
CERGE
Center for Economics Research and Graduate Education 

Charles University

Essays on Costly Information Acquisition in 
Economics

Vladimír Novák

Dissertation

Prague, July 2020





Vladimír Novák

Essays on Costly Information Acquisition in 
Economics

Dissertation

Prague, July 2020





Dissertation Committee

Filip Matějka (CERGE-EI; chair)

Jan Zápal (CERGE-EI)

Gérard Roland (University of California, Berkeley)

Michal Kejak (CERGE-EI)

Referees

Mark Dean (Columbia University)

Giorgia Romagnoli (University of Amsterdam)

i



ii



Table of Contents

Abstract vii

Abstrakt ix

Acknowledgments xi

Introduction 1

1 A Note on Optimal Experimentation Under Risk Aversion 5
1.1 Introduction ...................................................................................................... 5
1.2 A bandit model with non-linear utility ........................................................ 6
1.3 The effects of risk aversion ............................................................................. 9
1.4 Discussion ......................................................................................................... 13
1.A Appendix A: u2 (x)/u1 (x) is strictly decreasing in x .................................. 16
1.B Appendix B: Generalizing Proposition 1 ..................................................... 17
1.C Appendix C: A two-period model ................................................................. 19

2 The Status Quo and Belief Polarization of Inattentive Agents: Theory 
and Experiment 21
2.1 Introduction ..................................................................................................... 21
2.2 Example ........................................................................................................... 25
2.3 The model ........................................................................................................ 27

2.3.1 Description of the setup .................................................................... 28
2.3.2 Agent's problem .................................................................................... 28
2.3.3 Description of beliefs evolution ........................................................ 31
2.3.4 Updating in the opposite direction from the realized value . . . . 32
2.3.5 Belief polarization .............................................................................. 35
2.3.6 Beliefs' convergence and divergence of beliefs updated in the same 

direction ................................................................................................ 36
2.4 Over-optimism and Polarization: Intuition and Implications .................. 37
2.5 Comparative statics ......................................................................................... 42
2.6 Experimental design ...................................................................................... 45

2.6.1 Overview of the experimental design ............................................... 46

iii



2.6.2 Task 1 - Colorblind advisor game ................................................... 46
2.6.3 Task 2 - Imprecise advisor game ...................................................... 47
2.6.4 Task 3 - Card color prediction game ................................................ 49
2.6.5 Task 4 - Ball color prediction game ................................................ 49
2.6.6 Questionnaire ..................................................................................... 50
2.6.7 Procedure ........................................................................................... 50
2.6.8 Subject understanding ...................................................................... 50

2.7 Experimental investigation ............................................................................. 51
2.7.1 Formal setup ..................................................................................... 51
2.7.2 Bridging theory and experiment ...................................................... 53
2.7.3 Hypothesis ........................................................................................... 54

2.8 Experimental results ....................................................................................... 55
2.8.1 Optimal response to the change in the status quo ........................ 56
2.8.2 State pooling and preference for certainty .................................... 58
2.8.3 Action selection .................................................................................... 62
2.8.4 Belief elicitation .................................................................................... 64
2.8.5 Observed belief polarization .............................................................. 65
2.8.6 Compression effect in the willingness to pay ................................. 67

2.9 Conclusion ......................................................................................................... 70
2.A Appendix A: Derivation of formula 2.5 ........................................................ 73
2.B Appendix B: Proof of proposition 1 .............................................................. 74
2.C Appendix C: Proof of proposition 2 .............................................................. 76

3 Estimating Models with Rationally Inattentive Agents 79
3.1 Introduction ..................................................................................................... 79
3.2 The Model ........................................................................................................ 82

3.2.1 Assumptions ........................................................................................ 83
3.2.2 The representative household ......................................................... 83
3.2.3 The financial intermediary ................................................................ 84
3.2.4 The monetary authority ................................................................... 85
3.2.5 Firms ................................................................................................. 85
3.2.6 Price-setting equation and law of motions .................................... 86

3.3 Rational inattention model ............................................................................. 88
3.3.1 Quantifying information flow ............................................................ 89
3.3.2 The ob jective ..................................................................................... 91
3.3.3 Rational inattention Kalman filter formulation .............................. 92
3.3.4 Optimal signal selection ................................................................... 94

3.4 Imperfect common knowledge model .......................................................... 96
3.5 Calvo pricing model ......................................................................................... 98
3.6 Empirical Analysis ......................................................................................... 98

3.6.1 Data .................................................................................................... 99
3.6.2 VAR analysis ..................................................................................... 99
3.6.3 Prior and posterior distributions ...................................................... 99
3.6.4 Results comparison ............................................................................ 102

3.7 Concluding Remarks ...................................................................................... 105
3.A Appendix A: Derivation of the log-linearized firm's price-setting equation 106

iv



3.B Appendix B: Analogous ob jective of rational inattention model ................ 110
3.C Appendix C: Profit-maximizing price for the rational inattention model . 112
3.D Appendix D: Solving the ICKM .................................................................... 113

Bibliography 117

v



vi



Abstract

In the first chapter, we solve the two-armed bandit problem when decision-makers are 
risk-averse. We show - counterintuitively - that a more risk-averse decision-maker might 
be more willing to take risky actions. This finding relates to the fact that pulling the 
risky arm in bandit models produces information on the environment - thereby reducing 
the risk that a decision-maker will face in the future. Thus, we suggest there is reason 
for caution when inferring risk preferences from observed actions: in a bandit setup, ob­
serving a greater appetite for risky actions can be indicative of more risk aversion, not less.

In the second chapter, we characterize when it is rational to acquire information leading 
to belief polarization, in situations that involve a choice between the implementation of a 
new policy with an uncertain outcome and the preservation of the status quo. Specifically, 
we model the agent to be rationally inattentive: any information about the new policy 
can be acquired before the choice is made, but doing so is costly. We show how the choice 
of information, and thus the belief formation, depends on the agent-specific value of the 
status quo. Importantly, beliefs can then, in expectations, update away from the realized 
truth. This is due to endogenous information acquisition because the agent chooses only 
to learn whether the uncertain payoff is higher or lower than the payoff of the status quo. 
Consequently, two agents with the same prior beliefs about a new policy might become 
polarized if they differ in the valuations of the status quo. We show that the lower cost of 
information leads to more severe polarization. We conduct a novel experiment to test and 
confirm our predicted information acquisition strategy and its dependence on the value 
of the status quo. In our setting with multiple states, we also replicate the well-known 
preference for certainty and verify the occurrence of belief polarization.

In the third chapter, we present a likelihood evaluation of a DSGE model with price­
setting firms that select properties of their signals subject to a limited attention con­
straint. We compare the performance of a rational inattention DSGE model (RIM), with 
an imperfect common knowledge model (ICKM) and a model with price stickiness a la 
Calvo. We demonstrate that the rational inattention model matches the data better than 
the Calvo model and reproduces the persistence more easily than the ICKM model. This 
result occurs because (i) RI firms pay attention to a higher number of lags of fundamen­
tals than is assumed in the ICKM models, and (ii) the full information method selects 
the different degree of strategic complementarity in various models.
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Abstrakt

V první kapitole zkoumáme model optimálního experimentování s hráči, kteří ma jí averzi 
k riziku. Ukazujeme, že, navzdory intuici, hráč s větší averzí k riziku může optimálně volit 
riskantnější experiment. K tomuto efektu dochází, protože riskantnější experiment přináší 
informace, které snižují budoucí riziko. Větší apetit k rizikovějšímu experimentování tedy 
může indikovat větší, nikoliv nižší, averzi vůči riziku. Empirické a experimentální studie, 
které by ignorovaly tento efekt, mohou produkovat vychýlené odhady míry averze vůči 
riziku.

Ve druhé kapitole charakterizujeme, kdy je racionální získávat informace vedoucí k ná­
zorové polarizaci, v situacích, které zahrnují volbu mezi implementací nové politiky s 
nejistým výsledkem a zachováním současného stavu. Konkrétně modelujeme agenta, 
který je racionálně nepozorný: veškeré informace o nové politice lze získat ještě před 
provedením výběru, ale je to nákladné. Ukazujeme, jak výběr informací, a tím i tvorba 
názorů, závisí na jeho sub jektivní hodnotě statusu quo. Důležité je, že po získaní infor­
mace se aktualizovaný názor může vzdalovat od skutečnosti. To je způsobeno endogenní 
volbou jakou informaci získat, protože agent se rozhodne pouze zjistit, zda nová politika 
povede k lepšímu výsledku než současný stav. V důsledku toho se dva agenti se stejným 
názorem na novou politikou po obdržení informace mohou polarizovat, pokud se liší ve 
spoko jenosti se současným stavem. Ukazujeme, že nižší náklady na informace vedou k 
významnější polarizaci. Provádíme také nový laboratorní experiment, který testuje a 
potvrzuje naši předpokládanou strategii získávání informací a její závislost na hodnotě 
současného stavu. V našem prostředí s více stavy světa také replikujeme známé prefer­
ence pro jistotu a ověřujeme výskyt polarizace.

V třetí kapitole představujeme odhadování DSGE modelu s firmami určujícími ceny, 
které se vybíra jí jaké informace chtějí získat, ale jsou omezené v kapacitě zpracování 
těchto informací. Porovnáváme přesnost predikcí DSGE modelu s racionálně nepozornými 
firmami (RIM), s modelem nedokonalých sdílených znalostí (ICKM) a modelem s cenovou 
přizpůsobivostí á la Calvo. Ukazujeme, ze RIM odpovídá datům lépe než Calvo model a 
snadněji replikuje zpoždění a perzistenci než ICKM model. K tomuto výsledku dochází, 
protože (i) RI firmy věnují pozornost většímu počtu historických hodnot o fundamentech, 
než se předpokládá v ICKM, (ii) estimace vybere jiný stupeň strategické komplementarity 
v různých modelech.
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Introduction

In the information-rich world, attention is a scarce resource. The unifying theme of all 

three chapters of this dissertation centers on endogenous information acquisition prob­

lems and their implications. In the first chapter, we investigate the impact of risk-aversion 
on the sequential allocation of an 'informational' resource in the two-armed bandit prob­

lem. The other two chapters apply the theory of rational inattention (RI), which is a 
disciplined model of how cognitively-limited people simplify and summarize available in­

formation. The key assumption is that all information is available, but decision-makers 
cannot pay full attention to it, though they can choose to pay more attention to more 

important things. In the second chapter, we adopt RI theory to study, both theoretically 
and experimentally, how the choice of information, and thus the belief formation depends 

on the status quo and can lead to belief polarization of rational people. The final chapter 

takes steps to enable the Bayesian estimation of the rational inattention DSGE models 

and compares it with the imperfect common knowledge model and Calvo model.

In the first chapter: "A Note on Optimal Experimentation under Risk Aversion" (joint 

work with Tim Willems and Godfrey Keller), which was published in the Journal of Eco­
nomic Theory. We extend the standard exponential bandit model by allowing for risk 

aversion on behalf of the decision maker and study how a rational, risk-averse decision 
maker solves the two-armed bandit problem of having to sequentially allocate its 'infor­

mational' resource between a safe alternative that yields a known reward, and a risky 
one that generates an unknown payoff. In doing so, we uncover the previously overlooked 
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result that a more risk-averse decision maker might be more willing to pull the risky arm 

than a less risk-averse colleague. The reason for this counterintuitive result relates to the 

notion that risk in bandit models can be reduced through experimentation with the risky 

arm. Our findings imply that it is not obvious to infer risk preferences from observed 

actions: when there is scope for experimentation, observing a greater appetite for risky 

actions might actually be indicative of more risk aversion, not less.

In the second chapter: "The Status Quo and Beliefs Polarization of Inattentive Agents: 

Theory and Experiment" (co-authored with Andrei Matveenko and Silvio Ravaioli), we 
study a binary choice problem with uncertainty and show how rational people can become 

more polarized in expectations as they learn more. In particular, the decision makers' 

choice is between preservation of the status quo and a new policy with multiple possible 

outcomes. Consider the 2016 Brexit referendum as an illustrative example - the conse­

quences of choosing to leave the European Union are uncertain, whereas the status quo is 
more clear. We analyze this question both theoretically and with a novel laboratory ex­

periment. We show how the choice of information, and thus the belief formation, depends 

on the value of the status quo. Importantly, beliefs can then, in expectations, update 
away from the realized truth. This is due to the acquisition of endogenous information, 

because the agent chooses only to learn whether the uncertain payoff is higher or lower 

than the payoff of the status quo. Consequently, two agents with the same prior beliefs 

about the new policy might become polarized if they differ in the value of the status 
quo. We show that the lower cost of information makes the polarization more severe. 

This paper also provides a disciplined model proposing how preference for the skewed 

information might depend on the value of the status quo, and thus provide an impor­
tant channel that is absent from the research studying whether people prefer negatively 

or positively skewed information. We experimentally test and confirm our theoretically 

predicted information acquisition strategy and its dependence on the value of the status 
quo. We show that the probability of choosing an advisor increases with the instrumental 

value of the corresponding information structure. Importantly, we verify the consequent 

belief polarization in expectations. In our setting with multiple states, we also replicate 

the well-known preference for certainty and verify the occurrence of belief polarization.

In the final chapter: "Estimating Models with Rationally Inattentive Agents", we es­
timate a DSGE model with rationally inattentive price-setting firms. We compare the 

2



performance of a rational inattention DSGE model (RIM), with an imperfect common 

knowledge model (ICKM) and a model with price stickiness á la Calvo. Importantly, 

this comparison helps us to identify what parameter values would be selected for the 
rational inattention model and how well it matches the data in contrast to other mod­

els. It also sheds light on restrictiveness and implications of the ICKM assumed signal 
form versus the optimally selected signal, given the information capacity constraint. In 

contrast with previous studies, we do not assume any particular exogenously given signal 
form or signals' independence, but by modelling firms as rationally inattentive, we allow 

firms to choose the optimal signals about the state variables optimally under the limited 
attention constraint.The substantive contribution of this study is in showing that the RI 
model matches the data better than the Calvo model, in particular by reproducing the 

persistence in the data more easily. Furthermore, the RI model reproduces the long-term 
mean-reversion better than the ICKM model, whereas the ICKM model seems to perform 

better in matching the short-run momentum of the hump-shaped response of output and 
inflation to monetary disturbances. Our likelihood analysis also emphasizes the role of 

the strategic complementarity in price-setting in the specifications of these models.

3
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Chapter 1

A Note on Optimal Experimentation Under

Risk Aversion

Co-authored with Godfrey Keller (University of Oxford) and Tim Willems (International 

Monetary Fund)1 .

1 The views expressed in this paper are those of the authors and should not be attributed to the 
International Monetary Fund, its Executive Board, or its management.

1.1 Introduction

This paper analyzes how a rational, risk-averse decision maker solves the two-armed ban­

dit problem of having to choose between a safe alternative that yields a known reward, 

and a risky one that generates an unknown payoff.

At first sight, it seems intuitive that decision makers who are more risk averse will be 

less willing to take the risky action. Indeed, an earlier paper (Chancelier, De Lara, and 

De Palma 2009) arrives at such a conclusion. However, we show that there exists a pre­

viously overlooked part of the parameter space, where this result is overturned.

Our model is based upon the exponential bandit model of Keller, Rady, and Cripps 

(2005). Following Roberts and Weitzman (1981) and Bolton and Harris (1999), who in 

turn built upon the seminal work of Rothschild (1974b, Rothschild (1974a), it uses a 

continuous-time framework. We extend the standard model by allowing for risk aversion 

5



on behalf of the decision maker. In doing so, we uncover the previously overlooked result 

that a more risk-averse decision maker might be more willing to pull the risky arm than 

a less risk-averse colleague.

The reason for this counterintuitive result relates to the notion that risk in bandit models 
can be reduced through experimentation with the risky arm. It is most likely to arise 

in settings where information arrives at a high frequency, which makes our finding of 
specific relevance to the machine learning literature (where reinforcement learning algo­

rithms have the bandit problem at their core; see Sutton and Barto (1998)).

It is furthermore important to understand how risk aversion of decision makers affects 

the decisions they make. Willingness to take risks has been linked to the success of en­

trepreneurs (Cantillon 1775; Knight 1921; Kihlstrom and Laffont 1979; Herranz, Krasa, 

and Villamil 2015), while it has also been studied in a principal-agent setup - for exam­

ple analyzing decision making by CEOs (Bandiera et al. 2011) and politicians (Lilienfeld 
2012). A common narrative that can be found in this literature is that more risk-averse 

individuals can be expected to take less-risky actions. The point of this paper is to 
show that the introduction of learning and experimentation can overturn this wisdom: 

appointing a more risk-averse decision maker is no guarantee for the implementation of 

less risky actions.

Finally, our findings imply that it is not obvious to infer risk preferences from observed 

actions: when there is scope for experimentation, observing a greater appetite for risky 

actions might actually be indicative of more risk aversion, not less. Studies which do not 

take this into account may produce biased estimates.

1.2 A bandit model with non-linear utility

In this section, we employ the exponential bandit model of Keller, Rady, and Cripps 
(2005) but extend it by allowing for a decision maker (henceforth ‘DM') that need not 

be risk-neutral. For ease of exposition, we focus on the one-player case.2

2The results in this section and the next carry over straightforwardly to an N -agent cooperative setup.
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Time t E [0, x) is continuous and the discount rate is r > 0. The player is facing a 
two-armed bandit problem, and at time t can allocate an amount kt E {0,1} of his ‘in­

formational' resource to the risky arm R, and thus 1 - kt to the safe arm S.

The safe arm provides lump-sum payoffs of s > 0 (with the value of s fixed and known 

to the player, hence why this arm is called ‘safe') according to a Poisson process with 
parameter 1 (which is also known). So if the player uses the safe arm over an interval 

[t, t + dt), he receives s dt in expectation.

The source of risk in the other arm lies in the fact that its type 0, and hence the size 

of its payoff, is unknown to the agent at t = 0. He knows that the arm is either ‘good' 
(0 = 1) or ‘bad' (0 = 0). At time t, the player holds a belief pt that the risky arm is 

good. The DM's learning process on the risky arm's type is obstructed by the presence of 
noise in the associated payoff stream. When the arm is good, it yields lump-sum payoffs 

of h according to a Poisson process with parameter A > 0 (both h and A are fixed and 

known by the player). When it is bad, it never pays off. Consequently, if the player uses 

the risky arm over an interval [t, t + dt), he receives ptAh dt in expectation (where the 

expectation is taken over both the unknown state of the world 0 and the probabilistic 
arrival of the lump-sums).

The player evaluates the lump-sums using a utility function u, and so the expected 

increase in his utility is [(1 - kt)u(s) + ktptAu(h)] dt. We will assume that u(0) = 0 
for the following reason. Consider a stream of zero payoffs that arrive according to 

a Poisson process with parameter v. The total expected discounted utility from this 
stream, expressed in per-period terms is E [fj* re-rt vu(0) dt = vu(0), and it is natural 

to require that this be independent of the rate v - it should not matter at what frequency 

nothing is paid out; this translates into a requirement that u(0) = 0.3 Also, to make the 

problem meaningful, we require that the player strictly prefers R, if it is good, to S, and 

strictly prefers S to R, if it is bad. Consequently, we assume that:

3 We thank a referee for this justification of u(0) being zero, and for noting that this requirement 
implies that two such utility functions represent the same preferences if and only if one is a monotone 
linear transformation of the other.

Assumption 1. 0 = u(0) < u(s) < Au(h)

As more information arrives over time, the belief pt is revised according to Bayes' rule.

7



When the DM plays the risky arm but no lump-sum arrives, his belief that the risky arm

is good is revised downward:

dpt = —Xpt(1 — pt) dt. (1.1)

On the other hand, if a lump-sum h does arrive, the belief pt jumps to 1. The objective 

of the DM is to choose {kt}t>0 so as to maximize the total expected discounted utility, 
expressed in per-period terms:

E [(1 — kt)u(s) + ktptXu(h)] dt •>

where the expectation is over the processes {kt} and {pt},4 and with beliefs being the 

state variable. The solution procedure is analogous to that in Keller, Rady, and Cripps 

(2005) - the only difference being the presence of the utility function. As in Keller, Rady, 
and Cripps (2005), the Principle of Optimality implies that the value function V satisfies:

4 The total expected discounted utility given in the main text is equivalent to:

V (p)=kmiax/r 1(1—k)u(s)+kpXu(h)] dt+e-rdtE [V (p+dp)|p,k]}.

To eliminate the expectations operator, observe that with subjective probability pkXdt 
a lump-sum h arrives, revealing to the DM that the risky arm is of the good type. In 

that case, the value function jumps to V(1) = Xu(h). With complementary probability 

1 — pkXdt, no lump-sum arrives; then, application of Bayes' rule (1.1) enables us to write 

V(p + dp) ~ V(p) + V'(p) dp = V(p) — kXp(1 — p')V'(p) dt. Combining this with 1 — r dt, 
the approximation to e-rdt, leads to the following Bellman equation:

V(p) = max {(1 — k)u(s) + kpXu(h) + kpX [Xu(h) — V(p) — (1 — p)Vz(p)] /r} . 
ke{o,i}

As the maximand is linear in k, the DM would never optimally choose an interior allo­

cation even were it allowed. If the DM chooses k = 0, then V(p) = u(s). If he chooses 
k = 1, then V satisfies the following first-order ordinary differential equation:

Xp(1 — p)V'(p) + (r + Xp)V (p) = (r + X)Xu(h)p,

E [(1 — kt)u(s) dNi,t + ktPtu(h) dNx,t] ■)

where Ne,t is a standard Poisson process with intensity Í, since Ne,t — £t is a martingale.

8



whose solution is given by:

V (p) = Au(h)p + C (1 — p)

where C is the constant of integration.

This solution has the exact same structure as that in Keller, Rady, and Cripps (2005). It 
therefore inherits the feature that there exists a cut-off belief p* above which it is optimal 
for the DM to play the risky arm R, while playing the safe arm S becomes optimal when 

the DM's belief p < p*. By imposing value matching (V*(p*) = u(s)) and smooth pasting 
((V*)'(p*) = 0), we can derive the cut-off belief5 as:

5 Note that this belief is invariant to a monotone linear transformation of u.

p* =___________(r/A)u(s)____________
(r/A + 1) [Au(h) — u(s)] + (r/A)u(s).

(1.2)

Now consider two DMs (indexed by i), with the utility function of DMi being ui. The 

difference between their cut-off beliefs p2* — p*1 satisfies:

sgn(p2* — p*1) = sgn u2(s)[Au1(h) — u1(s)] — u1(s)[Au2(h) — u2(s)]

= sgn u2(s)u1(h) — u1(s)u2(h)

= sgn U2(s)
U1(s)

U2(hA 
ui(hy.

(1.3)

Note that if DM1 and DM2 are both risk-neutral, then the right-hand side of the above 

equation is zero and hence p2* = p*1.

1.3 The effects of risk aversion

For the remainder of this article, we assume that the DM's utility function over payoffs 

u is increasing and concave, and recall that u(0) = 0. This assumption captures the no­

tion of risk aversion in the sense that when our DM compares two streams of lump-sum 

payoffs, in each interval [t,t + dt) he is facing a lottery over payoff increments, and when 

one of these lotteries second-order stochastically dominates the other, he prefers the less 
risky of the two.
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Consider one stream Ph,\ that delivers lump-sum payoffs h according to a Poisson process 
with parameter A, and another one Pc,1 that delivers lump-sum payoffs c according to 

a Poisson process with parameter 1, with c = Ah. In [t, t + dt), the probability of no 
payoff from Ph,\ equals 1 — A dt, while the probability of no payoff from Pc,1 equals 1 — dt. 
Also note that the lottery with the larger probability of no payoff is a mean-preserving 

spread of the other. Consequently, the lottery with the smaller probability of no payoff 

second-order stochastically dominates the other, and Ph,\ is preferred to Pc,1 iff A > 1. 
In terms of the total expected discounted utility from the two streams, which are Au(h) 

and u(c) = u(Ah), we note that Au(h) > u(Ah) iff A > 1.

This ordering of ‘lumpy' payoff streams manifests itself as follows: other things being 

equal, a DM prefers a stream of modest payoffs that arrive with a high expected frequency 
to a stream of larger payoffs that are expected to arrive infrequently. This favoring of 

‘less risky' payoff streams and of ‘smaller payoffs at higher expected frequency' are simply 
two manifestations of the same preference. Consequently, we couch most of our discus­

sion below in terms of higher (expected) frequency rather than in terms of second-order 
stochastic dominance or lower risk.

To analyze the effects of risk aversion, let DM2 be more risk averse than DM1. In partic­
ular, the more risk-averse DM2 has an increasing, concave utility function u2 which is a 

concave transformation of u1, the utility function of the less risk averse DM1.

In Appendix A, we show that u2(x)/u1(x) is strictly decreasing in x; this, together with 
reference back to equation (1.3), leads to our main result:

Proposition 1. The ordering of the cut-off beliefs for DM1 and DM2 is as follows: 

(a) when h > s, p22 > p,; (b) when h < s, p22 < /p; (c) finally, when h = s, = pj.6,7

Part (a) of Proposition 1 implies that the more risk-averse DM needs a more optimistic 

belief on the quality of the risky arm to become willing to play R. In case (b) however, 

6Parts (b) and (c) of the proposition require A to be high enough so that Assumption 1 is not violated.
If it were violated, the DM would never pull the risky arm (even if it was known to be of good quality).

7Following suggestions by a referee, Appendix B contains a generalization of this proposition by 
considering an infinitesimal increase in risk aversion, employing a Pratt (1964) representation.
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the more risk-averse DM has the lower threshold p* - implying that he will play R at 
more pessimistic beliefs relative to the less risk-averse DM.

To gain intuition for Proposition 1, start with part (c). When h = s, the safe arm gives 
rise to the exact same payoff as a good-quality risky arm (only at a different frequency 

given that A > 1). As a result, h/s = ui(h)/ui(s) = 1 for i = 1,2 and all payoff-related 
terms disappear from the cut-off formula (1.2). Both collapse to:

* * r/A
p* = p2 = 7+Á—Í (i-2 * 4)

2. Choosing between an arm that provides a relatively frequent stream of modest pay­

offs, and an arm that provides a less frequent stream of larger payoffs. (This is the
dimension along which curvature in the utility function plays a role.)

From (1.4), one can see that pushing A up (making the risky arm more attractive), lowers 

the cut-off belief (thus increasing the DM's willingness to try the risky arm). Crucially, 

however, when h = s, the cut-off belief falls at the same rate for all DMs irrespective of 

their degree of risk aversion (because ui(h)/ui(s) = 1 for i = 1,2 and transformations of 

payoffs no longer affect the cut-off location), thereby keeping p1* = p2*

This no longer holds true when we increase h slightly to h' > s. Again, we have made the 

risky arm more attractive, in response to which both p*1 and p2* fall (see equation (1.2)). 
But since marginal utility of a more risk-averse DM decreases at a faster rate when the 

payoff rises, he gains fewer utils from the increase in h than his less risk-averse coun­
terpart. As a result, the less risk-averse DM's cut-off p*1 falls by more than the more 

risk-averse DM's cut-off p2* - putting us in case (a) of Proposition 1, where the less risk- 
averse DM is more willing to pull the risky arm.

Further understanding of the difference between parts (a) and (b) of Proposition 1 can 
be gained by taking learning incentives into account and by realizing that our DM solves 

two fundamental trade-offs:

1. Choosing between an arm of known quality (the safe one, S) and an arm of unknown 

quality (the risky one, R), where information on the latter's quality can be gathered 

through experimentation. (This is the learning dimension of the problem.)

11



When h < s, the risky arm's payoff frequency A has to be rather high by Assumption 1 
(otherwise the DM will always choose S and the problem is not meaningful). A high A 

implies that pulling the risky arm is relatively informative: if the arm is of the good type, 

a payoff h should be observed soon; if not, the belief about the nature of the risky arm 

will quickly be revised downward by equation (1.1) - ending the experimentation process 

once the belief p falls below the cut-off pi*. So when A is high, uncertainty about the qual­

ity of the risky arm (captured under point 1) is likely to be short-lived. Consequently, 
the consideration under point 2 becomes more important. Along this dimension, a more 

risk-averse DM prefers a frequent stream of modest payoffs to an infrequent stream of 

larger payoffs.8 9 10 In the case where h < s (but A is high enough to meet Assumption 1), 

arm R is the one that offers a relatively frequent stream of modest payoffs (provided the 
arm is of good quality). The more risk-averse DM does not like the fact that this arm 

is risky (its quality is initially unknown and may turn out to be low, in which case it 

will never pay) but when A is high, this risk is likely to be resolved soon and therefore of 

subordinate importance.

8 Because of the difference in the concavity of the utility functions, the value of any increase in h 
is lower for the more risk-averse DM (due to decreasing marginal utility, which a risk-neutral DM for 
example does not experience).

9 Proposition 1 continues to hold in the more general framework of Keller and Rady (2010): in their 
setup, even bad arms generate occasional payoffs equal to h - only at a lower frequency than good arms. 
More specifically, a good arm pays off according to a Poisson process with parameter XH, while this 
parameter equals XL for a bad arm (with XH > XL). Setting XL =0 puts us back into the framework of 
Keller, Rady, and Cripps (2005) and simplifies the algebra considerably.

10This can be rephrased in terms of entropy reduction: the entropy of a Poisson distribution is increas- 

It is thus the trade-off between these two forces that determines a DM's decision to pull 
R or S. On the one hand, a more risk-averse DM is drawn towards the safe arm (the 

fact that the risky arm is of unknown quality introduces extra uncertainty in its payoff 

stream, which he dislikes). But, on the other hand, the DM realizes that pulling the 

risky arm enables him to reduce risk (which a risk-averse DM particularly likes). When 

A is large, there is a high ‘informational return' to pulling the risky arm, as there is a 

good chance that pulling R eliminates risk (which happens when a payoff h is observed, 

no matter how small h is). Subsequently, the DM is able to enjoy the (higher) utility 
stream provided by R in a world that no longer exhibits uncertainty on the nature of R. 

This explains the counterintuitive part of our result that a more risk-averse DM might 

be more willing to pull the risky arm than a less risk-averse DM.9,10
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In Appendix C we show that our result also arises in a simple two-period setup. It 
similarly carries over to an infinite-horizon, discrete-time version of the model.

1.4 Discussion

The counterintuitive part (b) of Proposition 1 is seemingly at odds with the result of 

Chancelier, De Lara, and De Palma (2009), who conclude that more risk-averse DMs 
are always more likely to pull the safe arm in bandit problems. Closer inspection of 

Theorem 1 in Chancelier, De Lara, and De Palma (2009), however, reveals that the as­

sumption made there restricts payoffs in such a way that it only covers case (a) of our 

Proposition 1.11 There, we obtain the same result. Since the continuous-time framework 
employed in this paper makes the existence of different regimes more transparent, it be­

comes apparent that there is a part of the parameter space (with h < s and A sufficiently 
high) in which the intuitive result does not arise.

ing in its parameter A, as a result of which the expected entropy reduction (= uncertainty reduction = 
information production) is higher when the A of the risky arm is higher. This makes it more attractive 
for a risk-averse DM to pull that arm.

11To see this, note that Theorem 1 of Chancelier, De Lara, and De Palma (2009) can be rewritten in 
our notation/model as: “Assume that there exists a concave increasing function : R R such that 
u2(s) > y>(ui(s)) and u2(h) < ^(u1 (h)) ...”. Starting from a situation where h > s (our case (a)), it is 
not possible to respect the concave increasing function and move to a situation in which h < s (our 
case (b)) while satisfying the assumption that u2(s) > ^(u1(s)) and u2(h) < ^(u1 (h)).

Instances where A is high (which means that the risky arm pays out frequently, conditional 

on it being ‘good') are particularly likely to occur in online settings. There, information 

abounds and arrives at a high frequency. Reinforcement learning for example has the 

bandit problem at its core, there often referred to as the ‘exploration vs. exploitation 

trade-off' (Sutton and Barto 1998). Such algorithms are, among other things, used to 

customize webpage advertisements to user-preferences. At each page visit, the algorithm 
faces a choice between, say, showing a well-understood ad which is known to generate 

infrequent per-click payoffs of considerable size s (e.g. an ad for expensive watches), or 
show an ad for a new product (which comes with lower per-click payoffs, h < s ). Suppose 

that the market for the associated product is very competitive and a priori it is not known 

whether the brand behind the advertisement will become popular (this is the source of 

risk in the problem). If the brand does take off, it is expected to generate frequent clicks 
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(high A) - improving upon the payoff generated by the safe ad (in this case, ‘the risky 
arm is good'). If the new brand does not take off (‘the risky arm is bad'), clicks on the ad 

will be infrequent (low A) and the webpage would have been better off by sticking with 
the old ad. In such a setup, our result demonstrates that equipping the machine learning 

algorithm with a more risk averse objective function might lead to a greater appetite for 
the risky arm (the unknown ad).

Alternatively, our counterintuitive result can arise in a labor market setup. Consider an 

interpretation of the two-armed bandit model which captures the career choice between 

becoming a worker or becoming an entrepreneur. When going down the latter route, the 

DM will face greater uncertainty about his long-run payoffs - at least initially (less so 
after he has learned the popularity of his product).12 Our DM is uncertain on - say - his 

organizational talent, which can be either high or low. If it is high, he will obtain a higher 

utility level as an entrepreneur; if it is low, his firm will never take off and he is better off 

as a worker. Following the seminal paper by Kihlstrom and Laffont (1979), most earlier 

papers featuring this choice have started from the (widely accepted) premise that more 
risk-averse individuals will choose to become workers (the safer option, which immedi­

ately gives greater clarity on long-run payoffs), while the less risk-averse ones will choose 
to start a business. In this literature, the narrative of the ‘risk tolerant entrepreneur' 

has been proposed as a parsimonious and plausible fix to the puzzling observation that 
entrepreneurs tend to earn less and bear more risk than salaried workers (Hamilton 2000; 

Moskowitz and Vissing-Jorgensen 2002).

12See Kerr, Nanda, and Rhodes-Kropf (2014) and Manso (2015) for examples of this interpretation.
13i.e., if the information arrival rate X is high enough. Bonatti and Horner (2017) apply their bandit 

model to the labor market and argue that the information arrival rate X is increasing in the amount 
of effort exerted by the DM, which seems intuitive. This suggests that high-effort exerting, relatively 
risk-averse DMs are more likely to display a greater preference for the risky arm than their less risk-averse 
counterparts (especially those who are not inclined to exert much effort).

But by taking learning and experimentation dynamics into account, this paper demon­

strates that this popular narrative does not necessarily hold true. It opens up the possibil­
ity that more risk-averse individuals might be more willing to start with the riskier action 

(setting up a business), if taking such a risk produces a sufficient amount of information 
on their organizational talent.13 This theoretical ambiguity could explain why previous 

empirical studies have reported mixed results regarding the effect of risk aversion on the 
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decision to become an entrepreneur.14 In a principal-agent setup, it furthermore implies 

that appointing a more risk-averse agent is no guarantee that the principal will see more 

‘safe' actions implemented.

14Compare Schiller and Crewson (1997), who report mixed results themselves, Barsky et al. (1997) 
who find no significant effect - Andersen et al. (2014) also falls in this category; and Cramer et al. (2002) 
, who do find a significant negative effect of risk aversion on the probability of becoming self-employed, 
but conclude that they are not able to make statements on causality.

15In this game show, which is similar to the Pandora's Box problem of Weitzman (1979) , a participant 
is typically presented with 26 suitcases - one of which becomes ‘his' at the start of the game. Each case 
contains a monetary prize, the value of which is hidden to the participant (but he knows that the 
distribution of prizes is uniform over 26 pre-specified amounts). Subsequently, a game unfolds in which 
the participant has to open all remaining suitcases in a sequential manner. After each round, the show 
makes a cash offer to the participant, which he has to accept or reject. If he rejects (‘no deal'), the 
game proceeds to the next round - until the participant makes a deal or all suitcases are opened (and 
the participant is left with the prize in ‘his' case). Studies that try to elicit risk preferences from this 
game show include Post et al. (2008) and De Roos and Sarafidis (2009). See Andersen et al. (2008) for 
an extensive overview of studies inferring risk aversion from behavior in (dynamic) game shows.

More generally, our findings illustrate that it is not straightforward to infer risk prefer­

ences from observed actions when the setup is dynamic and offers scope for experimen­

tation. Risk-aversion estimates obtained from game shows (such as Deal or No Deal15) , 
which neglect the point made by this paper, might suffer from a serious bias (not only 

along the quantitative dimension, but even along the qualitative one).
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1.A  Appendix A: u2(x)/u1(x) is strictly decreasing in x

Lemma 1. Let u1 : [0, x) [0, x) be a strictly increasing function with u1(0) = 0; let

: [0, x) [0, x) be an increasing and concave function, strictly so on some interval

that includes the origin, with ^(0) = 0; finally, let u2 = ◦ u1. Then u2(x)/u1(x) is
strictly decreasing in x.

Proof. Measure ui on the horizontal axis and u2 on the vertical axis. The graph of 
</>, the mapping from u1 to u2, is then a curve through the origin that is increasing and 

concave, strictly so on some interval that includes the origin, and the ratio u2(x)/ui(x) is 
the slope of the chord from the origin to the point (u1(x), u2(x)). As we increase x, and 

thus u1(x), this slope strictly decreases and therefore u2(x)/u1(x) is strictly decreasing 
in x.
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1.B  Appendix B: Generalizing Proposition 1

Using the representation of Pratt (1964), we can write u(x) = 0xexp 0y —r(z)dz dy, 

where r(x) = —u''(x)/u'(x) is the measure of absolute risk aversion associated with u. 
Let us consider an increase in the measure of absolute risk aversion by e > 0. This brings 

us to u(x; e) = fox exp (Í0 — (r(z) + e) dz) dy.

From (1.2), we can rewrite the threshold belief associated with u(x; e) as:

ru(s; e)
p ( ) (r + A)Au(h; e) — Au(s; e)

and differentiate it with respect to e to find that:

sgn = sgn (u(h; e) du(s; e)/de — u(s; e) du(h; e)/de)

/ u(h; e) u(s; e) \
g\du(h; e)/de du(s; e)/de/

Writing ue(x; e) for the partial derivative with respect to the parameter e, our aim is to 

show that u(x; e)/ue(x; e) is increasing x > 0, in which case we are back to Proposition 1 
formulated in the main text. The following Lemma (which is a generalization of Lemma 1 

in Appendix A) establishes this result and thereby generalizes the main result of our pa­

per for an infinitesimal increase in risk aversion of any (twice-differentiable) Bernoulli 

utility function u.

To this end, define f (y; e) = Joy — (r(z) + e) dz, giving

u(x;e) = fox exp(f (y;e)) dy>

and ue(x; e) = f(y; e) exp (f (y; e)) dy. Noting that fe(y; e) = —y, we see that

ue(x;e) = exp(f (y; e)) dy .

For future reference, we note that u'(x; e) = exp (f (x; e)), and u'(x; e) = —x exp (f (x; e)), 

where the prime denotes the derivative with respect to the variable x.

Lemma 2. Given ue(x; e) < 0 when x > 0, u(x; e)/ue(x; e) is increasing in x G [0, rc>).
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Proof.

sgn (u(x; e)/ue(x; e)) = sgn (ue(x; e) uz(x; e) — u(x; e) u'(x; e))

= sgn (— exp (f (x; e)) Jxy exp (f (y; e)) dy + x exp (f (x; e)) J* exp (f (y; e)) dyj

= sgn (exp (f (x; e)) JX(x — y) exp (f (y; e)) dyj

0

with the inequality being strict when x > 0.
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1.C  Appendix C: A two-period model

Here, we show that our result also holds in a discrete-time, two-period setup. Without 

loss of generality, we abstract from discounting.

In each period, the safe arm S pays out a lump-sum s with probability 2, whereas the 

risky arm R pays out a lump-sum h with probability 27 if it is of good quality, while a 

bad risky arm never pays off.16 As in the main text, we use p to denote the DM's belief 

that R is of good quality.

16Our maintained assumption is that a good risky arm is preferred to the safe arm. A necessary 
condition for the counterintuitive part of Proposition 1 from the main text is that the lump-sum h can 
nevertheless be smaller than the lump-sum s. Consequently we need to allow for the possibility that 
the probability of a payoff from R is greater than the probability of a payoff from S, and hence the 
requirement that the probability of a payoff from S is < 1.

At this stage, we rephrase Assumption 1 as follows:

Assumption C1. 0 = u(0) < 2u(s) < 2Yu(h).

In this simple setup, one can analyze the expected utilities resulting from the four possible 

strategies:

1. Playing the safe arm in both periods (SS) yields a total expected utility equal to 

u(s).

2. Playing RR yields a total subjective expected utility equal to yu(h)p.

3. Playing SR yields a total subjective expected utility equal to 2u(s) + 2Yu(h)p. This
is dominated by SS if p is low, and dominated by RR if p is high.

4. Playing RS conditionally, i.e. only sticking with R after a success in period 1, yields

a total subjective expected utility equal to 2Yu(h)p+[1Yu(h) (2Yp) + 2u(s) (1 — 1 Yp)] = 
2u(s) + 17[u(h) + 2Yu(h) — 1 u(s)] p.

Equating expected utility from SS and RS gives a lower cut-off belief:

p =______________ 1u(s)_________
2y [(1 + 2y) u(h) — 1 u(s)] ’

while equating expected utility from RR and RS gives an upper cut-off belief:
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pu =_________ 2u(s__________ .

1Y [(1 — 1 y) u(h) + 1 u(s)]’

When the DM's belief p < pe, it is optimal for him to play S in both periods. Similarly, 
when p > pu it is optimal to play R in both periods (even if no lump-sum arrived in 

period 1). For intermediate beliefs, i.e. when pe < p < pu, it is optimal to play R in the 

first period and switch to S in period 2 if no lump-sum arrived.

Defining utility functions u1 and u2 as in the main body of the paper (with u2 exhibiting 

greater risk aversion), it is straightforward to show that the sign of the difference in 

cut-offs again satisfies:

sgn(p2 — pl') = sgn(pu — p'u) = sgn f U2(S) — U2(h)^ .2 1 2 1 u1(s) u1(h)

In this case, the counterintuitive part of the parameter space opens up when Y > 1 (but 
notice that because probabilities cannot be greater than 1, we also need that y < 2). 
When Y > 1, the risky arm is expected to pay out more frequently than the safe arm and 
R second-order stochastically dominates S. This makes the risky arm more attractive to 
the more risk averse DM2.

By following similar steps to the discrete-time formulation model of Heidhues, Rady, and 
Strack (2015) of the infinite-horizon Poisson bandit model, one can verify that the same 

logic continues to apply in that setup.
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Chapter 2

The Status Quo and Belief Polarization of 

Inattentive Agents: Theory and Experiment

Co-authored with Andrei Matveenko (University of Copenhagen) and Silvio Ravaioli 

(Columbia University).

2.1 Introduction

The fundamental characteristic of many democratic votes is that they simplify a com­

plex choice into a binary problem of choice between the status quo policy with a known 

outcome and a new policy with multiple possible outcomes. Consider the 2016 Brexit 

referendum as an illustrative example - the consequences of choosing to leave the Euro­
pean Union are uncertain and could be: no-deal Brexit, Brexit with a deal, or soft Brexit, 

among others. At the same time, public opinion surveys suggest that British society a 
few months after the Brexit referendum was even more polarized than on the referen­

dum day, with voters becoming more commited to the vote in the referendum (Smith 

2019)1 . Generally, an increase in opinion polarization is a widely discussed phenomenon 

in both the academic literature2 and public discourse. However, the question of how 

binary choices between alternatives with multiple possible outcomes might be connected 
with belief polarization remains unanswered. In this paper we present a model that de- 

1Similarly, Cianietal.(2019), using a pan-European dataset show empirically that expectations about 
pension reform do not converge as a result of announcements or implementations.

2See, for instance Poole and Rosenthal 1984; McCarty, Poole, and Rosenthal 2008; Gentzkow, Shapiro, 
and Taddy 2016.

21



scribes what information a citizen chooses to obtain before voting, and as a result, we 
show that the relative position of the status quo determines the evolution of opinions, 

and may lead to systematic polarization even between agents with the same prior beliefs. 
We test and confirm these results in a lab experiment setting.

We modelthe agent to be rationally inattentive, following Sims (1998a) and Sims (2003b), 

which allows us to account for endogenous information acquisition without imposing any 

exogenously given biases. Since information is plentiful but attention is scarce, the agent 
chooses to learn the essential pieces of information for her decision problem, that is, 
whether the payoff of a new policy is higher or lower than the agent's valuation of the 

status quo. We show that under some conditions the agent systematically updates her 
belief in the wrong direction with respect to the true realization, even in expectations. 

When we include multiple agents, this can lead to belief polarization in expectations, 

even for the agents with the same prior expected belief about the payoff of the new policy.

We start our paper with a simple illustrative example. The information acquisition strate­

gies in the example are very limited, but they provide an intuition for our main result. 

In Section 2.3 we consider a static decision problem with a rationally inattentive agent, 
n states and two actions, in the manner of Matějka and McKay (2015). However, in 

contrast with Matějka and McKay (2015), our focus is on the evolution of beliefs. The 
primary indicator that we consider for the belief evolution over the optimal signals is the 

change in the mean of beliefs about the payoff of the new policy. In order to judge how the 
belief about the expected payoff from the new policy changes after the signal is received 

and the option is chosen, we take the position of an external observer. The observer 

knows which state of the world was realized and thus what the realized state-dependent 

payoff of the new policy is. We can study whether the posterior expected belief about the 
value of the new policy is moving from the prior expected belief away from or towards 

the actual payoff of the new policy.

We show that the sign of the change in the mean of beliefs is the same as the sign of 

the difference between the realized outcome of the new policy and the value of the status 
quo (Proposition 1). This result simplifies the considerations of the complex endogenous 

beliefs evolution process. At the same time, it also demonstrates the link between the 
value of the status quo and the updating process. Due to costly information acquisition, 
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the rationally inattentive agent chooses only the information necessary to disentangle 

whether to select the status quo or the new policy. Thus, the agent endogenously divides 

the states that determine the payoff of the new policy into categories that separate the 
states into two groups (based on the payoff of the new policy being higher or lower than 

the status quo), and chooses to acquire information only to disentangle from which of 
these two categories the realized outcome is. We refer to this endogenous classification 

behavior of the agent as the state pooling effect.

As a result of the state pooling effect, we observe that the agent might update her 

expected posterior belief about the payoff of the new policy in the opposite direction 
from the realized payoff of the new policy. We formulate a simple criterion to identify 

when the agent updates in the opposite direction from the realized value of the new policy 
(Theorem 1). We analyze the magnitude of the distance between the expected posterior 

belief and the prior belief. We show that the higher the realized value of the new policy, 
the greater the distance is (Proposition 2). Thanks to this monotonicity result we can 

identify the set of payoffs of the new policy for which the agent updates in the opposite 
direction from the true payoff: it lies between the prior expected payoff of the new policy 

and the payoff of the status quo.

The above results suggest that two agents might become polarized when they either differ 
in their prior expected beliefs about the payoff of the new policy or in the valuation of 

the status quo (Theorem 2). With our results for the general case in hand, we focus in 
Section 2.4 on the case with three states, in order to illustrate in detail implications of the 

previously stated results, and to show that the behavior resembling over-optimism3 and 
over-pessimism can appear as a result of the agent's inattentiveness. We also consider 
the impact of the marginal cost of information on belief polarization. In Section 2.5 we 

demonstrate, using a numerical example, that when information is cheaper, the agent's 
set of prior beliefs, in which she does not acquire any information, shrinks, and for other 

prior beliefs she chooses to learn more. Hence, when the cost of information is lower, the 
polarization of agents is more severe.

3 The important consequences of over-optimism can be seen, for instance, in Beaudry and Willems 
(2018), who show that recessions, fiscal problems, and Balance of Payment-difficulties are more likely to 
arise in countries where past growth expectations have been overly optimistic.
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This paper contributes to the literature on belief polarization. Modelling the agent as 
rationally inattentive relieves us of the need to assume exogenously given biases4 or bi­

modality of preferences (Dixit and Weibull 2007), which are common in the preceding 

literature. This in turn allows us to move in a new direction away from findings that the 

beliefs of Bayesian agents would converge over time and that they will almost surely as­
sign probability 1 to a true state (Savage 1954; Blackwell and Dubins 1962). The closest 

theoretical paper to ours is Nimark and Sundaresan (2019), which studies the question 
of how inattentiveness can lead to persistent belief polarization. In our model, agents 

with the same prior beliefs might be polarized in expectation, whereas in Nimark and 

Sundaresan (2019) two agents with the same prior beliefs will always choose the same 
signal structures and can become polarized only when they receive sufficiently different 

signal realizations. We consider a multiple states environment with full flexibility in the 

shape of the received signal, which allows us to discover a state pooling effect that cannot 
arise in the environment of Nimark and Sundaresan (2019)5.

4 Gerber and Green (1999) review the literature that invokes some biases in learning or perception in 
order to modify Bayesian updating.

5They focus on the persistence of the polarization and thus study a two state environment where the 
agent might receive binary signals and the information structure of the agent is characterized by error 
probabilities.

6A survey of the literature on rational inattention is provided in Mackowiak, Matějka, and Wiederholt 
(2018). For a posterior-based approach see Caplin and Dean (2015) and a dynamic discrete choice model 
is presented in Steiner, Stewart, and Matějka (2017).

This paper also adds to the rational inattention literature6 by studying the evolution of 

beliefs alongside the manifestation of the crucial implications of incorporating the safe 
option into the choice set. Our findings give reason for caution for empirical and ex­

perimental work inferring preferences for information. In particular, this paper provides 
a disciplined model that suggests how the preference for the skewed information might 

depend on the value of the status quo and thus provides an important channel that is 
missing in the research on whether people prefer negatively or positively skewed informa­

tion, e.g. Masatlioglu, Orhun, and Raymond (2017).

In Section 2.6, we report an experiment designed to test our theoretical results; in par­

ticular the state pooling effect and the presence of belief polarization in expectations. 

The subjects are presented with a binary choice, and can acquire instrumentally valuable 
information from advisors before making their decision. In the first task, all advisors are 
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evaluated separately and provide degenerate signal structures. Subjects report their will­
ingness to renounce the signal. In each trial of task 2 only two advisors are displayed, and 

subjects make a binary choice between signal structures presented by them. In contrast 
with Charness, Oprea, and Yuksel (2018), we focus on variation in the value of the status 

quo and not on the variation in prior beliefs. After subjects have made their informa­

tion choices, we elicit their beliefs about the likelihood of a signal, given the advisor and 

likelihood of each state as a function of the signal provided by the chosen information 

structure. A key feature of our design, distinctive from the previous literature, is that we 

consider the environment with more than two states.

We find that subjects do react to the value of the status quo, as predicted by our theo­
retical model, and that they display preference for state pooling information structures. 

We also show that the probability of choosing an advisor increases with the instrumental 
value of the corresponding information structure. Importantly, we verify the consequent 

belief polarization in expectations. As a byproduct of our design, we replicate the results 

of Ambuehl and Li (2018) in a setting with three possible states. When subjects are asked 

to report their subjective valuation for information structures, they display compression 
in the evaluations. They underreact to increasing instrumental value of information and 

display a strong preference for advisors that provide certainty in the posterior beliefs.

2.2 Example

In this section we illustrate the logic of our result in a simple example. In this example 

the information acquisition strategy is highly restricted, but it still allows us to demon­

strate the main results of the paper: the state pooling effect and belief updating in the 
opposite direction from the realized value.

Payoffs. There is a single payoff-maximizing agent. The agent faces a choice between a 
currently implemented policy (status quo) and a new policy. The currently implemented 

policy brings her a payoff R G R. The outcome of the new policy is uncertain and depends 
on the realized state of the world. There are three possible realizations of the state of 

the world. In the state s = i, i G {1, 2,3}, the new policy brings a payoff vi G R. The 
probabilities with which the states are realized are gi where 0 < gi < 2/3, g2 = 1/3 and 
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g3 = 2/3 - g1 for states s = 1, 2, 3, respectively.

Signals. The agent has an opportunity to learn about the realized state of the world, 

but her learning opportunities are restricted. Let us assume that she can ask “yes/no” 

questions, each for a cost a > 0 . We restrict the agent's questions to the form “Is the 
realized state i, or is it not?”, where i G {1, 2, 3}. Formally, her initial partition of the 

states of the world is {1, 2, 3} By asking one question , she can arrive to any partition 
of the form ({i, j}, {k}) , where i, j, k G {1, 2, 3} and i = j = k By asking two questions, 

she arrives to partition ({1}, {2}, {3})

For example, the partition ({1, 3}, {2}) means that the agent knows that the realized 

state belongs either to {1, 3} or to {2} That is, the agent can choose the following par­

titions: ({1, 2, 3}) - with no cost, ({1, 2}, {3}) , ({1, 3}, {2}) , ({2, 3}, {1}) - with cost a 

and ({1}, {2}, {3}) - with cost 2a We can now identify the optimal learning strategy of 

an agent.

Actions. First, let us show that if the agent decides to ask at least one question, then 
she will not ask the second one. Second, let us show that if the agent asks one ques­

tion, the optimal partitions are: ({1}, {2, 3}) , if v1 < R < v2 < v3, and ({1, 2}, {3}) , if 

v1 < v2 < R < v3 In Section 2.4 we show that a similar partitioning arises as optimal 

behavior of the rationally inattentive agent and we call it a state pooling effect.

In the remainder of this section, we consider the situation v1 < R < v2 < v3; the situa­
tion v1 < v2 < R < v3 can be considered analogically. The partitions ({1, 2}, {3}) and 

({1, 3}, {2}) cannot be optimal because, for example, if state 1 is realized, the agent in 
both cases remains uncertain about the optimal action, while if the agent partitions states 

into categories ({1}, {2, 3}) , she either learns that the state is 1, and thus chooses the 
status quo, or learns that the state is 2 or 3, and thus chooses the new policy. Moreover, 

further learning would not change the agent's action, and, since learning is costly, the 

agent will not do it.

Belief. How does the agent decide whether to participate in costly learning, that is, 
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whether to ask at least one question? Her prior expected belief about the outcome is

Vnl = max{R, givi + 3 v2 + v3}.

The expected posterior belief about the outcome is

Vl = giR + 1V2 + v3.

The agent compares VNL and VL — a and decides whether to participate in the costly 
learning.

Direction of updating. If the realized state of the world is s = 2, then the expected 

posterior belief about the value of the new policy is

Ei[E(v|i)|s = 2)] = 1/3 V2 + 2/3—g1 V3.
1 — g1 1 — g1

Interestingly, if VL — a > VNL > v2, in the state of the world 2 the following inequality 

holds:
Ei[E(v|i)|s = 2)] > VNL > v2.

The last inequality implies that in the state s = 2 the agent's conditional expected 
posterior belief about the value of the new policy is higher than the agent's prior belief. 

At the same time, the agent's prior belief about the value of the new policy is higher 
than v2. That is, the agent updates her belief about the value of the new policy in the 
opposite direction from the realized value v2.

2.3 The model

In this section we describe the general case of the agent's decision problem, introduce a 

methodology for assessment of beliefs' evolution, and present the main theoretical results. 
The structure of this section is as follows. In Subsections 2.3.1 and 2.3.2 we describe the 

agent's problem, which is a special case from Matějka and McKay (2015). Subsections
2.3.3 and 2.3.4 present our main results about the evolution of the beliefs given the true 

state of the world. Subsection 2.3.5 discusses beliefs' polarization of rationally inattentive 
agents.
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2.3.1 Description of the setup

A single agent faces a problem of discrete choice between two options. The first option, 

which we refer to as a new policy, provides a payoff vs G R that depends on the realized 
state of the world s G S = {1, . . . , n}, where n G N. When we say that the state is 

realized, we mean that it became possible for the potential outcome of the new policy to 

be evaluated. The states are labeled in ascending order v1 < v2 < ... < vn. The second 

option, which we refer to as a status quo policy, yields a known fixed payoff R G R. We 

assume that v1 < R < vn in order to exclude trivial cases.7 That is, there exists a unique 

k G {1, 2, ..., n — 1}, such that vk < R < vk+1.

7If R < v1, the safe option is weakly dominated by the risky option, and if R > vn the risky option 
is weakly dominated by the safe option. In both of these cases the agent does not have incentives to 
acquire information about the realization of the state of the world.

8The entropy H (Z) of a discrete random variable Z with support Z and probability mass function 
P(z) = Pr{Z = z},z G Z is defined by H(Z) = — ^zeZp(z)logp(z).

The agent is uncertain which state of the world s is going to be realized and we denote her 

prior belief as a vector of probabilities g = [gi g2 ... gn]T, where P(s = j) = gj, Vj G S; 

'V' . gj = 1 and gj > 0, Vj G S. We model the agent to be rationally inattentive in the 
fashion of Sims (2003b). The agent wishes to select the option with the highest payoff. 
Prior to making the decision, she has a possibility to acquire some information about 

the actual value of the new policy, which is modeled as receiving a signal x G R. The 

distribution of the signals, f (x, s) G P(R x S), where P(R x S) is the set of all probability 

distributions on R x S, is subject to the agent's choice. Upon receiving a signal, the agent 

updates her belief using Bayes rule. However, observing a signal is costly and we assume 

the cost to be proportional to the expected reduction in entropy8 between the agent's 
prior and posterior beliefs. For detailed treatment of entropy, see, for example, Cover and 

Thomas (2012). Upon receiving a signal, the agent chooses an action, and her choice rule 

is modeled as a(x) : x {new policy, status quo}. Given the updated belief, the agent 
chooses the action with the highest expected payoff. The timing of the decision problem 

is depicted in Figure 2.1.

2.3.2 Agent's problem

According to Lemma 1 from Matějka and McKay (2015), the choice behavior of the ratio­

nally inattentive agent can be found as a solution to a simpler maximization problem that
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Stage 1:
Information choice

Exogenous event Stage 2:
Actionchoice

I----------------- 1------------------- 1-------------------- 1-----------------1----------------- 1----- ►

Agent has Agent chooses State is realized Agent receivesAgent updates Agent chooses 
prior beliefs, information signal beliefs the action
i.e. {gs}sn=1 structure

Figure 2.1: Timing of the events in the problem. The decision problem consists of two 
stages: an information strategy selection stage and a standard choice under uncertainty 
stage.

is stated in terms of state-contingent choice probabilities alone. The information strategy 

is characterized by the collection of conditional probabilities of choosing option i in state of 

the world s : P = {P(i|s)| i = 1, 2; s G S}, where i G {new policy, status quo} = {1, 2} 

denotes the option and s is the state. The agent's problem is to find an information 

strategy maximizing the expected utility less the information cost. That is, the agent 

solves:

subject to

max
{P(i|s)|i=1,2; seS}

n

(vsP (i = 1 |s) + RP(i = 2|s)) gs

s=1
•> (2.1)

Vi : P(i|s) > 0 Vs G S , (2.2)
2

P(i|s) = 1 Vs G S ,
i=1

(2.3)

and where

2n

K = - P (i)log P (i) -
i=1 s=1

prior uncertainty

- P(i|s)log P(i|s)^ gs

/——------ v----------------'posterior uncertainty in state s

(2.4)

/
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P(i) is the unconditional probability that the option i will be chosen and is defined as

n

P (i) = p (i|s)gs, i = i,2.
s=1

Here k denotes the expected reduction in entropy between the prior and the posterior 
beliefs about the choice outcome, A > 0 is the unit cost of information, and thus, Ak 

reflects the cost of generating signals with different precision.

Matějka and McKay (2015) study a general case of the static problem described above, 

and show that at the optimum the probabilities with which the agent chooses the options 

follow the modified multinomial logit formula.This result translates into our setting in 

the following way:

Lemma 1. Conditional on the realized state of the world s G S, the probability of choosing 
a new policy for A > 0 is implicitly defined by:

P(i = 1|s) =
________ P (i = 1)e v________  
P(i = 1)evs + (1 — P(i = 1))eR ,

the probability of choosing the status quo is

P(i = 2|s) =
(1 — P (i = 1))eR 

P(i = 1)e+ (1 — P(i = 1))eR ,

where P(i = 1) is the unconditional probability of choosing a new policy.

When A = 0, the agent chooses from two available options: the new policy or the status 
quo, the option with the highest value with probability one.

Proof. Lemma 1 is a direct consequence of Theorem 1 from Matějka and McKay (2015).

□

Non-learning areas. An important feature of the solution to the agent's problem is 

that for the given vector of payoffs of the new policy (v1, ..., vn), the value of the status 
quo R and the marginal cost of information A there exist prior beliefs of the agent for 

which she decides not to acquire any information. In this case, we say that the agent is 
in a non-learning area. Once the agent is in a non-learning area, she makes her decision 
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based on her prior beliefs only. That is, when the agent is in a non-learning area, if 

Ev = sn=1 vsgs > R then the agent chooses the new policy with certainty, if Ev < R, 

then the agent chooses the status quo with certainty, and if Ev = R then the agent is 
indifferent between the two policies. Let us assume, without loss of generality, that in the 

latter case, the agent would decide to keep the status quo. Given this assumption, the 
unconditional choice probabilities of the agent who is in a non-learning area are either 0 

or 1. If the agent's prior is such that she decides to acquire at least some information, we 
say that the agent is in a learning area. For such prior beliefs, the unconditional choice 

probabilities lie in the open interval (0, 1).

2.3.3 Description of beliefs evolution

The uncertainty in this model is about the realized state of the world and thus about the 

actual payoff of the new policy. Without the information acquisition stage of the problem 

the agent would choose the option based on the comparison of the status quo payoff R 
with the agent's prior expected payoff from the new policy being

n

Ev = vsgs.
s=1

In order to judge how this expected payoff from the new policy changes after the signal 

is received and the option is chosen, we take the position of an external observer. The 

observer knows that a realized state of the world is s* and is interested in the agent's 

posterior expected belief about the payoff of the new policy v given the realized state 

s*. Note that the agent's posterior belief is given by the signal she receives and thus the 

observer not only wants to know what the expected posterior belief is for a given signal, 

but is interested in the expected posterior belief about the new policy, on average across 

all possible signals the agent may receive. Since there is a one to one mapping between 

the selected information structure and consequently chosen action, the posterior expected 

payoff of the new policy is

Ei[E(v|i)|s*] = £ VsP(s|i) ) P(i|s*),
i=1 s=1

31



whereoptioni G {1,2} = {new policy, status quo}. Fortheoptimallybehavingrationally 
inattentive agent, who is solving the problem (2.1)-(2.4), the posterior expected belief 
can be rewritten as9:

9 The derivation of Formula (2.5) is in Appendix 2.A.

Ei[E(v|i)|s*] P (i = 1|s*)e + (1 — P (i = 1|s*))eR 
= 2_> vsgs

s=1 P (i = 1)e + (1 — P (i = 1))eR (2.5)

The primary indicator for the expected belief evolution over the optimal signals that we 
consider is the change in the mean of beliefs about the payoff of the new policy that can 

be defined as A(s*) = Ei[E(v|i)|s*] — Ev. In particular, we are interested in the sign of 

A(s*), which informs us whether the posterior expected belief in state s* is moving from 

Ev towards v1 or vn or stays equal to Ev.

Proposition 1. Given that the agent is in a learning area and that the realized state of 
the world is s*, the sign of the change in the mean of beliefs about the payoff of the new 
policy A(s*) is the same as the sign of (vs* — R).

Proof. The proof is presented in Appendix 2.B.

□

Proposition 1 significantly simplifies the considerations of the beliefs evolution. At the 

same time, it also demonstrates the important link between the value of the status quo 

R and the updating process.

2.3.4 Updating in the opposite direction from the realized value 

In this section, we show the impact of the value of the status quo R on the opinion 

polarization of inattentive agents. For the rest of this section we assume that the agent 
is in the learning area, i.e. 0 < P(i = 1) < 1.

Definition 1. We say that the agent is updating in the opposite direction from the realized 

value va* in the state s* G S, if the condition (vs* — Ev) • A(s*) = (vs* — Ev)(Ei[E(v|i)|s*] — 

Ev) < 0 is satisfied.

In the following theorem we provide conditions for the presence of the states in which the 

agent is updating in the opposite direction from the realized value of the new policy.
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Theorem 1. If and only if, in a state s* G S holds that (vs* — R)(Ev — vs*) > 0, then, 
in this state of the world, the agent is updating in the opposite direction from the realized 

value vs*.

Proof. We need to show that if (vs* —R)(Ev—vs*) > 0 is satisfied, then (vs* —Ev)(Ei[E(v|i)|s*] — 

Ev) < 0 is also satisfied. By Proposition 1, the sign of vs* — R is the same as the sign 
of Ei[E(v|i)|s*] — Ev, which implies the condition needed. The proof in the opposite 

direction is analogical. □

Theorem 1 provides a simple criterion for updating in the opposite direction from the re­
alized value of the new policy. The criterion does not require solving the agent's problem 

and is formulated in the primitives of the model only. Intuition for the result presented 
in Theorem 1 is as follows. Due to costly information acquisition, the rationally inat­

tentive agent chooses only the necessary information in order to disentangle whether to 

select the status quo or the new policy. This leads to the state po oling effect, when 

the agent endogenously divides the states into two categories (those in which the payoff 

of the new policy is higher than that of the status quo and those in which it is lower) 
and chooses only information that helps to disentangle which of these two categories the 

realized state s* is from. Namely, as Proposition 1 states, for all the states s in which 

vs > R the expected posterior belief about the value of the new policy is higher than the 

prior belief; thus all such states are pooled into one category. Similarly, all the states s 
for which vs < R are pooled into another category.

It is important to notice that the agent's expected posterior belief is changing for dif­

ferent realized states even when such states are from the same category. Notice that so 
far we have shown that updating in the opposite direction from the realized value of the 

new policy can occur in some realized state s*. A natural question arises: How is the 

difference between the prior and the posterior expected payoff from the new policy A(s*) 

influenced by a different realized true state s*? The answer to this question is provided 

by the following proposition.

Proposition 2. The change in the mean of beliefs A(s*) is an increasing function of s*.

Proof. The proof is presented in Appendix 2.C. □
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Proposition 2 significantly helps us to identify the set of states W C S in which the agent 
updates in the opposite direction from the realized payoffs vs* in corresponding states. 

First, it follows from Proposition 1 that A(s* = 1) < 0 and A(s* = n) > 0. These 
findings, together with Proposition 2, imply that A(s*) reaches its minimum in state 1, 

its maximum in state n and A(s*) = 0 occurs in between. We remind the reader, at this 
point, that we have defined state k such that vk < R < vk+1. Thus, due to Proposition 

1, A(k) < 0 and A(k + 1) > 0. The last two inequalities together with Proposition 2, 
imply that for all s* < k the change of the mean of beliefs A(s*) < 0 and that for 

all s* > k + 1 holds that A(s*) > 0. We know that in states for which the condition 

(Ev — vs*) • A(s*) > 0 is satisfied, the agent updates in the opposite direction from the 

realized payoff of the new policy. Let us assume that the agent's prior expected value of 

the new policy is Ev > R. Then one can see that the agent is updating towards the true 

payoff of the new policy for all states where A(s*) is negative. However, updating in the 

opposite direction from the realized value occurs for all states that have payoffs smaller 
than Ev and at the same time higher than R (see Figure 2.2).

A(s*) = 0
I—I—I----------------------- 1------ 1—I—I--------1---------- 1------------- 1----- 1
v1 v2 v3 ••• vk-1 vk Rvk+1 vk+2 ••• Ev vn-1 vn

Set of states with updating away from vs*

Figure 2.2: Set of states W (the red part of the line) for Ev > R, where the agent 
updates in the opposite direction from the realized value of the new policy

If we assume that Ev < R then updating in the opposite direction from the realized value 

would happen in all states s* for which it holds that R > vs* > Ev. We can write that

f {s | R < vs < Ev}, if Ev > R,
W =

{s | Ev < vs < R}, otherwise.

It is worth noticing that the set of states where the agent updates in the opposite direction 

from the realized value are those where payoffs are neither very high nor very low. This 
has significant implications for predictions when the inattentive agents become polarized. 

We can also see that the number of states in the set W is determined by the status quo 
payoff R and by the prior expected value of the new policy.
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2.3.5 Belief polarization

Let us now consider a situation with two agents j = 1, 2. The agents are facing the binary 
choice described in Section 2.3.2; however, they might have (i) different preferences about 

the same status quo policy Rj and, (ii), different prior beliefs about the value of the same 
new policy Ejv. The expected posterior belief of agent j about the value of the new policy, 

conditional on the realized state s*, is denoted by Eij[E(v|i)|s*]. The difference between 
the expected posterior beliefs of agent j in the state s* and the prior beliefs of agent j is 
denoted by Aj(s*), Aj(s*) = Eij[E(v|i)|s*] — Ejv.

Definition 2. We say that two agents j = 1, 2, characterized by the pair (Rj, Ejv) and 

choosing between actions i = {1, 2}, become polarized in the state s* G S when the 
following two conditions are satisfied

1. |Ei1[E(v|i)|s*]— Ei2[E(v|i)|s*]| > |E1v— E2v|.

2. Ai(s*) • A2(s*) < 0.

The first condition ensures that the expected posterior beliefs in the state s* of two 

agents are further apart than the expected prior beliefs, whereas the second ensures that 

they update in opposite directions in the state s*. In the following theorem we provide 
conditions for the presence of states of the world in which the agents become polarized.

Theorem 2. Let us assume that there are two agents j = 1, 2, characterized by the pair 

(Rj, Ejv). If in state of the world s* G S the conditions (E1v — E2v)(vs* — R1) > 0 and 

(E1v — E2v)(vs* — R2) < 0 hold, then in expectations the two agents or two groups of 

atomistic agents become polarized in this state of the world.

Proof. Without loss of generality, let us assume that E1v > E2v. For the condition (E1v— 

E2v)(vs* — R1) > 0 to be satisfied, it is necessary that vs* > R1. Proposition 1 states that 
in this case A1(s*) > 0. Analogously, the second condition (E1v — E2v)(vs* — R2) < 0 

holds when vs* < R2, which further implies that A2(s*) < 0. That is, two agents j = 1, 2 
update in different directions and the expected posterior beliefs are farther away from 

each other than the priors are. Both conditions from Definition 2 are satisfied and the 

agents, indeed, become polarized in state s*. □
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2.3.6 Beliefs' convergence and divergence of beliefs updated in 

the same direction

In order to draw the whole picture of all possible situations (directions of belief updating), 
we describe our framework's predictions on when the beliefs of two agents converge to 

each other and at the same time move closer to the true value of the new policy.

Definition 3. We say that two agents j = 1, 2, characterized by the pair (Rj, Ejv) and 

choosing between actions i = {1, 2}, converge in their beliefs in the state s* G S when 
the following two conditions are satisfied

1. |Ei1[E(v|i)|s*] — Ei2[E(v|i)|s*]| < |E1v— E2v|.

2. Ai(s*) • A2(s*) > 0.

Theorem 3. Let us assume that there are two agents j = 1, 2, characterized by the pair 

(Rj, Ejv). If in state of the world s* G S the conditions (E1v — E2v)(vs* — R1) < 0 and 

(E1v — E2v)(vs* — R2) > 0 hold, then the two agents converge in their beliefs in this state 

of the world.

Proof. Without loss of generality, let us assume that E1v > E2v. For the condition (E1v— 

E2v)(vs* — R1) < 0 to be satisfied, it is necessary that vs* < R1. Proposition 1 states that 

in this case A1(s*) < 0. Analogously, the second condition (E1v — E2v)(vs* — R2) < 0 

holds when vs* < R2, which further implies that A2(s*) < 0. That is, two agents j = 1, 2 

update in different directions and the expected posterior beliefs are closer to each other 
than the priors are. Both conditions from Definition 3 are satisfied and the agents, indeed, 

converge in their beliefs in the state s*. □

Ai > 0 A2 < 0

I—I—I------ 1------- ------------ ©----- 1 ------ 1-------1---- 1
v1 v2 v3 R1 E1v vs* vs*+1 E2V R2 vn-1 Vn

Figure 2.3: Illustration of the situation when the agents' beliefs converge to each other 
and to the true value of the new policy.

The situation when two agents converge in their beliefs occurs when agents have different 
prior expectations of the new policy and when they value the status quo differently. In 

addition, for both agents, it has to hold that their prior expected value from the new pol­
icy Ejv and valuation of the status quo Rj for the same agent j are close to each other, i.e. 
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both Ejv and Rj are smaller or bigger than vs*. This situation is illustrated in Figure 2.3.

Ai > 0 A2 > 0
I—I—I---------1--------- -----------©----- I >------------- 1------- 1

vi V2 V3 R E1v Vs. E2v Vn-1 Vn

Figure 2.4: Illustration of the situation when the agents diverge in their belief updated 
in the same direction.

Until this point we have considered only the polarization when two agents are updating 

in opposite directions. However, as Figure 2.4 illustrates, there is also a possibility that 
posterior expected values of two agents are further away from each other than their prior 

expected values, while both agents update in the same direction.

Definition 4. We say that two agents j = 1, 2, characterized by the pair (Rj, Ejv) and 

choosing between actions i = {1, 2}, diverge in their belief updated in the same direction 
when in the state s* G S the following two conditions are satisfied

1. |Ei1[E(v|i)|s*]— Ei2[E(v|i)|s*]| > |E1v— E2v|,

2. A1(s*) • A2(s*) > 0

In Section 2.5, we consider an example which demonstrates that such divergence can 

occur, but this situation is too complex to be studied analytically.

2.4 Over-optimism and Polarization: Intuition and Im­

plications

In order to understand in detail implications of the previously stated results and to draw 
a connection with behavioral phenomena such as over-optimism, we now focus on the 

case with three states. We assume that a rationally inattentive agent is choosing between 
a new policy that takes values v1 < v2 < v3 in the states of the world s = 1, 2, 3, respec­

tively; and keeping the status quo that has a payoff v1 < R < v3, independently of the 
realized state of the world. The agent has a prior expectation of the value of the new 

policy Ev = v1g1 + v2g2 + v3g3.
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In Proposition 1 we have shown that for fixed state s*, the sign of the change in the mean 

of beliefs A(s*) = Ei[E(v|i)|s*] — Ev is the same as the sign of vs* — R. When we consider 

the true realization of the state to be s* = 1 (the worst payoff of the new policy), the 
agent on average shifts her belief about the value of the new policy down (A(s* = 1) < 0 

because v1 — R < 0), for any Ev and R that are inside the interval (v1, v3). There is 
no surprise here: the value of the new policy is the lowest possible v1 and the agent on 

average shifts her expectation of this option's payoff down, towards the true value. Simi­
larly, when s* = 3, implementing the new policy would lead towards the highest possible 

value v3 and the agent correctly shifts the expected posterior belief closer to v3 (because 
A(s* = 3) > 0).

State 1 A<0
1 1

v1
1

R
1

v2

State 3 A>0
1 1 11

v1
1 

R
1

v2

Figure 2.5: Updating when extreme states are realized. The true state is highlighted 
by the red circle.

Updating in the opposite direction from the realized value and the state pool­

ing effect

A more interesting situation occurs when intermediate state s* = 2 is realized. First, 

without loss of generality, we assume that prior belief about the new policy is such that 

Ev < v2 and we fix it. We consider different possible valuations of the status quo R. If 

R < v2 holds, then A(s* = 2) > 0, that is, after receiving the signal the agent updates 

her average posterior belief about the payoff of the new policy towards the true realized 

payoff v2. However, when R > v2 then A(s* = 2) < 0 meaning that the agent updates her 

expected belief to the left, i.e. away from the true payoff of the new policy. Note that this 
is not possible with Bayesian updating and exogenous Gaussian signals. Both these cases, 

when s* = 2 is realized, are depicted in Figure 2.6. In these scenarios, the agent is rather 

pessimistic about the new policy Ev < v2. In the first case, when R < v2, the agent on av­

erage understands that the impact of the new policy is beneficial. The reason is that she 
knows that keeping the status quo would lead to a relatively bad outcome and thus when 
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the realized value of the risky option is relatively high, she correctly increases her expected 

belief about the probabilities that the new policy can lead to better outcomes (v2 and v3).

A > 0

I------------------ 1----- 1---------©---------------------------------- 1
v1 R Ev v2 v3

A < 0
I------------------- ' I ----©---------- 1----------------------- 1

v1 Ev v2 R v3

Figure 2.6: Updating for the changing status quo when state s* = 2 is realized.

When R > v2 the agent shifts her expectation of the new policy down, closer to the 

outcome v1, away from the true payoff v2, i.e. she updates in the opposite direction from 

the realized value. One could expect that this result is just a consequence of confirmatory 
learning. However, we would like to emphasize that in the problem described in this 

paper, the updating in the opposite direction from the true payoff is a consequence of a 

different mechanism. Specifically, the agent chooses between the new policy and preserv­

ing the status quo. Initially she expects the payoff of the new policy not to be very high 

(Ev G (v1, v2)) and at the same time she perceives the payoff of the status quo as quite 

high (R G (v2, v3) ). The agent would prefer to choose the status quo in the realizations 

of the state s* = 1, 2. Hence, to some extent, she acquires information that would allow 
her to disentangle whether state 3 is realized. She acquires information, and on average 

she understands that the realization of the state is indeed not s* = 3, but since, to some 
extent, she is not interested which one of the other two states is realized exactly, both her 

posterior probabilities of states 1 and 2 rise. This is the state pooling effect mentioned 
in Section 2.3.4, that is, the agent endogenously pools states into categories. In this 

example, one category is composed of states 1 and 2; and the second category of state
3. Consequently, the direction of updating of the expected belief about the value of the 

risky option depends on the category to which the realized state belongs. This may result 
in the presense of updating in the opposite direction from the realized value of the risky 

option.

Symmetry, over-optimism and over-pessimism

In the example presented in this section so far we have emphasized the role of the status 
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quo, which is not usually considered in the papers studying polarization, by keeping the 
prior expected belief Ev fixed and varying the value of the status quo R. The analysis, 

however, could also be done for the fixed R and varying prior expected value of the new 
policy Ev. The whole effect works symmetrically; that is, in the previously discussed 

example with s* = 2 the agent would also be updating in the opposite direction from the 
realized value when the R and Ev are interchanged. Let us consider two situations where 

s* = 2: the first with Ev < v2 < R and the second with R < v2 < Ev. In the former 

situation the agent has a low prior expected value from the new policy and then updates 

towards v1. In the latter situation the prior expected value is quite high and then it is 
updated upwards towards v3. Stated differently, in the situation when Ev < v2 < R, 

the agent is pessimistic about the new policy and consequently becomes even more pes­

simistic. In the second case, when R < v2 < Ev, the opposite is true. The agent is 

optimistic and becomes over-optimistic about the outcome of the new policy.

Polarization

Suppose that there are two types of agents that differ only in how they value the current 

situation Rj, j = 1, 2. It is often the case that different people do not necessarily need to 

have different expectations about future policy, but they disagree about the favorability of 
the current policy. This is especially common for disputes connected with globalization, 
migration, robotization, climate change etc. It might be possible that those who currently 

benefit from the current situation and those who, for instance, lost their jobs due to 

globalization would have different valuations of the status quo. Let us assume that the 

first group (blue in Figure 2.7) opposes the current policy and the second group (red in 
Figure 2.7) benefits highly from the current situation , i.e. R1 < v2 < R2. According to 

Proposition 1, the members of group 1 on average update their belief up (A1(s* = 2) > 0) 

and the members of group 2 on average update down (A2(s* = 2) < 0). This situation 

is illustrated in Figure 2.7. The prior expected belief is the same for both groups (top 
figure). The lower figure illustrates the posterior expected beliefs for groups 1 and 2. We 

can observe that posterior expected beliefs for these two groups move further apart from 
each other, which documents the polarization situation created only by the difference in 

evaluation of the current policy.

Agent not acquiring any information

In all our previously stated results, we assume that the agent is in the learning region.
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Figure 2.7: Polarization in the state s* = 2 of the two groups with different status 
quo. Blue and red bars represent two groups of agents that differ in their valuations 
of the status quo, respectively. The fact that the bars are narrower at the lower figure 
illustrates that both groups of agents decrease their uncertainty; however, they might 
choose to reduce the uncertainty by different levels.

Figure 2.8: P(i = 1) as function of Ev, A = 4, R = 8.

However, we know that the agent is not acquiring any information when P(i = 1) = 

{0, 1}. Because the agent can choose only from two options, there exist only the two 
following cases when the agent is not acquiring any information. The first case is when 

the agent's valuation of the status quo is in close proximity either to the lowest possible 
payoff of the new policy v1 or to the highest possible outcome from the new policy v3. 

Due to the aforementioned symmetry between Ev and R, the second case when the agent 
is not acquiring any information corresponds to the situation when her prior expected 

41



belief is in close proximity to v1 and v3, i.e. the agent assigns relatively high prior prob­
ability to one of the extreme states. The plot of P(i = 1) for varying Ev and fixed A and 

R is depicted in Figure 2.8. This behavior is expectable. For instance, when the agent 
a priori believes that the new policy is extremely good, while acquiring the information 

is costly, she would choose not to obtain any information. How the non-learning regions 
change with the varying cost of information is studied in the following section.

2.5 Comparative statics

Previous sections investigate the conditions determining the direction of the mean belief 

updating and when the polarization of agents occurs. In this section we explore the in­
fluence of the model parameters (marginal cost of information, value of status quo) on 
the magnitude of the change in the mean of beliefs. Specifically, we are interested in the 

following questions. How much does the expected posterior belief about the value of the 
new policy differ from the prior expected value? What is the role of the cost of infor­

mation? Does the model predict that the agents become more polarized in a situation 

with a higher marginal cost of information? Does the actual valuation of the status quo 

have an influence on the value of A(s*) or does it have an influence only on whether the 

agent is updating towards or away from the realized value of the new policy? We answer 

these questions using numerical solutions. Therefore, we take advantage of the example 

with three states and two actions. This problem is a simple benchmark and its solution 

exhibits the basic features of solutions to the problems with n states and 2 actions. The 

solution we analyze in this section is a symbolic solution.

In the scenarios under consideration we use several different values of the status quo R 
and of marginal costs of information A. All parameter values are summarized in Table 2.1.

v1 v2 v3 g1 g2 g3 R1 R2 A1 A2 A3 A4

0 1 1 gg (0 2) 1 2 g 3 5 1 1 3 1
yG' ’ 3) 3 3 y 8 8 8 4 8

Table 2.1: Parameters used in this section

Note that keeping prior probability of state 2, g2, fixed, we can vary prior probability of 
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state 1, g only between (0, 3). Also, Ev can vary only from 1 to |. To solve the problem 

(2.1)-(2.4) it is necessary to find the unconditional probabilities P(i = 1) and P(i = 0), 

that we then use for finding the conditional probabilities from Lemma 1. First, for a 

given set of parameters, the unconditional probability P(i = 1) as a function of Ev for 

different values of A is shown in Figure 2.9.

Figure 2.9: P(i = 1) as function of Ev for different A, R1

For Ev close to 1 and |, the agent does not process any information and chooses with 

certainty the status quo and the new policy, respectively. With increasing marginal cost 
of information, the area in which she chooses with certainty grows. In the middle region, 

the agent acquires information, and the unconditional probability of selecting the new 

policy is an increasing function of the prior expected value of the new policy. With an 

increase in marginal cost of information A, the small changes in Ev translate into bigger 

changes in P(i = 1).

In order to observe how the change in the mean of beliefs is influenced by the parameters, 

see Figure 2.10, which depicts Ei[E(v|i)|s* = 2] as a function of Ev for different levels 
of R and A. In line with Proposition 1, different R change the direction of updating. 
Moreover, for this example, the role of the marginal cost of information is clear from this 

figure. The lower the marginal cost of information (A2 < A1), the further away the prior 

expected values are from the posterior expected value of the new policy. This is also 

presented by the fact that the agent is learning even for the prior beliefs, where she was 
not acquiring information for A1. Therefore, in our example, when the cost of information

43



Figure 2.10: Ei[E(v|i)|s* = 2] as a function of Ev for different levels of R and A. The 
solid lines are the case with R1 and dashed with R2. Black corresponds to cases with A1 

and red is used for A2.

is lower, the polarization of agents is more severe.

Another perspective on how the change in the mean of beliefs is influenced by the pa­

rameters is provided in Figure 2.11, which directly depicts A(s* = 2) as a function of Ev 

for R1 = 3/8 and A2 = 1/4. The figure corresponds to the situation when the agent is 
updating to the right, towards v3. The red region indicates the region where the agent 

is updating away from the realized value of the new policy v2. An interesting insight is 
that since the maximal value of A(s* = 2) is achieved for prior beliefs, which are close 

to the payoff associated with the true state vs*=2 = 1/2, it suggests that someone who 
is updating towards the realized value of the new policy can move her belief from lower 
than v2 to higher than v2. Moreover, we observe that the more optimistic the agent is 

about the new policy, when she updates in the direction of v3, the less she updates (see 

the decreasing part of Figure 2.11). This is not surprising in this example, because the 
g2 is fixed and s3=1 gs = 1.

Figure 2.11: A(s* = 2) as a function of Ev for R1 = 3/8 and A2 = 1/4. The red area 
depicts the region of updating in the opposite direction from the realized value.
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This figure also provides an example of when two agents diverge in beliefs while they 
update in the same direction. We remind the reader of the illustrative figure of the 

situation in Figure 2.4, where we assume that the agents' valuations of the current policy 
are the same. Thus, since two agents differ only in their prior expectations about the 

new policy, it is sufficient to look at how a single agent's change in the mean of beliefs 
A(s* = 2) depends on Ev. We are interested in finding two prior expected beliefs for 

which there is divergence of posterior beliefs. For that we need to find two points such 
that delta for the left point is lower than that for the right point. In our example the red 

part of the plot is a decreasing function. This means that, in our example, two agents 
updating in the same direction with the same valuation of the status quo might diverge 
in their opinions only when they are updating correctly. However, at the black part of 

the plot it is easy to find two points at which the agents diverge in their opinions.

2.6 Experimental design

Our theoretical results show that the agent-specific value of the status quo determines 

the information structure selected. As a consequence, two agents with different values 

of the status quo might become polarized in expectations. In particular, the rationally 

inattentive agent chooses to learn whether the outcome of the new policy is better or 

worse than the status quo, and not to learn the exact state-dependent outcome of the 

new policy. We have denoted this information strategy as state pooling behavior.

The main results of the model rely on several assumptions about a decision maker's pref­

erences (risk neutrality), ability to estimate probabilities (by correctly updating beliefs), 
and motivation (information has a purely instrumental value). The experimental litera­

ture reports a large amount of evidence that casts doubts on human ability to perform 

these tasks as accurately as the theory suggests, and highlights that belief divergence 

could be mitigated or enhanced by human biases. We are interested in testing whether 
belief divergence in expectations, the main result of the model, can occur in a lab setting 

and whether behavioral components enhance or mitigate its magnitude.

In the following sections of the paper we investigate whether our normative model is also 

accurate in describing human behavior. We do so by running a lab experiment in which 
participants are allowed to collect information before making choices under uncertainty.
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We collect actions and beliefs separately, and combine them to compute a cardinal indi­
cator for beliefs divergence and to compare human behavior and theoretical predictions. 

Our design allows us to test the three most important predictions of the model: 1) the 
status quo influences the evaluation of and choice between information sources, 2) agents 

display state pooling behavior and disregard action-irrelevant information, and 3) beliefs 
become polarized in expectations.

2.6.1 Overview of the experimental design

The experiment comprises of four tasks and a final questionnaire. In the first and sec­

ond tasks, subjects face a binary choice between the Opaque box (risky action), which 
contains a single “color ball”, the value of which depends on the unknown color, and the 

Transparent box (safe action), containing a single ball whose value is known. The color 
ball is randomly drawn from a box containing three balls (states) with different colors 

(red, yellow, blue) with uniform probability of being selected. The two parts differ in the 

way we provide interim information about the color ball. In task 1 four possible advisors, 

(representing degenerate signal structures), are evaluated separately and subjects report 
their willingness to accept (Becker-DeGroot-Marscha method) to renounce to the signal. 

In each trial of task 2 only two advisors are displayed and the subject makes a binary 

choice between them. We ensure incentive compatibility by paying subjects for a single 
decision randomly selected from the entire experiment. Subjects never receive feedback 

about their decisions until the very end of the experiment . Each subject participates in all 
of the following tasks, in the order listed below. In tasks 3 and 4 we elicit unconditional 

and conditional beliefs for different advisors, assigned exogenously.

2.6.2 Task 1 - Colorblind advisor game

In each round of task 1 subjects i) choose an action contingent on the advisor and signal 

received (Figure 2.12, left) and then ii)indicate for each advisor the willingness to accept 

to renounce to its signal (Figure 2.12, right).

Subjects play 10 rounds with the same four advisors and different lottery return values. 
Three of the advisors in this game (named Red, Yellow, and Blue) are described as 

colorblind to all colors except the subject's own. Advisors are able to observe the color 
ball and report truthfully whether it matches her own name's color. For example, the Red
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Task 1, Screen 1: Action choice

Figure 2.12: Task 1: Colorblind advisor game. Left: Sub jects choose an action (box) 
contingent on the advisor and signal received. The possible values of each action are 
indicated on the top of the screen. Each state (ball color) is equally likely to occur. Right: 
Subjects indicate for each advisor the willingness to accept to renounce to its signal in a 
series of binary choices (BDM method). At most one switch is allowed. Action choices 
selected in the previous stage are reported on the bottom of the screen.

OPAQUE BOX

Q 10 points 
O 30 points 

£ 80 points

TRANSPARENT BOX

£ 25 points

Choice with Red Advisor □ E1 Choice without Advisor + 0 extra points
Choice with Red Advisor □ [J Choice without Advisor + 2 extra points

• Transparent

X Opaque

Task 2, Screen 2: WTA for each advisor

advisor returns a signal RED or NOT RED, which is easy to interpret. The fourth advisor 

is named Rainbow and reports every color accurately. This advisor provides a benchmark 

for the valuation of information without uncertainty. In each round, a sub ject chooses 

which box she would pick in each hypothetical advisor/answer scenario, as well as if she 

did not have access to any advisor (strategy method). Then, the subjects fill a multiple 
choice list for each of the four advisors, choosing between pairs of options: “Choice with 

the X Advisor” (X is replaced with the advisor's name) or “Choice without Advisor + w 

extra points”, for w between 0 and 20 points, in 2 points intervals. The value w at which 

a subject i switches from preferring the former to the latter option reveals her valuation 
wIi , of the information structure I. Since each line counts as a separate decision, one 

of which might be randomly drawn for payment, truthful revelation is strictly optimal. 

We constrain sub jects to have at most one switching point. If one round from this part 

is selected for the bonus payment, subjects receive the $15 bonus with the percentage 

probability equal to the number of points that she collected in that round.

2.6.3 Task 2 - Imprecise advisor game

In each round of task 2 sub jects i) choose one advisor between the two options available 
(Figure 2.13, left) and then ii) indicate the signal-contingent action for each signal (Fig­

ure 2.13, right).
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Advisor X Advisor Y

Select one Advisor

Task 2, Screen 2: Action choice

Figure 2.13: Task 2: Imprecise advisor game. Left: Subjects choose one signal structure 
(advisor) between the two options available. Each advisor is a triplet of state-contingent 
signal probabilities. Right: Subjects indicate the signal-contingent action for each signal 
(strategy method).

Task 1, Screen 1: Advisor choice

Subjects play 40 rounds with different pairs of advisors and values for the ball in the 

Transparent box. This ball can take two values (30 and 65 points). The values for the 

balls in the Opaque box are unchanged during the task (10, 50, and 80 points, uniform 

probability of being drawn). Each round comprises two parts. In the first part, subjects 
observe a pair of advisors and make a binary choice to select which advisor they want 

to consult. In the second part, only the selected advisor is consulted, a signal-contingent 
binary choice is implemented (as in task 1, part 1), and the participant chooses one box 

based on the signal received. Each advisor is defined as a triplet of decks of cards, corre­
sponding to the triplet of conditional probabilities of providing a binary signal. Each deck 

is associated with one of the possible colors for the balls in the Opaque box, and contains 
a combination of four cards. Each card can be black or white; these colors are randomized 

and do not convey any intrinsic message. This means that the signal-contingent choice 

in the second part of the round requires the sub jects to analyze every advisor separately, 
reducing the concern regarding inertia.

The 40 rounds are designed as a combination of 20 advisor pairs and two values for the 

ball in the Transparent box (safe option). The advisors are selected in order to examine 

preference over sources of information and formulate predictions about the effect of the 

safe option on information collection and posterior beliefs. In particular, 11 pairs of 

advisors out of 20 are designed such that a Bayesian agent would pick different advisors 

by changing the safe option. If one round from this part is selected for the bonus payment, 

subjects receive the $15 bonus with the percentage probability equal to the number of
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points that she collected in that round.

2.6.4 Task 3 - Card color prediction game

In each round of task 3 subjects indicate the likelihood of observing each signal for a 

given advisor (Figure 2.14, left). We elicit the sub jects' signal probability beliefs for each 

of the 20 advisors using a single slider with sensibility to the unitary percentage level. 
Each round contains a single advisor from those used in task 2 and subjects are asked to 
report the probability of a black or white card being shown. We incentivize accurate and 

truthful reporting by using the quadratic loss scoring rule with two states (card colors). 
If one round from this part is selected for the bonus payment, the computer randomly 

determines the state and realized signal, and sub jects receive the $15 bonus with the 
percentage probability determined by the quadratic loss scoring rule.

Task 3: Beliefs over signal likelihood Task 4: Beliefs over state likelihood

Figure 2.14: Left: Task 3 (Card color prediction game). Subjects indicate the likelihood 
of observing each signal (card color) for the given advisor. Right: Task 4 (Ball color 
prediction game). Subjects indicate the likelihood of each state (ball color) given an 
advisor and signal. In both tasks subjects move the slider(s) and receive a number of 
points according to the quadratic loss scoring rule described in the instructions.

2.6.5 Task 4 - Ball color prediction game

In each round of task 4 sub jects indicate the likelihood of each state given an advisor 

and signal (Figure 2.14, right). We elicit the sub jects' posterior probability beliefs for 

each of the 20 advisors and for each possible signal realization, using a double slider with 
sensibility to the unitary percentage level. Each round contains a single advisor from 

those used in task 2 and one realized signal (black or white card). The subject is asked 
to report the probability of a red, yellow, or blue ball being in the Opaque box after 
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observing the card color. We incentivize accurate and truthful reporting by using the 
quadratic loss scoring rule with three states (ball colors). If one round from this part is 

selected for the bonus payment, the computer randomly determines the state and realized 

signal, and subjects receive the $15 bonus with the percentage probability determined by 

the quadratic loss scoring rule.

2.6.6 Questionnaire

The final part of the experiment is a questionnaire designed to collect demographic vari­

ables (including field of study and familiarity with Bayes' rule), psychological measures 
(Life Orientation Test - Revisited, LOT-R hereafter), risk attitude (Holt-Laury risk elic­

itation method with multiple price list, Holt and Laury 2002, HL hereafter), cognitive 

ability (five questions from the Raven Progressive Matrices Test, Raven hereafter), as 
well as questions on the subjects' strategy in the first and second task.

2.6.7 Procedure

The experiment was run in CELSS (Columbia Experimental Laboratory of Social Sci­

ences, Columbia University, New York, USA) between August and September 2019. 

The experiment was coded in MATLAB (Release 2018b) using Psychotoolbox 3 (Psy­
chophysics Toolbox Version 3). Eighty-five volunteers were recruited using the platform 

ORSEE (Online Recruitment System for Economic Experiments) and were naive to the 

main purpose of the study. All subjects provided written, informed consent. The whole 

experiment took on average 85 minutes, including instructions and payment. On com­

pletion of the experiment, the subjects received payment in cash according to task per­

formance. Each subject received a $10 show-up fee, and played for a bonus prize of $15. 
In addition, a subject could earn between $0.10 and $4 in the risk elicitation task and 

$0.50 for each question of the cognitive test, up to $5. The average payment was $25.

2.6.8 Sub ject understanding

Instructions were provided both on the computer screen, as slides that can be browsed 
by each subject at the desired pace, and as paper printout. The two versions of the 

instructions contained the same information verbatim. Subjects were required to answer 
correctly all the multiple-choice questions of the comprehension test to check under- 
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standing of the instructions before proceeding with every section of the experiment. The 

number of questions ranged from two to four for every section, and subjects received a 

one-minute timeout before having a new attempt. Subjects were initially informed about 
the payment structure, the no-deception policy of the laboratory, and that choices in one 

section of the experiment did not affect any other section, nor the questionnaire. A small 

number of subjects were recruited for each laboratory session (6 on average) in order to 

facilitate clarification of questions during the experiment.

2.7 Experimental investigation

This section aims to clarify the connection between the theoretical setup discussed in 

Section 2.3 and the experimental design introduced in Section 2.6. Readers who are 

familiar with the model can skip the following subsection and proceed directly to the 

hypothesis (Section 2.7.3).

2.7.1 Formal setup

We consider a setting with three possible states and two actions that generate state­
contingent payoffs. The actions represent two policies: the current policy (the status 

quo), whose return R is known and independent of the state, and a new policy, whose re­
turn vs G R is uncertain. The state of the world s G S = {r, y, b} is represented by a color, 

associated with the deterministic return for the uncertain policy: r (red, low return), y 
(yellow, intermediate return), or b (blue, high return), with 0 < vr < vy < vb < 100 

and vr < R < vb. An agent with a correct uniform prior belief P(s) = 1, Vs observes 
an informative signal about the state and selects one of the two policies. The return 

V G {{vs}S, R} of own choice depends on the selected action and the realized states, and 
represents the probability of receiving a fixed prize k ($15 in our laboratory experiment).

Information is valuable because it informs the subsequent binary choice between policies. 
We let a G {0,1} denote the realization of a stochastic signal that the subject may ob­

serve (note that in the case of degenerate probabilities the signal is deterministic). Since 
we have three states and two possible signal realizations, a signal structure is a triplet of 

state-dependent probabilities PI(a = 1|s). We will refer to such a triplet I as an infor­
mation source or advisor. Notice that even though the three states are equally likely, the 
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two signals need not be equally likely.

The Bayesian agent represents a natural benchmark to consider the objective value of 

information in this environment. Let wI denote the bonus that renders the agent indif­

ferent between playing the game without additional signals10 (but receiving additional 

wI “tickets”) and playing the game with the signal structure I . Since there are only two 
possible levels of payoff a sub ject can obtain (k if she wins the prize, or 0 if she does not), 

and intermediate rewards n are expressed in probability points, this measure of valua­
tion is independent of the curvature of a subject's utility function for money. Subjective 

posterior beliefs PI(s|a) and signal probability assessments PI(a) are sufficient to obtain 
the valuation of information structure I for any agent who reduces compound lotteries 

into simple lotteries, has preferences that depend only on final outcomes,11 and strictly 
prefers obtaining the prize k > 0 to not obtaining it, even if she is not Bayesian.

10 Playing without any additional information is, from a theoretical perspective, equivalent to playing 
with a purely noisy signal. We prefer to refer to the former case for the sake of clarity.

11 Note that a non-instrumental preference for information, e.g. preference towards certainty or pref­
erence towards negative information, would create a gap between the theoretical and observed valuation 
that cannot be explained by updating alone.

12 We are implicitly assuming that such a signal exists. If both signal realizations are associated with 
the same final action, we can redefine the signal probabilities such that the choice-reverting signal a = 1 
occurs with probability 0 in every state.

Given a binary choice environment {{vs}S, R}, and a signal structure I, the decision 

maker implements an updating rule P(a) (guess about the state of the world) and makes 

a binary decision. The valuation of the information structure I is given by a chosen 

lottery with value V and by the observed signal

wI = EV [V |signal observed] - EV [V |no signal] (2.6)
' Ví ' " Vó '

For notational reasons, we denote as V0 the value of the action chosen without observing 

any signal and as V1 the value of the action chosen after observing a signal realization. 
Similarly, we normalize the notation such that a = 0 is the signal realization that leaves 

the chosen action unchanged, compared to the scenario without additional information. 

In contrast, a = 1 is the choice-reverting signal.12 Our design rules out any effect of risk 

preferences as the lotteries' returns are expressed in probability points. We can rewrite 
the valuation in equation 2.6 by taking into account that (at most) one signal realization 
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is associated with a different choice with respect to the scenario without signal.

wi = Pr(signal = 1) • AEV[VChoicelsignal = 1] (2.7)

where

AEV[Vchoicelsignal = 1] = EV[Vi|signal =1] - EV[Vo|signal = 1].

We can generalize the subjective valuation in order to include non-instrumental preference 
over information. A decision maker i has a subjective valuation wii of the signal structure 

I that depends both on the instrumental value li and other characteristics of I , for 
example the type of “optimistic/pessimistic” information that it provides. We postpone 

further discussion about possible differences between Bayesian and subjective valuation 
of information to the results.

2.7.2 Bridging theory and experiment

Our experimental design allows us to estimate how agents evaluate an informative signal 

structure (advisor), and measure how the subjective evaluation depends on the properties 
of the signal structure, including instrumental value (expected improvement in the choice 

process) and non-instrumental properties (ease of interpretation).

The timing of the problem (as in task 2) can be summarized as follows:

1. The agent is informed of the prior P(s) = 3 Vs and the state-contingent returns 

{vs}S , R.

2. One state is realized, but the agent is unaware of it.

3. The agent is offered two sources of information (advisors) I1 and I2.

4. The agent chooses one advisor and discards the other.

5. The selected advisor observes the realized state (ball in the opaque box).

6. The selected advisor returns a binary signal, whose likelihood depends on the real­

ized state.

7. The agent observes the realized signal.
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8. The agent chooses one action (opaque or transparent box) and receives the payoff 
n.

9. The agent plays a lottery and receives the final prize k with probability 1^.

The problem presented in task 1 is similar up to a change in steps 3 and 4:

3'. The agent is offered one single source of information (advisor) I

4'. The agent indicates how much she is willing to accept to renounce to the advisor.

In the Colorblind advisor game (task 1), we elicit the probability wI such that the agent 
is indifferent between making a choice after observing the realization of a known signal 

structure I, and choosing without additional signals but receiving additional wI tickets to 

win the prize. In the Imprecise advisor game (task 2), we offer pairs of signal structures, 

and collect binary choices between advisors. If the valuation and choices differ from those 

a Bayesian expected utility maximizer would display, we would like to pinpoint the source 

of the deviation. For this reason, we add two control tasks to elicit a subjective signal of 

beliefs' realization (Card color prediction game, task 3) and subjective posterior beliefs 
(Ball color prediction game, task 4). We collect posteriors only after eliciting prefer­
ence over advisors, so we do not nudge the subjects towards thinking about information 

valuation in a specific fashion.

2.7.3 Hypothesis

Our experiment allows us to test the main predictions of the model, as well as disentangle 
the possible factors that mitigate or enhance the results with respect to the behavior of 

an optimal decision maker. The first hypothesis refers to the crucial effect of the status 
quo on information acquisition.

Hypothesis 1. A change in the status quo (safe option) generates a reversal in the choice 

between advisors when such a reversal is optimal.

We tested this hypothesis by collecting choices over information structures under different 
values of the safe option. The optimal advisor choice would not be sufficient to generate 

belief polarization. The second hypothesis refers to the result that appears in the title of 
the paper.
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Hypothesis 2. A change in the status quo (safe option) generates beliefs polarization in 
expectations.

We tested this hypothesis by collecting subjective beliefs after receiving a signal, in addi­
tion to the advisor choices. There are three main channels that may mitigate or enhance 

the results with respect to the behavior of an optimal decision maker: non-standard 

preferences for information structures, biased beliefs, and non-standard preferences over 
realized states. We can summarize the behavioral assumptions with these three hypoth­

esis

Hypothesis 3. Subjects choose the information structure with the highest instrumental 

value.

Hypothesis 4. Subjects have an accurate estimate of probabilities and update own beliefs 
optimally after observing an informative signal.

Hypothesis 5. Subjects choose the action with the highest expected return after observing 
an informative signal.

Our setup allows us to test an additional hypothesis related to the general problem of 

information valuation by collecting detailed data about willingness to pay and binary 

choice between information structures. We extend traditional designs in a scenario with 

three states of the world and test the robustness of effects that are well-known in simpler 

settings. The behavioral counterparts for hypothesis 3 above can be summarized with 

the following alternative hypothesis.

Hypothesis 6. Subjects evaluate and choose information structures based on non-instrumental 

characteristics, including accuracy about the most desirable states (optimism) and ease 
of processing of the signals (certainty, state pooling).

2.8 Experimental results

This section contains the main results of the experimental investigation. We report 

aggregate choices between sources of information (Section 2.8.1) and provide evidence 

that (i) subjects do react to the value of the status quo as predicted by the theoretical 
model, meaning that they do switch between advisors providing the information about 

the best/worst state in accordance with their optimality. We also show that (ii) the prob­
ability of choosing an advisor increases with the instrumental value of the corresponding 
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information structure. In addition to the instrumental value, we consider other charac­

teristics of the information structures (Section 2.8.2), (iii) we replicate the well-known 

preference for certainty in our setting, and (iv) we document preference for state pooling 

information structures.

Possible deviations from optimality in the information collection stage may be reconciled 

with non-standard preferences and suboptimal action choice after observing the signal 

realization. We analyze subjects' actions (Section 2.8.3) and (v) we verify that actions 

are consistent with the optimal behavior of a risk-neutral agent. Biased perception or 

updating of probabilities are also possible causes of mistakes in the information collection 

stage. We compare the optimal beliefs about the state of the world of a Bayesian agent 
with the subjects' elicited beliefs (Section 2.8.4) and we report that (vi) subjects display 

conservatism in their beliefs, but the bias does not represent a major driver of deviation 
from optimality.

We combine actions and beliefs elicited in separate tasks (Section 2.8.5) and (vii) we 
observe belief polarization in our laboratory setting. Finally, we analyze the willingness 

to pay (WTP) for information structures in the first task (Section 2.8.6), where we observe 

that (viii) subjects display compression in their WTP and (ix) are willing to pay higher 
amounts for information about the most desirable state.

2.8.1 Optimal response to the change in the status quo

Figure 2.15 plots the aggregate probabilities at which subjects choose the best advisor, 
that is, the one that offers the information structure with higher instrumental value. The 

first bar displays the probability of choosing the best advisor in all trials where the best 

advisor exists (29 trials out of 40). For the other two bars we use 22 trials where it is 

optimal to switch between advisors when the value of the status quo changes. We can 
observe the high rate of optimal choices in all three cases. Importantly, the probabilities 

of choosing the best advisor for the status quo R = 30 and R = 60 are both significantly 

greater than 0.5, with values 0.66 and 0.70, respectively. The probability of choosing the 
optimal advisor when we also include trials with a dominant advisor, where the switch 

between the advisors does not occur, increases to 0.72. These high probabilities confirm 
that the subjects correctly recognize the optimal advisor and do show switching behavior

56



1

Figure 2.15: Probability of correct answers for all the participants. The first bar is 
for all trials where there is a dominant advisor (29 trials out of 40, 2465 observations). 
The remaining two bars indicate the pairs of trials with the same advisors and different 
status quo R, in which it is optimal to switch the choice of advisors when the status quo 
is changed (11 trials per bar, 935 observations).

between the advisors in line with the changes in the status quo.

Experimental Result 1. Subjects systematically react to the value of the status quo and 
choose the optimal advisor (information structure).

In order to take a more detailed look at the trials where the switch between the advisors 

is optimal, in Figure 2.16 we depict the probability of choosing the advisor (out of a pair 
of advisors labeled X and Y) as a function of the difference in the instrumental values 

of the two advisors presented. The probability of selecting Advisor X increases with 
the difference between the instrumental values of Advisor X and Advisor Y. All the trials 

except one lie in the first and the third quadrant, that is, whenever the instrumental value 

of Advisors X is lower than Y the probability is below or at most equal to 1/2. When 
the value of Advisor X is greater than Advisor Y the probability is higher than 1/2. 

Probabilities are increasing almost linearly and not stepwise near the zero, suggesting 

that subjects do not respond only to the sign of the difference in the instrumental values 

between the advisors, but to the actual value of the difference.

Experimental Result 2. The probability of choosing an advisor increases with the instru­
mental value of the corresponding information structure.

When we inspect Figure 2.16 closely, we notice that there are five trials (two of them 
overlap) that have a difference in instrumental values between advisors equal to -2.5 and
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Figure 2.16: Probability of choosing Advisor X, given a pair of advisors X and Y, in 
those trials where a different advisor is optimal for different value of the status quo R 
(22 trials out of 40, 85 observations per trial). The probability of selecting Advisor X 
is increasing with the difference in the instrumental value of advisors and demonstrates 
that the accuracy of participants increases with the stakes.

their probabilities of selecting Advisor X are increasing with one trial having a probability 
higher than 1/2 and one very close to 1/2. How do these two trials differ from the others 

in that their probabilities of selecting Advisor X are very high even though it is optimal 

to choose Advisor Y? In both trials Advisor X offers a yes/no answer to the question 

whether the state is red. Such an advisor is offering the ideal state pooling information; 
however, it is more valuable to learn whether the blue state is happening because in both 

of these trials the status quo is equal to 65, so it is between payoffs from the yellow 
and blue states. This observation already provides us with an indication of the subjects' 

preference for state pooling, but in the following section we investigate this in greater 
detail.

2.8.2 State pooling and preference for certainty

The essential mechanism behind belief polarization of inattentive agents presented theo­

retically is that of state pooling behavior. Do people select the state pooling information? 

Before presenting the results we present the definition of the state pooling advisor (the 

concept of state pooling was introduced in the theoretical setting in Section 2.3.4).

Definition 5. An advisor with information structure I is a state pooler when it can 
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provide a signal that generates a degenerate posterior about either state s = r or s = b.

Additionally to the state pooling advisors we recognize another special category of sources 
of information, those that provide an answer to a question, “Is the state red(/yellow/blue)?" 

That is, the subject can learn with certainty if it is a particular state.

Definition 6. An advisor with information structure I provides certainty when there 

exists a state s such that every signal generates a degenerate posterior about the state 

being s.

Note that every advisor providing certainty about the best or the worst state, i.e., blue 

and red state, is a state pooling advisor. However, the opposite is not true. For instance, 

an advisor that gives a black signal with probability 1/2 when a state is blue and white 

signal otherwise is a state pooler, but does not provide certainty.

Figure 2.17: Comparison of advisors providing answer to the ideal state pooling ques­
tion: “Is the state red/yellow/blue ?” for two different status quo values. The color of the 
bar shows which state the question is about. The figure demonstrates the state pooling 
behavior, and also that participants do switch between advisors when it is valuable to do 
so.

Figure 2.17 shows advisor choice in the trials in which both advisors provide certainty. 

We display separately the trials with different status quo values. When the subjects have 
to choose between advisors that provide certainty and are also state poolers, that is, be­

tween an advisor providing information whether the state is blue and an advisor providing 

information whether the state is red (first couple of bars for R = 30 and R = 65), they 
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significantly select the former for high value of the status quo and latter when its value 
is low. This switch between advisors confirms our theoretically predicted state pooling 

effect. In particular, for a status quo value R the subject wants to learn whether the 
state-dependent payoff of the new policy is greater or lower than R. When subjects face 

a choice between a certainty state pooler and certainty advisors, they select the certainty 
state pooler with a probability close to 0.7.

0.75

pa 0.25

-8 -4 0 4 8
V(State Pool Adv) - V(Not State Pool Adv)

Figure 2.18: Probability of choosing the state pooling advisor for an appropriate state 
in trials where such a choise is possible. The participant strictly prefers to choose the 
state pooler when it is optimal to do so, as well as when both advisors are equally 
instrumentally valuable.

When we investigate how the probability of choosing the state pooling advisor depends 
on the instrumental value of such an advisor (see Figure 2.18), we notice that the prob­

ability is greater than 1/2 when it is optimal to select the state pooler, and below 1/2 
otherwise. However, we can also notice that the probability of selecting the state pooler 
is increasing with the instrumental value. A particularly interesting observation is when 

the state pooling and non state pooling advisor both have the same instrumental value (0 

on x-axis). In such a situation, subjects strictly prefer to select the state pooling advisor 
in comparison with a non state pooling advisor, even though it is not more informative.

How is the preference for the certainty advisor connected with the information valuation 

of such an advisor? Figure 2.19 plots the probability of choosing the certain advisor 
given the difference between the certain and uncertain advisor. Here we can see that the
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Figure 2.19: Probability of chosing a certain advisor in trials (14 trials, with 85 obser­
vations per trial) where the choice is between the certain and uncertain advisors. When 
the certain advisor is more valuable the probability of its being chosen is close to 1. When 
the certain advisor is less valuable, it is still chosen with a probability close to 1/2.

probability does not increase almost linearly with the informativeness as in the previous 

figures, but once it is optimal to choose the certain advisor it jumps to approximately 0.9. 
At the same time, also when it is optimal to choose an uncertain advisor, the probability 

of selecting the certain advisor is very close to 1/2.

This result highlights that sub jects display a preference for state pooling and certainty 

advisors. In the case of a certainty advisor, we notice that the sign of the difference is 

enough to predict the correct choice. This result is driven by the ease of interpretation 

of the certainty advisor. We observe a similar pattern with the SP advisor, but the effect 
is mitigated by the value differences. Choices are accurate when advisors have signifi­
cantly different values, whereas they are on average more imprecise when the difference 

is small. In order to understand these preferences and their interplay we estimate how 

the probability of selecting Advisor X depends on various components. Additionally to 

their instrumental value, we use a binary variable to indicate whether the advisor is the 
best in the pair, and three additional binary variables that capture whether an advisor 

gives certainty, state pooling, and the interaction between of the two.

The results from the regression are presented in Table 2.2. Not surprisingly, the instru­
mental value of the advisor wIBayes has a significant effect on the probability of the advisor
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Table 2.2: The significance levels concern the hypothesis that the coefficient is 0.
Notation: *** p < 0.01, ** p < 0.05, * p < 0.1

(1) (2) (3) (4)
Bayes

wI 0.210*** 0.236*** 0.2108*** 0.253***

(0.0346) (0.0110) (0.0113) (0.0358)

Best Advisor 0.106 -0.186

(0.143) (0.149)

Certainty 0.1876*** 0.596***

(0.0708) (0.154)

State Pooling 0.742*** 1.041***

(0.0757) (0.111)

Certainty x SP 0.488*** -0.0601

(0.0825) (0.164)

Trials All All All All

Observations 3,400 3,400 3,400 3,400

being selected. However, both certainty and state pooling are also significant. From col­
umn (3) we can see that, when certainty is not included, the state pooling by itself is not 

able to capture the whole effect. When both certainty and state pooling are included, 
the interaction term is no longer significant. Another interesting observation is that the 

parameter for state pooling is twice as large as that for certainty. We can summarize the 

findings from this part in the following two results:

Experimental Result 3. Subjects significantly prefer state pooling advisors, even after 
controlling for the instrumental value of the available advisors.

Experimental Result 4. Subjects also significantly prefer advisors providing certainty, but 
the magnitude of this effect is smaller than the preference for state pooling advisors.

2.8.3 Action selection

Possible deviations from the optimal choice between alternative sources of information 

in the imprecise advisor game (task 2) can be rationalized by biases in preferences and 

beliefs. We collected separately action choices and subjective beliefs and we show here
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Figure 2.20: Observed probability of choosing the risky action in task 2. Trials were 
grouped based on the differences between the expected value from the risky option and a 
safe one, conditional on the realized signal. 3, 400 observations grouped in 21 bins with 
different sample sizes.

that participants' behavior is remarkably close to the theoretical predictions.

In task 2, given an advisor and a signal realization, participants were asked to choose 

one action, corresponding to the risky lottery (opaque urn) and safe option (transparent 
urn). A risk neutral agent that correctly calculates the expected value of the risky lottery 

should choose this option only if its value exceeds the status quo. Figure 2.20 shows the 
realized probability of selecting the risky option as a function of the difference in the 

EV between the actions. Trials are grouped based on the x-axis value for visualization 
purposes. The optimal agent would have a sharp jump in probability from 0 (when 

the value difference is negative) to 1. We observe in our data a smoother transition, 
suggesting that action probability is modulated by the cost of mistakes, similarly to our 

discussion in Figure 2.18 about the choice between advisors. Such a sigmoid curve is 
normally found in experiments involving choice under risk (Mosteller and Nogee 1951; 
Khaw, Li, and Woodford 2019). The indifference point appears close to the trials in which 

both actions have the same values, suggesting that the participants are, overall, close to 

risk neutrality. This outcome is consistent with the utilization of probability points to 
incentivize choices under uncertainty.

Experimental Result 5. Participants behave similarly to a risk neutral agent with a correct 
understanding of probabilities. They most likely choose the action with the highest 
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expected value and their accuracy increases with the difference between the values of the 
two actions. Risk preferences do not represent a ma jor driver of deviation from optimality 

in the choice between advisors.

2.8.4 Belief elicitation

A second concern is that participants are systematically biased in the computation of 
probabilities and this may influence the evaluation and therefore the likelihood of choice 

between advisors. We elicit sub jective beliefs with a strategy-proof mechanism and verify 

that the participants hold, on average, very accurate beliefs. We are interested in eliciting 
both the likelihood of signal realization (given the advisor) and the posterior distribution 

(given the advisor and signal realization). We follow closely the design adopted by Char- 
ness, Oprea, and Yuksel (2018) and we adopt a Quadratic Scoring Rule to incentivize 

the accurate reporting of probabilities. This rule is incentive compatible and has been 

used extensively in decision making tasks with two or three possible states (Selten 1998; 

Costa-Gomes and Weizsacker 2008).
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Figure 2.21: Estimated probability of receiving a signal realization in Task 3. The plot 
compares the average of the subjective estimates collected with the optimal estimates 
of a Bayesian decision maker. 1, 700 observations across 20 trials (85 observations per 
point).

In both tasks we observe accurate probability estimates, close to the predictions of an 

optimal Bayesian agent. Figure 2.21 shows the subjective estimate of a signal realiza­
tion (y-axis, averaged across participants) compared with the optimal estimates (x-axis).
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Figure 2.22: Estimated posterior probability of each state in task 4 conditional on the 
realized signal. Colors indicate which state was estimated (red, yellow, blue). The plot 
compares the average of the sub jective estimates collected with the optimal estimates of 
a Bayesian decision maker. 20, 400 observations across 40 trials (6 observations per trial, 
85 observations per point in the plot).

Similarly, Figure 2.22 shows the sub jective estimate of each of the three possible states 
in the posterior compared with the unbiased posterior, with different colors in the figure 

matching the state. In both plots, the 45 degree lines represent our theoretical benchmark 

and we can see that 1) participants are on average accurate in the estimate of probabil­
ities, 2) we do not observe a systematic difference between estimates involving different 

states (i.e. we do not have evidence of motivated beliefs, Bénabou (2015)), and 3) both 

tasks show mild evidence of conservatism (central tendency of judgement), as is widely 
reported in experiments with sub jective estimates (Hollingworth 1910; Anobile, Cicchini, 
and Burr 2012).

Experimental Result 6. Participants are on average accurate in the estimate of probabili­

ties, both when they are asked to report signal realization beliefs and posterior probability 
beliefs. Biased beliefs do not represent a ma jor driver of deviation from optimality in the 

choice between advisor.

2.8.5 Observed belief polarization

Our model predicts that a change in the status quo creates belief polarization because of 

the endogenous choice of information structures. In our experimental design this means 

that, given the true state, the same decision maker will have different beliefs (ex ante, 
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before the signal realization) based on her status quo value. The experiment contains 11 
pairs of trials that can be used to verify whether such polarization occurs. We combine 

the data collected for the binary advisor choice and signal-contingent choices (task 2) 
with the sub jective beliefs about signal realization (task 3) and posterior distribution 
(task 4).
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Trials with Predicted Belief Polarization Trials with Predicted Belief Polarization

Figure 2.23: Beliefs divergence in the experiment: prediction and observations. For 
each of the 11 pairs of trials with predicted advisor switch (x-axis), we indicate the 
expected value of the risky action conditional on the state (color) and the chosen advisor 
(connected dots), but before the signal realization. The length of the connecting lines 
indicates the magnitude of belief polarization. Left: Predictions based on the optimal 
behavior of a Bayesian decision maker. Right: Observed polarization based on the advisor 
choice and elicited beliefs in tasks 2, 3, and 4. 1, 870 observations across 11 pairs of trials 
(170 observations per pair of trials).

Figure 2.23 (left) shows the theoretical predictions for polarization of beliefs in each of the 
11 pairs of trials in which agents should switch advisor. For each trial (column) and each 

state (color) we observe that the two status quos lead to different ex-ante expected values 

for the risky action. The two connected dots of the same color indicate the expected value, 
conditional on the state, for the two different agents, and the length of the connecting 
lines represents our measure of divergence. We want to compare the theoretical prediction 

(on the left) with the realized polarization that we observe in our data (on the right).

Experimental Result 7. Variations in the status quo value generate ex-ante belief diver­

gence (before the signal realization, and after controlling for the true state) qualitatively 
analogous to the predicted ones, but with smaller magnitude.
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Trials with Predicted Belief Polarization Trials with Predicted Belief Polarization

Figure 2.24: Beliefs divergence: prediction and counterfactual. Values are shown as 
in Figure 2.23. Left: Predictions based on the optimal behavior of a Bayesian decision 
maker. Right: Counterfactual analysis with optimal advisor choice and biased beliefs 
(estimated based on data collected in tasks 3 and 4).

We can separate the departure from the theoretical predictions into two components: 

advisor choice and beliefs. We discussed in Section 2.8.4 that sub jective beliefs are on 
average remarkably close to the optimal ones. A counterfactual scenario in which agents 

choose the advisors as in the lab experiment but update beliefs optimally has a minor 

effect and increases divergence. Figure 2.23 shows the polarized beliefs in this alternative 
scenario. The fact that beliefs play a minor role in the departure from the theoretical 

predictions of belief divergence suggests that preference over sources of information is the 
main driver of this difference.

2.8.6 Compression effect in the willingness to pay

The Colorblind advisor game introduced in task 1 provides a different dataset that we 
can compare with the results from the other tasks. In each of the ten trials we collect 

signal-contingent actions (risky or safe options) as well as the sub jective willingness to 
pay (WTP) in order to observe a certain signal structure. More precisely, we elicit the 

willingness to accept, expressed in probability points of winning the bonus, in exchange 
for the opportunity of playing the game without the advisor. For each of the four advisors 

in the game we elicit sub jects' valuation of the advisor using multiple price lists, an in­
centive compatible implementation of the Becker-DeGroot-Marschak mechanism (BDM,

67



0 5 10 15
Advisor Value (Bayes)

0 5 10 15
Advisor Value (Bayes)

15 r •-x

0 5 10 15
Advisor Value (Bayes)

0 5 10 15
Advisor Value (Bayes)

Figure 2.25: Comparison between the average sub jective valuations of advisors across 
participants and the valuations for the optimal decision maker. The color used in each 
panel indicates the type of advisor: red, yellow, blue, and rainbow advisors (ordered 
from top-left to bottom-right). Optimal valuation (dashed lines) and linear regression 
estimates (dotted lines) are shown for comparison. 2, 520 observations across trials and 
advisor types (85 observations per point in each panel).

from Becker, DeGroot, and Marschak (1964)). The red, yellow, and blue advisor provide 

a binary message, whereas the rainbow advisor fully reveals the true state. Figure 22 

shows, for each advisor type, the relation between sub jective (averaged across partici­
pants) and theoretical advisor value (for an optimal decision maker). We notice that 

for all advisors the sub jective evaluation tends to exceed the theoretical one (positive 

intercept) and there is a general positive relation between the two, with subjective val­

ues increasing with the theoretical ones, but not as much as the latter. This pattern is 
known as the compression effect and is well known in experiments with explicit elicita­
tion of WTP for sources of information (e.g. Ambuehl and Li (2018)). We have several 

cases of advisors whose theoretical value is equal to zero (the case for most of the yellow 
advisors): the observation of a signal from them is not pivotal for the chosen action with 

respect to the decision without advisor, yet the subjects invest a significant amount of 
points to receive this piece of information.
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The comparison of the plots of different advisors highlights a consistent pattern. The 

compression effect appears similarly in all four advisors, with a similar slope of the linear 

regression between observed and theoretical values. At the same time, intercepts are sig­

nificantly different, with similar values for red and yellow advisors, and much higher levels 

for blue and rainbow advisors. This difference is aligned with preference for information 

structure biased in favor of the most desirable state (blue state).

This result is confirmed by running a simple OLS regression of the sub jective advisor 
value using the theoretical value as regressor. Table 2.3 shows that the slope is positive 

but lower than one (compression effect) and the intercept is positive and significantly 

different from zero (analogous to the conservative probability estimates observed in tasks 

3 and 4). When we allow the intercept to differ across advisors, we notice that they 

are not different between the red and yellow advisor, whereas the blue and rainbow ad­

visors receive significantly higher WTPs. This result is consistent with those observed 

in environments with non-instrumental information (Masatlioglu, Orhun, and Raymond 

2017) in which sub jects display wishful thinking and desire to observe signals that are 

more accurate about the positive outcomes. The blue state represents the most desirable 

outcome in our setting, and is fully revealed by consulting either the blue or the rainbow 

advisors. The slope of the curves is not significantly different across advisors (not shown 
in the table) confirming that the effect does not arise from a different sensitivity to in­

strumental value. Instead, it provides evidence in favor of intrinsic (non-instrumental) 
preference for information structures, similarly to that described in Section 2.8.2 in favor 

of advisors providing certainty or state pooling in the posterior beliefs.

The result is qualitatively robust to the separate analysis of trials with high or low status 

quo. Columns 3 and 4 contain the regressions ran independently with the two parts of the 

dataset. Although the signs and significance of the estimates are unchanged, we observe 

different magnitudes. When the value of the status quo is higher than the intermediate 

state (column 3) the intercept is lower and the slope steeper. In this case the decision 
maker faces a safer choice problem and she reacts more to the incentive represented by 

the instrumental value of the advisor.

Experimental Result 8. Participants display a compression effect in their willingness to 
pay for information structures. They tend to overpay for advisors with low and even zero
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Method: OLS, Dependent var: wIi

(1) (2) (3) (4)

Constant 7.45*** 6.32*** 4.06*** 8.56***

(0.207) (0.287) (0.370) (0.421)
Bayes 

wI 0.413*** 0.298*** 0.494*** 0.122**

(0.0336) (0.0378) (0.0515) (0.0586)

Red advisor -0.424 -0.465 -0.0366

(0.439) (0.548) (0.680)

Blue advisor 3.84*** 3.84*** 2.97***

(0.434) (0.615) (0.604)

Rainbow advisor 3.12*** 3.02*** 2.96***

(0.464) (0.615) (0.680)

Trials All All R > v y R < v y

Observations 2520 2520 1260 1260

Table 2.3: Aggregate valuations of information structures in task 1. Reported signif­
icance levels for wIBayes concern the hypothesis that this coefficient is 0. ***p < 0.01, 
**p < 0.05, *p < 0.1.

instrumental value, and their sub jective WTP increases with the theoretical values but 
with a slope smaller than one.

Experimental Result 9. Participants are willing to pay significantly higher amounts for 

advisors that provide evidence in favor of the most desirable state, as well as for those 

that fully reveal the true state.

2.9 Conclusion

Opinions about proposed policies and pertinent issues often become polarized. The liter­
ature provides several explanations of the phenomenon, including preference for informa­

tion which confirms existing beliefs, imperfect memory, and interpretation of ambiguous 
evidence as confirming existing beliefs, among others. In this paper we explore a new 

source of belief polarization, which arises as a consequence of the state-pooling effect, if 
the information is costly to acquire.
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We find that the key determinant of the direction of belief updating is the valuation of 

the status quo, as it directly affects the information acquisition strategy. In our inter­

pretation, the agent partitions the states of the world into categories, instead of distinct 

states. This partition into categories is determined exactly by the valuation of the status 

quo. If the two agents have different valuations of the status quo, they might diverge in 
their opinions after information acquisition, but also in the interim moment before the 

realization of the private signal. Interestingly, the difference in their mean beliefs can 

become greater if the information becomes cheaper to acquire.

The large number of assumptions required by the model may cast doubts on whether 
belief divergence can be observed in human decision makers, as behavioral biases could 
mitigate or enhance the effect. We introduce an experiment in which the availability 

of advisors (information structures) is instrumental for the action choice. We are able 

to qualitatively replicate the model's prediction in our setting, and we observe that the 

magnitude of the polarization is lower than predicted. We explore the possible drivers of 
this difference and conclude that intrinsic (non-instrumental) preferences for information 

represent the leading factor. This result is consistent with well-known results in simpler 

settings that we are able to replicate (preference for certainty) and extend based on the 

additional conditions allowed by our setup (preference for state pooling).

Our paper sheds new light on the problem of opinion polarization in society that is 

currently taking place. It provides an explanation of why polarization can become more 

severe when information is cheaper to obtain. We believe that our results provide a useful 
starting point and encourage further exploration of this phenomenon in several directions. 

One possible extension of the model would include a larger action space with more than 

two options; this feature would allow the creation of several endogenous categories and 
provide a connection with the models of categorical thinking. Another interesting ex­

tension of the model is represented by the addition of a strategic voting layer on top of 
the model we presented. On the experimental side, the introduction of our design opens 

the path for further replications and tests of well-known paradigms and effects in more 

complex settings with three or more possible states. Possible extensions of the tasks we 

discussed would explore both instrumental and non-instrumental preferences for informa­
tion in new scenarios. Finally, on the empirical side, we encourage future research testing 
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the implications of our model on referendum data.
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2.A  Appendix A: Derivation of formula 2.5

The agent's posterior belief about the payoff of the new policy v given the fixed state s* 

for option i E {status quo , new policy} = {1, 2} is

Ei[E(v|i)|s*] = P(i = 1|s*)E(v|i = 1) +P(i = 2|s*)E(v|i = 2).

After substituting for the conditional probabilities P(i|s*) Vi according to lemma 1 

and applying the Bayes rule this can be rewritten as

Ei[E(v|i)|s*]=
v

P (i = 1)e V-
v * R

P (i = 1)e "V + (1 -P (i = 1))e -

n

•22 v gs

s=1

vse a

P (i = 1)e + (1 -P (i = 1))e- +

, (1 -P (i = 1))e -R
+ v _* R

P (i = 1)e-A + (1 -P (i = 1))e -

n R
k e a

s=l ^P (i = 1)e ^ + (1 -P (i = 1))e A
Lemma 1 shows that

P(i = 1|s*) =
v

_________P (i = 1)e -A-________
P(i = 1)e-A- + (1 -P(i = 1))e- .

Thus,

Ei[E(v|i)|s*]
n

E vsgs
P(i = 1|s*)e-s + (1 - P(i = 1|s*))e-

P (i = 1)e + (1 -P ((i = 1))e-
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2.B  Appendix B: Proof of proposition 1

First we prove the following lemma that we further use for proving Proposition 1.

Lemma 2. Relations P(i = 1|s*) š P(i = 1) for 0 < P(i = 1) < 1 are equivalent to 

vs* š R.

Proof. After substitution for the conditional probabilities, the conditions P(i = 1|s*) š 

P(i = 1) can be rewritten as

v
_________P (i = 1)e -x-________
P (i = 1)e -X- + (1 -P (i = 1))eR š P(i =1),

which are equivalent to

(P(i = 1) - P2(i = 1)) (-R - eR) š 0.

For 0 < P(i = 1) < 1 the term in the first parenthesis is always positive. Therefore, the 

left hand side of the inequality is positive when vs* > R and negative for vs* < R. □

Now we can continue with the proof of Proposition 1.

Proof. In order to solve the agent's problem given by equations 2.1 - 2.4 we need to find 
P(i = 1) and P(i = 2) defined as P(i = 2) = 1 - P(i = 1). These probabilities have 

to be internally consistent, i.e. P(i) = sn=1 P(i|s)gs. After dividing both sides of these 

conditions by P(i) we obtain the following conditions

n

1 = E
s=1

n

1 = E
s=1

-se x
P(i = 1)e x1 + P(i = 2)eR ’

Re r

P(i = 1)e"R + P(i = 2)eR ’

if P(i = 1) > 0,

if P(i = 2) > 0.
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The difference of these two equations is

n vs R

Ee A — e A „
s=i P(i = 1)e+ P(i = 2)e

For k for which holds that vk < R < vk+1 we can further write the above equation as

vk Re a — e a
' ■ Vk ' ■ R vk gk

P (i = 1)e + P (i = 2)e a

Vs Re a — e a

P (i = 1)e + P (i = 2)e A
(2.8)

We will use the last equation for determining the sign of A(s*) that can be written as

n

A(s’) = E
s=1

vsgs
P (i = 1 |s’ )e + (1 — P (i = 1 |s’ ))eA

P (i = 1)e"A + (1 — P (i = 1))eR
n

— vsgs,
i=1

n

*(»•) = E
s=1

vsgs
P (i = 1 |s’)e "A + (1 — P (i = 1 |s’))eR 

P (i = 1)e "A + (1 — P (i = 1))eR
n

— vsgs

i=1

P (i = 1)e "A
P (i = 1)e "A

+ (1 — P (i = 1))eR 
+ (1 — P(i = 1))eR ,

n

A(s-) = E
i=1

vsgs
(P (i = 1|s’) — P (i = 1))(e "A — eA) 

P (i = 1)e "A + (1 — P (i = 1))eR •>

A(s*) = (P(i = 1|s*) — P(i = 1)) •
n

E s9sp (i=1)e +(1—p (i=1))e a

"s Re a — e a

Substituting the equation (2.8) into the sum in the last equation we obtain

A(s*) = (P (i = 1|s*) — P (i = 1))
' "s R

\ (vs — vk )gs---------------------- "------------------------------------------------RIR( P (i = 1)e * + (1 — P (i = 1))e'

The expression in the square brackets is positive, because for the above-defined k the sign 
of (vs — vk) and the sign of ea1 — eA are the same. Hence A(s*) has the same sign as 

(P(i = 1 |s*) — P(i = 1)) that further, by Lemma 2, has the same sign as (vs* — R).
□
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2.C  Appendix C: Proof of proposition 2

Proof. We are interested in the monotonicity of A(s*) when the true state of the world 

s* is changing. In appendix 2.B we derive that

A(s*) = (P(i = 1|s*) -P(i = 1))
-s R

\ (vs - vk )gs--------------------------------------------------- -

( P (i = 1)e * + (1 -P (i = 1))e-
Let us consider two states of the world s1* and s*2, such that s*1 > s2*. Demonstrating that 

A(s*) - A(s*) A 0 would prove the monotonicity of A(s*).

-s Re a — e a
A(s1) - A(s2) V(v. - vk)gs~---- —- —  - -

K P (i =1)e-s + (1 -P (i = 1))e

- (P(i = 1 |s1) - P(i =1) - P(i = 1 |s2) + P(i = 1)) =
-s R, "e a — e a

(vs

s=k

(vs

s=k

P(i = 1)e’As + (1 - P(i = 1))eA 
• (P(i =1|s1) -P(i = 1|s2)) =

-s Re a — e a

vs1-
P (i = 1)e^

P(i = 1)e A + (1 - P(i = 1))e A
V

(
- - - - \

_________P (i = 1)e~A-________________________________ P (i = 1)e^_________\

P(i = 1)e^ + (1 - P(i = 1))eR P(i = 1)^A- + (1 - P(i = 1))e- J

V * s- 

P (i = 1)e^

The term in the square brackets is positive, so the sign of A(s1) - A(s2) is determined 
by the sign of the term in the round brackets.

Let us show that
-s-

P (i = 1)e^
- *s- R

P (i = 1)e^ + (1 -P (i = 1))e R

-s-

P (i = 1)e^
- *s- R

P (i = 1)e^ + (1 -P (i = 1))e R

The last inequality is equivalent to

-s- -s-

P(i = 1)e^ í P(i = 1)e^ + (1 - P(i = 1))e' )

>0.
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vvs2 / S1 R \
- P(i = 1)e— P(i = 1)e— + (1 - P(i = 1))eR > 0

vvSg R Sg R
(1 - P (i = 1)) e + e R - (1 - P (i = 1)) e R > 0

which, in turn, is equivalent to
vvS1 S1

e A > e A .

The last inequality holds, so A(s*) is an increasing function of s*.

□
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Chapter 3

Estimating Models with Rationally Inattentive

Agents

3.1 Introduction

A perennial question in macroeconomic theory is how firms set prices and more generally, 

the reason for the observed real effects of changes in monetary policy. A famous answer 

to this question is that people are not well enough informed about changes in market 

conditions, at least at the time these changes occur, to be able to immediately react in 

the way that would most fully serve their own interests. Woodford (2002) reconsidered 
this Phelps-Lucas hypothesis, according to which a temporary real effect of purely nom­

inal disturbances results from imperfect information, and showed that nominal shocks 

have strong and persistent real effects due to imperfect common knowledge. Woodford 

(2002), however, assumed that firms pay little attention to the aggregate economy and 

that they set prices based on signals of the form "nominal aggregate demand plus i.i.d. 
noise". Rational inattention allows price-setting firms to decide what to pay attention to, 
subject to a constraint on information flow. Mackowiak and Wiederholt (2009) character­
ized conditions under which firms pay more attention to idiosyncratic conditions than to 

aggregate conditions. Mackowiak, Matějka, and Wiederholt (2018) further showed that 

an agent with memory and limited attention wants to learn about the current optimal 

action and the best predictors of future optimal actions. Thus, an agent selects a signal 

of the AR(1) form only when it tracks a variable following the AR(1) process, which sug­

gests that signal assumptions in Woodford (2002) might be too restrictive. Furthermore, 
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even though it is known that there exist parameter values for which rational inattention 

models generate persistent real effects of nominal disturbances (see e.g., Mackowiak and 

Wiederholt (2015)), it is not known whether a full information method would select such 

parameter values.

In this paper, we estimate a DSGE model with rationally inattentive price-setting firms, 

based upon the estimated ICKM model presented in Melosi (2014). This allows us to 
directly compare three estimated models: an RIM, an ICKM and a Calvo pricing model. 

Importantly, such a comparison helps us to clarify the previously raised unknowns. That 
is, to see what parameter values would be selected for the RIM and how well it will 

match the data in contrast to other models. It also sheds light on the restrictiveness and 

implications of the ICKM assumed signal, structure versus the optimally selected signal 
given the information capacity constraint.

The RIM model shares with the Melosi (2014) model, which is a version of the ICKM 

model presented in Woodford (2002), that it has two exogenous state variables: the state 
of monetary policy and the state of technology. In contrast with previous studies, we do 

not assume any particular exogenously given signal form or independence of signals, but 
by modelling firms as rationally inattentive we allow firms to choose the optimal signals 

about the state variables optimally under the limited attention constraint. We show that 
the signal is a one-dimensional signal about the elements of the state vector even when 

optimal action may be driven by multiple shocks. Moreover, the selected noisy signal 

follows a more complex ARMA process as just a "true value plus i.i.d. noise", because 

the rational inattention firms want to learn about the current optimal action as well as 

about the best predictors of future optimal actions.

The substantive contribution of this study is in showing that the RI model matches the 

data better than the Calvo model, in particular by reproducing the persistence in the data 
more easily. Furthermore, the RI model reproduces the long-term mean-reversion better 
than the ICKM model, whereas the ICKM model seems to perform better in matching 

the short-run momentum of the hump-shaped response of output and inflation to mone­

tary disturbances. This paper provides one important step in developing and estimating 

a medium-size DGSE model with RI agents, which might ultimately prove to be an al­
ternative or complement to the New Keynesian models. Previous RI models were only
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calibrated because dynamic rational inattention models are difficult to solve. We build 
on the results presented in Mackowiak, Matějka, and Wiederholt (2018), which allows 

us to overcome the key challenge to solve the model sufficiently fast so that estimation 
becomes feasible in a reasonable amount of time.

Our likelihood analysis makes another contribution. When we set the information flow 

in the RIM and ICKM models to be equal, the estimated parameter values differ mostly 

in the value of the posterior degree of the strategic complementarity. Specifically, the 
higher degree of strategic complementarity leads the RIM model to better capture the 

hump-shaped impulse response function. All the aforementioned results provide a strong 
empirical validation for the RIM, as well as indicating for what applications an RIM or 

other model would be more suitable.

Related Literature. We make a priority contribution to the growing body of macroe­

conomics studies modelling agents to be rationally inattentive. Sims (1998b) proposed 

the idea of rational inattention as an ultimate single information friction that could serve 

to explain the inertia in the macroeconomic data, instead of multiple sources of slow 

adjustment that were necessary for the models to match this inertia. Mackowiak and 

Wiederholt (2009) showed under what circumstances firms find it optimal to pay little 

attention to the aggregate economy. As a result, prices respond strongly and quickly 
to idiosyncratic shocks, but only weakly and slowly to nominal shocks. Nominal shocks 

have strong and persistent real effects. Mackowiak and Wiederholt (2015) developed a 
dynamic stochastic general equilibrium model with rational inattention households and 

decision-makers in firms and compared its prediction to the data. They showed that their 

model matches the empirical impulse responses to monetary policy shocks and aggregate 

technology shocks. These models were, however, at most calibrated. We build upon 
findings of Mackowiak, Matějka, and Wiederholt (2018) that presented novel analytical 

results for solving dynamic rational inattention problems. The closest paper to ours is 

Melosi (2014) who estimated, using Bayesian methods, an ICKM model with two shocks: 
a disturbance to nominal aggregate demand and technology shock, and found that imper­

fect common knowledge is more successful than Calvo price stickiness model to account 
for the highly persistent effects of nominal shocks.

The importance of rational inattention models was further strengthened by empirical 
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findings that there is a widespread dispersion in firms' beliefs about both past and fu­
ture macroeconomic conditions, especially inflation, with average beliefs about recent and 

past inflation being much higher than those of professional forecasters (Coibon, Gorod- 

nichenko, and Kumar 2015), and they also show that these patterns are in line with 

rational inattention theory. Kamdar (2019) using survey data, demonstrates that con­
sumers' economic beliefs are driven by sentiment and thus, "optimistic" consumers, in 

contrast with recent U.S. experience, expecting an expansion also predict disinflation. 
Kamdar (2019) explains this observation by employing a model with rationally inatten­

tive consumers who face fundamental uncertainty. Our findings are also related to the 

survey findings of Afrouzi (2020) that firms with fewer competitors pay less attention 
to monetary policy shocks and firms in oligopolies with fewer competitors have a lower 

degree of strategic complementarity. Rational inattention also proved to be important for 

policy analysis as policy changes incentives for allocation of attention (see e.g., Paciello 
and Wiederholt (2014),Mackowiak and Wiederholt (2015)).

Outline. The paper is organized as follows. Section 3.2 presents the common assump­
tions and features ofthethree models. Insection3.3we introduce the rational inattention 

optimal signals into the model and present the solution method. Section 3.4 and section 
3.5 show details of the imperfect common knowledge model and the Calvo pricing model, 

respectively. Section 3.6 presents the empirical findings and its discussion. Section 3.7 
concludes.

3.2 The Model

In this section, closely following the model introduced in Melosi (2014), we present the 
main building blocks of the economy that are shared among the various models intro­

duced later. In particular, first in section 3.2.1 we present a shared assumptions. Sec­

tions 3.2.2-3.2.5 introduce the agents in the economy: representative household, financial 
intermediary, monetary authority and price-setting firms. Section 3.2.6 describes the log­

linearization of the model and the law of motions for price level and output.
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3.2.1 Assumptions

The economy consists of the representative households, a financial intermediary, a mone­

tary authority, and a continuum (0, 1) of monopolistically competitive firms. The model 

has two exogenous state variables: the stock of money and the state of technology.

We assume that all information is publicly available to every agent in the economy. Firms 

cannot attend perfectly to all available information. How we model information acquisi­
tion varies for each consider model considered. The share assumption for the information 

acquisition is that all other agents except the firms perfectly observe the past and current 
realizations of all the model variables.

Timing is as follows. At the beginning of period t the household inherits the entire 
money stock of the economy Mt-1 . All the shocks and signals are realized. After observ­

ing current-period shocks, the representative household decides how much money Dt to 
deposit at the financial intermediary that yields interest at a rate Rt - 1. The financial 

intermediary lends to firms, at a fixed fee t, funds that were collected from households' 
deposits and from the monetary authority. After receiving signals, firms set their prices 

and hire labor to which they then pay a nominal hourly wage Wt for Ht hours worked. 

Households face a cash-in-advance (CIA) constraint. That is, they have to pay for all 

consumption with the accumulated cash balance, which after receiving wages increased 
to Mt-1 - Dt + WtHt. Afterwards firms pay back their loans Li,t, and households receive 

their deposits plus dividends and interest.

3.2.2 The representative household

The representative household derives utility from consuming the consumption good Ct 

and disutility from hours worked Ht, and solves 

max Ett t t s=0
ln Ct+s

H 1+yHt+1
— a +

1 + Y
(3.1)5

where ft is the discount factor, a is a parameter that affects the marginal utility of 
leisure, and Y > 0 is the inverse of Frisch labor elasticity. Ct is given by the Dixit-Stiglitz
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aggregator

i,t di^
v
v-1

•> (3.2)

where Ci,t is the consumption of differentiated good i in period t. The parameter v is 

the elasticity of substitution between consumption goods and is assumed that v > 1. 

Households are subject to the cash-in-advance constraint, due to which they hold money 
upfront to finance their consumption,

PtCt < Mt-i - Dt + WtHt (3.3)

where Pt denotes the price level, which is given by

Pt =
1

1-v
(3.4)

and the law of motion of households' cash is

Mt = (Mt-i + WH - Dt - PC) + RD + nt + nb. (3.5)

3.2.3 The financial intermediary

The financial intermediary solves every period t, following the static problem:

max (1 - Rt)Dt + Xt + t • • I{Lt > 0} (3.6)
{Lt ,Dt }

such that

Lt < Xt + Dt, (3.7)

where Xt = Mt - Mt-i is the monetary injection, Lt is the aggregate amount of liquidity 
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supplied to firms. I{Lt > 0} is an indicator function that equals one, if liquidity supplied 
to firms is positive, and the fraction of firms that borrow is indicated by $t . We con­

sider a fixed fee t that is paid to the financial intermediary for its services, instead of an 
equilibrium interest rate on loans. This is in order to keep the model as close as possible 

to the previously estimated model by Melosi (2014) and also as it significantly simplifies 
solution of the model.

3.2.4 The monetary authority

The monetary authority sets the money stock Mt according to an empirical monetary 

policy rule without feedback:

Aln Mt = (1 — Pm)^M + PmAln M— + (Wm.t, £m,t ~N(0, 1) (3.8)

where A stands for the first-difference operator and // M is a parameter that represents 
the long-run average growth rate of money. pm G [0,1) is a degree of smoothness in 

conducting monetary policy. The monetary shock em,t captures unexpected changes in 

the growth rate of the money stock in every period t. Market clearing for the monetary 

market requires that:

ln Mt = ln Yt + ln Pt. (3.9)

3.2.5 Firms

Firm i's expected profit in period t (as valued by households ) conditional on its informa­

tion set at time t, I^ = Ii,0 U {Si,1,..., Si,t}, where Ii,0 denotes the initial information 

set. We assume that firms are endowed with an infinite sequence of signals at time 0. Si,t 

denotes the signal vector received in period t is

E[^Qt(Pi,tYi,t — WtNi,t — Tl{Li,t}|Ii,t)] (3.10)

where PtQt is the time 0 value of one unit of the consumption good in period t to the 

85



representative household, Yi,t is the amount of goods i produced by firm i at time t, and 
Ni,t is the labor input demanded by firm i at time t. The production function is given by

Yi,t = (3.11)

where 0 G (0,1) is the return-to-scale parameter and Ai,t is the firm's level of technology. 

Based on Lorenzoni (2009), the firm's level of technology is modeled as

ln Ait = ln At + nit, Vi,t ~ N(0,1) (3.12)

and the aggregate level of technology, ln At, follows a random walk with drift

ln At = /GA + ln At-1 + G/aA. ■ ea,t ~N(0, 1) (3.13)

We assume that the technology shocks, ea,t and ni,t, are orthogonal to monetary shocks 
em,t, at all leads and lags. Firms borrow liquidity Li,t at the fixed cost t from the financial 
intermediary to pay their nominal labor costs:

Li,t = WtNi,t (3.14)

In every period t, firm i sets the price of good i and commits to supply any quantity 

of the good demanded at that price so that Yi,t = Ci,t. Each firm i faces the following 
demand function

Ci,t = (- Ct. (3.15)

3.2.6 Price-setting equation and law of motions

In order to simplify the signal-extraction issues, we assume that firms use the log- 

linearized model, rather than the original nonlinear model, when addresing their signal­

extraction problem. Since the exogenous processes, i.e. the stock of money lnMt and 
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aggregate technology ln At have a unit root, all endogenous variables but labor are also 
nonstationary. Thus, we first need to detrend the variables before log-linearizing the 

models. We define the stationary endogenous variables as follows

yt = Yt/At; y^ = Y^/Ay Pt = PtAt/Mt and Pi,t = Piyt/Pt

We also define mt = ln Mt - yMt and at = ln At - yAt. We can obtain the following 
log-linearized price-setting equation for firm i at time t and law of motions for price level 

and output, respectively

ln Pi,t = (1 - A)E[ln pt|Ii,t] + AE[ln Mt|Ii,t] + AE[lnAt|Ii,t]
A

Y + 1
+ AE[ni,t|Ii,t] - a ln y

(3.16)

ln Pt =

ln Yt =

E (1 - A)j A (m(t+l) - .

j=0
- A ln y + yM • t - yA • t

mt- ^(1 - A)j Amjt+1)

j=0

+ ^(1 - A)jAa(jt+1) + Alny + yA • t, 
j=0

(3.17)

(3.18)

Derivation of equations 3.16-3.18 is presented in Appendix 3.A, y denotes the steady­
state value of the detrended real output, yt. The parameter (1 - A), defined as (1 - A) = 

1 - (y + 1)^-1/[v(<fr-1 - 1) + 1], denotes the degree of strategic complementarity. Because 
the received signals are private to price setters, they are uncertain about what other price 

setters believe about the realized shocks. When 1 - A > 0, firms react to their beliefs 
about other firms' price-setting decisions E[lnPt|Ii,t]. The variables mt(jt’ and at(jt’ are the 

average expectations of order j about the state of monetary policy, mt, and the state of 
technology, at, respectively. The average j-th order expectations about the state of mon-
etary policy are defined as m(tjt’ = mt(jt’(i)di, where mt(jt’ (i ) = E (j-i’ 

t|tm Average

expectations about technology are analogously defined.

Previous sections introduced the definition of all the economic agents and specifications 
that are shared among all the models considered. The main feature that differentiates the 
models is the information acquisition technology and a restriction on signal's availability.
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In the following section, we introduce the main contribution that considers firms to be 

rationally inattentive. Sections 3.4 and 3.5 present the imperfect common knowledge 

model and Calvo pricing, respectively.

3.3 Rational inattention model

In the rational inattention version of the model, firms decide how to allocate their limited 

attention and choose the signal structure in order to maximize the expected profit subject 
to the information flow constraint. The economy is driven by two shocks to the (log 

of) the money stock mt and (log of) firm specific technology ai,t. We assume that mt 

follows an ARMA (pm, qm) process and that ai,t follows an ARMA (pa, qa) process, with 

pm, qm, pa, qa finite. Therefore, firm i chooses the signals for tracking these shocks subject 
to the information constraint. Specifically, the firm chooses the number of signals K, 

the content of the signals matrices: A1, A2, B1, B2 and the variance-covariance matrix of 

noise in the signals E^. In period zero, the decision-maker in firm i solves

max E
K,Ai,A2,Bi,B2,S^

tnt(pi,t,pt,yt,qt)
t=1

(3.19)

subject to:

A
Y + 1

ln Pi,t = E (1 — A) ln Pt + Amt — Aat — ni,t|Ii,t A [(^A — //m)t + ln y], (3.20)

Iit = Ii,0 U {SiK,1 . . . SiK,t}
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+ <

mt a i,t ^m,t eai,t

SiK,t = A1 + A 2 + B 1 + B 2

mt-M+1 ai,t-M+1 Ý^m,t-N +1 ý \^ai,t-N+1J

(3.21)

lim — I (mo,ai,o ,ai,T; SK1,...,SKT) < k (3.22)

where the vectors m0 and ai,0 in the information flow constraint denotes the vector of 

initial conditions for the processes for the optimal actions 1. nt(-) is the log-quadratic 

approximation of Qtnt; nt is the profit function. pi,t = ln(Pi,t/Pt) is the profit maximizing 

price; and qt is the log deviations of qt = MtQt from its value at the deterministic steady 

state. follows a Gaussian vector white noise process with variance-covariance matrix 

E^. I0 denotes the initial information set and StK denotes the signal vector received in 

period t, where K > 1 denotes the dimension of the signal vector. Thus, a firm's infor­
mation set in any period t > 1 includes the initial information and all signals received 
up to time t. When firms decide how to allocate their limited attention, they are aware 

that their choices will affect their optimal price-setting policy as given by (3.20) in any 

subsequent periods.

Using results from Mackowiak, Matějka, and Wiederholt (2018) we can rewrite the prob­
lem (3.19)-(3.22). In section 3.3.1 we explore how to alternatively quantify the informa­

tion flow constraint and in section 3.3.2 we rewrite the objective of the maximization 

problem.

3.3.1 Quantifying information flow

The idea that the firm has a limited amount of attention is captured by the information 

flow constraint (3.22). Rational inattentiveness refers to the fact that the firm selects 

signals optimally given these constraints. In quantifying the information flow we follow

That is m0 (mi—pi, . . . , Mg, , . . . , ^m,0) and ai,0 (ai,1-P2 , . . . , ^,0? ^ai,1-q2 , . . . , ^ai,0) as we
have assumed that mt follows the ARMA (pm, qm) and ai,t follows the ARMA (pa, qa), respectively
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Sims (2003a). Thus the information flow constraint is quantified by the reduction in 

uncertainty, where uncertainty is measured by entropy. The entropy of a random vector 

XT = (Xi, . . . , XT) as H(XT) and the conditional entropy of XT given knowledge of 
a random vector ST = (Si,. . .,ST) as H(XT|ST). We define the mutual information 
between two random vectors XT and ST as

I(XT;ST) = H(XT) - H(XT|ST)

Dividing both sides by T and taking the limit T ' 'X we obtain the previously stated 

constraint (3.22)

Tlim TI (Xt; ST) = lim TH(XT) - lim TH(XT|ST) (3.23)
T^x T ' 7 T^x T T^x T

the first term on the right-hand side measures how total uncertainty about XT grows per 
unit of time. The second term on the right-hand side measures how total uncertainty 

about XT grows per unit of time given knowledge of ST, and the difference between the 

two terms measures the information flow to the firm.

Mackowiak, Matějka, and Wiederholt (2018) showed that the information flow constraint
(3.22) is equivalent to a constraint on the difference between prior uncertainty and pos­

terior uncertainty at a given point in time. This result, adopted for this paper setup with 

two shocks, can be stated as follows:

Lemma 3. Let SK,t = {SiK,...,S-Kt} denote the set of signals received up to and including 

time t. The information flow constraint (3.22) is equivalent to

Tlim [H (^t|SK,T-i) - H (^t|SK,T)] (3.24)

where the vector <pt can be any vector with the following two properties: (i) mM, aM, £%, t, 
t can be computed from pt and (ii) pt contains no redundant elements.

Proof. Direct consequence of Lemma 1 in Mackowiak, Matějka, and Wiederholt (2018).

□
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3.3.2 The ob jective

In every period, firm i sets the price of good i to maximize the present discounted value 

of profits. Since the firm can reset the price next period, this is equivalent to setting 
the price to maximize current profit. After a log-quadratic approximation to the profit 

function, the loss in profit in the case of a deviation of the actual price, pit, from the 

profit-maximizing price, p*t, is proportional to (p*t — pit)2 (for details see Appendix 3.B). 
Therefore, a firm's optimal price given any information set Iit is pit = E\p*t|Iit]. Sub­

stituting this equation into the quadratic loss function yields the mean square error 

E \Pit — E[pit|Iit]].

Applying the assumption that the agent receives a long sequence of signals in period zero 
such that conditional second moments are independent of time. Thus, conditional second 

moments can be computed using the steady-state Kalman filter. This assumption about 
the information set Ii0 after the agent has made the information choice in period zero 

has three implications. First, it does not matter which period t > 1 one is referring to in 

the agent's loss function. Second, replacing the agent's loss function by the loss function

E E 8‘(pt — E\P’,|Iii])2

t=1

E — E\p’1|Iit])2] , 0 e (0,1) (3.25)

is a monotone transformation of the objective and thus does not affect the solution to 
the dynamic rational inattention problem. Third, the conditional expectation E\Pit |Iit] 

is a time-invariant function of the signals.

Finally, the rational inattention problem (3.19)-(3.22) can be analogously rewritten as

min E
K,A,B,S^

E 0 ‘(Pit — E\p-t|Ii,])2

t=1

(3.26)

where 0 e (0, 1) is a parameter, subject to the information flow constraint (3.22)

lit = Ii0 U{SK ,...,SK} (3.27)
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and

+

( *

Pit et

SiKt = A +B

S'-)|c
\Pi,t-M+i y ^et-N +1 y

(3.28)

where follows a Gaussian vector white noise process with variance-covariance matrix 
E^ and the optimal price is driven by the shock to the firm's level of technology ait and 

by the shock to the stock of money mt. The decision-maker minimizes the expected 

discounted sum of profit losses due to suboptimal pricing. She understands that in every 

period t > 1 she will set the price equal to the conditional expectation of the profit­
maximizing price and she will remember all past signals.

3.3.3 Rational inattention Kalman filter formulation

Having introduced the rational inattention problem (3.19)-(3.22) and showed that it 

can be reformulated as (3.26)-(3.28), we briefly describe the solution method for the 
reformulated problem. We build directly on a so-called rational inattention Kalman filter 

that was introduced in Mackowiak, Matějka, and Wiederholt (2018). We first restrict the 
dimensionality of the optimal signal and then we specify that an optimal signal includes 

variables only about the state variables and its innovations.

Lemma 4. Firm i can attain the optimum with a one-dimensional signal, i.e. K = 1.

Proof. Based on Proposition 2 from Mackowiak, Matějka, and Wiederholt (2018), which 

imposes a restriction that the optimum in an economy with two shocks can be obtained 

with K < 2. Further restriction is possible through application of Proposition 3 and 

Proposition 9 from Miao, Wu, and Young (2019). □

Lemma 5. Assume that state variables mt and ait follow an ARMA (pm , qm) process 
and ARMA (pa, qa) process, respectively. Then, any optimal signal vector is on linear 

combinations of the elements of £m>t and £a>t only, where ,t and ,t are defined as follows
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X

X

z

^m,t <

Ía,t = <

0(mt,...,mt-(pm-1))'; if Pm > 1 and qm =

(mt, . . . , mt-(pm-1) , et, . . . , et-(qm-1)') ; if Pm > 1 and qm >

mt; if pm = 0 and qm =

(mt> £<>•••> et-(qm-i)')l'; if pm = 0 and qm >

(ait, . . . , ait-(pa-1)) '; if pa > 1 and qa = 0

(ait, . . . , ait—(pa — 1) ,^t,..-• , et-(qm-1)') '; if pa > 1 and qa > 1

ait; if pa = 0 and qa = 0

(ait, ^t, ... , eit-(ga-1)) ; if pa = 0 and qa > 1

1

0

1

(3.29)

(3.30)

Proof. Direct generalization of the Proposition 1 from Mackowiak, Matějka, and Wieder- 

holt (2018). □

Applying Lemma 4 and Lemma 5 the search for the optimal signal can be restricted to 

one-dimensional signals that have the following state-space representation

6+1 = F£t+ vt+i (3.31)

St = h'^t + 6t (3.32)

where £t = (£m,t,£a,t)' and the noise follows a Gaussian white noise process with 
variance > 0. The next step is to find the vector of signal weights h and the variance of 

noise 02 that minimizes the loss function (3.26) subject to the information flow constraint
(3.22). Mackowiak, Matějka, and Wiederholt (2018) show that this problemcan be solved 

using the Kalman filter with an information cost constraint. Specifically, they show the 

problem of finding the vector of signal weights reduces to:
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min (10 ... 0) E0
heRmax{1,P}+q >0

0
(3.33)

0

where the conditional variance-covariance matrices of the state vector, Ei and E0, are 

given by

Ei = F EoF' + Q (3.34)
(1 _ 2-2k)

Eo = Ei — ( —^K )Eihh'Ei (3.35)
h'Eih

where Q denotes the variance-covariance matrix of vt+i. Ei = limtH.^ Et|t-i and E0 = 

limtH.^ Et|t, where Et|t-i denote the conditional variance-covariance matrix £t given It-i. 

Note that we have used the fact that in the case of the one-dimensional signal (3.32) the 
information flow constraint (3.24) can be rewritten as 2 log2 (h J2lh + 1) < k and it is 

always binding, in order to obtain the presented formulation of a problem.

Solving the problem 3.33-3.35 yields the vector of optimal signal weights h. The problem 

3.33 - 3.35 can be solved by a Kalman filter. Since multiplying the signal 3.31 by a non­

zero constant does not change the matrices Ei and E0, it is helpful to normalize either 

an element of h or before solving the problem 3.33-3.35.

3.3.4 Optimal signal selection

The final part to be specified for the rational inattention model is the formulation of the 

optimal action that firm i is tracking, that is to specify the profit-maximizing price p*t as a 

function of the state variables. In order to manifest implications of the rational inattention 
on the optimal signal selections and price-setting behavior of firms and consequential real 

effects of nominal shocks we investigate two cases with a different degree of strategic 
complementarity.

94



No strategic complementarity case

In the case when there is no strategic complementarity in price setting (A = 1), the 
profit-maximizing price has the following form (see Appendix 3.C for derivation)

pit = m(1) (i) - at1) (i) - 2 - aj+2) - Ei,ty+7ni,t (3.36)

The profit-maximizing price is then dependent on the two state variables and the higher- 

order beliefs. In this case we can directly use the rational inattention Kalman filter to 

find the optimal signal. This case helps us to build an intuition that firms aim is to learn 

about the difference between the state variables and not necessarily about their exact 
values. Such indexation is one of the main reasons behind the sluggish behavior observed 

in the RIM's impulse response functions. Next we consider the case with a positive degree 
of the strategic complementarity, which slightly complicates the solution method.

Strategic complementarity case

In the case with strategic complementarity in the price-setting between the firms , i.e. 

0<A <1, the profit-maximizing price depends also on an endogenous variable, the price 
level. Formally, the profit-maximizing price is (see Appendix 3.C for derivation)

p*t = (1 - A) Eit lnPt - ^(1 - A)jA (mj+2 - aj2) + lny - // mt + 
j=o

Ei,t ni,t
Y +1

(3.37)

Such dependence complicates the solution method. We apply a guess and verify method. 
The solution algorithm is described schematically below.

ALGORITHM: Solution of the model with the endogenous variable

Step 1 : We guess that the profit-maximizing price follows an ARMA(p,q) process
Step 2 : Given the guess, we apply the analytical results from section 3.3.3 to establish 

the form of an optimal signal and we compute the optimal signal weights and the 

implied actions.
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Step 3: We then calculate the price level and the actual law of motion for the profit­

maximizing price.

Step 4: If the actual law of motion for the profit-maximizing price differs from our 

guess, we update the guess and go to Step 1; otherwise a fixed point is reached.

The rational inattention model shares with the ICKM the transition equation specified 

in the next section. This concludes the model. The key challenge for estimation of 

the rational inattention macroeconomic models is to solve the model sufficiently fast. We 

implement the solution method introduced in MATLAB using the Artelys Knitro2 solver. 

The computing time needed for solving the model depends on various variables, especially 
the degree of strategic complementarity in price setting. The code was run on at 2,4 GHz 

Intel Core i5, 16GB DDR3, Inter Iris 1536 MB and the running time ranged from 14 

seconds to 350 seconds. For comparison, with implementation of the usual solvopt solver 
the lower bound achieved was 400 seconds.

2 For a summary of the algorithms implemented in the Knitro solver see Byrd, Nocedal, and Waltz 
(2006)

3.4 Imperfect common knowledge model

Following Melosi (2014), in the imperfect common knowledge model (ICKM), it is as­

sumed that firms observe one idiosyncratic noisy signal about each exogenous state vari­

able and face strategic complementarities in price setting with no cost of price adjustment. 
Thus, a signal of firm i is defined as:

Si2,t

/ \ Jmt am 0
+ e

ai,t 0 aa y
(3.38)

where S2‘ = \Sm,i,t, Sa,i,t]' ; mt = ln M‘ — // mt; ai;t = ln A^ — p,At; eiyt = [e^t, eO)i)t]/ and 

e ~ N(0,12). Note that mt and ai,t represent two exogenous state variables of the model 
and the signal noises em,i,t and ea,i,t are assumed to be independent and identically dis­
tributed across firms and time. In every period t, firms observe the history of their signals 

Si,t and choose their optimal price Pi,t so as to maximize the objective function (3.10) 

subject to equations (3.11)-(3.15) and (3.38), the transition equation for the stochastic 
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discount factor Qt , and that for the nominal wage Wt .

We solve the ICKM model by guessing and verifying the laws of motion for the vector of 

higher-order beliefs. As shown by Woodford (2002), under some conditions, the equilib­

rium dynamics of model variables can be expressed as a function of a weighted average 
of the (average) higher-order expectations about the exogenous state variables. This ap­

proach has several advantages. First, there is no need to trunctate the state vector to 
solve the model. Second, the dimensionality of the state vector often becomes very small, 

making the task of solving the model both quite fast and fairly accurate. Nevertheless, 
this method of solution is not applicable to every imperfect common knowledge model. 
Sufficient conditions for this solution method to be applicable are that the nominal out­

put follows an exogenous process and no past and forward-looking endogenous variables 
enter the price-setting problem.3 * * The former condition is satisfied in the model presented 

because of the equilibrium condition (3.9) and the exogeneity of the monetary rule (3.8). 
The latter condition is satisfied by abstracting from capital accumulation and assuming 

that firms do not pay interest on loans.

3 Paciello and Wiederholt (2014) show that this solution method also applies when one introduces
dependence of the money supply on real shocks in a specific way and the utility function is restricted to
being logarithmic.

As mentioned earlier, following Woodford (2002), we solve the ICKM by guessing and 
verifying the law of motion for a finite number of weighted averages of higher-order 
expectations; that is, Ft = J2°=1(1 — X)j-1XXj, where X(j denotes the vector of average 

j-th order expectations about the exogenous state variables Xt = [mt,mt-1, at]7. The 

transition equations of the ICKM can be shown to be:

Xt = B^Xt_i + but, (3.39)

BB 3 x 3 0 3 x 3
where we denote Xt = [Xt; Ft]7; B ; b = [b7; d7]; ut = [cm)t,eO)t]/ with

ut ~ N(0, Su), for all t and Eu =

G3x3

/ 2

&m

H3x3

; the matrices B and b are given by the
0

0 aá^ 
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exogenous processes (3.8) and (3.12); and G, H and d are matrices that are yet to be 
determined. The evolution of the log-deviations of the (stationary) real output yt and 

price level pt from their steady-state value can be expressed as linear functions of the 
state vector XXt. Thus, we obtain an equilibrium of the ICKM by characterizing these 

three matrices: G, H and d. Further, these three matrices are a function of the model pa­

rameters: pm, om, oa, om, 0a, A and the Kalman-gain matrix associated with firms' signal 

extraction problem. For the full description of the ICKM solution see Appendix 3.D.

3.5 Calvo pricing model

In the Calvo model firms and all the other agents (i.e., households, the financial inter­
mediary and the monetary authority) perfectly observe the past and current realizations 

of the model variables. The key assumption is that with exogenously given probability 
each firm i can reoptimize the price in a period t. This probability is independent of the 

state of the model and of the last time the firm reoptimized the price. Specifically, only a 

fraction (1 — 0p) of firms reoptimize their prices, while the remaining 0p fraction adjusts 

them to a geometric weighted average of the steady-state rate of inflation n* and of the 

last period's inflation rate nt-1 with weights (1 — w) and w, respectively. Thus, the degree 
of price indexation is captured by a parameter w. After detrending the nonstanionary 

variables and log-linearizing the model around the deterministic steady state one can 

obtain the standard New Keynesian Philips curve (for its derivation see e.g. Section 2.2 

in Woodford (2003)):

nt

where Kpc = (1 — 0p)(1 -

3.6 Empirical Analysis

In this section, we present the Bayesian estimation of all models presented. Section

3.6.1 introduces the dataset used, followed by the VAR analysis in section 3.6.2. Sets 

of identifiable parameters in various models and their prior and posterior distributions 

are presented in 3.6.3. Finally, section 3.6.4 displays a comparison of impulse response 

w A , Kp'- P
w n'-1 + ' ■ V‘ + w E'n‘+1

(3.40)

)A/dp with A = (y + 1)^ 1 /[v(^ 1 — 1) + 1].
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functions, as well as of the marginal data densities of various models, to show the goodness 
of fit for different models.

3.6.1 Data

For estimation we adopt the same dataset as in Melosi (2014) in order to allow for a direct 
comparison with the results previously obtained about the ICKM and Calvo model. We 
use quarterly data that cover the third quarter of 1954 through the fourth quarter of 

2011. We fit two time series of the U.S. GDP deflator and the U.S. per capita real GDP, 
obtained by dividing the nominal GDP by the civilian non-institutional population aged 

16 years and older and deflating using the chained-price GDP deflator. The data on the 

U.S. GDPdeflator and on the U.S. per capitareal GDPare denoted as {Pt,t = 1,2,...T} 

and {Yt, t = 1, 2, . . . , T }, respectively.The measurement equation for real GDP per capita 
and the GDP price deflator in the log-linearized RIM and ICKM model are the same 

and given by equations (3.18) and (3.17); and for the Calvo model they are standard and 
hence omitted. The models are estimated using unfiltered data.

3.6.2 VAR analysis

We fit a VAR with four lags to the data set. We follow Sims and Zha (1998) to specify the 

prior distribution for the VAR parameters. We obtain 100 000 posterior draws through 
the Gibbs sampler. We then compute the IRFs of output and inflation to monetary shocks 
in the VAR and compare these IRFs with those implied by the other three DSGE models. 

In this comparison, the IRFs implied by the VAR are used as the benchmark. In section 

3.6.4, we show that this comparison is astute, from a Bayesian perspective, because the 
VAR attains a larger posterior probability than that of the RIM, ICKM and the Calvo 

model (see e.g., Schorfheide (2000)).

3.6.3 Prior and posterior distributions

After the log-linearization, the set of identifiable parameters in the RIM, ICKM and 

Calvo models, respectively, are

@RIM (Pmi am.- aa-- pM, pA, ^) (3.41)
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&ICKM = (pmi omi % omf Oaf pM, pAi A)

^Calvo — (pmi % pM, pA, P ■■ Kpci w)

(3.42)

(3.43)

First, we discuss how the observables in the RIM and ICKM differ from each other. We 

can see directly that the sets of observables for these models do not include the discount 
factor P and a that dropped out during the log-linearization. The technology parameter 

p, the inverse of Frisch labor supply elasticity 7 and the demand elasticity v are not 

separately identified. We also do not estimate the standard deviation of the firm-specific 

technology on, because we do not use any firm-level data for estimation. The main dif­
ference between the RIM and ICKM sets of observables lies in the fact that the ICKM 

has an exogeneously fixed signal form of two independent signals for each state variable 

and corresponding noises om2 and oa2. The RIM on the other hand uses the optimal sig­
nals given the information flow constraint, so for each selection of parameter specified in 

equation 3.41 it might select different a ARMA representation of the optimal signal. We 

specify the selected optimal signal in section 3.6.4 when discussing the IRFs' comparison.

In setting up the prior statistics of all the parameters we follow the approach of Melosi 

(2014); thus, we just briefly summarize it below. The prior for autoregressive parameter 

pm and the standard deviation of the monetary shock om is determined by estimating it 
using the presample observation from the first quarter of 1949 through the second quarter 
of 1954. This is possible thanks to the market clearing condition for the monetary mar­

ket. The prior mean for the standard deviation of the aggregate technology is centered at 

0.007 as is common in the real business cycle literature (see e.g., Kydland and Prescott 

(1982)). As we will see, the crucial parameter for the analyses presented is the strategic 
complementarity parameter (1 — A). In the ICKM, if the technology parameter p is set 

to 0.65 (Cooley and Prescott 1995) and the Frisch labor-supply elasticity y is set to 0.5 

(Fuentes-Albero et al. 2009), then the prior median of (1 — A) is associated with the net 

markup (v — 1)-1 in the range from 5 to 23 percent.

The parameters for the RIM and ICKM differ mainly in the signal structure. For the 

ICKM the priors for standard deviations of signal noises om2 , oa2; and the standard devi­
ation of the signal noise in the RIM o22 are set up such that it is ensured that signals are 

quite informative about the business cycle frequency variations of aggregate variables. 
To investigate direct comparison of the ICKM model with the RIM and thus how restric-
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Table 3.1: Posterior and prior statistics for the parameters of the RIM, ICKM and 
Calvo model. Results are obtained by the Metropolis-Hastings algorithm with one million 
posterior draws.

RIM ICKM Calvo Prior

Name Median 5% 95% Median 5% 95% Median 5% 95% Median 5% 95%

A 0.19 0.07 0.35 0.31 0.12 0.50 - - - 0.41 0.21 0.60

pm 0.43 0.34 0.51 0.40 0.30 0.49 0.30 0.22 0.38 0.5 0.17 0.82

iooom 0.88 0.79 0.93 0.89 0.82 0.95 0.90 0.83 0.97 2.00 0.43 12.81

i00Oa 0.85 0.74 1 0.87 0.71 1.03 0.90 0.83 0.97 0.70 0.51 0.87

i00MM 1.25 1.10 1.43 1.25 1.09 1.42 1.25 1.11 1.39 0.00 -41.00 41.00

i00^A 0.43 0.24 0.59 0.43 0.33 0.53 0.42 0.10 0.73 0.00 -41.00 41.00

i00om - - - 10.02 5.48 14.35 - - - 5.01 2.12 7.91

iOOOa - - - 1.35 0.69 1.98 - - - 1.06 0.24 1.87

iOOKpc - - - - - - 1.09 1.08 1.09 12.00 0.00 22.00

- - - - - - 0.02 0.00 0.05 0.50 0.08 1.00

tions on the signal structure matter, we assume that the information flow is equal in both 
models and thus we do not estimate and identify k in RIM. In the Calvo model we can 

identify the slope of the New Keynesian Philips curve kpc and we set its prior belief such 
that it ranges from 0.00 to 0.22 (see e.g., Schorfheide (2008)). For indexation parameter 

w we set a broad prior. The deterministic discount factor and the Calvo parameter 0p 

cannot be indentified separately.

We evaluate the posterior distributions numerically through the randomwalk Metropolis- 
Hastings algorithm, by generating one million draws. The prior and posterior statistics 

are shown in table 3.1. The majority ofthe parameters that are shared among the models 

have quite similar posterior medians. The main parameter that differs between the RIM 

and the ICKM is the degree of strategic complementarity (1 — A). We have assumed the 
prior median of strategic complementarity to be 0.59 and Bayesian inference significantly 

increased the posterior median both for the RIM and ICKM. Moreover, the estimated 

degree of strategic complementarity for the RIM is undoubtedly bigger than in the ICKM, 

i.e. 0.81 in comparison with 0.69, respectively. The estimated number is very close to a 

strategic complementarity of 0.82 obtained from a micro-level survey from New Zealand 
and reported in Afrouzi (2020). The RIM estimated degree of strategic complementarity 

is also closer than other models to the usual value of 0.9 used for calibration of the U.S. 
economy (see e.g., Mankiw and Reis (2002),Woodford (2003)).
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3.6.4 Results comparison

In this section we present a Marginal data density comparison of the models and the 

comparison based on the impulse response functions. The former is necessary for us to 
establish that the VAR attains larger posterior probability than the other models. Oth­

erwise, it would not be meaningful to use the VAR as a benchmark model for the IRFs' 
comparison. The latter provides us with information on how different models capture the 

hump-shaped behavior of the IRFs.

Marginal data density comparison. The posterior probability of model Mi, where 

i G M := {RIM, ICKM, Calvo, VAR} is given by

Pt,Mi =
Po,m • P(Y|Mi) 

EícmPo,Mi • P(Y|Mi)

where P0,Mi is the prior probability of the model Mi and are assumed to be the same 
across models, P0,Mi = 1/3. The dataset is denoted as Y, the marginal data den- 

sity(MDD) of a model with a vector of parameters 0i is defined as P(Y |Mi) = 
f L(0i|Y, Mj)P(0i|Mi)d0i, where P(0i|Mi) is the prior distribution, L is the likelihood 

function4. Table 3.2 shows the log marginal data densities for all the models. The VAR 

proves to have the largest posterior probability and the RIM dominates the ICKM in the 

MDD comparison.

4 Chib's method is used for the VAR model. For all the other models we apply Geweke (1999) harmonic 
mean estimator.

Table 3.2: Log of the marginal data densities for all the models.

VAR RIM ICKM Calvo

1920.05 1802.71 1737.88 1706.02

Impulse response function comparison. Figures 3.1 and 3.2 depict the IRFs of real 
GDP and inflation to an unexpected monetary shock. To obtain these IRFs we use the 

full-information method. We apply the restriction that the monetary policy has no long- 

run real effects (see e.g., Blanchard and Quah (1989)) for identification of the monetary
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Figure 3.1: IRF of real GDP to a monetary shock for the RIM, ICKM, Calvo and VAR.

shock in the case of VAR. The benchmark VAR-IRFs present a hump-shaped behavior, 

with short run sluggish momentum (with maximum achieved 3 quarters after the mon­

etary shock for a real GDP reaction) with a long-term persistence. Both the RIM and 

ICKM prove to be capturing this hump-shaped behavior much more closely than the 

Calvo model. The RIM mainly captures the persistence much more closely than other 

models. However, the ICKM outperforms the RIM in timely and more appropriate mim­

icking of the short-run momentum. These differences are caused mainly by i) optimal 

signal selection given the information flow constraint and ii) the different estimated value 

of the strategic complementarity.

Table 3.3: Parameters for the selected signal in RIM

AR MA 100^'2

3.0122 -0.1541 7.0437

-3.2928 0.3646

1.5345 -0.2816

-0.2538 0.0810

For the estimated parameter values in the RIM the selected signal has an ARMA(4,4) 

form and the parameters are presented in table 3.3. From the form of the signal it is clear 

that it differs significantly from the assumed AR(1) form in the ICKM models following
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Figure 3.2: IRF of inflation to a monetary shock for the RIM, ICKM, Calvo and VAR.

the tradition of Woodford (2002). The rationally inattentive firms are selecting signals 

that at the same time provide them with information about the current optimal action as 

well as the future optimal action. Also, firms selected one signal that is a construct index 

of the state variables instead of obtaining two independent noisy signals for each state 

variable. Such signal selection occasions that sluggish behavior is not only caused by 

imperfect information due to obtaining noisy signals, but also because from the selected 
signal form it is more complicated to understand what exactly is causing a variation.

The larger estimated degree of strategic complementarity for the rational inattention 

model has a significant impact on the persistence as it magnifies the mechanism of shock 

propagation. This can be observed from equations (3.17) and (3.18) where the persis­

tence of response to a monetary shock depends on the weighted averages of higher-order 
expectations about the state variables (1 — ^)j(mtjt+1) — a(j+1^ and Jj=0(1 — 

A)jAm(jt+1), respectively. Here we can notice the effect of the strategic complementar­

ity as the weights associated with the average expectations. The larger the degree of 

the strategic complementarity the more it matters for price setting decisions and more 

sluggishly the higher order expectations adjust after shocks.
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3.7 Concluding Remarks

In this paper, we conduct full-information Bayesian inference and comparison of the Ra­
tional inattention model, Imperfect common knowledge model and Calvo pricing model. 

To our knowledge, this is the first paper that directly compares the performance of the 
estimated RIM model with full flexibility in the signal structure and the ICKM model. 

We show that the RIM captures data better than the Calvo model. In comparison with 
the ICKM, the RIM reproduces the persistence more closely; however, in the capturing 

of the aftershock momentum, the ICKM seems to be more successful. The difference 

between the models' performance is caused mainly by the fact that the optimal signal 

is an index about the state variables with more lags, as is assumed in the ICKM, and 
by the fact that we estimated a large degree of the strategic complementarity in the RIM.

To reveal the role of rational inattention, we build upon and keep as close as possible to 
the model presented in Melosi (2014)that introduced the estimation ofthe ICKM model. 

However, the given model is still stylized in several dimensions to provide tractability. 

This allowed us to conduct the next important step and estimate a version of the model 
presented in Melosi (2014) with inattentive firms. Previous rational inattention mod­

els without signal structure restrictions were only calibrated because dynamic rational 
inattention models are difficult to solve. In this paper, we are building on the results 

presented in Mackowiak, Matějka, and Wiederholt (2018) which allows us to overcome 
the key challenge to solve the model sufficiently fast so that estimation becomes feasible 

in a reasonable amount of time.

There are still several unsolved challenges. As was advocated by Mackowiak and Wieder- 
holt (2015), it is crucial to estimate a model that would have not only inattentive firms, 

but also households. That, however, presents an additional computational challenge. Be­
cause our aim was to investigate the direct comparison with the ICKM, we have assumed 

in the RIM the same information flow as in the ICKM. This assumption can be relaxed 
and direct estimation of the cost of information in a macroeconomic setting might be 

very insightful.
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3.A  Appendix A: Derivation of the log-linearized firm's 

price-setting equation

The first-order necessary condition (w.r.t. Pi,t) of the price-setting in the RIM and ICKM 

is:

Ei,t

0Qt ^Yi,t - vPi,t "V_1 Yt + ,-x Wt 

P + At

y z-v-1 yA
Ai,J \PJ Pt) =0

Using Ct = i J Či,- di)
v

v-1
we can write

+ Ei,t

Ei,t

^Qtv^-1 W
Ai,t

+

v \*-1-i

Yt
ZP^A-v-1 Y
\pJ Pt

PQt

=0

From the representative household's problem we know that labor supply is Wt/Pt = 
aYtHY after substituting this result we obtain

+

+ Ei,t fiQtA 1

W«(1 - v)(pPt} Y.

aYHY 

Ateni,t

Ei,t

=0

Define the stationary variables

Yt
yt — a , yi,t

Yi,t

At, Pi,t

Pi,t

Pt
hi,t = Hi,t

Afterwards we can rewrite it to
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Ei,t 8qtPi,tyt ((1 - v) + v<- 1 ayth-£-
(ji ' y‘) ^-1-1

We take the log-linear approximation of the equation above around the deterministic sym­

metric steady-state. We do not need to take care of what is outside the round brackets 
because the expression within them is zero at the deterministic symmetric steady-state.

The price-setting condition can be approximated as:

Ei,t Yht - [v1 - 1) + 1]pi;í + 1(yí - ni,t) = 0

From the production function we know that hi,t = ^-1(yi,t — ni,t) and using that yt = 

f yi,tdi we get that yt = ^-1yt. By substituting those results into the equation above, we 

obtain:

Ei,t [y4> -yt + ý 1 (yt - n*,t) - [v(<£ 1 - 1) + i]pi,t] = 0 

then

[v 1 - 1) + i]Ei;tpi,t = Ei,t[Y^ 1yt + 1(yt - n*,t)]

Ei,tpyi,t Ei,t[(Y +1)^ 1yt - 1m,t]

[v (^-1 - 1) +1]

Ei,tpyi,t (y + 1M 1 

v (^-1 - 1) + 1 Ei,tyyt
r1

v (^-1 - 1) + 1 Ei,tni,t

If we define A = (y + 1)^> 1/[v1 - 1) + 1] then
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Ei,tpi,t ---  AEi,tyt Ei,tni,t
Y +1

this is

Ei,t [ln P-,t — ln Pt] - AEi,t [ln Y — ln At — ln y]------ E-,tni,tY+1

equivalently

ln P-,t - Ei,t [A ln Yt + ln Pt — A ln At] Ei,tni,t — A ln y

From eq. 3.9 we have

ln Pt + ln Yt — ln Mt - ln Yt — ln Mt — ln Pt

after plugging it in

ln Pi,t = Ei,t (1 — A) ln Pt + A ln Mt — A ln At----------
Y+1

— A ln y

In the main text we define mt = ln Mt — y Mt and at = ln At — yAt thus we obtain

ln P-t — E (1 - A) ln Pt + Amt - Aat - ni,t|zt — A[(^a — ;.A )t + ln y], (3.44)

A
Y + 1

A
Y + 1

Further, after log-linearization of equation 3.4 around the deterministic steady-state, we 
obtain pt — f pi,tdi. Thus, when we integrate equation 3.44 across firms we get

ln Pt — (1 — A)ln Pt(j+1) + A lnln Mt(j+1) — A lnln Ag^ — A ln y

for j G {1, 2, . . . }. After repeatedly substituting these results into the average-price
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equation and substitution, we can obtain

ln Pt = E(1 - A)j' (m(j+1) - a(j+1))

j=0

- A ln y + /i m • t - /i-a • t. (3.45)

Using ln Mt = ln Yt + ln Pt we receive

ln Yt = mt- ^(1 - A)j Amt + 

j=0

+ ^(1 - A)jAatjt+1) + A ln y + //.i • t 
j=0

(3.46)

Equations 3.45 and 3.46 are the law of motion for price level and output, respectively.
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3.B  Appendix B: Analogous ob jective of rational inat­

tention model

The objective function of the model with rationally inattentive firms is

E tnt(pi,t,pt,yt,qt)
t=1

where nt is the log-quadratic approximation of Qtnt. We take Qt - the stochastic discount 

factor as exogenously given for firms. Let's define the profit-maximizing price that solves 
the log-quadratic price-setting problem under perfect information as p*t. We can show 

that

nt (p*,t,pt,yt, yp - nt yt, yt) x (pit - pi,p2

is a function of structural parameters up to a constant

nt «<,.&, yb yp - nt (Pi,t,pt, yt, yt) a (ln (PyP - ln (pi,tP)2

The first expression on the left side of the equation is not affected by the rational inat­
tention problem as the profit-maximizing price is obtained for complete information. 

Therefore we can rewrite the objective as

t nt(pi,t,pt,yt,yt)
t=1

E E K «<>.&> yt, yP - nt (pi,t,pt ,yt, yt)]
t=1

E pt (pit- pi,t)2

t=1

(3.47)

Because pi,t and pi,t are stationary processes, they do not depent on t.

E J2ptnt (pi,t,pt,yt,yt)
t=1

oc -E pt (PP . x2
- Pi,t
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The log-quadratic problem pi,t is defined as ln(Pi,t/Pt). Hence

pi,t — ln (Xt) — ln (Pt)

pi,t — ln (Pi,t) — ln (Pt)

Then

E tnt(pi,t,pt,yt ,qt)
t=1

a —E pt (ln )*
i,t — ln(Pi,t))2
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3.C  Appendix C: Profit-maximizing price for the ra­

tional inattention model

We want to derive p*t for two cases: i) with zero degree of the strategic complementarity 
and ii) with the degree of the strategic complementarity between 0 and 1. Note that the 

p*t = ln P*t - ln Pt. Recall that mt = ln Mt - // Mt and at = ln At - p,At and then from the 

equation (3.16) the former (ln P*t) can be shown that

<x>

ln Pit = ^(1 - A)j+1A 2(i) - aj^i)} - lny + // mt - + Arn^1 (i) - Aa(1

j=0

the latter (lnPt) is given by the equation (3.17). The equations (3.36) and (3.37) are then 

directly obtain as a difference of ln P*t - ln Pt first for the case when A =1 and second 

for the case when 0 < A < 1.

(i) Eitnit
Y +1
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3.D Appendix D: Solving the ICKM

This solution method was directly stated in the Appendix B of Melosi (2014) and it is 

generalization of the solution method presented in Woodford (2002) for two state vari­
ables. We introduce this solution method here in order to provide stand-alone feature of 

this paper and to highlight how the signal acquisition assumptions influence the solution 
of the model.

In order to find an equilibrium for the ICKM we have to characterize the equilibrium law 

of motion for the economy's aggregate states. The transition equations are

yt = -pt (3.48)

Pt = r Xt (3.49)

Xt = BXt-i + but (3.50)

where yt and pt denote the log-linear deviations of the stationary output (yt = A) 

and price (pt = PtA'), from their deterministic steady-state. Further, Xt 

r = (—1,0,1,1,0, —1/;

= [Xt; Ft]';

B =
BB3x3 0 3 x 3

; b = [b'; d']; B = 1
G3x3 H3x3

[fm.i, e«.t]' with u, S N(0, E„), for all t and v..

as

F, = £(1 — A)j-1AX(j) 

j=1

where

X, = (mt ,m,-i,a,)'

0

/

0

2
^m

1 + Pm

; ut

defined

(3.51)

(3.52)
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matrices G, H and d are yet to be determined in order to find an equilibrium. The 

transition equation (3.48) is obtained after detrending and log-linearizing of Pt Yt = Mt 

the market clearing conditions in the money market. The transition equation (3.49) 

can be obtained from the law of motion for the price level (3.17) combining with pt = 

ln Pt + ln At — ln Mt — lnp and lnp + lny = 0.

Signal structure for the ICKM can be written as

Sit = DXt + eit

1 0 0

(3.53)

where D — (Di; 02x3), Di , eit — ^■a,i,i) , eit ~ N(0, Xe^ for al1

and i, Se

/Í,

am

0 0 1

0

0

We follow Woodford (2002) and use the method of undetermined coefficients to identify 

unknown matrices G, H and d. Specifically, we want to solve the fixed point problem 
that given the conjectured law of motion (3.50), optimal firms' behavior must exactly 

aggregate to the conjectured law of motion (3.50).

After we have introduced the transition equations and the signal structure, it follows (see, 

e.g., Chow (1975),Harvey (1989)) that the firm i's optimal estimate of the state vector 

evolves according to a Kalman filter equation

Xt|t(i) = Xt|t-i(i) + k[Sit — DXt|t-i(i)]

where k is 6x2 Kalman gain matrix that has to be determined. After plugging the one step 
ahead forecast of the state vector into the Kalman filter equation, integrating over firms 

and applying that J eitdi = 0 and substituting for Xt we obtain the average estimates of 
the current state vector

114



Xt|t = [I- kD]BXt-1|t-1 + kD[BXt-1 + but]. (3.54)

Let us define the 6x3 vector w such that w = (A • I3; (1 — A) • I3)'. Then after some 
manipulation w'X(i) = Ft. when we substitute there equation (3.54) we obtain

Ft = W — kD]BXt-i|t-i + kD[BXt-i + but] (3.55)

where k = w'k. Following three equations can be derived

WB = (AB + (1 — AG); (1 — A)H) (3.56)

DB = (B^; 02x3) (3.57)

where B' = (B'XB'3) and Bj is the j-th row of the matrix B.

Db = Dib (3.58)

Using equations (3.56) - (3.58), one can rewrite equation (3.55) as

Ft = AB + (1 — A)G — kB1 Xt- i|t-1 + (1 — A)HFt-i|t-1 + kB^Xt-i + kut (3.59)

From the equation for w and by lagging by one period we obtain (1 — A) • Ft-1|t-1 = 

Ft-i — AXt-i|t-i what after plugging into the equation (3.59) and rearranging we get

Ft = AB + (1 — A)G — kB1 — AH Xt-i|t-i + H • Ft-i + kB*Xt-i + kut (3.60)t-1

After comparison with (3.50), we can identify the matrices
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G = kB1 

d = k

AB + (1 — A)G — kB1 — AH
!=! 0

(3.61)

(3.62)

(3.63)

After substituting (3.61) into (3.63), we can identify matrix H as

H = B - kBÍ

The steady-state matrix of Kalman gain is given by

k = PD' [DPD' + Se]-1

(3.64)

(3.65)

and the matrix P solves the algebraic Riccati equation

P = B [P — PD'[DPD' + Se]-1DP] B' + bXub/ (3.66)

ALGORITHM:
Numerical loop to find out the fixed-point and determining P

Step 1: Given parameter values and a guess of the Kalman-gain k0, use equations 
(3.61) - (3.63) to characterize matrices G, H and d.

Step 2: Solve Riccati equation (3.66) and obtain P and a new Kalman-gain matrix k 

from (3.65).

Step 3: If the k and k0 are sufficiently close, the fixed point is found and stop. 

Otherwise set new k0 = k and repeat from Step 1.

Step 4: When fixed-point Kalman gain is found, the steady-state system of ICKM is 

fully characterized.
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