit criteria and formal statistical tests for
the presence of autocorrelation in residuals; the reported results are virtually unchanged when
alternative specifications are used: see Appendix 1.C. The appendix also contains results for an
alternative to allowing ϵt to follow an ARMA process: inclusion of a lagged dependent variable.
The model with ARMA errors always had a better fit and the conclusions when using lagged
dependent variable are unchanged.
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non-stationarity of the series in the regression. Next, given the potential bias in

OLS coefficient estimates due to endogeneity of excess reserves, I turn to a TSLS

estimation. Specifically, thanks to the fact that QE purchases are pre-determined

to occur at fixed rates over prolonged periods of time, I can use the balance of

assets purchased under the QE program as an instrument for the amount of excess

reserves. Moreover, since asset purchases are the main driver of excess reserves

over the period, they are very strong instruments.

Both OLS and 2SLS effectively ignore the time-series nature of the series under

analysis. Most importantly, the methods ignore that all three series are likely

to be non-stationary. Indeed, key added value of this chapter is to argue that

the spread between the Eonia rate and the deposit rate (DR) depends on excess

reserves, a series that is clearly non-stationary. This on its own implies non-

stationarity of the Eonia rate, which is confirmed by formal statistical tests, see

Appendix 1.F.2. At the same time, the model postulates that, after accounting

for excess reserves, the spread between the Eonia rate and the DR is stationary,

or in other words, that excess reserves are the only source of non-stationarity.

In econometrical terminology, the Eonia rate, the DR and excess reserves form a

co-integrating relationship. Again, I confirm this using formal statistical tests in

Appendix 1.F.2. Given this conclusion, I next turn to estimation methods based

on cointegration analysis. I present the results from 2 alternative cointegration

estimators:16 First, I use the autoregressive distributed lag approach of Pesaran

and Shin (1998). Second, I use the non-parametric approach of fully modified OLS

(FMOLS) proposed by Phillips and Hansen (1990).

Before turning to results it is worth emphasizing that, in the view of the coin-

tegration, the OLS estimates discussed before are valid even if excess reserves

are endogenous: since equations (1.6) and (1.7) are effectively cointegration re-

lationships, then the associated coefficients are super-consistent, which ensures

consistency even in the presence of endogeneity.

16Results from other estimators are in Appendix 1.C. The estimated coefficients are virtually
unchanged.
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Figure 1.9: Model fit - single-regime models

Notes: The fitted values are based on equations (1.6) and (1.7), respectively referred to as linear
and non-linear models. Both equations have been estimated using the FMOLS method with
results reported in last column of Table 1.2 and 1.3, respectively.

Table 1.2 presents the estimation results from all estimation methods for equa-

tion (1.6) and Table 1.3 presents results for equation (1.7). Meanwhile, figure 1.9

shows the fit of the equations in terms of the level of Eonia rate and in terms of the

spread from the DR. Since the estimated coefficients are very similar across the

methods presented in Table 1.2, as well as other methods presented in Appendix

1.C, I show figures and provide discussion of results only for one representative

estimation method, FMOLS, which, out of the two robust cointegration regression

methods, has a better model fit as demonstrated by higher R2. The qualitative

conclusions are unchanged and quantitative conclusions are only mildly different.

Both linear and non-linear model have a very good fit, which can be seen both

in the tables and the figures. First, the models are able to explain almost all

of the variation in the level of the Eonia rate, as evidenced by the left panels in

Figure 1.9. The Eonia rate is predicted to decrease rapidly over the first year of
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Table 1.2: Estimation results for the Eonia rate - linear model

Method
Coefficient OLS TSLS ARDL FMOLS

0.300*** 0.240*** 0.226*** 0.337***
β0 (0.021) (0.019) (0.042) (0.018)

(constant) [14.436] [12.381] [5.391] [18.484]
0.947*** 0.917*** 0.938*** 0.902***

β1 (0.059) (0.025) (0.043) (0.034)
(DRt) [16.161] [36.389] [21.742] [26.346]

-0.038*** -0.031*** -0.028*** -0.045***
β2 (0.006) (0.003) (0.007) (0.004)

(ERt−1) [-6.654] [-9.785] [-3.953] [-11.305]

Observations 56
ARMA/Lag structure MA(2) MA(1) (3,1,2) -

Model R2 0.996 0.997 0.983 0.991
MRR-spread R2 0.992 0.995 0.973 0.986
DR-spread R2 0.907 0.946 0.707 0.844

Notes: The table shows point estimates, with standard errors in round brackets and correspond-
ing t-statistics in square brackets. The standard errors are heteroskedasticity and autocorrelation
consistent due to use of Newey-West standard error estimator, where applicable. *,**,*** indi-
cate significance at 10%, 5% and 1%. ARMA/lag structure indicates the order of ARMA errors
or the lag structure of the ARDL model (number of lags of the dependent variable, followed
by the number of lags of independent variables). For the ARDL model I report results for the
implied long-run form corresponding to the cointegration relationship. Order of ARDL model is
selected according to Bayesian information criterion with maximum 4 lags for both dependent
and independent variables.
See footnote 17 for details about R2 measures.
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Table 1.3: Estimation results for the Eonia rate - nonlinear model

Method
Coefficient OLS TSLS ARDL FMOLS

0.538*** 0.581*** 0.069*** 0.390***
β0 ’(0.241) ’(0.237) ’(0.337) ’(0.256)

(constant) [2.232] [2.449] [0.206] [1.520]
-0.506*** -0.513*** -0.444*** -0.487***

β1 ’(0.035) ’(0.034) ’(0.047) ’(0.036)
(ERt−1) [-14.618] [-15.072] [-9.447] [-13.337]

Observations 56
ARMA/Lag structure MA(1) MA(1) (1,0) -

Model R2 0.888 0.888 0.985 0.886
MRR-spread R2 0.991 0.991 0.977 0.99
DR-spread R2 0.9 0.901 0.762 0.89

Notes: See notes under Table 1.2 for explanation of the values in the table.

the sample and more gradually after. The majority of the initial decrease can

be explained by the two decreases in the DR that occurred in December 2015

and March 2016. While this is, in hindsight, obvious effect, a model which would

include only the MRR, as is customary, would not be able to explain this effect,

which highlights the first contribution of this chapter (see discussion below for

more detail). Meanwhile, the right panels in Figure 1.9 show the importance of

the second contribution of this chapter: the role played by the amount of excess

reserves. While without excess reserves the spread between the Eonia rate and the

DR would be (almost) constant, which is at odds with reality: the actual model

predicts a large gradual decrease in the spread, corresponding to the increase in

excess reserves. This increase in excess reserves is driven by the QE program, a

topic of the next section.

I also document the very good model fit by three quantitative measures: model

R2, as well as R2 in terms of the spread from the MRR and the DR, respectively.17

17The three different measures of model fit are calculated as follows:
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Not only is the linear model able to explain 99.1% of the variation in the level of

the Eonia rate, but it is also able to explain 98.6% of the variation in the spread

of the Eonia rate from the MRR and 84.4% variation in the spread from the DR.

To highlight both contributions of this chapter in terms of modelling the Eonia

rate, Figure 1.10 compares the fit of the non-linear model in terms of the spread

between the Eonia rate and policy rates with simple (and common) alternatives.

The left panel demonstrates that using a simple model based on the MRR (rather

than the DR) estimated on the whole available sample would lead to almost no

variation in the predicted Eonia rate and correspondingly to a bad fit. Another

alternative - using the average value computed over given sample - would of course

lead to a better fit, but not substantially. Meanwhile, the right panel shows that

using the DR (rather than the MRR) would lead to some variation in the Eonia

rate and a significantly better fit, as argued by this chapter and hence highlighting

the first modelling contribution. Still, the fit would be rather poor since the model

does not include excess reserves and, as such, the spread from the DR changes

1) The model R2 is the coefficient of determination of the estimated equation. This can be
interpreted as a share of the variance of the dependent variable explained by the model; both its
structural and non-structural parts (Briefly, the structural part refers to the equation without
ARMA errorrs.) This is not comparable between linear and non-linear models, as they have
different dependent variables, or between models with and without dynamics terms, as those
artificially increase R2.
2) The MRR-based R2 is normalized so that it is comparable across models with different de-
pendent variables. Specifically, for each model I compute the predicted values of the Eonia rate
based on the structural part of the model. I then compute the implied spread from the MRR
in order to eliminate the variation originating in the MRR. This is done for two reasons: First,
variation in policy rates can explain the vast majority of variations in the Eonia rate, and hence
not accounting for it would result in very high R-squared, lowering its information value. Second,
constant spread between the Eonia rate and the MRR would be a reasonable baseline model.
Finally, I compute the total sum of squares (TSS) and residual sum squares (RSS) as well as
the corresponding coefficient of determination: R2 = 1 − RSS

TSS . This can be interpreted as the
fraction of the variation in the spread between the Eonia rate and the MRR explained by the
model.
3) The DR-based R2, which is calculated analogically to the MRR-based one, but uses the DR
instead of the MRR. Correspondingly, the value can be interpreted as the fraction of the spread
between the Eonia rate and the DR explained by the model. This metric can highlight the role
played by the amount of excess reserves, as opposed to the role played by a regime switch from
the MRR to DR. Note that ordering of the models is the same irrespective of whether the MRR-
or DR-based R2 is used, but potentially not when model-based R2 is used.
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Figure 1.10: Model fit - Comparison with simple alternatives

Notes: The fitted values are based on equation (1.7) estimated using the FMOLS method.
"Average" refers to the average of the spread between the Eonia rate and the respective policy rate
over 2015M03-2019M08 sample. The regressions are simple linear regressions of the Eonia rate
on respective policy rate, based on the 2002M01-2019M08 sample, with the following coefficient
estimates: Eoniat = −0.38 + 1.12 ∗MRRt and Eoniat = 0.24 + 1.34 ∗DRt.

only with changes in the DR. This highlights the second modelling contribution of

this chapter.

Turning to individual coefficients, the estimation results confirm the main hy-

pothesis of this chapter: there is negative relationship between excess reserves and

the spread between the Eonia and policy rates. The relationship is both highly

statistically significant and economically important. To help interpret the coeffi-

cients on excess reserves, Figure 1.11 shows the predicted values of the spread from

the DR (left panel) and the effect of an extra 10 billion euros in excess reserves on

this the spread (right panel) for both models. The left panel makes it clear that

the effect of excess reserves is substantial: in both models, the spread between the

Eonia rate and the DR decreases from around 20 basis points (bps) to around 4bps

as excess reserves increase from 50 billion to 1800 billion euros. Meanwhile, the

right panel makes clear that the effect of excess reserves quickly diminishes: at 50

billion in excess reserves the estimated effect of extra 10 billion in excess reserves

is almost 1bps for the linear model and almost 2bps for the non-linear model, but

at 200 billion in excess reserves, this becomes 0.2bps and 0.3bps, respectively. At
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Figure 1.11: Implied effects of excess reserves

Notes: The left panel shows the predicted the spread between the Eonia rate and the DR
corresponding to different values of excess reserves. In case of model (1.7), the DR is set to
-0.4%, as that was the prevailing rate for most of the sample under consideration. In addition,
the graph includes several observed values of the spread taken from Figure 1.7.
The right-hand panel shows the effect of additional excess reserves on this spread: the predicted
change in the Eonia rate as a consequence of 10 billion euro increase in excess reserves.

levels of excess reserves observed in 2018-2019 period, the effect is almost zero.

The figure also highlights the difference between the two models: the non-linear

model implies a larger effect at lower values of excess reserves and a smaller ef-

fect at higher values. This is what one would expect given the differences in the

structure of the models.

As a final note, notice that the estimated coefficients are very stable across

different estimation methods that take into account the possible endogeneity of

excess reserves, which is true even for the significance of the coefficients. This sug-

gests that the results are not driven by this potential endogeneity bias. Appendix

1.C.6 additionally shows that the results are also not driven by a potential alter-

native channel: the bond purchases under the QE program could lead to decreases
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Table 1.4: Estimation results for Euribor rates

Linear model Non-linear model
Coefficient 1W Euribor 3m Euribor 1W Euribor 3m Euribor

0.316*** 0.599*** 3.069*** 2.843***
β0 (0.024) (0.054) (0.633) (0.745)

(constant) [12.951] [11.107] [4.848] [3.815]
1.109*** 1.111***

- -β1 (0.045) (0.100)
(DRt) [24.478] [11.106]

-0.034*** -0.064*** -0.926*** -0.724***
β2 (0.005) (0.012) (0.090) (0.107)

(ERt−1) [-6.315] [-5.413] [-10.234] [-6.801]

Observations 56 53 56 53
Model R2 0.974 0.972 0.698 0.565

MRR-spread R2 0.96 0.96 0.972 0.778
DR-spread R2 0.627 0.79 0.738 -0.159

Notes: See notes under Table 1.2 for explanation of the values in the table. The sample is
restricted to end in 2019M05 due to negative value of the spread in months after, likely reflecting
expectations of policy rate changes that actually occurred in September.

in bond yields, which in turn could lead to decreases in interbank rates.

EURIBORs. To complement the results for the Eonia rate, I also briefly

discuss results for Euribor rates with two selected maturities, 1-week and 3-month.

Table 1.4 shows coefficient estimates using the FMOLS estimation method for both

models.18 The main takeaways are the same as for the Eonia rate: the models are

able to explain a large share of the variation in the rates. Unsurprisingly, the

R2 for the spread from either policy rate is lower than in the case of the Eonia

rate, reflecting the presence of expectations and stress components that I do not

control for. Still, even for the 3-month Euribor the model explains more than three

quarters of the variation in the spread from the MRR and more than half in the

spread from the DR.

18Results for remaining methods and maturities are presented in Appendix 1.B and 1.C.
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In terms of our main coefficient of interest, the estimates provide support to the

main hypothesis: coefficients on excess reserves are negative and large as well as

strongly statistically significant in all cases. Therefore, it is safe to conclude that

the effect of excess reserves on interbank interest rates is not limited to risk-free

overnight rates, but is also present for the more important longer-maturity risky

rates. This is what one would expect, given that loans with different maturities

are substitutes for each other.

1.4.2 Full estimation sample

The single regime models provided ample evidence to support the main hypothesis

of this chapter: the presence of a negative relationship between excess reserves

and the Eonia rate. However, the model does not apply for the whole sample,

as argued in the previous section. Specifically, the relationship between excess

reserves and the IIRs is present only when there is a large enough amount of

excess reserves in the interbank markets. To determine the threshold and provide

model estimates that are valid for the whole sample, I now turn to estimation of

the two-regime model. For the sake of brevity I will focus only on the non-linear

model, relegating results for the (worse-fitting) linear model to Appendix 1.B, and

presenting results based only on the FMOLS estimation method. As before, the

results are qualitatively and quantitatively unaffected. I present results for the

Eonia and Euribor rates together, again focusing on the former in the discussion.

Before jumping to estimation results, it is important to point out that the

estimation in case of samples spanning multiple regimes is complicated by the

presence of multiple regimes. This means that one needs to specify which regime

prevails in each period, which is further complicated by the fact that the threshold

value is unknown and must be estimated. Fortunately, in the present case, char-

acterized by single exogenous threshold variable, this turns out not to be a major

complication: for the given threshold value, the estimation can proceed as if the

threshold is known. Therefore, I follow Chan (1993) and estimate the equation
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for all plausible threshold values of excess reserves and select the threshold value

leading to the smallest residual sum of squares (RSS).

Eonia. The first column of Table 1.5 presents the estimation results for the

Eonia rate. The main takeaway is that the coefficient on excess reserves is broadly

consistent with the value of the coefficient presented in Table 1.3: while based on

the robust sample I obtain the coefficient -0.487, based on the full sample I obtain

the coefficient -0.575, with a slightly increased standard error. Therefore, as in

the case of single-regime models, the estimation results from the general model

confirm the main hypothesis of this chapter.

As before, I report various measures of model fit, which are complemented

by Figure 1.12. Its top row shows the fit of the model for the Eonia rate, both

in terms of levels and the spread from the two policy rates, with yellow shading

indicating the prevalence of an excess reserve regime. As before, the model is able

to explain the vast majority of variation in the Eonia rate, as well as variation in

the spreads between the Eonia rate and policy rates. While the former finding is

not surprising, the ability to explain such a large share of variation in the Eonia

rate after accounting for variation in policy rates is a strong endorsement of the

model. Apart from the decrease in the spread from the DR in the QE program

period discussed in the previous subsection, the model is also able to partly explain

the variation of the spread from the two policy rates in the period from 2008M10

until the start of the QE program in 2015. Focusing on the spread from the MRR,

the behavior in 2013-2014 nicely illustrates the first contribution of this chapter -

the importance of anchoring the IIRs using the DR rather than the more common

the MRR. With the MRR decreasing but the DR remaining unchanged during this

period, the model predicts no change in the Eonia rate and, hence, its convergence

to the MRR, almost exactly matching the actual behavior.

Meanwhile, looking at the behavior of the spread from the DR, the period

from 2013 until the start of the QE program is another demonstration of the

second contribution of this chapter - the link between the amount of excess reserves

and the spread between the Eonia rate and the DR. During the first half of this
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Table 1.5: Estimation results - 2 regime models

Dependent variable
Coefficient Eonia rate 1W Euribor 3M Euribor

α01 0.051*** 0.102*** 0.238***
(constant) ’(0.008) ’(0.012) ’(0.045)

(NR) [6.702] [8.211] [5.296]
α02 1.044*** 2.804*** 3.808***

(constant) ’(0.365) ’(0.840) ’(1.159)
(ERR) [2.860] [3.339] [3.287]
α02 -0.569*** -0.883*** -0.866***

(ERt−1) ’(0.060) ’(0.138) ’(0.185)
(ERR) [-9.416] [-6.395] [-4.678]

Observations 212 209 209
Level R2 1.00 1.00 0.98

the MRR-spread R2 0.94 0.91 0.42
DR-spread R2 0.98 0.97 0.78

Threshold 22.85 31.61 87.10

Notes: Estimation results, sample 2002M01-2019M08. See notes under Table 1.2 for the expla-
nation of all values. NR refers to normal regime and ERR refers to excess reserves regime. Note
that the MRR-based R2 is in general lower than that of the DR-based R2, reflecting smaller
volatility of the former the spread in my sample due to higher values of the DR the spread in
the pre-2008 period.
Note that the FMOLS method is applicable only to the excess regime equation, since the normal
regime equation contains only stationary regressors. Therefore, the two regime equations are
estimated separately, with the normal regime equation estimated using OLS with HAC standard
errors. The two equations are then used to create combined fitted values for the IIRs on which
the resulting R2 is calculated.
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Figure 1.12: Model fit (two-regime models)
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period, the amount of excess reserves was decreasing, as multiple policies that

increased excess reserves were winding down. Meanwhile, during the second half

of this period, the ECB started multiple (small-scale) asset purchase programs,

leading to gradual increases in excess reserves. As a result, the model predicts

first increase and then decreased in the spread from the DR, again capturing the

actual developments.

To complement Table 1.5 and Figure 1.12, I also present basic results with

respect to the regime estimates for the Eonia rate. The left panel of Figure 1.13

shows the estimated paths of the regime dummy variable, DER
t , while the right

panel shows the RSS for different values of the threshold. The regime estimates

are intuitive for the most part: The excess reserves regime prevails more-or-less

continuously from October 2008, when the ECB switched to a full allotment policy

and initiated other liquidity infusions, leading to large increase in excess reserves.

The exception are a few months during 2011 when the normal regime prevailed,

corresponding to almost complete evaporation of excess reserves due to winding

down of various liquidity-infusing policies of th ECB. Meanwhile, the right panel

shows that the RSS as a function of threshold values is concave almost everywhere,

as desired: the fit first improves as the threshold for the excess reserve regime

increases, but then it starts to worsen rapidly.

EURIBORs. As before, I complement the results for the Eonia rate with the

results for Euribor rates based on models capturing only the equilibirum compo-

nent. Columns 2-3 of Table 1.5 show estimation results for 1-week and 3-month

Euribor rates, while the second and third rows of Figure 1.12 show the fitted values.

As in the case of single regime models, the model fit for Euribor rates is somewhat

worse than for the Eonia rate, but still very good. Similarly, the coefficient on

excess reserves is statistically and economically significant.

In addition to confirming my conclusions from the Eonia rate analysis, the co-

efficient estimates for rates with longer maturity also shed light on one additional

aspect of the data which was noticeable in Figure 1.2: there seems to be com-

pression of the spread between the IIRs with different maturity, with rates with
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Figure 1.13: Regimes estimates

Notes: The left panel shows the values of DER
t in each month corresponding to the value of the

threshold corresponding to the lowest RSS (red line) and the second lowest RSS (dashed gray
line). The right panel shows values of RSS for all considered threshold values, with the positions
of the lowest and the second lowest indicated by vertical lines.

longer maturity converging closer to rates with shorter maturity. This is mirrored

in my results in the fact that the coefficient on excess reserves is higher with longer

maturity. This suggests that the increase in excess reserves not only lowers all the

IIRs, but it also leads to compression of the spread between the IIRs with different

maturity. Finally, having estimates for the IIRs with longer maturity (and hence

a non-negligible risk component) allows me to highlight one additional feature of

the data: that most of the variation in the spread between Euribor rates and the

DR after 2009 can be explained by factors related to the ECB policy influencing

excess reserves and hence does not reflect stress in financial markets. This can

be clearly seen in the right panels for both Euribors, which show that the model

is able to explain the variation in the spread from the DR throughout most of the

sample. Since this variation reflects only excess reserves, then I can conclude that

the ECB policy explains most of this variation. This is especially interesting in the

case of period covering the height of Eurozone sovereign debt crisis in 2011-2012, a

topic I discuss at greater length in an unpublished companion paper (Kovar 2020).
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1.4.3 Contribution and links to existing literature

Before turning to the main empirical question of this chapter, it is useful to high-

light the contribution of this chapter so far. The first top line contribution focuses

on the link between interbank interest rates and excess reserves. While the link is

well known in policy circles - see for example various post-2014 issues of Economic

Bulletin from the ECB as well as other analysis from the ECB such as Boucinha

and Burlon (2020) - the link had a much smaller imprint on academic literature.

Among other things, this is reflected in misunderstanding the nature of the link,

leading to problematic model specifications. This can take several forms, from

relatively benign to very serious. At the relatively benign end of the spectrum

Corradin et al. (2020) and Arrata et al. (2020) use excess reserves in their linear

rather than logarithmic transformation. In contrast, the model of Bech and Mon-

net (2016) implies a logarithimic relationship similar to the one presented here.

A more serious misspecification centers on the time series transformation of the

dependent and independent variables. The presented model links levels of IIRs to

levels of independent variables, something that is justified by the cointegration

nature of the relationship between the variables. In contrast, some authors use

different time series transformations. Arrata et al. (2020) link changes in money

market rates (MMRs) to changes in excess reserves, which amounts to model mis-

specification given that the variables are cointegrated.19 Even more problematic is

the model of Corradin et al. (2020), which links the level of MMRs to changes in

excess reserves. Unsurprisingly, the authors do not find a significant relationship

between the MMRs and excess reserves, which is of course because MMRs depend

on the level of excess reserves.

The most problematic is the empirical analysis of Ogawa (2007), who estimates

a regression linking banks’ excess reserves holdings and overnight IIRs on a sample

of the original Japanese QE program, claiming to show that banks increased their

19However, in their case this treatment might be partially justified by the focus on money
market rates, which might not be fully cointegrated with the monetary policy variables, and by
the focus on the cross-section dimension of their dataset.
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holdings of excess reserves because of low IIRs. Similarly, critiques of interest rate

on reserves set by the Fed often argue that it lead banks to demand excess reserves,

see e.g. Selgin (2016) or Beckworth (2018). Of course, this chapter argues that the

relationship runs the other way around, in line with the notion that the aggregate

amount of excess reserves are determined by the central bank, as is widely accepted

in policy circles, e.g. Bernanke (2013).

The second key contribution focuses on the regime-switching nature of the

relationship between IIRs and the two main policy rates, and specifically the role

of excess reserves in changing the anchoring variable from the MRR to the DR.

While this regime-switching nature has also been acknowledged in the literature

- for example, Ryan and Whelan (2021) discuss the multiple regime nature of

monetary policy in general, while Boucinha and Burlon (2020), Rostagno et al.

(2019) and Altavilla et al. (2021a), among others, highlight that in presence of

excess reserves IIRs are anchored by the DR - existing works do not focus on this

nature and hence do not explore it in detail. In contrast, to my knowledge, this

chapter is the first work to provide systematic evidence for the regime-switching

nature in the form the event analysis presented in section 1.2.3. For example,

while Boucinha and Burlon (2020) highlight the (almost) complete pass-through

of the DR decreases into negative values of Eonia rate, they do not distinguish

between symmetric and asymmetric changes in the DR and the MRR, as this

chapter does. Similarly, none of the existing literature translates this notion into

asemi-structural model for IIRs.

Both the role played by excess reserves, and the regime-switching nature, also

have a bearing on studies that analyze pass-through of changes in policy rates

to bank deposit and lending rates (see e.g. the recent example by Altavilla et al.

(2021a)). First, insofar as deposit and lending rates reflect the cost of bank funding

- i.e. among else also IIRs - the pass-through of changes in policy rates could be

confounded by the variations in excess reserves. This is especially problematic

when the analysis is based on relatively few observations due to the focus on pass-

through of negative DRs. For example, when a decrease in the DR is followed by
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an increase in excess reserves - which was indeed the case in 12 months after the

first and second decreases in the DR below zero - then IIRs decrease more than

the policy rates. If deposit and lending rates also decrease in line with IIRs, then

the analysis would wrongly ascribe the decrease to effect of the change in the DR,

rather than to the increase in excess reserves.20

Moreover, this issue is not easily addressed by using a longer sample in the

analysis of the pass-though. In such a situation, the regime-switching between

the MRR and the DR anchoring IIRs will cause problems: throughout the whole

sample not a single policy rate will be an appropriate measure of changes in policy

stance. This discussion suggests that one needs to study pass-through from policy

rates to IIRs, accounting for excess reserves, and then pass-through from IIRs to

deposit and lending rates, something I plan to address in future research.21

The last key contribution lies in using the postulated and estimated model

to explain the movements in IIRs over the decade since the start of the financial

crisis. Insofar as understanding these developments is important, the explanation

of their behavior should provide a valuable service to users of IIRs time series. To

see this, consider two examples. First, among other things the model highlights

how the decreases in the MRR during 2013 were largely irrelevant for IIRs. While

this view is now accepted - for example Rostagno et al. (2019) states that the

decreases were motivated by the link between MRR and the cost of existing loans

of commercial banks from the ECB, not by their effect on IIRs - early analyses put

too much focus on these changes (see for example Hartmann and Smets (2015)).

The second example concerns the quantitative importance of excess reserves in

driving IIRs. Boucinha and Burlon (2020) make the observation that short-term

(OIS) rates decreased by more than the DR between June 2014 and the end of

2019. The authors link this to the fact that "the gap between the EONIA and

20Similar considerations apply to the question of pass-through speed : the estimates of speed
of pass-through could be heavily influenced by the changes in excess reserves.

21Altavilla et al. (2021a) control for excess reserves at the bank level when studying pass-
through to deposit and lending rates. This, however, accounts for cross-sectional variation, and
not for the aggregate effects of excess reserves discussed here.
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the DFR [DR] was somewhat larger in mid-2014 than it is now [the end of 2019]".

While this is a correct description, it misses the key point: the IIRs decreased more

because of the increase in excess reserves. Section 1.2.2 has already highlighted

how this increase in excess reserves was driven by the QE program, and thus the

greater decrease in IIRs compared with the DR can be (partly) explained by the

program, something I investigate quantitatively in the next section.

1.5 Quantitative easing and the IIRs

The model coefficient estimates presented in previous section firmly establish the

negative relationship between excess reserves and the IIRs. In so far as quantitative

easing policy leads to increase in excess reserves - something clearly visible from

Figure 1.3 and explained in Appendix 1.A - this on its own establishes that the

QE program led to decrease in IIRs. The remaining task that can be performed

with these estimated models is to quantify this effect, in order to answer the main

empirical question of the chapter: What was the overall effect of the QE on the

IIRs?

To answer this question, equation (1.5) suggests one would need to proceed

in three steps: (1) establish the effect of the QE program on amount of excess

reserves, so that one can establish what would be would be the amount of excess

reserves without the QE; (2) use this counterfactual amount of excess reserves to

determine the counterfactul level of the IIRs; and (3) calculate the effect of the

QE as the difference between predicted level of the IIRs with the observed level of

excess reserves and the counterfactual level of excess reserves. However, it turns

out that the first step - establishing the counterfactual amount of excess reserves

without the QE - is in principle impossible to do with certainty given the available

data. Fortunately, I can construct several plausible estimates that provide an

indicative range of the effects of the QE on excess reserves and hence on the IIRs.

This section is divided into two subsections. The first subsection discusses the

effects of the QE program on excess reserves and construction of a counterfactual
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path for excess reserves; the second then uses this couterfactual path to calculate

the effects of the QE on the IIRs.

1.5.1 ECB balance sheet during the QE program

The starting point in establishing the effects of the QE on excess reserves is to take

a closer look at developments in the ECB balance sheet during the QE program

period. Figure 1.14 captures the evolution of the balance sheet, with the left

panel capturing the asset side and the right panel capturing the liability side. In

addition, Table 1.6 captures the size of the asset and liability components just

before the start of the QE and at the end of the sample. In both cases the balance

sheet is suitably simplified.

As can be seen, the ECB balance sheet has more than doubled over the period

of the QE program, with most of the increase occurring between the beginning

of 2015 and the end of 2017, after which the size of the balance sheet remained

broadly unchanged. On the asset side, the vast majority of the change in the

balance sheet is accounted for by the increase in securities held for monetary policy

purposes, which leapt from 227 billion to 2.6 trillion, the result of various ECB asset

purchase programs. The remainder is mostly accounted for by increases in lending

to credit institutions. This development in top-level items masks an important

aspect of its evolution: even though total lending to euro area credit institutions

recorded only relatively small increases during this period, the two sub-components

- main refinancing operations (MROs) and the longer-term refinancing operations

(LTROs) - varied to a greater degree. Specifically, MROs became almost zero,

while LTROs increased by 277 billion, resulting in an overall increase in lending.

These two developments are likely related, since banks view liquidity obtained

from MROs and VLTROs as substitutes (Vogel 2016). Nevertheless, the decrease

in MROs can also be in response to the QE program - since the QE raises the

reserves of commercial banks, there is overall less need for banks to obtain liquidity

in the form of MROs. These conclusions are supported by the fact that MROs
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Figure 1.14: ECB balance sheet developments

decrease both in discrete fashion around increases in LTRO balances, and also

gradually over time. Finally, while other assets recorded some variations during

this period, the developments were not out of ordinary.

The picture is more complicated in the case of liabilities, with several items

recording substantial changes over the period. Most of the increase in total lia-

bilities is accounted for by increases in the liabilities to credit institutions. This

item effectively captures the deposits of financial institutions at the ECB and as

such is equal to excess reserves. However, the increase in this balance sheet item

is substantially smaller than both QE purchases and the overall increase of the

balance sheet. In other words, this item explains only about two thirds of the

increase in liabilities, in contrast to the asset side, where increases in securities

account for 90% of the overall increase. This suggests that asset purchases under

the QE program do not lead to equivalent increase in excess reserves.

The difference between the QE-implied increases in excess reserves and actual

increases can be accounted for by the remaining liabilities equally. While increases

in banknotes are not out of ordinary , the increase in liabilities to other residents

and non-residents is likely related to the QE program. This can be seen in Figure

1.15, which shows that these items are fluctuating with excess reserves, and hence

that the variation in other liabilities is causally related to the same forces, namely
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Table 1.6: ECB balance sheet comparison

Assets

30.1.2015 30.8.2019 Difference

Gold and gold receivables 343,867 431,861 87,994
Claims on non-residents 273,726 347,900 74,174
Claims on residents 35,549 19,509 -16,040
Lending to credit institutions 579,646 695,654 116,008
• Main refinancing operations 163,821 3,348 -160,473
• Longer-term refinancing operations 415,608 692,306 276,698
Other claims on credit institutions 62,134 35,146 -26,988
Securities of residents 603,358 2,835,533 2,232,175
• Securities held for mon. policy purposes 227,107 2,614,240 2,387,133

Liabilities

30.1.2015 30.8.2019 Difference

Banknotes in circulation 1,004,230 1,250,754 246,524
Liabilities to credit institutions 264,523 1,873,150 1,608,627
• Current accounts 227,385 1,318,399 1,091,014
• Deposit facility 36,557 554,736 518,179
Liabilities to other residents 111,448 415,267 303,819
• General government 76,284 278,115 201,831
• Other liabilities 35,164 137,152 101,988
Liabilities to non-residents 84,378 260,941 176,563

Total assets/liabilities 2,181,954 4,683,714 2,501,760

Notes: Data from the weekly ECB balance sheet reports.
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Figure 1.15: Liabilities to other residents

Notes: Data from the Statistical Data Warehouse.

the QE program. This is further supported by realizing that a negative DR also

applies to these accounts, and so these accounts are treated the same as credit

institutions’ accounts.

What do these observations imply about the counterfactual path for excess

reserves in the absence of a QE program? The discussion should make two things

clear. First, the most straightforward approach - subtracting QE purchases from

actually observed excess reserves - would lead to the nonsensical conclusion that

excess reserves would be negative without a QE program, since excess reserves for

most of the period are lower than QE purchases. Second, and as a result of this

first point, it is obvious that the counterfactual path will have to be constructed

based on assumptions on development in multiple components of the ECB balance

sheets; this means that there are multiple plausible counter-factual paths for excess

reserves which would prevail without the QE program, and that the final choice will

always be arnitrary to some degree. I leave detailed discussion of the construction

of alternative counterfactual paths to Appendix 1.D; here I will focus on two

alternative counterfactual paths that are most plausible a-priori, and one of which

provides reasonable upper bound for the counterfactual level of excess reserves and
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hence lower bound for the effect of the QE program.

One approach to construct a counterfactual path for excess reserves is to depart

from the initial value of excess reserves and to simply assume that this amount

of excess would change over the period of the QE program only in response to

changes in LTRO balances:

ERNOQE
t = ER2015W9 + (LTROt − LTRO2015W9)

This alternative is appealing because it avoids the issues raised in the previous

discussion, and especially by Figure 1.15: it does not require one to determine

the value of other balance sheet items throughout the period, since it does not

depart from observed excess reserves throughout the sample, but rather from the

observed excess reserves before the start of the relevant sample. The exact opposite

approach is to postulate and estimate amodel linking various balance sheet items

in a multiple-equation framework.22

The two resulting counterfactual paths, and the corresponding effect of the QE

program on excess reserves, are shown in Figure 1.16. Excess reserves under the

first counter-factual path would generally increase in the first half of the sample,

even though the increase is far from monotonous: there are several discrete jumps

corresponding to successive rounds of TLTROs, especially the TLTRO program

implemented in March of 2017, after which excess reserves are predicted to be

just above 600 billion. The resulting estimated effect of the QE on excess reserves

captured in the right panel increases gradually, reaching 1.2 trillion by the end of

2018, less than half of the increase in APP balances. The right panel also shows

one drawback of this approach: the estimated effect of the QE program is quite

volatile despite the fact that the increase in APP balances was smooth.

While relying on a multiple-equation model to produce the counterfactual path
22Briefly, the model has 4 endogenous variables - excess reserves, MRO balances, and the

two types of other liabilities in Figure 1.15 - and 4 exogenous variables - APP balances, LTRO
balances, banknotes, and other liabilities not-allocated. Excess reserves are treated as a residual
category that responds to all other variables, while other endogenous variables respond to APP
balances, LTRO balances and/or excess reserves.
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Figure 1.16: Counterfactual excess reserves

Notes: See Appendix 1.D for the description of the construction of the time series.

for excess reserves leads to a path that is qualitatively similar, the path is sub-

stantially lower throughout and especially at the end of the sample. Under this

alternative the excess would reach a maximum of 400 billion after the March 2017

LTRO, two thirds of the value of the first alternative. Moreover, after this jump,

excess reserves would be expected to decrease gradually, eventually dropping be-

low 100 billion. Correspondingly, the effect of the QE program on excess reserves

reaches 1.7 trillion. In contrast to the first alternative, the alternative based on a

multiple-equation model is supported by the smoothness of the effect of the QE

on excess reserves throughout time.

What drives the substantial difference between the alternatives? The key real-

ization is that the first alternative abstracts from developments in all other balance

sheet items, which in their sum would likely imply lower excess reserves. For ex-

ample, the alternative does not account for the observed decrease in MRO, which

is at least partly related to LTRO balances, due to substitutability between these

two categories. Even more importantly, multiple liability items increased over the

period of the QE sample, and would do so even in the absence of a QE program,

especially banknotes and other liabilities not allocated (as opposed to other lia-

bilities to EU and non-EU insitutions). Their increase means that excess reserves
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would decrease, but by departing from pre-QE levels of excess reserves, the alter-

native effectively ignores this fact. All this together suggests that the alternative

provides a conservative estimate of the effects of the QE on excess reserves. This is

useful insofar as it can be used in the construction of a lower bound on the effects

of the QE program on the IIRs. That said, most of the remainder of this section

will focus on the second alternative based on a multiple-equation model.

1.5.2 Effects of the QE program on the IIRs

In this subsection, I use the counterfactual path for excess reserves to forecast

the counterfactual path for different IIRs and hence estimate the effects the QE

policy had on these the IIRs. I focus on models estimated on a robust sample, and

present results from both linear and non-linear models and for all three maturities.

Figure 1.17 provides the first look at the effect of the QE on the IIRs: solid

lines are predicted values with observed excess reserves, while dashed lines are

predicted values with counterfactual excess reserves; orange lines correspond to

the linear model and green lines to the nonlinear model. As expected, in all

cases the rates would be higher throughout the QE period in the absence of a QE

program, reflecting the positive effect of the QE on excess reserves together with

the negative relationship between excess reserves and the IIRs. This finding is even

more significant in case of longer-maturity the IIRs: the third panel shows that

not only would the longer-maturity the IIRs be higher, but the models predict that

they would remain positive in the absence of a QE program during the first year of

the program. The rate turned negative in April 2015, less than two months after

QE purchases started; without these asset purchases, they would have remained

positive until the further decreases in the DR at the end of 2015 and beginning

of 2016. This suggests that, at mildly negative values of the DR, longer-maturity

IIRs are negative only if a QE program (or other policy causing elevated excess

reserves) is active.

To explicitly quantify the effect, Figure 1.18 presents the full time path of the
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Figure 1.17: Counterfactual forecasts

Notes: Predictions from models (1.3-1.4), coefficients of which are in tables 1.2-1.4. Predicted
values with the QE are based on observed values of excess reserves, while those predicted without
the QE are based on excess reserves shown in Figure 1.16.
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Figure 1.18: Estimated effects

Notes: For details, see notes under Figure 1.17. Solid lines indicate better fit of the given (linear
or non-linear) model.

differences between predicted values under the two alternative paths for excess

reserves. As before I present results for both models and all 3 maturities, while

indicating superior model fit with solid lines. In all cases, the effect gradually

increases during the first 2 years of the program, before dropping in March 2017,

corresponding to large increases in excess reserves due to VLTROs. However, since

excess reserves were predicted to decrease afterwards, the effect starts to increase

again. Moreover, as counterfactual excess reserves drop below 100 billion during

2019, the effect spikes. For the Eonia rate the peak effect is between 16-22bps,

depending on the model, while the mean/median effect over the whole sample is

6-7bps. Figure 1.18 also shows the effect based on a conservative counterfactual

path for excess reserves. Since under this counterfactual, excess reserves would be

substantially higher, the effect, especially the peak effect, would be substantially

lower, as suggested by the dashed gray line. That said, the effect is still somewhat

economically significant, with an average of 4bps and peak of 5bps. Meanwhile,

Appendix 1.E shows that the effects are also statistically significant .

The overall results are very similar for the 1-week Euribor rate, even though

the peak effect based on the (better-fitting) non-linear model is estimated to be
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even higher than for the Eonia rate, at 33bps. Finally, in case of the 3-month

Euribor, the non-linear model predicts a much higher effect on the average than

for the other two maturities (22bps), and also very high peak effect; that said,

these results should be taken with pinch of salt, since the likely-more-robust linear

model predicts much smaller effects. Overall, one can conclude that the effect of

the QE program on the IIRs was of the same order of magnitude as a reduction

in policy rates of a standard 25 basis point size.

The drop in the effect size in March 2017 captured in Figure 1.18 suggests an

important factor influencing the conclusions: the fact that, throughout the period,

excess reserves were also increasing due to other the ECB policies, especially be-

cause of VLTROs. To illustrate this, dashed-dot lines in last panel of Figure 1.17

capture the level of 3-month Euribor if excess reserves would have remained at

their average value for 2014. This shows that, in the absence of any change in ex-

cess reserves, the Euribor would be even higher than under the counteractual path

for excess reserves in the absence of a QE program: under this alterantive coun-

terfactual path the linear model predicts only mildly negative rates throughout

the whole sample, while the non-linear model (implausibly) predicts positive rates

all along. Therefore, it is only the combination of negative DR and the policy of

large-scale liquidity infusions that produce (substantially) negative IIRs; without

significant amounts of excess reserves the IIRs with longer maturity would likely

remain either mildly negative or even positive. In terms of effect this would trans-

late into an additional 5bps for the linear model. Taking the counterfactual path

at face value, this suggests that the combined policies influencing excess reserves

from the onset of the QE program lad to 21bps decrease in the 3-month Euribor

by the end of the sample.

The above paragraphs demonstrate not only that the effect of the QE on the

IIRs was substantial, but also that at the levels of DR actually observed, the IIRs

turn substantially negative only because of such policy. This conclusion is fur-

ther strengthened by realizing that the QE program was initiated in a situation

in which excess reserves were already elevated due to multiple VLTROs and ear-
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lier small-scale asset purchase programs programs: not only would the effect be

larger if initial excess reserves were lower, thanks to the concavity of the effect

of excess reserves; but even more importantly, the model suggests that without

excess reserves, the IIRs would remain positive irrespective of the value of the DR,

since in a normal regime, the IIRs are anchored by the MRR, which remained

non-negative.23 Therefore, the two main policies of the ECB over the second half

of previous decade - negative policy rates and large-scale asset purchase programs

- are highly complementary as far as the effect on the IIRs is concerned.

1.5.3 Contribution and links to existing literature

There is a burgeoning literature dedicated to the effect of unconventional monetary

policies on financial markets and the broader economy. Altavilla, Carboni, and

Motto (2021) provide a recent broad overview of this literature and a helpful

classification of impact channels into standalone channels and channels through

which each instrument has influenced the transmission of the other channels. While

the vast majority of existing literature focuses on the first category - and the

majority of that part of the literature focuses on the standalone effect of only one

policy, the QE program - authors such as Rostagno et al. (2019) and Altavilla,

Carboni, and Motto (2021) stress that it is the interaction of channels that is at

least as important as their standalone channels (see the quotes at beginning of this

chapter).

How does this section contribute to this literature? The contribution can most

clearly be seen in terms of he classification of Altavilla, Carboni, and Motto (2021):

this section belongs squarely to the second category of channels, the interaction

23Arguably, in such a situation, the ECB could have achieved negative IIRs by setting the
MRR to negative values and thus effectively paying commercial banks for borrowing from it,
rather than charging them for excess reserves. Of course the difference is that, under the actual
policy, the ECB achieved negative IIRs without incurring losses; the alternative might have been
politically unfeasible: The policy of negative interest rates faced large opposition throughout the
currency area, which would likely have been stronger if the policy were to entail losses for the
ECB, and hence would in some sense entail transfers from the ECB to commercial banks.
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channels, as it investigates the interaction between the QE program and nega-

tive policy rates. More specifically, this section is effectively quantification of the

channel in cell 3.1 in Table 1 in Altavilla, Carboni, and Motto (2021), which is de-

scribed as "[e]xtra liquidity [excess reserves] contributes to keeping overnight rate

at DFR [DR]". The contribution of this section is then highlighted by the fact that

Altavilla, Carboni, and Motto (2021) - or Rostagno et al. (2019), who also rely

on this classification - do not provide any further discussion of this channel and

correspondingly do not provide any references to existing research on this channel.

In a broader sense, this section also points to the limitations of existing empiri-

cal investigations of the unconventional monetary policy package, such as Rostagno

et al. (2019) and Rostagno et al. (2021). In those works the authors construct

couterfactual paths for IIRs in the absence of negative policy rates, the forward

guidance and/or the QE program.24 However, when investigating the effect of the

QE program the authors rely on a large scale VAR model. Since this model does

not include excess reserves, and hence the linkages between IIRs, excess reserves

and asset purchases, then their analysis assumes that there is no effect of the QE

program on the Eonia rate; see for example Figure 11.3 in Rostagno et al. (2021).

Insofar as the results in this chapter (or the own words of the authors of that

study) are taken at face value, this absence of the effect of the QE program on the

Eonia rate is incorrect and hence their analysis underestimates the effect on the

QE program on financial markets and the economy.

This limitation also points to the specific nature of the channel linking the QE

program and IIRs. To see this, one can ask the question ’Why doesn’t the empirical

strategy of Rostagno et al. (2021), which relies on event analysis methodology,

pick up the effect of the QE program on IIRs?’. The reason for this lies in what

underpins the event methodology: the forward looking nature of financial markets

24To analyze the effects of negative policy rates and forward guidance, the authors rely on
modifying distributions of expected IIRs teased from option prices for overnight index swap
(OIS) rates. For example, for the counterfactual path of OIS rates in the absence of negative
policy rates, they re-anchor the distribution at zero and reassign any negative values to zero. See
further comments on this below.
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(see e.g. Altavilla et al. (2019)). The way the effect of the QE program is typically

studied is by analyzing the changes in yields on bonds with medium- and long-

term maturity. If financial markets are forward looking then the announcement

(or news) of the future purchases under the QE program will have an immediate

effect on current bond yields, as is found in the literature (Altavilla et al. 2019;

Rostagno et al. 2021).

The problem is that this methodology cannot capture the effect of QE on

short-term IIRs. Since IIRs, and especially the Eonia rate, do not contain an

expectations component, then one cannot rely on the current market reaction to

identify the effect of future asset purchases.25 The other way to see this is in terms

of the classification of channels of QE programs into stock and flow channels.

While the channel identified in this chapter is firmly stock channel, in its nature it

is different from the regular understanding of the stock channel: it could be argued

it is the immediate stock channel, as opposed to the expected stock channel, because

it affects IIRs only once the asset purchases are made. Therefore, it lies in between

the flow channel and the usual stock channel, which reflects the expected stock of

purchases over the period of the QE program. Correspondingly, instead or relying

on announcement effects one has to rely - equipped with the theoretical arguments

discussed in 1.2.3 - on analysis of co-movement between asset purchase and excess

reserves on one hand, and excess reserves and IIRs on the other hand.

Finally, while this chapter was focused on the effect of the QE program on

IIRs, the estimated model could be used to answer related question: What would

be the value of the Eonia rate in the absence of negative DR? Existing literature

(Rostagno et al. 2019; Rostagno et al. 2021) typically assumes that in such a

scenario the Eonia rate would be zero throughout the sample covering negative

DR. Given that there is always small spread between the Eonia rate and the DR,

this would be the case only if MRR (like the DR) would also be set to zero. Since

25Altavilla et al. (2019) use a related argument as part of their identification strategy for the
QE channel. Note that this is also the reason one cannot use the monetary policy surprises from
that work to analyze the effect of the QE on IIRs.
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this is something the ECB was actively attempting to avoid (Rostagno et al. 2019),

then such counterfactual scenario is unlikely. A much more likely scenario is that

the MRR would remain somewhat above the DR, and hence the Eonia rate would

remain above 0. I leave more detailed investigation of these issues for future

research.

1.6 Conclusion

This chapter presents a novel model of interbank interest rates (IIRs), linking them

to two main policy interest rates of the ECB and highlighting the role of excess

reserves. The main feature of the model is its regime-switching nature, with the

prevalance of each regime determined by the presence of excess reserves. Excess

reserves not only influence which regime prevails and hence which policy rate acts

as an anchor for the IIRs, but in the excess reserve regime, they also influence the

spread between IIRs and the deposit rate. This suggests that policies that lead to

large increases in excess reserves have the effect of lowering the IIRs, as I show for

the case for the QE policy of the ECB. This policy caused the Eonia rate to be

lower by up to 22 basis points, and other the IIRs by even more, and hence played

a role in establishing negative IIRs.

The focus of this chapter was on causal effects of excess reserves and of the

QE policy. However, the model can be useful for other purposes, which is what I

focus on in two companion papers. The second chapter of this thesis highlights the

value of the model for forecasting the IIRs. Meanwhile, its unpublished companion

paper focuses on disentangling developments in the Euribor rates during the 2010-

2012 period. This period saw large movements in these rates, which are often

mis-attributed to movements in the risk components. The paper shows that the

majority of the movements in the Euribor rates during that period can be explained

by fluctuation in excess reserves, which are to a large degree controlled by the ECB

and hence not directly related to endogenous variations risk components. Future

applications could focus on the role played by the regime-switch in the IIRs in
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forecasting other macroeconomic variables, such as GDP or the term structure of

interest rates.
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1.A Evolution of excess reserves

1.A.1 Excess reserves from 2008 onward

This appendix discusses in greater detail the evolution of excess reserves over the

whole data sample.26 Figure 1.19 reproduces Figure 1.3 from the main text dis-

playing the current and deposit account balances at the ECB, and excess reserves

over period from 2002 to 2019. It clearly shows that up until September 2008, the

reserve holdings of banks were at all times roughly equal to the reserve require-

ments, with virtually all reserves being held in their current accounts and almost

none in their deposit accounts. This is not surprising since the institutional set

up of the euro zone monetary policy was forcing banks to economize on excess

reserves.

Figure 1.19: Excess reserves

This changed dramatically after the fall of Lehman Brothers in September 2008.

Following this event, the deposit account balances of commercial banks increased

dramatically to more than 200 billion, while current account balances remained

broadly unchanged. This increase was a combination of two factors. In reaction

to ongoing stress in funding markets, the ECB switched from fixed allotment to

full allotment procedure. This means that, instead of providing fixed amounts of

financing in its refinancing operations, it allowed banks to borrow as much liquidity

26Rostagno et al. (2019) provide complementary discussion focused on monetary policy stance
in general.
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as they wished, to which banks responded by borrowing large amounts of extra

liquidity. At the same time, the commercial banks were unwilling to lend this

extra liquidity to other banks reflecting heightened liquidity and credit risks, and

hence the banking sector overall had larger balances than before. This is reflected

in the right panel, which shows a corresponding large jump in excess reserves in

the fall of 2008.

During 2009 and 2010, excess reserves fluctuated wildly, with multiple decreases

to near-zero values, followed by increases to 200-300 billion. These fluctuations

mostly reflected changes in the total balance of liquidity obtained by banks in the

form of LTROs and hence reflect the behavior of commercial banks. In addition

to this asset side factor, excess reserves also changed, with fluctuations in other

liability side items. For example, between the beginning and end of 2009, liabilities

to non-euro area residents denominated in euro decreased by 250 billion. This

highlights that excess reserves can fluctuate due to changes both on the asset side

and the liability side of the EBC’s balance sheet.

At the beginning of 2011, excess reserves stood at around 30 billion, decreasing

all the way to 17 billion in April, which marks the lowest value in the period

after October 2008. This reflected a return of refinancing to pre-crisis values:

the sum of marginal refinancing operations and long-term refinancing operations

stood at 421 billion, compared with a previous maximum of 843 billion reached

in June 2010, and with 464 billion in August 2008. For the rest of 2011, excess

reserves were increasing, first gradually and rapidly from August. The initial

increase reflected higher demand from commercial banks during MROs. This was

later complemented by increases in LTROs reflecting the reaction of the ECB to

stress in funding markets related to re-intensification of stress in sovereign debt

markets. The last factor behind the increase in excess reserves was increased

asset purchases under the Securities Market Program (SMP), again in reaction to

stress in government debt markets, even though corresponding to these, the ECB

encouraged commercial banks to deposit some liquidity in the form of fixed term

deposits.
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As discussed in the main text, excess reserves recorded very large increases at

the end of 2011 and the beginning of 2012, reflecting the two rounds of very long-

term refinancing operations (VLTROs) and the lowering of reserve requirements.

The first was executed in December 2011, and amounted to 489 billion euro, while

the second was executed in February 2012, at 529 billion euro. Since these long-

term loans to commercial banks were not sterilized in any way, and since the

decrease in reserve requirements was not met by draining of excess reserves from

the interbank market, these actions directly led to increases in excess reserves.

Due to these factors, excess reserves reached almost 800 billion in May 2012, a

multiple of the maximum values observed prior to that.

The following months and years were characterized by gradual decreases in

excess reserves, reflecting the gradual repayment of the VLTRO loans by some of

the commercial banks. Between its peak and the end of 2013, the LTRO balances

decreased by more than half a trillion euro. On top of this decrease in LTRO bal-

ances, the ECB balance sheet also decreased due to other factors, such as decreases

in securities purchased under SMP due to their maturing. Altogether, the ECB’s

balance sheet decreased by 700 billion over this period. This left excess reserves

between 110 and 140 billion for most of 2014. In December that year, they again

started to increase, reflecting jumps in LTRO balances due to the new program

of targeted long-term refinancing operations (TLTROs) and thanks to small-scale

security purchases under various asset-backed security purchase programs. These

factors were then swamped by the large-scale asset purchase program announced

in January and implemented from March, discussed in greater detail in the main

text.

1.A.2 Effects of the ECB policies on excess reserves

This appendix discusses and illustrates the effects of the ECB policies on the ECB’s

balance sheet and on excess reserves, focusing on the VLTRO and QE programs

(which had the largest influence on excess reserves as illustrated in Figure 1.3 in
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the text).

I illustrate the effects of these two policies by studying their effects on the ac-

counting balance sheet of the ECB and of a generic financial institution (FI, most

commonly a commercial bank).27 For this purpose, Figure 1.20 shows a simplistic

scheme of the normal state of affairs for the ECB and financial institutions. The

ECB’s assets include, among other things, securities (typically government bonds)

and loans to financial institutions (typically main refinancing operations). The

main assets of financial institutions are loans to the non-financial sector, but to a

large degree also include various securities, typically government bonds. In addi-

tion to these two asset classes, financial institutions also always have deposits at

the ECB, which in pre-2008 times were mostly held to satisfy reserve requirements.

In terms of liabilities, financial institutions fund themselves mostly through com-

mercial deposits, but can also issue their own bonds or use loans from the ECB.

Figure 1.20: Normal balance sheets

VLTRO program. The VLTRO program consisted of loans granted to FIs,

that crucially were not sterilized, meaning that their effect on the ECB balance

sheet was not offset by additional countervailing actions. While the loans were

collaterilized by relevant securities, the securities remained on the balance sheets

of FIs from an accounting perspective. The overall effect on the schematic balance

sheets can be seen in figure 1.21.

The loans under VLTRO program have two connected effects on ECB’s balance

sheet under double-entry bookkeeping. First, on the asset side, the ECB increases

the size of loans to FIs. Second, the loans are executed by depositing the accounts

of relevant FIs, which from accounting perspective leads to an increase in liabilities.
27This approach is similar to that of McLeay, Radia, and Thomas (2014), who focus on money

creation in a modern economy, and also apply this approach to the QE program.
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Figure 1.21: Effect of VLTRO on balance sheets

Hence, both assets and liabilities increase and correspondingly the ECB balance

sheet size increases. FI balance sheets also increase, with assets increasing due to

changes in deposits at the ECB and liabilities increasing due to loans from the

ECB.

QE program. The QE program consists of purchases of (mostly government)

bonds by the ECB. The most common sellers are various FIs and especially com-

mercial banks, and for ease of exposition I focus on this case in figure 1.22. The

alternative situation results in the same outcome.

Figure 1.22: Effect of quantitative easing on balance sheets

As a result of purchase of a bond by the ECB, its stock of securities increases.

Meanwhile, as compensation for the seller, its account with the ECB is deposited

with the amount equal to the sale price. This results in simultaneous increases in

the assets and liabilities of the ECB, leaving its balance sheet larger by the price

of the security. This is the case only because the purchase is not sterilized.

Meanwhile, from the perspective of the FI, the sale of a bond leads to a change

on the asset side of the balance sheet: the amount of securities decreases, but the

amount of deposits at the ECB increases by a corresponding amount. Note that,

in contrast to VLTRO, this program does not lead to increases in the accounting

size of FI balance sheets.
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Figure 1.23: Effect of asset purchase on excess reserves

Excess reserves. Since 2014, excess reserves are being penalized by negative

deposit rate (DR). The accounting technique can also shed light on why FIs as

a group cannot decrease the total collective amount of excess reserves by buying

assets from other FIs. To show this, Figure 1.23 captures the effects of purchase

of bond by Financial Institution A from Financial Institution B.

The reason FIs cannot collectively decrease the total amount of excess reserves

is because any transaction between FIs leads only to changes in distribution of

deposits of individual FIs at the ECB, but not to change in total deposits. In the

example of a purchase of a bond by one FI from another, the deposits of the FI

that is buying the bond decrease, but the deposits of the FI that is selling the bond

correspondingly increase. This is because transacitons between FI are settled in

terms of deposit accounts at the ECB. The overall effect is only to rearrange excess

reserves between individual FIs, and does not lead to their overall decrease or to

shrinking of the ECB balance sheet.28

28Alternatively, the bank can purchase a financial asset from a non-bank investor. In such a
case, the bank deposits the account of the non-bank investor with the proceeds from the sale,
given that the seller does not have an account with the ECB. Once again, this does not alter the
amount of excess reserves. This also means that the effect on excess reserves is identical whether
the central bank buys from bank or non-bank entity. There is a small difference between those due
to their different effects on the required reserves. In the first case, the reserve base in unaltered
(deposits with central bank do not count); in the second case, the reserve base increases by the
selling price, and hence excess reserves increase only by 99% of the selling price. There is also a
different effect on the money aggregates.
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Summary. The crucial aspect of the two the ECB policies, VLTRO and QE,

is the fact that their effects were not sterilized. In other words, the ECB does not

take any countervailing action to prevent increases in its balance sheet size. These

increases in balance sheet size manifests themselves by increasing deposits of FIs

at the ECB. In the world of negative DR, each bank wants to decrease its overall

deposits at the ECB, but collectively they are unable to do so.

There is one way commercial banks can collectively decrease their excess reserves at the ECB:
by forcing their clients to transfer their deposits into cash. This could of course be achieved
by imposing (large) negative interest rates their on depositors. Presumably, the reason they
do not do so is because they collectively benefit more from having clients, with these benefits
outweighing the costs of holding excess reserves.
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1.B Additional estimation results

This appendix presents additional estimation results complementing those in the

main text. Appendix 1.B.1 presents results for all available maturities of IIRs.

Appendix 1.B.2 presents results for the Eonia rate when alternative frequency is

used instead of monthly frequency. Next, Appendix 1.B.3 shows results for 3-m

Euribor when I use different proxy variables for the spread component of the series.

Finally, Appendix 1.B.4 complements the results for the full sample estimation

sample by showing the results for linear models with 2 regimes. Throughout the

appendix, the values reported in the main text are highlighted in bold fonts in the

tables to facilitate comparison of the results.

1.B.1 Additional maturities

The main text presented results for the IIRs with 1-day, 1-week, and 3-month ma-

turity. However, there are IIRs with additional maturities, ranging from 1 week

to 12 months. This appendix presents results for selected additional maturities,

specifically 2-week, 1-month, 2-month, 6-month and 12-month maturities. The

appendix focuses only on the robust sample, which is restricted to end in 2019M05

to avoid issues with negative spreads, most likely caused by expectations of forth-

coming decrease in the DR in September 2019. This yields 53 observations. All

models are estimated using the FMOLS method.

Table 1.7 shows estimation results for the linear model (equation (1.6)) for all

considered maturities, while Table 1.8 shows results for the nonlinear model (equa-

tion (1.7)). The tables show that the main coefficient of interest - the coefficient

on excess reserves - is negative, and is statistically and economically significant

for all maturities. Table 1.7 also provides additional support for the notion that

excess reserves caused compression in spreads between IIRs with different maturi-

ties, with coefficients almost uniformly larger for longer maturities, and especially

large for the longest maturities. That said, the results in Table 1.8 are less uniform

int this respect.
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Table 1.7: Estimation results for different maturities (linear model)

Maturity

Coef. 1-day 1-week 2-week 1-month 2-month 3-month 6-month 12-month

0.337*** 0.316*** 0.346*** 0.352*** 0.467*** 0.599*** 0.899*** 1.056***
β0 ’(0.018) ’(0.024) ’(0.034) ’(0.050) ’(0.039) ’(0.054) ’(0.083) ’(0.116)

(const.) [18.484] [12.951] [10.120] [7.101] [12.054] [11.107] [10.772] [9.139]

0.902*** 1.109*** 1.101*** 1.397*** 1.221*** 1.111*** 0.493*** 0.048***
β1 ’(0.034) ’(0.045) ’(0.061) ’(0.092) ’(0.069) ’(0.100) ’(0.155) ’(0.214)

(DRt) [26.346] [24.478] [18.029] [15.221] [17.618] [11.106] [3.185] [0.223]

-0.045*** -0.034*** -0.038*** -0.022*** -0.043*** -0.064*** -0.129*** -0.160***
β2 ’(0.004) ’(0.005) ’(0.007) ’(0.011) ’(0.008) ’(0.012) ’(0.018) ’(0.025)

(ERt−1) [-11.305] [-6.315] [-5.068] [-2.013] [-5.093] [-5.413] [-7.021] [-6.294]

Observations 56 53 53 53 53 53 53 53

Model R2 0.991 0.974 0.973 0.975 0.981 0.972 0.97 0.933

MRR R2 0.986 0.96 0.959 0.963 0.973 0.96 0.958 0.906

DR R2 0.844 0.627 0.66 0.795 0.842 0.79 0.831 0.718

Notes: See notes under Table 1.2 for explanation of the values in the table. 1-day maturity
corresponds the Eonia rate, results for which differ from those reported in the main text due to
use of a shorter estimation sample.

Table 1.8: Estimation results for different maturities (nonlinear model)

Maturity

Coef. 1-day 1-week 2-week 1-month 2-month 3-month 6-month 12-month

0.337*** 3.069*** 2.854*** 5.088*** 1.874*** 2.843*** 0.824*** 0.484***
β0 ’(0.018) ’(0.633) ’(0.572) ’(1.032) ’(0.351) ’(0.745) ’(0.477) ’(0.731)

(const.) [18.484] [4.848] [4.986] [4.933] [5.344] [3.815] [1.725] [0.662]

-0.045*** -0.926*** -0.876*** -1.161*** -0.631*** -0.724*** -0.369*** -0.250***
β2 ’(0.004) ’(0.090) ’(0.083) ’(0.147) ’(0.051) ’(0.107) ’(0.068) ’(0.105)

(ERt−1) [-11.305] [-10.234] [-10.598] [-7.876] [-12.472] [-6.801] [-5.414] [-2.387]

Model R2 0.991 0.698 0.729 0.581 0.86 0.565 0.794 0.646

MRR R2 0.986 0.972 0.974 0.762 0.978 0.778 0.943 0.88

DR R2 0.844 0.738 0.787 -0.33 0.873 -0.159 0.775 0.641

Notes: See notes under Table 1.2 for explanation of the values in the table.
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1.B.2 Alternative frequencies

The main text presented results when models were estimated on data with a

monthly frequency. This frequency was selected in accordance with the focus of

the chapter on medium frequency/horizon developments in the IIRs; see discussion

in the beginning of section 1.4. This appendix contains results when an alterna-

tive frequency (daily, weekly and quarterly) is used, focusing on the Eonia rate

estimated on a robust estimation sample using the FMOLS method. The main

takeaway from Table 1.9 is that the results with respect to the main coefficient of

interest are almost identical when different frequencies are used; if anything, the

results for the nonlinear model even suggest that the use of monthly frequency

understates the size of the effect of excess reserves, as the results for all other fre-

quencies are higher, sometimes substantially so. Therefore, the only major result

that varies with frequency is the DR-spread R2, which is lower at higher frequen-

cies. This is as expected and was one of the motivations for the use of monthly

frequency in the main text: since at higher frequencies the IIRs are substantially

more volatile, and since this volatility likely reflects random noise rather than any

predictable movement, the higher weight on such noise leads to weaker model fit.

Still, even for daily frequency the DR the spread R2 is very high at above 0.7,

providing futher endorsement of the model.

1.B.3 Results with proxy for expectations and spread

In case of IIRs with longer than daily maturity - i.e. Euribor rates - a significant

amount of variation comes from the variation expectations of future policy rates

and from the variation in the credit and liquidity risk components. The main text

claimed that ignoring these components does not pose econometric problems from

the perspective of the focus of the present chapter. This appendix first provides

more detailed discussion why these omitted components are unlikely to bias the

results. It then proceeds to present results from models that attempt to control for

variation in these components by using several alternative proxy variables. The
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Table 1.9: Estimation results for different frequencies

Linear model Non-linear model

Coef. D W M Q D W M Q

0.308*** 0.326*** 0.337*** 0.368*** 0.511*** 0.734*** 0.390*** 0.813***
β0 ’(0.013) ’(0.017) ’(0.018) ’(0.007) ’(0.143) ’(0.305) ’(0.256) ’(0.204)

(cons.) [24.536] [19.089] [18.484] [51.016] [3.586] [2.405] [1.520] [3.988]

0.928*** 0.915*** 0.902*** 0.930***
- - - -β1 ’(0.022) ’(0.031) ’(0.034) ’(0.015)

(DRt) [42.881] [29.276] [26.346] [60.175]

-0.040*** -0.043*** -0.045*** -0.048*** -0.503*** -0.532*** -0.487*** -0.546***
β2 ’(0.003) ’(0.004) ’(0.004) ’(0.002) ’(0.020) ’(0.043) ’(0.036) ’(0.029)

(ERt−1) [-14.984] [-11.625] [-11.305] [-28.259] [-24.875] [-12.296] [-13.337] [-18.575]

Observations 1175 236 56 19 1175 236 56 19

Model R2 0.981 0.988 0.991 0.985 0.762 0.827 0.886 0.933

MRR R2 0.97 0.981 0.986 0.978 0.972 0.985 0.99 0.99

DR R2 0.715 0.81 0.844 0.808 0.732 0.85 0.89 0.91

Notes: See notes under Table 1.2 for explanation of the values in the table.

results provide empirical support to the arguments.

Potential sources of bias. The first potential source of bias in coefficient

estimates is the absence of future policy rates in the equations. The absence is

problematic because variations in the IIRs (likely) reflect changes in expectations

of future policy rates. If these expectations are systematically correlated in my

sample with excess reserves then the corresponding regression coefficients would

be biased.

There are two reasons such a correlation is unlikely to be present in the sample

under consideration. First, during the period of the QE program, policy rates

were unchanged for most of the time and were expected to remain so. Second,

during this period excess reserves were gradually increasing as result of gradual,

pre-determined purchases of assets under the QE program. Statistically speaking,

correlation between an (almost) deterministically trending variable and a station-

ary29 variable is zero, so there is little reason to expect a correlation between

excess reserves and expectations of future policy rates. Of course, the picture is

29Note that the expected difference between current and future policy rates is clearly stationary,
mean-zero variable.
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more complicated outside of the QE program period, which is another reason I

primarily focus on the period of QE program.

There are two ways to address this potential source of bias. This appendix will

present estimation results for model that controls for future policy interest rates by

including proxy variables in the model. Alternatively, in Appendix 1.C, I eliminate

the observations for which expectations about future policy decisions could affect

current values of interbank interest rates under the expectational hypothesis of

interest rates.30

The second potential source of bias is the absence of risk component in the

model. This can lead to omitted variable bias in case the variation in financial

market stress is correlated with other regressors, and especially with excess re-

serves.

In general, the situation is similar as in the case of policy rate expectations: the

potential for such an issue is very low during the QE program period, but some-

what larger outside of this period. During the QE period the variation in stress in

financial markets was very low, and in any case excess reserves were trending deter-

ministically, making significant correlation theoretically impossible. This mirrors

the discussion of policy rate expectations. In contrast, in the sample before the

QE program there were periods of significant and time varying amounts of stress

in the euro zone interbank market, especially during the global financial crisis of

2007-2009 and the Eurozone sovereign debt crisis of 2010-2012.The evolution of ex-

cess reserves was less uniform, with multiple increases and decreases. These facts

combined raise the possibility that excess reserves and interbank market stress

are correlated during this period. For example, the liquidity infusions due to VL-

TRO could possibly pose a problem with endogeniety, as it was introduced partly

in reaction to stress in the financial markets, including in the interbank market,

manifested by elevated the IIRs.31 For this reason, the coefficient estimates for

30Specifically, for 1-week Euribor model estiamted at weekly frequency I drop observations for
weeks that include a scheduled ECB meeting as well as 1 week prior these meetings.

31In contrast, the QE program was announced in reaction to macroeconomic, not financial,
developments (Rostagno et al. 2019).
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Euribor rates based on the pre-QE sample should be taken with a grain of salt.

The way to address this problem is to use proxy variable for the stress component,

as I do below.

Model. The results in the main text were obtained from equations (1.3) and

(1.4). To understand the meaning of using this model, notice that it amounts to

decomposing Euribor rate into its long-run (steady state or equilibrium) compo-

nent and the residual from this component:

IIRt = IIReq
t +Residualt (1.8)

Before discussing these two components, it is worth clarifying the meaning of both

components. The key idea is that the residual component captures all transitory

variations in Eurbor rates. Meanwhile, the equilibrium component is the level of

the IIR that prevails in the absence of these transitory variations, and hence in

steady state defined by absence of expected changes in policy rates or stress in

financial markets causing transitory variations in credit and liquidity risk.

Given this definition, it is clear that the equilibrium component is the part of

long-maturity the IIRs that behaves like the Eonia rate: the difference between

Euribor rates and the Eonia rate is the presence of a time-varying risk component,

which has been confined to the spread component. This means that in principle we

can use equations (1.3-1.4) for the equilibrium component, simply replacing IIRt

with IIReq
t , and this is approach taken in the main text. This was justified by

the fact these transitory variations were minimal and/or unlikely to be correlated

with variables of interest during the main sample of interest.

Meanwhile, the residual component is composed of the two transitory compo-

nents. The first component - expected future policy rates - means that expected

decreases/increases in future policy rates lead to lower/higher current IIRs with

longer maturity, reflecting the usual expectational hypothesis. One way to address

this issue is to include in the model for Euribors also the expected policy rates

over the maturity of the giver Euribor, an approach taken below.

83



The second component captures the transitory variation in the risk component

of the IIR, and as such it can be associated with the presence of stress in the

interbank market. In normal times when such stress is absent. However, in periods

of stress in interbank markets, equations (1.3-1.4) omit an important driver in

the movements of Euribor rates and, correspondingly, can lead to inconsistent

coefficient estimates due to omitted variable bias, as discussed in detail in the

main text. Again, the solution here is to use proxy measure for stress in interbank

market, given that direct measures of such stress are not observable.

Putting everything together, the resulting model has following structure:

IIRt = β20 + β21DRt + β22f(ERt) + β23DRexp.
t + β24Stresst + ϵt (1.9)

in case of linear model, and

log(IIRt −DRt) = β20 + β22f(ERt) + β23DRexp.
t + β24Stresst + ϵt (1.10)

in case of non-linear model. In both cases I focus only on the excess reserves

regime.

Proxy variables. With respect to controlling for expectations of future

changes in policy rates, the simplest approach is to rely on the actual observed

future path of policy rates.32 Using changes in these as proxy variables for expec-

tations of changes in policy rates is akin to assuming perfect foresight on the part

of financial market participants. While such an assumption is clearly too strong,

the point is that error with respect to such an assumption is unlikely to be corre-

lated with anything else in the model. As argued in the main text, expectations

about future policy rate changes are very unlikely to be correlated with the vari-

32More standard approach is to rely on overnight index swaps, which are financial market
measures of expected future Eonia rate, as measures of expected development in future policy
rates. This approach is not viable here. The main text established that Eonia varies with excess
reserves, which are themselves predictable in environment with the QE program. As a result,
during the QE program there could/should be predictable movements in future Eonia rates that
are not related to the expected changes in policy rates, but instead reflect expected changes in
excess reserves. Including those in the model would then invalidate the empirical strategy.
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able of interest. The point here is to see the effect of eliminating another source

of variation in the IIRs with longer maturity.

Meanwhile, there are several possible proxy variables for stress in interbank

markets, all of which rely on the fact that stress in one part of financial markets

affects other parts of financial markets, and specifically interbank markets. For

example, stress in government bond markets increases the likelihood of commercial

banks failures and hence raises the credit risk component of the IIRs. This suggests

that we can use the measure of stress in government bond markets as a proxy for

stress in interbank markets.

Correspondingly, I focus on the use of the following proxies for stress in inter-

bank markets:

1. Spread between US 3-month libor and risk free rates. This proxy relies on the

notion that global interbank markets are, to a large degree, connected and

hence stress in US interbank markets is indicative of stress of in the euro zone

interbank markets. In other words, the stress components co-move together,

allowing of the use measure of US stress as a proxy for the stress in the euro

zone.

2. Spread between 3-month Euribor and 3-month French bond yields. This proxy

relies on the notion that, after accounting for movements in (almost) risk-free

French government bond yields, the remainder of the movements in 3-month

Euribor reflect the risk components.

3. Spread between the average the euro zone bond yield and risk free rates. This

proxy relies on the notion that increased riskiness of particular euro zone

government’s bonds translates into increased riskiness of banks that hold

bonds of this sovereign. This suggests that part of the movement in risk

components can be proxied by the movements in the measure of risk in the

euro zone bond markets.

As indicated, construction of all three proxy measures requires elimination of risk-
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free interest rates. In case of the US-based proxy, I use the 3-month treasury

yield. In the case of the second proxy, the risk-free rate is measured by the French

government bond yield. Finally, in the case of bond yield proxy, I use the a German

bond yield as measure of risk free rates.

Before proceeding, it is worth discussing an important limitation of the first

two proxy variables. These proxy variables rely on directly on the IIRs and hence

clearly suffer from endogeneity problems. This is best understood in the case of

the second proxy. Here, the proxy variable is constructed from the dependent

variable as such, which clearly means that it is correlated with the error term of

such regressions, biasing its coefficient upwards. That said, this does not pose

problems insofar as the proxy variable is not correlated with other regressors, as

argued in the main text. Furthermore, to avoid this problem, I will also provide

results for the TSLS estimation method, where I will use past values of the proxy

variable as the instrument for its current value.

Results. Table 1.10 presents results for the 3-month Euribor when different

proxy variables are used, estimating the linear model on a robust estimation sam-

ple, which has 53 observations.33 The use of proxy variables almost uniformly leads

to coefficients on excess reserves that are higher in absolute value and more sta-

tistically significant, clearly supporting the conclusion that the negative estimated

coefficient reported in the main text is not an artifact of the omission of expecta-

tions and stress components. That said, with one exception, the coefficients for

neither proxy variable for stress are estimated to be statistically significant, and

the proxy based on US Libor has a negative estimated coefficient. This corresponds

to the fact stressed in the main text that the period of the robust sample does not

feature any stress in interbank markets, further supporting the conclusion of the

irrelevance of a stress component for the results presented in main text.

33The focus here is not on the proxy variables or the variation in the expectations and risk
components, but rather on how controlling for these components changes the results from the
perspective of the main coefficient of interest, the coefficient on excess reserves. Throughout
the appendix I focus on results for the 3-month Euribor estimated using the FMOLS estimation
method.
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Table 1.10: Estimation results with proxy variables

Model alterantive

Coef. 0 1 2a 2b 3a 3b 4 5

0.451*** 0.576*** 0.502*** 0.645*** 0.452*** 0.486*** 0.439*** 0.526***
β0 ’(0.071) ’(0.051) ’(0.065) ’(0.135) ’(0.058) ’(0.076) ’(0.074) ’(0.045)

(const.) [6.382] [11.281] [7.677] [4.772] [7.850] [6.379] [5.938] [11.684]

1.225***
-

1.057*** 0.621** 1.226*** 1.028*** 1.235***
-β1 ’(0.137) ’(0.129) ’(0.246) ’(0.119) ’(0.197) ’(0.139)

(DRt) [8.946] [8.220] [2.527] [10.264] [5.210] [8.891]

-0.038*** -0.059*** -0.050*** -0.086*** -0.036** -0.051** -0.036** -0.037***
β2 ’(0.016) ’(0.012) ’(0.014) ’(0.025) ’(0.015) ’(0.023) ’(0.016) ’(0.013)

(ERt−1) [-2.393] [-5.015] [-3.605] [-3.475] [-2.429] [-2.223] [-2.334] [-2.973]

-
1.140***

- - - - -
1.281***

β1 ’(0.111) ’(0.108)
(DRexp.

t ) [10.268] [11.878]

- -
-0.07 -0.225 0.009 0.012 0.008 0.038**

β3 ’(0.047) ’(0.142) ’(0.021) ’(0.024) ’(0.031) ’(0.018)
(Stresst) [-1.503] [-1.587] [0.432] [0.478] [0.268] [2.168]

Model R2 0.982 0.975 0.986 0.98 0.983 0.994 0.982 0.974

MRR R2 0.974 0.963 0.98 0.95 0.976 0.979 0.974 0.963

DR R2 0.863 0.855 0.893 0.741 0.873 0.891 0.866 0.854

Notes: See notes under Table 1.2 for explanation of the values in the table. Model 0 reproduces
the baseline estimates presented in the main text. Model 1 replaces the DR with a proxy for the
expected DR. Models 2, 3, and 4 use a stress proxy based on the US Libor rate, Euribor rate,
and 10-year bond yield spread, respectively. Model 5 combines a proxy based on Euribor with a
proxy for the expected DR. Models 2b and 3b use a TSLS estimation with the past value of the
proxy as an instrument for the current value of the stress proxy.
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1.B.4 Linear models with 2-regimes

This appendix provides results for a linear model with 2-regimes, complement-

ing the results for the non-linear model provided in the main text. Table 1.11

shows that the conclusions from the main text are supported by the results: the

coefficients are broadly consistent with the coefficients from single regime models

presented in Table 1.2, and with the coefficients from non-linear two-regime models

presented in Table 1.11.

Table 1.11: Estimation results - 2 regime models

Dependent variable
Coefficient the Eonia rate 1W Euribor 3M Euribor

β10 0.051*** 0.109*** 0.241***
(constant) ’(0.008) ’(0.008) ’(0.045)

(NR) [6.702] [13.463] [5.327]
β20 0.474*** 0.647*** 0.734***

(constant) ’(0.070) ’(0.125) ’(0.102)
(ERR) [6.780] [5.186] [7.202]
β21 1.057*** 1.097*** 1.414***

(DRt) ’(0.030) ’(0.046) ’(0.034)
(ERR) [35.721] [23.778] [41.514]
β22 -0.058*** -0.087*** -0.069***

(ERt−1) ’(0.012) ’(0.021) ’(0.016)
(ERR) [-4.967] [-4.172] [-4.173]

Observations 212 209 209
Level R2 1.00 1.00 0.99

the MRR-spread R2 0.93 0.91 0.64
DR-spread R2 0.98 0.97 0.87

Threshold 22.85 17.38 85.38

Notes: See notes under Table 1.2 and Table 1.5 for explanation of all values.
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1.C Robustness checks

This appendix presents additional estimation results that demonstrate the robust-

ness of the results in the main text to multiple different changes. Appendix 1.C.1

shows results for alternative estimation methods, focusing on the maturities pre-

sented in the main text. Appendices 1.C.2 and Appendix 1.C.3 show results for

the Eonia rate when alternative timing or a functional form for excess reserves are

used, respectively. Appendix 1.C.4 shows results when a different ARMA structure

of errors is used, or when these are replaced by a lagged the dependent variable.

Appendix 1.C.5 shows that the results are unaffected when observations around

the ECB decisions are dropped. Finally, Appendix 1.C.6 investigates the effect of

using information about bond yields and the ECB bond holdings in addition to

or instead of excess reserves. Unless otherwise stated all results correspond to the

FMOLS estimation method. In all cases the number of observations is 56, as in

the main text.

1.C.1 Alternative estimation methods

The main text presented results for several selected estimation methods. This

appendix provides results for additional estimation methods. For the Eonia rate,

and a robust estimation sample, these additional methods consist of alternative

methods for co-integration methods: The canonical cointegration regression of

Park (1992), dynamic OLS of Stock and Watson (1993) and the ARDL model

with alternative selection criterion. For the 1-week and 3-month Euribor, and for

the Eonia rate in the full estimation sample, the addition consists of those methods

and the other methods discussed in the main text but not reported for these the

IIRs or sample. In all cases, the results differ only in terms of the estimation

method used; everything else is kept as in the results discussed in the main text

to facilitate comparison.

Tables 1.12 and 1.13 show that using the other cointegration estimation meth-

ods for the Eonia rate leads to identical conclusions as those based on FMOLS
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estimation methods: the main coefficient of interest is mostly unchanged in terms

of its economical and statistical significance. Meanwhile, Tables 1.14-1.17 show

that this is mostly true also for 1-week and 3-month Euribors, albeit with the

exception of the ARDL estimation method: using ARLD leads to a systematically

lower (but still statistically significant) coefficient of interest; that said, it also

leads to weaker model fit, suggesting that the lower estimated coefficient does not

correspond to the data better than the coefficients from alternative methods. Fi-

nally, Table 1.18 shows that the results are also unaffected for the 2 regime model

for the Eonia rate.

Table 1.12: Estimation results for the Eonia rate - linear model

Method
Coefficient FMOLS ARDL - AIC CCR DOLS - SIC DOLS - AIC

0.337*** 0.261*** 0.330*** 0.352*** 0.322***
β0 ’(0.018) ’(0.033) ’(0.017) ’(0.044) ’(0.037)

(constant) [18.484] [7.983] [19.682] [7.910] [8.800]
0.902*** 0.902*** 0.901*** 0.913*** 0.969***

β1 ’(0.034) ’(0.050) ’(0.032) ’(0.038) ’(0.030)
(DRt) [26.346] [18.023] [27.928] [24.121] [31.812]

-0.045*** -0.035*** -0.044*** -0.047*** -0.039***
β2 ’(0.004) ’(0.006) ’(0.004) ’(0.007) ’(0.006)

(ERt−1) [-11.305] [-5.486] [-11.761] [-6.819] [-6.721]

Lag struct. - (3,1,3) - (0,2) (1,3)
Model R2 0.991 0.984 0.991 0.995 0.996
MRR R2 0.986 0.974 0.986 0.981 0.982
DR R2 0.844 0.736 0.849 0.797 0.803

Notes: See notes under Table 1.2 for explanation of the values in the table.
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Table 1.13: Estimation results for the Eonia rate - nonlinear model

Method
Coefficient FMOLS ARDL - AIC CCR DOLS - SIC DOLS - AIC

0.390*** 0.213*** 0.414*** 0.291*** -0.059***
β0 ’(0.256) ’(0.356) ’(0.238) ’(0.294) ’(0.361)

(constant) [1.520] [0.597] [1.743] [0.988] [-0.162]
-0.487*** -0.463*** -0.490*** -0.474*** -0.428***

β1 ’(0.036) ’(0.050) ’(0.034) ’(0.041) ’(0.049)
(ERt−1) [-13.337] [-9.272] [-14.403] [-11.501] [-8.714]

Lag struct. - (1,0) - (0,0) (1,0)
Model R2 0.886 0.987 0.886 0.896 0.9
MRR R2 0.99 0.979 0.99 0.989 0.983
DR R2 0.89 0.789 0.892 0.877 0.813

Notes: See notes under Table 1.2 for explanation of the values in the table.
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1.C.2 Alternative timing of excess reserves

The main text reported results for a model estimated with excess reserves lagged

by one period, so that increases in excess reserves affect the IIRs with a one month

delay. In the absence of any theoretical considerations, the lag on excess reserves

was chosen in accordance with the goal of maximizing model fit. Table 1.19 shows

the results for the Eonia rate when alternative timing is used, and highlights that

this alternative timing does not influence the conclusions of the chapter.

Table 1.19: Estimation results for the Eonia rate - alternative timing of excess
reserves

Linear model Non-linear model

Coefficient 0 1 2 0 1 2

0.316*** 0.352*** 0.281*** 0.44 0.756** -0.073
β0 ’(0.015) ’(0.020) ’(0.015) ’(0.294) ’(0.338) ’(0.315)

(constant) [20.384] [17.544] [18.208] [1.496] [2.238] [-0.233]
0.914*** 0.898*** 0.935***

- - -β1 ’(0.030) ’(0.035) ’(0.033)
(DRt) [30.063] [25.740] [28.020]

-0.042*** -0.047*** -0.036*** -0.491*** -0.534*** -0.422***
β2 ’(0.003) ’(0.004) ’(0.004) ’(0.042) ’(0.048) ’(0.045)

(ER) [-12.080] [-11.027] [-10.052] [-11.747] [-11.163] [-9.356]

Model R2 0.993 0.992 0.991 0.895 0.886 0.879

MRR-spread R2 0.988 0.987 0.986 0.992 0.991 0.987

DR-spread R2 0.871 0.856 0.842 0.914 0.906 0.853

Notes: See notes under Table 1.2 for explanation of the values in the table. Model 1 uses the
current value of excess reserves, while model 2 uses the second lag of excess reserves.

1.C.3 Alternative functional forms

The main text reported results for a model estimated with a logarithm of excess

reserves. While this functional form was chosen with the view of satisfying the

apparent concavity in the relationship between excess reserves and the IIRs, the

choice is arbitrary to some degree. Table 1.20 shows the results for the Eonia
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rate when alternative functional forms are used, and highlights that using these

alternatives does not influence the conclusions of the chapter.

Table 1.20: Estimation results for the Eonia rate - alternative functional forms

Linear model Non-linear model

Coefficient 0 1 2 0 1 2

0.316*** 0.133*** 0.000*** 0.44 -1.816*** 0.000*
β0 ’(0.015) ’(0.007) ’(0.000) ’(0.294) ’(0.096) ’(0.000)

(constant) [20.384] [18.722] [6.349] [1.496] [-18.969] [1.972]
0.914*** 0.995*** 0.809***

- - -β1 ’(0.030) ’(0.036) ’(0.042)
(DRt) [30.063] [27.680] [19.495]

-0.042*** -0.002*** -0.00035 -0.491*** -0.034*** -0.00233
β2 ’(0.003) ’(0.000) [54.21]*** ’(0.042) ’(0.003) [61.39]***

(ERt−1) [-12.080] [-8.033] [-11.747] [-12.807]

Model R2 0.993 0.987 0.995 0.895 0.879 0.891

MRR-spread R2 0.988 0.979 0.993 0.992 0.986 0.99

DR-spread R2 0.871 0.772 0.92 0.914 0.846 0.894

Notes: See notes under Table 1.2 for explanation of the values in the table. Model 1 uses square
root transformation of excess reserves, while model 2 uses the cubic polynomial of excess. For
model 2, the table reports the sum of coefficients and the F-statistic for the test that all three
coefficients are 0.

1.C.4 Alternative ARMA components

The main text reported results for a model estimated with OLS when a particular

ARMA structure for the model errors was used. While this ARMA structure was

chosen in accordance with the goal of maximizing model fit, alternative ARMA

structures could be used. In addition, ARMA errors could be plausibly replaced by

a lagged dependent variable. Tables 1.21 and 1.22 show the results for the Eonia

rate when an alternative ARMA structure or lagged the dependent variables are

used34, and highlights that the results are robust to these modifications.

34Of course, with lagged the dependent variables the coefficient on excess reserves is lower,
since it measures only the impact multiplier. After accounting for the delayed effects, the total
multiplier is similar to specifications with ARMA errors.
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Table 1.21: Estimation results for the Eonia rate - alternative ARMA components
(linear model)

Model

Coef. 0 1 2 3 4

0.323*** 0.314*** 0.377*** 0.341*** 0.213***
β0 ’(0.018) ’(0.015) ’(0.026) ’(0.019) ’(0.039)

(const.) [18.203] [21.086] [14.604] [17.808] [5.491]

0.900*** 0.907*** 0.878*** 0.886*** 0.736***
β1 ’(0.046) ’(0.041) ’(0.045) ’(0.050) ’(0.145)

(DRt) [19.748] [22.070] [19.623] [17.602] [5.078]

-0.044*** -0.042*** -0.052*** -0.047*** -0.027***
β2 ’(0.005) ’(0.004) ’(0.005) ’(0.005) ’(0.006)

(ERt−1) [-9.688] [-10.650] [-9.994] [-9.494] [-4.775]

ARMA/Lag structure MA(2) MA(1) AR(1) ARMA(1,1) LDV

Model R2 1.060*** 0.996 0.996 0.996 0.994

MRR R2 ’(0.141) 0.989 0.982 0.987 0.991

DR R2 [7.535] 0.878 0.804 0.86 0.897

Notes: See notes under Table 1.2 for explanation of the values in the table.

Table 1.22: Estimation results for the Eonia rate - alternative ARMA components
(nonlinear model)

Model

Coef. 0 1 2 3 4

0.482** 0.496** 0.573** 0.506** 0.009
β0 ’(0.196) ’(0.216) ’(0.271) ’(0.224) ’(0.163)

(const.) [2.460] [2.298] [2.116] [2.256] [0.053]

-0.498*** -0.500*** -0.511*** -0.501*** -0.205***
β2 ’(0.028) ’(0.031) ’(0.039) ’(0.032) ’(0.066)

(ERt−1) [-17.800] [-16.254] [-13.029] [-15.652] [-3.098]

ARMA/Lag structure MA(1) MA(2) AR(1) ARMA(1,1) LDV

Model R2 0.93 0.931 0.927 0.931 0.928

MRR R2 0.992 0.992 0.992 0.992 0.995

DR R2 0.915 0.915 0.915 0.915 0.945

Notes: See notes under Table 1.2 for explanation of the values in the table.
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1.C.5 Sample without observations surrounding the ECB

decisions

To eliminate the possibility that omitted expectations of policy rate changes are

driving the results presented in the main text, Table 1.23 shows that the results are

virtually unchanged when we consider only the weeks that do not overlap with the

ECB decisions. Specifically, the table shows results for 1-week Euribor estimated

at weekly frequency when weeks just prior to scheduled the ECB decisions are

omitted from the analysis.

Table 1.23: Estimation results for the Eonia rate - alternative functional forms

Linear Nonlinear
Coefficient With Without With Without

0.293*** 0.284*** 1.464*** 1.449***
β0 ’(0.018) ’(0.019) ’(0.258) ’(0.280)

(constant) [16.187] [14.600] [5.665] [5.176]
0.995*** 0.999***

- -β1 ’(0.026) ’(0.029)
(DRt) [38.841] [34.175]

-0.037*** -0.036*** -0.717*** -0.715***
β2 ’(0.004) ’(0.004) ’(0.039) ’(0.042)

(ERt−1) [-9.779] [-8.496] [-18.494] [-17.066]

Model R2 0.995 0.995 0.869 0.854
MRR-spread R2 0.971 0.973 0.983 0.987
DR-spread R2 0.74 0.752 0.849 0.88

Notes: See notes under Table 1.2 for explanation of the values in the table. The column header
indicates whether weeks with the ECB decisions are or are not included.

1.C.6 Specifications with bond yields and bond holdings

Bond yields. The chapter argued that there is a causal relationship between the

amount of excess reserves and the IIRs, and that quantitative easing policy affects
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the IIRs through its effect on excess reserves discussed in Appendix 1.A.2. While

the main text supported the presence of the link between excess reserves and the

IIRs, it is a plausible that this estimated relationship is spurious. Specifically, it

is plausible hypothesis that the QE does not affect the IIRs through its effect on

excess reserves, but rather through its effect on bond yields, since bond yields and

the IIRs are clearly closely related. This appendix argues and demonstrates that

this alternative hypothesis is not supported by the data.

Before presenting empirical evidence for the hypothesis, it is worth briefly con-

sidering economic arguments against the hypothesis. The IIRs are the cost of lend-

ing/borrowing reserves between banks. Standard microeconomic theory clearly

indicates that the supply of (excess) reserves should play a key role in determining

the cost of lending/borrowing of these reserves between banks. Therefore, arguing

that the IIRs are not related to the amount of excess reserves is clearly at odds

with the standard economic model of supply and demand.

Turning to empirical evidence, there are two approaches to demonstrating that

the alternative hypothesis is not valid: informal graphical and formal statistical

analysis. First, Figure 1.24 shows the series of main interest - 3-month Euribor

together with main 3-month bond yields in the euro zone bond markets - during

the period of the QE program. While the bond yields share the same pattern as

Euribor, with gradual decreases during the 2015-2016 period, this figure makes

it clear that the bond yields are not driving Euribor: not only is the decrease in

bond yields occurring slightly sooner than in Euribor, but more importantly, the

bond yields are much more volatile throughout the sample than the Euribor. If

the QE were influencing the 3-month Euribor through its effects on bond yields,

then surely the Euribor would reflect the movements in bond yields throughout

the sample. The notion that the QE influences both the IIRs and bond yields

directly is much more plausible and explains their partial co-movement in parts of

the analyzed sample.35

35An additional channel could be from Euribor to bond yields (rather than the other way
around): the interest rates at which banks lend to each other should influence the interest rates
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Figure 1.24: Euribor and the euro zone bond yields

As for the formal statistical analysis, Table 1.24 shows results from the alter-

native model that includes the euro zone bond yields36 as an explanatory variable.

The table corroborates the conclusions from the graphical analysis. The coeffi-

cient on excess reserves is broadly unaffected, with significance increasing when

the restricted sample is used and decreasing when the full sample is used. In both

cases, the coefficient on bond yields is positive and statistically significant, but the

coefficients are relatively small in absolute size, indicating that a one percentage

point change in bond yield leads only to 16-29 basis points change in Euribor.

Estimating single equation linking Euribor to bond yields is a-priori problem-

atic from econometric point of view: it is very likely that there is simultaneity

between the two series, with Euribor influencing bond yields, which poses prob-

lems for an equation linking Euribor to bond yields. For this reason, Table 1.25

at which they are willing to buy government bonds. See discussion below.
36The conclusions are unchanged when different bond yields are used.
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Table 1.24: Estimation results for 3-m Euribor rate with bond yields

Robust sample Full sample
Coefficient Without With Without With

0.451*** 0.426*** 0.734*** 0.692***
β0 ’(0.071) ’(0.030) ’(0.102) ’(0.184)

(constant) [6.382] [14.285] [7.202] [3.763]
1.225*** 0.832*** 1.414*** 1.135***

β1 ’(0.137) ’(0.070) ’(0.034) ’(0.106)
(DRt) [8.946] [11.900] [41.514] [10.687]

-0.038** -0.045*** -0.069*** -0.065***
β2 ’(0.016) ’(0.006) ’(0.016) ’(0.029)

(ERt−1) [-2.393] [-7.272] [-4.173] [-2.252]

-
0.159***

-
0.285***

β3 ’(0.029) ’(0.104)
(Y ieldt) [5.509] [2.739]

Model R2 0.982 0.992 0.985 0.991
MRR-spread R2 0.974 0.988 0.644 0.802
DR-spread R2 0.863 0.939 0.867 0.92

Notes: See notes under Table 1.2 for explanation of the values in the table. Column header
indicates whether bond yields are included.
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shows results for the multiequation estimation method in the form of vector autore-

gression. The key takeaway is that excess reserves are still a statistically significant

regressor in the equation for the Euribor rate.

The overall conclusion is that the observed decrease in Euribor rates during

the period of the QE program is indeed due to an increase excess reserves caused

by asset purchases, and not due to movements in bond yields caused by those

purchases. This finding should not be surprising in the view of the full data

sample. While it might be plausible that during the QE period, the link between

the IIRs and excess reserves reflects the effect of the QE on bond yields, it is harder

to argue that this is the case outside of a period of large-scale bond purchases by

ECB. That is, however, at odds with the finding in the main text that the link

between excess reserves and the IIRs is also present in the period before the QE,

and more specifically with the fact that fluctuations in excess reserves are able to

explain a large portion of the variation in the IIRs, even prior to the QE program.

Bond holdings. A related alternative hypothesis is that what matters for

Euribor is not the amount of excess reserves, but the size of bond holdings. Table

1.26 shows that there is some support for this hypothesis when one considers the

period of the QE program, but not when one considers a longer estimation sample.

In the period of the QE program, the specification which uses holdings under

the asset purchase program (APP) has a substantially better model fit than the

specification with excess reserves, but this is not true for specifications with hold-

ings under the more narrow public sector purchase program. This would seem to

suggest that it is bond holdings that matter, not excess reserves. However, this is

at odds with the finding that excess reserves have strong explanatory/predictive

power even in the period before the start of large-scale asset purchases. This is

mirrored in the 3 right columns in Table 1.26: when bond holdings under PSPP

or APP are used instead of excess reserves, then not only is the model fit substan-

tially worse, but the coefficient on these alternative regressors becomes small and

insignificant. This suggests that the better fit during the period of the QE program

is just a reflection of the close connection between APP and excess reserves and
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Table 1.25: Estimation results for 3-m Euribor rate - Vector autoregression

Euribor Bond yield

Euribor(-1) 1.582199 1.387832
(0.08663) (0.31724)
[ 18.2642] [ 4.37475]

Euribor(-2) −0.666337 −2.031679
(0.13541) (0.49589)
[-4.92070] [-4.09700]

Euribor(-3) 0.010820 0.669480
(0.06157) (0.22547)
[ 0.17573] [ 2.96932]

Bond yield(-1) 0.072832 0.618684
(0.02460) (0.09010)
[ 2.96025] [ 6.86677]

Bond yield(-2) −0.149698 −0.036041
(0.02921) (0.10697)
[-5.12490] [-0.33694]

Bond yield(-3) 0.084518 0.069883
(0.02560) (0.09376)
[ 3.30119] [ 0.74536]

C 0.096396 0.076056
(0.03341) (0.12236)
[ 2.88493] [ 0.62156]

Deposit rate 0.067856 0.499283
(0.04300) (0.15748)
[ 1.57792] [ 3.17048]

Excess reserves −0.012979 −0.001755
(0.00505) (0.01850)
[-2.56925] [-0.09486]

R-squared 0.996485 0.937584

Notes: See notes under Table 1.2 for explanation of the values in the table. The cColumn header
indicates whether bond yields are included. Sample from 2009M01 to 2019M05
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potentially random noise.

Table 1.26: Estimation results for 3-m Euribor rate with bond holdings

Robust sample Full sample

Coefficient ER PSPP APP ER PSPP APP

0.316*** 0.079*** 0.242*** 0.474*** 0.134*** 0.128***
β0 ’(0.015) ’(0.005) ’(0.007) ’(0.070) ’(0.022) ’(0.023)

(constant) [20.384] [15.324] [32.284] [6.780] [6.195] [5.637]

0.914*** 0.926*** 0.872*** 1.057*** 1.220*** 1.227***
β1 ’(0.030) ’(0.022) ’(0.024) ’(0.030) ’(0.033) ’(0.034)

(DRt) [30.063] [42.337] [36.333] [35.721] [36.739] [36.039]

-0.042*** -0.009*** -0.033*** -0.058*** -0.001*** 0.001***
β2 ’(0.003) ’(0.001) ’(0.002) ’(0.012) ’(0.005) ’(0.005)

(ERt−1) [-12.080] [-7.305] [-16.782] [-4.967] [-0.093] [0.094]

Model R2 0.993 0.965 0.997 0.998 0.996 0.996

MRR-spread R2 0.988 0.944 0.995 0.929 0.861 0.857

DR-spread R2 0.871 0.387 0.943 0.977 0.954 0.953

Notes: See notes under Table 1.2 for explanation of the values in the table. The column header
indicates which variable is used: ER=excess reserves, PSPP=bond holdings under the public
sector purchase program, APP=asset holdings under the asset purchase program.

1.C.7 Constrained specification

In a normal regime, the spreads between the IIRs and the DR does not change

with the level of policy rates: the IIRs are equally close to policy rates whether

policy rates are high or low. This is a result of an active policy of ECB, which

varies its liquidity provisions to ensure the IIRs are close to the desired level. Even

though the ECB does not vary its liquidity provisions in the excess reserve regime,

it might still be natural to expect that the spread between the IIRs and the DR

does not change when the DR increases or decreases. However, this expectation

is not supported by formal statistical tests. As a result, in excess reserves regime,

the model includes a coefficient on the DR. Its presence allows for the possibility

that the spread between the IIRs and the DR changes with changes in the level
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of the DR. This appendix shows results for models that force this coefficient to be

equal to 1.

Table 1.27 compares the results when the coefficient on the DR is estimated and

when it is forced to be equal to 1, illustrating the effect in case of the Eonia rate

and for both the linear and non-linear models. The key takeaway is that the coef-

ficient on excess reserves is still negative and both economically and statistically

significant even when the coefficient on the DR is constrained to be one.

Table 1.27: Estimation results - 2 regime models

Dependent variable
Coefficient the Eonia rate 1W Euribor 3M Euribor

0.282*** 0.319*** 0.656***
β0 ’(0.013) ’(0.024) ’(0.069)

(const.) [21.466] [13.497] [9.524]
-0.033*** -0.040*** -0.077***

β2 ’(0.002) ’(0.003) ’(0.010)
(ERt−1) [-17.404] [-11.865] [-7.848]

Level R2 0.86 0.71 0.70
MRR-spread R2 0.99 0.97 0.94
DR-spread R2 0.86 0.71 0.70

Notes: See notes under Table 1.2 for explanation of all values.
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1.D Alternative counterfactual paths for excess re-

serves

The main text highlighted the fact that constructing a counterfactual path for

excess reserves in the absence of quantitative easing - and hence determining both

the values of the IIRs without this program and the corresponding effect of this

program on the IIRs - requires making assumptions about the behavior of multi-

ple items of ECB’s balance sheet. The main text focused on two such plausible

counterfactual path and associated effects of the QE program on the IIRs. This

appendix provides a more detailed discussion and presents alternative paths for

counter-factual levels of excess reserves without QE.

Asset purchases under the quantitative easing policy lead to increases in the

total size of ECB’s assets, under the usual ceteris paribus assumption. This neces-

sarily leads to corresponding increases in liabilities, and hence to increases in excess

reserves, again ceteris paribus, as discussed in Appendix 1.A.2. However, ceteris

paribus is a too strong assumption to rely on in constructing a counterfactual path

for excess reserves: the other parts of ECB’s balance sheet do not stay unchanged,

but rather evolve over time, either for independent reasons or in connection with

the asset purchases. This leads to increases in excess reserves being different from

amount of assets purchased under the QE policy. As discussed in the main text

and shown in Figure 1.25, this is indeed what was observed, with excess reserves

increasing substantially less than the amount of total asset purchases.

In principle, the increase in excess reserves can be smaller than the increase

in asset purchases for two different reasons: either the other asset categories have

decreased, so that the overall balance sheet has changed less than one would expect

solely based on asset purchases; or the other liability categories have increased, so

that part of the increase in the balance sheet has been absorbed by these other

liabilities. Of course, both factors can play a role; even more confusingly, there

can be (and were) factors that pushed in opposite direction.

The rest of this appendix discusses the evolution of ECB’s balance sheet items
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Figure 1.25: Shortfall in excess reserves

Notes: Cumulative changes in different items of ECB’s balance sheet since February 2015. The
shortfall corresponds to the difference between cumulative change in Asset Purchase Program
outstanding balance and cumulative change in excess reserves.

in the view of shortfall in excess reserves captured in Figure 1.25, before proceeding

to constructing a counterfactual path for excess reserves using either assumptions

about balance sheet items, or by estimating econometric models.

Evolution of ECB’s balance sheet items. To begin the analysis, Fig-

ure 1.26 provides detailed analysis of the evolution of ECB’s balance sheet items,

always benchmarking them against the "shortfall" of excess reserves, i.e. the differ-

ence between increase in assets due to the QE policy and increase in excess reserves.

This allows one to easily determine whether a given category contributed to the

shortfall, and by how much. Looking at asset side items, for which values are

reversed to facilitate interpretation, one can see that main refinancing operations

contributed to the shortfall, while longer-term refinancing operations actually had

the opposite effect (graphs in the first row). Since the change in the latter category

was larger, the combined category of lending to credit institutions caused excess

reserves to be larger than at beginning of the QE program (second row, left panel),

something that was discussed in the main text and will play a role in next para-
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graphs. The only other significant category apart from securities are the claims on

other counterparties besides credit institutions. These increased over the period

of the QE program, so excess reserves are larger thanks to them, but the effect is

not substantial (second row, right panel). Overall, the clear conclusion is that the

asset-side items are not responsible for the shortfall, as they actually contributed

to increase in excess reserves.

Turning to liability side items, all the main items contributed to the shortfall,

which in other words means that all increased over the QE program period. While

the increase in banknotes is not out of the ordinary and hence is unlikely to be

related to the QE policy (third row, left panel), the other categories seem to be

related to it, as discussed in the main text. Specifically, the liabilities to other

euro area residents can explain roughly one third of the shortfall (third row, right

panel), while liabilities to non-euro area residents can explain another fifth (fourth

row, left panel). In total, these liabilities with other counterparties than euro area

credit institutions explain more than half of the shortfall (fourth row, right panel).

Importantly, the combined series tracks the shortfall very well in the medium

horizon and even displays matching short-run dynamics in some periods, such as

during 2019.

Counterfactual paths for excess reserves based on assumptions about

balance sheet items. Turning to construction of a counterfactual path for ex-

cess reserves in the absence of the QE program, one can approach it either by

accounting for developments in asset-side items, or developments in liability-side

items (or both). To frame the discussion, the top row of Figure 1.27 shows the

two simplest alternatives, which in effect ignore the information contained in the

ECB’s balance sheet. The first alternative is the most natural approach: since

the most direct effect of the QE program on the ECB’s balance sheet is its ef-

fect on the balance of assets under the APP, one could just assume that these

would remain unchanged and hence subtract their increase from the increase in

excess reserves. The figure demonstrates the point stressed in the main text and

in the above paragraph: by accounting only for developments in APP balances,
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Figure 1.26: Evolution of the ECB’s balance sheet items

Notes: Cumulative changes in different items of ECB’s balance sheet since February 2015. For
asset side items the graphs display negative value of the cumulative changes. The shortfall cor-
responds to difference between cumulative change in the Asset Purchase Program is outstanding
balance and cumulative changes in excess reserves.
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one would reach the conclusion that excess reserves would become deeply negative

in the absence of QE purchases.37 Meanwhile, the second simple alternative is to

simply assume that excess reserves without the QE would remain at the level pre-

vailing before the start of QE purchases.38 This approach assigns all the increase

in excess reserves from the start of the QE program to the program itself. The

problem with this approach is that it ignores all the other factors influencing the

level of excess reserves. For example, this approach leads to multiple large jumps

in the estimated effects of the QE on excess reserves, with the largest occurring in

April 2017 (see alternative 1 in Figure 1.27). This jump is the result of the fourth

round of TLTRO II loans and hence is unrelated to the QE program.

Since these simple alternatives fail to produce a plausible counterfactual path

for excess reserves, one needs to enhance them by using information from the ECB’s

balance sheet. The second row of Figure 1.27 shows alternatives that improve upon

alternative 1, while third row shows alternatives that improve upon alternative 2.

Note that alternative 1 was in effect subtracting from the observed excess reserves

throughout the sample, while alternative 2 was departing from the initial level of

excess reserves and (potentially) adding to it. In view of their shortcomings, the

way to improve alternative 1 is to subtract less from the observed excess reserves,

while the way to improve alternative 2 is to add more to the initial level of excess

reserves. These two closely options correspond to focusing on developments on the

liability side and on the asset side of the balance sheet, respectively.

Focusing on the liability-based option, Figure 1.26 suggests a way forward.

Since the shortfall is the mostly related to developments in liabilities, one should

account for these developments when constructing alternative counterfactual path

for excess reserves. Alternatives 3,4 and 5 do this by assuming that the liabilities to

other euro area residents, liabilities to other non euro area residents, and banknotes

would remain unchanged. Specifically, alternative 3 accounts only for the first

37The QE effect for alternative 1 is just the negative of the shortfall series in Figure 1.26.
38This is effectively assuming that no other balance sheet items would have changed during

the QE period (or that changes on the asset and liability sides would cancel each other).
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Figure 1.27: Alternative counterfactual paths for excess reserves

Notes: Level of excess reserves under alternative counterfactual assumptions (left panels), and
the difference between actual and couterfactual levels of excess reserves (right panels).
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balance sheet item, while alternative 4 accounts for both the first and second

items and alternative 5 for all three items.

The figure clearly shows that accounting for the developments in the various

liability-side items pushes the counterfactual excess reserves higher (and corre-

spondingly, the effect of the QE lower) relative to alternative 1. This is intuitive:

assuming that these liabilities wuld remain unchanged is the same as assuming

that the increases in these liabilities are caused by the QE program itself; hence

I subtract their increase from the amount by which observed excess reserves are

decreased under the counterfactual with no the QE program, which leads to mark

down in the estimate of the effect of the QE program on excess reserves. That said,

even subtracting the increase in all three liability-side items - something that is

problematic given that increase in banknotes was not caused by the QE program39

- does not completely eliminate the problem: Even though alternative 5 remains

positive throughout most of the sample, it still features negative excess reserves at

the end of the sample.

The third row of Figure 1.27 shows the alternatives that add to the initial

level of excess reserves, instead decreasing the amount subtracted from excess

reserves. Again, the idea is to follow the analysis in Figure 1.26, which showed

that the ECB’s assets - and hence excess reserves - also increased due to other

balance sheet items than the APP purchases. Specifically, alternative 6 takes the

initial level of excess reserves before the start of the QE program and adds to

them the increase in LTRO balances over the period of the program to account

for the fact that these balances increased substantially over this period. The

resulting counter-factual path for excess reserves records several step-wise increases

throughout the period corresponding to successive rounds of TLTRO loans, with

the largest occurring in March 2017, after which the counterfactual path of excess
39While banknotes would clearly also increase in the absence of the QE, this consideration

potentially misses an important point: without QE-related increases in excess reserves, the
increase in demand for banknotes might have lead to increase in MRO or LTRO balances and
hence indirectly to increase in excess reserves. Hence accounting for changes in banknotes is
not completely wrong, though it is impossible to establish what would have happened in the
counterfactual world.
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reserves hit its maximum of 556 billion. Corresponding to this, the effect of the QE

program under this counterfactual becomes substantially smoother - corresponding

to the fact that increases in LTRO balances lead to increases in excess reserves -

a desirable feature given that QE purchases should have gradual effects on excess

reserves.

While alternative 6 presents plausible counterfactual path for excess reserves

in that it does not go negative, it likely errs in the other extreme. Specifically,

the alternative does not account for change in MRO balances, decrease in which

over the considered period was likely at least partially related to increase in LTRO

balances, since banks treat the longer-term refinancing operations as partly sub-

stitutes for the shorter-term marginal refinancing operations. Correspondingly,

alternative 7 also accounts for change in MRO balances, what results in a coun-

terfactual path for excess reserves that is somewhat lower, and an estimated effect

that is somewhat larger than under alternative 6. Finally, to complement these two

alternatives, alternative 8 presents the results when one also accounts for change

in other claims.

Counterfactual paths for excess reserves based on econometric mod-

els. Rather than determining the counterfactual path for excess reserves based on

assumptions about developments in individual balance sheet items, one can use

an alternative approach in the form of specifying and estimating an econometric

model relating excess reserves to individual balance sheet items.

The starting point is realizing that all balance sheet items are related to each

other by the basic accounting requirement that total assets (TA) are equal to total

liabilities (TL). This means that excess reserves are related to other balance sheet

items via simple identity:

TAt ≡ TLt

TAt ≡ ERt + TLOER
t

ERt ≡ TAt − TLOER
t
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where TLOER
t are total liabilities other than excess reserves. This identity is useful

for understanding the meaning and validity of econometric models linking excess

reserves to other balance sheet items. Consider, for example, the most straight-

forward approach of regressing excess reserves on APP balances:

ERt = β0 + β1APPt + ut (1.11)

with associated coefficient estimates reported in first column of Table 1.28. Imagine

one would use such an equation to predict the counterfacual path for excess reserves

without the QE program. The error of the regression, ut contains all assets other

than APP balances and all liabilities other than excess reserves, which poses two

problems. First, the coefficient will be unbiased only if all the balance sheet items

contained in ut are uncorrelated with APP. As discussed above and in the main

text, this is clearly not the case for some of the liability series, which are positively

(causally) related to APP balances and hence likely to cause negative bias in the

coefficient. Second, the previous analysis also clearly highlighted that the balance

sheet items contained in ut are nonstationary, which means that the regression does

not offer a useful tool for determining a counterfactual path for excess reserves,

as the actual values can be arbitrarily far from the predicted values. This is

illustrated in Figure 1.28, which shows predicted values for excess reserves in the

absence of the APP program based on equation (1.11).40 While the path overall

is not implausible, it shares the drawback of the balance-sheet based alternatives

that depart from observed excess reserves: by ignoring other, nonstationary factors

40Specifically, the coutnterfactual path is constructed by taking the observed excess reserves
and substracting from them the predicted increase in excess reserves due to the increase in APP
holdings (i.e. β1APPt). Note that this is different from what the equation would predict as
the value of excess reserves in the absence of APP (i.e. β0). The difference comes from how
one treats the error of the equation. The approach used includes the error in the counterfactual
path, which is equivalent to assuming that other factors than APP influencing excess reserves,
such as changes in LTRO balances, would occur in the absence of APP. The alternative approach
would amount to assuming that APP is also responsible for these additional factors, which is
an unappealing assumption. This discussion is analogical to the discussion of alternatives based
on adding to the initial level of excess reserves or substracting from observed levels of excess
reserves.
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influencing excess reserves, it leads to implausibly low excess reserves at the end

of the considered sample.

Table 1.28: Estimation results - ER models

Model
Coef. 1 2

188*** 1520***
β0 (13.55) (69.56)

(const.) [13.92] [21.86]
0.68*** 0.84

β1 (0.007) (0.01)
(APPt) [95.25] [77.49]

-
0.98***

β2 (0.02)
(LTROt) [41.39]

-
0.33**

β3 (0.15)
(MROt) [2.21]

-
-0.76***

β4 (0.04)
(OLEU

t ) [-19.97]

-
-0.84***

β5 (0.03)
(OLNONEU

t ) [27.05]

-
-0.77***

β6 (0.15)
(OLNA

t ) [-5.02]

-
-1.47***

β7 (0.08)
(Banknotest) [-17.86]

R2 0.97 0.99

See notes under Table 1.2 for explanation of all values.

In principle one could improve upon equation (1.11) by adding some (but not

all) additional balance sheet items, so that one keeps in the error term only items
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Figure 1.28: Model-based counterfactual paths for excess reserves

Notes: Level of excess reserves without the QE based on single-equation models (1.11) and (1.12).

not correlated with APP balances or those that cause nonstationarity of the error

term. For example, one could estimate following regression:

ERt =β0 + β1APPt + β2LTROt + β3MROt + β4OLEU
t + β5OLNONEU

t +

+ β6OLNA
t + β7Banknotest + ut (1.12)

where OL stands for other liabilities, with different geographical categorizations

(EU, non-EU, and not allocated). The resulting coefficients in second column of

Table 1.28.41 Can this equation be used to determine the counterfactual path

for excess reserves, assuming that the coefficient β1 is econometrically valid and

captures the causal effect of APP holdings on excess reserves? The answer is

no, because the coefficient captures the effect of APP only ceteris paribus, i.e.

holding all other regresssors constant. However, I argued in the main text and in

text above that the other balance sheet items are causally related to APP holdings.

41Note that the coefficient on APP holdings did indeed increase, corresponding to the negative
bias caused by other liabilities.
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This means that the ceteris paribus assumption is invalid for the construction of

the counterfactual path for excess reserves: if APP holdings were lower, then other

liabilities would also be lower, while some of the asset items might be higher. This

can be clearly seen in Figure 1.28, which shows the counterfactual path for excess

reserves under the ceteris paribus assumption. Since the counterfactual exercise

assumes that other liabilities (as well as assets) would remain unchanged, it leads

to the conclusion that excess reserves would be negative. This mirrors the simple

alternative based on balance-sheet analysis: excess reserves increased much less

than one would expect based on APP purchases, mostly because other liabilities

have increased.

The problem of the above approach clearly points towards the need to consider

the evolution of balance sheet items as a system, rather than to focus on excess

reserves in isolation. Specifically, if one wants to know what would happen to

excess reserves in the absence of APP program, one also need to determine what

would happen to other balance sheet items such as other liabilities. To do that, I

specify a system of equations linking different balance sheet items together, which

I estimate using the SUR method. I then use the estimated system of equations to

predict values of different balance sheet items with and without the QE program.

The system of equations has 4 endogenous and 4 exogenous variables, reflecting

assumptions about which balance sheet items respond to other balance sheet items,

and which do not. The endogenous variables are excess reserves (ER), MRO

balances, and two categories of other liabilities (EU and non-EU). Meanwhile,

the exogenous variables are APP balances, LTRO balances, other liabilities not

allocated, and banknotes.

The equations for the endogenous variables are:

ERt =β1,0 + β1,1APPt + β1,2LTROt + β1,3MROt + β1,4OLEU
t +;

+ β1,5OLNONEU
t + β1,6OLNA

t + β1,7Banknotest + u1,t (1.13)

MROt =β2,0 + β2,1APPt + β2,2LTROt + β2,3OLEU
t +
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+ β2,4OLNONEU
t + β2,5OLNA

t + β1,6ERt + u2,t (1.14)

OLEU
t =β3,0 + β3,1APPt + β3,2LTROt + u3,t (1.15)

OLNONEU
SA,t =β4,0 + β4,1APPt + β4,2LTROt + u4,t (1.16)

where SA indicates that non-EU other liabilities include a seasonal adjustment

factor, since the series displays end-of-quarter and end-of-year seasonality. All

equation errors are assumed to follow the AR(1) process.

The first equation captures the idea that excess reserves are the residual balance

sheet item, reflecting changes in both asset-side items and liability-side items.

Meanwhile, the other three equations capture the bahavior of various financial

institutions. MRO balances respond to LTRO balances, reflecting substitutability

between the two, to excess reserves (with a lag), reflecting the decrease in demand

for borrowing from the ECB when banks have excess reserves. Finally, the two

categories of other liabilities that are endogenous are assumed to respond to APP

and LTRO balances.

The equation estimates are in Table 1.29 and all correspond to prior expec-

tations. Excess reserves increase with APP balances almost 1-for-1, which is a

slightly stronger effect than suggested by the single-equation models in Table 1.28.

They also increase 1-for-1 with LTRO balances, and with changes in MRO bal-

ances. Meanwhile, all three categories of other liabilities lead to decreases in excess

reserves, with large and statistically significant effects. Turning to other endoge-

nous variables, MRO balances, the table highlights the importance of accounting

for the negative effect of higher excess reserves on MRO balances. Similarly, the

equation estimates for the two categories of other liabilities show a positive rela-

tionship between them and the APP balances, and in the case of non-EU liabilities,

also between them and LTRO balances.

Figure 1.29 shows the fit of the model for the 4 endogenous variables, and

provides endorsement of the estimated model. The model is able to predict the

evolution of all 4 the dependent variables based on knowledge of the 4 exogenous
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Table 1.29: Estimation results - System of equations

Dependent variable
Coef. ER MRO OLEU OLNONEU

1592.93 116.27 119.76 -77.65
β0 ’(85.10) ’(5.41) ’(9.14) ’(23.95)

(const.) [18.72] [21.49] [13.11] [-3.24]
0.87

-
0.1 0.09

β1 ’(0.01) ’(0.00) ’(0.01)
(APP ) [61.60] [21.36] [8.66]

0.98 -0.07
-

0.12
β2 ’(0.03) ’(0.01) ’(0.03)

(LTRO) [33.33] [-5.02] [3.32]
0.62

- - -β3 ’(0.19)
(MRO) [3.35]

-0.81
- - -β4 ’(0.04)

(OLEU) [-22.69]
-0.97

- - -β5 ’(0.06)
(OLNONEU) [-16.91]

-0.58
- - -β6 ’(0.18)

(OLNA) [-3.19]
-1.62

- - -β7 ’(0.10)
(Banknotes) [-15.89]

-
-0.04

- -β8 ’(0.00)
(ER) [-9.49]

R2 0.999 0.988 0.894 0.990

Notes: See notes under Table 1.2 for explanation of all values.
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variables. While the ability to explain variation in excess reserves based on knowl-

edge of all other relevant balance sheet items like in equation (1.12) would not be

surprising, the ability to do so when 3 major drivers are treated as endogenous

and hence as unknown, is a testament to the model’s ability to predict excess re-

serves. This ability is reflected in the fact that the model is able to predict values

of MRO balances and the two categories of other liabilities very well. In the case

of MRO balances, the model correctly predicts that they decrease as APP and

LTRO balances increase over the relevant sample. While the model is not able to

explain week-to-week volatility of other liabilities to EU residents, it does explain

the gradual increase in this balance sheet category over time, reflecting the fact

that these liabilities increase with rises in APP balances. The variation in last en-

dogenous variable - other liabilities to non-EU residents - is explained most weakly

by the model, with prolonged periods of significant differences between actual and

predicted values. However, even for this variable, the model is able to explain

the secular trend, with gradual increase between 2015 and 2017, and stagnation

afterwards. Again, this reflects the relationship with APP balances.

The relationship between the endogenous variables captured by the model play

a crucial role in establishing the counterfactual path for excess reserves. As dis-

cussion of Figure 1.28 highlighted, one needs to know the values of other balance

sheet items that respond to changes in APP balances or excess reserves to know

what be the value of excess reserves in the absence of the QE program that lead

to increase in APP balances. In this case, there are 3 ways in which the rela-

tionship between the 4 endogenous variables will influence the conclusions about

counterfactual level of excess reserves:

• Since there is a negative relationship between MRO balances and (lagged)

excess reserves, and a positive relationship between excess reserves and MRO

balances, then accounting for changes in MRO balances due to changes in

APP balances will lead to the conclusion that excess reserves would be higher

than if the effect is ignored.
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Figure 1.29: System of equations - Predicted values

Notes: Actual and predicted values of endogenous variables based on equations (1.13-1.16), pre-
diction sample 2015W9-2019W32. Predicted-counterfactual are values predicted in the absence
of increases in APP balances).
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• Since there is a positive relationship between both categories of other liabil-

ities and APP balances, then accounting for changes in these categories due

to changes in APP will lead to the conclusion that excess reserves would be

higher than if the effect is ignored.

Figure 1.29 also shows the predicted values of all 4 endogenous variables in the

absence of the QE program, which would mean that APP balances would remain at

their pre-QE level. The main conclusion - that excess reserves would be much lower

- is not surprising. The conclusion that the MRO balances would be much higher,

while both categories of other liabilities would be much lower, is more surprising

and important. All of these three factors imply that excess reserves would be

higher then if the channels were ignored. Crucially, these three channels combined

mean that the counterfactual excess reserves in the absence of the QE program are

no longer predicted to be negative, unlike in Figure 1.28. Specifically, Figure 1.30

shows the counterfactual path for excess reserves and the corresponding estimated

effect of the QE on excess reserves based on the system of equations, either with

or without added prediction error (see footnote 40 for discussion of these two

alternatives). The counterfactual path has the best features or previous paths.

It avoids going negative, like the alternatives based solely on assumptions about

liability items of the balance sheer (Figure 1.27) or the single-equation multiple-

regression alternative (Figure 1.28). It also predicts increase in excess reserves due

to increases in LTRO balances, even though it does not start from the observed

excess reserves.

Conclusion. This Appendix presented several alternative counterfactual paths

for excess reserves. Many of those paths are implausible, either because of their as-

sumptions (e.g. excess reserves would remain unchanged) or because they violate

the zero-lower bound on excess reserves (e.g. alternatives based on assumptions

about liability-side balance sheet items). The main text used two alternatives

which are most plausible a-priori, and one of which also provides a reasonable

upper bound for the counterfactual level of excess reserves. The first, more plau-
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Figure 1.30: Model-based counterfactual paths for excess reserves

Notes: Level of excess reserves without the QE based on a system of equations (1.13-1.16).

sible, is based on a system of equations model. The second, more conservative, is

based on the assumption that excess reserves would change from their initial level

only because of changes in LTRO balances. The two alternatives are replicated in

Figure 1.31.
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Figure 1.31: Counterfactual paths for excess reserves

Notes: Level of excess reserves without the QE based. Alternative 6 and alternative based on
system of equations.

1.E Confidence bounds for the effect of the QE

program

This appendix provides confidence bounds for estimates of the effect of the QE

program on the excess reserves and IIRs, and hence provides sense of statistical

significance of the estimated effects presented section 1.5. All intervals are two-

sided at 95% confidence and were obtained via simulation. The confidence intervals

for the IIRs account for both sources of uncertainty, i.e. uncertainty originating

in the effect on excess reserves and uncertainty originating in the effect on IIRs.

Focusing first on effect on excess reserves, left panel of Figure 1.33 displays the

estimated counterfactual level of excess reserves that would prevail in absence of

the QE program as estimated via the system of equations approach, reproduced

from Figure 1.31. Apart from the deterministic solution outcome, the figure also

includes the stochastic mean, and lower and upper confidence bounds correspond-

ing to 5% and 95% percentile. Right panel then shows the corresponding quantities

for the effect of the QE program on excess reserves. The figure shows that the

confidence bounds around are slightly less than 100 billion euro.
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Figure 1.32: Confidence bounds for counterfactual paths for excess reserves

Turning to effect on IIRs, the left panels of Figure reproduce results from

the Figure 1.17 from the main text, this time including confidence bounds. Mean-

while, the right panels reproduce information from Figure 1.18. The Figure clearly

demonstrates that the effects of the QE program on the Eonia rate are statistically

significant, with confidence bounds of around 2bps compared with effect size that

is 3-4 times larger.
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Figure 1.33: Confidence bounds for counterfactual paths for Eonia rate
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1.F Statistical test

This appendix presents the results of formal statistical tests supporting claims

made in the text. The first subsection presents tests supporting the notion that

there was a break in the Eonia rate the spread series. The second subsection

provides evidence that the series used in the linear model are nonstationary and

cointegrated, supporting the validity of the use of estimation methods presented

in this chapter. The third subsection presents the results of statistical tests on

various coefficient restrictions employed in the models.

1.F.1 Break test for the Eonia rate spread

The main text argued that the Eonia rate, and specifically the spread between the

Eonia rate and the MRR (Eonia spread for short) underwent a change in regime.

Figure 1.34 shows the spread between the Eonia rate and the main refinancing

rate (MRR), which clearly indicates a break in the series sometime after the be-

ginning of October 2008, when the ECB switched to a full allotment policy and

excess reserves appeared for the first time. Table 1.30 supports this hypothesis

with multiple breakpoint statistical tests. The first three rows show the results

of a standard Chow breakpoint test corresponding to three alternative timings for

the occurrence of breaks, while the following three rows correspond to the Chow

forecast test. In all cases the tests overwhelmingly reject the null hypothesis of no

break. To complement these tests with a known break date, the table also reports

results from the Quandt-Andrews test, which does not focus on a concrete break

date, but rather tests all possible break dates and then evaluates the test results

based on maximum or average for all dates. Even allowing for unknown breaks

does not change the conclusion. An additional advantage of the Quandt-Andrews

test is that it allows for evaluation of the timing when the break occurred based on

associated test statistics. Figure 1.35 reports these and clearly highlights that the

break did occur sometime at the end of 2008 or in the beginning of 2009, further

supporting the conclusions of the main text.
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Figure 1.34: Eonia spread

Figure 1.35: Quandt-Andrews test statistics
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Table 1.30: Breakpoint tests for the Eonia rate spread

Statistic
Test type Date F LR Wald

Chow 2008M10
397.68 225.26 397.68
<0.0000 <0.0000 <0.0000

Chow 2008M11 410.65 229.74 410.65
<0.0000 <0.0000 <0.0000

Chow 2009M01
417.79 232.16 417.79

<0.0000 <0.0000 <0.0000

Chow - Forecast 2008M10
48.03 928.06

-
<0.0000 <0.0000

Chow - Forecast 2008M11 46.52 917.17 -
<0.0000 <0.0000

Chow - Forecast 2009M01
34.73 847.87

-
<0.0000 <0.0000

QA - Maximum Uknown -
417.79

-
<0.0000

QA - Exponential Uknown - 203.93 -
<0.0000

QA - Average Uknown -
104.26

-
<0.0000

Notes: Date indicates the start of new regime. Statistics are F-statistics (F), Log-likelihood
ratios (LR) and Wald statistics (Wald). The first value refers to the value of test statistic, the
second to associated p-value.
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1.F.2 Stationarity and cointegration tests

The main text claimed that the series used in the modeling were nonstationary

and cointergrated. This appendix supports this claim with formal statistical tests,

focusing on the Eonia rate. Table 1.31 shows the results for unit root tests for all

three series included in equation (1.3). It clearly shows that, according to formal

statistical tests, all three variables can be considered nonstationary in the sense

that they include a unit root. For the two interest rates, all the tests with a null

hypothesis of unit root fail to reject this hypothesis with a significant margin, and

the one test with no unit root as the null hypothesis rejects this null hypothesis. In

the case of excess reserves, the conclusions are not as uniform: while the majority

of tests do lead to the conclusion of the presence of a unit root, there are two tests

(PP and ERS) that lead to the opposite conclusion.

Table 1.32 complements the results of unit root tests by showing that the three

series together form a cointegrated set of variables, which justifies the use of the

estimation methods presented in the main text, especially the estimation methods

exploiting the cointegration between the series. Specifically, Table 1.32 shows

the results of standard single equation tests of Engle and Granger, and Phillips

and Ouliaris, which overwhelmingly reject the null hypothesis of no cointegration

among the three series at multiple different considered samples.

An alternative to single equation tests for cointegration are tests based on sys-

tem estimation. Note that in the current environment, single equation methods

seem more suitable, given that there is clear one-way causality from the DR and

excess reserves to the Eonia rate, so that there is little ambiguity about what the

dependent variable in the cointegration relationship should be, which is typically

considered the main drawback of single equation tests. Similarly, the presence of

multiple cointegration relationships seems implausible, a second common reason

for using system cointegration tests. Still, for the sake of completeness, I comple-

ment the single equation tests with tests based on system estimation, with results

reported in Table 1.33. The results strongly support the presence of cointegra-
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Table 1.31: Unit root tests

Variable
Test type Eonia DR ER

ADF
-1.33 -1.64 -2.55
0.62 0.46 0.30

PP
-1.39 -1.57 -7.62
0.58 0.50 <0.0000

DFGLS
-0.17 0.02 -2.37
>0.1 >0.1 >0.1

ERS
26.15 18.64 -3.85
>0.1 >0.1 <0.01

NP1
-0.43 -0.97 -4.49
>0.1 >0.1 >0.1

NP2
-0.25 -0.49 -1.48
>0.1 >0.1 >0.1

NP3
0.58 0.50 0.33

>0.1 >0.1 >0.1

NP4
21.55 15.88 20.18
>0.1 >0.1 >0.1

KPSS
1.42 1.24 0.16

<0.01 <0.01 <0.05

Notes: Variables are the Eonia rate, the DR (DR) and logarithm of excess reserves (ER). Tests
refer to Augmented Dickey-Fuller (ADF), Philips-Perron (PP), Dickey-Fuller Test with GLS
Detrending (DFGLS), Elliot-Rothenberg-Stock Point Optimal (ERS), four types of Ng-Perron
(NP1-NP4), and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests. See Eviews manual for more
details. In the case of the Eonia rate and the DR, the specifications includes a constant, while
in the case of excess reserves, it includes a trend and a constant. Eviews default settings are
used for all other settings. The first value refers to the value of test statistic, the second to
the associated p-value, when available, or indicates whether the test statistic exceeds one of the
10%,5% or 1% thresholds. Sample is 2002M01-2019M08.
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Table 1.32: Single equation cointegration tests

Test type
Sample Statistic EG - AIC EG - SIC PO - AIC PO - SIC

2002M01
Tau

-3.41 -3.41 -11.12 -11.96
- 0.12 0.12 <0.0000 <0.0000

2019M18
Z

-25.73 -25.73 -197.10 -237.96
0.05 0.05 0.00 0.00

2009M01
Tau

-3.67 -3.67 -4.38 -4.38
- 0.07 0.07 0.01 0.01

2019M18
Z

-29.81 -29.81 -33.69 -33.69
0.02 0.02 0.01 0.01

2015W12
Tau

-3.62 -3.13 -9.64 -9.64
- 0.07 0.20 <0.0000 <0.0000

2019W36
Z

-31.26 -18.94 -148.19 -148.19
0.02 0.17 <0.0000 <0.0000

Notes: Tests refer to Engle-Granger (EG) and Phillips and Ouliaris (PO) tests, with either
Akaike or Schwarz information criterion used to select the order of lag. See the Eviews manual
for more details. The cointegration equation has the Eonia rate as the dependent variable, and
the DR and logarithm of excess reserves as indepndent variables, and includes a constant but
not a trend. Eviews default settings are used for all other settings. The first value refers to the
value of the test statistic, the second to the associated p-value.
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tion between the three series and hence confirm the conclusions based on single

equation tests.

Table 1.33: System cointegration tests

Test type
Trend case Lags Trace Maximum

B

0
73.53 53.02

<0.0000 <0.0000
2 2

1
53.52 35.39
0.00 0.00

1 1

2
75.98 57.67

<0.0000 <0.0000
1 1

C

0
52.78 32.44

<0.0000 0.00
2 2

1
46.36 28.64
0.00 0.00

3 1

2
67.96 49.71
0.00 0.00

3 1

Notes: Tests refer to Johansen cointegration tests based on the rank of the estimated matrix
of coefficients, using either trace or maximum eigenvalue. See the Eviews manual for more
details. Trend case B does not include a deterministic trends in the level of the series while
Trend case C does include a deterministic trend in the level of the series. In either case, the
cointegration equation includes a constant. Eviews default settings are used for all other settings.
The first value refers to the value of the test statistic for hypothesis of no cointegration among the
series, second to the associated p-value and third to the overall number of cointegrating vectors
suggested by the test. Sample 2015M03-2019M08.

1.F.3 Coefficient restrictions

The postulated models assume several coefficient restrictions relating to coeffi-

cients on different policy rates and on excess reserves. In this appendix, I provide
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empirical support for these restrictions, first focusing on restrictions relating to

models estimated on the robust sample, and then on models estimated on the full

sample.

First, for the models estimated on the robust sample - see equation (1.6) -

there is a single relevant restriction, since these models cover only one of the two

postulated regimes. Specifically, the models assume that the level of the other

policy rate, the main refinancing rate, is irrelevant for the level of the IIRs. The

model written without the restriction is:

IIRt = β0 + β1DRt + β2log(ERt−1) + β3MRRt + ϵt (1.17)

Therefore, the restrictions amount to settings β3 = 0. The results for this hy-

pothesis are reported in Table 1.34. The results provide mixed support for the

hypothesis, depending on what estimation method one uses. For basic estimation

methods, the null hypothesis of a zero coefficient on the MRR cannot be rejected

at any reasonable level of significance. However, for the three cointegration esti-

mation methods, the hypothesis results are not so clear cut: for FMOLS the null

hypothesis can be rejected at levels of significance just above the usual threshold,

while for ARDL it is just below this threshold and for CCR it is not too far from

this threshold. This would seem to suggest that the coefficient restriction is not

completely supported by the data. However, for all the cointegration methods,

the inclusion of the MRR leads to nonsensical coefficient estimates, with the co-

efficient on the MRR being negative, indicating that the IIRs increase when the

MRR decreases. This is clearly at odds with theory and likely reflects the fact

that the MRR nearly did not vary at all during the relevant sample, so that its

relevance is hard to establish on this sample. This notion is further supported by

the fact that the equivalent hypothesis is not rejected when the same estimation

method is used on the full sample; see next paragraph. Overall, I conclude that

the weight of evidence supports the coefficient restriction.

For the models estimated on the full sample - see equation (1.3) - multiple
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Table 1.34: Coefficient restrictions - hypothesis tests (single regime model)

Statistic
Method F Chi-square

OLS
0.00 0.00
0.96 0.95

TSLS
0.69 0.69
0.41 0.41

ARDL
2.95 5.91
0.06 0.05

FMOLS
4.88 4.88
0.03 0.03

CCR
2.27 2.27
0.14 0.13

Notes: Statistics correspond to a standard F-test and a Chi-square test; see the Eviews manual
for more details. The first value refers to the value of the test statistic, the second to the
associated p-value. Estimation sample 2015M03-2019M08.

coefficient restrictions have been applied, corresponding to multiple regimes. In

the normal regime, the model assumes that the IIRs depend only on the MRR,

and not on the DR and excess reserves. Moreover, the postulated model assumes

that the coefficient on the MRR was 1, which is equivalent to assuming that the

spread between the IIRs and the MRR does not change with the level of the MRR.

Without these restrictions, the full equation can be written as follows:

IIRt = β10 + β11MRRt + β12DRt + β13g(ER) (1.18)

The restrictions are then following: β11 = 1, β12 = 0 and β13 = 0. These can

be tested together or individually. With respect to the excess reserve regime, the

only relevant restriction applies to the MRR, as discussed above. Without the

restriction, the regime equation is:

IIRt = β20 + β21DRt + β22g(ERt) + β23MRRt + ϵt (1.19)
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and the restriction amounts to setting β23 = 0.

Table 1.35 presents the results for testing these hypothesis. The results over-

whelmingly support the coefficient restrictions imposed in the main text, with

the exception of one combination of hypotheses relating to the normal regime;

moreover, the restrictions imposed in the main text are supported as a set.

Table 1.35: Coefficient restrictions - hypothesis tests (two regime model)

Hypothesis Statistic

Tested Maintained F Chi-square

β11 = 1 β12 = β13 = 0
0.85 0.85
0.36 0.36

β12 = 0 β11 = 1
0.25 0.25
0.62 0.62

β13 = 0 β11 = 1
2.10 2.10
0.15 0.15

β13 = 0 β11 = 1, β12 = 0
3.75 3.75
0.06 0.05

β12 = 0 β11 = 1, β13 = 0
1.41 1.41
0.24 0.24

β12 = 0, β13 = 0 β11 = 1
4.66 9.31
0.01 0.01

β11 = 1, β12 = 0, β13 = 0 -
1.98 5.95
0.12 0.11

β23 = 0 -
0.51 0.51
0.48 0.48

Notes: Statistics correspond to a standard F-test and a Chi-square test; see the Eviews manual
for more details. The first value refers to the value of the test statistic, the second to the associated
p-value. Equation estimated using FMOLS, estimation sample 2002M01-2019M08 if DER

t = 0.

1.F.4 Model stability

This appendix provides support for the claim that the model coefficients did not

change with the advent of the QE program, so that the use of the model for
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constructing paths for IIRs with and without the program is valid.

Figure 1.36 shows the recursive coefficient estimates for all the model coeffi-

cients in the excess reserve regime. The top panels show the results for the linear

model, while the bottom panel shows the results for non-linear model. In neither

cases is there apparent break in the coefficients around the start of the QE pro-

gram. While the estimated coefficients for linear model display some evolution in

the later part of the sample covering the QE program, it is not significant and is

likely related to evolution of excess reserves rather than to the QE program itself

(see discussion in next chapter).

Figure 1.36: Recursive coefficient estimates

Notes: Recursive coefficient estimates with 2-standard deviations error bands.
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Chapter 2

Forecasting euro zone interbank interest
rates in the presence of excess reserves

2.1 Introduction

Forecasts for interbank interest rates (IIRs) are among the most frequently used

macroeconomic forecasts, partly owing to their popularity in credit and market

risk models (see e.g. Moore, Wurst, and Cramer (2019)). Moreover, small varia-

tions in forecasts for IIRs can be of great importance: the most commonly used

transformation for IIRs is the spread between IIRs and a risk-free benchmark,

which historically has relatively low volatility. Taken together this implies that

forecasting performance of models for IIRs is of particular interest.

This chapter studies the forecasting performance of the novel structural model

proposed in the first chapter. The central theme of that chapter is that IIRs

underwent a change in regime due to emergence of excess reserves, which have

been present in the euro zone nearly continuously since fall of 2008. The chapter

shows that the structural model is important in making sense of movements in IIRs

over the relevant sample, and explains these movements in terms of novel features

of the model. This raises the question of whether the model is also useful in terms
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of out-of-sample forecasting when compared with alternative reduced form models,

a possibility suggested by the nature of the novel features of the model.1

This chapter evaluates the forecasting performance of the structural model by

comparing its performance with the universe of plausible benchmark models of the

reduced form category. The chapter shows that, in ex-post pseudo out-of-sample

forecasting exercises, the structural model performs substantially better than any

class of reduced form models, and in most cases better than any individual reduced

form model. For example, in the case of the Eonia rate and 24 month horizon the

non-linear structural model has a mean average error (MAE) of 0.035, while the

best reduced form model has an MAE of 0.095, and the best model class of reduced

form models has an MAE of 0.14. The results for 1-week and 3-month Euribor

rates are qualitatively similar, though the difference between the structural model

and reduced form models is not as stark. Overall, this highlights the importance

of accounting for structural factors in forecasting IIRs.

There are two caveats to these results. First, in ex-post forecasting, some re-

duced form models perform better than structural models at the shortest horizons

of 1 and 2 months, which can be explained by the equilibrium nature of the struc-

tural model: Since it can take time for this equilibrium relationship to assert itself,

and for structural forces to change significantly, models that are close to random

walk can achieve better performance over short horizons.

Second and more important caveat is that the superior performance from ex-

post forecasting applies only partly in ex-ante forecasting. This is an unsurprising

conclusion, given that an important factor behind the difficulty of forecasting
1Specifically, there are two aspects of behavior of IIRs that are unlikely to be captured by usual

time series models, leading to suboptimal forecasting performance. First, the presence of excess
reserves changes the risk-free interest rate which anchors IIRs from the the main refinancing rate
to the deposit rate. This means that models simply linking IIRs to main refinancing rate will
struggle to make correct forecasts for IIRs in periods when the two policy rates either do not
move in lockstep or when the difference between them is substantially different from historical
averages, both of which have been true for the last several years. Second, apart from the presence
of excess reserves, the IIRs also depend (negatively) on the amount of excess reserves, whenever
excess reserves are present. This means that models that do not incorporate variations in the
excess reserves will struggle to correctly forecast the variations in IIRs even when excess reserves
vary over time.
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market interest rates in general is having reliable out-of-sample forecasts for the

conditioning monetary policy variables. In the specific case of interbank interest

rates, it is the forecasts for excess reserves, and to a lesser degree monetary policy

rates, that are substantial source of ex-ante forecast errors. That said, this chap-

ter provides a quantitative information on the trade-off between having a more

correct but more complex structural model and having a simpler but less correct

model in the specific case of interbank interest rates. A key takeaway is that the

structural model is better tool for forecasting interbank interest rates ex-ante as

long as excess reserves can be forecast well. This is the case if the central bank

is operating quantitative easing program, which is both the main driver of excess

reserves and easily predictable due to the forward-looking nature of central bank

announcements.

Benchmarking the structural model against reduced form models is not the

primary goal of this chapter. Rather, the benchmarking provides a basis for anal-

ysis of what model features are important for forecasting IIRs in the presence of

excess reserves. This analysis relies on a dual approach. First, I estimate and

evaluate the whole universe of (linear) reduced form models, which allows me to

draw conclusions about which features of reduced form models are correlated with

good forecasting performance; second, I rely on the superior performance of the

structural model to interpret why particular features are important. The answer

to this question lies in the statistical nature of the series of interest. Specifically,

the IIRs are both non-stationary and co-integrated with monetary policy variables,

as noted in the first chapter and discussed in further here.

Correspondingly, the fourth section of this chapter shows how the suboptimal

nature of forecasts from usual time series models can be explained by the statistical

features of the data. First, models that ignore the nonstationarity of IIRs force

the spread between IIRs and policy rates to return to historical averages. While

this is a good forecasting rule for a period before the emergence of excess reserves,

it is widely at odds with the behavior of IIRs over last decade. For example,

due to historically high levels of excess reserves, IIRs are systematically below
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the main refinancing rate, something that was never observed before 2008. On

the other hand, models cast in first differences, as the stationary transformation

of the modeled series, ignore the cointegration relationship, and especially the

role of excess reserves. This means that such models effectively assume that the

spread between IIRs and policy rates will remain at current levels. With exception

of period from 2017 to 2019, this assumption is at odds with the behavior of

IIRs. Not only did the secular level of spreads change significantly throughout

the 2010s thanks to wild fluctuations in excess reserves, but more importantly, the

spreads also feature many transitory movements. Prime example of such transitory

movements are jumps during periods of stress in financial markets. Models in first

differences make these transitory jumps in spreads permanent, which amounts to

permanent periods of stress, clearly a nonsensical forecast.

This chapter is related to literature on IIRs; see Green et al. (2016) for a

recent review of this literature. However, this chapter is different from the existing

literature in two important aspects. First, almost all of the papers reviewed by

Green et al. (2016) focus on high frequency movements of overnight interest rates.

In contrast, this chapter focuses on medium- and long-term movements in both

overnight interest rates and IIRs with longer maturity. Second, it focuses on

forecasting of IIRs, rather than on analysis of the relationship between the behavior

of IIRs and the conduct of monetary policy. To my knowledge there is no other

paper focusing primarily on the forecasting performance of alternative models of

IIRs.2 This is not completely surprising given that, prior to emergence of excess

reserves, forecasting IIRs was almost equivalent to forecasting policy rates, since

the latter anchored the former almost perfectly. However, with the emergence of

excess reserves, this is no longer true. I attempt to fill in the gap in literature

by studying the forecasting performance of alternative models and linking it to

2The review by Green et al. (2016) does not include a section on forecasting IIRs. Mean-
while, a google scholar search conducted in March 2021 using key words "eonia forecasting",
"overnight forecasting", "interbank forecasting" or "money market forecasting" does not result
in identification of any relevant research articles. The only partial exception is Marquez, Morse,
and Schlusche (2013), who create several scenario forecasts for US IIRs conditional on different
paths for excess reserves.
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structural factors.

The rest of this chapter is divided into 4 sections. First, I present and briefly

discuss alternative models used for forecasting IIRs. The forecasting performance

of these models is compared in section 3. The section discusses which model

features correlate with good forecasting performance and highlights the superior

forecasting performance of the structural model over reduced form models. Section

4 then explains these observations by linking them to the econometric nature of

the time series under analysis. Specifically, it shows how limitations of different

reduced form models are linked to the nonstationarity and co-integration nature

of the time series, and how these features are captured by the structural model.

The last section concludes.

2.2 Alternative models

This section presents the alternative models considered in this chapter. Two goals

guide my selection of models. First, given the absence of a single natural bench-

mark model3 - and the absence of competitor models, as discussed in the intro-

duction - I consider the full universe of plausible benchmark models so as not to

influence my conclusions by the (un)fortunate selection of a benchmark model.

Second, considering all plausible models allows me to analyze what model features

are important for forecasting interbank interest rates (IIRs) in the presence of ex-

cess reserves. This will then form the basis of discussion focused on the explanation

of the forecasting performance of various models, which constitutes the main goal

of this chapter.

The section starts with a discussion of the simplest univariate models, proceeds

to single-equation multivariate models, and finally turns to multiple-equation mod-

els. All the models are presented in the table at the end of this section, which also

3For example, macroeconomic literature and practitioners often use simple autoregressive
model of second order as a benchmark model; see Edge, Kiley, and Laforte (2010) for an example
of the former and further citations, and Ciccarela and Kovar (2020) for an example of the latter.
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includes the equation representations of the models.

2.2.1 Univariate models

The simplest time series models are univariate models. Even within this basic

class of models, one can consider multiple alternative sub-categories of models,

depending on whether the dependent variable in the model is the level or first

differences of the underlying variable. In order to explore the complete universe

of possible models, I consider both options. The other question is which, and how

many, ARMA terms one should include. I rely on the now common approach of

automatically selecting ARMA terms based on information criteria, namely the

Akaike Information Criterion (AIC) and the Schwarz Information Criterion (SIC).

2.2.2 Multivariate single-equation models

The second class of models I consider are multivariate single-equation models,

which include information about additional variables than just the forecasted vari-

able. The inclusion of these models is motivated by the nature of IIRs: movements

in IIRs are mostly caused movements in interest rates set by central banks, and

other monetary policy variables. Hence, it is important to also consider models

that include information about these variables.4

Within this class of models, I consider two groups of models, reduced-form

models and structural models. The latter group consists of variations of the struc-

tural model presented in the first chapter.

Reduced-form models. The starting point for multivariate single-equation

models are models that link the level of IIRs to the level policy rate(s). The

simplest model is a static regression linking the current level of IIRs to the current

4This is for two reasons. First, conditional on knowing the policy rates, univariate models
that do not incorporate this information are very inefficient in forecasting IIRs. The second
reason is conditional inconsistency: when one forecasts both policy rates and IIRs, univariate
models will lead to forecasts that are potentially inconsistent with the forecast for policy rates.
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level of policy rates, e.g.:

IIRt = β0 + β1MPRt + at (2.1)

There are two policy rates that one can consider: the main refinancing rate (MRR)

and the deposit rate (DR). While prior to 2009 it was feasible to include only one

of the two policy variables, since they moved in perfect lockstep, in the sample

starting from 2009, both can be included.

Of course, the model in equation (2.1) is likely to suffer from strong autocor-

relation in residuals, i.e. it does not capture some persistence in the dependent

variable, compromising its forecasting performance. There are two alternative ways

to address this problem in terms of model structure. Either one can include lag(s)

of the dependent variable, creating what is commonly called an ARMAX model.

Alternatively, one can include ARMA errors instead of lags of dependent variables.

The difference is whether transitory movements in the independent variable will

have persistent effects or not, with persistent effects being present in ARMAX

models. To complement models that include persistence via inclusion of ARMA

components, I consider models that include persistence via lagged values of inde-

pendent variables in addition to lagged values of dependent variables, which are

commonly called autoregressive-distributed-lag (ARDL) models . Whatever the

form of ARMA components is included, one needs to select the order of ARMA

components, and decide whether to difference the dependent variable or not. As

in the case of univariate models, I consider both models in level and differences,

and rely on information criteria to select ARMA components.

Finally, another class of multivariate single equation models are univariate

models that use a spread between IIRs and one of the policy rates as the depen-

dent variable. These are effectively the same as those discussed in the previous

paragraph with the coefficient on the concurrent policy rate set equal to 1. While

in principle such a coefficient restriction might be inefficient from the estimation

perspective, it might be beneficial from a forecasting perspective, and indeed such
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(implicit) coefficient restriction is often used in practice. Therefore, it is valuable

to include this model class among those considered.

In addition to these common reduced-form models, I also consider less common

models that allow for a break in the relationship between IIRs and policy rates.

These can be considered a mid-way between a pure reduced form model and the

actual structural model. Specifically, I consider three types of models in levels -

static regression, a model with ARMA errors, and an ARMA model in spread - and

allow them to have different coefficient estimates before and after the emergence

of excess reserves. To determine whether two sets of coefficients should be used,

I rely on a standard Chow break test with 2008M10 as the break date. Rather

than searching for an ARMA structure with the previous models - something not

common in combination with breaks - I impose an ARMA(1,1) structure on an

ex-ante basis.

Structural model. The structural model proposed in the first chapter also be-

longs to the class of multivariate single equation models. There are two differences

from the models discussed above, both following from theoretical considerations

supported by data analysis presented in the first chapter. First, the model im-

poses structure on the link between the IIRs and policy rates, which amounts to

imposing multiple coefficient restrictions. Moreover, the structure relies on the

presence of multiple regimes and an exogenous threshold variable. These factors

combined can improve forecasting performance by not relying on potentially noisy

estimation procedures to determine coefficients or breaks. Second, the model also

includes another variable linked to monetary policy, the amount of excess reserves.

There are two formulations of the resulting model, one linear and one nonlinear.

These are captured in equations below:

IIRt =

⎧⎨⎩β10 +MRRt + ϵt if DER
t = 0

β20 + β21DRt + β22log(ERt) + ϵt if DER
t = 1

(2.2)
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f(IIRt) =

⎧⎨⎩IIRt −MRRt = β10 + ϵt if DER
t = 0

log(IIRt −DRt) = β20 + β22log(ERt) + ϵt if DER
t = 1

(2.3)

where DER
t is dummy variable indicating the presence of excess reserves. In both

linear and nonlinear model, the first regime amounts to assuming that the spread

between IIRs and MRR is constant. Meanwhile, the second regime links the IIRs

to DR, rather than MRR, and to the logarithm of the excess reserves, and corre-

spondingly is dubbed the excess reserve regime. The difference between linear and

nonlinear models is that nonlinear model uses the logarithm of spread between

IIR and DR as a dependent variable, instead of using the level of IIRs. The main

motivation for this formulation is to prevent the IIRs from falling below the DR,

which is systematically impossible in the sample considered.

2.2.3 Multi-equation models

I also consider multiple-equation models of the usual vector-autoregression (VAR)

class. These models are popular for short-term forecasting and can serve as a useful

benchmark, especially for ex-ante forecasting performance. That said, the value

of additional equations is likely to be low in the current environment: IIRs are

unlikely to influence policy rates - with the potential exception of longer-maturity

IIRs during periods of financial stress - since central banks use policy rates to

control IIRs, and insofar as they are successful in this, the shocks to IIRs do not

result in reactions from central banks.

There are three substantial decisions to be made when creating VAR models:

(1) what variables should be included, (2) with which transformations, and (3)

with how many lags. I consider VAR with MRR or DR5, in levels, in differences

and in vector error correction (VEC) form, and use either AIC or SIC to select

the number of lags.
5I do not include VARs with both policy rates in the analysis. The issue is the high degree of

colinearity - and even perfect colinearity in part of the sample - between the two policy rates. This
raises issues for coefficient estimates, and indeed the VAR models which include both variables
feature explosive forecasts.
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2.2.4 Overview of estimated models

In total, the above discussion leads to 4 univariate models, 58 single-equation mod-

els, and 12 multiple-equation models. Table 2.1 provides a basic overview of the

selected models. The models are separated into 7 groups: (1) univariate models;

(2) multivariate models that use the level of IIRs as a dependent variable, (3)

multivariate models that use first differences as a dependent variable, and (4) mul-

tivariate models that use the spread between IIRs and policy rates as a dependent

variable; (5) multivariate models that allow for a break; (6) multiequation models;

and (7) structural models.6 Groups 1-4 together with group 6 cover the space

of standard reduced-form time series models; these are complemented by models

which impose more structure on the data, be it only in the form of a break, or in

the form of fully specified structural models proposed in first chapter.

Table 2.1: Overview of all models estimated

# Description Equation

Univariate models

1 ARMA - AIC IIRt = β0 +ARMA(p, q)

2 ARMA - SIC
3 ARMA, d - AIC d(IIRt) = β0 +ARMA(p, q)

4 ARMA, d - SIC

Multivariate models - level

5 Static regerssion - MRR IIRt = β0 + β1MRRt

6 Static regerssion - DR IIRt = β0 + β1DRt

7 Static regerssion - MRR&DR IIRt = β0 + β1MRRt + β2DRt

8 ARMAX - MRR - AIC IIRt = β0 + β1MRRt +
∑︁p

l=1 β2,lIIRt−l

9 ARMAX - MRR - SIC
10 ARMAX - DR - AIC IIRt = β0 + β1DRt +

∑︁p
l=1 β2,lIIRt−l

11 ARMAX - DR -SIC
12 ARMAX - MRR&DR - AIC IIRt = β0 + β1MRRt + β2DRt +

∑︁p
l=1 β3,lIIRt−l

13 ARMAX - MRR&DR - SIC
14 ARMA errors - MRR - AIC IIRt = β0 + β1MRRt +ARMA(p, q)

15 ARMA errors - MRR - SIC
16 ARMA errors - DR - AIC IIRt = β0 + β1DRt +ARMA(p, q)

17 ARMA errors - DR -SIC
18 ARMA errors - MRR&DR - AIC IIRt = β0 + β1MRRt + β2DRt +ARMA(p, q)

Continued on next page

6For brevity I will refer to the 2nd, 3rd and 4th groups as specifications in levels, specifications
in differences, and specifications in spreads, while the 5th group will be referred to as models
with break.
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Table 2.1: Overview of all models estimated

# Description Equation

19 ARMA errors - MRR&DR - SIC
20 ARDL - MRR - AIC IIRt = β0 +

∑︁p
l=0 β1,lMRRt−l +

∑︁q
l=1 β2,lIIRt−l

21 ARDL - MRR - SIC
22 ARDL - DR - AIC IIRt = β0 +

∑︁p
l=0 β1,lDRt−l +

∑︁q
l=1 β2,lIIRt−l

23 ARDL - DR -SIC
24 ARDL - MRR&DR - AIC IIRt = β0 +

∑︁p
l=0 β1,lMRRt−l +

∑︁q
l=1 β2,lDRt−l +∑︁r

l=1 β3,lIIRt−l

25 ARDL - MRR&DR - SIC

Multivariate models - differences

26 Static regression d - MRR d(IIRt) = β1d(MRRt)

27 Static regression d - DR d(IIRt) = β1d(DRt)

28 Static regression d - MRR&DR d(IIRt) = β1d(MRRt) + β2d(DRt)

29 ARMAX, d - MRR - AIC d(IIRt) = β1d(MRRt) +
∑︁p

l=1 β2,ld(IIRt−l)

30 ARMAX, d - MRR - SIC
31 ARMAX, d - DR - AIC d(IIRt) = β1d(DRt) +

∑︁p
l=1 β2,ld(IIRt−l)

32 ARMAX, d - DR -SIC
33 ARMAX, d - MRR&DR - AIC d(IIRt) = β1d(MRRt) + β2d(DRt) +

∑︁p
l=1 β3,ld(IIRt−l)

34 ARMAX, d - MRR&DR - SIC
35 ARMA errors, d - MRR - AIC d(IIRt) = β1d(MRRt) +ARMA(p, q)

36 ARMA errors, d - MRR - SIC
37 ARMA errors, d - DR - AIC d(IIRt) = β1d(DRt) +ARMA(p, q)

38 ARMA errors, d - DR -SIC
39 ARMA errors, d - MRR&DR - AIC d(IIRt) = β1d(MRRt) + β2d(DRt) +ARMA(p, q)

40 ARMA errors, d - MRR&DR - SIC
41 ARDL, d - MRR - AIC d(IIRt) =

∑︁p
l=0 β1,ld(MRRt−l) +

∑︁q
l=1 β2,ld(IIRt−l)

42 ARDL, d - MRR - SIC
43 ARDL, d - DR - AIC d(IIRt) =

∑︁p
l=0 β1,ld(DRt−l) +

∑︁q
l=1 β2,ld(IIRt−l)

44 ARDL, d - DR -SIC
45 ARDL, d - MRR&DR - AIC d(IIRt) =

∑︁p
l=0 β1,ld(MRRt−l) +

∑︁q
l=1 β2,ld(DRt−l) +∑︁r

l=1 β3,ld(IIRt−l)

46 ARDL, d - MRR&DR - SIC

Multivariate models - spread

47 ARMA, s - MRR - AIC IIRt −MRRt = β0 +ARMA(p, q)

48 ARMA, s - MRR - SIC IIRt −MRRt = β0 +ARMA(p, q)

49 ARMA, s - DR - AIC IIRt −DRt = β0 +ARMA(p, q)

50 ARMA, s - DR - SIC IIRt −DRt = β0 +ARMA(p, q)

51 ARMA, s, d - MRR - AIC d(IIRt −MRRt) = ARMA(p, q)

52 ARMA, s, d - MRR - SIC d(IIRt −MRRt) = ARMA(p, q)

53 ARMA, s, d - DR - AIC d(IIRt −DRt) = ARMA(p, q)

54 ARMA, s, d - DR - SIC d(IIRt −DRt) = ARMA(p, q)

Continued on next page
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Table 2.1: Overview of all models estimated

# Description Equation

Multivariate models - break

55 Static regression, b - MRR IIRt =
∑︁

s=before,after[β0,s + β1,sMRRt]

56 Static regression, b - DR IIRt =
∑︁

s=before,after[β0,s + β1,sDRt]

57 Static regression, b - MRR&DR IIRt =
∑︁

s=before,after[β0,s + β1,sMRRt + β2,sDRt]

58 ARMA errors, b - MRR IIRt =
∑︁

s=before,after[β0,s + β1,sMRRt +ARMAs(1, 1)]

59 ARMA errors, b - DR IIRt =
∑︁

s=before,after[β0,s + β1,sDRt +ARMAs(1, 1)]

60 ARMA errors, b - MRR&DR IIRt =
∑︁

s=before,after[β0,s + β1,sMRRt + β2,sDRt +

ARMAs(1, 1)]

61 ARMA, s, b - MRR IIRt −MRRt =
∑︁

s=before,after[β0,s +ARMAs(1, 1)]

62 ARMA, s, b - DR IIRt −DRt =
∑︁

s=before,after[β0,s +ARMAs(1, 1)]

Multiequation models

63 Levels - MRR - AIC yt = A0 +
∑︁p

l=1 Alyt−l where yt = {IIRt,MRRt}
64 Levels - MRR - SIC
65 Levels - DR - AIC yt = A0 +

∑︁p
l=1 Alyt−l where yt = {IIRt, DRt}

66 Levels - DR - SIC
67 Differences - MRR - AIC d(yt) =

∑︁p
l=1 Ald(yt−l) where yt = {IIRt,MRRt}

68 Differences - MRR - SIC
69 Differences - DR - AIC d(yt) =

∑︁p
l=1 Ald(yt−l) where yt = {IIRt, DRt}

70 Differences - DR - SIC
71 VECM - MRR - AIC d(yt) = A0 + Πyt−1 +

∑︁p
l=1 Ald(yt−l) where yt =

{IIRt,MRRt}
72 VECM - MRR - SIC
73 VECM - DR - AIC d(yt) = A0+Πyt−1+

∑︁p
l=1 Ald(yt−l) where yt = {IIRt, DRt}

74 VECM - DR - SIC

Structural models

100 Linear equation (2.2)
101 Nonlinear equation (2.3)

Notes: ARMA is a model with autoregressive and moving average errors; ARMAX is a model with exogenous vari-
ables and lags of the dependent variable; ARMA errors is a model with exogenous variables and with autoregressive
and moving average errors; ARDL is model with lags of dependent and exogenous variables.
d indicates a model in differences; s indicates a model in spread; b indicates a model with a break; MRR, DR and
MRR&DR indicate models that use the main refinancing rate, the deposit rate, or both, as exogenous variables;
AIC and SIC indicate a model selected by Akaike Information Criterion and Schwarz information criterion.
In equations, ARMA(p,q) indicates an error process that includes p autoregressive errors and q moving average
errors; d(·) indicates first differencing.

2.3 Forecasting performance

This section assesses the performance of alternative models in pseudo out-of-sample

forecasting. Throughout the section, I highlight model features that correlate with
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good forecasting performance, using the superiority of the structural model as a

guiding principle. This not only helps make sense of the results presented, and thus

provides background for discussion in next section, but also provides additional

support to the structural model.

The performance is assessed based on results from two different exercises. First,

forecasts are made using actual values of monetary policy variables, in what is

called ex-post or conditional forecasts. The motivation for this forecasting exercise

is that the majority of variations in the level of IIRs is caused by variations in

monetary policy rates that anchor IIRs. This means that when considering ex-ante

forecasts from multivariate models, in which values of monetary policy variables

are also forecasted, the majority of forecast errors would originate in forecasts for

monetary policy rates, not in forecasts for IIRs. This hinders the evaluation of

models for IIRs. To focus specifically on the model for IIRs, I start with an exercise

that eliminates the forecast error originating in the monetary policy variables.7

The drawback of ex-post forecasts is that they do not provide a measure of how

good the models would be at forecasting given a series with imperfect knowledge

of future developments in independent variables. Therefore, I complement the

results from the ex-post forecasting exercise with results from an ex-ante forecast-

ing exercise. In this second exercise, the forecasts are made without knowledge of

any future values of independent variables, and hence they are sometimes called

unconditional.

For both exercises, I report the mean absolute error (MAE) of forecasts at

several different horizons varying from 1 to 60 months. 8 I include indicator

of whether the best performing specification of structural model is has better

forecast performance than given benchmark model in statistically significant way.9

7Ex-post forecasting exercises have a long history in econometric literature. For a famous
early example, see e.g., Meese and Rogoff (1983). For more discussion of ex-post forecasting and
its informational value see for example Hyndman and Athanasopoulos (2018).

8The results are robust to alternative measures of forecast precision.
9See more details in Appendix 2.B.3. Note that the results should be taken more as illustration

of the statistical significance of the magnitude of differences between forecast performance, rather
than formal answer to question whether the structural model improves forecasting performance:
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Additionally, I complement the numerical results by charts capturing all forecasts

at the 24 month horizon, which can be found in Appendix 2.C. In all cases I focus

on the sample covering period with excess reserves, January 2009 to August 2019;

results for the sample also covering the period before January 2009 are in Appendix

2.B.10

Finally, it is worth adding a comment about the pseudo out-of-sample nature

of the forecasts. While this forecasting exercise is pseudo out-of-sample in that the

forecasts were created after the fact, and hence from models that were postulated

based on knowledge about behavior of interbank interest rates, to a large degree it

is close to a true out-of-sample forecasting exercise. For all reduced-form models,

the model structure is not informed by developments that happened after the start

of forecasts given that it is chosen dynamically - see Appendix 2.A for details of

the forecasting procedures. This leaves only the structural model as potentially

problematic. However, the model has been used since 2016 (Kovar 2017) and thus

for part of the sample the forecasts are truly out-of-sample even for the structural

model.

2.3.1 Ex-post forecasting performance

Eonia rate. Table 2.2 shows the MAE of ex-post forecasts for the Eonia rate at

various horizons, considering all models discussed in the previous section.11 The

as stressed throughout the text, the appropriate question is not whether given single benchmark
model is better (or worse) than the structural model, but rather whether given class of benchmark
models is better than the structural model, given that ex-ante one does not have clear guidance
on which benchmark model should be chosen.

10I end with August 2019 because in September the ECB adopted tiering of excess reserves, and
in October the definition of all considered IIRs changed. Both factors change the relationships
embedded in the structural model. I leave exploration of this period for later research.

11To decrease the number of models, I report results only for a selected subset of models.
The selection is based on two principles: similarity and performance. When models that are
similar to each other and at but one has systematically better performance, I eliminate the worse
performing model. In most cases, I eliminate model selected by one of the information criteria
if the other information criteria led to better results; and in many cases I eliminate the model
which uses one policy variable if using the alternative policy variable led to better results. Full
results are reported in Appendix 2.B.
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bottom of the table then displays summary statistics for each column of the table.
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Table 2.2: Ex-post forecasting performance for the Eonia rate

Forecast horizons (# of steps ahead)
# Description 1 2 3 6 12 24 48 60 Avg.

Multivariate models - level
5 Static regerssion - MRR 0.21 0.21 0.21 0.22 0.22 0.23 0.24 0.16 0.21
6 Static regerssion - DR 0.28 0.28 0.28 0.29 0.3 0.32 0.4 0.43 0.32
7 Static regerssion - MRR&DR 0.19 0.2 0.21 0.23 0.28 0.38 0.63 0.7 0.35
9 ARMAX - MRR - SIC 0.089 0.15 0.21 0.26 0.23 0.23 0.2 0.11 0.18
11 ARMAX - DR -SIC 0.076 0.14 0.22 0.39 0.44 0.44 0.54 0.57 0.35
13 ARMAX - MRR&DR - SIC 0.097 0.16 0.22 0.33 0.36 0.48 0.81 0.9 0.42
14 ARMA errors - MRR - AIC 0.058 0.082 0.099 0.13 0.22 0.25 0.24 0.18 0.16
15 ARMA errors - MRR - SIC 0.05 0.072 0.086 0.12 0.19 0.24 0.19 0.12 0.13
16 ARMA errors - DR - AIC 0.043 0.069 0.084 0.13 0.19 0.25 0.45 0.51 0.22
17 ARMA errors - DR -SIC 0.038 0.057 0.073 0.13 0.2 0.32 0.57 0.67 0.26
18 ARMA errors - MRR&DR - AIC 0.061 0.085 0.099 0.13 0.22 0.24 0.23 0.17 0.15
19 ARMA errors - MRR&DR - SIC 0.051 0.073 0.086 0.12 0.19 0.23 0.19 0.15 0.14
21 ARDL - MRR - SIC 0.049 0.072 0.089 0.13 0.21 0.27 0.23 0.15 0.15
23 ARDL - DR -SIC 0.034 0.051 0.064 0.11 0.18 0.23 0.46 0.55 0.21
25 ARDL - MRR&DR - SIC 0.063 0.09 0.11 0.17 0.29 0.47 0.95 1.22 0.42

Avg. 0.09 0.12 0.15 0.21 0.27 0.34 0.57 0.72 0.31

Multivariate models - differences
26 Static regerssion, d - MRR 0.038 0.058 0.069 0.1 0.17 0.22 0.26 0.25 0.15
27 Static regerssion, d - DR 0.03 0.044 0.053 0.077 0.12 0.11 0.17 0.18 0.098
28 Static regerssion, d - MRR&DR 0.039 0.059 0.069 0.095 0.16 0.19 0.2 0.2 0.12
30 ARMAX, d - MRR - SIC 0.04 0.06 0.073 0.1 0.17 0.23 0.29 0.31 0.16
32 ARMAX, d - DR -SIC 0.031 0.044 0.055 0.074 0.11 0.1 0.14 0.15 0.088
34 ARMAX, d - MRR&DR - SIC 0.04 0.059 0.071 0.094 0.15 0.19 0.23 0.25 0.14
38 ARMA errors, d - DR -SIC 0.034 0.047 0.058 0.078 0.12 0.11 0.16 0.17 0.096
42 ARDL, d - MRR - SIC 0.043 0.063 0.075 0.1 0.17 0.23 0.31 0.33 0.17
44 ARDL, d - DR -SIC 0.031 0.044 0.055 0.074 0.11 0.1 0.14 0.15 0.087
46 ARDL, d - MRR&DR - SIC 0.05 0.066 0.08 0.12 0.23 0.38 0.7 0.87 0.31

Avg. 0.04 0.06 0.07 0.10 0.16 0.19 0.27 0.30 0.15

Multivaraite models - spread
47 ARMA, s - MRR - AIC 0.058 0.085 0.1 0.14 0.23 0.27 0.19 0.13 0.15
48 ARMA, s - MRR - SIC 0.049 0.071 0.085 0.12 0.19 0.23 0.17 0.1 0.13
50 ARMA, s - DR - SIC 0.038 0.054 0.07 0.12 0.19 0.28 0.48 0.55 0.22
52 ARMA, s, d - MRR - SIC 0.044 0.063 0.074 0.1 0.17 0.22 0.28 0.29 0.16
53 ARMA, s, d - DR - AIC 0.042 0.064 0.074 0.092 0.12 0.12 0.16 0.17 0.11
54 ARMA, s, d - DR - SIC 0.032 0.045 0.056 0.073 0.11 0.095 0.13 0.13 0.083

Avg. 0.05 0.07 0.08 0.11 0.18 0.21 0.27 0.28 0.16

Multivariate models - break
55 Static regression, b - MRR 0.11 0.11 0.11 0.11 0.12 0.1 0.15 0.16 0.12
56 Static regression, b - DR 0.15 0.15 0.15 0.16 0.19 0.2 0.33 0.36 0.21
57 Static regression, b - MRR&DR 0.1 0.1 0.11 0.12 0.14 0.13 0.22 0.22 0.14
58 ARMA errors, b - MRR 0.054 0.09 0.1 0.13 0.17 0.17 0.32 0.32 0.17
59 ARMA errors, b - DR 0.045 0.072 0.086 0.11 0.13 0.11 0.19 0.2 0.12
61 ARMA, s, b - MRR 0.049 0.079 0.096 0.13 0.16 0.16 0.23 0.25 0.14
62 ARMA, s, b - DR 0.055 0.088 0.1 0.13 0.15 0.15 0.22 0.18 0.13

Avg. 0.08 0.10 0.11 0.12 0.15 0.14 0.24 0.24 0.14

Structural models
100a Linear 0.066 0.07 0.075 0.084 0.089 0.098 0.085 0.12 0.086
100b Linear - ARMA errors 0.048 0.061 0.066 0.075 0.081 0.088 0.075 0.088 0.073
101a Nonlinear 0.044 0.047 0.046 0.046 0.044 0.035 0.035 0.024 0.04
101b Nonlinear - ARMA errors 0.037 0.046 0.044 0.049 0.051 0.046 0.048 0.039 0.045
Avg. 0.05 0.06 0.06 0.06 0.07 0.07 0.06 0.07 0.06

Summary statistics
Mean 0.08 0.10 0.14 0.19 0.23 0.35 0.42 0.20
Std. Deviation 0.05 0.05 0.07 0.08 0.12 0.31 0.54 0.13
Minimum 0.04 0.04 0.05 0.04 0.04 0.04 0.02 0.04
1st quartile 0.06 0.07 0.10 0.13 0.12 0.19 0.16 0.12
3rd quartile 0.09 0.11 0.13 0.22 0.27 0.45 0.51 0.22
Maximum 0.28 0.28 0.39 0.44 0.61 1.78 3.64 0.81

Notes: Mean average error at given horizon. "Avg." shows average across all horizons (last column) or
models (last row of each section). Green indicates low errors, yellow/orange medium errors, and red high
errors; dark scale indicates more extreme values than light scale. Italics indicates that performance is
not significantly worse than the best structural model.156



Focusing on specifications in level and looking at all horizons together, one

can easily identify types of models that perform poorly in forecasting IIRs: it is

models that either link the level of IIRs only to current policy rates without any

dynamic components (5-7) and hence force an immediate return to the average

relationship between IIRs and policy rates; or models that incorporate dynamic

components only in the form of past levels of dependent and independent variables,

rather than in terms of past errors (8-13,20-25). The failure of the latter type of

models, especially at short horizons, is linked to reliance on the wrong type of

dynamic terms, since past values of policy rates should not influence current IIRs

if monetary policy has control over them. Similar logic also explains why the

regressions with ARMA errors (14-19) perform generally better than regressions

with lagged values of IIRs: while both incorporate information about past values

of IIRs in forecasts for future values, regressions with lagged values of IIRs suggest

that future values of IIRs depend on current and past values of IIRs, which is

unlikely in a situation when policy rates are changing; in contrast, regressions

with ARMA errors link future values to past values only after accounting for the

values of policy rates.

Turning to specifications with differences of IIRs as the dependent variable, the

first conclusion is that, as a set, these models are substantially better at forecasting

IIRs than models with the level of IIRs as the dependent variable: averaged across

all models and horizons, the MAE is 0.15 compared to 0.31 for models in levels;

see last row of the corresponding sections. This finding is somewhat unsuprising

in the light of the non-stationarity of IIRs highlighted in the first chapter and

discussed in greater detail in the next section; there I show how better forecasting

performance is linked to the fact that equations which use the level of IIRs as a

157



dependent variable force a return to the historically average relationship between

level of IIRs and policy rates, something that is at odds with the behavior of IIRs

in the presence of excess reserves.

Among the models in first differences, the variation in forecasting performance

is less pronounced and less related to model structure than among the previous

group of models. Rather, it is linked to which independent variable(s) are included,

with models using the DR performing better than models using only (or also)

the main refinancing rate. Still, there is one model that stands out in terms of

forecasting performance: a static model with the deposit rate. This model links

changes in IIRs to changes in the deposit rate, but does not include any additional

dynamic terms. The superior performance of the model without any dynamic

terms suggests that once we try to predict only changes in IIRs from the current

level, rather then predicting the level itself, then past information is no longer

useful in predicting IIRs. While this is a somewhat unsurprising realization, it

is an important one with respect to the structural model that does not include

information about past values of IIRs or policy rates.

The last group of standard reduced-form models use the spread between IIRs

and policy rates as a dependent variable, either in levels or in differences. As a

group, these models perform as well as models in differences, and hence substan-

tially better than models in levels. Since the difference between the specifications

in terms of levels and in terms of spreads is effectively in whether one imposes

coefficient restrictions or not, one can conclude that such coefficient restrictions

can play an important role in forecasting IIRs. Apart from this observation, the

conclusions are similar to those from the previous group, with best the performing

model using the DR rather than the main refinancing rate.
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The following group of models with a break occupies space between pure re-

duced form models and models that impose some structure on the modeled series.

Since one key essence of the structural model is the break in the presence of excess

reserves, looking at models with a break can shed light on whether simply allow-

ing for a break would be sufficient to obtain good forecasting performance. The

dedicated section of the table shows, that while allowing for a break does improve

the forecasting performance - the models as a group are the best of all groups

considered so far - the improvement is not dramatic.

Finally, turning to structural models, the main takeaway is that, overall, the

models are significantly better than any of the time series models: averaged across

all horizons, the MAE of structural models is 0.06, compared with 0.083 for the

best performing reduced-from model, and 0.14 for the best performing group of

reduced form models. This better performance is true not only overall, but also

for all horizons with the exception of the shortest two, at which some reduced-

form models have marginally better forecasting performance. Another way to look

at this is by noticing that the superiority of structural models increases with the

length of the forecast horizon, and for the better performing structural model,

the forecast errors are smaller by factors of two or more at the medium and long

horizons.

The results in Table 2.2 indicate that the differences in forecast performance

between the structural model and the alternative benchmark models are statisti-

cally significant, at least for the best-performing structural model (model 101b).

Moreover, more detailed results provided in Appendix 2.B.3 show that whenever

a benchmark model has lower MAE, the difference is not statistically significant

(with sole exception). The significantly better performance of structural models
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can be viewed in the context of the best reduced-form models to highlight which

factors correlated with good forecasting performance - or alternatively, the varia-

tions in forecasting performance of reduced-form models can be viewed through the

structural relationship embodied in the structural model. First, during a period

of excess reserves, the structural model links IIRs only to the deposit rate, rather

than to MRR or both policy rates. The first chapter justifies this using a formal

data analysis, but the results for reduced-form models provide additional support

for this result: across various types models, models that use the DR systematically

outperform their analogs that rely on the MRR or both policy rates.

Second, some models which use levels of IIRs as a dependent variable are

among the best performing models, despite the non-stationarity of IIRs during

the relevant period. Similarly, the structural model is formulated with the level of

IIRs as the dependent variable. These two observations are related through the

fact that IIRs, policy rates, and excess reserves form a co-integrated relationship,

justifying the use of the level of IIRs as a dependent variable. I return to this topic

in greater detail in the next section.

The third way in which reduced-form models can shed light on the structural

model is in terms of use of the dynamic regressors. The structural model omits all

dynamic terms, either in the form of lags of IIRs or in the form of lags of policy

rates. Similarly, the absence of these terms, and especially of lagged values of IIRs,

is clearly an important driver of good forecasting performance among reduced form

models, since static or more parsimonious reduced-form models tend to perform

better than reduced form models that include many lags. This finding supports

the DGP proposed by the structural model: clearly, past information is not very

useful in predicting IIRs, apart from being useful as counterweights to model

160



misspecification, as in the case of models specified in levels. Relatedly, the absence

of dynamic terms in the structural model can also explain why some reduced

form models perform better at very short horizons: the structural model captures

cointegration relationship and hence predicts the value of IIRs in equilibrium; such

equilibrium value is not necessarily a good prediction at horizons when equilibrium

forces do not have time to assert themselves, an issue I return to at the end of this

section.

Looking at the structural models individually, there are a few important take-

aways to note. First, the nonlinear version of the structural model has substantially

better forecasting performance than the linear version of the model, which clearly

suggests that the nonlinear model is closer to the true DGP. The reason for this

better performance is simple. As argued in the first chapter, the linear model is

globally mis-specified in that it allows IIRs to fall below the deposit rate, some-

thing that was impossible in the sample considered. In contrast, the nonlinear

model avoids this mis-specification by making the effect of additional excess re-

serves smaller when the spread between IIRs and DR is smaller. The importance of

this factor can be seen in Figure 2.1. The figure shows how the coefficient estimates

for excess reserves regressor evolve as the estimation sample is enlarged. It is clear

that, as the sample increases, the coefficient in the linear model becomes smaller.

Since the excess reserves were increasing throughout the sample, this suggests that

the model is mis-specified with respect to the effect of excess reserves: as new data

points with higher excess reserves are added the model reacts by decreasing the

coefficient on excess reserves. The way this manifests in terms of forecasts is with

systematic negative bias in the period of the largest increase in excess reserves

during the quantitative easing program: Figure 2.2 shows how the linear model
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Figure 2.1: Recursive coefficient estimates for excess reserves (Eonia rate)

Notes: For each month the figure shows the coefficient estimate for the coefficient on the excess
reserves regressor estimated on a data sample ending in the previous month. The results corre-
spond to linear and nonlinear models estimated via OLS and with formal break tests.

would always predict IIRs lower than what was later observed during this period.

These conclusions for the linear model can be contrasted with the results for

the nonlinear model. In terms of recursive coefficients, there is little trending over

the sample, and the recursive coefficient estimates are stable especially during the

period of massive increases in excess reserves; see right hand panel of Figure 2.1.

For example, all the recursive coefficients after 2015M01 are contained in the band

of one standard deviation of the coefficient estimated based on the sample before

2015M01. This is remarkable give that excess reserves increased more than 10-

fold during this period. In terms of forecasts, there is basically no bias, with the

forecast almost perfectly copying the actual values. Correspondingly, I will focus

on the non-linear model going forward.

The second feature of the results for structural models is the relationship be-

tween forecast quality and the length of forecast horizon. The table makes it clear

that for the (nonlinear) structural model, there is no positive relationship between
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Figure 2.2: Recursive forecasts from structural models for Eonia rate

Notes: The figure includes actual values of the Eonia rate (blue line with filled squares symbol)
and individual recursive forecasts (dashed lines without symbol).

the MAE and the forecast horizon considered, the relationship is actually negative:

the MAE at the 5-year horizon is half that of at the 1-month horizon. This is in

contrast to reduced-form models. This difference is in some sense expected. If

the structural model correctly captures the DGP of a given variable, then there

is little reason to expect that forecast errors should increase with the horizon in

a ex-post forecasting exercise; indeed, in so far as it takes time for a structural

relationship to re-assert itself after shocks, there is reason to expect that forecasts

at short horizons should be less precise than forecasts at medium or long horizons.

This last point is also related to a final observation about the forecasting per-

formance of structural models. As noted above, some reduced form models have

significantly better forecasting performance than structural models at very short

forecasting horizons, which is likely related to the immediacy of returns to an

equilibrium relationship. However, this feature of results disappears as soon as

one puts the structural model on the same footing as reduced-form models by

allowing the structural model to also include a weak form of dependency on past

values in the form or ARMA errors. The last row of the table shows that when
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structural models include ARMA(1,1) errors, they have superior forecasting per-

formance at horizon of 3 months or longer, while almost reaching the lower bound

for 1-month and 2-month horizons.

Euribor rates. Tables 2.3 and 2.4 report forecasting performance results for

1-week and 3-month Euribor. The tables show that many of the conclusions from

the Eonia rate also apply to the longer-maturity IIRs: As in the case of the Eonia

rate, the models in levels perform worse than models in differences or spreads; and

among the latter two it is again models with the DR that perform better than

when alternative policy rates are used. Most importantly, the structural models

are again significantly better than any category of reduced form models, even

though the superiority is slightly less pronounced.
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Table 2.3: Ex-post forecasting performance for 1-week Euribor

Forecast horizons (# of steps ahead)
# Description 1 2 3 6 12 24 48 60 Avg.

Multivariate models - level
5 Static regerssion - MRR 0.19 0.2 0.2 0.2 0.2 0.19 0.2 0.11 0.19
6 Static regerssion - DR 0.29 0.29 0.3 0.31 0.32 0.34 0.44 0.48 0.35
7 Static regerssion - MRR&DR 0.2 0.21 0.21 0.24 0.28 0.33 0.53 0.55 0.32
9 ARMAX - MRR - SIC 0.09 0.16 0.21 0.25 0.22 0.21 0.18 0.081 0.17
11 ARMAX - DR -SIC 0.085 0.17 0.25 0.39 0.41 0.42 0.53 0.57 0.35
13 ARMAX - MRR&DR - SIC 0.096 0.17 0.23 0.33 0.35 0.43 0.76 0.79 0.4
14 ARMA errors - MRR - AIC 0.057 0.088 0.1 0.15 0.22 0.22 0.21 0.17 0.15
15 ARMA errors - MRR - SIC 0.046 0.078 0.1 0.15 0.22 0.24 0.2 0.14 0.15
16 ARMA errors - DR - AIC 0.041 0.075 0.1 0.18 0.26 0.33 0.58 0.65 0.28
17 ARMA errors - DR -SIC 0.034 0.058 0.08 0.14 0.23 0.34 0.6 0.68 0.27
18 ARMA errors - MRR&DR - AIC 0.058 0.09 0.11 0.15 0.23 0.24 0.24 0.21 0.17
19 ARMA errors - MRR&DR - SIC 0.046 0.078 0.1 0.15 0.22 0.26 0.24 0.21 0.16
21 ARDL - MRR - SIC 0.043 0.074 0.097 0.15 0.21 0.23 0.2 0.11 0.14
23 ARDL - DR -SIC 0.032 0.052 0.073 0.13 0.21 0.26 0.51 0.6 0.23
25 ARDL - MRR&DR - SIC 0.093 0.13 0.19 0.21 0.35 0.52 0.96 1.28 0.47

Avg. 0.09 0.13 0.17 0.23 0.29 0.34 0.49 0.57 0.29

Multivariate models - differences
26 Static regerssion, d - MRR 0.035 0.06 0.077 0.11 0.2 0.26 0.26 0.28 0.16
27 Static regerssion, d - DR 0.027 0.043 0.06 0.091 0.14 0.15 0.19 0.21 0.11
28 Static regerssion, d - MRR&DR 0.035 0.061 0.077 0.11 0.19 0.23 0.22 0.24 0.14
30 ARMAX, d - MRR - SIC 0.036 0.061 0.08 0.11 0.2 0.26 0.29 0.32 0.17
32 ARMAX, d - DR -SIC 0.027 0.045 0.062 0.089 0.14 0.14 0.16 0.18 0.11
34 ARMAX, d - MRR&DR - SIC 0.035 0.06 0.077 0.1 0.18 0.23 0.23 0.26 0.15
38 ARMA errors, d - DR -SIC 0.027 0.043 0.06 0.091 0.14 0.15 0.19 0.21 0.11
42 ARDL, d - MRR - SIC 0.037 0.063 0.083 0.12 0.21 0.26 0.3 0.31 0.17
44 ARDL, d - DR -SIC 0.027 0.045 0.062 0.089 0.14 0.14 0.16 0.18 0.11
46 ARDL, d - MRR&DR - SIC 0.083 0.085 0.13 0.16 0.29 0.45 0.78 1 0.37

Avg. 0.04 0.06 0.09 0.12 0.19 0.24 0.30 0.34 0.17

Multivaraite models - spread
47 ARMA, s - MRR - AIC 0.054 0.086 0.11 0.16 0.26 0.32 0.24 0.2 0.18
48 ARMA, s - MRR - SIC 0.045 0.076 0.099 0.15 0.22 0.26 0.22 0.19 0.16
50 ARMA, s - DR - SIC 0.035 0.059 0.081 0.14 0.23 0.34 0.59 0.66 0.27
52 ARMA, s, d - MRR - SIC 0.039 0.063 0.079 0.12 0.21 0.26 0.27 0.28 0.16
53 ARMA, s, d - DR - AIC 0.038 0.062 0.087 0.12 0.18 0.16 0.2 0.22 0.13
54 ARMA, s, d - DR - SIC 0.027 0.044 0.061 0.09 0.14 0.14 0.18 0.19 0.11

Avg. 0.04 0.07 0.09 0.14 0.21 0.26 0.32 0.33 0.18

Multivariate models - break
55 Static regression, b - MRR 0.12 0.12 0.12 0.13 0.14 0.11 0.15 0.16 0.13
56 Static regression, b - DR 0.17 0.17 0.17 0.19 0.22 0.23 0.36 0.41 0.24
57 Static regression, b - MRR&DR 0.12 0.12 0.12 0.14 0.17 0.15 0.27 0.27 0.17
58 ARMA errors, b - MRR 0.051 0.09 0.11 0.15 0.21 0.2 0.39 0.37 0.2
59 ARMA errors, b - DR 0.045 0.075 0.097 0.13 0.16 0.12 0.2 0.21 0.13
61 ARMA, s, b - MRR 0.048 0.081 0.11 0.17 0.23 0.27 0.37 0.39 0.21
62 ARMA, s, b - DR 0.044 0.078 0.1 0.14 0.18 0.18 0.15 0.089 0.12

Avg. 0.08 0.10 0.12 0.15 0.19 0.18 0.28 0.27 0.17

Structural models
100a Linear 0.085 0.09 0.096 0.1 0.12 0.14 0.14 0.2 0.12
100b Linear - ARMA errors 0.047 0.066 0.078 0.095 0.12 0.15 0.15 0.2 0.11
101a Nonlinear 0.059 0.065 0.068 0.07 0.069 0.049 0.058 0.055 0.062
101b Nonlinear - ARMA errors 0.035 0.049 0.056 0.071 0.092 0.089 0.096 0.095 0.073
Avg. 0.06 0.07 0.07 0.08 0.10 0.11 0.11 0.14 0.09

Summary statistics
Mean 0.09 0.12 0.16 0.22 0.26 0.35 0.40 0.21
Std. Deviation 0.05 0.06 0.07 0.09 0.14 0.25 0.36 0.12
Minimum 0.04 0.06 0.07 0.07 0.05 0.06 0.06 0.06
1st quartile 0.06 0.08 0.11 0.18 0.16 0.19 0.20 0.13
3rd quartile 0.09 0.12 0.18 0.24 0.32 0.51 0.55 0.27
Maximum 0.29 0.33 0.40 0.58 0.88 1.21 1.65 0.65

Notes: See note below Table 2.2 for explanation of values.

165



Table 2.4: Ex-post forecasting performance for 3-m Euribor

Forecast horizons (# of steps ahead)
# Description 1 2 3 6 12 24 48 60 Avg.

Multivariate models - level
5 Static regerssion - MRR 0.17 0.18 0.18 0.19 0.2 0.17 0.16 0.1 0.17
6 Static regerssion - DR 0.3 0.3 0.31 0.33 0.36 0.4 0.57 0.61 0.4
7 Static regerssion - MRR&DR 0.18 0.18 0.19 0.21 0.23 0.19 0.21 0.21 0.2
9 ARMAX - MRR - SIC 0.05 0.11 0.15 0.22 0.21 0.18 0.17 0.12 0.15
11 ARMAX - DR -SIC 0.058 0.14 0.22 0.38 0.43 0.47 0.65 0.7 0.38
13 ARMAX - MRR&DR - SIC 0.057 0.13 0.21 0.34 0.44 0.54 0.75 1.21 0.46
14 ARMA errors - MRR - AIC 0.059 0.1 0.13 0.19 0.27 0.27 0.33 0.32 0.21
15 ARMA errors - MRR - SIC 0.05 0.087 0.12 0.18 0.28 0.35 0.48 0.47 0.25
16 ARMA errors - DR - AIC 0.051 0.09 0.13 0.22 0.44 0.76 0.94 0.97 0.45
17 ARMA errors - DR -SIC 0.043 0.074 0.1 0.18 0.31 0.5 0.89 0.98 0.38
18 ARMA errors - MRR&DR - AIC 0.057 0.1 0.14 0.24 0.44 0.67 0.63 0.64 0.36
19 ARMA errors - MRR&DR - SIC 0.045 0.08 0.11 0.18 0.29 0.44 0.7 0.74 0.32
21 ARDL - MRR - SIC 0.043 0.08 0.11 0.16 0.22 0.24 0.26 0.25 0.17
23 ARDL - DR -SIC 0.048 0.09 0.13 0.22 0.37 0.57 0.83 0.9 0.39
25 ARDL - MRR&DR - SIC 0.057 0.12 0.18 0.31 0.56 0.95 1.92 3.09 0.9

Avg. 0.09 0.14 0.19 0.26 0.40 0.62 1.91 4.07 0.94

Multivariate models - differences
26 Static regerssion, d - MRR 0.037 0.066 0.089 0.14 0.25 0.28 0.3 0.28 0.18
27 Static regerssion, d - DR 0.032 0.053 0.073 0.12 0.2 0.24 0.41 0.49 0.2
28 Static regerssion, d - MRR&DR 0.034 0.06 0.08 0.13 0.22 0.24 0.34 0.37 0.18
30 ARMAX, d - MRR - SIC 0.031 0.059 0.082 0.13 0.23 0.29 0.25 0.26 0.17
32 ARMAX, d - DR -SIC 0.031 0.052 0.071 0.11 0.19 0.21 0.36 0.43 0.18
34 ARMAX, d - MRR&DR - SIC 0.03 0.057 0.08 0.13 0.22 0.26 0.26 0.27 0.16
38 ARMA errors, d - DR -SIC 0.032 0.053 0.073 0.12 0.2 0.24 0.41 0.49 0.2
42 ARDL, d - MRR - SIC 0.037 0.066 0.087 0.13 0.22 0.28 0.25 0.26 0.17
44 ARDL, d - DR -SIC 0.035 0.063 0.087 0.14 0.2 0.23 0.37 0.43 0.19
46 ARDL, d - MRR&DR - SIC 0.061 0.093 0.13 0.18 0.3 0.36 0.38 0.38 0.24

Avg. 0.04 0.07 0.10 0.15 0.24 0.30 0.41 0.46 0.22

Multivaraite models - spread
47 ARMA, s - MRR - AIC 0.055 0.093 0.12 0.18 0.28 0.34 0.38 0.36 0.23
48 ARMA, s - MRR - SIC 0.051 0.088 0.11 0.17 0.25 0.28 0.35 0.33 0.2
50 ARMA, s - DR - SIC 0.047 0.081 0.11 0.19 0.32 0.5 0.82 0.88 0.37
52 ARMA, s, d - MRR - SIC 0.039 0.068 0.089 0.14 0.24 0.27 0.27 0.24 0.17
53 ARMA, s, d - DR - AIC 0.045 0.076 0.099 0.15 0.23 0.28 0.41 0.46 0.22
54 ARMA, s, d - DR - SIC 0.033 0.054 0.072 0.11 0.19 0.21 0.35 0.41 0.18

Avg. 0.05 0.08 0.10 0.17 0.28 0.36 0.48 0.49 0.25

Multivariate models - break
55 Static regression, b - MRR 0.16 0.17 0.17 0.19 0.21 0.21 0.34 0.37 0.23
56 Static regression, b - DR 0.18 0.18 0.18 0.18 0.19 0.18 0.14 0.14 0.17
57 Static regression, b - MRR&DR 0.15 0.16 0.16 0.18 0.2 0.16 0.19 0.2 0.18
58 ARMA errors, b - MRR 0.048 0.088 0.12 0.19 0.3 0.41 0.58 0.56 0.29
59 ARMA errors, b - DR 0.048 0.082 0.11 0.17 0.25 0.31 0.48 0.49 0.24
61 ARMA, s, b - MRR 0.035 0.064 0.088 0.15 0.25 0.4 0.76 0.85 0.33
62 ARMA, s, b - DR 0.038 0.073 0.098 0.16 0.25 0.32 0.45 0.45 0.23

Avg. 0.09 0.11 0.13 0.17 0.24 0.29 0.45 0.47 0.24

Structural models
100a Linear 0.12 0.12 0.13 0.13 0.12 0.12 0.15 0.12 0.13
100b Linear - ARMA errors 0.044 0.068 0.08 0.11 0.13 0.12 0.19 0.12 0.11
101a Nonlinear 0.13 0.14 0.14 0.16 0.17 0.15 0.26 0.23 0.17
101b Nonlinear - ARMA errors 0.038 0.06 0.072 0.1 0.15 0.18 0.32 0.34 0.16
Avg. 0.08 0.10 0.11 0.13 0.14 0.14 0.23 0.20 0.14

Summary statistics
Mean 0.10 0.13 0.19 0.29 0.41 0.92 1.67 0.47
Std. Deviation 0.06 0.08 0.09 0.19 0.53 3.51 8.96 1.62
Minimum 0.05 0.07 0.10 0.12 0.12 0.14 0.10 0.11
1st quartile 0.07 0.09 0.14 0.21 0.23 0.30 0.28 0.18
3rd quartile 0.12 0.14 0.21 0.31 0.41 0.62 0.70 0.33
Maximum 0.44 0.66 0.58 1.52 4.30 28.00 71.00 13.00

Notes: See note below Table 2.2 for explanation of values.
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Figure 2.3: Recursive coefficient estimates for excess reserves (3-month Euribor)

Notes: See Figure 2.1 for explanation.

Meanwhile, results for structural models provide the only important change

from the Eonia rate. While for 1-week Euribor it is still true that the nonlinear

model is better than the linear model, the difference is smaller than in the case of

the Eonia rate; and for 3-month Euribor the linear model produces better forecasts

than the nonlinear model. This finding corresponds to the finding in the first

chapter, which shows that the nonlinear model has better in-sample fit than the

linear model for the Eonia rate, but not for the Euribor rate. The reason for worse

forecast performance is the reversion of the finding presented in Figure 2.1: in the

case of Euribor, the linear model has more stable recursive coefficients; see Figure

2.3.

2.3.2 Ex-ante forecasting performance

The only difference between ex-post and ex-ante forecasting is the treatment of

the independent variables. In ex-post forecasting one uses the actual historical

values for the independent variables, while in ex-ante forecasting one uses values
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which are al;so forecast. This means that one does not use any information about

the future when creating a forecast, which makes it a true forecast. The ex-

ante forecast performance answers the key question whether the structural model

provides better forecasts than the benchmark models even after accounting for the

difficulty of forecasting independent variables: a simpler, less correct model might

prove better in forecasting than more complex, albeit more correct model, if the

more complex model relies on variables that are hard to forecast.

This need to forecast independent variables raises the question as to what mod-

els should be used to forecast these variables. Here I need to determine how policy

rates should be forecasted, and for the structural model, also how the excess re-

serves should be forecasted. After checking several alternative univariate models,

I selected a simple random walk without drift for both policy rates; see Appendix

2.A for details. Apart from forecasting performance, the random walk model is

also appealing for two reasons: first, the random walk model is a firmly established

(benchmark) model in forecasting financial variables such as interest rates; second,

in terms of economics, it amounts to expecting that policy rates will remain un-

changed at current levels, which, in the sample and forecast horizons considered,

is a reasonable assumption.12

As for excess reserves, there is a qualitative difference in terms of the infor-

mation available to forecasters between the period before and after the start of

the QE program. Before the start of the QE program, an economist would expect

either excess reserves to remain unchanged at current levels - resulting in a ran-

12Note that from an economic perspective, this is likely not a good assumption for very long
term horizons - it seems plausible that policy rates will eventually increase from their current
record low levels. Indeed, even during the sample considered, private and institutional forecasters
expected interest rates to increase eventually.
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dom walk model - or for excess reserves to gradually return to zero - resulting in

some simple ARMA model without a constant. Surprisingly, it turns out that the

somewhat less plausible random walk model actually produces better forecasts for

excess reserves at medium and long horizons. Meanwhile, after the start of the

QE, an economist would likely rely on information about planned asset purchases:

these are not only causally related to the amount of excess reserves (see the first

chapter for details), but their pace is announced by the ECB for prolonged periods.

To reflect on the fact that there are significant differences in forecasting excess

reserves in different parts of sample - before and after the start of the QE program- I

report two sets of results. To study the effect of different models for excess reserves

before the start of the QE program, I report results from two ex-ante forecasting

exercises in the sample before the the start of the QE program: one which uses

a random-walk model before start of the QE program, and one that uses ARMA

model in that period; both models use information about planned ECB asset

purchases for the period after the start of the QE program. See Appendix 2.A for

more details about this and the ex-ante forecasting procedure in general.

Table 2.5 captures forecasting performance for the Eonia rate in a sample

starting from 2009 and lasting until 2015M01, while Table 2.6 does so for a sample

from 2015M02 to 2019M08. Before analyzing the results, it is important to stress

that interpreting forecast performance is more complicated in ex-ante forecasting

since the performance is no longer related only to forecast errors originating in

the considered model, but also to forecast errors originating in the model for

the independent variables. The key question is whether after accounting for the

forecast errors in independent (conditioning) variables a particular model is still

better than an alternative that relies on different set of conditioning variables.
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More specifically, one can wonder whether the complex structural model that relies

on large set of conditioning variables is still better in ex-ante forecasting than a

simpler reduced form models, and especially reduced from models that rely on few

or no conditioning variables.
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Table 2.5: Unonditional forecasting performance for the Eonia rate (2009-2015)

Forecast horizons (# of steps ahead)
# Description 1 2 3 6 12 24 48 Avg.

Univariate models
2 ARMA - SIC 0.081 0.14 0.2 0.44 1.04 2.00 2.71 1.18
4 ARMA, d - SIC 0.067 0.12 0.14 0.22 0.37 0.54 0.44 0.3

Avg. 0.08 0.14 0.19 0.36 0.76 1.34 1.64 0.78

Univariate models
7 Static regerssion - MRR&DR 0.32 0.35 0.38 0.44 0.46 0.48 0.77 0.53
9 ARMAX - MRR - SIC 0.17 0.29 0.41 0.52 0.49 0.62 1.01 0.6
13 ARMAX - MRR&DR - SIC 0.16 0.27 0.37 0.54 0.48 0.47 0.76 0.51
14 ARMA errors - MRR - AIC 0.11 0.16 0.21 0.31 0.46 0.54 0.82 0.46
21 ARDL - MRR - SIC 0.09 0.14 0.19 0.31 0.44 0.55 0.95 0.48
25 ARDL - MRR&DR - SIC 0.12 0.19 0.25 0.39 0.51 0.48 0.59 0.42

Avg. 0.15 0.22 0.29 0.42 0.51 0.61 1.16 0.67

Multivariate models - differences
26 Static regerssion, d - MRR 0.37 0.4 0.43 0.48 0.59 0.74 1.02 0.66
30 ARMAX, d - MRR - SIC 0.075 0.12 0.15 0.26 0.38 0.43 0.56 0.34
32 ARMAX, d - DR -SIC 0.075 0.12 0.16 0.26 0.38 0.44 0.57 0.34
38 ARMA errors, d - DR -SIC 0.08 0.13 0.16 0.27 0.39 0.43 0.57 0.34
42 ARDL, d - MRR - SIC 0.078 0.12 0.16 0.27 0.38 0.43 0.57 0.34
44 ARDL, d - DR -SIC 0.075 0.12 0.16 0.26 0.38 0.44 0.57 0.34

Avg. 0.13 0.17 0.21 0.30 0.42 0.48 0.64 0.40

Multivariate models - spread
47 ARMA, s - MRR - AIC 0.11 0.16 0.21 0.3 0.46 0.58 0.93 0.49
48 ARMA, s - MRR - SIC 0.09 0.14 0.18 0.3 0.42 0.55 0.94 0.47
50 ARMA, s - DR - SIC 0.093 0.15 0.2 0.32 0.47 0.61 1.06 0.53
52 ARMA, s, d - MRR - SIC 0.083 0.13 0.17 0.28 0.39 0.44 0.58 0.35
53 ARMA, s, d - DR - AIC 0.094 0.15 0.19 0.28 0.39 0.46 0.58 0.36
54 ARMA, s, d - DR - SIC 0.075 0.12 0.16 0.26 0.38 0.43 0.57 0.34

Avg. 0.09 0.15 0.19 0.29 0.42 0.52 0.78 0.43

Multivariate models - break
55 Static regression, b - MRR 0.18 0.21 0.25 0.33 0.41 0.47 0.68 0.44
56 Static regression, b - DR 0.22 0.26 0.29 0.35 0.4 0.46 0.6 0.43
58 ARMA errors, b - MRR 0.11 0.19 0.24 0.33 0.4 0.42 0.66 0.41
61 ARMA, s, b - MRR 0.1 0.17 0.21 0.33 0.42 0.48 0.78 0.45
62 ARMA, s, b - DR 0.11 0.19 0.23 0.33 0.39 0.46 0.73 0.43

Avg. 0.14 0.19 0.24 0.33 0.40 0.45 0.69 0.43

Multiequation models
64 Levels - MRR - SIC 0.075 0.13 0.17 0.31 0.57 0.9 1.56 0.68
66 Levels - DR - SIC 0.071 0.13 0.18 0.35 0.65 0.83 1.67 0.77
68 Differences - MRR - SIC 0.067 0.11 0.14 0.24 0.41 0.64 0.77 0.46
70 Differences - DR - SIC 0.066 0.11 0.14 0.25 0.4 0.54 0.57 0.38
72 VECM - MRR - SIC 0.075 0.13 0.17 0.31 0.57 0.9 1.56 0.68
74 VECM - DR - SIC 0.071 0.13 0.18 0.35 0.65 0.83 1.67 0.77

Avg. 0.07 0.13 0.18 0.34 0.63 0.91 1.49 0.71

Structural models
101a Nonlinear - RW ERs 0.093 0.14 0.17 0.27 0.37 0.41 0.62 0.36
101b Nonlinear - RW ERs - ARMA errors 0.084 0.14 0.17 0.27 0.36 0.41 0.61 0.36
101c Nonlinear - ARMA ERs 0.093 0.16 0.2 0.31 0.5 0.62 1.14 0.54
101d Nonlinear - ARMA ERs - ARMA errors 0.084 0.16 0.19 0.31 0.47 0.59 1.13 0.54
Avg. 0.09 0.15 0.18 0.29 0.43 0.51 0.88 0.45

Summary statistics
Mean 0.18 0.22 0.35 0.49 0.63 1.00 0.55
Std. Deviation 0.08 0.09 0.10 0.15 0.31 0.63 0.30
Minimum 0.11 0.14 0.22 0.36 0.41 0.44 0.30
1st quartile 0.13 0.17 0.28 0.39 0.44 0.59 0.36
3rd quartile 0.17 0.23 0.38 0.55 0.74 1.13 0.66
Maximum 0.46 0.49 0.68 1.19 2.21 4.41 2.48

Notes: See note below Table 2.2 for explanation of values. "RW ERs" and "ARMA ERs" refers to excess
reserves being forecast by a random walk model and an ARMA model, respectively. See Appendix 2.A for details.
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Table 2.6: Unonditional forecasting performance for the Eonia rate (2015-2019)

Forecast horizons (# of steps ahead)
# Description 1 2 3 6 12 24 48 Avg.

Univariate models
2 ARMA - SIC 0.02 0.044 0.077 0.2 0.49 1.02 1.85 0.53
4 ARMA, d - SIC 0.0092 0.015 0.018 0.032 0.061 0.092 0.25 0.068

Avg. 0.02 0.03 0.05 0.12 0.30 0.58 1.08 0.31

Multivariate models - level
7 Static regerssion - MRR&DR 0.049 0.045 0.042 0.034 0.02 0.023 0.038 0.036
9 ARMAX - MRR - SIC 0.015 0.027 0.035 0.044 0.016 0.015 0.031 0.026
13 ARMAX - MRR&DR - SIC 0.022 0.043 0.064 0.1 0.056 0.052 0.11 0.063
14 ARMA errors - MRR - AIC 0.014 0.023 0.031 0.054 0.11 0.18 0.27 0.098
21 ARDL - MRR - SIC 0.011 0.02 0.029 0.055 0.1 0.17 0.32 0.1
25 ARDL - MRR&DR - SIC 0.0082 0.012 0.015 0.021 0.034 0.024 0.051 0.024

Avg. 0.03 0.04 0.05 0.07 0.11 0.16 0.31 0.11

Multivariate models - differences
26 Static regerssion, d - MRR 0.057 0.064 0.071 0.088 0.12 0.17 0.37 0.14
30 ARMAX, d - MRR - SIC 0.0084 0.014 0.02 0.037 0.071 0.11 0.28 0.078
32 ARMAX, d - DR -SIC 0.0084 0.014 0.02 0.037 0.071 0.11 0.28 0.078
38 ARMA errors, d - DR -SIC 0.0088 0.015 0.021 0.037 0.071 0.11 0.28 0.078
42 ARDL, d - MRR - SIC 0.0091 0.015 0.021 0.038 0.072 0.11 0.28 0.079
44 ARDL, d - DR -SIC 0.0084 0.014 0.02 0.037 0.071 0.11 0.28 0.078

Avg. 0.02 0.02 0.03 0.04 0.08 0.12 0.29 0.09

Multivariate models - spread
47 ARMA, s - MRR - AIC 0.013 0.022 0.03 0.055 0.11 0.2 0.27 0.1
48 ARMA, s - MRR - SIC 0.013 0.023 0.033 0.061 0.11 0.17 0.27 0.098
50 ARMA, s - DR - SIC 0.015 0.027 0.04 0.077 0.15 0.26 0.55 0.16
52 ARMA, s, d - MRR - SIC 0.01 0.016 0.022 0.039 0.073 0.12 0.29 0.08
53 ARMA, s, d - DR - AIC 0.012 0.018 0.022 0.035 0.066 0.11 0.27 0.076
54 ARMA, s, d - DR - SIC 0.0088 0.015 0.021 0.037 0.071 0.11 0.28 0.078

Avg. 0.01 0.02 0.03 0.05 0.10 0.17 0.35 0.11

Multivariate models - break
55 Static regression, b - MRR 0.06 0.066 0.072 0.089 0.12 0.17 0.32 0.13
56 Static regression, b - DR 0.066 0.064 0.063 0.061 0.057 0.069 0.079 0.066
58 ARMA errors, b - MRR 0.0082 0.013 0.016 0.024 0.027 0.035 0.061 0.026
61 ARMA, s, b - MRR 0.025 0.05 0.072 0.12 0.19 0.24 0.38 0.15
62 ARMA, s, b - DR 0.0084 0.013 0.016 0.022 0.02 0.022 0.039 0.02

Avg. 0.03 0.04 0.05 0.07 0.09 0.12 0.22 0.09

Multiequation models
64 Levels - MRR - SIC 0.0084 0.014 0.019 0.037 0.085 0.17 0.57 0.13
66 Levels - DR - SIC 0.019 0.044 0.076 0.18 0.43 0.91 2.13 0.54
68 Differences - MRR - SIC 0.011 0.019 0.027 0.057 0.11 0.24 0.44 0.13
70 Differences - DR - SIC 0.0093 0.017 0.025 0.052 0.11 0.18 0.31 0.1
72 VECM - MRR - SIC 0.0084 0.014 0.019 0.037 0.085 0.17 0.57 0.13
74 VECM - DR - SIC 0.019 0.044 0.076 0.18 0.43 0.91 2.13 0.54

Avg. 0.01 0.03 0.05 0.11 0.27 0.57 1.20 0.32

Structural models
101a Nonlinear - RW ERs 0.012 0.015 0.019 0.029 0.057 0.089 0.22 0.063
101b Nonlinear - RW ERs - ARMA errors 0.01 0.017 0.024 0.04 0.072 0.11 0.24 0.074
101c Nonlinear - ARMA ERs 0.012 0.015 0.019 0.029 0.057 0.089 0.22 0.063
101d Nonlinear - ARMA ERs - ARMA errors 0.01 0.017 0.023 0.038 0.068 0.1 0.24 0.071
Avg. 0.01 0.02 0.02 0.03 0.06 0.10 0.23 0.07

Summary statistics
Mean 0.03 0.04 0.07 0.13 0.23 0.47 0.14
Std. Deviation 0.02 0.02 0.05 0.13 0.28 0.55 0.15
Minimum 0.01 0.02 0.02 0.02 0.02 0.01 0.02
1st quartile 0.02 0.02 0.04 0.07 0.11 0.27 0.08
3rd quartile 0.04 0.06 0.08 0.13 0.23 0.44 0.14
Maximum 0.15 0.15 0.25 0.65 1.37 2.72 0.74

Notes: See note below Tables 2.2 and 2.5 for explanation of values.
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There are three takeaways from the tables. First, when compared against

alternative groups of models, the structural model is still significantly better than

any group of reduced form models in forecasting Eonia rate.13 That said, the

improvement of forecasting performance is much smaller than in the case of ex-

post performance, and there are individual reduced form models that are better at

individual forecasting horizons or even overall. Second, among the reduced form

models, it is again models that use first differences of IIRs (or spread from policy

rates) that perform best. Third, multivariate single equation models provide only

marginal improvement, if any, over the univariate models that are specified in

terms of first differences. While this seems to suggest that such univariate models

offer a better way forward in terms of forecasting IIRs - they perform well and

do not require forecasting of other variables - one should approach this conclusion

with caution: the result might be an artifact of the nature of the sample, since

the model generally predicts that IIRs will remain at current levels for the whole

forecast period irrespective of evolution in policy rates, which could prove to be a

bad forecasting rule if and when policy rates start rising.

It is clear that structural models are significantly better than the alternatives

only in the period of the QE program. Before the start of the QE program,

uncertainty about the future path of excess reserves results in forecasts being

only slightly better than forecasts from reduced form models. Moreover, many of

the reduced form models that use first differences as the dependent variable are

actually slightly better, even though as a group they are slightly worse. In contrast,

during the period of the QE program, when the evolution of excess reserves can

13Note that this is true only when one uses a random walk model for excess reserves. I will
return to this observation later in this section.
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be quite precisely forecast thanks to the predictable nature of asset purchases (see

Appendix 2.A), the structural model is better than alternative groups and even

alternative individual models.

The previous discussion ignored an important aspect of the results which un-

derscores this point: in the sample before the QE program, the better forecasting

performance of the structural model is true only if one uses the a-priori less plausi-

ble random walk model for excess reserves. If one instead uses the ARMA model,

which ensures that excess reserves return to zero values, then the forecasting per-

formance is substantially worse. This reflects that the expectation that excess

reserves would return to zero values was never borne out in the given sample; cor-

respondingly, over the period from the beginning of 2009 to the beginning of 2015,

expecting excess reserves to remain unchanged turned out to be a better forecast;

see Appendix 2.A for details. Of course, this may be just a random feature of the

sample, and in any case is not direct criticism of the model for IIRs.

This then points towards the key takeaway with respect to the structural model:

the model provides significant value even in ex-ante forecasting as long as one can

forecast excess reserves reliably and specifically in periods when QE program is

operational, since during these periods the ECB is buying assets with pre-defined

amounts. In contrast, when one is unable to make such reliable forecasts, then

more simple, reduced form models using first differences of IIRs as the dependent

variable might be better for forecasting purposes. This is thanks to their simpler,

less correct structure, that does not include excess reserves as independent variable.

As for 3-month Euribor14, Tables 2.7 and 2.8 show that the conclusions from

the Eonia rate broadly hold even here. That said, the better performance of

14I relegate the results for 1-week Euribor to Appendix 2.B.
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structural models is even weaker and the univariate reduced form model in first

differences looks even better than for Eonia. This suggests that after accounting

for uncertainty in forecasting excess reserves the structural model probably holds

only limited value for forecasting IIRs with longer maturity.

2.4 Nonstationarity, cointegration and forecasting

performance

The previous section discussed which model features correlate with good fore-

casting performance and demonstrated the superior forecasting performance of

the structural model compared to standard reduced-form models. This raises the

question whether one can explain which features are important and why the struc-

tural model is better than the reduced form models. This section does that by

linking both to the statistical nature of the considered time series. Specifically, the

IIRs over the relevant sample are both non-stationary and cointegrated with mon-

etary policy variables, which makes it difficult for reduced-form models to predict

them.

This section is separated into two parts, each corresponding to one statistical

aspect of the time series. The first part shows how nonstationarity of the IIRs

creates issues for models that use the level of IIRs as the dependent variable,

which ignore the evolution in the relationship between IIRs and policy rates. The

second part then discusses how ignoring cointegration leads to suboptimal forecasts

when models with differences of IIRs as the dependent variable are used.
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Table 2.7: Unonditional forecasting performance for 3-month Euribor (2009-
2015)

Forecast horizons (# of steps ahead)
# Description 1 2 3 6 12 24 48 Avg.

Univariate models
2 ARMA - SIC 0.054 0.12 0.2 0.47 0.96 1.70 2.70 1.14
4 ARMA, d - SIC 0.039 0.078 0.11 0.24 0.45 0.62 0.71 0.37

Avg. 0.06 0.14 0.23 0.51 1.01 1.77 1.99 0.99

Multivariate models - level
5 Static regerssion - MRR 0.24 0.28 0.32 0.41 0.53 0.69 1.02 0.59
9 ARMAX - MRR - SIC 0.073 0.16 0.26 0.45 0.54 0.7 1.07 0.57
13 ARMAX - MRR&DR - SIC 0.08 0.18 0.29 0.52 0.63 0.74 0.59 0.47
19 ARMA errors - MRR&DR - SIC 0.092 0.17 0.23 0.39 0.59 0.82 1.30 0.63
21 ARDL - MRR - SIC 0.075 0.15 0.22 0.37 0.54 0.77 1.16 0.58
25 ARDL - MRR&DR - SIC 0.1 0.2 0.29 0.54 0.89 1.37 2.78 1.46

Avg. 0.13 0.23 0.32 0.48 0.74 1.23 5.01 3.12

Multivariate models - differences
26 Static regerssion, d - MRR 0.077 0.14 0.19 0.34 0.53 0.68 0.9 0.5
30 ARMAX, d - MRR - SIC 0.06 0.12 0.17 0.32 0.51 0.66 0.87 0.47
38 ARMA errors, d - DR -SIC 0.077 0.14 0.19 0.34 0.53 0.68 0.9 0.5
44 ARDL, d - DR -SIC 0.085 0.17 0.23 0.38 0.55 0.69 0.95 0.54

Avg. 0.09 0.16 0.22 0.37 0.56 0.72 0.96 0.54

Multivariate models - spread
48 ARMA, s - MRR - SIC 0.092 0.16 0.22 0.38 0.56 0.77 1.16 0.59
52 ARMA, s, d - MRR - SIC 0.08 0.14 0.2 0.34 0.53 0.68 0.91 0.5

Avg. 0.09 0.17 0.23 0.39 0.60 0.80 1.12 0.59

Multivariate models - break
57 Static regression, b - MRR&DR 0.26 0.3 0.34 0.44 0.56 0.69 1.10 0.63
59 ARMA errors, b - DR 0.11 0.19 0.26 0.43 0.61 0.67 1.10 0.6
62 ARMA, s, b - DR 0.082 0.15 0.21 0.36 0.55 0.8 1.24 0.59

Avg. 0.15 0.21 0.27 0.40 0.57 0.74 1.17 0.61

Multiequation models
66 Levels - DR - SIC 0.059 0.12 0.19 0.46 0.98 1.71 2.64 1.12
68 Differences - MRR - SIC 0.04 0.08 0.11 0.23 0.46 0.68 0.34 0.29
74 VECM - DR - SIC 0.059 0.12 0.19 0.46 0.98 1.71 2.64 1.12

Avg. 0.06 0.11 0.18 0.42 0.88 1.52 1.97 0.90

Structural models
100a Linear - RW ERs 0.17 0.2 0.24 0.36 0.5 0.62 0.91 0.52
100b Linear - RW ERs - ARMA errors
100c Linear - ARMA ERs 0.17 0.21 0.26 0.39 0.56 0.69 1.16 0.6
100d Linear - ARMA ERs - ARMA errors
Avg. 0.09 0.10 0.13 0.19 0.27 0.33 0.52 0.28

Summary statistics
Mean 0.18 0.25 0.42 0.69 1.05 2.33 1.35
Std. Deviation 0.09 0.12 0.12 0.32 0.99 9.05 5.89
Minimum 0.08 0.11 0.22 0.44 0.46 0.27 0.26
1st quartile 0.14 0.20 0.36 0.53 0.68 0.91 0.50
3rd quartile 0.19 0.27 0.46 0.70 0.91 1.36 0.73
Maximum 0.77 1.13 1.05 2.68 8.39 80.00 52.00

Notes: See note below Tables 2.2 and 2.5 for explanation of values.
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Table 2.8: Unonditional forecasting performance for 3-month Euribor (2015-
2019)

Forecast horizons (# of steps ahead)
# Description 1 2 3 6 12 24 48 Avg.

Univariate models
2 ARMA - SIC 0.019 0.05 0.088 0.23 0.52 1.03 1.85 0.54
4 ARMA, d - SIC 0.0047 0.01 0.016 0.034 0.079 0.14 0.31 0.084

Avg. 0.02 0.03 0.06 0.14 0.34 0.67 1.14 0.34

Multivariate models - level
5 Static regerssion - MRR 0.11 0.11 0.11 0.12 0.14 0.17 0.18 0.13
9 ARMAX - MRR - SIC 0.028 0.065 0.1 0.16 0.17 0.19 0.2 0.13
13 ARMAX - MRR&DR - SIC 0.027 0.063 0.097 0.16 0.15 0.13 0.051 0.096
19 ARMA errors - MRR&DR - SIC 0.022 0.044 0.065 0.13 0.25 0.45 0.77 0.25
21 ARDL - MRR - SIC 0.019 0.041 0.062 0.11 0.19 0.27 0.33 0.15
25 ARDL - MRR&DR - SIC 0.016 0.032 0.047 0.078 0.094 0.098 0.04 0.058

Avg. 0.05 0.07 0.10 0.16 0.24 0.34 0.44 0.20

Multivariate models - differences
26 Static regerssion, d - MRR 0.0082 0.016 0.024 0.047 0.095 0.16 0.34 0.097
30 ARMAX, d - MRR - SIC 0.0059 0.013 0.02 0.043 0.091 0.15 0.33 0.093
38 ARMA errors, d - DR -SIC 0.0082 0.016 0.024 0.047 0.095 0.16 0.34 0.097
44 ARDL, d - DR -SIC 0.0066 0.014 0.021 0.041 0.085 0.14 0.31 0.089

Avg. 0.01 0.02 0.02 0.05 0.09 0.16 0.33 0.10

Multivariate models - spread
48 ARMA, s - MRR - SIC 0.027 0.052 0.076 0.14 0.25 0.36 0.44 0.19
52 ARMA, s, d - MRR - SIC 0.0079 0.016 0.024 0.047 0.095 0.16 0.34 0.097

Avg. 0.02 0.04 0.06 0.10 0.21 0.34 0.52 0.18

Multivariate models - break
57 Static regression, b - MRR&DR 0.058 0.063 0.068 0.087 0.13 0.17 0.31 0.13
59 ARMA errors, b - DR 0.015 0.034 0.051 0.1 0.2 0.36 0.69 0.21
62 ARMA, s, b - DR 0.011 0.028 0.043 0.088 0.17 0.31 0.56 0.17

Avg. 0.04 0.06 0.07 0.11 0.18 0.28 0.49 0.17

Multiequation models
66 Levels - DR - SIC 0.02 0.047 0.08 0.19 0.42 0.77 1.29 0.4
68 Differences - MRR - SIC 0.0075 0.016 0.023 0.052 0.12 0.21 0.33 0.11
74 VECM - DR - SIC 0.02 0.047 0.08 0.19 0.42 0.77 1.29 0.4

Avg. 0.01 0.03 0.05 0.13 0.31 0.62 1.17 0.33

Structural models
100a Linear - RW ERs 0.052 0.055 0.059 0.074 0.11 0.15 0.26 0.11
100b Linear - RW ERs - ARMA errors
100c Linear - ARMA ERs 0.052 0.055 0.059 0.074 0.11 0.15 0.26 0.11
100d Linear - ARMA ERs - ARMA errors
Avg. 0.03 0.03 0.03 0.04 0.06 0.08 0.13 0.06

Summary statistics
Mean 0.04 0.06 0.11 0.20 0.34 0.57 0.19
Std. Deviation 0.04 0.04 0.07 0.13 0.26 0.48 0.13
Minimum 0.01 0.02 0.03 0.08 0.10 0.04 0.06
1st quartile 0.02 0.02 0.05 0.10 0.16 0.31 0.10
3rd quartile 0.05 0.08 0.15 0.28 0.46 0.70 0.25
Maximum 0.29 0.30 0.33 0.65 1.37 2.09 0.65

Notes: See note below Tables 2.2 and 2.5 for explanation of values.
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Figure 2.4: Eonia rate spreads

2.4.1 Consequences of nonstationarity for forecasting per-

formance

To appreciate the nonstationary nature of IIRs, one can consult Figure 2.4, which

shows the spread between the Eonia rate and the two policy rates. It is clear that

while the spread has a stable mean in the period before the fall of 2008, afterwards

the mean is not only different but also highly variable. The former suggests a

potentially stationary series with a break, with different mean values before and

after the break, something that reduced form models could deal with by allowing

for a break in the relationship between IIRs and policy rates. However, as I show

later, simply accounting for the break on its own does solve all the problems, since

even after the break, the spread is not stationary. I illustrate these points by

showing ex-post recursive forecasts from representative reduced-form models and

comparing them with the forecasts from the structural model.

First, consider Figure 2.5, the left panel of which shows forecasts from one
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Figure 2.5: Effect of nonstationarity on forecast performance I

Notes: The figure shows the spread between the Eonia rate and the deposit rate. For more
details see comments below Figure 2.2

of the best models using the level of IIRs as the dependent variable, the model

with the DR and ARMA errors. The figure clearly shows a key obstacle facing

reduced form models in levels: the models are unaware of the large permanent

decrease in the average value of the spread between the Eonia and the DR around

2008M10. Correspondingly, the models consistently predict an increase in the

Eonia rate as they expect a return to the historical average relationship between

IIRs and policy rates. This is at odds with the observed behavior, where the Eonia

rate spread remained at values close to 0 except for three periods of mild increase

in 2009, 2010-2012, and 2013-2014. This poor forecast quality is in contrast to

the structural model, which also uses (transformation of) the level of IIRs as the

dependent variable: with the exception of the very first forecast in 2009, the model

correctly predicts that the Eonia rate will remain at much lower values than prior

to the break.

It is instructive to see how the nonstationarity of the Eonia spread translates

into structure and coefficient estimates of the model. Figure 2.6 provides three
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different ways to view these effects. The top-left panel shows the recursive coeffi-

cient estimates for a constant and for a coefficient on the DR. This captures the

effect of the break, with the constant gradually decreasing as the sample includes

more post-break observations. That said, the decline is not perfectly monotonous

and even at the end of the sample, the constant term is not stable. The right-top

panel shows the selected ARMA structure. At around the break date the SIC

stops selecting models with 2 moving average terms and instead starts selecting

models with one, and later, two autoregressive terms. Of course, the difference

between those is that models with autoregressive terms are much more likely to

feature strong persistence. This is confirmed by the bottom panel, which shows

the size of the impulse response after 6, 12 and 24 periods corresponding to models

estimated on samples with increasing length. While before the break the models

feature zero responses to shocks at these medium-to-long horizons, after the break

the models rapidly start to feature strong and long persistence. This is of course

in contrast to the structural model, which does not feature any persistence at all.

The overall conclusion from this figure is straightforward: as the sample increases,

the model starts to look more and more like a random walk model.

Figure 2.5 raises a question: could the problematic forecasting performance be

addressed by a reduced-form model which allows for a break in the relationship

between the IIRs and policy rates? To answer this question, the left panel of

Figure 2.7 shows results for similar model that allows for a break in the model.

Specifically, the figure shows results for model 59, which allows for a different

relationship between IIRs and DR after 2008M10 if this is supported by formal a

Chow break test (see Appendix 2.A for details). While the model provides marked

improvement over the simple original reduced form model, it still features the
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Figure 2.6: Recursive model structure and estimates

Notes: Coefficient estimates, selected ARMA orders, and impulse responses corresponding to
estimation samples of different length. The date indicates the last month included in the esti-
mation sample.
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Figure 2.7: Effect of nonstationarity on forecast performance II

same problematic tendency for the forecasts to trend away from the current level:

for most of the sample the forecasts are trending upwards, but in contrast to the

previous model there are also periods when the forecasts are trending downwards.

This reflects the other aspect of the behavior in the Eonia spread stressed above,

that while the spread is lower in the period after 2008, it is no longer stable as

before 2008. Correspondingly, even after allowing for the break, the model has

a tendency to return to average values, reflecting its use of the level of IIRs as

dependent variable; the only difference is that these values are lower than before

2008M10. Since constant (average) value is a poor prediction for the Eonia spread

even if one uses only the sample after the break, the forecasting performance is

still sub-optimal.

The above discussion makes clear that simply allowing for a break in the rela-

tionship between IIRs and policy rates does not completely alleviate the problem

caused by the change in regime. The only other alternative in terms of reduced-

foirm models is to change the transformation of the dependent variable from the

level of IIRs to first-differences of IIRs. The right panel of Figure 2.7 shows re-

sults for one of the best performing first-difference models. The good news is that
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using first-differences instead of levels addresses the main concern raised in this

section: the Eonia spread no longer has the tendency to return to its pre-208M10

values. Instead, the Eonia spread is predicted to remain unchanged at current val-

ues, potentially with some small fluctuations in near term. While this constitutes

improvement, there are periods when such a forecast is problematic. Specifically,

the constant-spread prediction turned out to be wrong in the three periods when

the Eonia rate spread increased due to a decreases in excess reserves, and in the

sample covering the QE program, when the Eonia rate kept decreasing as excess

reserves were increasing. While the former forecast misses were likely obvious only

with hindsight, because the future path of excess reserves was uncertain at that

time, the misses during the QE period could have been (and were) anticipated.

2.4.2 Consequences of cointegration for forecasting perfor-

mance

The message of the previous subsection would seem to be that reduced-form models

with the level of IIRs as a dependent variable are doomed to produce problematic

forecasts for IIRs, and that models using first differences should be used instead.

However, as this subsection will show, first-difference models face different, equally

serious obstacles in producing forecasts for IIRs.

Indeed, Figure 2.7 at the end of the previous section already illustrates that

changing the dependent variable from the level of IIRs to the first differences of IIRs

does not lead to fully satisfactory forecasting results. However, this figure provides

a somewhat flattering view of the problems faced by models in first differences,

since it shows results only for Eonia rate. The picture becomes substantially worse
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when one considers IIRs with longer maturity - or alternatively when one would

focuses on higher frequency, at which the Eonia rate features more transitory

shocks.

Figure 2.8 shows the 1-week and 3-month Euribor rates together with the Eonia

and deposit rate; the top left panel shows the levels, while the remaining two show

spreads from the DR and the Eonia rate, respectively. The motivation for this

particular series and visualization follows. The main difference between the Eonia

and Euribor rates is the presence of significant risk components. The defining

feature of these is that they are stationary: while risk components can fluctuate

significantly, they can be expected to always return to equilibrium (near zero)

value. This can be seen in bottom panel Figure 2.8, which clearly shows that

deviations of Euribor from the Eonia rate are transitory.

Since reduced-form models treat all movements in the series the same way,

Figure 2.8 suggests that using models in first differences will lead to suboptimal

forecasting performance, since these models treat all shocks to Euribors as per-

manent. This is clearly not the case for movements caused by fluctuations in the

risk component, such as during periods of financial stress; the bottom panel shows

several such examples, most importantly in the period of the global financial crisis

in 2007-2009, and the period of the euro zone sovereign debt crisis in 2011-2012.

Importantly, these movements can easily swamp the other sources of movements in

IIRs relative to policy rates, especially for the longer-maturity Euribor. For exam-

ple, the spread between 3-month Euribor and the Eonia rates reached 1.2% during

its peak month in 2008, and 0.8% during its peak month in 2011, but decreased

back to near-zero values afterwards.

Therefore, models using first differences are likely to feature large forecast errors
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Figure 2.8: Euribors rate spreads
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in periods following stress in financial markets. This is indeed on display in Figure

2.9, the left panels of which show the forecasts for the 3-month Euribor from one of

the best performing models using first differences, the model with changes in the

spread from the DR selected by SIC (model 54). The top left panel shows forecasts

during the peak of the global financial crisis, while the bottom right panel shows

the forecasts during the peak of the euro zone sovereign debt crisis; the right panels

show corresponding forecasts from the structural model. As outlined above, the

forecasts have rather poor quality, being characterized by almost constant spread

between the Euribor and the DRs at the levels last observed. This is despite the

fact that the spreads are elevated relative to historical values, and despite the

fact that these values vary from forecast to forecast. Both of these facts are direct

consequences of using first differences as the dependent variable, since such models

completely ignore the level of IIRs when creating the forecasts.

This ex-ante predictable poor forecasting performance is in contrast with the

forecasts from the structural model in the right panels of Figure 2.9. Since the

model is specified in terms of levels of IIRs, it treats all shocks as temporary, and,

correspondingly, whenever the IIR spreads are elevated due to stress in financial

markets, the model predicts an (immediate15 ) decrease in the spreads.

Translating this into econometric concepts, the key realization is that, while

IIRs are nonstationary, they are clearly cointegrated with policy rates, as the top-

left panel of Figure 2.8 shows. In the period before the emergence of excess reserves,

15The forecasts are from the structural model that does not include any ARMA errors. While
an econometrician would presumable include those in the face of large and persistent movements
in risk components - or an economist would adjust the forecast manually - here I focus on the
core of the model and ignore these aspects. Note that the structural model is also useful in
understanding those movements since it eliminates the effect of movements in the equilibrium
component of longer-maturity IIRs due to fluctuations in excess reserves. See Kovar (2020) for
an example of such a use of the model.
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Figure 2.9: Effects of cointegration on forecast performance
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this cointegration means that all fluctuations in IIRs relative to policy rates can

expected to correct themselves eventually, something I link to the economic concept

of transitory fluctuations in risk components of IIRs. While this cointegration

relationship is further complicated by the role played by excess reserves which

vary over time, it is not altered completely: the only difference is that the IIRs are

not cointegrated only with policy rates, but instead IIRs, policy rates and excess

reserves form cointegrating relationship together. Therefore, the poor forecasting

performance of models using first differences is a reflection of model mispecification

which occurs when one models a cointegrated series in their first differences rather

than in levels or as an error-correction model.

2.4.3 Summary

This section explained the superior forecasting performance of the structural model

by linking it to the statistical nature of IIRs. Models which specify the level of

IIRs as a dependent variable lead to problematic forecasts because they ignore

the fact that the historical average relationship between IIRs and policy rates is

no longer relevant after the emergence of excess reserves, which cause IIRs to

become nonstationary. On the other hand, models with first differences of IIRs

as a dependent variable do not account for variations in excess reserves that drive

the variation in IIRs; more importantly, they also ignore that longer-maturity IIRs

contain potentially large shocks that are transitory, stemming from the variations

in their risk component. As a result, they produce misleading forecasts during

periods of financial stress, arguably the most important periods for forecasting

IIRs.
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The key issue is that the IIRs with longer maturity have two components of

different statistical nature. The equilibrium component, which can be proxied

by the Eonia rate, features a break in the relationship with policy rates, and

fluctuates with excess reserves. This makes the equilibrium component clearly

nonstationary. However, IIRs with longer maturity also feature a risk component,

that is clearly stationary since shocks to this component are eventually reversed.

Reduced-form time series models effectively ignore one or the other component:

models with levels of IIRs as the dependent variable ignore the fluctuations in

the nonstationary component, while models with first differences as the dependent

variable ignore the stationary component. This explains the superiority of the

structural model: since it accounts for the only source of nonstationarity, it can

be cast in term of levels of IIRs without facing the same problems as reduced

form models using levels or IIRs. This means that any other fluctuations which

are (primary) transitory fluctuations in the risk component are indeed treated as

transitory.

2.5 Concluding remarks

This chapter shows that the structural factors highlighted in the first chapter play

an important part in forecasting euro zone IIRs in period since the emergence of

excess reserves; and correspondingly, that the structural model proposed there is

useful not only for making sense of the movements in IIRs over last decade, but

also in (pseudo) out of sample forecasting. This is true for both the Eonia rate and

the longer maturity Euribor rates, but the superior forecasting quality hinges on

knowledge of future movements in excess reserves with some degree of certainty.
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Nevertheless, focusing on summary measures of forecasting performance masks

important heterogeneity with respect to different periods and environments. Specif-

ically, the best performing reduced form models are completely unsuitable for fore-

casting during periods of stress in interbank markets. Presumably, forecasts during

such periods are of specific value. Moreover, even if the future path of excess re-

serves is not known, superior ex-post forecasting performance of the structural

model means that it is much more useful in scenario analyses - forecasting the

future path of IIRs under alternative assumptions about monetary policy - than

reduced form models.

Establishing the appropriateness of the proposed structural model for forecast-

ing purposes means that the model can in principle also shed light on the question

of the future path of IIRs. The key question is whether and when IIRs will return

to their normal values relative to policy rates. The model clearly suggests that this

will only happen if and when the excess reserves in the euro zone interbank market

disappear, which is intrinsically linked to the ECB’s balance sheet returning to its

normal size. Therefore, a return to normal is not in the cards in the next several

years, or likely at any point during the next decade. That said, the prediction of

future path of IIRs is complicated by changes the euro zone IIRs underwent in the

fall of 2019: their definition changed, which also coincided with the introduction

of tiering of excess reserves by the ECB. It is not immediately theoretically clear

what these changes mean exactly, and too few observations have been accumulated

thus far to provide definitive answer. I leave this question for future research.
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2.A Description of forecasting procedures

This appendix describes the forecasting procedures used to create the forecasts re-

ported in the main text. First, the specifics of the procedure for ex-post forecasting

is described, before turning to specifics of ex-ante forecasting.

Ex-post forecasting. For simple reduced form models the pseudo out-of-

sample ex-post forecasts are obtained by following a simple recursion. For example,

consider the creation of the first forecast in the beginning of 2009M01. In ex-post

pseudo out-of-sample forecasts the model coefficient estimates are based on data for

dependent and independent variables prior to this date, i.e. the estimation sample

runs from 1999M01 until 2008M12. The same also applies to model structure, if

it is data-dependent, such as when the order of ARMA terms is determined. The

resulting model is then used to create a forecast for the dependent variable, with

actual observed history values for independent variables used in place of the future

values.

For structural models, the pseudo out-of-sample exercise is further complicated

by the regime-switching nature of the model and by the use of an exogenous

threshold. In order to avoid artificially improving the out-of-sample forecasting

performance by relying on information from the whole sample, I replicate the

estimation procedure one would rely on at any given time by using the following

decision rules for determining the presence of two regimes. First, for the given

estimation sample, the two regime structure is used only if it has a better fit

than the single regime structure as measured by the residual sum of squares.

Moreover, the threshold value determining the prevalence of each regime is always

chosen based on the available sample, using the estimation procedure proposed
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by Chan (1993); see the first chapter for more discussion. In addition to these

rules motivated by fear of contamination of results, I also impose two additional

rules motivated by reasonable econometric considerations. First, two regimes are

allowed only if there are at least 6 observations for each regime. Second, the

two regimes are used only if the coefficient estimates correspond to theory, which

specifically means that the coefficient estimates on excess reserves is negative.

Presumably, the econometrician making forecasts at given time in history would

discard models that do not correspond to theoretical expectations.

While the previous decision rules should ensure that the historical equations

are estimated as an econometrician would estimate them at a given time, they

cannot deal with additional complications. Specifically, for structural models, the

pseudo out-of-sample exercises are further complicated by the fact that the model

imposes a significant amount of structure on the relationship between IIRs and

monetary policy variables. This structure is clearly informed by developments

observed only after the emergence of excess reserves, and presumably would not

be obvious before. While one would typically ignore such considerations in a

pseudo out-of-sample forecasting exercise, I aim to approximate the true out-of-

sample forecasting by adding one more decision rule. The econometrician could

have been alerted to the possibility of a change in the data-generating process if

he/she would have performed formal statistical tests on his econometric model. In

the present case, the formal statistical test is a test for a break in the relationship

between IIRs and policy rates.16

Finally, the presence of two regimes also raises the issue of discontinuity in

forecasts, and the possibility of inconsistency in the regime forecasts: in the pres-

16The same decision rule is also used for models that include a break.
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ence of excess reserves, the IIRs should logically be lower than in the absence of

excess reserves, which means that the forecast from a normal regime should act as

an upper bound for the IIRs. Since this aspect cannot be imposed on the model in

estimation stage, I capture it in the forecasting stage and impose a final decision

rule, under which, at any point, the lower value of the two regime forecasts is used.

The model structure and the econometric nature of the structural models also

raises the question of what estimation method one should use. The first chap-

ter shows results for multiple estimation methods varying from simple OLS and

TSLS to various cointegration estimation methods and shows that the results are

reasonably robust to the use of different estimation methods. Here, I focus on

simple OLS as the estimation method, since it is much more likely that it would

be used rather than some alternative, more sophisticated method. The results

using alternative estimation methods are qualitatively and quantitatively similar.

Ex-ante forecasting. As discussed in the main text and above, the only

difference between ex-post and ex-ante forecasting is the treatment of the inde-

pendent variables, and specifically whether one uses actual historical values or

forecasts. In ex-ante forecasts one, also forecasts values for independent variables.

Apart from this need to forecast independent variables, the rest of the recursion

is the same: since I focus on the case where the independent variables are indeed

treated as independent - there is no feedback from the main variable (IIR) to the

independent variables (policy rates) - the only thing that changes is that I apply

the recursion to more than one equation with suitable ordering of the forecasting.

The only question to settle is what model one uses to forecast independent vari-

ables. This section delves deeper into the answer to this question, first focusing

on policy rates and later on excess reserves.
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Table 2.9: Forecasting performance for the main refinancing rate

Forecast horizons (# of steps ahead)
Model 1 2 3 6 12 24 48 60 Avg.

ARMA - AIC 0.038 0.088 0.14 0.34 0.87 1.81 2.46 2.67 1.05
ARMA - SIC 0.037 0.086 0.14 0.34 0.86 1.80 2.48 2.68 1.05
ARIMA - AIC 0.024 0.05 0.072 0.13 0.2 0.32 0.6 0.73 0.27
ARIMA - SIC 0.021 0.047 0.073 0.13 0.21 0.33 0.62 0.76 0.27
Random walk 0.029 0.055 0.08 0.13 0.2 0.33 0.67 0.89 0.3

Notes: See note below Table 2.2 for explanation of values.

For the two monetary policy rates - the main refinancing rate and the deposit

rate - I consider either reduced form models of the ARMA class, or simple random

walk. For ARMA model class, I consider both models in levels and in differences,

and models selected by AIC and SIC. Tables 2.9 and 2.10 include the MAE for

MRR and DR, respectively. In both cases, the results are for a sample that corre-

sponds to the sample reported in main text, 2009M01-2019M08. Not surprisingly,

the models that use the level of policy rates as a dependent variable perform much

worse then models that use first differences, corresponding to the fact that ex-

pecting policy rates to return to their historically normal values proved to be a

disappointing endeavor. Meanwhile, there are only slight differences between the

estimated models in first differences and the random walk. Given its simplicity

and easy interpretability, and greater robustness due to the lack of estimation, I

use the random walk model for forecasting policy rates. Figure 2.10 shows the

forecasts up to a 24 month horizon for both policy rates.

In case of structural models, ex-ante forecasting brings additional complication

since one also needs to forecast the value of excess reserves. Here I take three

different approaches, corresponding to three different sample periods. In each
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Table 2.10: Forecasting performance for the deposit rate

Forecast horizons (# of steps ahead)
Model 1 2 3 6 12 24 48 60 Avg.

ARMA - AIC 0.038 0.086 0.14 0.32 0.69 1.31 1.89 2.04 0.81
ARMA - SIC 0.04 0.091 0.15 0.35 0.81 1.57 1.99 2.09 0.89
ARIMA - AIC 0.029 0.049 0.071 0.13 0.19 0.27 0.43 0.55 0.21
ARIMA - SIC 0.02 0.042 0.063 0.12 0.2 0.31 0.49 0.61 0.23
Random walk 0.028 0.052 0.072 0.11 0.16 0.25 0.45 0.56 0.21

Notes: See note below Table 2.2 for explanation of values.

Figure 2.10: Forecasts for policy rates - random walk
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case the model is meant to approximate what an econometrician would plausibly

propose as a model for excess reserves, or how an economist would forecast excess

reserves.

• In the period before the change in the ECB regime from a fixed allotment to

a full allotment (1999M01-2008M09), the excess reserves are forecast to be

equal to zero, irrespective of their previous value.

• In the period between 2008M10 and 2014M12 the excess reserves are forecast

to follow either an ARMA(2,1) model without a constant, or a simple random

walk without drift.

• In the period of quantitative easing (2015M01-2019M08), the excess reserves

are forecast to increase in line with announced plans for asset purchases;

after planned end date for purchases, the purchases are forecast to decrease

to zero over a period of 6 months; finally, after end of purchases, the excess

reserves are expected to stay unchanged.

The model for the first period is very natural: during this period, banks had

incentives to economize on excess reserves, naturally leading to expectations that

excess reserves would always return to zero. This contrast with the period after

the emergence of excess reserves. During this period, the persistence of excess

reserves was almost immediately visible. Whether an econometrician/economist

would consider the presence of excess reserves to be a (semi-)permanent feature,

or whether he/she would expect excess reserves to return gradually to zero, is an

open question. While the latter seems more reasonable as an ex-ante expectation,

the expectation of things remaining as they are is not unreasonable. I consider
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Table 2.11: Forecasting performance for excess reserves

Forecast horizons (# of steps ahead)
Model 1 2 3 6 12 24 48 60 Avg.

Random walk 38 67 93 158 283 354 146 42 148
ARMA 38 70 94 157 258 321 228 133 162

Notes: See note below Table 2.2 for explanation of values.

Figure 2.11: Forecasts for excess reserves - period before the quantitative easing
program

both possibilities in the main text. Of course, ex-post, we know that expecting

excess reserves to become a permanent feature of the interbank market was more

correct. This is documented in Table 2.11 and Figure 2.11.

Finally, once the QE program started, it was clear that excess reserves were

not going to decrease to zero any time soon, but rather that they will continue to

increase due to continuous asset purchases by the ECB. Since the ECB announced

its asset purchase plans for long periods ahead - see Table 2.12 - the economist

could easily follow these announcements and make corresponding forecasts for

excess reserves. Figure 2.12 shows the resulting forecast for excess reserves.
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Table 2.12: Overview of the ECB announcements about asset purchase plans

Announcement date Amount (in bil.) Start date Plnanned end date

1/22/2015 60 2015M03 2016M09
3/10/2016 80 2016M04
7/21/2016 80 - 2017M03
12/8/2016 80/60 - 2017M03/2017M12
10/26/2017 60/30 - 2017M12/2018M09
6/14/2018 30/15 - 2018M09/2018M12

Figure 2.12: Forecasts for excess reserves - period of the QE program
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2.B Additional results

This Appendix contains additional results. Section 2.B.1 contains results for ex-

post forecasting performance reported in the main text, but includes all models.

Section 2.B.2 provides results for the full sample from 2005 until 2019.

2.B.1 All model results

This appendix contains analogs of tables 2.2, 2.3 and 2.4, with results for all models

included, rather than just the subset of models with better performance. See tables

2.13,2.14 and 2.15. Results for ex-ante forecasting performance are available upon

request.
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Table 2.13: Ex-post forecasting performance for Eonia - All models

Forecast horizons (# of steps ahead)
# Description 1 2 3 6 12 24 48 60 Avg.

Multivariate models - level
5 Static regerssion - MRR 0.21 0.21 0.21 0.22 0.22 0.23 0.24 0.16 0.21
6 Static regerssion - DR 0.28 0.28 0.28 0.29 0.3 0.32 0.4 0.43 0.32
7 Static regerssion - MRR&DR 0.19 0.2 0.21 0.23 0.28 0.38 0.63 0.7 0.35
8 ARMAX - MRR - AIC 0.088 0.15 0.21 0.26 0.23 0.24 0.21 0.11 0.19
9 ARMAX - MRR - SIC 0.089 0.15 0.21 0.26 0.23 0.23 0.2 0.11 0.18
10 ARMAX - DR - AIC 0.075 0.14 0.21 0.37 0.43 0.43 0.54 0.58 0.35
11 ARMAX - DR -SIC 0.076 0.14 0.22 0.39 0.44 0.44 0.54 0.57 0.35
12 ARMAX - MRR&DR - AIC 0.093 0.16 0.21 0.33 0.37 0.47 0.83 0.94 0.43
13 ARMAX - MRR&DR - SIC 0.097 0.16 0.22 0.33 0.36 0.48 0.81 0.9 0.42
14 ARMA errors - MRR - AIC 0.058 0.082 0.099 0.13 0.22 0.25 0.24 0.18 0.16
15 ARMA errors - MRR - SIC 0.05 0.072 0.086 0.12 0.19 0.24 0.19 0.12 0.13
16 ARMA errors - DR - AIC 0.043 0.069 0.084 0.13 0.19 0.25 0.45 0.51 0.22
17 ARMA errors - DR -SIC 0.038 0.057 0.073 0.13 0.2 0.32 0.57 0.67 0.26
18 ARMA errors - MRR&DR - AIC 0.061 0.085 0.099 0.13 0.22 0.24 0.23 0.17 0.15
19 ARMA errors - MRR&DR - SIC 0.051 0.073 0.086 0.12 0.19 0.23 0.19 0.15 0.14
20 ARDL - MRR - AIC 0.053 0.084 0.11 0.16 0.29 0.45 1.11 1.87 0.51
21 ARDL - MRR - SIC 0.049 0.072 0.089 0.13 0.21 0.27 0.23 0.15 0.15
22 ARDL - DR - AIC 0.044 0.067 0.087 0.13 0.24 0.46 1.78 3.64 0.81
23 ARDL - DR -SIC 0.034 0.051 0.064 0.11 0.18 0.23 0.46 0.55 0.21
24 ARDL - MRR&DR - AIC 0.068 0.094 0.11 0.17 0.32 0.61 1.12 1.43 0.49
25 ARDL - MRR&DR - SIC 0.063 0.09 0.11 0.17 0.29 0.47 0.95 1.22 0.42

Avg. 0.09 0.12 0.15 0.21 0.27 0.34 0.57 0.72 0.31

Multivariate models - differences
26 Static regerssion, d - MRR 0.038 0.058 0.069 0.1 0.17 0.22 0.26 0.25 0.15
27 Static regerssion, d - DR 0.03 0.044 0.053 0.077 0.12 0.11 0.17 0.18 0.098
28 Static regerssion, d - MRR&DR 0.039 0.059 0.069 0.095 0.16 0.19 0.2 0.2 0.12
29 ARMAX, d - MRR - AIC 0.04 0.059 0.076 0.11 0.18 0.23 0.31 0.3 0.16
30 ARMAX, d - MRR - SIC 0.04 0.06 0.073 0.1 0.17 0.23 0.29 0.31 0.16
31 ARMAX, d - DR - AIC 0.032 0.045 0.055 0.077 0.11 0.1 0.15 0.16 0.091
32 ARMAX, d - DR -SIC 0.031 0.044 0.055 0.074 0.11 0.1 0.14 0.15 0.088
33 ARMAX, d - MRR&DR - AIC 0.041 0.059 0.074 0.1 0.16 0.19 0.24 0.24 0.14
34 ARMAX, d - MRR&DR - SIC 0.04 0.059 0.071 0.094 0.15 0.19 0.23 0.25 0.14
35 ARMA errors, d - MRR - AIC 0.054 0.077 0.092 0.11 0.19 0.23 0.29 0.31 0.17
36 ARMA errors, d - MRR - SIC 0.044 0.064 0.075 0.1 0.17 0.22 0.29 0.31 0.16
37 ARMA errors, d - DR - AIC 0.042 0.065 0.074 0.093 0.13 0.12 0.16 0.17 0.11
38 ARMA errors, d - DR -SIC 0.034 0.047 0.058 0.078 0.12 0.11 0.16 0.17 0.096
39 ARMA errors, d - MRR&DR - AIC 0.045 0.063 0.073 0.095 0.16 0.2 0.24 0.24 0.14
40 ARMA errors, d - MRR&DR - SIC 0.045 0.063 0.073 0.095 0.16 0.2 0.24 0.24 0.14
41 ARDL, d - MRR - AIC 0.049 0.075 0.091 0.11 0.18 0.22 0.32 0.32 0.17
42 ARDL, d - MRR - SIC 0.043 0.063 0.075 0.1 0.17 0.23 0.31 0.33 0.17
43 ARDL, d - DR - AIC 0.036 0.054 0.065 0.079 0.1 0.089 0.13 0.13 0.086
44 ARDL, d - DR -SIC 0.031 0.044 0.055 0.074 0.11 0.1 0.14 0.15 0.087
45 ARDL, d - MRR&DR - AIC 0.069 0.091 0.12 0.13 0.23 0.35 0.74 0.93 0.33
46 ARDL, d - MRR&DR - SIC 0.05 0.066 0.08 0.12 0.23 0.38 0.7 0.87 0.31

Avg. 0.04 0.06 0.07 0.10 0.16 0.19 0.27 0.30 0.15

Multivaraite models - spread
47 ARMA, s - MRR - AIC 0.058 0.085 0.1 0.14 0.23 0.27 0.19 0.13 0.15
48 ARMA, s - MRR - SIC 0.049 0.071 0.085 0.12 0.19 0.23 0.17 0.1 0.13
49 ARMA, s - DR - AIC 0.043 0.066 0.08 0.14 0.2 0.27 0.47 0.54 0.23
50 ARMA, s - DR - SIC 0.038 0.054 0.07 0.12 0.19 0.28 0.48 0.55 0.22
51 ARMA, s, d - MRR - AIC 0.056 0.083 0.096 0.12 0.19 0.23 0.28 0.29 0.17
52 ARMA, s, d - MRR - SIC 0.044 0.063 0.074 0.1 0.17 0.22 0.28 0.29 0.16
53 ARMA, s, d - DR - AIC 0.042 0.064 0.074 0.092 0.12 0.12 0.16 0.17 0.11
54 ARMA, s, d - DR - SIC 0.032 0.045 0.056 0.073 0.11 0.095 0.13 0.13 0.083

Avg. 0.05 0.07 0.08 0.11 0.18 0.21 0.27 0.28 0.16

Multivariate models - break
55 Static regression, b - MRR 0.11 0.11 0.11 0.11 0.12 0.1 0.15 0.16 0.12
56 Static regression, b - DR 0.15 0.15 0.15 0.16 0.19 0.2 0.33 0.36 0.21
57 Static regression, b - MRR&DR 0.1 0.1 0.11 0.12 0.14 0.13 0.22 0.22 0.14
58 ARMA errors, b - MRR 0.054 0.09 0.1 0.13 0.17 0.17 0.32 0.32 0.17
59 ARMA errors, b - DR 0.045 0.072 0.086 0.11 0.13 0.11 0.19 0.2 0.12
60 ARMA errors, b - MRR&DR 0.052 0.08 0.091 0.1 0.12 0.12 0.22 0.2 0.12
61 ARMA, s, b - MRR 0.049 0.079 0.096 0.13 0.16 0.16 0.23 0.25 0.14
62 ARMA, s, b - DR 0.055 0.088 0.1 0.13 0.15 0.15 0.22 0.18 0.13

Avg. 0.08 0.10 0.11 0.12 0.15 0.14 0.24 0.24 0.14

Structural models
100a Linear 0.066 0.07 0.075 0.084 0.089 0.098 0.085 0.12 0.086
100b Linear - ARMA errors 0.048 0.061 0.066 0.075 0.081 0.088 0.075 0.088 0.073
101a Nonlinear 0.044 0.047 0.046 0.046 0.044 0.035 0.035 0.024 0.04
101b Nonlinear - ARMA errors 0.037 0.046 0.044 0.049 0.051 0.046 0.048 0.039 0.045
Avg. 0.05 0.06 0.06 0.06 0.07 0.07 0.06 0.07 0.06

Summary statistics
Mean 0.08 0.10 0.14 0.19 0.23 0.35 0.42 0.20
Std. Deviation 0.05 0.05 0.07 0.08 0.12 0.31 0.54 0.13
Minimum 0.04 0.04 0.05 0.04 0.04 0.04 0.02 0.04
1st quartile 0.06 0.07 0.10 0.13 0.12 0.19 0.16 0.12
3rd quartile 0.09 0.11 0.13 0.22 0.27 0.45 0.51 0.22
Maximum 0.28 0.28 0.39 0.44 0.61 1.78 3.64 0.81

Notes: See note below Table 2.2 for explanation of values.
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Table 2.14: Ex-post forecasting performance for 1-week Euribor - All models

Forecast horizons (# of steps ahead)
# Description 1 2 3 6 12 24 48 60 Avg.

Multivariate models - level
5 Static regerssion - MRR 0.19 0.2 0.2 0.2 0.2 0.19 0.2 0.11 0.19
6 Static regerssion - DR 0.29 0.29 0.3 0.31 0.32 0.34 0.44 0.48 0.35
7 Static regerssion - MRR&DR 0.2 0.21 0.21 0.24 0.28 0.33 0.53 0.55 0.32
8 ARMAX - MRR - AIC 0.094 0.17 0.23 0.26 0.23 0.21 0.19 0.073 0.18
9 ARMAX - MRR - SIC 0.09 0.16 0.21 0.25 0.22 0.21 0.18 0.081 0.17
10 ARMAX - DR - AIC 0.089 0.18 0.26 0.4 0.45 0.44 0.57 0.6 0.37
11 ARMAX - DR -SIC 0.085 0.17 0.25 0.39 0.41 0.42 0.53 0.57 0.35
12 ARMAX - MRR&DR - AIC 0.097 0.18 0.24 0.35 0.36 0.43 0.77 0.8 0.4
13 ARMAX - MRR&DR - SIC 0.096 0.17 0.23 0.33 0.35 0.43 0.76 0.79 0.4
14 ARMA errors - MRR - AIC 0.057 0.088 0.1 0.15 0.22 0.22 0.21 0.17 0.15
15 ARMA errors - MRR - SIC 0.046 0.078 0.1 0.15 0.22 0.24 0.2 0.14 0.15
16 ARMA errors - DR - AIC 0.041 0.075 0.1 0.18 0.26 0.33 0.58 0.65 0.28
17 ARMA errors - DR -SIC 0.034 0.058 0.08 0.14 0.23 0.34 0.6 0.68 0.27
18 ARMA errors - MRR&DR - AIC 0.058 0.09 0.11 0.15 0.23 0.24 0.24 0.21 0.17
19 ARMA errors - MRR&DR - SIC 0.046 0.078 0.1 0.15 0.22 0.26 0.24 0.21 0.16
20 ARDL - MRR - AIC 0.056 0.094 0.12 0.19 0.26 0.32 0.69 1.65 0.42
21 ARDL - MRR - SIC 0.043 0.074 0.097 0.15 0.21 0.23 0.2 0.11 0.14
22 ARDL - DR - AIC 0.036 0.063 0.087 0.15 0.24 0.32 0.63 0.76 0.28
23 ARDL - DR -SIC 0.032 0.052 0.073 0.13 0.21 0.26 0.51 0.6 0.23
24 ARDL - MRR&DR - AIC 0.18 0.22 0.33 0.27 0.58 0.88 1.14 1.56 0.65
25 ARDL - MRR&DR - SIC 0.093 0.13 0.19 0.21 0.35 0.52 0.96 1.28 0.47

Avg. 0.09 0.13 0.17 0.23 0.29 0.34 0.49 0.57 0.29

Multivariate models - differences
26 Static regerssion, d - MRR 0.035 0.06 0.077 0.11 0.2 0.26 0.26 0.28 0.16
27 Static regerssion, d - DR 0.027 0.043 0.06 0.091 0.14 0.15 0.19 0.21 0.11
28 Static regerssion, d - MRR&DR 0.035 0.061 0.077 0.11 0.19 0.23 0.22 0.24 0.14
29 ARMAX, d - MRR - AIC 0.041 0.073 0.095 0.13 0.21 0.25 0.3 0.29 0.18
30 ARMAX, d - MRR - SIC 0.036 0.061 0.08 0.11 0.2 0.26 0.29 0.32 0.17
31 ARMAX, d - DR - AIC 0.032 0.05 0.065 0.097 0.14 0.13 0.18 0.2 0.11
32 ARMAX, d - DR -SIC 0.027 0.045 0.062 0.089 0.14 0.14 0.16 0.18 0.11
33 ARMAX, d - MRR&DR - AIC 0.041 0.074 0.095 0.13 0.2 0.23 0.27 0.28 0.17
34 ARMAX, d - MRR&DR - SIC 0.035 0.06 0.077 0.1 0.18 0.23 0.23 0.26 0.15
35 ARMA errors, d - MRR - AIC 0.056 0.091 0.11 0.13 0.2 0.22 0.25 0.23 0.16
36 ARMA errors, d - MRR - SIC 0.037 0.062 0.079 0.11 0.2 0.26 0.26 0.28 0.16
37 ARMA errors, d - DR - AIC 0.035 0.058 0.077 0.11 0.14 0.14 0.17 0.19 0.11
38 ARMA errors, d - DR -SIC 0.027 0.043 0.06 0.091 0.14 0.15 0.19 0.21 0.11
39 ARMA errors, d - MRR&DR - AIC 0.038 0.064 0.08 0.11 0.19 0.23 0.22 0.24 0.15
40 ARMA errors, d - MRR&DR - SIC 0.038 0.064 0.08 0.11 0.19 0.23 0.22 0.24 0.15
41 ARDL, d - MRR - AIC 0.051 0.09 0.12 0.15 0.24 0.29 0.37 0.36 0.21
42 ARDL, d - MRR - SIC 0.037 0.063 0.083 0.12 0.21 0.26 0.3 0.31 0.17
43 ARDL, d - DR - AIC 0.03 0.05 0.065 0.096 0.15 0.14 0.17 0.2 0.11
44 ARDL, d - DR -SIC 0.027 0.045 0.062 0.089 0.14 0.14 0.16 0.18 0.11
45 ARDL, d - MRR&DR - AIC 0.12 0.12 0.17 0.2 0.39 0.67 1.21 1.47 0.54
46 ARDL, d - MRR&DR - SIC 0.083 0.085 0.13 0.16 0.29 0.45 0.78 1 0.37

Avg. 0.04 0.06 0.09 0.12 0.19 0.24 0.30 0.34 0.17

Multivaraite models - spread
47 ARMA, s - MRR - AIC 0.054 0.086 0.11 0.16 0.26 0.32 0.24 0.2 0.18
48 ARMA, s - MRR - SIC 0.045 0.076 0.099 0.15 0.22 0.26 0.22 0.19 0.16
49 ARMA, s - DR - AIC 0.04 0.071 0.1 0.19 0.27 0.34 0.61 0.7 0.29
50 ARMA, s - DR - SIC 0.035 0.059 0.081 0.14 0.23 0.34 0.59 0.66 0.27
51 ARMA, s, d - MRR - AIC 0.052 0.083 0.1 0.13 0.21 0.22 0.22 0.23 0.16
52 ARMA, s, d - MRR - SIC 0.039 0.063 0.079 0.12 0.21 0.26 0.27 0.28 0.16
53 ARMA, s, d - DR - AIC 0.038 0.062 0.087 0.12 0.18 0.16 0.2 0.22 0.13
54 ARMA, s, d - DR - SIC 0.027 0.044 0.061 0.09 0.14 0.14 0.18 0.19 0.11

Avg. 0.04 0.07 0.09 0.14 0.21 0.26 0.32 0.33 0.18

Multivariate models - break
55 Static regression, b - MRR 0.12 0.12 0.12 0.13 0.14 0.11 0.15 0.16 0.13
56 Static regression, b - DR 0.17 0.17 0.17 0.19 0.22 0.23 0.36 0.41 0.24
57 Static regression, b - MRR&DR 0.12 0.12 0.12 0.14 0.17 0.15 0.27 0.27 0.17
58 ARMA errors, b - MRR 0.051 0.09 0.11 0.15 0.21 0.2 0.39 0.37 0.2
59 ARMA errors, b - DR 0.045 0.075 0.097 0.13 0.16 0.12 0.2 0.21 0.13
60 ARMA errors, b - MRR&DR 0.049 0.085 0.11 0.13 0.18 0.16 0.34 0.3 0.17
61 ARMA, s, b - MRR 0.048 0.081 0.11 0.17 0.23 0.27 0.37 0.39 0.21
62 ARMA, s, b - DR 0.044 0.078 0.1 0.14 0.18 0.18 0.15 0.089 0.12

Avg. 0.08 0.10 0.12 0.15 0.19 0.18 0.28 0.27 0.17

Structural models
100a Linear 0.085 0.09 0.096 0.1 0.12 0.14 0.14 0.2 0.12
100b Linear - ARMA errors 0.047 0.066 0.078 0.095 0.12 0.15 0.15 0.2 0.11
101a Nonlinear 0.059 0.065 0.068 0.07 0.069 0.049 0.058 0.055 0.062
101b Nonlinear - ARMA errors 0.035 0.049 0.056 0.071 0.092 0.089 0.096 0.095 0.073
Avg. 0.06 0.07 0.07 0.08 0.10 0.11 0.11 0.14 0.09

Summary statistics
Mean 0.09 0.12 0.16 0.22 0.26 0.35 0.40 0.21
Std. Deviation 0.05 0.06 0.07 0.09 0.14 0.25 0.36 0.12
Minimum 0.04 0.06 0.07 0.07 0.05 0.06 0.06 0.06
1st quartile 0.06 0.08 0.11 0.18 0.16 0.19 0.20 0.13
3rd quartile 0.09 0.12 0.18 0.24 0.32 0.51 0.55 0.27
Maximum 0.29 0.33 0.40 0.58 0.88 1.21 1.65 0.65

Notes: See note below Table 2.2 for explanation of values.
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Table 2.15: Ex-post forecasting performance for 3-month Euribor - All models

Forecast horizons (# of steps ahead)
# Description 1 2 3 6 12 24 48 60 Avg.

Multivariate models - level
5 Static regerssion - MRR 0.17 0.18 0.18 0.19 0.2 0.17 0.16 0.1 0.17
6 Static regerssion - DR 0.3 0.3 0.31 0.33 0.36 0.4 0.57 0.61 0.4
7 Static regerssion - MRR&DR 0.18 0.18 0.19 0.21 0.23 0.19 0.21 0.21 0.2
8 ARMAX - MRR - AIC 0.057 0.12 0.17 0.24 0.24 0.22 0.24 0.23 0.19
9 ARMAX - MRR - SIC 0.05 0.11 0.15 0.22 0.21 0.18 0.17 0.12 0.15
10 ARMAX - DR - AIC 0.068 0.16 0.25 0.44 0.53 0.54 0.76 0.82 0.45
11 ARMAX - DR -SIC 0.058 0.14 0.22 0.38 0.43 0.47 0.65 0.7 0.38
12 ARMAX - MRR&DR - AIC 0.06 0.13 0.21 0.38 0.48 0.47 0.62 1.03 0.42
13 ARMAX - MRR&DR - SIC 0.057 0.13 0.21 0.34 0.44 0.54 0.75 1.21 0.46
14 ARMA errors - MRR - AIC 0.059 0.1 0.13 0.19 0.27 0.27 0.33 0.32 0.21
15 ARMA errors - MRR - SIC 0.05 0.087 0.12 0.18 0.28 0.35 0.48 0.47 0.25
16 ARMA errors - DR - AIC 0.051 0.09 0.13 0.22 0.44 0.76 0.94 0.97 0.45
17 ARMA errors - DR -SIC 0.043 0.074 0.1 0.18 0.31 0.5 0.89 0.98 0.38
18 ARMA errors - MRR&DR - AIC 0.057 0.1 0.14 0.24 0.44 0.67 0.63 0.64 0.36
19 ARMA errors - MRR&DR - SIC 0.045 0.08 0.11 0.18 0.29 0.44 0.7 0.74 0.32
20 ARDL - MRR - AIC 0.041 0.078 0.1 0.13 0.21 0.22 0.22 0.22 0.15
21 ARDL - MRR - SIC 0.043 0.08 0.11 0.16 0.22 0.24 0.26 0.25 0.17
22 ARDL - DR - AIC 0.05 0.097 0.14 0.22 0.41 0.63 0.74 0.9 0.4
23 ARDL - DR -SIC 0.048 0.09 0.13 0.22 0.37 0.57 0.83 0.9 0.39
24 ARDL - MRR&DR - AIC 0.26 0.44 0.66 0.58 1.52 4.30 28 71 13
25 ARDL - MRR&DR - SIC 0.057 0.12 0.18 0.31 0.56 0.95 1.92 3.09 0.9

Avg. 0.09 0.14 0.19 0.26 0.40 0.62 1.91 4.07 0.94

Multivariate models - differences
26 Static regerssion, d - MRR 0.037 0.066 0.089 0.14 0.25 0.28 0.3 0.28 0.18
27 Static regerssion, d - DR 0.032 0.053 0.073 0.12 0.2 0.24 0.41 0.49 0.2
28 Static regerssion, d - MRR&DR 0.034 0.06 0.08 0.13 0.22 0.24 0.34 0.37 0.18
29 ARMAX, d - MRR - AIC 0.036 0.07 0.098 0.17 0.27 0.31 0.31 0.31 0.2
30 ARMAX, d - MRR - SIC 0.031 0.059 0.082 0.13 0.23 0.29 0.25 0.26 0.17
31 ARMAX, d - DR - AIC 0.036 0.065 0.088 0.14 0.2 0.23 0.37 0.43 0.19
32 ARMAX, d - DR -SIC 0.031 0.052 0.071 0.11 0.19 0.21 0.36 0.43 0.18
33 ARMAX, d - MRR&DR - AIC 0.037 0.07 0.098 0.17 0.25 0.29 0.3 0.31 0.19
34 ARMAX, d - MRR&DR - SIC 0.03 0.057 0.08 0.13 0.22 0.26 0.26 0.27 0.16
35 ARMA errors, d - MRR - AIC 0.053 0.091 0.12 0.15 0.26 0.28 0.35 0.35 0.21
36 ARMA errors, d - MRR - SIC 0.037 0.066 0.089 0.14 0.25 0.28 0.3 0.28 0.18
37 ARMA errors, d - DR - AIC 0.043 0.069 0.09 0.14 0.21 0.25 0.43 0.49 0.22
38 ARMA errors, d - DR -SIC 0.032 0.053 0.073 0.12 0.2 0.24 0.41 0.49 0.2
39 ARMA errors, d - MRR&DR - AIC 0.035 0.062 0.081 0.13 0.22 0.24 0.34 0.37 0.18
40 ARMA errors, d - MRR&DR - SIC 0.035 0.062 0.081 0.13 0.22 0.24 0.34 0.37 0.18
41 ARDL, d - MRR - AIC 0.044 0.091 0.13 0.19 0.31 0.38 0.43 0.45 0.25
42 ARDL, d - MRR - SIC 0.037 0.066 0.087 0.13 0.22 0.28 0.25 0.26 0.17
43 ARDL, d - DR - AIC 0.039 0.072 0.095 0.15 0.2 0.23 0.37 0.43 0.2
44 ARDL, d - DR -SIC 0.035 0.063 0.087 0.14 0.2 0.23 0.37 0.43 0.19
45 ARDL, d - MRR&DR - AIC 0.17 0.17 0.24 0.27 0.52 0.95 1.72 2.28 0.79
46 ARDL, d - MRR&DR - SIC 0.061 0.093 0.13 0.18 0.3 0.36 0.38 0.38 0.24

Avg. 0.04 0.07 0.10 0.15 0.24 0.30 0.41 0.46 0.22

Multivaraite models - spread
47 ARMA, s - MRR - AIC 0.055 0.093 0.12 0.18 0.28 0.34 0.38 0.36 0.23
48 ARMA, s - MRR - SIC 0.051 0.088 0.11 0.17 0.25 0.28 0.35 0.33 0.2
49 ARMA, s - DR - AIC 0.052 0.092 0.13 0.24 0.44 0.73 0.9 0.9 0.44
50 ARMA, s - DR - SIC 0.047 0.081 0.11 0.19 0.32 0.5 0.82 0.88 0.37
51 ARMA, s, d - MRR - AIC 0.051 0.084 0.11 0.15 0.25 0.26 0.32 0.32 0.19
52 ARMA, s, d - MRR - SIC 0.039 0.068 0.089 0.14 0.24 0.27 0.27 0.24 0.17
53 ARMA, s, d - DR - AIC 0.045 0.076 0.099 0.15 0.23 0.28 0.41 0.46 0.22
54 ARMA, s, d - DR - SIC 0.033 0.054 0.072 0.11 0.19 0.21 0.35 0.41 0.18

Avg. 0.05 0.08 0.10 0.17 0.28 0.36 0.48 0.49 0.25

Multivariate models - break
55 Static regression, b - MRR 0.16 0.17 0.17 0.19 0.21 0.21 0.34 0.37 0.23
56 Static regression, b - DR 0.18 0.18 0.18 0.18 0.19 0.18 0.14 0.14 0.17
57 Static regression, b - MRR&DR 0.15 0.16 0.16 0.18 0.2 0.16 0.19 0.2 0.18
58 ARMA errors, b - MRR 0.048 0.088 0.12 0.19 0.3 0.41 0.58 0.56 0.29
59 ARMA errors, b - DR 0.048 0.082 0.11 0.17 0.25 0.31 0.48 0.49 0.24
60 ARMA errors, b - MRR&DR 0.04 0.07 0.093 0.15 0.23 0.33 0.62 0.73 0.28
61 ARMA, s, b - MRR 0.035 0.064 0.088 0.15 0.25 0.4 0.76 0.85 0.33
62 ARMA, s, b - DR 0.038 0.073 0.098 0.16 0.25 0.32 0.45 0.45 0.23

Avg. 0.09 0.11 0.13 0.17 0.24 0.29 0.45 0.47 0.24

Structural models
100a Linear 0.12 0.12 0.13 0.13 0.12 0.12 0.15 0.12 0.13
100b Linear - ARMA errors 0.044 0.068 0.08 0.11 0.13 0.12 0.19 0.12 0.11
101a Nonlinear 0.13 0.14 0.14 0.16 0.17 0.15 0.26 0.23 0.17
101b Nonlinear - ARMA errors 0.038 0.06 0.072 0.1 0.15 0.18 0.32 0.34 0.16
Avg. 0.08 0.10 0.11 0.13 0.14 0.14 0.23 0.20 0.14

Summary statistics
Mean 0.10 0.13 0.19 0.29 0.41 0.92 1.67 0.47
Std. Deviation 0.06 0.08 0.09 0.19 0.53 3.51 8.96 1.62
Minimum 0.05 0.07 0.10 0.12 0.12 0.14 0.10 0.11
1st quartile 0.07 0.09 0.14 0.21 0.23 0.30 0.28 0.18
3rd quartile 0.12 0.14 0.21 0.31 0.41 0.62 0.70 0.33
Maximum 0.44 0.66 0.58 1.52 4.30 28.00 71.00 13.00

Notes: See note below Table 2.2 for explanation of values.
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2.B.2 Full sample results

This appendix contains measures of forecasting performance for the sample cover-

ing months between January 2005 and August 2019, rather than just the period

of excess reserves. I report results only for ex-post forecasts and the Eonia rate;

additional results are available upon request.
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Table 2.16: Ex-post forecasting performance for Eonia - Full sample

Forecast horizons (# of steps ahead)
# Description 1 2 3 6 12 24 48 60 Avg.

Multivariate models - level
5 Static regerssion - MRR 0.16 0.17 0.17 0.19 0.21 0.26 0.36 0.32 0.23
6 Static regerssion - DR 0.23 0.23 0.24 0.25 0.29 0.37 0.55 0.61 0.35
7 Static regerssion - MRR&DR 0.15 0.16 0.17 0.2 0.25 0.36 0.61 0.64 0.32
9 ARMAX - MRR - SIC 0.079 0.13 0.17 0.22 0.22 0.27 0.34 0.3 0.21
11 ARMAX - DR -SIC 0.075 0.13 0.19 0.32 0.38 0.45 0.64 0.69 0.36
13 ARMAX - MRR&DR - SIC 0.082 0.13 0.18 0.27 0.31 0.43 0.72 0.76 0.36
15 ARMA errors - MRR - SIC 0.047 0.065 0.083 0.12 0.19 0.27 0.34 0.31 0.18
16 ARMA errors - DR - AIC 0.049 0.073 0.093 0.14 0.21 0.32 0.59 0.65 0.27
17 ARMA errors - DR -SIC 0.043 0.06 0.08 0.13 0.22 0.36 0.67 0.75 0.29
19 ARMA errors - MRR&DR - SIC 0.046 0.066 0.082 0.12 0.18 0.26 0.33 0.32 0.18
21 ARDL - MRR - SIC 0.049 0.069 0.086 0.13 0.2 0.29 0.36 0.32 0.19
23 ARDL - DR -SIC 0.042 0.06 0.075 0.12 0.2 0.31 0.59 0.68 0.26
25 ARDL - MRR&DR - SIC 0.057 0.08 0.1 0.15 0.26 0.43 0.81 0.95 0.36

Avg. 0.08 0.10 0.13 0.18 0.25 0.36 0.60 0.70 0.30

Multivariate models - differences
26 Static regerssion, d - MRR 0.039 0.059 0.076 0.12 0.22 0.36 0.51 0.55 0.24
27 Static regerssion, d - DR 0.036 0.053 0.069 0.11 0.2 0.31 0.52 0.59 0.24
28 Static regerssion, d - MRR&DR 0.039 0.06 0.079 0.12 0.21 0.34 0.48 0.51 0.23
30 ARMAX, d - MRR - SIC 0.04 0.059 0.075 0.11 0.19 0.3 0.46 0.49 0.22
32 ARMAX, d - DR -SIC 0.036 0.051 0.066 0.097 0.16 0.25 0.44 0.49 0.2
34 ARMAX, d - MRR&DR - SIC 0.039 0.058 0.076 0.11 0.18 0.28 0.42 0.45 0.2
38 ARMA errors, d - DR -SIC 0.039 0.054 0.067 0.094 0.16 0.23 0.41 0.47 0.19
42 ARDL, d - MRR - SIC 0.041 0.059 0.074 0.11 0.18 0.28 0.44 0.46 0.2
44 ARDL, d - DR -SIC 0.035 0.049 0.064 0.091 0.15 0.22 0.4 0.45 0.18
46 ARDL, d - MRR&DR - SIC 0.046 0.064 0.083 0.12 0.22 0.39 0.71 0.82 0.31

Avg. 0.04 0.06 0.08 0.11 0.18 0.28 0.46 0.50 0.21

Multivaraite models - spread
47 ARMA, s - MRR - AIC 0.054 0.075 0.093 0.13 0.21 0.29 0.34 0.32 0.19
48 ARMA, s - MRR - SIC 0.046 0.064 0.081 0.12 0.19 0.27 0.33 0.3 0.17
50 ARMA, s - DR - SIC 0.042 0.058 0.077 0.13 0.21 0.33 0.61 0.68 0.27
52 ARMA, s, d - MRR - SIC 0.041 0.058 0.07 0.1 0.17 0.26 0.39 0.41 0.19
53 ARMA, s, d - DR - AIC 0.045 0.065 0.079 0.1 0.15 0.22 0.4 0.45 0.19
54 ARMA, s, d - DR - SIC 0.037 0.049 0.064 0.086 0.14 0.2 0.38 0.43 0.17

Avg. 0.05 0.06 0.08 0.11 0.18 0.27 0.43 0.46 0.21

Multivariate models - break
55 Static regression, b - MRR 0.097 0.1 0.11 0.12 0.16 0.22 0.4 0.44 0.21
56 Static regression, b - DR 0.12 0.13 0.13 0.15 0.19 0.25 0.42 0.45 0.23
57 Static regression, b - MRR&DR 0.084 0.091 0.098 0.12 0.15 0.19 0.35 0.36 0.18
58 ARMA errors, b - MRR 0.051 0.079 0.095 0.12 0.17 0.23 0.42 0.42 0.2
59 ARMA errors, b - DR 0.048 0.073 0.089 0.12 0.16 0.22 0.42 0.47 0.2
61 ARMA, s, b - MRR 0.049 0.077 0.094 0.13 0.18 0.25 0.45 0.5 0.22
62 ARMA, s, b - DR 0.05 0.077 0.092 0.12 0.16 0.21 0.36 0.35 0.18

Avg. 0.07 0.09 0.10 0.12 0.16 0.22 0.40 0.42 0.20

Structural models
100a Linear 0.059 0.064 0.073 0.088 0.12 0.17 0.27 0.31 0.14
100b Linear - ARMA errors 0.046 0.059 0.067 0.082 0.11 0.17 0.27 0.29 0.14
101a Nonlinear 0.044 0.048 0.052 0.058 0.084 0.13 0.24 0.26 0.11
101b Nonlinear - ARMA errors 0.037 0.047 0.051 0.062 0.089 0.14 0.25 0.27 0.12
Avg. 0.05 0.05 0.06 0.07 0.10 0.15 0.26 0.28 0.13

Summary statistics
Mean 0.08 0.10 0.13 0.20 0.29 0.48 0.54 0.23
Std. Deviation 0.03 0.04 0.05 0.06 0.08 0.20 0.33 0.09
Minimum 0.05 0.05 0.06 0.08 0.13 0.24 0.26 0.11
1st quartile 0.06 0.07 0.10 0.16 0.23 0.36 0.35 0.19
3rd quartile 0.08 0.10 0.13 0.22 0.33 0.59 0.64 0.27
Maximum 0.23 0.24 0.32 0.38 0.52 1.43 2.51 0.62

Notes: See note below Table 2.2 for explanation of values.
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2.B.3 Diebold-Mariano test results

This appendix provides more details on the Diebold-Mariano tests and their re-

sults.

The test of comparison of forecast performance is the standard Diebold-Mariano

test Diebold and Mariano (2002) with small sample correction suggested by Har-

vey, Leybourne, and Newbold (1997). The null hypothesis is specified as one-sided,

i.e. the null hypothesis is that the structural model has worse forecast accuracy

than the benchmark model. The cut-off for significance used in the text is p-value

less than 0.05. Tables below show the actual p-values. Color-coding is provided to

facilitate interpretation by the reader: p-values of less than 0.01 are dark green,

less than 0.05 are light green and less than 0.1 are yellow. Values above 0.1 are

either orange, if the p-value of reverse hypothesis is not less than 0.05, or red, if

the p-value is less than 0.05 (indicating that the benchmark model has forecast-

ing performance that is significantly better than the structural model). Note that

at higher horizons the test statistic often cannot be computed due to negative

long-run variance estimates.
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Table 2.17: Statistical test of predictive accuracy equivalency - Ex-post forecasts for
Eonia rate

Forecast horizons (# of steps ahead)
# Description 1 2 3 6 12 24 48 60

Multivariate models - level
5 Static regerssion - MRR 0.000 0.000 0.000 0.003 0.024 0.066 0.035 NA
6 Static regerssion - DR 0.000 0.000 0.000 0.000 0.001 0.000 0.023 0.174
7 Static regerssion - MRR&DR 0.000 0.000 0.000 0.000 0.003 0.064 0.051 0.112
9 ARMAX - MRR - SIC 0.000 0.000 0.000 0.000 0.004 0.029 0.079 0.000
11 ARMAX - DR -SIC 0.000 0.000 0.000 0.000 0.000 0.002 0.023 0.023
13 ARMAX - MRR&DR - SIC 0.000 0.000 0.000 0.008 0.053 0.096 0.001 NA
14 ARMA errors - MRR - AIC 0.002 0.000 0.000 0.000 0.000 0.001 NA 0.239
15 ARMA errors - MRR - SIC 0.029 0.000 0.000 0.000 0.000 0.000 NA 0.184
16 ARMA errors - DR - AIC 0.124 0.001 0.001 0.005 0.001 0.000 0.000 0.000
17 ARMA errors - DR -SIC 0.463 0.068 0.008 0.003 0.001 0.000 0.000 0.001
18 ARMA errors - MRR&DR - AIC 0.003 0.000 0.000 0.000 0.000 0.000 NA 0.165
19 ARMA errors - MRR&DR - SIC 0.041 0.000 0.000 0.000 0.000 0.000 NA 0.269
21 ARDL - MRR - SIC 0.024 0.001 0.000 0.000 0.000 0.000 NA NA
23 ARDL - DR -SIC 0.831 0.264 0.057 0.010 0.008 0.000 0.005 0.013
25 ARDL - MRR&DR - SIC 0.001 0.001 0.004 0.047 0.082 0.116 0.006 0.000

Multivariate models - differences
26 Static regerssion, d - MRR 0.434 0.038 0.005 0.011 0.003 0.018 NA NA
27 Static regerssion, d - DR 0.963 0.596 0.137 0.035 0.023 0.012 0.000 NA
28 Static regerssion, d - MRR&DR 0.403 0.017 0.003 0.007 0.002 0.014 NA 0.000
30 ARMAX, d - MRR - SIC 0.286 0.035 0.003 0.011 0.003 0.020 NA 0.085
32 ARMAX, d - DR -SIC 0.934 0.571 0.077 0.047 0.032 0.027 0.000 0.000
34 ARMAX, d - MRR&DR - SIC 0.311 0.022 0.004 0.008 0.002 0.016 NA 0.142
38 ARMA errors, d - DR -SIC 0.802 0.409 0.057 0.032 0.026 0.020 0.000 0.000
42 ARDL, d - MRR - SIC 0.176 0.035 0.004 0.010 0.005 0.031 NA 0.109
44 ARDL, d - DR -SIC 0.932 0.569 0.075 0.048 0.033 0.028 0.000 0.000
46 ARDL, d - MRR&DR - SIC 0.019 0.016 0.007 0.039 0.045 0.076 0.000 0.038

Multivaraite models - spread
47 ARMA, s - MRR - AIC 0.002 0.000 0.000 0.000 0.000 0.000 NA 0.335
48 ARMA, s - MRR - SIC 0.038 0.001 0.000 0.000 0.000 0.000 NA 0.359
50 ARMA, s - DR - SIC 0.484 0.153 0.022 0.002 0.001 0.000 0.000 0.000
52 ARMA, s, d - MRR - SIC 0.139 0.009 0.003 0.014 0.005 0.031 NA 0.034
53 ARMA, s, d - DR - AIC 0.209 0.004 0.001 0.023 0.037 0.062 0.000 NA
54 ARMA, s, d - DR - SIC 0.861 0.545 0.075 0.053 0.036 0.042 0.000 0.001

Multivariate models - break
55 Static regression, b - MRR 0.000 0.000 0.000 0.003 0.024 0.066 0.035 NA
56 Static regression, b - DR 0.000 0.000 0.000 0.000 0.001 0.000 0.023 0.174
57 Static regression, b - MRR&DR 0.000 0.000 0.000 0.000 0.003 0.064 0.051 0.112
58 ARMA errors, b - MRR 0.003 0.000 0.000 0.014 0.045 0.138 0.051 NA
59 ARMA errors, b - DR 0.038 0.000 0.000 0.000 0.001 0.000 0.081 0.206
61 ARMA, s, b - MRR 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.063
62 ARMA, s, b - DR 0.002 0.000 0.000 0.005 0.034 0.113 0.094 NA
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Table 2.18: Statistical test of predictive accuracy equivalency - Ex-post forecasts for
1-w Euribor

Forecast horizons (# of steps ahead)
# Description 1 2 3 6 12 24 48 60

Multivariate models - level
5 Static regerssion - MRR 0.000 0.000 0.000 0.008 0.057 0.092 0.048 NA
6 Static regerssion - DR 0.000 0.000 0.000 0.000 0.001 0.076 0.008 0.250
7 Static regerssion - MRR&DR 0.000 0.000 0.000 0.001 0.035 0.124 0.098 NA
9 ARMAX - MRR - SIC 0.000 0.000 0.000 0.000 0.006 0.038 0.228 0.629
11 ARMAX - DR -SIC 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.018
13 ARMAX - MRR&DR - SIC 0.000 0.000 0.000 0.011 0.083 0.134 0.003 NA
14 ARMA errors - MRR - AIC 0.000 0.000 0.000 0.007 0.005 NA NA 0.410
15 ARMA errors - MRR - SIC 0.002 0.000 0.000 0.000 0.000 NA 0.000 0.384
16 ARMA errors - DR - AIC 0.102 0.006 0.002 0.007 0.001 0.000 0.000 0.000
17 ARMA errors - DR -SIC 0.545 0.187 0.013 0.000 0.000 0.000 0.000 0.000
18 ARMA errors - MRR&DR - AIC 0.000 0.000 0.000 0.003 0.000 0.000 NA 0.296
19 ARMA errors - MRR&DR - SIC 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.264
21 ARDL - MRR - SIC 0.019 0.002 0.001 0.001 0.002 0.002 0.092 0.389
23 ARDL - DR -SIC 0.709 0.391 0.070 0.006 0.008 0.000 0.001 0.002
25 ARDL - MRR&DR - SIC 0.003 0.008 0.010 0.025 0.060 0.068 0.008 NA

Multivariate models - differences
26 Static regerssion, d - MRR 0.449 0.091 0.009 0.066 0.010 0.015 NA NA
27 Static regerssion, d - DR 0.927 0.738 0.311 0.124 0.058 0.068 NA NA
28 Static regerssion, d - MRR&DR 0.425 0.016 0.001 0.058 0.008 0.016 NA NA
30 ARMAX, d - MRR - SIC 0.387 0.086 0.004 0.062 0.017 0.023 NA 0.001
32 ARMAX, d - DR -SIC 0.909 0.674 0.164 0.139 0.085 0.079 NA NA
34 ARMAX, d - MRR&DR - SIC 0.432 0.032 0.001 0.090 0.017 0.023 NA 0.031
38 ARMA errors, d - DR -SIC 0.927 0.738 0.311 0.124 0.058 0.068 NA NA
42 ARDL, d - MRR - SIC 0.293 0.035 0.001 0.033 0.011 0.022 NA 0.000
44 ARDL, d - DR -SIC 0.910 0.679 0.175 0.139 0.083 0.079 NA NA
46 ARDL, d - MRR&DR - SIC 0.001 0.001 0.005 0.021 0.049 0.083 0.000 NA

Multivaraite models - spread
47 ARMA, s - MRR - AIC 0.000 0.000 0.001 0.010 0.001 0.000 NA 0.321
48 ARMA, s - MRR - SIC 0.004 0.000 0.000 0.000 0.000 0.000 NA 0.377
50 ARMA, s - DR - SIC 0.500 0.162 0.011 0.000 0.000 0.000 0.000 0.000
52 ARMA, s, d - MRR - SIC 0.120 0.025 0.004 0.044 0.009 0.017 NA NA
53 ARMA, s, d - DR - AIC 0.252 0.060 0.000 0.000 0.000 0.019 0.000 0.017
54 ARMA, s, d - DR - SIC 0.911 0.713 0.276 0.130 0.067 0.083 NA NA

Multivariate models - break
55 Static regression, b - MRR 0.000 0.000 0.000 0.008 0.057 0.092 0.048 NA
56 Static regression, b - DR 0.000 0.000 0.000 0.000 0.001 0.076 0.008 0.250
57 Static regression, b - MRR&DR 0.000 0.000 0.000 0.001 0.035 0.124 0.098 NA
58 ARMA errors, b - MRR 0.000 0.000 0.000 0.012 0.057 0.173 0.041 NA
59 ARMA errors, b - DR 0.027 0.004 0.001 0.001 0.022 0.064 0.157 0.273
61 ARMA, s, b - MRR 0.007 0.002 0.000 0.000 0.000 0.000 0.000 0.003
62 ARMA, s, b - DR 0.009 0.000 0.000 0.000 0.001 0.000 0.157 0.559
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Table 2.19: Statistical test of predictive accuracy equivalency - Ex-post forecasts for
3-m Euribor

Forecast horizons (# of steps ahead)
# Description 1 2 3 6 12 24 48 60

Multivariate models - level
5 Static regerssion - MRR 0.000 0.000 0.000 0.002 0.236 0.507 1.000 NA
6 Static regerssion - DR 0.000 0.000 0.000 0.000 0.019 0.145 0.388 0.450
7 Static regerssion - MRR&DR 0.000 0.000 0.000 0.001 0.091 NA 0.933 0.712
9 ARMAX - MRR - SIC 0.023 0.001 0.000 0.000 0.049 0.478 NA NA
11 ARMAX - DR -SIC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.051
13 ARMAX - MRR&DR - SIC 0.002 0.000 0.000 0.001 0.022 0.017 0.183 0.327
14 ARMA errors - MRR - AIC 0.000 0.000 0.000 0.000 0.001 0.068 0.318 NA
15 ARMA errors - MRR - SIC 0.000 0.000 0.000 0.000 0.000 0.028 0.149 NA
16 ARMA errors - DR - AIC 0.004 0.003 0.000 0.000 0.000 0.000 0.000 NA
17 ARMA errors - DR -SIC 0.075 0.034 0.000 0.000 0.000 0.000 NA 0.006
18 ARMA errors - MRR&DR - AIC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.059
19 ARMA errors - MRR&DR - SIC 0.002 0.000 0.000 0.000 0.000 0.000 0.000 NA
21 ARDL - MRR - SIC 0.127 0.012 0.001 0.001 0.024 0.096 0.756 1.000
23 ARDL - DR -SIC 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.004
25 ARDL - MRR&DR - SIC 0.000 0.000 0.000 0.002 0.033 0.055 0.233 0.314

Multivariate models - differences
26 Static regerssion, d - MRR 0.751 0.101 0.023 0.034 0.001 0.000 0.658 NA
27 Static regerssion, d - DR 0.995 0.899 0.466 0.127 0.045 0.067 0.000 0.299
28 Static regerssion, d - MRR&DR 0.996 0.597 0.113 0.054 0.004 0.016 0.401 0.316
30 ARMAX, d - MRR - SIC 0.998 0.582 0.162 0.163 0.028 0.001 0.803 NA
32 ARMAX, d - DR -SIC 0.997 0.930 0.612 0.334 0.120 0.166 NA 0.402
34 ARMAX, d - MRR&DR - SIC 1.000 0.787 0.172 0.121 0.008 0.006 0.931 NA
38 ARMA errors, d - DR -SIC 0.995 0.899 0.466 0.127 0.045 0.067 0.000 0.299
42 ARDL, d - MRR - SIC 0.774 0.168 0.072 0.155 0.049 0.006 0.844 NA
44 ARDL, d - DR -SIC 0.866 0.362 0.145 0.122 0.069 0.175 0.341 0.391
46 ARDL, d - MRR&DR - SIC 0.048 0.034 0.043 0.029 0.013 0.002 NA NA

Multivaraite models - spread
47 ARMA, s - MRR - AIC 0.000 0.001 0.002 0.000 0.003 0.037 0.316 0.395
48 ARMA, s - MRR - SIC 0.000 0.000 0.000 0.000 0.003 0.135 0.415 0.544
50 ARMA, s - DR - SIC 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000
52 ARMA, s, d - MRR - SIC 0.263 0.065 0.029 0.081 0.009 0.003 0.876 NA
53 ARMA, s, d - DR - AIC 0.049 0.030 0.011 0.027 0.003 0.006 NA 0.375
54 ARMA, s, d - DR - SIC 0.972 0.868 0.552 0.306 0.119 0.199 NA 0.417

Multivariate models - break
55 Static regression, b - MRR 0.000 0.000 0.000 0.002 0.236 0.507 1.000 NA
56 Static regression, b - DR 0.000 0.000 0.000 0.000 0.019 0.145 0.388 0.450
57 Static regression, b - MRR&DR 0.000 0.000 0.000 0.001 0.091 NA 0.933 0.712
58 ARMA errors, b - MRR 0.000 0.000 0.000 0.000 0.000 0.007 0.111 0.054
59 ARMA errors, b - DR 0.015 0.008 0.000 0.000 0.002 0.023 NA NA
61 ARMA, s, b - MRR 0.906 0.314 0.019 0.000 0.000 0.000 0.000 0.001
62 ARMA, s, b - DR 0.602 0.002 0.000 0.000 0.000 0.001 0.205 0.254
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Table 2.20: Statistical test of predictive accuracy equivalency - Ex-ante forecasts for
Eonia rate

Forecast horizons (# of steps ahead)
# Description 1 2 3 6 12 24 48

Univariate models
2 ARMA - SIC 0.000 0.000 0.000 0.000 0.000 0.000 NA
4 ARMA, d - SIC 0.947 0.534 0.571 0.300 NA NA NA

Multivariate models - level
5 Static regerssion - MRR 0.000 0.000 0.002 0.066 0.500 0.582 1.000
6 Static regerssion - DR 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7 Static regerssion - MRR&DR 0.000 0.000 0.000 0.000 0.000 0.000 NA
9 ARMAX - MRR - SIC 0.095 0.082 0.168 0.323 0.821 0.776 1.000
11 ARMAX - DR -SIC 0.000 0.000 0.000 0.000 0.000 0.000 NA
13 ARMAX - MRR&DR - SIC 0.005 0.013 0.032 0.080 0.514 0.785 NA
14 ARMA errors - MRR - AIC 0.044 0.003 0.009 0.001 0.000 0.001 NA
15 ARMA errors - MRR - SIC 0.049 0.000 0.000 0.000 0.000 0.000 NA
16 ARMA errors - DR - AIC 0.017 0.000 0.000 0.000 0.000 0.001 NA
17 ARMA errors - DR -SIC 0.034 0.000 0.000 0.000 0.000 0.000 0.000
18 ARMA errors - MRR&DR - AIC 0.000 0.001 0.007 0.007 0.000 NA NA
19 ARMA errors - MRR&DR - SIC 0.006 0.000 0.000 0.000 0.000 0.000 NA
21 ARDL - MRR - SIC 0.670 0.004 0.000 0.000 0.000 0.000 0.000
23 ARDL - DR -SIC 0.938 0.015 0.001 0.000 0.001 0.022 NA
25 ARDL - MRR&DR - SIC 0.998 0.934 0.890 0.843 0.814 0.797 NA

Multivariate models - differences
26 Static regerssion, d - MRR 0.000 0.000 0.000 0.000 0.017 0.109 NA
27 Static regerssion, d - DR 0.000 0.000 0.000 0.000 0.017 0.109 NA
28 Static regerssion, d - MRR&DR 0.000 0.000 0.000 0.000 0.017 0.109 NA
30 ARMAX, d - MRR - SIC 0.999 0.661 0.258 0.057 0.090 0.232 0.000
32 ARMAX, d - DR -SIC 0.999 0.661 0.258 0.057 0.090 0.232 0.000
34 ARMAX, d - MRR&DR - SIC 0.999 0.661 0.258 0.057 0.090 0.232 0.000
38 ARMA errors, d - DR -SIC 0.998 0.597 0.214 0.055 0.091 0.232 NA
42 ARDL, d - MRR - SIC 0.994 0.532 0.173 0.047 0.093 0.229 0.000
44 ARDL, d - DR -SIC 0.999 0.661 0.258 0.057 0.090 0.232 0.000
46 ARDL, d - MRR&DR - SIC 0.990 0.513 0.163 0.045 0.092 0.228 NA

Multivariate models - spread
47 ARMA, s - MRR - AIC 0.118 0.002 0.005 0.002 0.002 0.011 NA
48 ARMA, s - MRR - SIC 0.117 0.000 0.000 0.000 0.000 0.000 0.000
50 ARMA, s - DR - SIC 0.005 0.000 0.000 0.000 0.000 0.000 NA
52 ARMA, s, d - MRR - SIC 0.962 0.269 0.097 0.038 0.091 0.222 NA
53 ARMA, s, d - DR - AIC 0.422 0.190 0.176 0.174 0.051 0.271 NA
54 ARMA, s, d - DR - SIC 0.998 0.595 0.214 0.056 0.091 0.232 NA

Multivariate models - break
55 Static regression, b - MRR 0.000 0.000 0.002 0.066 0.500 0.582 1.000
56 Static regression, b - DR 0.000 0.000 0.000 0.000 0.000 0.000 0.000
57 Static regression, b - MRR&DR 0.000 0.000 0.000 0.000 0.000 0.000 NA
58 ARMA errors, b - MRR 0.991 0.761 0.712 0.675 0.779 0.749 NA
59 ARMA errors, b - DR 0.000 0.000 0.000 0.000 0.000 0.000 NA
61 ARMA, s, b - MRR 0.000 0.000 0.000 0.000 0.000 0.000 NA
62 ARMA, s, b - DR 0.985 0.727 0.700 0.718 0.813 0.778 NA

Multiequation models
63 Levels - MRR - AIC 0.410 0.008 0.000 0.000 0.000 0.000 NA
64 Levels - MRR - SIC 0.982 0.621 0.490 0.300 0.177 NA NA
65 Levels - DR - AIC 0.000 0.000 0.000 0.000 0.000 0.018 NA
66 Levels - DR - SIC 0.000 0.000 0.000 0.001 0.008 0.040 NA
67 Differences - MRR - AIC 0.764 0.175 0.166 0.175 0.301 0.235 0.000
68 Differences - MRR - SIC 0.751 0.116 0.131 0.073 0.233 0.241 0.000
69 Differences - DR - AIC 0.843 0.279 0.121 0.085 0.233 0.302 NA
70 Differences - DR - SIC 0.962 0.238 0.112 0.115 0.247 0.334 0.000
71 VECM - MRR - AIC 0.410 0.008 0.000 0.000 0.000 0.000 NA
72 VECM - MRR - SIC 0.982 0.621 0.490 0.300 0.177 NA NA
73 VECM - DR - AIC 0.000 0.000 0.000 0.000 0.000 0.018 NA
74 VECM - DR - SIC 0.000 0.000 0.000 0.001 0.008 0.040 NA
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Table 2.21: Statistical test of predictive accuracy equivalency - Ex-ante forecasts for
3-m Euribor

Forecast horizons (# of steps ahead)
# Description 1 2 3 6 12 24 48

Univariate models
2 ARMA - SIC 1.000 0.737 0.001 0.000 0.000 0.000 NA
4 ARMA, d - SIC 1.000 1.000 1.000 1.000 0.970 0.581 NA

Multivariate models - level
5 Static regerssion - MRR 0.000 0.001 0.010 0.122 0.303 0.258 NA
6 Static regerssion - DR 0.000 0.000 0.000 0.000 0.000 0.000 NA
7 Static regerssion - MRR&DR 0.000 0.000 0.001 0.005 0.003 NA NA
9 ARMAX - MRR - SIC 1.000 0.252 0.038 0.043 0.176 0.214 1.000
11 ARMAX - DR -SIC 1.000 0.000 0.000 0.000 0.000 0.001 NA
13 ARMAX - MRR&DR - SIC 1.000 0.240 0.017 0.031 0.345 0.540 1.000
14 ARMA errors - MRR - AIC 0.999 0.254 0.021 0.001 0.000 NA NA
15 ARMA errors - MRR - SIC 1.000 0.776 0.144 0.001 0.000 NA NA
16 ARMA errors - DR - AIC 1.000 0.871 0.259 0.008 0.000 0.000 NA
17 ARMA errors - DR -SIC 1.000 0.971 0.467 0.012 0.009 0.011 NA
18 ARMA errors - MRR&DR - AIC 1.000 0.501 0.079 0.000 0.000 0.000 NA
19 ARMA errors - MRR&DR - SIC 1.000 0.915 0.257 0.003 0.003 0.002 NA
21 ARDL - MRR - SIC 1.000 0.894 0.431 0.062 0.007 NA NA
23 ARDL - DR -SIC 1.000 0.855 0.098 0.001 0.003 0.006 NA
25 ARDL - MRR&DR - SIC 1.000 0.996 0.858 0.434 0.601 0.661 NA

Multivariate models - differences
26 Static regerssion, d - MRR 1.000 1.000 1.000 0.978 0.689 0.450 NA
27 Static regerssion, d - DR 1.000 1.000 1.000 0.978 0.689 0.450 NA
28 Static regerssion, d - MRR&DR 1.000 1.000 1.000 0.978 0.689 0.450 NA
30 ARMAX, d - MRR - SIC 1.000 1.000 1.000 0.994 0.769 0.481 0.000
32 ARMAX, d - DR -SIC 1.000 1.000 1.000 0.990 0.736 0.468 0.000
34 ARMAX, d - MRR&DR - SIC 1.000 1.000 1.000 0.992 0.750 0.474 NA
38 ARMA errors, d - DR -SIC 1.000 1.000 1.000 0.978 0.689 0.450 NA
42 ARDL, d - MRR - SIC 1.000 1.000 1.000 0.993 0.766 0.480 0.000
44 ARDL, d - DR -SIC 1.000 1.000 1.000 0.998 0.865 0.521 NA
46 ARDL, d - MRR&DR - SIC 1.000 1.000 0.999 0.963 0.693 0.444 NA

Multivariate models - spread
47 ARMA, s - MRR - AIC 0.999 0.372 0.034 0.000 0.000 0.000 NA
48 ARMA, s - MRR - SIC 1.000 0.623 0.107 0.002 0.000 NA NA
50 ARMA, s - DR - SIC 1.000 0.807 0.098 0.001 0.002 0.003 NA
52 ARMA, s, d - MRR - SIC 1.000 1.000 1.000 0.979 0.693 0.452 NA
53 ARMA, s, d - DR - AIC 1.000 1.000 0.993 0.759 0.312 0.229 NA
54 ARMA, s, d - DR - SIC 1.000 1.000 1.000 0.978 0.688 0.450 NA

Multivariate models - break
55 Static regression, b - MRR 0.000 0.001 0.010 0.122 0.303 0.258 NA
56 Static regression, b - DR 0.000 0.000 0.000 0.000 0.000 0.000 NA
57 Static regression, b - MRR&DR 0.000 0.000 0.001 0.005 0.003 NA NA
61 ARMA, s, b - MRR 0.000 0.000 0.000 0.000 0.000 0.000 NA
62 ARMA, s, b - DR 0.000 0.000 0.001 0.007 0.012 0.000 NA

Multiequation models
63 Levels - MRR - AIC 1.000 0.991 0.476 0.000 0.000 0.000 0.000
64 Levels - MRR - SIC 1.000 0.997 0.596 0.000 0.001 0.004 NA
65 Levels - DR - AIC 1.000 0.903 0.205 0.000 0.000 0.001 NA
66 Levels - DR - SIC 1.000 0.798 0.125 0.000 0.000 NA NA
67 Differences - MRR - AIC 1.000 1.000 0.995 0.794 0.464 0.423 NA
68 Differences - MRR - SIC 1.000 1.000 0.995 0.769 0.457 0.416 NA
69 Differences - DR - AIC 1.000 1.000 0.998 0.782 0.439 0.435 NA
70 Differences - DR - SIC 1.000 1.000 0.999 0.869 0.500 0.445 1.000
71 VECM - MRR - AIC 1.000 0.991 0.476 0.000 0.000 0.000 0.000
72 VECM - MRR - SIC 1.000 0.997 0.596 0.000 0.001 0.004 NA
73 VECM - DR - AIC 1.000 0.903 0.205 0.000 0.000 0.001 NA
74 VECM - DR - SIC 1.000 0.798 0.125 0.000 0.000 NA NA
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2.C Recursive forecast graphs

This section contains graphs of recursive forecasts with a 24 month horizon for all

models for the Eonia rate, in terms of both level and spread from the deposit rate.

For single equation models, I report ex-post forecasts, while for VAR models, I

report ex-ante forecasts. The forecasts for other variables, and ex-ante forecasts,

are available upon request.
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Figure 2.13: Eonia rate forecasts - Univariate models
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Figure 2.14: Eonia rate forecasts - Reduced-form models - Levels (part 1)
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Figure 2.15: Eonia rate forecasts - Reduced-form models - Levels (part 2)
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Figure 2.16: Eonia rate forecasts - Reduced-form models - Levels (part 3)
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Figure 2.17: Eonia rate forecasts - Reduced-form models - Levels (part 4)
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Figure 2.18: Eonia rate forecasts - Reduced-form models - Levels (part 5)
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Figure 2.19: Eonia rate forecasts - Reduced-form models - Levels (part 6)
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Figure 2.20: Eonia rate forecasts - Reduced-form models - Differences (part 1)
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Figure 2.21: Eonia rate forecasts - Reduced-form models - Differences (part 2)
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Figure 2.22: Eonia rate forecasts - Reduced-form models - Differences (part 3)
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Figure 2.23: Eonia rate forecasts - Reduced-form models - Differences (part 4)
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Figure 2.24: Eonia rate forecasts - Reduced-form models - Differences (part 5)
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Figure 2.25: Eonia rate forecasts - Reduced-form models - Differences (part 6)
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Figure 2.26: Eonia rate forecasts - Reduced-form models - Spread (part 1)
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Figure 2.27: Eonia rate forecasts - Reduced-form models - Spread (part 2)
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Figure 2.28: Eonia rate forecasts - Reduced-form models - Break (part 1)
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Figure 2.29: Eonia rate forecasts - Reduced-form models - Break (part 2)
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Figure 2.30: Eonia rate forecasts - VAR models (part 1)
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Figure 2.31: Eonia rate forecasts - VAR models (part 2)
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Figure 2.32: Eonia rate forecasts - VAR models(part 3)
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Figure 2.33: Eonia rate forecasts - Structural models
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Chapter 3

Developing forecasting models using the

SpecEval add-in for Eviews

3.1 Introduction

The proliferation of economic data and computational power over last two decades

has led to an explosion in the development of forecasting models. Not only has

the population of model developers increased, but even more importantly, it has

diversified away from economists employed by government and international insti-

tutions and towards practitioners. This brings new challenges, since practitioners

face very different constraints when developing forecasting models, especially in

terms of time available for development. The objectives of practitioners are also

often different: while academia and government institutions pay close attention to

causality and econometric validity, thanks to their focus on policy analysis, practi-
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tioners are less likely to perform policy analysis and are more focused on capturing

co-movements than causality. Similarly, while practitioners are often more focused

on conditional and scenario forecasting, for institutions such as central banks, un-

conditional forecasting is often the primary goal.

These factors mean that many model developers need tools that will allow them

to analyze model forecasting performance quickly and flexibly. The Eviews user

add-in SpecEval belongs to the family of statistical packages aimed at facilitat-

ing fast and flexible evaluation of forecasting performance. However, in contrast

to existing packages, the main goal of the add-in is much broader than simply

calculating and reporting summary measures of forecasting performance. The

underlying idea is that model development should be an iterative and interactive

process. It should be iterative in that it proceeds in steps, each providing improve-

ments over previous models. It should be interactive in that improvements to the

model should be based on analysis of shortcomings of an initial model. Crucially,

numerical summaries of forecasting performance fail on the goal of interactiveness,

since a numerical summary provides little information on when and why the model

fails to produce good forecasts, or how it should be improved. For this reason the

SpecEval add-in is focused on producing graphical information about forecasting

performance, mostly in form of visualizing the forecasts themselves.

Focus on visualizing forecasts is also important for a second reason: time series

models are often too complex for humans to completely understand what the exact

shape of forecasts produced by these models will be, and hence too complex to

fully understand the model behavior. Visualizing multiple forecasts helps in this

regard, since it provides illustrations of the behavior of the model under various

historical or scenario conditions. The SpecEval also features several additional
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tools facilitating understanding of model forecasts: (a) ability to decompose a

forecast into individual drivers, (b) ability to create and compare (conditional)

scenario forecasts and (c) a capability to create shock responses for single-equation

multivariate models. The key idea behind these features, which are novel in context

of such packages, is that understanding of model behavior is an important source

of information that can facilitate model improvements. This is especially true in

a theory-heave environment such as forecasting macroeconomic time series.

In addition to its specific novel features, the add-in also facilititates model de-

velopment through its flexibility and comprehensiveness, both of which are crucial

for analysis of model behavior. For example, a user can choose between in-sample

and out-of-sample forecasts, set starting and ending dates of backtesting, or spec-

ify multiple sub-samples over which performance should be analyzed. Moreover,

the add-in allows users to control which information is treated as endogenous by

either providing forecasts for exogenous series or by including additional equa-

tions/identities in the forecasting model. Taken together, the focus and function-

ality of the add-in make it a novel tool for building forecasting models, not only

in the context of the Eviews program, but in the context of other programs used

for statistical analysis such as R and Python.

This chapter is an excerpt from one of the documents provided with the add-in.

It first briefly discusses basic operation of the add-in, including an illustration of

the output produced by the add-in and list of all the types of tasks it can perform,

and their associated objects. This provides a background for a full illustration of

the add-in in context of an application, presented in section 3. The full version

of this document - available as part of the documentation for the add-in - then

includes additional 7 applications, brief outline of which appears in beginning of
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section 3.

3.2 Basic use of the SpecEval add-in

This section briefly describes the basic operation of the SpecEval add-in. The

section is divided into two parts, one corresponding to operation of the add-in in

case of a single specification, and the other for its operation in case of multiple

specifications. The difference between these use cases is in terms of organizing

and reporting results: if multiple specifications are specified, the main spool will

have results organized in a way that facilitates comparison across specifications;

nothing changes in terms of execution, which is still performed one specification

at a time.

The add-in can be executed from the GUI or as an object procedure in a

command line or program. In the latter case, one simply needs to specify the proc

"speceval", the same way one executes other object procedures:

{equation}.speceval(options)

The options specified in the command allow a user to modify the execution of

the add-in. All options are described in the documentation for the add-in. While

their discussion is not inside the scope of this chapter - there are almost 40 of them

- the chapter will illustrate a large share of these options as part of the application.

Single specification. The basic operation of the SpecEval add-in considers

the case of evaluating a single specification. Executing the add-in will result in a

spool called ’sp_spec_evaluation’ being produced. This spool will contain multi-

ple objects, both tables and graphs, that allow a user to perform the key goals of
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Figure 3.1: Spool with output objects - single specification

the add-in: evaluation of forecast performance of a given model. See Figure 3.1

for illustration. Detailed discussion of all output objects produced by the add-in is

beyond the scope for this chapter, though most will be illustrated in the applica-

tion below. Table 3.1 includes overview with short description of all the outputs;

detailed explanations and illustration of all the output is available in the document

’Outputs for specification evaluation add-in’. As the table makes clear, most of

the outputs are focused on visualizing forecasts, either backtest forecasts (outputs

6-8), or scenario forecasts (outputs 10-13). In addition there are tables with nu-

merical summaries of forecast performance, and graphs capturing forecast errors

of the forecasts (Mincer-Zarnowitz graphs). Finally, the spool includes standard

Eviews regression output with several additions and adjustments that facilitate

model development, and coefficient and model stability graphs.

Though a discussion of the full range of setting options is beyond the scope of

this chapter, some key options are worth highlight. First, given the large number

of potential outputs the add-in allows for easy and flexible customization of the

execution list. The default does not contain all the output objects, given that the

237



Table 3.1: List of outputs from the SpecEval add-in

Object name Description
Regression output Adjusted regression output table
Coefficient stability graph Graph with recursive equation coefficients
Model stability graph Graph with recursive lag orders
Performance metrics table Table with values of forecast performance metrics
Performance metrics table
(multiple specifications)

Table with values of forecast performance metrics
for given metric for all specifications

Forecast summary graph Graph with all recursive forecasts with given
horizons

Sub-sample forecast graph Graph with forecast for given sub-sample
Subsample forecast decom-
position graph Graph with decomposition of sub-sample forecast

Forecast bias graph Scatter plot of forecast and actual values for given
forecast horizon (Minzer-Zarnowitz plot)

Individual conditional sce-
nario forecast graph (level)

Graph with forecast for single scenario and
specification

Individual conditional sce-
nario forecast graph (trans.)

Graph with transformation of forecast for single
scenario and specification

All conditional scenario
forecast graph

Graph with forecasts for all scenarios for single
speciication

Multiple specification con-
ditional scenario forecast
graph

Graph with forecasts for single scenario for multi-
ple specifications

Shock response graphs Graphs with response to shock to individual inde-
pendent variable/regressor
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full list is unlikely to be desired in most cases. The user can freely add and/or

subtract from the list, using the key words corresponding to each output type,

found in the documentation for the add-in. Second, the add-in allows a great

deal of customization of the evaluation procedure. For example, one can change

the horizons for which performance metrics will be calculated by including the

settings option ’horizons_metrics’; or horizons for which forecast summary graphs

will be created by including the settings option ’horizons_graphs’; and adjust the

starting and/or ending date of the evaluation procedure by including the settings

parameter ’tfirst_test’, respectively ’tlast_test’.

Lastly, a user can customize the outputs. For example, the forecast summary

graphs can be changed to several different transformations by including the settings

option ’trans’. Similarly, one can adjust the sample of these graphs by including

the settings parameter ’tfirst_graph’, respectively ’tlast_graph’, and include ad-

ditional series useful for evaluation of forecast performance by specifying them in

the settings option ’graph_add_backtest’. Use of these and other setting options

will be the main focus of several applications below.

Multiple specifications. While the basic use of the SpecEval add-in is for

a single specification, the great advantage of the add-in is that it is tailored so

to facilitate direct comparisons across alternative specifications. This is achieved

by appropriate structuring and reporting of results. Specifically, when the add-in

is executed for multiple specifications, it will produce two types of spools. The

main spool will be organized by the type of output object, i.e. output objects

of a particular type for all specifications will be collected together in a single

subspool object. The auxiliary spool will be organized by specification, i.e., for

each specification it will contain subspools corresponding to single specification
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Figure 3.2: Spools with output objects - multiple specifications

execution. See Figure 3.2 for an illustration.

To execute the add-in for multiple specifications, one only needs to provide a

list of specifications as one of the setting options, while still executing the add-in

from the single equation object. For example, if there are three specifications being

considered, EQ01,EQ02 and EQ03, one can evaluate the three specifications together

by executing the following command:

EQ01.speceval(spec_list="EQ01 EQ02 EQ03")

A few comments are in order. First, the order in the ’spec_list’ matters in

that the resulting outputs will follow this order. Second, in the above example,

the ’spec_list’ argument contains the original equation, but this is not necessary;

it would be included by default as a first specification. Third, the add-in allows

for use of "*" as a wildcard.
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3.3 Applications

This section illustrates the full functionality of the add-in by focusing on the first of

the 8 applications included in the full version of this document. While the primary

goal is to demonstrate the options and outputs of the add-in, the actual goal in

some sense is broader: the section also illustrates the interactive and iterative

model building process that the add-in is meant to facilitate. The workflow of the

model development process appears in Figure 3.3.

Figure 3.3: Model development workflow

Initial model proposal

Basic model properties Model reformulation

Forecast performance Model improvement

Shock properties Model improvement

Final model

The process starts with an initial proposed model, which is then evaluated

using the outputs of the add-in. The initial model is best evaluated by looking

at the forecast summary graphs, which allow the model developer to visualize the

model forecasts and compare them with the actual values, and hence obtain some

qualitative notion of forecast quality and errors: when only a single model is being
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evaluated, their quantitative measures of forecast precision are uninformative in

most cases, since their plausible range and lower bound are typically not known.

Next, based on this evaluation of forecast quality, one can propose alternative

models. Once one considers multiple model specifications, forecasting performance

is more easily evaluated by using the forecast precision metric, especially if the

number of models is large, when the embedded color coding plays an important

role. That said, forecast summary graphs can still provide a lot of value. Finally,

when potentially large numbers of forecasting models are reduced to several final

candidates, one can switch focus to detailed outputs from the add-in, such as the

exact profiles of sub-sample or scenario forecasts.

Plan. While this section includes only the basic application, in the full version

of this document, there are 8 sub-sections, one corresponding to each application.

I briefly discuss the remaining applications here. Each application is meant to

demonstrate a specific functionality of the add-in, and to show how it can be

leveraged as part of the iterative model building process outlined above. The first

application focuses on standard trending macroeconomic variable and shows all the

basic features of the add-in. The second application highlights the ability of the

add-in to use different transformations of forecast variable, focusing on the growth

rate transformation in the context of a variable for which growth rate transfor-

mation is commonly of interest. The section also shows the functionality of the

add-in with respect to automatic model selection. The third application focuses on

a different transformation - the spread between two variables. This transformation

is often valuable when one variable is the source of the majority of variations in

another variable, such as in example of risk-free and risky interest rates. When

the latter is of interest, the movements in the risk-free interest rate obscures the
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evaluation of models for risky interest rate, when level transformation is used. Ad-

ditional transformations are covered in the fourth application, which focuses on

an exponentially growing variable, where logarithmic and/or ratio transformations

are of particular value.

Table 3.2: List of applications

# Primary focus Secondary focus

1 Basic use of add-in and overview of key
output objects

Iterative and interactive
model development process

2 Basic use of transformations (growth) Recursive automatic model
selection

3 Advanced use of transformation
(spread)

Interactive model develop-
ment

4 Advanced use of transformation (log
and ratio) -

5 Unconditional forecasts I - Exogenously
produced forecasts Use for identities

6 Unconditional forecasts II - Systems of
multiple individual equations -

7 Custom re-estimation -
8 Using intermediate objects -

Applications 5, 6, and 7 focus on how to perform different types of forecast-

ing exercises using the add-in. Applications 1-4 focus solely on conditional fore-

casting; these are complemented by applications 5 and 6, which focus on (semi-

)unconditional forecasting. First, application 5 considers unconditional forecasting

when forecasts for independent variables are supplied as inputs to the process. This

is relevant when there is no feedback between the forecasts for the dependent and

independent variables. Next, application 6 focuses on evaluating a model consist-

ing of multiple single-equation multivariate models, with mutual feedback between

individual endogenous variables. Finally, while the add-in allows the user to cus-

tomize the forecasting process to a great extent, there are still use cases in which
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the user needs to perform more complex re-estimation which cannot be dealt with

within the re-estimation subroutine of the add-in itself; an illustration of custom

re-estimation appears in application 7. The last application shows how a user can

store intermediate objects from the execution of the add-in and perform his/her

own analysis on those.

3.3.1 The basic application

The section provides illustration of the most basic use of the add-in in context of

an application, which will also serve to illustrate the model development process

for which the add-in is meant to be used. The intermediate goal of the application

will be to develop time series model for industrial production for Czechia. The

series is displayed Figure 3.4.

Figure 3.4: Level of Czechia industrial production

Univariate models. As a preliminary step, consider using the Eviews auto-

matic ARMA model selection to choose the best ARIMA model. The resulting

model when one uses Schwarz Information Criterion (SIC) is ARIMA(0,1,2).1 One
1Figure 3.4 makes it clear that the series is both trending and that it does not have a determin-
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can apply the SpecEval add-in to the resulting equation by simply issuing the fol-

lowing command :

eq_ip_arma.speceval(noprompt)

This will create and display spool that includes 4 objects. Rather than

discussing these, I estimate additional 2 ARIMA models and include them among

the specifications: a simple ARIMA(1,1,0) model and ARIMA model selected by

Akaike Information Criterion (AIC), ARIMA(4,1,4). Once those equations are

estimated, I run the SpecEval add-in for all three models:

eq_ip_arma.speceval(spec_list="eq_ip_arma*")

As a result, the program will create and display a spool that, among other

things, includes a table with forecast precision metrics for all three specifications;

see Table 3.3.2 The table shows that the more complex model selected by AIC has

substantially worse forecasting performance at both selected horizons, but there

is little difference between the two more parsimonious models. The spool also

includes the regression results for each of the equations, so that one can quickly

check and compare them. For example, in the present case this would reveal that

the ordering of the models by RMSE is the exact opposite that one would conclude

from looking at adjusted R-squared values of the three models.

In addition to the performance metrics tables, the spool also includes forecast

istic trend. At the same time, the nature of series suggests that it should be growing exponentially
over long horizons, though this is not exactly clear from the figure. Correspondingly, the natural
way to model the series is in log-differences. I specify logarithmic transformation and force at
maximum 1 differencing as the settings in the automatic ARMA model selection.

2The document ’Outputs for specification evaluation add-in’ includes a detailed discussion
of the values and the colors. Briefly, the numbers are average RMSE for all available backtest
forecasts, while colors go from green, corresponding to lowest values, to red, signaling the highest.
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Table 3.3: Forecast precision metrics - RMSE - ARMA models for industrial
production

Forecast horizons
Specification 8 24 Avg.

1 7.52 12.9 10.2
2 7.41 12.6 10.0
3 8.45 14.8 11.6

summary graphs. These are displayed in Figure 3.5. The figure makes it clear

that neither model provides good forecasts during stress periods, and specifically

during the Great Recession. This is the raison d’entre for the multivariate models

I consider next.

Multivariate models. If one considers using other variables for forecasting

industrial production, it is natural to start with GDP: because industrial pro-

duction is a part of GDP, GDP should provide a lot of information relevant for

forecasting industrial production. Consider starting with simple static regression

linking the log-difference of industrial production to the log-difference of GDP, as

in equation (3.1):3

dlog(IPt) = β0 + β1dlog(GDPt) (3.1)

3A few warning comments: The focus here is on conditional forecasting, as opposed to true
forecasting. This means that, in contrast to standard VAR models, the models below include
concurrent GDP as an explanatory variable, rather than the lag of GDP. While this might seem
strange from the perspective of current academic econometrics, the alternative would lead to
very poor forecasts from a conditional perspective; and it would also have very little value in
scenario forecasting. For example, it would lead to forecasts where industrial production would
change only with a delay of at least one lag in response to changes in GDP.

Similarly, no consideration is given to the econometric validity and/or causality of the coef-
ficients estimates. The sole focus here is on forecasting performance, from which perspective
causal interpretation of coefficients is not important; simply, coefficients capture co-movement
patterns.
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Figure 3.5: Forecast summary graph - ARMA model for industrial production

I can evaluate the model on its own, or include one of the ARMA models as a

benchmark:

eq_ip_static.speceval(noprompt)

eq_ip_static.speceval(spec_list="eq_arma", use_names="t",

graph_add_backtest="gdp[r]")

In the second case, I specify that I want to use equation names in the output

objects, as opposed to aliases (numbers), since this allows me to easily figure out

which specification is which. I have also included the GDP series in the backtest

graphs, assigning it to the right axis. The resulting forecast summary graphs are

in Figure 3.6. The figure shows that while the static equation does a better job

forecasting industrial production during the Great Recession than the univariate
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models, it does not improve the forecasts much. Moreover, Table 3.4 shows that the

RMSE of the forecasts is actually higher than for the benchmark model. However,

from Figure 3.6, one can see that this might be an artifact of the large errors in the

beginning of the sample, where the coefficient estimates are based on only a few

observations. To explore this issue further, one could do several different things:

• Include coefficient stability in the execution list of the program, executed by

the following command:

eq_ip_static.speceval(exec_list="normal stability")

• Cut the backtesting sample to start in 2000q1 for both specifications, exe-

cuted by the following command:

eq_ip_static.speceval(spec_list="eq_arma", use_names="t",

graph_add_backtest="gdp[r]", tfirst_test="2000q1")

• Perform the backtesting for both specifications in-sample rather than out-

of-sample, executed by the following command:

eq_ip_static.speceval(spec_list="eq_arma", use_names="t",

graph_add_backtest="gdp[r]", oos="f")

Figure 3.7 shows the recursive coefficients for the static equation, and demon-

strates that, indeed, the coefficients in the beginning of the sample are nonsensical,

since the coefficient on GDP is negative. Presumably, such a model would not be
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Figure 3.6: Forecast summary graph - static regression for industrial production

Table 3.4: RMSE - static equation for industrial production

Forecast horizons (# of steps ahead)
Specification 8 24 Avg.

EQ_IP_STATIC 8.22 22.2 15.2
EQ_IP_ARMA 7.52 12.9 10.2
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Figure 3.7: Coefficient stability graph - static equation for industrial production

Figure 3.8: Forecast summary graph - static regression for industrial production
(Adjusted)

used and these forecast should not be included in evaluation of the forecasting

model. Meanwhile, Figure 3.8 shows the forecast summary graphs when the ini-

tial periods are excluded (left panel), or when the forecasts are created in-sample

(right panel). In either case, the conclusions about the quality of the forecasts

are improved. This is also confirmed in Tables 3.5 and 3.6, which show that when

only forecasts from 2000q1 onward, or in-sample forecasts are considered, the static

equation produces better forecasts than the benchmark ARMA model.

Before proceeding to including additional variables, it is interesting to consider
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Table 3.5: RMSE - static regression for industrial production (in-sample)

Forecast horizons (# of steps ahead)
Specification 8 24 Avg.

EQ_IP_STATIC 4.36 5.55 4.96
EQ_IP_ARMA 6.70 9.25 7.98

Table 3.6: RMSE - ARMA models for industrial production (restricted sample)

Forecast horizons (# of steps ahead)
Specification 8 24 Avg.

EQ_IP_STATIC 6.79 14.5 10.6
EQ_IP_ARMA 8.18 13.8 11.0

a modification of the model in equation (3.1): a modeler might consider dropping

the constant from the model, since the constant allows the two series to grow

at different growth rates. The SpecEval add-in allows the modeler to quickly

assess whether such a model change is a good idea. Since the answer might differ

substantially with forecast horizons, it is sensible to include more horizons than

the two considered above. Specifically, by issuing the following command, I include

6 different forecast horizons, while creating graphs for 3 of them:

eq_ip_static.speceval(spec_list="eq_ip_static*",

horizons_forecast="1 2 4 8 16 40 80", horizons_graph="4

8 40", alias="with without")

Table 3.7 shows the RMSEs for different horizons for the two specifications.

Note that the command above also included the aliases for the two specifications,

so that the user can easily distinguish them in the output objects. The table shows

that the specification with a constant is slightly worse at forecasting at short and

medium horizons, but better at very long horizons. In either case, the differences
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do not seem large.

Table 3.7: RMSE - static regression for industrial production (effect of constant)

Forecast horizons (# of steps ahead)
Specification 1 2 4 8 16 40 80 Avg.

with 1.56 2.77 4.84 8.22 13.7 37.7 103 24.6
without 1.51 2.59 4.38 7.44 13.5 39.9 104 24.7

The forecast summary graphs make it clear that, while including GDP does

help with forecasts during recessionary periods - especially when one considers in-

sample forecasts, which are more relevant for understanding the behavior of fore-

casts in future recessionary periods - the model is far from good enough. Moreover,

the model tends to miss not only during a recession, but also during a recovery.

This suggests that the forecast quality could be systematically improved by in-

cluding additional information.

Figure 3.7 suggest one possible way to adjust the model. It is clear that there is

a break in coefficient estimates around the Great Recession. One option to address

this would be to use model with a break. An alternative that is probably more

sensible is to allow the relationship between industrial production and GDP to be

different during recessionary periods.4 Consider the following equation

dlog(IPt) = β0 + β1dlog(GDPt) + β2D
recession
t dlog(GDPt) (3.2)

where Drecession
t is a recession dummy indicator. I compare this specification

with equation (3.1). Since the motivation for the modification is the performance

during recessionary periods, it is useful to obtain detailed information about those.
4The reason this is more sensible is because one does not discard the observations before the

break.
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I focus on two such periods, 2008q3-2009q4, and 2011q3-2012q4, and specify them

as the two subsamples via the following command:

eq_ip_static.speceval(spec_list="eq_ip_static_dummy",

subsamples="2008q3-2009q4,2011q3-2013q2",

horizons_forecast="1 2 4 8",oos="f", alias="normal dummy")

Specifying sub-samples has two consequences. First, it creates additional ta-

bles with forecast performance metrics for given sub-samples; see tables 3.8 and

3.9. Second, it creates graphs of a single forecast that starts at beginning of the

sub-sample; see Figure 3.9, the top panels show the forecast from the basic static

regression, while the bottom panels show the forecast from the static regression

with the recession dummy. The table and the figure make it clear that includ-

ing the dummy in the regression improves the forecasting performance during the

two recessionary periods. The figure suggests that this is due to making indus-

trial production more sensitive to movements in GDP, which can be confirmed by

checking the coefficients in the regression outputs (not reported): the inclusion of

the interaction with the regime dummy leads to a lower coefficient on the stand-

alone GDP term, but to higher combined coefficient. Investigating the table with

overall RMSE (not reported) shows that this is not at the cost of worse forecasting

performance overall, since RMSE for the whole sample is lower.

Table 3.8: RMSE - static regression for industrial production (2008q3-2009q4)

Forecast horizons (# of steps ahead)
Specification 1 2 4 8 Avg.

normal 2.65 4.39 5.40 NA 4.15
dummy 2.36 3.33 3.66 NA 3.12

While allowing industrial production to be more sensitive to GDP movements
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Table 3.9: RMSE - static regression for industrial production (2011q3-2013q2)

Forecast horizons (# of steps ahead)
Specification 1 2 4 8 Avg.

normal 1.14 1.61 1.62 1.28 1.41
dummy 1.10 1.50 1.65 0.13 1.09

Figure 3.9: Sub-sample forecasts graph - static regression for industrial produc-
tion
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during recessionary periods improves the forecasting performance during these pe-

riods, the forecast during the Great Recession is still not satisfactory. Another

approach is to consider including GDP components in addition to GDP as such.

Different recessions can be characterized by different composition of declines in

GDP, and some declines can be associated with larger or smaller declines in indus-

trial production. A prime example are exports: Czechia relies heavily on exports

of industrial goods, hence industrial production should be sensitive to foreign de-

mand. As such, including exports could improve forecasting performance, espe-

cially in periods of large movements in global demand for industrial goods, such

as the Great Recession. I therefore estimate following equation

dlog(IPt) = β0 + β1dlog(GDPt) + β2D
recession
t dlog(GDPt) + β3dlog(Exportst)

(3.3)

and then call the SpecEval as follows:

eq_ip_static.speceval(spec_list="eq_ip_static_dummy

eq_ip_static_exports", subsamples="2008q3-2009q4,2011q3-2013q2",

horizons_forecast="1 2 4 8", oos="f", alias="normal dummy

exports", keep_forecasts="t")

Note that this time I have specified that I want to keep the forecasts in the work-

file so that I can investigate them together, rather than one specification at a time

as in Figure 3.9. I am specifically interested in the series IP_F2008Q3_NORMAL,

IP_F2008Q3_DUMMY and IP_F2008Q3_EXPORTS, which contain forecasts

starting in 2008q3 for each of the three specifications. The forecasts, together with

actuals, are in Figure 3.10. It shows that including exports improves the forecast,
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Figure 3.10: Sub-sample forecasts graph - static regression for industrial pro-
duction (multiple specifications)

but not dramatically. This suggests that while exports might be useful for fore-

casting industrial production - indeed full sample and sub-sample RMSE again

decreases - the decline during the Great Recession is above and beyond what one

would conclude by looking at GDP and exports.

The model with exports already includes three regressors, making understand-

ing forecasts a potentially complicated task. The SpecEval add-in contains func-

tionality that helps with this task, the forecast decomposition tool. To perform

forecast decomposition, just add it to the execution list as follows:

eq_ip_exports.speceval(exec_list="normal decomposition",

subsamples="2008q3-2009q4,2011q3-2013q2", oos="t")

The spool will now include a forecast decomposition graph for each sub-sample,
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Figure 3.11: Sub-sample forecasts graph - static regression for industrial pro-
duction (multiple specifications)

as in Figure 3.11. The figure shows how each of the regressors contributes to

the overall forecasts in terms of the dependent variable in each of the forecast

periods. Among other things, this graph can be used to figure out the source of a

problematic forecast, or to understand un-intuitive forecasts. Here, it shows how

exports contribute to the overall decline in 2008q4 more than the other regressors,

but less in 2009q1.

So far I have focused solely on overall forecasting performance, or on forecasting

performance during particular historical period(s). In either case, this amounts to

analyzing the specifications in terms of their backtesting performance. The other

focus of the SpecEval is a scenario forecast performance. While more detailed

illustration is performed as part of the other applications, I introduce some basic
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Figure 3.12: Scenario forecasts graph - static regression for industrial production

aspects of it here, to highlight how scenario forecasting performance can be also

useful as source of information when overall forecasting performance is the focus of

model building. The following command creates forecasts for 3 scenarios - baseline,

SU (upside scenario) and SD (downside scenario) - based on equation (3.2), and

includes a graph that contains all scenario forecasts together in the resulting spool;

see Figure 3.12.

eq_ip_dummy.speceval(scenarios="bl su sd")

While containing the basic information, Figure 3.12 has some important draw-

backs. First, the sample before the start of the scenarios is too short to judge

the magnitude of the movements, while the sample after the start of scenarios is

too long. Second, it is hard to judge movements in industrial production without

knowing the size of movements in GDP. One can address these issues by adjust-
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ing the starting period of the graph, the ending period of scenario forecasts, and

including GDP as a comparison variable, and then specifying that one wants to

produce individual scenario graphs rather than all scenario graphs. The resulting

command is:

eq_ip_dummy.speceval(exec_list="normal

scenarios_individual", scenarios="bl su sd",

tfirst_sgraph="2006q1", tlast_scenarios="2025q4",

graph_add_scenarios="gdp[r]")

Now the spool will include a graph for each scenario individually, in additional

to a single graph with all scenarios. For example, the top left panel of Figure 3.13

shows the individual scenario forecast graph for the downside scenario. Among

other things, the figure suggests that while industrial production does fall more

than GDP in the beginning of the scenario, as desired based on previous analysis,

the recovery seems to be too weak compared to GDP. This can be best seen if one

uses a scenario transformation graph, while using deviations from the baseline as

the transformation, as the following command does:

eq_ip_dummy.speceval(exec_list="normal

scenarios_individual", scenarios="bl su sd",

tfirst_sgraph="2006q1", tlast_scenarios="2025q4",

graph_add_scenarios="gdp[r]", trans="deviation")

The desired chart is shown in the top right panel of Figure 3.13. The model

results in industrial production falling permanently and substantially behind GDP,

which is likely not reasonable. Instead, one would expect both the drop and

rebound in industrial production to be larger, so that the permanent effect on

industrial production is only slightly larger than for GDP. The reason the model
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Figure 3.13: Scenario forecasts graph - static regression for industrial production
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fails to make such a forecast is that it makes industrial production more sensitive

movements in GDP only during recessions, not during recoveries. One simple

way to address this is to replace the dummy indicating recession with a dummy

that is equal to 1 for 4 quarters after the end of recessions. The downside

scenario forecasts for the resulting specification are in the bottom panels of Figure

3.13. The graphs make it clear that adjusting the model in such a way addresses

the problems raised above. Moreover, Table 3.10 shows that this modification

motivated by improving scenario forecasts also leads to improvement in overall

forecasting performance. This constitutes an example of how analysis scenario

forecasting can be useful in improving overall forecasting performance, irrespective

of whether scenario forecasting is of importance.

Table 3.10: RMSE - static regression for industrial production (different dummy
variables)

Forecast horizons (# of steps ahead)
Specification 8 24 Avg.

short_dummy 3.94 4.46 4.20
long_dummy 3.91 4.04 3.97

3.4 Concluding remarks

This chapter presented excerpts from a document that describes how the SpecEval

add-in can be leveraged in developing time series models used for forecasting. It

offers a basic demonstration of both the variate of outputs with a focus on graphical

representation of forecasts and illustrates the flexibility and comprehensiveness of

the add-in. The full version of the document available on my personal website

261



offers an additional 7 applications which show additional functions of the add-

in. The previous chapter offers illustrations of how the add-in can be used in

forecasting exercises which are more common in academic literature.
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Chapter 4

Responding to the Inattentiveness

of Others: Experimental Evidence from a

Cooperative Environment

Co-authored by Jelena Plazonja and Suren Vardanyan (both CERGE-EI).

4.1 Introduction

Consider a work environment where employee is tasked to produce a report which

is then passed to a manager, who reads the report and makes a decision, based

on which both manager and employee are evaluated. An example is a trading

company, where bonuses for both research staff and traders are linked to the profits

the trader generates; or a company considering launching a new product line, where

future promotions of employee and manager are linked to success of the product
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line. In such an environment, the success of both actors depends on two factors:

(1) how much information the employee collects when producing the report, and

(2) how well the manager absorbs the information in the report. Specifically, the

quality of information supporting a decision is a joint product of the quality of

collected information, and how well the information is absorbed by the manager.

In related theoretical work (Plazonja 2018), it is shown that, if both agents find it

costly to collect/absorb information due to limited attention, then the attention

effort of each agent is a strategic complement for the other agent. In other words,

each agent should increase his attention when the other player increases his.

This chapter presents an experiment designed to test this prediction. The

experiment has following structure. We first assign participants to one of two roles,

Sender and Receiver. We then successively pair each Sender with each Receiver

and let them play the following game: the the Sender collects information about a

randomly selected state of the world and then he communicates it to the Receiver;

the the Receiver then pays attention to the information communicated by the the

Sender before taking an action that influences the payoff of both players. The

payoff depends on the difference between the state of the world and the Receiver’s

action.

To capture the idea that collecting/absorbing information is costly, we do not

allow either player to observe information directly. Instead, we present both players

with a task that requires them to exert attention effort. We follow other authors

(Caplin, Dean, and Martin 2011; Caplin and Martin 2014; Jin, Luca, and Martin

2015), and show the participants 20 integers that add up to either the state of

the world (for the Sender) or to the report provided by the the Sender (for the

Receiver). Note that since the the Receiver observes a noisy version of the Sender’s
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signal (rather than her own signal about the state), neither player can shirk on

their effort in the hope of forcing the other player to compensate for his or her

lesser effort. This, together with the symmetry of the payoff function, means that

the game does not feature any non-cooperative component: the players agree on

the desired action given the information set, and on the value of the information.

To study how subjects adjust their attention, and specifically whether they

understand that their attention effort is a strategic complement, we follow the lit-

erature that studies how strategic play is affected by information about opponent’s

characteristics, and give both players information about how good their partner is

in a given attention task. Before starting the game outlined above, we ask partic-

ipants to complete an individual task that consists of 5 identical rounds in which

participants complete the attention task. We then calculate the average absolute

mistake (AAM) made in this individual task, and communicate the partner’s AAM

to both players before each round of the actual game. This allows the participants

to estimate the attention costs of their partner, and hence to estimate how noisy

his/her signals are likely to be.

Since we have observations on multiple plays by each subject, we can study

whether subjects vary their attention in response to changes in the partner’s AAM

as predicted by theory. As we cannot directly observe attention effort, we use the

size of mistakes as a proxy variable for attention effort, and study whether subjects

make greater mistakes when they play with a partner with higher attention costs.

We present results from several empirical models that all support this hypothesis,

with regression coefficients being both statistically and economically significant.

For example, in our main model, the average mistake made increases by 10 when

the partner’s AAM increases from the first to the third quartile. This is equivalent
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to 83% of the quartile range of mistakes observed. The effect is also significant in

terms of potential earnings, leading to decreases in a subject’s potential earnings

of 120CZK, 30% of maximum earnings. Moreover, the average estimated effect

potentially masks important heterogeneity: the effect increases substantially with

the quantile considered, suggesting that the reaction is stronger when other factors

make paying attention harder.

In addition to studying variations in attention, we are also interested in whether

subjects reflect on (soft) information about the likely precision of their information

when they take actions. Standard theory of decision-making under uncertainty

suggests that actions should be closer to a prior mean when information is less

precise. Even though the structure of our data does not allow us to perform a

precise empirical analysis, several empirical models suggest that subjects do indeed

behave according to this prediction: actions are more likely to be closer to a prior

mean when the partner’s attention costs are higher.

This chapter is primarily related to empirical and experimental literature on

rational inattention. Existing experimental and empirical literature has focused on

two questions, corresponding to two fundamental principles underlying the rational

theory of attention. First, different studies have demonstrated that agents pay

imperfect attention to available information, which demonstrates that attention is

a scarce resource (e.g Lacetera, Pope, and Sydnor (2012)). The fact that agents pay

imperfect attention to available information implies that agents’ choices include

mistakes even though they have available all the information they need. Second,

several mostly experimental studies have shown that agents vary their attention

according to the nature of the decision problem. The main experimental example

is Dean and Neligh (2017), who test predictions of general and specific rational
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inattention models. Their main finding is that experimental subjects change their

attention in systematic ways in reaction to changes in the environment, giving

strong support to the theoretical notion that attention is a choice variable. Among

other things, they show that subjects do adjust their attention in reaction to

changes in incentives such as increasing the payoff from a correct choice or adding

potentially high-payoff action. Similarly, Bartos et al. (2016) use a field experiment

to show that agents adjust what they pay attention to depending on whether

their choices are more or less selective: in a market where most applicants are

accepted (e.g., the housing market) decision makers pay relatively more attention

to negatively stereotyped candidates (i.e., minorities), while in markets where only

few applicants are accepted (e.g., the labour market) decision makers pay relatively

less attention to negatively stereotyped candidates. Other experimental papers

are Caplin and Dean (2015),Cheremukhin, Popova, and Tutino (2015),Ambuehl,

Ockenfels, and Stewart (2019) and Martin (2017a).

In summary, previous studies have shown that agents do pay imperfect atten-

tion and that they vary their attention systematically and rationally. To reach

these conclusions, the experimental literature has been varying the environment a

decision maker faces. Our experiment is focused on the next logical step in the em-

pirics of rational inattention: we study whether agents react to the inattentiveness

of their partners, and specifically whether and how subjects vary their attention

in response to changes in the attention costs of their partner. Thus, this chap-

ter differs from the above papers in that we focus on an interactive environment,

rather than on individual decision tasks. , This also makes this chapter method-

ologically different , because instead of exogenously changing the environment a

decision maker faces, the experiment keeps the environment constant and studies
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whether subjects change their attention in response to changes in their partners’

characteristics.

Apart from experimental and empirical literature on rational inattention, this

chapter is also related to experiments studying the role of information about op-

ponents on subjects behaviour. This literature is related to this chapter in two

ways. First, these papers also focus on how subjects behave differently as a func-

tion of differing characteristics of their opponents. The main example is Gill and

Prowse (2016), who show that subjects with high cognitive ability respond to the

cognitive ability of their opponents. Similarly, Palacios-Huerta and Volij (2009)

report that subjects are more likely to play the Nash equilibrium strategy when

they play against players who are likely to be sophisticated in backward induction.1

Meanwhile, Agranov et al. (2012),Le Coq and Sturluson (2012), and Slonim (2005)

show that subjects respond to (manipulated) beliefs about the experience of their

opponents. Note that due to focus on the cognitive ability and sophistication

of opponents none of these papers study cooperative environment, as this chapter

does.

These papers are also close to ours in terms of the experimental methodology,

since this chapter also uses experiments in which subjects are informed about

particular characteristics of their partners. In this respect, the closest study to this

chapter is Gill and Prowse (2016), in which subjects are informed whether their

partners have above or below median cognitive skills as measured by a Raven’s test.

The main difference is that we inform subjects about their partners’ performance

1Specifically, students - especially chess players - are more likely to stop in the first move of
a 6-node centipede game when they play against professional chess players, compared to when
they play against university students. The authors connect this to the fact that chess players
have extensive experience in backward induction.
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in the individual version of our game, which we conceptualize in our experimental

context as a proxy measure for attention costs. In contrast, Gill and Prowse (2016)

inform the subjects about their partners’ general characteristics (i.e. cognitive

skills), as the effect of those is the main focus of their paper. Of course, our

measure of attention costs is likely correlated with the more general concept of

cognitive costs; indeed, attention costs can be viewed as a subset of cognitive

costs. However, as our experimental task is about paying attention, we prefer to

use the terminology of attention costs rather than cognitive costs.2

The rest of this chapter is organized as follows. The next section presents the

outline of the game played by experimental subjects and details of the experimental

design. The third section gives an overview of the collected experimental data. The

fourth section presents our hypotheses, and empirical strategy and discussed the

results. The last section concludes with a discussion of future research plans.

4.2 Experimental design

There are two roles in our experiment: the Sender (he) and the Receiver (she). The

outline of the game is presented in Figure 4.1. The the Sender obtains information

about the random state of the world and communicates his information to the
2In principle this chapter would be unchanged if we used term "cognitive costs/skills" instead

of the term "attention costs". However, the information provided to subjects is not a measure of
cognitive skills, rather it measures the ability to perform well in this specific task, and so referring
to it as cognitive skills would be misleading. Since our task is characterized by full information,
ample time and no strategic considerations, a decision by experimental subjects not to collect
information seems best interpreted as a decision to exert low attention due to high attention
costs. Similarly, one could claim that subjects are not reacting to the inattentiveness of other
subjects, but to their low ability at a given task. We believe that such distinctions are more
semantic than substantial, reflecting the fact that, in principle, one cannot distinguish between
high attention costs and low cognitive ability. This chapter provides a contribution to existing
economic literature irrespective of the terminology used: we are unaware of any paper that is
similar outside of the literature on attention experiments.
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Receiver. The the Receiver observes a noisy version of information provided by the

Sender and then takes action.

Figure 4.1: Game outline

Nature x Sender’s
attention

sS
Receiver’s
attention

sR
Action
choice

a

Both players have identical payoffs which depend on the distance between the

Receiver’s action and the actual state of the world with quadratic loss function:

Π = k − (x− a)2 (4.1)

where x is the value of the state and a is the action taken, while k is a con-

stant. Importantly, the nature of information available to players together with

the symmetry of the pay-off function mean that the game does not feature a non-

cooperative component: the players agree on a desired action given the information

set, and on the value of the information. Since the Recceiver observes a noisy ver-

sion of the Sender’s signal, rather than her own signal about the state, neither

player can shirk on their effort in hopes of forcing the other player to compensate

for his or her effort.

Calibration. The state of the world, referred to as a selected number , is

randomly drawn from a set of integers between 300 and 500. Numbers do not have

equal probability of being selected; instead, the probability follows (truncated)

normal distribution. Both these facts are communicated to the participants in the
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instructions, with the distribution being communicated verbally in non-technical

language and graphically (see complete instructions on my personal webpage).

The pay-off function is chosen and calibrated with the aim to make the pay-off

sensitive enough to participants actions, but not too sensitive. The constant is set

to 400, which translates into a pay-off of 400 experimental currency units (ECU)

if the action exactly matches the state of the world. If the difference between

the state and the action is more than 20, the pay-off is zero. Subjects were

familiarized with the pay-off function through an example and an illustrative pay-

off table specified in terms of the difference between an action and the selected

number, to highlight both the quadratic nature of the function and the fact that

it is the difference between action and state that is relevant for the pay-off.

The final earnings are equal to the average pay-off from two rounds randomly

selected at the end of the experiment, i.e., our conversion rate between ECU and

the currency of earnings (CZK) is 2-to-1. To keep the individual rounds as compa-

rable as possible, we did not inform subjects about their payoff after each round,

which should minimize competition or discouragement effects. Instead they were

told their overall payoff/earnings at the end of the experiment.

The rest of this section describes the experimental design in detail, first dis-

cussing the attention task before describing the two games played by participants

throughout the experiment: the individual game and the cooperative game.

4.2.1 Attention task

The subjects obtain information about a payoff relevant state. Our choice of exper-

imental task is motivated by a desire to capture two features of rational inattention
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theory: (1) while all relevant information is available, obtaining information re-

quires attention effort; and (2) agents choose an optimal attention strategy that

minimizes attention required, rather than being restricted to a particular (set of)

information strategies. We follow other authors (Caplin, Dean, and Martin 2011;

Caplin and Martin 2014; Martin 2017a) in selecting the following experimental

task.

Subjects are shown a set of 20 integers which are randomly drawn from between

12 and 28, excluding 20, and which add up to the value of the state. The fact

that the numbers add exactly to the value of the state means that subjects have

all the information about value of the state of the world that they need. It is up to

them whether they decide to obtain the exact value of the state, or rather to just

quickly make an imprecise estimate. At the same time, the task is hard enough so

that they have to exert a substantial amount of effort to obtain a precise estimate

of the state of the world.

Importantly, the task leaves subjects freedom to choose their attention strategy,

since the way they obtain information about the value of the state is up to them:

for example, they can add numbers one by one, or they can add the first digits of

all numbers before turning to the second digits. The subjects are not allowed to

use calculators or paper and pencil. From previous research we know that subjects

make mistakes in this setting and that these mistakes vary systematically with the

stakes and difficulty of the task. Figure 4.2 shows a print screen of the screen

showed to subjects in a typical round.

The participants do not have unlimited time for the attention task. Specifically,

they can inspect the numbers for 75 seconds, during which they need to provide

their report about the state of the world. Throughout these 75 seconds, the
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Figure 4.2: Printscreen of the attention task

273



subjects are informed how much time has elapsed. If they submit their report

before the 75 second limit, they will not be allowed to proceed to next round

before the 75 seconds elapse. If they do not submit within the 75 seconds, they

have an additional 15 seconds to submit their report, but during these 15 seconds

the 20 numbers are no longer displayed. If they do not submit even within these

15 seconds a random number is selected as the player’s report and the experiment

proceeds to the next round.

4.2.2 Individual game and role assignment

Before playing the game described above, participants play an individual game.

This game consists of 5 identical rounds in which participants are presented with

the attention task, including the request to provide their report. Their pay-off

depends on the difference between their own report and the state as in (4.1). This

means that they play a role that of a the Receiver who collects information herself.

This individual game serves several purposes. Mainly, it allows us to utilize a

within-subject experimental design for the cooperative game. Specifically, to study

how subjects change their attention when they face a more or less inattentive part-

ner, we need to obtain some signal about the inattentiveness of each participant,

which can then be communicated to their partners. We use the average absolute

mistake (AAM) made by a given participant during the individual game: AAM

measures how imprecise a players signals were during the individual game, and

hence should also be indicative of how imprecise the signal will be during the

cooperative game (more on this below).

We also use the results of the individual game to assign subjects to their roles
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in the actual experiment: we order them according to their AAM, and assign them

to the roles of the Sender and the Receiver in alternating fashion, ensuring that

participants encounter as diverse a group of partners as possible. The roles are fixed

for the whole duration of the experiment. While this means that players experience

only with one role, the fact that they initially play the individual game means

that they can all familiarize themselves with the decision facing the Receiver,

who chooses the pay-off relevant action. Finally, playing the individual game also

ensures that they experience the attention task before the cooperative game, and

so relatively little learning is happening during the cooperative game.

At the end of the individual game, we first ask subjects to estimate their own

AAM and the AAM of another random subject. This information allows us to

glimpse their degree of confidence in themselves and to identify subjects who are

higher overconfident. After obtaining answers to these questions, we inform them

of their own AAM and maximum and minimum AAM among the current set of

participants.

4.2.3 Cooperative game

After the individual game the subjects proceed to the cooperative game which

forms the main part of the experiment and is our main focus.3 The game proceeds

as follows. After the subjects are paired, the the Sender is presented with the

attention task described in the previous subsection, with the sum of the numbers

equal to the state of the world. Once he is finished, he is asked to communicate

his report to the Receiver. However, the the Receiver does not observe this report
3Note that the cooperative game is simply referred to in the instructions as Game A or Game

B, depending on the treatment, in order not to nudge participants towards particular type of
behaviour.
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directly. Instead, she is presented with the same attention task, where, crucially,

the 20 numbers add up to the Sender’s reported number (rather than to the state of

the world). The game concludes with the Receiver taking action, which determines

both her and Sender’s pay-off according to (4.1). The experimental instructions

given to participants stress two the key facts: (1) the numbers in the Receiver’s

attention task add up to the Sender’s number rather than to the selected number,

implying that the Sender cannot shirk; (2) both players’ pay-offs depend on the

Recever’s action.

During this part of the experiment, the subjects are successively paired with

different partners whose identities remain anonymous. To maximize the variation

in partners of each participant, we match every Receiver with every Sender. We

keep the matching order random so that we do not induce any particular behaviour.

We execute two different treatments of the cooperative game. First, the sub-

jects play an informed treatment (TI). In this treatment, once the agents are

paired and before they perform their respective attention tasks, we inform sub-

jects about the characteristics of their partner. We tell them their partner’s AAM

from the individual game together with the minimum and maximum AAM for

all subjects. Subjects are made aware of the fact that their partners know

about their characteristics. By varying the partners, and by informing each one

of the attention characteristics of his/her partner, this treatment allows us to use

a within-experimental design to answer our main question: Do subjects change

their attention level in response to the inattentiveness of their partners? Second,

participants play the uninformed treatment (TU), in which they are not in-

formed of their partners’ characteristics. In this treatment we limit the number of

rounds to 5.
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4.2.4 Feedback and information about participants

After the cooperative game, the experiment continued with several additional small

parts aimed at collecting information about the participants and their feedback.

First, the participants were asked several questions relating to the cooperative

game. We were interested in their self-assessed behaviour, such as whether a

partner’s AAM influenced them or whether they reported their exact summation.

Second, participants answered three questions and participated in two small

games aimed at capturing other relevant characteristics of our participants. The

three questions were the standard questions of the cognitive reflection test (Fred-

erick 2005), which studies how are subjects inclined to override an incorrect "gut"

response and engage in further reflection. Next, they played a standard dicta-

tor game, which is used to study degrees of altruistic behaviour (Hoffman, Mc-

Cabe, and Smith 2008). Finally, subjects played a simple 2-move centipede game,

which is suitable for studying whether participants are able to use backward in-

duction. Knowing these characteristics allows us to better disentangle participant

behaviours during the cooperative game.

At the end of the experiment, subjects were administered questionnaires, filling

in their basic demographic information.

4.3 Data

We run 5 sessions of our experiment during March and April 2018, using the

Laboratory of Experimental Economics at the University of Economics in Prague.

A typical experimental session took 1 hour and 45 minutes, plus 15 minutes to

process payments. An average subject earned 327 CZK (14 USD), with standard
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deviation of 153CZK. This translates into an hourly wage of 163 CZK, above the

local hourly average wage for unskilled labor. At minimum, participants received

100 CZK show up fee.

Altogether 96 subjects participated in our experiment, equally split between

Senders and Receivers. All participants played the individual game and, with

the exception of one session, both the informed and uninformed treatments of

the cooperative game; in the other session, participants played a different version

of the individual game instead of the uninformed treatment of the main game.

This yields observations of 1,794 player-rounds of our attention tasks: 480 for the

individual game, 924 for the informed treatment of main game, and 390 for the

uninformed treatment of the main game.

As discussed below, our main variable of interest is the size of mistake made

by a player in given round; therefore we provide a basic overview of this variable.

Figure 4.3 shows the distribution of mistakes we observed: the top panel shows a

histogram of mistakes in all player-rounds, together with basic summary statistics;

the middle panel shows mistakes aggregated at the individual level; the bottom

panel shows mistakes aggregated at the round level. A few comments are in order.

First, almost 40% of the observations correspond to zero mistake. Second, while

the distribution is roughly exponential if we disregard the mass at zero, there are

a few points that do not fit the monotonically decreasing pattern: there is extra

mass at multiples of 10 (especially 10 and 20, but also to a lesser degree at 30,

40 and 90) and at 100. These points have relatively straightforward explanation:

while adding up the 20 numbers, subjects made a mistake in remembering the first

digit of the cumulative sum, while correctly remembering the second digit of the

cumulative sum.

278



Third, the distribution has a very long tail; slightly more than 10% of ob-

servations corresponds to mistakes larger than 30, and we even observe several

player-rounds with mistakes above 100; the maximum mistake (not shown in the

figure) is equal to 199. The average mistake made by players varies from 0 all

the way to 58.5, with a median of 9.25, and a quartile range from 4.35 to 16.36.

This clearly shows that there is sufficient variation between the subjects, allowing

us to use within-subject estimation. Finally, looking at the mistake by round, we

can see that, while the average/median of mistakes initially decreases with round,

there seems to be little learning after the fourth round.
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Figure 4.3: Distribution of mistakes

Notes: The bins in the top and middle graphs have a width of 1. The symbols in the bottom
graph correspond to mean (black circle), median (black line), confidence interval for median
(shaded blue area), 1st and 3rd quartile (box edges), and staples.
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Since the AAM of participants in the individual game will play a crucial role

in our analysis, we also present information about this quantity. Figure 4.4 shows

the histogram of AAMs together with basic statistics. The individual game AAM

has a mean of 9.68 and median of 6.3, and varies substantially across participants,

with quartile range of 13.3. This large variation is important for us, because our

hypotheses is that participants will react to variations in AAM; if the variation

were too low, then our experimental design would be flawed.

Finally, in Figure 4.5, we also show the distribution of time elapsed before the

participants submitted their report: the left panel shows time in all player-rounds,

while the right panel shows median time by player. The aggregate distribution

shows that the most typical time spent is close to our time limit. Nevertheless,

almost half of reports are submitted at least 10 seconds before the time limit, with

an additional quarter submitted in the last 10 seconds. Finally, in a large majority

of rounds, players did spend a substantial amount of time on the task: only in 5%

of the player-rounds do we observe players spending less than 30 seconds. All

this suggests that the participants had a sufficient amount of time to complete the

attention task, but that the amount of time was not excessive. In other words, the

conditions facing participants when solving our attention task should approximate

the conditions of the real world with moderate pressure to economize on attention

time.

While the aggregate numbers approximate well the median time spent aggre-

gated by players, it is important to point out that we had several participants who

spent very little to no time on the attention task. These players with low median

time also make very high mistakes on average: the average mistakes of the three

players who spent a median time of less than 30 seconds is 5th, 6th and 11th high-
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Figure 4.4: Distribution of AAM in the individual game

est. Moreover, among these players we observe clearly non-random sequences of

reports: for example, one of these player reported a sequence of 415, 415, 420, 415,

415 during the individual game. This leads us to conclude that these participants

are not properly motivated during the experiment.

We also collected demographic information on our participants. We asked

about age, gender, nationality, knowledge of English, highest level of completed

Figure 4.5: Distribution of time spent on the attention task
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education, study major and whether they had completed a course in statistics.

Table 4.1 presents various summary statistics of these characteristics. The typical

participant is a male economics major with a bachelor’s degree and good knowledge

of English, who had previously completed a course in statistics.

Table 4.1: Summary statistics for demographic information.

Characteristic Mean Median Std. dev. 1st quartile 3rd quartile
Age 23.34 22 3.38 21 24
English 8.49 8 1.23 8 10

category 0 category 1 category 2 category 3 category 4
Gender 54.47% 45.53% - - -
Education 40.07% 45.7% 14.23% - -
Major 77.69% 6.15% 1.82% 2.33% 12.01%
Statistics 82.7% 17.3%

Notes: "English" is self-assessed understanding of English, on a scale 0 (worst) to 10
(best). The coding of categorical variables is: gender (male=0, female=1); education
(high school=0,bachelor=1,master=2)’ major(economics=0, computer science=1, law=2,art=3,
other=4); statistics (yes=0,no=1)

4.4 Hypotheses, empirical strategy and results

Outcomes. We are mainly interested in how subjects vary their attention. Un-

fortunately, we cannot measure attention directly, and hence we need to use some

proxy variable for attention effort. A natural proxy is the size of the actual mis-

take made by the subject in the given round: mistake is (stochastically) related

to the amount of information processed, which we refer to as effective attention;

effective attention in turn depends on attention effort and attention costs of a

subject. Even though a mistake made is a random variable conditional on effec-
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tive attention, on average the mistake and effective attention (and hence attention

effort) should be negatively related: a larger mistake should be a result of a lower

attention effort.

We are also interested in how subjects reflect on variations in the expected

precision of information they have when taking action: the same signal realizations

should lead to different actions if are of different (expected) precision. If the

expected precision is higher, according to the standard theory of decisionmaking

under uncertainty, the Receiver should take an action closer to the prior mean.

Therefore, we analyse whether participants’ reports are closer to the prior when

the (expected) precision of the signal is lower.

Independent variables. Our main interest is how subjects respond to varia-

tions in inattentiveness of their partners, i.e., changes in their partner’s attention

costs. We proxy attention costs by a subject’s AAM in the individual game, which

is our key independent variable. Individual game AAM of a subject measures the

average mistake in an individualistic environment, i.e., a situation in which the sub-

ject did not have to consider the behaviour of other subjects, but was concerned

only with obtaining as precise information as possible. In such an environment,

the AAM should reflect only the attention costs of a given subject for given task,

and hence we treat it as a proxy variable for such attention costs. Of course, AAM

is a good proxy for attention costs only for our specific task, but this is not a

problem for our empirical analysis. Alle we need for our empirical strategy to be

valid is simple regularity of subject beliefs: we need them to believe that higher

individual game AAM suggests on average less precise signals during the main

game.4 We view this as a very natural belief, as the opposite implies that subjects

4Note that this is indeed true in our data as discussed in the Appendix 4.B in Appendix.
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expect reversals in performance between the individual and main games. This also

means that our empirical strategy should be valid even in the face of fatigue or

learning: we do not require attention costs to be constant throughout the game;

we simply require that subjects do not expect other subjects to become fatigued

or to learn faster than other subjects. Given that AAM is the only information at

their disposal, such expectations seem implausible to us.

In rest of this section, we discuss the hypothesis and results that show how subjects

systematically adjust their attention and choices in response to changes in their

partner’s attention costs. The first subsection describes the hypotheses, empirical

strategy and results relating to changes in attention in response to changes in the

effective attention of their partners. The next subsection focuses on how subjects’

adjust their action choices in response to changes in their and their partner’s

attention costs. Both sections use within -subject empirical analysis.

4.4.1 Variation in attention

Hypotheses. Our expectations about subjects’ reactions to variations in their

partner’s attention characteristics and effort are based on our related theoretical

work (Plazonja 2018). There, we show that in our specific environment5 Play-

ers’ attention should vary with their partner’s effective attention in an intuitive

way: since in a cooperative situation both players’ effective attentions are strategic

complements, players should decrease their attention effort when their partners’

effective attention is lower. The intuition for this follows. From the Sender’s per-

spective, a Receiver that processes the Sender’s signal with more noise decreases
5The specific environment is characterized by quadratic loss function and Gaussian prior and

signals, as well as the entropy loss function.
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the benefit the Sender derives from his attention; it is equivalent to the situation

when the Sender would take action himself but would make mistakes. With lower

benefits from attention and unchanged attention costs, his optimal attention effort

decreases. How do Senders know how much noise a particular Receiver will add

to his signal? While they cannot know how much attention effort the Receiver

will exert, they can form an estimate of how much noise the Receiver will add

on average to his signal simply by knowing the Receiver’s AAM in the individual

game, which is correlated with the underlying attention costs of Receiver. This

yields our first hypothesis:

H1S: Senders pay less attention when facing a Receiver with higher attention

costs.

From the Receiver’s perspective, what matters is the noisiness of the Sender’s

signal. If the Sender’s signal contains more noise, then for a given level of attention

the Receiver learns less about the state of the world. Again, with lower benefits

from a given level of attention and unchanged attention costs, the optimal reaction

is to pay less attention. How do Receivers know how noisy the Sender’s signal is?

As in the case of Senders, Receivers can form beliefs about the noisiness of the

signal provided by the Sender based on the Sender’s individual game AAM. This

yields the following hypothesis:

H1R: Receivers pay less attention when facing a Sender with higher attention

costs.

Of course, we can test the hypothesis H1 for both roles together, yielding

following pooled hypothesis:
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H1P: Players pay less attention when facing a partner with higher attention costs.

We test these hypotheses using several different empirical models. The un-

derlying assumed data-generating process links the observed absolute mistake of

a given player in a given round (AM) to (i) the player’s characteristics; (ii) the

response to partner’s attention costs proxied by his/her individual game AAM;

(iii) round effects. The general form of the data-generating process is:

AMx
i,t = αi + βxf(AAMp

t , AAMi) + δt + ϵxi,t (4.2)

where i identifies an individual subject, t stands for the round, p stands for the

partner, and x is a role (S or R, for the Sender and Receiver). Meanwhile, δt is a

vector of controls for the experiment round. The use of general functions should

stress the fact that we will also consider non-linear models.

Before proceeding to the regression analysis we provide a basic statistical anal-

ysis. We divide the observations of absolute mistakes made by a subject into two

groups, one corresponding to rounds where partners’ AAM falls into the 1st quar-

tile of all AAMs, and one where it falls in the 4th quartile. Roughly speaking,

the two groups correspond to rounds in which players were paired with partners

with very low and very high attention costs, respectively. We then compare the

two groups of mistakes made, investigating whether they are statistically differ-

ent. Table 4.2 shows the mean, median, and standard deviation of the groups of

mistakes. The table clearly shows that the two groups are statistically different

in terms of all three characteristics, with the directions of comparison always as

expected. Figure 4.6 provides comparison in terms of whole distribution of mis-

takes. Clearly, the distribution mass shifts to the right when moving from rounds
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with relatively low partner AAM to rounds with relatively high partner AAM.

Moreover, the difference between the distributions is clearly statistically signifi-

cant. The figure also illustrates that the effect is in terms of replacing very small

mistakes by medium-sized mistakes. Overall, the statistical analysis suggests a

clear negative effect of a partner’s AAM on subjects’ attention effort, which we

quantify in the following sections.

Table 4.2: Comparison of groups of mistakes

1st quartile 4th quartile P-value
Mean 7.2 13.3 0.0029***

Median 0.0 3.0 <0.0001***
Std. Dev. 16.9 22.2 0.0003***

Notes: Rows indicate a metric, while columns indicate whether partner AAM belonged to the
1st or 4th quartile. Last column shows p-value for test of equality between the two groups.

Figure 4.6: Comparison of conditional distribution of mistakes

Notes: Blue color is used for mistakes made when the partner AAM belong to the 1st quartile.
Red color is used for mistakes made when the partner AAM belong to the 4th quartile.

Main specifications. The H1 hypotheses relate to coefficient β. Table 4.3

reports the estimated coefficients from several empirical models, together with

288



standard errors, t-statistics. For each model, we show the results aggregated for

all Senders and all Receivers separately, and results aggregated across roles. We

present the individual role results to avoid cross-contaminating the estimates with

possibly different behaviour in different roles. For some of the models we also

present results from two samples: one set the full available sample, and one from

a restricted sample.6

6We restrict the sample in several ways. First, we know that DGP does not (at least locally)
hold for subjects who do not make any mistakes throughout the experiment, or who almost
never spend a sufficient amount of time on the attention task. The most likely explanation for
the former is that subjects are motivated beyond the experimental payoffs; the latter subjects
seem not to be motivated enough. We operationalize the former concept as making any mistake
in at most 2 rounds out of 20 rounds observed; there are 4 such subjects, making it clear that this
operationalization is not too lenient. As for the subjects who never spend a sufficient amount of
time on task, we identify them as players for whom the 3rd quartile of time spent on the task is
lower than one third of the maximum allowed time (25 seconds). There three such subjects.
In addition to dropping several subjects, we also drop particular type of observations: those that
correspond to mistakes of 10,20 and 100; altogether, there are 99 such observations. As discussed
above, the extra mass at mistakes equal to these values suggests that (at least some of) these
mistakes are unlikely to be result of lower attention effort, given that subjects kept correct count
of the second digit. By including these observations, we potentially risk biasing our results. If
we drop them, the only danger is lower power in testing our hypothesis.
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Table 4.3: Coefficient estimates

# Model Player Sample Aggregation
effects Senders Receivers All

1 Mixed effects Random Restricted
0.35 0.14 0.24

(0.11) (0.09) (0.07)
[3.10]*** [1.56] [3.37]***

2 Fixed effects Fixed Restricted
0.34 0.13 0.24

(0.12) (0.10) (0.07)
[2.94]*** [1.41] [3.16]***

3 Mixed effects Random Full
0.26 0.09 0.18

(0.09) (0.06) (0.06)
[2.82]*** [1.36] [3.08]***

4 Fixed effects Fixed Full
0.26 0.09 0.17

(0.10) (0.07) (0.06)
[2.67]*** [1.29] [2.89]***

5 Random Restricted
0.34 0.14 0.23

Mixed effects (0.11) (0.09) (0.07)
with controls [3.10]*** [1.53] [3.20]***

6 Tobit None Restricted
0.82 0.46 0.70

(0.23) (0.23) (0.19)
[3.53]*** [1.99]** [3.78]***

7 Robust LS None Restricted
0.14 0.12 0.12

(0.02) (0.02) (0.01)
[6.08]*** [6.44]*** [8.90]***

8 None Restricted
0.12 0.07 0.10

Quantile reg. (0.04) (0.03) (0.02)
(median) [3.25]*** [2.70]*** [4.27]***

9 None Restricted
0.91 0.39 0.56

Quantile reg. (0.32) (0.21) (0.16)
(90th percentile) [2.84]*** [1.82]* [3.47]***

10 Ordered logit None Restricted
0.033 0.033 0.033

(0.009) (0.009) (0.006)
[3.86]*** [3.67]*** [5.35]***

Notes: The table displays estimates for βx in equation (4.2). It reports coefficients, standard
errors (in round brackets), and the t-statistics (in square brackets). Stars indicate significance
at the usual 10%,5% and 1% levels. All models include fixed round effects (except model 10).
Standard errors are clustered at period level for all models except for models 6 and 7, where we
use the Huber Sandwich method, and models 8 and 10, where we use the Huber/White method.
All models include session dummies (except models 2,4 and 10).
We summarize other regression statistics here. The unrestricted sample has 895 observations (96
players with up to 10 rounds), while the restricted sample has 762 observations (89 players with
up to 10 rounds). The R-squared is between 0.03 and 0.05 when individual fixed effects are not
included, and between 0.25 and 0.4 when they are included.
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The first line of the table reports the results from our most basic model: a linear

model with cross-sectional (individual) random effects and round fixed effects.7

The results strongly support hypotheses H1S, with coefficient 0.35 being both

statistically (t-stat=3.2) and economically significant. The coefficient indicates

that Senders mistakes were on average 0.35 higher when they faced players with

AAM higher by 1. Since the quartile range of AAM is 14, then an increase in

AAM from the first to third quartile translates into an average increase in absolute

mistakes of 4.9. In terms of predicted payoffs, this corresponds to decrease in payoff

by 98CZK (245CZK vs 343CZK). In contrast, the results for Receivers provide

substantially weaker evidence for hypothesis H1R: even though the coefficient is

positive as expected, it is not statistically significant (t-stat=1.5), and the size of

the coefficient is less than one third of the coefficient for Senders; the coefficient

is too small to be truly economically meaningful. When we pool observations

for Senders and Receivers together, we obtain a coefficient that is somewhere in

between the coefficients for Senders and Receivers, and which remains statistically

significant at a high level. Therefore, we conclude that there is sufficient evidence

to support hypothesis H1P.

7The use of individual random effects (as opposed to fixed effects) is warranted because indi-
vidual fixed effects cannot by design be correlated with the other independent variables in our
environment: the only other variables in the model at this point are the partner’s attention costs
and round fixed effects, variations in which clearly cannot be correlated with subject character-
istics.
The standard errors are clustered at period level. The use of period-clustered (cross-section
robust) standard errors is motivated by our belief that correlation across periods for a given
individual is more likely than correlation across individuals within a round: the performance
of the individual player in a particular round is quite likely to have effects on performance in
later rounds, causing correlation across periods for the individual; correlation between the per-
formance of different individuals within a given round (beyond the fixed effects of rounds, which
are captured by the inclusion of round fixed effects) would require regular session-specific shocks
affecting all players. For results with alternative specifications for covariance estimator; see
appendix 4.A.1.
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We also present results from a model with fixed effects for both cross-sectional

and time dimensions (see line 2). The results further support hypothesis H1S, with

coefficients almost unaffected in size or significance. Meanwhile, the coefficient for

Receivers remains small and insignificant. The pooled estimate is again in between

the two coefficients, and is unchanged from the original model. To further check

the robustness of our results, we also estimate models which use a full set of de-

mographic controls we collected on the subjects, instead of using individual fixed

effects. These controls include participant behaviour in the additional games from

section 4.2.4, so that we are potentially controlling for altruistic and other charac-

teristics. The results are in line with those from previous models, with coefficients

and their significance almost unchanged (see line 5). This is encouraging, given

that we increased the number of estimated coefficients from to 11 to 29.

The results in lines 1 and 2 of Table 4.3 use the restricted sample. When we

use the full sample, the coefficients generally become smaller and less significant

(see lines 3 and 4 of Table 4.3), but the effect is not large and the coefficients are

still significant at the usual significance levels. Given this and the problematic

nature of the excluded observations, we believe that coefficient estimates from the

restricted sample reflect the actual behavior of subjects more closely, and so in the

rest of this chapter we will report results from models using the restricted sample.8

All previous specifications postulate a linear relationship between partner AAM

and mistake made by player in a given round. However, such a linear relationship

might not be globally valid. Specifically, some subjects might pay full attention

(i.e., exert maximum attention effort) for a range of partner attention costs, while

8Appendix 4.A.2 presents results from full and restricted samples side by side for all the
models from Table 4.3, showing that the conclusions we draw are broadly unaffected.
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still lowering their own attention in response to increases in their partners’ at-

tention costs as long as these are high enough. In this case, we would observe a

positive relationship between size of mistakes made and partner attention costs on

a range of values for partner attention costs, but the observed relationship would

break down below a particular threshold.9

We account for this possibility by estimating a standard Tobit model with

left censoring at 0, corresponding to the fact that variance of signal noise cannot

be negative (i.e., at best, subjects can make zero mistakes on average). Line 6

in Table 4.3 shows the results: the coefficients are greatly increased, while the

statistical significance levels either remain the same or also increase. Therefore,

accounting for the censoring changes our conclusions about the statistical and

economic significance of the effects. First, the coefficient for Receivers also becomes

(borderline) significant. Second, the implied effects are very large for Senders, and

meaningful for for Receivers and for pooled observations: the effect for Senders,

Receivers, and pooled effect are 189CZK, 52CZK and 120CZK.

Should GLS or Tobit results be trusted more? Almost half of our observa-

tions are potentially affected by censoring due to corner solution issues. Due to

the positive relationship between our dependent and main independent variable,

not accounting for corner solutions leads us to believe that the response of the

dependent variable (mistake made) to change in the independent variable (part-

ner AAM) is smaller than it actually is. For this reason, we consider the results

from the Tobit model as our main results. It is worth highlighting the difference

between the predicted relationship when using the Tobit model and the linear

9This is an example of a corner solution model. Appendix 4.D provides a graphical illustration
of corner solution outcomes in our situation.
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fixed effect specification. Figure 4.7 shows the predicted values for both models,

setting round and individual fixed effects to zero. We show both the prediction

for the latent variable of the Tobit model and the expected dependent variable.

The former shows the true effect of partner AAM on average mistakes, while the

latter shows the effect on the conditional expected value we should observe. The

figure clearly shows how the Tobit predicts a significantly steeper relationship, and

also how the relationship does not hold below a particular level of partner AAM.

Notwithstanding, the observed dependent variable is of course expected to be pos-

itive everywhere, and, interestingly, is almost identical to the value predicted from

the fixed effect model when partner AAM is 0.

Robust specifications. The empirical models presented in this subsection

on main specifications all use least squares estimation, and there is the potential

for the results to be driven by outlier observations. Moreover, our data have

clear potential for such issues, since the distribution of mistakes is one sided (i.e.,

mistakes can be only positive) and it has a long tail corresponding to relatively

large mistakes, as evidenced by Figure 4.3. It is possible that observations with

such large mistakes could randomly drive our results, something we investigate

using alternative estimation methods.

Before discussing results from alternative estimation approaches, it is worth

highlighting that the presence of large mistakes is in some sense expected. The

main specifications postulated a continuous (linear) relationship between attention

of a given subject and partner attention costs. However, subjects might not be

able to adjust their attention in a perfectly continuous way. Instead, they might

be limited to choosing between a finite number of different attention levels. An

extreme example would be when they switch between paying maximum attention
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Figure 4.7: Predicted values for GLS and Tobit models

and no paying any attention at all. If this is the case, we would expect to see a

distribution that is somewhat binomial at the individual level, which in aggregation

would naturally lead to a distribution with a relatively large number of observations

that look like outliers. However, these observations would not really be outliers,

but rather would correspond to rounds when subjects choose to pay no attention.

In principle, this kind of behaviour would still support the hypotheses that agents
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change their attention in response to inattentiveness of their partners.

Our first approach is to use a robust least squares (RLS) estimation, which

replaces the quadratic loss function of least squares with an alternative function

that gives less weight to outliers. Line 7 shows coefficient estimates when using

such estimation method. The coefficients are positive and strongly statistically

significant for all three levels of aggregation. On the other hand, the coefficients

are reduced when compared to the estimates we obtained from least squares es-

timation, so that they barely remain economically significant. Similarly to our

Tobit model results, but in contrast to results from least squares estimation, the

coefficient is clearly statistically significant even for Receivers.

When estimating robust least squares, one needs to make somewhat arbitrary

choices of weighting (and scaling) functions, with different functions yielding poten-

tially significantly different estimation results.10 An alternative estimation method

that uses less arbitrary weighting function and is still robust to outlying observa-

tions is quantile regression. The coefficient estimates from the median regression

are presented in line 8 of Table 4.3. Encouragingly, we obtain coefficients that

are also significant for all three roles, and similar in size to RLS estimation.

Based on the RLS and quantile regression results, one could conclude that while

subjects clearly react to partner AAM in expected ways, the size of the reaction

is relatively muted and bordering on economic insignificance. However, looking at

other quantiles than median suggests that this conclusion is too simplistic. First

consider the estimated effect on the 90th percentile in line 9 of Table 4.3: not only

10The table reports results based on the Cauchy weighting function. As Appendix 4.A.1 shows,
in our case the size of the coefficients obtained from robust least squares is somewhat sensitive
to this choice, with the reported estimates in line 6 somewhere in the middle of the possible
coefficient estimates.
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are all the coefficients still significant, they are 5 to 7 times larger than the median

effects, and more than twice as large as mean effects estimated by least squares

estimation. This suggests that the conditional mean and median understate the ef-

fects for some part of the distribution. To provide further evidence for this feature

of the data, the top panel of Figure 4.8 shows coefficient estimates at all deciles.

Clearly, the effect of partner AAM increases with the considered quantile, and is

significantly positive for all quantiles at or above median and for each level of ag-

gregation. The bottom panel of Figure 4.8 shows the reason for this heterogeneity

across quantiles: our data are clearly heteroskedastic. While mistakes are concen-

trated close to zero (with occasional large values) when partner AAM is low, they

are distributed more widely when partner AAM is high, with only rare low values.

This feature of the data is expected, since lower attention leads to increases in both

mean and variance of mistakes made. The figure also shows different regression

lines corresponding to mean and different quantiles, demonstrating how the effect

of partner AAM is increasing with the considered quantiles.

There are two possible interpretations of the heterogeneity in quantile effects.

First, it might reflect genuine heterogeneity across participants, with some partic-

ipants reacting more strongly to being matched with an inattentive partner, and

some reacting less (or not at all). A standard regression, which estimates effects

on conditional mean will estimate the effect averaged across these two behavioural

types. In contrast, the conditional 90th percentile of mistakes is likely driven only

by the latter behavioural type. Under this interpretation, the results strongly sup-

port our hypothesis for around a quarter of our subjects, reject the hypothesis for

40% and give limited support for the rest. However, this interpretation requires
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some strong regularity on the response functions to be true.11 An alternative, more

robust explanation is: if unobserved factors - e.g., how complicated an attention

task is or how tired a subject is in a round - would suggest large mistake, the

effect of these factors would be larger if a partner has high attention costs. In

other words, an unobserved round-specific shock to individual attention costs is

amplified by the partner attention costs.

11Appendix 4.C provides two simple simulated examples, one in which the estimated coeffi-
cients correspond to actual responses to changes in AAM, and one when they do not.
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Finally, an approach similar to quantile regression is to classify mistakes relative

to other mistakes made by a player. For each player, we classify mistakes into

terciles according to their position in the distribution of mistakes for the particular

player. By doing this we avoid any problems with our estimates being driven by

outliers: it no longer matters how large a particular mistake is; it only matters

whether it is larger or smaller than other mistakes made by a player. We then run

ordered logit on the resulting classification, including period fixed effects. The

resulting coefficient estimates answer the following questions: Are player’s mistakes

ordered with respect to partner AAM? Does the probability of making a larger

mistake increase with partner AAM? The last line of Table 4.3 shows the coefficient

estimates, which strongly support our hypothesis, with coefficients being strongly

statistically significant for all levels of aggregation. Since interpretation of marginal

effects in ordered models is complicated we present the predicted probability of

each tercile as a function of partner AAM. While the probability of first tercile

mistake is almost 70% when partner AAM is zero, it drops to less than 30% when

partner AAM is at maximum. Correspondingly, the probability of the third tercile

increases by 31%. This clearly highlights that the coefficient estimates assign

relatively large effects to partner AAM.
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Figure 4.8: Quantile regression coefficients and lines
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Figure 4.9: Effect of partner AAM on a probability of mistake belonging to
different terciles
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Individual coefficients. The structure of our data also allows us to estimate

individual coefficients β. Given the number of participants, we present only a sum-

mary of the results in Table 4.4. Three fifths of individual coefficients are positive,

with the majority of those being significant at the 1% level; meanwhile, coefficients

with a negative sign are mostly insignificant. Together, this makes positive and

significant coefficients the largest group, more than three times as large as group of

negative and significant coefficients. We can conclude that the estimated positive

and significant relationships from table 4.3 are results of behaviour observed in the

majority of participants, giving further support to hypothesis H1.

Table 4.4: Individual coefficients

Significance
< 1% 1-10% > 10%

Si
gn

+ 33 4 20
[37%] [5%] [22%]

- 10 5 17
[11%] [6%] [19%]

Having individual coefficients also allows us to analyse whether they are related

to either demographic characteristics or to participant behaviour in one of the

three small games administered at the end of the experiment (CRT, dictator game,

and centipede game). Given the relatively small sample, we start with a simple

correlation analysis. Out of demographic characteristics gender, education, some

majors and having taken a statistics course seem to be significantly correlated with

the individual regression coefficients, so we include only those in further regression

analysis. We also include behaviour in the dictator and centipede games, and

answers to CRT. Table 4.5 shows results from 4 regressions: first two columns

show results for models regressing the level of the individual coefficient on our set
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of explanatory variables, while the latter two show results for models regressing

a dummy variable for positive coefficient on our set of explanatory variables; in

each case we present results with and without information about education and

the major of participants.

The results offer a few interesting conclusions. First, the regressor most strongly

associated with the level of individual coefficients is the answer to the first CRT

question, but the direction is opposite of what we would expect: the correct answer

leads to a lower coefficient, so that participants who apply reflection tend not to

react as strongly to partner AAM. One way to interpret this is that the results

we observe reflect the behavior of subjects who are reacting based on intuition

rather than on optimization, but this conclusion would require further analysis.

Second, a course in statistics has a positive and significant association with both

the level of the individual coefficients and the probability that they are positive, in

line with what we would expect. Lastly, female participants have lower coefficients

and are more likely to have negative coefficients than males, with the latter being

statistically significant at the 5% significance level. It is also noteworthy that play

in the dictator game is not related to behaviour in the main experiment. This

suggests that altruistic considerations do affect how subjects were behaving in the

main experiment. Finally, note that the demographic information included in

the regressions can explain a relatively large portion of variations in individual

coefficients.

Table 4.5: Regression results for individual regression coefficients

Level (small) Level (full) Prob. (small) Prob. (full)

Constant
0.2 0.21 0.7 0.59

(0.23) (0.22) (0.18) (0.21)
[0.89] [0.94] [3.91]*** [2.85]***

(continued on next page)
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Table 4.5, continued
Level (small) Level (full) Prob. (small) Prob. (full)

Amount given in dictator
0 0 0 0

(0) (0) (0) (0)
[1.50] [1.71]* [1.40] [1.32]

Correct CRT1
-0.46 -0.52 -0.08 -0.1
(0.18) (0.2) (0.11) (0.11)

[-2.53]** [-2.66]*** [-0.78] [-0.90]

Correct CRT2
-0.04 -0.14 -0.02 -0.09
(0.17) (0.17) (0.14) (0.13)
[-0.22] [-0.81] [-0.18] [-0.68]

Correct CRT3
0.24 0.5 -0.1 0.03

(0.21) (0.25) (0.14) (0.15)
[1.15] [2.03]** [-0.71] [0.19]

Stop in centipede
-0.19 -0.22 -0.1 -0.12
(0.18) (0.17) (0.12) (0.12)
[-1.06] [-1.28] [-0.83] [-1.02]

Course in statistics
0.36 0.45 0.2 0.36

(0.17) (0.16) (0.12) (0.14)
[2.11]** [2.86]*** [1.63]* [2.57]**

Female gender
-0.43 -0.45 -0.29 -0.3
(0.16) (0.16) (0.1) (0.11)

[-2.63]** [-2.78]*** [-2.84]*** [-2.81]***

Bachelor education
-0.26 -0.11
(0.19) (0.12)
[-1.37] [-0.94]

Master education
0.02 -0.03

(0.28) (0.18)
[0.07] [-0.18]

Computer science major
-0.04 0.15
(0.17) (0.22)
[-0.24] [0.67]

Law major
0.79 0.17

(0.24) (0.21)
[3.33]*** [0.82]

Arts major
0.56 0.79

(0.26) (0.19)
[2.19]** [4.18]***

Other major
-0.52 -0.1
(0.27) (0.16)
[-1.91]* [-0.62]

R-squared 0.15 0.28 0.1 0.17

Summary of results. This section shows that subjects systematically adjust

their attention effort in response to variations in partner attention costs: when
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partner attention costs are higher, decreasing the average precision of his/her sig-

nal, subjects react by lowering their attention, as predicted by rational inattention

theory. This effect is both statistically and economically significant, and results

from quantile regression suggest that it increases when other factors make paying

attention harder. Overall, this section contributes to existing literature on ratio-

nal inattention by showing that experimental subjects adjust their attention not

only in response to changes in environment, but also in response to changes in

their teammates’ characteristics, demonstrating that the theory also has a bite in

interactive situations.

4.4.2 Action choice adjustment

We also study how agents adjust their action choices in response to variations in

their own and partners’ attention costs. The expectations about behaviour come

from standard theory of decision-making under uncertainty. Optimal Bayesian

updating suggests that action in our game should be equal to a weighted average

of the signal value and the prior mean, i.e., subjects should shade their signals

towards the prior mean:

A = ω · π + (1− ω) · SR (4.3)

where SR is the Receiver’s signal and π is the prior mean.

The weight put on the prior mean, which we will refer to as the degree of

shading towards the prior, should depend on the noisiness of the signal, with a

noisier signal leading to more shading, ceteris paribus, i.e., for given signal re-

alization. Crucially, in our environment, the noisiness of the signal depends on
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both Sender’s and Receiver’s effective attention, so on the attention costs of both

players. This means we can study whether players behave in line with predictions

from standard Bayesian theory by analyzing whether Receivers vary the degree of

shading towards a prior mean in response to variations in both partners’ attention

costs. Specifically, Bayesian theory predicts that we should expect that higher

attention costs lead to higher weight on the prior mean, yielding the following set

of hypothesis.

H2S: Receivers put more weight on the prior mean when Sender’s attention costs

are higher.

H2R: Receivers put more weight on the prior mean when their attention costs are

higher.

It would seem that we could test these hypotheses by calculating the weights

based on observed actions according to equation (4.3)12 and then regressing them

on our variables of interest. However, we have data only on Receivers’ actions,

not on Receivers’ signals. We could potentially use the fact that Receiver signals

should on average equal the Sender signal and proxy the former by the latter.

However, this approach has the drawback that the noise introduced by using a

proxy variable, combined with the division operation, yields series that are unfit

for such analysis.

Instead, we focus on studying the distance between actions taken by the Re-

ceivers and signals provided by Senders. Since Receiver signals are equal to Sender

signals plus noise due to imperfect attention, we can express SR as the sum of SS

and unobserved error coming from a Receiver’s inattention ϵR. Substituting for

12With knowledge of A, π and SR we can express ω as A−SR

π−SR .
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SR = SS + ϵR in (4.3) and rearranging yields following expression:

A− SS = (π − SS) ∗ ω + (1− ω)ϵR (4.4)

Our hypothesis is that ω depends on the Sender and Receiver attention costs,

ω = g(ACS, ACR). If we approximate this general function by a linear function,

ωi,t = γ0 + γ1AC
S + ACR, and proxy attention costs by AAM as before, then we

can run the following regression:

Ai,t − SS
i,t = γ0 ∗ (π − SS

i,t) + γ1 ∗ (π − SS
i,t) ∗ AAMS

i,t + γ2 ∗ (π − SS
i,t) ∗ AAMR

i,t + ηi,t

(4.5)

where ηi,t is the composite error term, reflecting both the effect of the Receiver’s

inattention error, (1− ω)ϵR, and random noise.

Establishing that γ1 and γ2 are positive would support our hypotheses H2S

and H2R, which state that ω is increasing in ACS and ACR, respectively. Unfor-

tunately, ηi,t is clearly correlated with our explanatory variables, because it also

includes ω and hence AAMS
i,t and AAMR

i,t, which will bias our results. Neverthe-

less, the sign of the bias still allows us to draw some conclusions. The correlation

between the included regressors and the error term is clearly negative, because

ω enters η with negative sign. Since our hypothesis is that Receivers put higher

weight on a prior mean when attention costs are higher, then establishing that

γ1 and γ2 are positive despite the negative bias provides clear-cut support for our

hypotheses.

First line in Table 4.6 provides results for regression (4.5). The estimated γ1

coefficient is marginally statistically significant, giving some support to hypothe-
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sis H2S. Nevertheless, the coefficients are relatively small, so that the estimated

(downwardly biased) effect of Sender attention costs on the degree of shading to-

wards a prior is estimated to be rather small. Moreover, if we drop observations

where the Receiver choose a prior mean, likely corresponding to no attention effort

on his part, the effect becomes smaller and insignificant, as line 2 shows. Mean-

while, the estimated coefficient γ2 does not support hypothesis H2R, with the

coefficient negative and insignificant.

Given the problem with the previous approach, we use an alternative, less direct

approach, to study shading towards a prior mean. The above approach studies

the distance between a Receiver action and prior mean compared to the distance

between Sender signal and the prior mean, relating it to the (expected) noisiness

of a Sender signal. Here we instead study the probability that the Receiver’s action

is closer to the prior than the Sender’s signal. In a sense, the previous approach

answered whether degree of shading down varies with the attention costs of both

players. Here, instead, we study whether the probability of shading down increases

with the attention costs of both players.

The Receiver’s signal is equally likely to be above or below Sender’s signal.

However, as discussed above, if Receivers are shading down, the Receiver’s action

should be more likely to be closer to the prior than further away. More importantly,

since the shading down should be stronger when attention costs of the Sender or

the Receiver are higher, then the probability of being closer to a prior mean should

be increasing in these attention costs. To study whether this is true, we would

ideally link probability of shading down to attention costs in the following model:

P (shadei,t = 1) = h(ACS, ACR) (4.6)
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Table 4.6: Coefficient estimates for shading down behaviour

# Model Player γ1 γ2
effects

1 Distance Fixed
0.0038 -0.0023

(0.0019) (0.0024)
[1.96]** [-0.96]

2 Distance Fixed
0.0028 -0.0021
(0.002) (0.0024)

(restricted sample I) [1.40] [-0.90]

3 Probability: LPM Random
0.007 0.0018

(0.002) (0.0026)
[3.53]*** [0.68]

4 Random
0.0056 0.0025

Probability: LPM (0.0022) (0.0026)
(restricted sample I) [2.50]*** [0.98]

5 Random
0.0089 0.0017

Probability: LPM (0.0024) (0.0026)
(restricted sample II) [3.77]*** [0.64]

6 Probablity: Logit Random
0.031 0.0077
(0.01) (0.0099)

[3.06]*** [0.77]

Notes: See notes below Table 4.3 for explanation of values in the table. All models include round
and session fixed effects. Standard errors are clustered at period level for all models except model
4, where we use Huber/White robust covariances.
We do not report other regression statistics. We use the full available sample with the exception
of 3 players with low median time spent (see footnote 6), yielding 453 the Receiver actions. The
R-squared is around 0.05 for models with individual random effects and fixed period effects, and
around 0.18 for models with individual fixed effects and fixed period effects.

where shadei,t = 1 is defined as |Ai,t − π| < |SR
i,t − π|. However, since we do

not observe SR we need to use SS as before, so that shadei,t = 1 will be proxied

by |Ai,t − π| < |SS
i,t − π|, i.e., the distance from the prior being smaller for the

action than for the Sender signal. Assuming a linear relationship, we estimate the
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following regression model:

P (shadei,t = 1) = γ0,i + γ1AAM
S
i,t + γ2AAM

R
i,tδt + ϵi,t (4.7)

The results are presented in the bottom of Table 4.6. The results give qualified

support to hypothesis H2S: the coefficient on partner AAM is positive and strongly

statistically significant across different models. The coefficient in the linear prob-

ability model is 0.007. This coefficient implies that the probability that Receiver’s

action is closer to a prior than the Sender’s signal increases by 0.7% for one unit

increase in Sender AAM, translating to an increase in the probability of shading

of 9.8% when partner AAM increases from the first to 3rd quartile.

In addition to regression results, we also provide classifications of actions con-

ditional on the Sender AAM belonging to the 1st or 4th quartile. Figure 4.10

shows that the conditional classifications are very different, with the probability

of being closer to the prior being higher by 28% in the latter group. Overall, we

can conclude that Receivers are reacting to higher Sender AAM by shading down

more or with higher probability.

Meanwhile the results are not supportive of hypothesis H2R, with coefficient

being small and insignificant. However, this conclusion is complicated by the fact

that individual AAM is potentially correlated with other individual unobserved

characteristics affecting the tendency to shade down, and hence the coefficient is

potentially biased.

We check our results by estimating several related models. First, as before,

we drop observations when the Receiver takes an action equal to the prior mean,

to make sure that it is not only this extreme behaviour driving our results. The
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Figure 4.10: Classification of actions by quartile.

main coefficient in line 3 is somewhat smaller and less significant, but remains eco-

nomically and statistically significant. Second, using the absolute value distance

to the prior mean creates a non-linearity at the prior mean which might influence

our results. To eliminate this potential problem, we restrict our attention to ob-

servations where the Receiver’s action lies in the same direction from the prior as

Sender’s signal. Model 4 shows that the coefficient and its significance actually
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increase.13 Finally, we use a logit rather than a linearity probability model. The

γ1 coefficient has the expected sign and is slightly more significant than in the

LPM model, but implies on average a somewhat smaller effect on the predicted

probability (8.8% compared to 9.8%). Conclusions about H2R are unchanged.

Summary of results. The results in this subsection show that Receivers

clearly take into account the noisiness of the information they obtain about the

payoff relevant variable, with their actions being closer to a prior when their in-

formation is likely to be more noisy. This comes with two caveats. First, while

the effect is statistically significant, the estimated effect is relatively small, even

though this could be caused by downward bias in our estimates. Second, the ef-

fect applies only to noise coming from partner inattentiveness; we were unable to

find any evidence that Receivers are reflecting on their own attention costs, even

though the negative result can be easily caused by multiple sources of bias.

While our positive finding is important within rational inattention literature,

it also has a bearing on literature on decision making under uncertainty. The

literature shows that subjects reflect only on their own signals, and not on the

noisiness of a signal or information about a prior distribution, which is termed base-

rate neglect (Kahneman and Tversky 1973; Lyon and Slovic 1976). In contrast,

we find that Receivers take actions closer to prior mean when their signal is likely

to be more noisy, as the theory suggests that they should. Importantly, in our

experiment, changes in noisness of the signal do not result from changes in the

environment exogenously engineered by the experimentator, but rather are the

result of variation in partners from one round to another. This distinguishes our

13The restriction eliminates 28 out of 453 observations. Note that this sample selection is likely
causing downward bias in the coefficient. We therefore take full sample estimates as the main
estimates.
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approach from existing studies on Bayesian updating, where the change in noisiness

coincides with changes in environment.

4.5 Conclusion

This chapter presents results from our experiment testing whether people react

to inattentiveness of their partners in cooperative tasks. The results strongly

support the hypotheses, showing that participants did pay less attention when

they were partnered with a player who had higher attention costs, realizing that

the effective attention of their partner is complementary in a strategic sense to

their own attention. Moreover, the subjects also internalized this soft information

about the likely precision of the information, taking actions closer to a prior when

information was less precise as Bayesian theory would suggest.

We view our results as a first step in the analysis. In our experiment the players

could only react to average measure of inattention of their partner, i.e. attention

costs, which we refer to as inattentiveness rather than inattention. In our next

experiment, we plan to also communicate to players a proxy for the partners’ actual

attention effort in a given round, so that players can also react to intention, not

only inattentiveness. In addition to studying changes in attention in cooperative

behaviour, we also plan to study whether agents change their strategic behaviour

in response to changes in the attention costs of their opponents, as in Martin

(2017a). We plan to follow the work of Martin (2017b), but to add information

about player’s partners, so that we can study changes in the behaviour of subjects

across their opponents.
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4.A Additional estimates

This appendix presents additional regression estimates, showing that our conclu-

sions are fairly robust to alternative estimation methods and model specifications.

The appendix has 2 sections dedicated, respectively, to robustness checks and ef-

fects of restricting the estimation sample.

4.A.1 Robustness checks

This appendix provides some robustness checks for our results, focusing on alter-

native estimation options, including covariance estimators, distributional assump-

tions and the weighting function in RLS.

First, table 4.7 shows estimates from a mixed effect model estimated on a

restricted sample with standard errors and t-statistics when we use other than the

period-robust covariance estimator, results for which were reported in the main

text, and are replicated in the first line of the table. In almost all cases, the

standard errors are smaller and hence the significance of the estimated coefficients

is higher, as we would expect if the errors are serially correlated.

Second, table 4.8 shows results from a Tobit model when we assume other

distributions than the extreme value distribution used in the main text. While

the coefficients are systematically and significantly lower, the significance is ei-

ther similar or higher. As argued in the main text, we believe that the extreme

value distribution is most appropriate and hence consider results based on that

distribution as the main results. The table also includes alternative estimates of

standard errors which allow for overdispersion: the results in the main text use Hu-

ber/White quasi-maximum likelihood robust standard errors, while the alternative
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Table 4.7: Standard error estimates with alternative covariance estimators

Covariance estimator Aggregation
Senders Receivers All

Period robust
0.35 0.14 0.24

(0.11) (0.09) (0.07)
[3.10]*** [1.56] [3.37]***

Ordinary (0.08) (0.07) (0.05)
[4.25]*** [2.04]** [4.59]***

Heteroskedasticity robust (0.11) (0.08) (0.07)
[3.11]*** [1.66]* [3.49]***

Cross-section robust (0.08) (0.08) (0.07)
[4.10]*** [1.74]* [3.69]***

PCSE heteroskedasticity robust (0.09) (0.07) (0.06)
[3.91]*** [1.90]* [4.24]***

PCSE period robust (0.09) (0.07) (0.06)
[3.98]*** [2.02]** [4.40]***

PCSE cross-section robust (0.09) (0.07) (0.06)
[3.80]*** [2.00]** [3.80]***

Notes: The table displays coefficient estimates (first line) together with standard errors and t-
statistics corresponding to alternative covariance estimators. The main text used period-robust
estimator reported at the top of the table.

is to use generalized linear model robust standard errors that allow for conditional

heteroskedasticity. In general, the standard errors are smaller and correspondingly,

coefficients are significant at higher levels of significance.

Finally, we present coefficient estimates obtained when we use an alternative

weighting functions in robust least squares. Table 4.9 provides estimates of coef-

ficient βx from equation (4.2) for 8 different weighting functions. The coefficient

estimates reported in main text, which were based on the Cauchy weighting func-

tion and are reported in the first line of the table, are in the middle of the range

of coefficient estimates.
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Table 4.8: Tobit estimates with alternative distribution assumptions

Distribution Aggregation
Senders Receivers All

Extreme value 0.82 0.46 0.70

Huber (0.23) (0.23) (0.19)
[3.53]*** [1.99]** [3.78]***

GLM (0.19) (0.17) (0.13)
[4.23]*** [2.66]*** [5.37]***

Normal 0.59 0.31 0.45

Huber (0.17) (0.13) (0.11)
[3.48]*** [2.37]** [4.18]***

GLM (0.15) (0.12) (0.09)
[4.03]*** [2.61]*** [4.79]***

Logistic 0.39 0.26 0.31

Huber (0.13) (0.09) (0.07)
[2.97]*** [2.94]*** [4.20]***

GLM (0.12) (0.09) (0.07)
[3.30]*** [2.82]*** [4.28]***

Notes: The table displays coefficient estimates together with standard errors and t-statistics for
alternative distributions assumptions and alternative covariance estimation methods, as indicated
in the first column. Main text used the extreme value distribution with Huber robust standard
errors reported in the first line.

4.A.2 Estimates with full sample

This section presents coefficient estimates for all estimation methods reported

in the main text, with coefficients based on restricted and unrestricted samples

side by side. The general conclusion from table 4.10 is that exclusion of our

particular observations does not alter our conclusions: the coefficients are mostly -

but not always - slightly smaller and less significant, but remain economically and

statistically significant. Encouragingly, the effect is smallest on the estimation

methods that are more robust to outlying observations, including robust least

squares, quantile regression, and ordered logit, for which the coefficients sometimes
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Table 4.9: Coefficient estimates from robust least squares

# Weighting functon Aggregation
Senders Receivers All

1 Cauchy
0.137 0.117 0.122

-0.023 -0.018 -0.014
[6.08]*** [6.44]*** [8.90]***

2 Bisquare
0.071 0.12 0.10

-0.037 -0.03 -0.03
[1.92]* [3.43]*** [3.87]***

3 Fairl
0.20 0.13 0.16

-0.02 -0.01 -0.01
[11.57]*** [9.53]*** [15.66]***

4 Huber
0.17 0.12 0.14

-0.05 -0.04 -0.03
[3.65]*** [3.23]*** [4.85]***

5 Huber-Bisquare
0.078 0.119 0.098

-0.031 -0.03 -0.021
[2.54]*** [3.93]*** [4.66]***

6 Logistic
0.168 0.119 0.139

-0.045 -0.037 -0.028
[3.74]*** [3.23]*** [4.97]***

7 Talworth
0.089 0.125 0.111

-0.048 -0.039 -0.027
[1.87]* [3.19]*** [4.09]***

8 Welsch
0.156 0.128 0.132

-0.005 -0.005 -0.003
[28.72]*** [28.01]*** [39.08]***

Notes: The table displays regression coefficient estimates on partner AAM. All regressions use
a restricted sample and include round fixed effects. Player fixed effects are not included due to
the resulting large number of coefficient estimates. All estimates are based on Huber scaling and
the standard errors are based on the Huber type I method.

increase. This further supports our conclusion that eliminating the observations

is the correct way to proceed.
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4.B Individual game performance as signal

This appendix presents data on the association between the average absolute mis-

take (AAM) made by players in the individual game and the AAM in the coop-

erative game. We show that the measures are strongly correlated in statistical

significant way. This implies that subjects are correct in treating the individual

game AAM as a signal of the precision of signals in the cooperative game and

responding to it, as we have shown that they do.

Figure 4.11 shows a scatter plot of individual game AAM and informed and

uninformed treatments of cooperative game AAM, together with linear fit and

associated regression statistics. Clearly, the association between individual and

cooperative game AAM is very strong, especially when we consider only the in-

formed treatment. The slope coefficient of 0.37 indicates that cooperative game

AAM increases by 0.37 when individual game AAM is higher by 1, a high enough

effect to justify subjects’ behavior. The t-stat is 5.4 and the R-squared of 0.24 in-

dicates that we are able to explain 24% of the variance in cooperative game AAM

by taking into account the individual game AAM. In addition to simple regres-

sion analysis, which is equivalent to correlation analysis and hence is a quantitative

measure of association, we also check Kendall’s Tau between the two AAMs, which

relies only on observation ranks and hence is a qualitative measure of association.

This also confirms a strong and statistically significant association between the

two AAMs, with Kendall’s Tau equal to 0.33.
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Figure 4.11: Scatter plot of AAMs
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4.C Simulation analysis of quantile estimates

This appendix provides a simulation analysis of a possible interpretation of quantile

coefficient estimates. The simulation exercise consists of 11 subjects and 11 rounds.

In each round, subjects absolute mistakes’ are given by the simple relationship

AMi,t = αi + βiAAM
p
t + ui,t (4.8)

where i identifies the subject and t identifies the round, while p stands for part-

ner. We explicitly consider heterogeneity across participants in that their average

absolute mistakes and reaction to partner AAM are potentially different.

The rest of this appendix presents a graphical illustration under two possi-

ble cases: one in which the estimated quantile coefficients can be interpreted as

measures of heterogeneity across participants, and one in which they cannot be

interpreted in such a way.

Quantile coefficients as measures of heterogeneity. Consider a situation

in which the average absolute mistake of all participants is the same, so that αi is

identical for all participants. For simplicity we set it to 1. Meanwhile, the reaction

coefficients are indeed heterogeneous, with values 1, 2, 3, . . . , 10 and ui,t set to 0.14

Figure 4.12 shows the resulting dataset of absolute mistakes, with different player

mistakes coded with different colors. There are three aspects of this figure we wish

to highlight. First, the figure shares a key feature with our actual dataset: the

data are heteroskedastic, with variance increasing with partner AAM. Second, the

mistakes for partner AAM always have the same order: the subject with the lowest

14Here we choose to use an (almost) deterministic "simulation" to completely highlight our
conclusions. Adding noise would not materially alter them.
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reaction coefficient always makes the smallest mistake (light blue dots), while the

subject with the highest reaction coefficient makes the largest mistakes (light grey

dots). Finally, the two observations yield the conclusion that the heteroscedasticity

present in this dataset reflects the heterogeneity among participants in terms of

their responses to partner AAM.

Figure 4.12: Simulated dataset I

In this dataset, estimates of quantile coefficients would correspond to the true

response reaction coefficients βi, as shown in columns 4&5 of table 4.11. Therefore,

if our data were generated according to equation (4.8) with coefficients as speci-

fied, it would be correct to associate the estimated quantile coefficients with the

quantiles of the actual reaction coefficients. Correspondingly, we would be able

to claim that the estimated coefficients suggest that the predicted behaviour is

observed among 40% of our subjects. However, as we show in the next simulation
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exercise, this conclusion does not hold in general.

Table 4.11: Quantile coefficients estimated on simulated dataset I

Quantile True αi True βi Estimated αi Estimated βi

0.1 1 0.1 1 0.1
0.2 1 0.2 1 0.2
0.3 1 0.3 1 0.3
0.4 1 0.4 1 0.4
0.5 1 0.5 1 0.5
0.6 1 0.6 1 0.6
0.7 1 0.7 1 0.7
0.8 1 0.8 1 0.8
0.9 1 0.9 1 0.9

Quantile coefficients without relation to individual heterogeneity.

One situation when the quantile coefficients cannot be interpreted as quantiles

of true response coefficients is when the average mistake of each individual, αi,

is itself heterogeneous. Figure 4.13 shows the situation when the average mistake

is negatively correlated with the response coefficient, while everything else is the

same as in simulated dataset I. Table 4.12 shows the true coefficients αi and βi and

quantile effect coefficient estimates. The quantile effect estimates clearly do not

correspond to the true coefficients in any way. Hence, in this situation it would be

incorrect to associate estimated quantile coefficients with the quantiles of actual

reaction coefficients.

Note that the possibility illustrated in figure 4.13 clearly does not correspond

closely to our actual data, since the heteroskedasticity is not increasing with part-

ner AAM. A more interesting situation when the interpretation of quantile co-

efficients can be flawed is the situation captured in Figure 4.14. The observa-

tions in this figure were generated by equation (4.8), with ui,t = γAAMp
t ϵi,t and

ϵi,t ∼ N(0, 2). Note that this implies an endogenous amplification mechanism:
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Figure 4.13: Simulated dataset II

positive unobserved shock ϵi,t is amplified when partner AAM is high, so that the

effect of the shock is increasing with partner AAM. This in turn naturally leads

to heteroskedasticity as we observe in the data.

True coefficients αi and βi and quantile effect coefficient estimates are in table

4.13. Though the actual reaction coefficients are homogeneous across subjects, the

estimated quantile coefficients increase with the considered quantile. Hence, once

again, we cannot link the quantiles coefficients to the quantiles of the reaction

coefficients.

Conclusion. This appendix demonstrates that the increasing quantile coef-

ficients presented in the main text can, in principle, be reflecting two different

aspects of our data generating process. They can be either reflecting the true

heterogeneity in reaction coefficients across participants, or they might be reflect-
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Table 4.12: Quantile coefficients estimated on simulated dataset II

Quantile True αi True βi Estimated αi Estimated βi

0.1 4.0 0.1 1.32 0.46
0.2 4.0 0.2 1.72 0.46
0.3 3.0 0.3 2.00 0.50
0.4 3.0 0.4 2.00 0.50
0.5 2.0 0.5 2.20 0.50
0.6 2.0 0.6 2.33 0.53
0.7 1.0 0.7 2.53 0.53
0.8 1.0 0.8 2.76 0.54
0.9 0.0 0.9 3.31 0.54

Table 4.13: Quantile coefficients estimated on simulated dataset III

Quantile True αi True βi Estimated αi Estimated βi

0.1 1.0 0.5 1.02 0.23
0.2 1.0 0.5 1.08 0.33
0.3 1.0 0.5 1.20 0.41
0.4 1.0 0.5 1.13 0.48
0.5 1.0 0.5 1.08 0.54
0.6 1.0 0.5 1.01 0.62
0.7 1.0 0.5 1.01 0.70
0.8 1.0 0.5 1.45 0.69
0.9 1.0 0.5 1.40 0.76
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Figure 4.14: Simulated dataset III

ing the presence of an amplification mechanism, when unobserved shocks causing

higher average absolute mistakes are amplified when partner AAM is high. Dis-

tinguishing between these two explanation is not possible in our context.
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4.D Theoretical justification for Tobit models

This appendix presents theoretical justification for the use of Tobit models. It

presents graphical illustrations under two possible cases: one when corner solutions

would not be obtained and one when they would.

No corner solution. Figure 4.15 presents a situation in which corner solutions

could not occur. It displays marginal costs (MC) as a function of the variance of

noise in the signal, a choice variable for the agent in our theoretical model. In

addition to the MC curve, the figure also displays three hypothetical marginal

benefit (MB) lines; these three curves correspond to three different hypothetical

partners with three different effective attention levels (low, medium and high).

Here we associate the three different effective attentions with three different partner

attention costs: the key insight here is that the expected marginal benefit is higher

(i.e. the MB curve is higher) when the partner has lower attention costs, since

lower attention costs should translate into more precise signal from a Sender/more

precise processing of a signal by a Receiver.

Corresponding to these three levels of partner attention costs are three dif-

ferent optimal signal noise variances chosen by the agent. The optimum points

are captured in the figure and the optimal signal noise variances are labelled as

s ∗ (L),s ∗ (M) and s ∗ (H), respectively. The bottom panel of Figure 4.15 trans-

lates this into the space of optimal choice corresponding to three different values

of partner attention costs (AC(L), AC(M) and AC(H)), highlighting the three out-

comes captured in the top panel. As seen in the figure, higher partner attention

costs translate into higher chosen signal noise variance. The key feature of the

two figures is the fact that since marginal costs are infinite in the zero variance
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limit (i.e. limσ2
∗→0MC → ∞), the optimal choice of signal noise variance is posi-

tive even when the partner attention costs are zero. This corresponds to alack of

corner solutions.
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Figure 4.15: Problems and choices without corner solutions
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Corner solutions. Figure 4.16 presents a situation in which corner solutions

can occur. As before, the figure includes a marginal cost curve and three marginal

benefit curves corresponding to low, medium, and high levels of partner atten-

tion costs. The key difference from Figure 4.15 is that the marginal costs are no

longer infinite in the zero signal noise variance, but are finite. While this is irrele-

vant when considering a situation with high partner attention costs, it translates

into the same chosen signal noise variance with medium and low attention costs,

namely zero signal noise variance. Translating this into the space of optimal signal

noise variance as a function of partner attention costs (bottom panel) leads to a

data generating process typical of corner solution models: while above AT ∗ the re-

lationship between attention costs and optimal signal noise variance is still linear,

below the threshold the two variables do not have any relationship. As the two

figures highlight, if it were possible, the agent would choose variances lower than

zero, but the logical/technological constraint prevents this, leading to a choice of

zero signal noise variance in cases of medium and low attention costs.

As is the case in corner solution models, ignoring this non-linearity would lead

us to underestimate the effect of partner attention costs on optimal signal noise

variance. This can be seen by considering the effect of moving from high to medium

partner attention costs, where the effect is muted by crossing the threshold, or by

considering the effect of moving from medium to low attention costs, where there

is no effect at all, despite the fact that the agent would optimally choose to lower

his signal noise variance.

Conclusion. This appendix demonstrates that it is plausible that our data

generating process is subject to corner solutions. Therefore, using a Tobit regres-

sion model is appropriate, motivating our focus on results from this model.
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Figure 4.16: Problems and choices with corner solutions
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