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Abstract

In the �rst chapter of this work, I study the sorting of workers to �rms, when �rm
size is explicitly taken into account. I develop a method to non-parametrically identify
match production function from data on workers' wages and �rms' revenues and posted
job vacancies. Under the proposed identi�cation procedure, ordering of workers and �rms
is identi�ed independently, and can therefore be achieved using potentially di�erent data
sets. The model sheds light on the question of exporter wage premium: exporters pay
higher wages because they are larger, and higher wages are required to support a larger
�rm size.

In the second chapter we elaborate on Anas' (2004) impossibility theorem, which
states that monopolistic competition or economies of scale alone are insu�cient to ex-
plain the growth of cities in response to growing population or decreasing trade costs
(under constant urban costs); cities shrink. To enhance the realism of assumptions, in-
stead of Anas' normative approach, we introduce migration and developers' equilibria and
another sector. Still, �vanishing� remains robust! Ultimately, we argue that the �vanish-
ing� mechanism looks realistic and can have an explanatory power: industries, free of
externalities, should locate in small towns. Moreover, the comparative statics shows how
such �manufacturing� towns gradually decline, whereas other cities do not.

In the last chapter, to enrich the usual monopolistic competition model, we combine it
with a space of product characteristics, i.e., consumers' �ideal varieties�. Unlike Hotelling,
in our partially localized competition, zones of service among continuously distributed pro-
ducers intersect due to love for variety. When the equilibrium density of �rms is uniform,
it reacts positively to growing market size (population), similarly to non-localized mo-
nopolistic competition. However, positive/negative price reaction is now determined by
increasing/decreasing elasticity of elementary utility (instead of demand elasticity as in
non-localized competition). The �rm's range of service is a new notion introduced in this
work. When a �rm does not serve all the consumers, the range of service decreases with
the expansion of the market.
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Abstrakt

V první kapitole této práce studuji zp·sob, jakým se pracovníci t°ídí do �rem, p°i£emº
je explicitn¥ brána v potaz velikost �rmy. Vytvo°il jsem metodu, kterou lze neparamet-
ricky identi�kovat párovací produk£ní funkci z údaj· o mzdách pracovník· a výnos· a
volných pracovních míst �rem. Podle navrhované identi�ka£ní metody °azení pracov-
ník· a �rem je identi�kováno nezávisle, a proto m·ºe být dosaºeno pouºitím potenciáln¥
r·zných datových soubor·. Tento model vrhá sv¥tlo na otázku mzdové prémie vývozc·:
vývozci platí vy²²í mzdy, protoºe jsou v¥t²í, kde v¥t²í mzdy jsou vyºadovány pro podporu
v¥t²í velikosti �rmy.

Ve druhé kapitole rozpracováváme Anas·v (2004) teorém impossibility, který praví, ºe
pouhá monopolistická konkurence nebo výnosy z rozsahu samy o sob¥ nesta£í k vysv¥tlení
r·stu m¥st v reakci na rostoucí populaci nebo pokles obchodních náklad· (p°i konstant-
ních m¥stských nákladech); m¥sta se zmen²ují. Pro v¥t²í realisti£nost p°edpoklad· p°ed-
stavíme migraci nebo vývojá°ské rovnováhy a dal²í sektor namísto Anasova normativního
p°ístupu. Výsledek mizících m¥st p°esto p°etrvává! Nakonec polemizujeme, ºe mecha-
nizmus mizení vypadá realisticky a m·ºe mít vypovídací hodnotu: pr·mysly, které ne-
mají ºádné externality, by se m¥li usadit v malých m¥stech. Komparativní statika navíc
ukazuje, jak se taková pr·myslová m¥sta postupn¥ zmen²ují, zatímco ostatní m¥sta ne.

V poslední kapitole obohacujeme obvyklý model monopolistické konkurence o prostor
charakteristik produkt·, tzn. ideál· jednotlivých spot°ebitel·. Narozdíl od Hotellingova
modelu, v na²í £sáte£n¥ lokalizované konkurenci se zóny sluºeb mezi spojit¥ rozloºenými
producenty neprotínají díky touze po rozmanitosti. V p°ípad¥, kdy je rovnováºná hustota
�rem rovnom¥rná, reaguje pozitivn¥ na rostoucí velikost trhu (populaci), podobn¥ jako
v nelokalizované verzi monopolistické konkurence. Nicmén¥, pozitivní/negativní reakce
ceny je nyní ur£ována rostoucí/klesající elasticitou elementárního uºitku (namísto elas-
ticity poptávky v nelokalizované konkurenci). Novým zam¥°ením studie je také rozsah
slu{zeb �rmy, pokud nepokrývá celý prostor, který klesá s rostoucím trhem.
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Introduction

My dissertation is titled �Essays in Economic Theory", and although the three chap-

ters di�er substantially in their topic and focus, two unifying themes permeate the dis-

sertation: one is conceptual, the other is instrumental.

On the conceptual level, the dissertation is focused on the di�erent instances of market

frictions. Since my acquaintance with the Welfare Theorems, I have become at the

same time fascinated with and amused by the idea that under certain conditions market

systems deliver the �rst-best allocation. My fascination comes from the elegance of the

argument and the unanticipated connection between the self-interested agents premise

and its welfare implication. My amusement reposes on the further inference that uniform

applicability of this result should have left economists, both in academia and policy-

making, unemployed and even unemployable. These and similar ideas fed my interest

in studying market imperfections from the early stages of my career, and brought me

to the understanding that, to a large extent, Economic Theory is a theory of frictional

interactions and market failures.

The methodological tool that connects the three chapters is the theory of monopolistic

competition. That it can be considered a theory of market failure can partially explain

my passion for it. When I learned the monopolistic competition theory during my master

studies, it immediately struck me as an appealing concept for modeling a wide range of

markets. The simultaneous presence of local market power, and the absence of direct

strategic interactions seemed to me a natural proxy description of the supply side of the

economy. For that reason, whenever faced with modeling a market, I always started with

1



the monopolistic competition approach, and it has always served me well so far.

Therefore, each essay of my dissertation can be viewed as an applied study of market

frictions and their impact on the equilibrium allocations: on the labor market, in economic

geography and in industrial organization.

In the �rst chapter I study matching of workers and �rms on the labor market when

both sides of the market are heterogeneous and the search process is impeded by fric-

tions. In contrast to the large body of literature, which relies on a one-to-one matching

framework and equates jobs to �rms, I explicitly take into account �rm size and the �rm's

ability to choose not only the type, but also the number, of workers it wants to employ.

I develop a procedure that allows for non-parametric identi�cation of match production

function and vacancy creation cost function from workers' wages and �rms' revenues and

pro�ts. An important insight from the developed model is that disregard of �rm size

leads to underestimation of the complementarity between the ability of workers and the

productivity of �rms, and therefore, of potential output gains from better sorting. In

addition, I extend the model into the international trade setting to address the question

of the exporting wage premium � an empirical observation that exporting �rms tend to

pay higher wages. In my model, exporters pay higher wages due to the size e�ect � they

are larger, and under search frictions, higher wages are required to support larger �rm

size.

In the second chapter (jointly with Sergey Kokovin), we study what monopolistic

competition has to say about the evolution of city sizes. We focus on the question of

whether internal economies of scale, juxtaposed with the interplay between congestion

costs within cities and transportation costs between them, can generate increasing city

size, when the population of the system is growing and creation of cities is endogenous.

Our answer is negative. We show that, by themselves, internal economies of scale, often

assumed to be a characteristic feature of manufacturing industries, do not lead to the cre-

ation of diverse cities, but quite the opposite � in a growing world, cities specialize. This

result is robust to di�erent mechanisms behind the city size determination, � whether

these are free movement or a benevolent local mayor, and to the presence of large service

cities in the system. The chapter has recently appeared in Papers in Regional Science.

The last chapter (jointly with Sergey Kokovin and Takatoshi Tabuchi) is focused on

the properties of monopolistic competition in product characteristics space. To enrich

the standard model of monopolistic competition, we introduce a space of product char-

acteristics akin to the early Hotteling (1929) approach. However, unlike Hotteling and

2



the following literature, we maintain a love for variety assumption among consumers,

which is central to the modern monopolistic competition literature. This combination

of an �ideal type" of product and love for variety in consumption gives rise to partially

localized competition: zones of service of di�erent �rms intersect. We show that compe-

tition intensity, measured as number of �rms and the marginal utility of money, increase

with growing market size, similar to a standard model of spaceless monopolistic compe-

tition. However, the price decreases (increases) if elasticity of utility (instead of demand

elasticity in spaceless competition) at the point of consumption of an �ideal variety" is

a decreasing (increasing) function. This result stems from the aggregation of heteroge-

neous consumers into a demand function faced by a �rm � aggregate demand does not

inherit all the properties of individual demands. In addition, we show that with increas-

ing market size, competition becomes more localized: the segment of space served by a

�rm decreases as the market expands.

3
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Chapter 1

Sorting When Firms Have Size

1.1 Introduction

The increasing availability of detailed micro level data sets has made us well informed

about the large extent of heterogeneity on both sides of the labor market. Recent re-

search has shown that �rms di�er by size, productivity, capital intensity and many other

characteristics. More importantly, the di�erences are enormous even within narrowly

de�ned industries (Crozet and Trionfetti, 2013); or in other words, a large proportion of

these di�erences can hardly be attributed to any observable characteristic of �rms. This

suggests that unobserved �rm characteristics play an important role in any explanation

of �rm behavior and outcomes. A similar observation holds for workers. Studies of wage

determination and wage inequality have revealed that wage inequality has been growing

in recent decades in virtually all countries, and that most of the inequality and its growth

cannot be attributed to observable characteristics of workers, even in narrowly de�ned

occupation-sector cells (see, for example, Helpman, Itskhoki, Muendler and Redding,

2012). Therefore, a study of the labor market cannot disregard the heterogeneity in, and

interplay between, the unobserved characteristics of both �rms and workers.

How does this enormous heterogeneity in the labor market play out in the interac-

tion between its two sides � �rms and workers? Are there strong complementarities in

production between characteristics of workers and �rms? How smooth or frictional is

the process of reallocation? Does the market allocate workers to employers in optimal

fashion? If it does not, what is the role of di�erent sources of misallocation, e.g. search
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frictions and market power, and how far from optimal output is the departure? The an-

swer to these and related questions is important for the resolution of numerous economic

debates. Study of misallocation at the micro level is important for the macroeconomics

literature, as it has a direct impact on aggregate productivity �uctuations and long-run

income dynamics. One manifestation of this question, especially relevant and occupying

business cycle literature nowadays, is whether the slow recovery after the Great Recession

is due to a mismatch between workers and �rms.

Understanding the allocation of workers to jobs is particularly vital to international

trade. There, researchers are interested in whether exporters pay higher wages due to

their own higher productivity or due to hiring better workers. An answer to this question

is essential for understanding the implications of trade liberalization for the distribution

of wages.

In order to provide a partial answer to these questions, I develop a model that features

heterogeneous price-making monopolistically competitive �rms, heterogeneous workers

and a frictional labor market. The model addresses the implications of the creation of

vacancies within �rms and choice of size for labor market sorting outcomes. In a nutshell,

the model introduces the random search model developed by Shimer and Smith (2000)

into the monopolistic competition framework à la Melitz (2003). Workers searching for

jobs are randomly matched with vacancies posted by �rms. There is no free entry of

�rms, in contrast to the most standard search models, however, each �rm can post as

many vacancies as it needs. In other words, there is free entry of vacancies within a �rm.

Production is linear in the quantity of labor, i.e. �rm output is a sum of outputs of its

workers. Nevertheless, even the most productive �rms do not grow inde�nitely due to

decreasing demand for their products and the local market power they enjoy.

The contribution of the paper is twofold. First, I show that match output, and hence a

�rm's production function, are identi�ed non-parametrically. The identi�cation strategy

I develop utilizes �rm level data. One of its advantages is that identi�cation of �rms'

unobserved characteristics is achieved independently from workers' characteristics in a

straightforward and intuitive way. In other words, ranking of �rms is identi�ed only from

�rms' variables, such as revenue and vacancies, and does not depend on the wages they

pay. Identi�cation of the match output function is essential for any counterfactual analysis

that includes shifting di�erent workers between di�erent jobs. In that context, non-

parametric identi�cation is especially important because of the lack of microfoundations

behind the structure of the match production function. All the more so, the arguments of

6



the match production function, i.e. workers' and �rms' unobserved heterogeneity drivers,

are not well understood themselves.

In addition, I show that along with the match output, vacancy creation costs are iden-

ti�ed non-parametrically. Understanding the shape of vacancy creation cost is important

because it has potential implications for business cycle models: The faster the marginal

cost is increasing with vacancy creation, the more incentives a �rm has to smooth the

hiring process. Thus, convex vacancy creation cost can be one explanation for slower

recoveries.

Second, I extend the model into an international trade setting to show how the explicit

incorporation of �rm size can dramatically change predictions about sorting. Exporters

allow for a wider range of quality among their workers and pay them higher wages than

non-exporters. This is in dramatic contrast to the result of Bombardini, Ore�ce and Tito

(2014), who show that in a one-to-one matching framework, exporters tend to choose,

on average, better workers and have less skill dispersion in their workforce. The di�erent

result is driven by the �rm size e�ect. In the present model, exporters are larger, and the

cost of supporting larger �rm size require larger equilibrium match surplus. Therefore,

the set of acceptable workers, i.e. those with whom the match surplus is positive, expands.

In addition, exporters pay a higher wage to their workers because the wage is positively

related to the match surplus.

Understanding predictions about matching sets of exporters relative to non-exporters

is important because it has implications for the e�ects of trade liberalization on wage

inequality. Indeed if, on average, matching sets become tighter when more �rms engage

in exporting activity, wage inequality will also increase, for two reasons. First, the share

of workers who can enjoy the exporter wage premium increases more slowly than the

share of exporting �rms. Second, the tighter matching sets indicate that matches are

closer to perfect and workers' wages are closer to their maximal attainable wages (given

the aggregate environment). Conversely, expanding matching sets downward pressure on

wage inequality.

This paper �ts into the extensive line of research on the estimation of models of

sorting on the labor market based on unobserved characteristics of workers and �rms,

�rmly grounded in theory, such as Lopes de Melo (2013) and Lise, Meghir and Robin

(2013). However, the paper addresses two major shortcomings of the current literature.

First, a large part of the literature imposes a good deal of structure on the model and,

in particular, does not allow for varying degrees of complementarity � Hagedorn, Law
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and Manovskii (2014) being a notable exception. Second, virtually all research in the

area so far has not made any distinction between 'a �rm' and 'a job'. In other words, in

these models, �rm boundaries are arbitrary, and a �rm with n workers is equivalent to n

�rms with one worker each. Although theoretically convenient, this approach has a major

shortcoming when applied to data. Since no data set has information on pro�tability or

output of a particular worker or workplace in a �rm, the identi�cation of �rm character-

istics is based on information about wages and labor �ows. Therefore, the identi�cation

strategies tend to be indirect and computationally intensive.

Additionally, the abstraction from the �rm size prevalent in the macroeconomic la-

bor literature inevitably misses a potentially important intensive margin of employment

adjustment over the business cycle: expansion (as opposed to entry) of �rms during

booms and their contraction (as opposed to exit) during recessions. Intuitively, a �rm

that can adjust its labor force size has additional room to maneuver when faced with

shocks, and models taking this into account can produce di�erent ampli�cation mecha-

nisms. Hence, the growing literature on the role of �rm size in labor market dynamics in

macroeconomics. Kaas and Kircher (2014), Elsby and Michaels (2003) and Moscarini and

Postel-Vinay (2014) develop macroeconomic models that capture sluggish labor market

dynamics, job �ows and evolution of the �rm size distribution over the business cycle.

However, this paper, to the best of my knowledge, is the �rst attempt to explicitly take

into account the role of the �rm size for the outcome of the sorting on the frictional labor

market.

Apart from these empirical motivations to consider �rm size in the labor market

sorting models, there is also a purely theoretical reason that deserves attention. As Bagger

and Lentz (2015) note, in a one-to-one matching framework, the decision to accept or

reject a match relies heavily on a fundamental scarcity. In such a world, the decision

to agree upon a match is equivalent to a decision to discontinue searching. However,

the relevance of this assumption is not so obvious, since workers can continue to search

for opportunities while employed and �rms can have many workers. There is a large

literature that relaxes the scarcity assumption on the worker side of the model via on-

the-job search. This paper can be viewed as a mirror image of that literature. Although

retaining the scarcity on the worker side, I relax it on the �rm side of the model via

explicit introduction of the �rm's choice of size.

8



1.2 Literature Review

Since the seminal study by Abowd, Kramarz and Margolis (1999), it has been believed

that one can grasp unobserved characteristics by �rst running Mincerian regressions of

wages on observable characteristics of �rms and workers and their respective �xed e�ects

using longitudinal linked employer-employee data sets. Second, examining these �xed

e�ects in particular, correlation between them conditional on being matched has been

considered a rough measure of sorting. With the increasing availability of linked employer-

employee data sets, this approach has been widely adopted and applied to data sets from

a number of countries, with a general conclusion that the correlation coe�cient between

�xed e�ects in worker-�rm matches is not very large. Moreover, most studies have found

it to be either insigni�cant or even negative1. Although in their review of early literature,

Abowd and Kramarz (1999) cautioned that "it is important to keep in mind that it

is not always possible to make a direct interpretation of the statistical parameters (for

individuals or �rms) in terms of simple economic model" (p. 2671), the lack of a signi�cant

positive correlation between worker and �rm �xed e�ects has been widely interpreted as

absence or unimportance of sorting.

Recent research has shown that the identifying assumptions of this reduced form ap-

proach are inconsistent with virtually every equilibrium model of sorting, and that the

estimated �xed e�ects do not contain information on underlying unobserved character-

istics. In other words, applied to data generated by an equilibrium sorting model, this

regression approach yields �xed e�ect estimates that have no interpretation within the

original model. The intuition behind this, uncovered by Eeckhout and Kircher (2011),

is that wages are potentially non-monotone in a �rm's type: a better �rm has to be

compensated for hiring workers who are worse than desired by the �rm and therefore,

a linear model is fundamentally misspeci�ed. In addition to the purely theoretical ar-

gument against interpreting the absence of correlation between workers' and �rms' �xed

e�ects as the absence of sorting, Lopes de Melo (2013) has shown that the correlation

between the �xed e�ects of a worker and her coworkers is strong, suggesting that similar

workers do indeed sort together.

Understanding the limitations of the reduced form approach of two way �xed ef-

fects regressions has led to the development of literature on the identi�cation of sorting

1See Abowd and Kramarz (2009) for the review of early literature, Gruetter and Lalive (2009) for
Austria, Abowd, Kramarz, Pérez-Duarte and Schmutte (2009) for the U.S., and Card, Heining and Kline
(2013) for Germany among others.
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grounded in theory. The starting point for understanding the assortative matching is

Becker's (1973) assignment model with transferable utility. The main insight from this

model is the crucial dependence of the sign of sorting on the complementarities between

two sides of the market: positive assortative matching (PAM) � mating of likes � arises

when the production function is supermodular, i.e. the marginal product of an agent in a

match increases with the quality of her partner. Shimer and Smith (2000), Atakan (2006)

and Eekhout and Kircher (2010) build on Becker's insight and develop the assignment

model to introduce search frictions. They show that in the presence of search frictions

the interplay between the degree of complementarities and the level of search friction is

decisive for determination of the degree and sign of sorting. The Shimer and Smith (2000)

model, being the most natural approach, has become a cornerstone of the literature on

sorting in the labor market. However, one of the limitations of the theoretical literature

on sorting is its focus on one-to-one matching, and its resulting disregard of the role of

�rm size. This paper aims to overcome this limitation, introducing �rm size into what is

essentially the Shimer and Smith (2000) framework.

Lopes de Melo (2013) and Lise, Meghir and Robin (2013) develop structural models

of sorting and wage dynamics. Estimation of these models suggests that PAM between

workers and �rms is present in the data. However, the main limitation of their approach

is the strong assumptions imposed on the functional form of the production function,

that do not allow the sign and strength of sorting to di�er along the domain of worker

and �rm types.

Hagedorn, Law and Manovskii (2014) take a step further. Building on Shimer and

Smith (2000), they develop an identi�cation procedure that allows for non-parametric

identi�cation of the production function. Applying their framework to German linked

employer-employee data, they show that although complementarities between worker

and �rm productivity (and hence, PAM) prevail on average, there are regions of local

substitutability, and that the market exploits this feature of the production function:

reassigning workers to �rms in perfectly assortative fashion would reduce total output by

1.43%. However, the empirical literature has inherited the limitation of its theoretical

predecessor, namely, the focus on one-to-one matching. The identi�cation procedure I

develop in this paper borrows heavily from Hagedorn et al. (2014), but overcomes the

limitations of one-to-one matching.

Few papers have studied sorting on the labor market in one-to-many matching frame-

work. Eeckhout and Kircher (2012) expand a frictionless Beckerian approach and show
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that if �rms can choose not only the type (quality), but also quantity of production

factors, necessary conditions on the primitives for PAM become stricter. Intuitively,

switching to worse workers is not as detrimental for a �rm as in a one-to-one matching

world, since a lower quality can be compensated by a larger number of workers. There-

fore, for this not to happen, the loss in match value must be very high in the best �rms,

i.e. marginal match output should change very sharply with the type of �rm. The inter-

esting question of how the presence of the search frictions a�ects conditions for PAM is

outside the scope of this paper. Instead, I take an agnostic stand on the strength of com-

plementarities and a data driven approach: Given the observed labor market outcomes,

I uncover the shape of the primitives.

The only attempt to utilize �rm level data in the empirical study of sorting I am

aware of is the study by Bartolucci, Devicienti and Monzon (2015). They use a number

of de�nitions of the �rm's pro�t to rank �rms, and exploit the patterns of movement of

workers between �rms to deduce the aggregate measures of the degree and sign of the

sorting on the labor market. Their methodology remains valid in the model I develop

here. Therefore, this paper can be viewed as providing theoretical support, in terms of a

general equilibrium model, to their empirical procedure.

1.3 Model

The economy consists of two sectors: one producing di�erentiated intermediate inputs

using labor, and the other assembling the �nal good from intermediate inputs. The �nal

good is produced under perfect competition. The intermediate good sector is the crucial

building block of the model. Its structure integrates Shimer and Smith's (2000) model of

a time consuming job search and Melitz's (2003) approach to �rm heterogeneity.

Firms in the intermediate sector require labor for production. Both �rms and workers

are heterogeneous, yet the production function is linear in the quantity of labor. How-

ever, the market for intermediate inputs is monopolistically competitive, and local market

power constrains optimal �rm size. Unemployed workers search for jobs in the intermedi-

ate sector and �rms post vacancies to hire labor. The labor market is frictional: it takes

time to �ll a vacancy and to �nd a job.
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1.3.1 Final Good Production

The �nal or consumption good is assembled from varieties of di�erentiated inputs

under Constant Elasticity of Substitution (CES) technology:

Y =

ˆ
j∈Ω

q(j)
σ−1
σ dj

 σ
σ−1

, σ > 1, (1.1)

where Ω denotes the set of varieties available for production of the �nal good, and σ is

the elasticity of substitution between varieties. In what follows I assume that there is a

measure one continuum of �rms, each producing distinct variety j. Thus, Ω is a set of

measure one. Given the constant returns to scale technology and perfect competition in

the �nal good sector, I can focus on a representative �rm and its demand for inputs. The

price of the �nal good is normalized to one.

The cost minimization problem in the �nal good sector is standard. It implies the

following inverse demand for intermediate inputs:

pφ = Y 1/σq−1/σ
φ (1.2)

that is taken as given by the producers of the intermediate inputs.

1.3.2 Di�erentiated Sector

Diverging from Melitz (2003), I assume that the mass of varieties of intermediate

inputs is �xed2. Firms are heterogeneous, they di�er in their type φ which is uniformly

distributed on [0, 1] interval. Production of a good requires labor, which is also di�erenti-

ated. I assume that the economy is populated by a unit mass of workers of type a which

is uniformly distributed on [0, 1] interval3. I assume the following production technology:

given any cumulative labor force distribution Lφ(a) within a �rm of type φ, the output

is

q(Lφ(a), φ) =

ˆ
ψ(a, φ)dLφ(a). (1.3)

2One can introduce an entry game similar to the original Melitz model. However, since the main
focus of the paper is on the labor market, I leave the entry stage out. Conversely, one can always �nd
the �xed production cost and entry cost levels, such that the measure of stayers is one.

3Observe that uniform distribution of types is not a restriction. Any other continuous distribution
can be transformed to uniform by e�ectively "renaming" workers aided by corresponding changes in the
match production function. In other words, types are ordinal; they do not measure productivity or skills
per se, but only by their e�ectiveness in production.
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Here ψ(a, φ) can be understood as the e�ciency units of labor worker a provides to a

�rm φ, or as the standard match output of a �rm-worker pair. Then, the aggregate

�rm output is a sum of the output of all individual pairs. Although this assumption

disregards potential complementarities or spillovers between di�erent workers4, it is in

line with most of the current literature that treats aggregate output as a sum of match

outputs. I apply similar logic to the within �rm production, to facilitate comparison with

existing models of frictional labor market sorting, and to highlight the role of �rm size

not confounded with intra�rm technological spillovers.

I assume that the match output ψ(a, φ) is an increasing function, with the underlying

structural assumption that ordering of types a and φ is meaningful � a higher level

implies a more productive type � and global � being more productive does not depend

on the match partner. In other words, this is a model of absolute advantage in the labor

market. Although restrictive, the last assumption is prevalent in the matching literature.

Importantly, I do not put any restrictions on the cross derivative of the match output

function, since the main focus of the paper is on its identi�cation.

Intermediate good producers take the demand (1.2) for their goods as given. Thus,

the revenue of a �rm producing di�erentiated variety as a function of the production

volume is given by

R(qφ) = Y 1/σq
σ−1
σ

φ (1.4)

Observe that revenue is a concave function of �rm output. This feature, stemming

from the demand structure, limits �rm size in this model. Alternatively, one can say that

a �rm faces decreasing monetary returns to its production scale, and therefore one can

easily construct an isomorphic version of the model � with production function concave

in total e�ective labor, and perfect competition between the �rms in the intermediate

sector.

1.3.3 Labor Market

Now, I turn to the core of the paper � labor market structure. Firms' and workers'

behavior on the labor market is crucial in the identi�cation of the match output function.

4There are a few exceptions addressing intra�rm worker productivity interdependence. Bombardini,
Gallipoli, and Pupato (2012) study intra�rm complementarities level as a source of industry comparative
advantage. Helpman, Itskhoki, and Redding (2012) introduce congestion into production technology.
However, since production function generally depends on the whole labor distribution within a �rm,
every tractable approach to it is bound to impose restrictive structural assumptions.
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Furthermore, the labor market is frictional, and frictions are the only source of movement

of workers between di�erent �rms, and therefore � the source of identi�cation.

Time is discreet. In every period workers can be either employed or unemployed.

Employed workers receive wage income, and unemployed workers enjoy utility equivalent

to �ow income b(a). Firms post vacancies, and unemployed workers search for a job. The

chances of �nding a job and �lling a vacancy are governed by the labor market tightness

θ, which is de�ned as the vacancy-to-unemployment ratio. The meeting rate is given by

m(θ) for a �rm and θm(θ) for a worker, the latter representing the matching function.

This indirectly implies a standard assumption of a constant returns to scale matching

function. I additionally assume that m(θ) is decreasing in θ and θm(θ) is increasing in

θ, which is equivalent to the assumption that the number of matches increases both with

the number of vacancies and with the number of unemployed workers.

The meeting is random: neither �rms nor workers can target a potential partner's

type. The match is consummated voluntarily upon a meeting, when types of both part-

ners are perfectly observable. There is no on-the-job search in the baseline model, and

a worker stays in the match until its separation. The matches are dissolved exogenously

with probability δ.

Households are assumed to be risk-neutral suppliers of labor of a given skill a. They

maximize the expected lifetime income �ow, discounted at an interest rate r. Denote U(a)

the value function of unemployed worker of type a, V (a;φ) the value function of a worker

a employed at �rm φ. I impose symmetry across �rms of a given type, which allows me

to ignore the potential dependence of value functions and wages on �rm employment.

The value functions of a worker obey the following two Bellman equations5:

rU(a) = b(a) + θm(θ)

ˆ
γ(φ)max{V (a;φ)− U(a), 0}dφ, ∀a (1.5)

rV (a;φ) = w(a, φ) + δ(U(a)− V (a;φ)) ∀(a, φ) (1.6)

Here γ(φ) = v(φ)´
v(φ)dφ

is the distribution of vacancies across �rm types. It governs the

chances of meeting a �rm of any given type. It is straightforward that a worker engages

in a match if the value of being employed exceeds the value of being unemployed. The

5Due to monopolistic competition in the intermediate goods sector, �rms there obtain positive pro�ts
that workers can potentially have claims on. However, unless these claims depend on the state of
employment, they do not a�ect employment decisions. For that reason, I omit them from Bellman
equations for workers' monetary �ow to ease notation, e�ectively assuming that a separate class of
entrepreneurs enjoys all pro�ts from the intermediate goods sector.
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interpretation of these equations is rather standard. Equation (1.5) states that the �ow

value of unemployment consists of income in unemployment and expected gain in value

from meeting a �rm. Equation (1.6) represents the �ow value of employment at �rm φ

as wage w(a, φ) at this �rm and potential loss in value from separation. Generally wages

depend not only on the type of worker and �rm, but also on the composition of the labor

force within a particular �rm. I ignore this dependence because I focus on the symmetric

steady state equilibrium, in which all �rms of the same type have the same labor force

structure.

Thus, the behavior of workers is straightforward: They look for a job and take any

that brings higher income �ow. As I show later, this is equivalent to a simple reservation

wage rule. Denote A(a) the set of acceptable matches for a worker of type a, i.e. A(a) is

a subset of �rm types a worker a is willing to work for given the equilibrium wage:

A(a) = {φ : V (a, φ)− U(a) > 0}.

Now I turn to �rms' behavior on the labor market. Denote J(Lφ, φ) a value of �rm

of type φ and labor force Lφ(a). Firms maximize their present value, which is equal to

the discounted stream of pro�ts. In order to hire workers, �rms choose a measure of

vacancies v to post. The Bellman equation for the �rm problem is:

J(Lφ, φ) = max
v,L′

1

1 + r

{
R(q(Lφ, φ))−

ˆ
w(a, φ)dLφ(a)− c(v) + J(L′, φ)

}
(1.7)

subject to the de�nition of revenue (1.4) and the law of motion of within �rm employment

0 ≤ L′(a) ≤ (1− δ)L(a) +m(θ)v

aˆ

0

u(a′)

u
I{φ ∈ A(a′)}da′, (1.8)

where u(a) is the measure of unemployed workers of particular type a, and u =
1́

0

u(a′)da′

is total unemployment. c(v) is the vacancy posting �ow cost with c′(v) > 0, c′′(v) ≥ 0.

The change in within �rm employment consists of labor attrition due to separation, and

new hires obtained from �lled vacancies. I{·} is the indicator function, and the term

I{φ ∈ A(a′)} ensures that a worker takes a job if o�ered. The inequality in the labor law

of motion implies that a �rm can shadow any of its labor force without cost if necessary,

creating an asymmetry in labor adjustment cost. Although arti�cial, this assumption is
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standard in the search literature. It is not crucial for my results, since in a steady state

there is no voluntary match destruction.

Lastly, because hires are not interchangeable with workers outside the �rm, workers

have bargaining power. I assume that wages are determined through the generalized

Nash bargaining solution in the spirit of Stole and Zwiebel (1996), thus

(1− β)(V (a;φ)− U(a)) = β
dJ(L, φ)

dl(a)
(1.9)

where β is the bargaining power of a worker. Put brie�y, worker and �rm receive �xed

shares of the match surplus, with β being the share of the worker. Due to the risk-

neutrality on both sides, the total match surplus can be viewed as a monetary gain of

size S = dJ(L,φ)
dl(a)

+ V (a;φ)− U(a). Here the meaning of derivative dJ(L,φ)
dl(a)

is the marginal

bene�t for a �rm from hiring a worker of a particular type. E�ectively, the �rm considers

an increase in its value from a match with a worker, relative to the non-consummation

of this particular match. A worker's gain from the match V (a;φ) − U(a) is the share β

(his bargaining power) of the match surplus. This is the intuition behind (1.9).

Note that in general the solution to the bargaining problem would depend not only

on the �rm's and worker's types, but also on the whole distribution of employment in

the �rm, and, in particular, on the �rm's size. However, since I focus on the steady state

of the economy, �rm type φ captures all the latter, and therefore, the equilibrium wage

depends only on the pair of types.

Finally, labor balance identities should hold, i.e. the sum of employed and unemployed

workers should be equal to the total population:

M

ˆ
Lφ(a)dφ+

aˆ

0

u(a′)da′ = a. (1.10)

Recall that the distribution of workers by type in the population is uniform, and therefore

the mass of people with a type weakly below a is equal to a.
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1.4 Labor Market Equilibrium and Identi�cation of Sort-

ing

In this section I provide partial characterization of the �rms' optimal behavior. The

established properties of the �rms' behavior will be central to the development of a strat-

egy for the identi�cation of the model primitives. As is standard for models of frictional

sorting, I use a properly de�ned match surplus function, as a gain from consummating

the match relative to the outside option. Then, I describe how the match surplus feeds

into wages and hiring decisions. The established interdependence of surplus, wages and

vacancy creation allows for the identi�cation of the production function from data on

wages and �rm revenue.

I focus on the steady state equilibrium of the economy. First, de�ne a surplus function

s(a, φ) =
σ

σ − β

dR(φ)

dl(a)
− rU(a) (1.11)

The next proposition establishes that this is a proper de�nition of the surplus function in

the sense that matches are consummated whenever it is positive. This can be understood

intuitively: an additional worker brings to the negotiation table the value of his marginal

product, dR(φ)
dl(a)

in �ow terms. At the same time, his presence increases output, damping

marginal revenue. This in turn leads to a decrease in the value of the marginal product

of other workers. Hence, the �rm improves its position in bargains with other workers

it employs in the period. Thus, the multiplier σ
σ−β

> 1 takes care of this pecuniary

externality in the negotiation process. The smaller β, i.e. weaker bargaining position of

workers naturally leads to less importance of this externality. At the limit, if the workers

have no bargaining power, the match gain is equal to the marginal revenue. The negative

part of the surplus is straightforward: the worker forgoes her value in unemployment

and the �rm has nothing to lose, since the vacancy cost is sunk at the point of wage

negotiation.

Proposition 1. (i) The hiring decision is governed by the surplus function with matches

being consummated whenever s(a, φ) ≥ 0

(ii) The outcome of wage bargaining yields the following wage rule:

w(a;φ) = βs(a, φ) + rU(a) (1.12)
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(iii) The vacancy creation policy of a �rm is indirectly de�ned by

c′(v) =
m(θ)

r + δ

ˆ
(1− β)s+(a, φ)

u(a)

u
da (1.13)

where s+(·) = max{s(·), 0}

Moreover, with this result at hand, the Bellman equation for an unemployed worker

(1.5) can be reformulated as follows:

rU(a) = b(a) + β
θm(θ)

r + δ

ˆ
s+(a, φ)γ(φ)dφ (1.14)

The intuitive interpretation of the results presented in Proposition 1 is clear in light

of the surplus function de�nition. The wage is nothing but a standard Nash-bargaining

type surplus sharing rule that assigns β share of the surplus to a worker. Although one

should bear in mind that the parties bargain over the surplus over the whole period of

the relationship, due to the focus on the steady state, this is equivalent to sharing �ow

surplus every period.

The last point of Proposition 1 requires that the optimal policy of a �rm equates

the marginal cost of a vacancy on the left hand side to its expected marginal bene�ts.

Indeed, on the right hand side of the equation (1.13) the chance of meeting a worker,

m(θ), is multiplied by a �rm's average share of surplus resulting from a meeting (whether

a match follows or not), represented as an integral over worker types with the distribution

of unemployed workers being the relevant one. In addition, multiplier 1
r+δ

accounts for the

total discounted �ow over the expected length of the relationship. The equation (1.14)

has a similar meaning, only from the worker's viewpoint.

It is worth emphasizing the two assumptions of the model that allow for extension

of the job search model from one-to-one to one-to-many matching framework and neat

equilibrium characterization. First, as I stressed earlier, there are no direct complemen-

tarities between the workers in the production function, and output is the sum of marginal

products of the workers. Second, the CES aggregation of the intermediate goods into the

�nal good in (1.1) guarantees that the marginal value-product of a worker is propor-

tional to her marginal product, with the proportionality coe�cient depending only on

the �rm's type. These two assumptions taken together allow for neat characterization of

the solution to the �rm's problem.

The identi�cation procedure I develop hinges on the established properties of optimal
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behavior of �rms and workers. I now discuss how they allow for identi�cation of worker

ranking, value function in unemployment, vacancy creation cost and match output func-

tion.

1.4.1 Identifying Worker Types and Unemployment Value

The worker side of the model is similar to the standard one-to-one frictional search

setup of Shimer and Smith (2000). Thus, the identi�cation of worker types developed by

Hagedorn et al. (2014) carries over to the model presented in this paper. The validity of

this identi�cation strategy is warranted by the following proposition:

Proposition 2. Let the value in unemployment, b(a), be non-decreasing in worker type

a. Then,

• value in unemployment U(a) is increasing in worker type a, and hence, wage w(a, φ)

and value in employment V (a;φ) are increasing in a;

• minimum and maximum wages attainable by a worker of a given type a are increas-

ing in a.

In addition, if for a worker of type a there is a �rm type φ that does not hire her in

equilibrium, then the minimal wage she attains is equal to the �ow value of unemployment:

min
φ
w(a, φ) = rU(a).

The intuition behind Proposition 2 is quite straightforward. To a given �rm, a better

worker has a larger value of marginal product dR(φ)
da

= σ−1
σ
pφψ(a, φ), which is re�ected

in the wage ranking within a �rm. Given the uniformity of ranking within a �rm and

non-decreasing �ow value in unemployment, better workers have better prospects when

unemployed. The last part of the Proposition states that, if workers do not accept wage

o�ers from some �rms, they follow the simple reservation wage rule in accepting o�ers

with the reservation wage being equal to �ow value in unemployment.

The identi�cation of worker ranking from wage data is based on the derived mono-

tonicity properties. These properties also hold in a one-to-one matching model as in

Hagedorn et al. (2014) and their identi�cation strategy applies. For the sake of com-

pleteness I reiterate their argument in the remainder of this subsection.

If a �rm matches with all worker types, the wages it pays would provide a global

ranking of the workers. However, this can hardly be expected, especially if the search
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frictions are su�ciently small and complementarities in the production function are suf-

�ciently strong. Nevertheless, wage ranking within a �rm provides a ranking of workers

within that �rm. With su�cient mobility of workers across �rms, one can employ a tran-

sitivity argument. Consider a worker a moving from �rm φ1 to �rm φ2. Then, any worker

ã with a higher wage in �rm φ2, i.e. w(ã, φ2) > w(a, φ2), should have a higher rank than

any worker ˜̃a in �rm φ1 with wages w(˜̃a, φ1) < w(a, φ1), and vice versa. In other words,

if, according to wage ranking within �rm φ2, ã > a and, according to wage ranking within

�rm φ1, a > ˜̃a, transitivity implies that ã > ˜̃a. With su�cient mobility of workers across

�rms, aggregation of inter�rm ranking, aided by this transitivity argument, identi�es the

global ranking of workers in a linked employer-employee dataset.

Two complications might arise in empirical implementation of this procedure. First,

the measurement error in wages can distort the observed workers' ranking within the �rm.

To address this problem, Hagedorn et al. (2014) augment the aggregation procedure by

assigning weights to worker pairs within the �rm. The particular structure of weights

depends on the distributional assumption about the measurement error. They work

with a normal distribution, imposing independence across workers and �rms. Under this

assumption, weights have an intuitive structure: a higher wage di�erence in an observed

worker pair leads to a higher incremental value in the aggregation objective function

(e�ectively Bayesian probability) if they are ranked according to the wage di�erential.

Second, the exact aggregation of ranks within a �rm is computationally complex. The

results of Proposition 2 on global ranking in maximal and minimal attainable wages help

to improve the procedure by providing an initial ranking that should be close to the exact

ranking (and is not exact only due to the measurement error). Hagedorn et al. (2014)

show that one can initialize the algorithm with global ranking by maximal or minimal

wage, and use single worker moves for improvement. This procedure yields an accurate

solution without being as computationally demanding as the original problem.

The last part of Proposition 2 allows for the identi�cation of the unemployment value

as a minimal attainable wage. However, given the relatively short time span of linked

employer-employee data sets usually used in a sorting estimation, straightforward empiri-

cal implementation could be problematic. Hagerdorn et al. (2014) put forward a solution

based on the fact that ranking of workers is identi�ed. By the continuity argument, sim-

ilarly ranked workers must have similar reservation wages. Thus, one can group together

similarly ranked workers and consider them as being of the same type. This approach

dramatically expands the number of observations available for a given worker type and
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yields su�ciently precise estimates of reservation wages and unemployment values.

1.4.2 Identi�cation of Vacancy Posting Cost

Insights from Proposition 1 allow for the identi�cation of the vacancy posting cost

function when a researcher has data on the number of vacancies within a �rm, in addition

to the wage data. Observe that with a Nash bargaining result (1.12), the surplus can be

identi�ed from wage data:

s(a, φ) = [w(a, φ)−min
φ
w(a, φ)]/β (1.15)

In other words, the surplus is proportional to the wage premium over the reservation

wage of a worker. Here, I used the fact that �ow value in unemployment is identi�ed by

minimal attainable wage using the procedure developed in the previous subsection. Now,

I rewrite the vacancy creation policy (1.13) in the following way:

(r + δ)c′(v) = m(θ)

ˆ
I{s(a, φ) > 0}u(a)

u
da×

ˆ
(1− β)s+(a, φ)u(a)

u´
I{s(a′, φ) > 0}u(a′)

u
da′

da (1.16)

with I being an indicator function. The two terms on the right hand side of (1.16)

have direct empirical counterparts. The �rst term represents the chances of a vacancy

meeting a worker multiplied by the share of acceptable workers in the unemployment

pool. Together, this constitutes a probability that the vacancy is �lled at the end of the

period. Thus, the empirical counterpart of the �rst term is the ratio of the number of

new hires to the number of posted vacancies. The second term is the �rm's share of the

surplus from a match averaged across new matches. With the surplus identi�ed from

(1.15), it is proportional to the average wage premium of new hires over their respective

reservation wages.

With the marginal posting cost identi�ed, one can test for convexity of the vacancy

creation cost, i.e. for increasing marginal cost. The degree of vacancy posting cost

convexity has important implications for macroeconomic models. Although the model

does not feature business cycle �uctuations, the role of the shape of the vacancy creation

cost function in �rm dynamics can be understood intuitively. Indeed, if the cost function

was found to be convex, it would imply that �rms have incentives to smooth vacancy

creation over the recoveries, i.e. to distribute vacancy creation over a longer period of
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time, leading to a slower recovery process. On the other hand, constant marginal cost

would imply that �rms immediately adjust their labor force to the optimal level.

The identi�cation of the vacancy posting cost function depends crucially on the linear-

ity of the relationship between the surplus and wage premium, which is the result of the

particular assumption about the bargaining process. However, in any model where the

wage depends positively on the match surplus, the relationship between wage premium

and surplus would be monotone. This assumption seems a natural outcome of a wage set-

ting process. Therefore, the proposed procedure for vacancy cost identi�cation is robust

to alternative speci�cations of the bargaining arrangement. Although this identi�cation

strategy would not correctly identify the exact functional form of vacancy posting cost,

with wages monotone in the match surplus, it identi�es a monotone transformation of the

marginal cost of vacancy posting. Therefore, the test for constant marginal cost would

not be misspeci�ed, and would still discriminate correctly between linear and convex cost

functions as long as the vacancy creation technology is the same for all �rms.

1.4.3 Identifying Firm Types and Production Function

The main focus of the literature is on the identi�cation of sorting. In this subsection,

I show how the model structure allows one to identify the �rm ranking and production

function with the help of the �rm level data. Since most of the previous literature has

equated �rms and jobs, the identi�cation procedures developed so far can rarely make

use of �rm level data. The only exception I am aware of is Bartolucci et al. (2015), who

use �rm data to recover aggregate measures of strength and sign of sorting on the labor

market. The explicit introduction of the �rm into the model allows for much simpler

identi�cation of the details of sorting outcome from an additional source of information.

I start with the following proposition:

Proposition 3. In equilibrium, better �rms enjoy higher pro�ts, i.e. �rm value J(φ) is

increasing in φ. Additionally,

(i) If c′′(v) > 0 then φi > φj implies that either Ri > Rj, or vi > vj, or both.

(ii) If the marginal vacancy posting cost is constant, c′(v) = c, φi > φj implies Ri > Rj.

Turned on its head, the proposition implies that the pro�t ordering pins down type

ordering. Yet due to potential measurement error in or misreporting of pro�ts, the

ranking of �rm types from pro�ts alone might not be measured e�ciently. The second
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part of Proposition 3 provides an additional source of identi�cation that might be useful

in practical applications. It states that ordering of revenues and vacancies identify �rms'

ranking as well as pro�ts. The more aligned pro�ts, revenue and vacancies rankings are,

the easier it is for the model to reconstruct �rms' ranking con�dently.

One of the advantages of this identi�cation strategy lies in the fact that two rankings

are identi�ed using di�erent sources of information: workers' ranking is identi�ed from

individual wage data, whereas �rms' ranking is from �rm level data. In addition to making

the identi�cation of the �rms' ranking more straightforward and intuitive, relative to the

current literature, it evades potential biases in the sorting estimation, stemming from the

fact that �rm type is identi�ed from wages, and hence the types of its workers.

If the correlation between revenue and vacancies is not perfect, but su�ciently high,

the researcher can use the analogous tactics that were applied in the identi�cation of �ow

unemployment value. Firms with similar revenue and vacancies, yet an opposing ranking

of the two, can be grouped together as �rms of the same type.

The last step is the identi�cation of the production function. Observe that, using

surplus de�nition (1.11), we can �nd the match production function as

ψ(a, φ) =
σ − β

σ − 1
Y

1
σ−1R

1
σ−1
φ [s(a, φ) + rU(a)] .

From this, together with the identi�cation results developed above, it follows that

the production function can be identi�ed, up to a constant multiplier, from wages and

revenues, by the following equation:

ψ̃(a, φ) = R1/(σ−1)
φ

[
w(a, φ)− (1− β)min

φ
w(a, φ)

]
(1.17)

Note that the production function is identi�ed non-parametrically. Thus, it allows for

�exibility in the sign and degree of complementarity on the domain of function. With

the production function identi�ed, one can investigate the degree of complementarities

locally and globally. In addition, one can ask how much of total output can be gained by

worker reallocation between �rms or jobs reallocation (changes in �rm sizes), i.e., how

detrimental search frictions are.

The developed procedure for identi�cation of the production function relied on knowl-

edge of the elasticity of the substitution parameter σ. An alternative approach would

be to augment the wage equation and to use a linear-regression technique to estimate
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the augmented version of it. This would allow a researcher to identify the elasticity of

substitution simultaneously with the production function. Therefore, it would provide,

in addition, an indirect check of the model's validity: the estimated value of the elasticity

of substitution should lie in the region agreeable with the literature6.

The idea behind the alternative production function identi�cation is somewhat straight-

forward. Rather than invert the wage equation (1.12) for the match output, one can write

it as follows

ln(w(a, φ)− (1− β)min
φ
w(a, φ)) = χ+

1

σ − 1
lnRφ + lnψ(a, φ) (1.18)

This is a standard log-linear equation that can be estimated with ordinary least

squares methodology. The disadvantage of this identi�cation technique is that it re-

quires variation in the �rm revenue on the level of type. In the empirical implementation

any data set provides two sources of such variation. Firstly, recall that for identi�cation

of types we grouped similar workers and similar �rms together. Consider a worker-�rm

pair (i, j) and note by a(i) and φ(j) respectively the worker and the �rm type assigned

to them during the identi�cation. Then the wage equation for econometric estimation

can be written as

ln(wijt − (1− β)min
φ
w(a(i), φ)) = χ+

1

σ − 1
lnRjt + lnψ(a(i), φ(j)) + εijt, (1.19)

where εij keeps track of measurement error in wages. Thus, grouping similar �rms would

allow identi�cation of the �rm production function and the elasticity of substitution.

However, the variation in revenue at the �rm level must be small by construction, leading

to very imprecise estimates

Arguably more importantly, there is inevitable time variation in �rm revenue stem-

ming from the business cycle. Although this sort of �uctuation is likely to be the main

source of identi�cation of σ in practice, the model so far does not account for productivity

�uctuation. More work is needed to understand to what extent aggregate productivity

movement would alter the identi�cation procedure developed. However, if they are small

relative to the labor market adjustment velocity, one can conclude that business cycle

6However, the power of this test is rather low, since consensus on the acceptable values of the elasticity
of substitution has not yet been achieved. A survey by Hillbery and Hummels (2013) reports elasticity
values in the range from 0.9 to 34.4.
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�uctuations should not distorte the identi�cation too much.

Observe that the structure of the model suggests a speci�cation of the wage equation

similar to that of Hagedorn et al. (2014), but di�erent from the one usually considered in

the literature. Rather than decomposing log-wages into two-way �xed e�ects components,

it suggests looking at the �rm speci�c component of the wage premium over worker's

reservation wage, and not of the wage itself. This is an implication of strategic wage

bargaining at the �rm level

1.4.4 Discussion of the Size E�ect

What di�erence does the �rm size make to the production function identi�cation?

There are two channels through which it plays its role. First, the interaction between the

market power and the �rm size e�ectively creates disparity between match output and

its marginal value. The same e�ect would be experienced in the presence of concave pro-

duction function, which would lead to disparity between marginal and average products.

Second, vacancy creation within the �rm might lead to a di�erent marginal posting cost

between �rms. Indeed, if the vacancy creation cost function is convex, di�erent �rm size

unequivocally leads in equilibrium to di�erent marginal vacancy cost for di�erent �rms.

However, most of the models of one-to-one matching assume a constant entry cost for

vacancies, independent of their type. Thus, this unaccounted variation in vacancy cost

can become a cause of misidenti�cation of the production function.

To illustrate how these e�ects may play out, consider the identi�cation of production

function in Hagedorn et al. (2014). Their model is particularly close to the one developed

in this paper, lacking only the �rm size component. The separate existence of vacancies

outside �rms creates a value to an un�lled vacancy, and the outcome of the wage bar-

gaining accounts for this value. Hence, the production function is identi�ed from the

following equilibrium condition:

f(a, φ) =
w(a, φ)− βrVv(φ)− (1− β)rU(a)

β
(1.20)

with Vv(φ) being the value of un�lled vacancy of type φ. In contrast to free entry

of vacancies into the economy, voluntary creation of vacancies within �rms leads to the

value of a vacancy being equal to its marginal cost within a �rm, but not on the aggregate

level.

Therefore, if the data generating process is described by the model developed here, the
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Hagedorn et al. (2014) identi�cation procedure will identify the following transformation

of the production function:

f̃(a, φ) = ξR
− 1

σ−1
φ ψ(a, φ) + (r + s)c′(vφ) (1.21)

with ξ being a multiplier re�ecting the size of the economy.

The second summand in (1.21) accounts for the unaccounted variation in marginal

vacancy cost across �rms described above. The intuition behind its appearance is the

following. With the match surplus identi�cation coming from the worker side of the

model, and therefore being unaltered by the presence of the outside option for the �rms,

the value of the vacancy shifts the identi�ed match output up. Although the vacancy

cost does not enter the bargaining procedure in my model, it would be premature to

claim that vacancy creation costs do not play a role in wage bargaining, since this result

depends on the intricacies of the nature and timing of the vacancy cost, as well as the

bargaining protocol. However, the importance of this e�ect should not be overstated.

Since this e�ect does not in�uence the cross derivative of the production function, it is

irrelevant to analysis of complementarities, and to the results of counterfactuals that do

not substantially change the distribution of the �rm sizes. Even in the latter case, for

this e�ect to be important, the vacancy posting cost function should bear a high degree

of convexity.

The �rm size e�ect comes from a multiplier R
− 1

σ−1
φ in (1.21), and exactly accounts

for the disparity between match output and its value (or between marginal and average

products in the alternative speci�cation). In other words, the one-to-one matching model

equates the marginal product and its value, however, it identi�es the latter. Importantly,

this disparity a�ects the cross derivative of the production function. One would expect

that the multiplier is decreasing in the �rm size, therefore, conclusions from the models

that do not take it into account might understate the degree of complementarities between

workers' skills and �rms' productivity in the economy. This e�ect might be an important

driver behind the modest gains from re-sorting workers found in the literature so far.

Importantly, the one-to-one matching model, and hence identi�cation procedure, can

be considered a limiting case of the model and identi�cation procedure I develop in this

paper. In particular, when σ → ∞, aggregation of the intermediate goods into the �nal

goods (1.1) becomes linear, i.e. intermediate sector �rms produce perfect substitutes,

and �rm boundaries e�ectively disappear. In particular, as can be seen from (1.21), both
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identi�cation strategies identify the same production function (up to an additive shifter).

In this empirical sense, the model I develop can replicate a one-to-one matching model.

1.5 Extension: Exporter Wage Premium

In this section I show how the model can be useful above and beyond addressing the

identi�cation of sorting. In particular, I develop an extended version of the model that

is relevant to international trade.

Since the seminal work by Melitz (2003), �rms' heterogeneity and �rm size distribu-

tion has become an important explanatory aspect of new trade models and applications.

However, the workers' heterogeneity is rarely addressed in these models. Grossman,

Helpman and Kircher (2013) study sorting of workers into �rms in a di�erent framework.

They employ the Heckscher-Ohlin trade model, and focus mostly on sorting between,

rather than within, industries. In addition, search frictions in their model do not alter

the sorting pattern. The closest work in spirit to mine is the model of Helpman et al.

(2010). Their model generates positive assortative matching in a similar setup, due to

the functional forms they utilize. Furthermore, in their model, better workers are paid

more only because they are employed by more productive �rms, i.e. personal produc-

tivity a�ects the wage only through the chance of being hired by a better �rm, and the

exporters pay higher wages solely due to their higher productivity.

My model easily allows for an extension into international trade because it combines

a workhorse model of the matching of heterogeneous types with the standard model of

heterogeneous �rm sizes. Therefore, it is natural to think about such an extension and the

e�ect international trade has on wages in this framework. As I show later, there is room

for an exporting wage premium even if the exporters do not di�er from non-exporters in

their own productivity (type).

I brie�y outline the extended model here, relegating a more detailed description to

the Appendix. Consider a world of two symmetric countries, with economies consisting of

�nal and intermediate goods sectors, as described in Section 2. The intermediate inputs

can now be traded across the border with impediments a la Melitz (2003). The exports

involve �xed cost of numeraire fx, which is idiosyncratic to a �rm, and iceberg cost τ

common to all �rms, i.e. to ship one unit of the good into the foreign country, τ units of it

must be shipped out of the country of origin. Under these assumptions about trade cost,

27



symmetric countries and introduced demand structure, the revenue of a �rm becomes:

Rφ = [Y (1 + Iτ 1−σ)]1/σq
σ−1
σ

φ (1.22)

Here I is an indicator of exporting activity, i.e. I = 1 if a �rm decides to export and

I = 0 otherwise. Although in this new environment, the distribution of unemployment

and �rm sizes would be di�erent from that in the closed economy, Proposition 1 continues

to hold. However, though it is hard to track the general equilibrium e�ects of trade

opening on unemployment and production, one could make an inter�rm comparison in

an open economy. Due to the idiosyncratic cost of exporting, there might be two �rms of

the same type (production function) one of which is exporting while the other is not. The

following proposition summarizes the di�erences between such two hypothetical �rms.

Proposition 4. Consider two �rms, i and j, such that φi=φj. Assume that in equilib-

rium �rm j exports and �rm i does not, i.e. I(φj) = 1 and I(φi) = 0. Then

(i) qj > qi and Rj > Ri, i.e. the exporting �rm is larger measured by output and

revenue;

(ii) if type a of workers is hired by �rm i, it is hired by �rm j, i.e. �rm j has a weakly

larger matching set

In addition, if the vacancy posting cost function is convex, c′′(·) > 0, then

(iii) vj > vi, i.e. exporting �rm posts more vacancies;

(iv) wj(a, φ) > wi(a, φ), i.e. the exporting �rm pays a higher wage to any given worker

type

Parts (i) and (iii) of the proposition are rather standard for the trade literature.

Since the seminal work by Bernard and Jensen (1999), it has been con�rmed empirically

and theoretically that exporting �rms are larger than non-exporting ones. The result

(ii) is less straightforward, and deserves special explanation. Start with a hypothetical

situation in which these two �rms have the same output. Due to the availability of a

foreign market, the conversion of output into revenue is higher for the exporting �rm.

i.e. its total and marginal revenue are higher. This drives up the surplus from a match

with any given worker, and the exporting �rm has incentives to expand, both in terms of

vacancy creation and type acceptance. Expansion puts downward pressure on the surplus,
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but does it in a uniform fashion across workers. However, since a larger �rm has to create

more vacancies, in equilibrium the average surplus from its new hires has to be larger

as well. Together with the fact that a �rm cannot change the surplus from matches

with di�erent workers di�erently, the surplus from any given match should be higher,

implying a larger matching set for an exporting �rm. From this immediately follows the

last part of the proposition, as wages are tightly connected to the match surplus. Thus,

the model highlights the di�erent foundation for an exporter wage premium: the cost

of the supporting �rm size. In this model, large �rms have to create more vacancies at

higher marginal cost. The results of the Proposition, especially of the second part of

it, rely heavily on this assumption. However, as noted in the previous subsection of the

paper, this particular assumption can be tested in the future.

The result on comparison of the matching sets is drastically di�erent from that of the

model with one-to-one matching in Bombardini et al. (2014). In a world where a �rm

can match with one worker only, exporting increases the importance of a right match,

shifting up and narrowing down the acceptance set of the exporting �rm relative to a

non-exporting �rm. This di�erence highlights how explicit incorporation of �rm size into

the search models of labor markets can substantially change the predictions of the models.

1.6 Conclusion

This paper develops an equilibrium model of matching between workers and �rms

where �rms, as opposed to jobs, have size. In other words, �rms make decisions not only

about the extensive margin � what types of workers to hire � but also about the intensive

margin � how many workers to hire. I also show theoretically how equilibrium conditions

resulting from the optimizing behavior of workers and �rms allow for identi�cation of the

model primitives such as match output and vacancy creation cost functions. I show

that for the identi�cation, one needs data on workers' wages and �rms' revenues and

vacancies, which are usually observable in the modern linked employer-employee data

sets. Importantly, identi�cation of the production function, which is the cornerstone in

addressing the question of sorting, is performed non-parametrically.

The proposed identi�cation procedure permits the quanti�cation of the role of search

friction in its interplay with the complementarities in production and with �rm size.

In order to quantify the role of frictions on the extensive margin of hiring, one can

compute the change in total output resulting from optimal reassignment of workers to
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�rms, conditional on the observed number of jobs within each �rm. Additionally, to

assess the role of search frictions with regard to �rm size, one can look at the loss in

the aggregate output relative to the globally optimal assignment of workers to �rms.

I believe the empirical quanti�cation of these e�ects will be an important step in the

further advancement of this line of research.

Next, I extend the model to allow for international trade. This exercise shows the

importance of consideration of �rm size for predictions about equilibrium sorting. In

particular, in this model, exporters have larger matching sets than non-exporters; i.e.

they hire more types of workers, in contrast to the prediction of the one-to-one matching

model of Bombardini et al. (2014). In addition, this formulation sheds new light on the

exporter wage premium: I show that the necessity of supporting larger �rm size forces

exporters to pay higher wages.

This paper is a �rst step in the study of the role of the �rm size in sorting on the

labor market. The further advancement of this line of research requires the empirical

assessment of the model and quanti�cation of the role of the �rm size. However, prior

to that, the model should be enriched to include prominent features of the data, such as

job-to-job transitions and on-the-job search. First, allowing workers to search for a job

while employed would relax the scarcity assumption imposed on the workers' side of the

labor market in the same way this paper has relaxed the scarcity assumption on the �rms'

side. Second, I expect that this extension will dramatically improve the performance of

the model when faced with data.
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1.A Proof of Proposition 1

I prove the proposition by verifying the following guess: the equilibrium wage is given

by:

w(a;Lφ, φ) = ξ0rU(a) + ξ1
dRφ(q)

dl(a)
(1.23)

i.e. the wage is a linear combination of the unemployment value of a worker and his

marginal value product. This leads to a �rm's wage bill

ˆ
w(a;Lφ, φ)dLφ(a) = ξ0r

ˆ
U(a)dLφ(a) + ξ1

σ − 1

σ
Rφ(q) (1.24)

With this at hand, we can move to the �rm's problem de�ned by (1.7) and (1.8). The

conditional maximization can be written as follows:

J(L,φ) = max
v,L′

{
1

1 + r

[
(1− ξ1

σ − 1

σ
)Rφ(q)− ξ0r

ˆ
U(a)dL(a)− c(v) + J(L′, φ)

]
ˆ
λ(a)((1− s)l(a) +m(θ)v

u(a)

u
− l′(a))da+

ˆ
µ(a)l′(a)da

}

Taking the �rst order conditions we obtain:

c′(v)

1 + r
= m(θ)

ˆ
λ(a)

u(a)

u
da (1.25)

1

1 + r

dJ(L′, φ)

dl′(a)
= λ(a)− µ(a) (1.26)

Since for every a such that l′(a) > 0 µ(a) = 0, λ(a) de�nes current marginal value of an

additional worker of given type. Thus, the �rst order condition with respect to v requires

that the cost of vacancy were equal to marginal gains from it.

Now we can employ the envelope theorem:

dJ(L,φ)

dl(a)
=

1

1 + r

[
(1− ξ1

σ − 1

σ
)
dRφ(q)

dl(a)
− ξ0rU(a)

]
+ λ(a)(1− s) (1.27)

Fix on steady state and such a so that l(a) = l′(a) > 0. For those values we can rewrite

(1.27) as
dJ(L,φ)

dl(a)
=

1

r + s

[
(1− ξ1

σ − 1

σ
)
dRφ(q)

dl(a)
− ξ0rU(a)

]
(1.28)
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To uncover the left hand side of (1.9), observe that from (1.6) follows:

V (a;L,φ)− U(a) = (w(a;L, φ)− rU(a))/(r + s) (1.29)

We can combine the last equation with (1.28) and (1.9), obtaining

(1− β)[ξ0rU(a) + ξ1
dR

dl(a)
− rU(a)] = β[(1− ξ1

σ − 1

σ
)
dR

dl(a)
− ξ0rU(a)] (1.30)

with a method of indeterminant coe�cients yielding

ξ0 = (1− β) and ξ1 =
σβ

σ − β
(1.31)

Hence, the �rst claim of the proposition.

With this result we can go further. Observe that (1.5) can be rewritten as

rU(a) = b(a) +
θm(θ)

r + s

ˆ
γ(φ)β(

σ

σ − β

dR

dl(a)
− rU(a))+dφ (1.32)

Analogously, (1.25) can be rewritten as

c′(v) =
m(θ)

r + s

ˆ
u(a)

u
(1− β)(

σ

σ − β

dR

dl(a)
− rU(a))+da (1.33)

1.B Proof of Propositions 2 and 3

By contradiction, suppose that for some a′ > a U(a′) < U(a). This implies that for

any φ

s(a, φ) =
σβ

σ − β
B(φ)ψ(a, φ)− rU(a) < s(a′, φ)

with B(φ) = σ−1
σ
Y 1/σq

−1/σ
φ .

From this immediately follows that

rU(a)− b(a) = β
θm(θ)

r + s

ˆ
s+(a, φ)γ(φ)dφ < rU(a′)− b(a′),

which, together with the assumption of non-decreasing income �ow in unemployment,

contradicts the assertion. Thus, U(a) is increasing in its argument. The part about wage

and value in employment for a given φ directly follows from the equilibrium wage rule
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(1.12) and value in employment (1.6). Minimal attainable wage

w = min
φ:s(a,φ)≥0

w(a, φ) = rU(a),

and thus, increasing in a as well. Maximum attainable wage

w = max
φ:s(a,φ)≥0

w(a, φ) = max
φ:s(a,φ)≥0

{
σβ

σ − β
B(φ)ψ(a, φ) + (1− β)rU(a)

}
is increasing by the envelope theorem.

Analogously, assume by contradiction that for some φi > φj q(φi) < q(φj). Then, for

any worker a:

s(a, φj) =
σ − 1

σ − β
[YM ]1/σq−1/σ(φj)ψ(a, φj)− rU(a) < s(a, φi)

Again, after integration yields:

(r + s)c′(vj)

(1− β)m(θ)
=

ˆ
s+(a, φj)

u(a)

u
da <

ˆ
s+(a, φi)

u(a)

u
da =

(r + s)c′(vi)

(1− β)m(θ)
.

If the posting cost function is linear, this is a contradiction. Assumption of convex

cost implies the �rst past of the result. Then, immediately R(φ) = Y 1/σq
1−σ
σ (φ) behaves

analogously to q(φ).

The �rm value J(φ) is trivially increasing in the �rm's type. This follows from the

simple argument, akin to the revealed preference. Consider two �rms of types φ′ > φ.

First, �rm φ′ can choose to produce an amount of output equal to the equilibrium output

of �rm φ, and hence have the same revenue, using exactly the same combination of types.

However, since workers are more productive in �rm φ′ than in φ, it will require fewer

workers, and thus will need to post fewer vacancies. The last step is to show that although

�rm φ′ will pay higher wages to individual workers, the total wage bill will still be smaller

than that of �rm φ. Given the wage rule (1.12), the total wage bill is

β(σ − 1)

σ − β
Rφ + (1− β)r

ˆ
U(a)dLφ(a),

which is straightforwardly smaller for �rm φ′ under the described scenario. Thus, I have

shown that �rm φ′ can generate the same revenue as �rm φ at smaller expenses. This
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implies that its equilibrium pro�t, and value J(φ′), is larger.

1.C Extended Model Structure and Proof of Proposi-

tion 4

I now allow the world to have to identical countries. Each country is the same as

the country described in Section 2. Final good and labor markets are country speci�c,

whereas intermediate goods can be traded across the border with impediments. Now,

both home and foreign produced varieties of intermediate good can be used in the �nal

good production. The production function becomes:

Y =

 ˆ
j∈ΩH

q(j)
σ−1
σ dj +

ˆ

j∈ΩF

q(j)
σ−1
σ dj


σ

σ−1

, σ > 1, (1.34)

where ΩH is the set of the intermediate goods produced in the home country and ΩF is

the set of the intermediate goods imported from the foreign country. This production

function generates demand for the intermediate good of the same structure as before:

pj = Y 1/σq
−1/σ
j . In a symmetric equilibrium, �nal goods output is the same in both

countries.

An intermediate goods producer can choose whether to sell all produced quantity on

the home market, or to export some of it to the foreign country. Markets are assumed

to be segregated, so that �rms can charge di�erent prices in di�erent countries. To enter

the foreign market, a �rm must pay a �xed cost fj per period in the market, where fj

is drawn from some distribution F (·) independently across �rms. Additionally, shipping

the good to the foreign country involves an iceberg cost τ , i.e. to deliver and sell a unit

of the good to the foreign country, the �rm must ship τ units from the home country.

I break the �rm's problem down into two steps. First, I describe the optimal way

to distribute sales of given amount q of the good between two countries and how much

revenue it will generate. The answer to this question is the solution to the following net

revenue maximization problem:

max
qH ,qF

Y 1/σq
σ−1
σ

H + Y 1/σq
σ−1
σ

F
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s.t. qH + τqF = q

The straightforward solution is to distribute the output so that qF = qHτ
−σ, and

therefore, revenue that can be generated from the given amount q of the output is

R(q) = [Y (1 + Iτ 1−σ)]1/σq
σ−1
σ ,

where I stands for the indicator of exporting. Now, taking into account the revenue

generating function, the �rm must decide whether to export, how much output to produce

and what type of workers to employ in production. The slightly modi�ed �rm's objective

function (1.7) becomes:

J(Lφ, φ) = max
v,L′,I

1

1 + r

{
R(q(Lφ, φ), I)−

ˆ
w(a, φ)dLφ(a)− c(v)− Ifj + J(L′, φ)

}
(1.35)

subject to the hiring constraint (1.8) and I ∈ {0, 1}. Bellman equations for workers on

the labor market do not change. Since exporting does not alter the structure of the �rm

problem, i.e. it can be solved for each I with revenue function scaled up proportionally

and then maximum value chosen, the result of Proposition 1 applies, and the �rm's

vacancy creation policy remains the same. Now I prove Proposition 4.

Consider two �rms i and j of the same type ϕi = ϕj but due to di�erent �xed

exporting cost draws, only �rm j is exporting. Start by contradiction. Suppose that

qi > qj. Then,
dRj

dl(a)
> dRi

dl(a)
and s(a, φj) > s(a, φi) for all types a. Following the optimal

vacancy posting rule (1.13) would imply that �rm j accepts more types and posts (weakly)

more vacancies. Given that the production function of two �rms are the same and the

inter�rm labor force size is proportional to the number of vacancies posted, we arrive at

a contradiction. Hence, the exporting �rm has larger output and larger revenue.

However, the output advantage of �rm j cannot be too large. If qj > qi to the extent

that
dRj

dl(a)
< dRi

dl(a)
, by analogous reasoning we arrive at a contradiction. Therefore, the

exporting �rm has (weakly) higher marginal revenue from and match surplus with every

worker. This guarantees that the exporting �rm has a larger matching set and posts

more vacancies. The last assertion also follows because wages depend on �rm type only

through the worker's share of the surplus.
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Chapter 2

�Vanishing Cities:� Can Urban Costs Explain

Deindustrialization?

Co-authored by Sergey Kokovin.

2.1 Introduction

Studies of contemporary urban development show a rather typical tendency of many

manufacturing facilities to locate in small towns or rural areas. Examples include many

sectors from food production to heavy industries such as auto manufacturing, Toyota city

being one of the most illuminating examples. Generally, nowadays the physical stages of

manufacturing have become one of the least urbanized activities (see, for instance, Holmes

and Stevens, 2004, or Kolko, 2010, on the comparison between manufacturing and service

industries). Instead, big cities are becoming more and more �deindustrialized�, special-

izing in exporting services rather than goods. Exportable services include governance

of territories by governments, governance of multi-plant �rms by headquarters, research,

blueprint production, education, etc. Small cities, in contrast, rely on manufacturing and

tend to decrease in size. Can we say that the decreasing size of small cities is a natural

outcome of market evolution, driven by noticeably reduced trade costs? We present a

possible explanation of how �... a massive concentration of economic activities within a

fairly small number of urban regions... has triggered a process of counterurbanization�
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(Tabuchi et al., 2005).1

Generally, urban theory and economic geography (see, for example, Fujita and Thisse,

2013) have much to say about the �agglomeration forces� driving both �rms and workers

into cities, and about countervailing �dispersion forces.� Among the latter, commuting

costs, land rent, and other diseconomies of scale understandably restrict city size. Alter-

natively, the well-known Krugman's Core-Periphery model uses agricultural population

as a dispersion force. It predicts that large trade costs can support many small cities,

whereas decreasing trade costs force agglomeration into a few large cities. This view has

become popular (see Combes et al., 2008).

The opposite tendency � evolution towards smaller and smaller cities � is also

predicted by market theory in several settings. Describing competition between two

cities or regions, Helpman (1998) has explored the tension between an agglomeration

force stemming from a preference for variety and a dispersion force stemming from a

limited housing supply (urban cost). Treating two cities somewhat similarly, Tabuchi

(1998) introduces competition for land as a dispersion force. Both models reach similar

results on arising dispersion: equal distribution of population between two regions when

transportation costs become low enough.

More recent advances in the �eld leave two regions aside and consider more general

systems of cities instead, searching for their equilibrium number (Tabuchi et al., 2005,

Tabuchi and Thisse, 2011). Some �nd both agglomeration and dispersion tendencies

of evolution. Among these studies of city systems, we adopt and modify Anas' (2004)

approach. He studies a normative setting where world (or country) population is given,

and a social planner maximizes the per-capita welfare by choosing a number of symmetric

cities, taking into account consecutive equilibrium. The agglomeration force amounts to

economies of scale, whereas the dispersion force stems from urban �commuting� costs.

Anas' main theorem describes optimal cities under growing world population as follows:

their number increases but their individual sizes decrease, and eventually drop down

to a technologically admissible minimum, su�cient for producing only one variety of

manufacturing good (mono-city). The explanation is that the bene�t of living in a big

city (close to many producers) decreases when more and more varieties are imported

from other cities in a growing world, while commuting costs remain the same. Anas

interprets his surprising result as a failure of Krugman's economic geography: without

1See also Behrens and Bougna (2013), who report that manufacturing industries are less geographically
concentrated in Canada.
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externalities, a simple monopolistic competition mechanism is insu�cient to drive the

growth of cities in response to growing populations and/or decreasing trade costs. To

better understand the evolution of cities, we �rst check the robustness of Anas' mechanism

and then highlight additional issues: comparative statics of stable equilibria and stable

equilibria with developers (the latter concept appearing potentially useful in other models

of economic geography).

We �nd Anas' (2004) modeling strategy appealing and use it as a baseline. In a

centripetal role, production scale economies seem sensible as an agglomeration force be-

hind regional development (see empirical evidence on U.S. regional specialization and

localization in Kim, 1995). As to the centrifugal role, Krugman's assumption of agricul-

tural industry as a dispersion force has been widely criticized as anachronistic. Instead,

commuting, land prices, and other urban costs are perceived as very important for city

residents in modern economies (Tabuchi, 1989). We follow this line of reasoning.

However, we suspect that Anas' (2004) normative setting and restrictive assumptions

drive his unexpected result. Does it remain valid in more realistic settings? Although

Anas' global optimum is an equilibrium in the sense that utility is equalized across existing

cities, it ignores the question of stability, which we are focused on. Therefore, instead

of a normative model with central planning, we explore two positive alternatives: (1)

a stable equilibrium, in which each citizen can voluntarily choose a city to live in, or

can settle in a new city (understanding how production and trade will respond to her

choice); (2) a stable equilibrium with developers, in which each city decides whether to

invite additional citizens or not (also understanding the production/trade consequences).

These two versions resemble two cases in the theory of clubs. The migration setting

resembles the �open clubs� theory, where everybody can join regardless of the will of

city residents. The developers' equilibrium can be related to a �closed clubs� setting,

where the admission decision is made by the current members.2 Otherwise, the modeling

remains as in Anas (2004): one sector, general equilibrium, Dixit-Stiglitz preferences,

iceberg trade costs, and a technological minimum for a city size called "village". 3

We start by describing our results with stable equilibria. They are multiple; not

uniquely determined by preferences and costs. Therefore, we study the "zone of equilib-

2We cannot directly rely on club theory, because our clubs-cities are interacting : they in�uence each
other through trade, not only through competition for membership.

3Although we ignore integer problem throughout the paper, we employ the notion of the minimal
technological size to have a well de�ned equilibrium under any parameters. It can be de�ned as the
minimum number of people necessary to produce one variety of the manufacturing good.
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ria". Propositions 5 and 6 describe "vanishing" cities. The zone of parameters (L, ϕ, n)

admissible for stable cities turns out to be bounded. This implies that cities must dis-

appear in 3 cases: (i) when the current number n of cities grows larger than a certain

uniform bound n∗, or (ii) when the world population L becomes greater than a certain

uniform bound Ld∗; or (iii) when trade freeness ϕ becomes larger than a certain uniform

bound ϕd∗.

Therefore, given other parameters, whatever the historical city system is, growth of

L, ϕ or n eventually causes our city system to abruptly switch to complete dispersion,

due to individual migration. This vanishing e�ect under migration pressure looks closer

to reality than Anas' globally optimal cities, with both exhibiting a striking contrast to

Krugman's agglomeration outcome under growing freeness ϕ. An intuitive explanation

of the result is the following: Krugman's dispersion force based on agricultural demand

decreases with trade freeness, whereas our dispersion force is the urban cost, and does

not change with trade freeness. At the same time, the agglomeration force is weakening.

Similarly, the dispersion force does not change with an increasing world population, but

the agglomeration force weakens, due to an increasing share of imported varieties in con-

sumption, meaning that domestic production becomes less important to consumers. The

outcome is the same: dispersion. However, besides this limiting case, detailed compar-

ative statics can be more interesting: What precedes the abrupt disintegration of a city

system into villages? Proposition 7 states that, under a growing population, stability

restrictions can cause city size to either gradually shrink or to abruptly collapse.

To obtain additional predictions, we must limit equilibria multiplicity and de�ne a

reasonable selection among equilibria. Our stable equilibrium with developers imposes

additional restrictions on cities. We assume that citizens are able to restrict entry to

their city, or to attract new residents by granting small privileges, and thereby increase

average welfare. Such collectively rational behavior is represented by a benevolent city

government called the "local developer" or �city mayor� (unlike Anas' global planner, but

like entities that maximize the price of land by trying to conform to the citizens' wishes).

We explore two versions of such equilibria: "myopic" and "wise", both displaying similar

outcomes. It turns out that the zone of (symmetric) stable equilibria with developers is a

curve N(L) within stable equilibria, bounded near the origin. At higher L it disappears

and the result is disintegration of cities (Proposition 8). Additionally (whenever cities are

multiple), the equilibrium city size gradually decreases in response to the increasing world

population or trade freeness, before dropping down to its technological minimum. This
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version of the model di�ers from Anas' global optimization in that its local government

ignores the interests of other cities. However, the main conclusion remains the same: the

tendency of (manufacturing, industry-speci�c) towns to decrease and eventually collapse

down to �villages� or mono-cities.

Further, for our general explanatory plan it is important to extend our model to two

sectors, with decreasing trade cost in only one of them. This is done by combining two

(or many) sectors with the Cobb-Douglas upper-tier utility. Since the lower-tier utilities

are CES, this guarantees �xed budget shares for both sectors. Then, as we show in a

special section, all predictions about a single sector remain valid even in the presence of

another sector in which trade costs do not change.

Now we compare the dispersion result uncovered to a group of models of urban sys-

tems that display similar e�ects. There are three main distinctions of this strand of

literature from our setup. First, these models have worked with quasilinear preferences,

thus, bear a partial equilibrium �avor. Second, the agricultural population serves as a

dispersion force, sometimes combined with urban cost. Third, the production side is

modeled following Forslid and Ottaviano (2003) as "footloose entrepreneurs" (variable

costs are bourn in numerarie but �xed cost requires manufacturing labor). In particu-

lar, Tabuchi and Thisse (2006) consider a model with quadratic quasi-linear utility, two

regions, two manufacturing sectors and an agricultural sector, with urban costs as an

additional dispersion force. As a result, when one good is perfectly mobile, the corre-

sponding industry is partially dispersed, whereas the other is agglomerated, thus showing

regional specialization. This conclusion satis�es our need to distinguish physical manu-

facturing from intellectual production, however, the two-region world is too stylized. A

further step towards displaying asymmetric cities in economic geography is an important

model of "urban hierarchies" by Tabuchi and Thisse (2011). They consider a model of

many manufacturing sectors, each endowed with its own technology and trade costs, and

many possible locations on the circumference. When transport costs steadily decrease,

some cities expand at the expense of the others by attracting a growing number of indus-

tries, while some cities decrease in size or disappear from the space-economy. Though in

a di�erent setting (no urban cost), such cities' specialization and related diverse evolution

resemble our conclusions.

We �nd even more similarity in Tabuchi, Thisse and Zeng (2005), who consider mi-

gration of �footloose entrepreneurs� in a multi-regional economy with partial equilibrium

and quadratic preferences as in Ottaviano et al. (2002). Urban cost is assumed to be
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increasing in the city population. When the number of cities is forced to be constant,

some types of cities may grow and other cities simultaneously shrink with trade costs.

When the number of cities is allowed to vary, the city size �rst increases (only under

some parameters) and then decreases in response to decreasing transport costs. This

result shows similarity to ours on the decreasing stage. We believe that the possible

di�erence in monotonicity under large transportation costs stems from the assumption of

an agricultural population rather than from linear demand structure.

We stress that we study evolution of various cities in a di�erent setting: general

equilibrium à la Dixit-Stiglitz, one-factor technology with increasing returns without

�xing the world's total mass of �rms (presuming it is less stylized than Forslid and

Ottaviano's approach). Thereby we show that the vanishing e�ect is not the consequence

of very speci�c assumptions like partial equilibrium and simpli�ed cost function, but holds

also in other settings. Still, the main di�erence from the previous approach is that cities

in this model do not include all industries; they specialize either in knowledge-intensive

intellectual products, or in manufacturing. We postulate this feature, leaving any models

with complete specialization that arise as an equilibrium outcome for future research.

Instead, the goal of our study is to show that some industries may become dispersed,

while other industries remain agglomerated�just because of the simple tendency revealed

by Anas: decreasing trade costs in the former and stable ones in the latter.

Overall, our study generally supports the prediction that cities comprised of industries

lacking intra- or inter-industry externalities have a tendency to decrease and eventually

reach their minimal technological size.

The rest of the paper is organized as follows: Section 2 presents our baseline model.

Section 3 studies migration equilibria. Section 4 deals with developers' equilibria. Section

5 considers two sectors extension of the model, and the �nal section concludes. All proofs

are relegated to the Appendix.

2.2 Model: System of Cities with Migration

We introduce a model of a city system very close to that of Anas', except for: (1)

possibly asymmetric cities and (2) a migration process instead of a social planner setting.

We start with the description of the internal city structure and then embed it into a

system of cities.

City. Traditionally, we consider monocentric and circular cities endowed with a Cen-
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tral Business District (CBD) where production and trade take place. The only production

input is labor supplied by consumers � citizens. Each consumer needs one unit of land

and possesses a unit of time which she spends commuting to her workplace (CBD) and

laboring. The cost of commuting is s units of time per unit of distance, therefore, a con-

sumer living at distance x from CBD spends sx units of time for commuting and supplies

h(x) = 1− sx units of labor for production. Wage per unit of working time in the CBD

is denoted as w.

Suppose there are N residents in a given city. Then, because of unit land requirement,

the radius of the city becomes r =
√
N/π. Given individual labor supply and uniform

distribution of citizens within the city, overall labor supply for production H is given by

H(N) =

ˆ r

0

2πxh(x)dx = πr2 − 2πr3/3 = N − kN3/2, (2.1)

where k ≡ 2s/3
√
π is a constant, summarizing commuting cost. We denote the average

(per-citizen) labor supply in the city as

θ(N) ≡ H(N)/N.

In addition, we assume zero opportunity value of land and free reallocation within the

city.

Now, we explain how redistribution of rent makes income proportional to the labor

supply. Suppose that the city size is r. We have normalized the land rent on the edge of

the city to zero. Since consumers face the same price vector, free reallocation of consumers

should lead to disposable income equalization among them. In addition, we assume that

the local government collects the land rent and distributes it equally among citizens in

a form of lump-sum transfer. Moreover, independently of the structure and size of other

cities, land rent always remains within the city where it is collected. Thus, the disposable

income of every citizen in the city of size N is

I(N) = θ(N)w ≡ (1− k
√
N)w,

which is decreasing in size.4

4To see details of rent redistribution, see that at any location within a city the sum of rent cost and
commuting cost must be the same. Hence, the rent at any point x must be R(x) = s(r− x)w, and total
rent in the city is TR =

´ r
0
2πxs(r − x)wdx = πswr3/3 = kwN3/2/2.
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System of cities and goods. Suppose there are n cities with population masses

(N1, N2, ..., Nn). There is only one di�erentiated good in the economy. Each variety of

the good is produced by only one �rm residing in some one city. All cities trade with

each other through some common �hub�, i.e., transport costs for each pair of cities is the

same. The market for varieties is monopolistically competitive, and entry to the market

is free.

Consumers have identical Constant Elasticity of Substitution (CES) preferences over

the set of varieties:

U =

[
n∑

i=1

ˆ mi

0

x
(σ−1)/σ
ki(j) dj

]σ/(σ−1)

, (2.2)

where xki(j) is a single purchase of variety j produced in city i and consumed in city k.

Parameter σ > 1 denotes the elasticity of substitution. A consumer of type k maximizes

in xk her utility (2.2) subject to the budget constraint

n∑
i=1

ˆ mi

0

pki(j)xki(j)dj ≤ I(Nk), (2.3)

where pki(j) is the price of variety j produced in city i and consumed in city k. Labor is

the numeraire, I(Nk) denotes income. Taking the �rst-order conditions and expressing

the Lagrange multiplier from the budget, we obtain the consumer demand function X(·)
in the form:

Xki(j)(pki(j), Ik, Pk) = p−σ
ki(j)I(Nk)/P

1−σ
k Pk =

[
n∑

i=1

ˆ mi

0

p1−σ
ki(j)dj

]1/(1−σ)

, (2.4)

with Pk being a price index. It is �perfect�, as a price of one unit of utility, in the sense

that the indirect utility of a consumer in the city k is

Vk = I(Nk)/Pk. (2.5)

Production. Each producer is a price-maker for her variety. As is standard in

monopolistic competition literature, we assume that a producer has �xed labor cost F

to set up a plant and marginal labor requirement c of production. Trade within a city

is costless, whereas trade with other cities requires iceberg transportation costs. This

means that supplying one unit of a good from city i to city k requires τki = τ > 1 units

of the good when i ̸= k but τii = 1. Under these assumptions each producer j in city i
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has a pro�t function

πi(j) =
n∑

k=1

[pki(j) − τkicwi]Xki(j)(pki(j), Ik, Pk)Nk − Fwi (2.6)

which she maximizes with respect to prices subject to demand functions (2.4) taking the

price indexes as given. As is standard, under CES preferences, such a pro�t function is

concave and has a unique maximum. Then, the symmetry of producers leads to symmetric

pricing by all �rms from a given city. This allows us to drop index j from further

discussion. Producer optimization leads to:

pki =
στkicwi

σ − 1
πi =

(
n∑

k=1

τkicxkiNk

σ − 1
− F

)
wi. (2.7)

Free entry into the market drives �rms' pro�t in every city to zero. Combining zero-

pro�t conditions (2.7) with labor market clearing yields an equilibrium mass of varieties

in every city:

mi =
Niθ(Ni)

Fσ
∀i. (2.8)

Finally, equilibrium wages, wi, and corresponding prices, pki, and incomes, I(Nk), can

be obtained from market clearing for a representative variety produced in each city:

n∑
k=1

τkip
−σ
ki I(Nk)Nk

P 1−σ
k

= (σ − 1)F/c ∀i (2.9)

Trade equilibrium associated with a system of n cities of sizes (N1, N2, ..., Nn) is

de�ned as a bundle {xki}k=1,n

i=1,n
of consumption values, a bundle of prices {pki}k=1,n

i=1,n
, vector

of varieties masses {mi} and vector of wages {wi} such that: (i) consumption values solve

consumers' problems (2.2) subject to budget constraint (2.3) under given prices, wages

and available varieties; (ii) prices solve producers' problems (2.6) given demand function

(2.4), price indexes and wages; (iii) �rms earn zero pro�t (free entry); (iv) labor market

and market for every variety clear.

We do not discuss the existence of such general equilibria, pointing out later on the

existence of symmetric ones (whose behavior under small perturbations we study). Fur-

ther, every trade equilibrium delivers indirect utility Vk = θ(Nk)wk/Pk to any consumer

in city k. Suppose the world population amounts to L consumers.

As is standard, we call n cities of sizes (N1, N2, ..., Nn) a migration equilibrium if
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(1)
∑n

i=1Ni = L and (2) related trade equilibrium yields the same level of indirect utility

across cities: Vk = Vi ∀k, i.

Naturally, the symmetric distribution of population across an arbitrary number of

cities is a migration equilibrium. Indeed, the case of symmetric cities implies symmetric

trade equilibrium. In this case cities are interchangeable, and utility is equalized across

cities. However, our goal is to understand when such symmetric migration equilibrium

is stable, in the sense that small perturbations are not ampli�ed. Therefore, we shall

consider mainly symmetric (or close to symmetric) population distributions across cities.

Let us reserve notation (n,N) for the symmetric equilibrium with n cities of size N , so

that L = nN .

2.3 Migration Stability

In this section we discuss the stability of any symmetric equilibrium (n,N) against

small perturbations in population distribution. First, we de�ne two stability conditions

based on di�erent kinds of perturbations: migration to the countryside (unpopulated

locations) and migration to other cities.

1. Consider a system of slightly asymmetric cities. Starting from n cities of size N ,

suppose that a new (n + 1)-st city of size ε is created, with one of the old cities taking

size Ñ = N − ε. If in new trade equilibrium indirect utilities Vi evaluated at point ε ≈ 0

satisfy Vn+1(ε) < Vn(Ñ), we say that this migration equilibrium (n,N) is (strictly) stable

against dispersion; otherwise it is not.

2. Consider a system: 1-st city of size N1 = N + ε, 2-nd city of size N2 = N − ε

and n − 2 cities of size N . If in related trade equilibrium incremental utility dV1(N+ε)
dε

evaluated at the point ε ≈ 0 is negative, we say that migration equilibrium (n,N) is

(strictly) stable against agglomeration, otherwise it is not.

When a symmetric migration equilibrium (n,N) satis�es both stability conditions, we

call it a stable equilibrium.

The �rst requirement of stability is that a small shift of population from a city into a

previously unpopulated area does not create incentives for mass movement to this newly

created town. The second requirement is that small movements of populations from one

city to another do not make the target city more attractive. We must add that, in reality,

there can be more sophisticated deviations from the stable state: any vector of changes
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Figure 2.1: Region of stable equilibria.

in populations; thereby real stable equilibria could be narrower that what we call stable.

However, our de�nition is su�cient to show that the stability zone is bounded.

Now we formulate the conditions when a symmetric equilibrium is stable in both

senses.

Lemma 1. (Stability conditions) (1) Symmetric migration equilibrium (n,N) is stable

against dispersion if and only if

1− k

√
L

n
>

[
1 + (n− 1)τ 1−σ

nτ 1−σ

]− 1
σ
− 1

σ−1

. (2.10)

(2) Symmetric migration equilibrium (n,N) is stable against agglomeration if and only

if

2σ − 1

(σ − 1)
(
σ − 1 + σ 1+(n−1)τ1−σ

1−τ1−σ

) < k
√
L

2
√
n− 3k

√
L
. (2.11)

It may be interesting to look at the shape of stable combinations (L, ϕ, n) from Lemma.

This region is displayed in Fig. 2.1 for speci�c values σ = 11, k = 0.005. All combinations

inside this shaded area generate stable equilibria, because our Lemma gives necessary and

su�cient conditions.
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In Fig. 2.1, we see that the zone of stable equilibria is bounded in all three dimensions

L, n, ϕ. This zone has a complex saddle-type shape; it looks like a hill with a grotto

underneath (see our subsequent �gures for details). Our further plan is to prove such

boundedness for any parameter values k, σ. In some sense, this means studying the

comparative statics of sections of the shaded area from Fig. 2.1. Speci�cally, to correctly

resolve Anas' question about �vanishing cities�, we now describe how the region of stable

migration equilibria changes with the population of the whole system and/or with trade

frictions.

First of all, we simplify the notation by (conventionally) introducing trade freeness

ϕ ≡ τ 1−σ ∈ [0, 1]. This measure is decreasing in the elasticity of substitution, σ, and

higher ϕ implies freer trade. For any number n of cities, the condition of stability against

dispersion can be reformulated in two alternative ways:

(1) given trade freeness ϕ, the total population is bounded from above as

L(n) ≤ Ld(n) =
n

k2

[
1−

(
1 +

1− ϕ

nϕ

)− 1
σ
− 1

σ−1

]2
;

(2) given total population L, freeness of trade is bounded from above as

ϕ(n) ≤ ϕd(n) =
1

1 + n

[(
1− k

√
L/n

)− 2σ−1
σ(σ−1) − 1

] .
Similarly, under any number of cities n, the condition of stability against agglomera-

tion requires that:

(1) given freeness of trade ϕ, the total population is bounded from below:

L(n) ≥ La(n) =
n

k2

[
2

σ + 2 + (σ−1)σnϕ
(2σ−1)(1−ϕ)

]2
;

(2) given total population L, freeness of trade is bounded from below:

ϕ(n) ≥ ϕa(n) =
1

1 + n σ(σ−1)

(2σ−1)
(

2
√
n−3k

√
L

k
√

L
−σ+1

) .

In other words, two kinds of stability conditions provide upper and lower bounds

on parameter values under which stable equilibria may exist. Using these bounds, the
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following proposition shows that population growth or trade liberalization (increasing

freeness) must lead to an absence of stable equilibria.

Proposition 5. (No stable cities in large/free world)

(1) Maximal stable population Ld(n) is uniformly bounded from above; i.e., there exists

such Ld∗ < ∞, that any equilibrium (n, L/n) is unstable against dispersion whenever

L > Ld∗;

(2) Maximal stable freeness ϕd(n) is uniformly separated from one; i.e., there exists

such ϕd∗ < 1, that any equilibrium (n, L/n) is unstable against dispersion whenever

ϕ > ϕd∗.

In other words, if the world is large enough or trade is free enough, the only stable

outcome is the dispersion of the population to �villages�, i.e. locations of minimal admis-

sible size. The remaining question is the boundedness of the region of stability (Fig.2.1)

in dimension n. In other words, we ask whether stable symmetric equilibria with large

number of cities n exist. The next proposition precludes this possibility and, therefore,

gives additional credibility to the �vanishing cities� theory.

Proposition 6. (No stable equilibria with many cities). Under any admissible parame-

ters (L, ϕ, k, σ), there exist some n̄ such that any equilibrium with bigger number n > n̄

of cities is unstable.

Although our stability conditions reduce the amount of possible equilibrium con�gu-

rations to a bounded zone in (ϕ, L, n) space, there is still a continuum of stable equilibria

for admissible parameter values. Indeed, any existing city creates a lock-in e�ect, pre-

venting creation of new cities. This result is akin to that of Fujita, Krugman and Mori

(1999), who have found continuum of equilibria in a city system with an explicit linear

space structure. Fujita et al. employ evolutionary dynamics for selection among equi-

libria, however, due to the complexity of their space structure, they have been forced to

resort to numerical simulations. On the contrary, the simpli�ed spacial structure of our

model allows us to describe all stable equilibria and to provide analytical selection by

simpli�ed evolutionary dynamics.

Comparative statics. How does the system of cities change when the population

grows or trade costs decrease? Do the cities in our model grow, gradually decrease, or

collapse? We �rst explain numerical simulations, interpret them, then develop them into

a proposition.
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Figure 2.2: How the region of migration stable equilibria shrinks with respect to trade
freeness ϕ.

Fig. 2.2 plots the regions of migration stable equilibria in (n, L) coordinates under

changing trade freeness: ϕ = 0.05, 0.1, 0.3. In essence, the left panel of Fig. 2.2 contains

some sections of a stable zone from Fig. 2.1 in (n, L) plane. The right panel inverts this

zone into (N,L) space, and the straight line, n = 1, cuts away cases with less than one

city (the same as the vertical line with abscissa coordinate 1 does in the left panel). The

main observation is that the larger trade freeness is � the smaller in terms of area the

zone of stable equilibria is. Speci�cally, the boundaries of the zone shrink towards the

origin, making the stable area smaller.

First consider the direction of changes outside the stability zone: Does the family of

cities move towards stability or towards collapse? The arrows outside the zone show the

migration tendency. In the right panel we observe that above the upper boundary, the

tendency works to decrease size N of a city (which is shown in the left panel as increasing

n = L/N). The arrow in the right side of the right panel says that when a too-large

unstable city decreases its population, it can reach the region of stability. A similar

stable result is shown by the lower left arrow, which is below the kink breaking the left

boundary. Instead, the upper-left arrow (above the kink) in this panel says that, under

su�ciently high population, a too-small city further loses its population and collapses

into a village. This (upper left) boundary of the stable zone is unstable.

With this in mind, we use this �gure to express our intuitions about possible changes

in the city system. To grasp the possible impact of a growing population L on cities

under given ϕ, consider the following thought experiment. Assume, for instance, ϕ = 0.3.

Suppose we start with only one settlement (n = 1) and with a small population L = 2:

Adam and Eve. What happens? This historical point of urbanization lies below the
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critical value La(2), i.e., below the lower bound of related stability zone. So, it cannot

happen that the couple live apart, in di�erent villages. Instead, they must agglomerate.

Now let the population grow. Then the agglomeration tendency remains: everyone lives

in the same city. The picture tells us that this single-city pattern of urbanization will

persist until the population exceeds approximately 600. From this point onwards, our

growing population can either remain in this city or try to settle a new one. A two-

cities equilibrium becomes possible when the population reaches approximately 1,100

but there is no force to shift the system to that other equilibrium. However, when the

population exceeds 1,900, any n-city system loses stability; it abruptly collapses into

villages consisting of 1 citizen each (the minimal technological size).

Observe that di�erent levels of trade cost make a qualitative di�erence. Under ϕ = 0.1

or ϕ = 0.05, on the upper border of the stability region there is a possibility that a

growing population may result in a gradually growing number of cities instead of abrupt

dispersion, at least on the ascending wing of this region (though each city decreases in

size). Generally, under typical parameters, this fairy tale and related picture support

the idea that either gradual or abrupt decreases in city sizes are possible in response to

growing population or/and trade freeness. We formulate this tendency as a proposition.

Proposition 7. Assume that during growth of the population under �xed other parame-

ters, the number of cities remains stable until the system reaches the border of the stability

zone. Then, the shape of the border governs the evolution of city sizes: further evolution

can display either gradually decreasing city size or abrupt collapse of cities, but not an

increase.

Proof. In our stability condition (2.10), and in Fig. 2.2, we see that it is the dispersion

condition (not the agglomeration one) that limits the size of the stable world from above.

Therefore, this condition governs the comparative statics. Its violation triggers the in-

crease in the number of cities. From the formula we see that the related city size Ld(n)/n

is a decreasing function.

2.4 Developers' Stability

Although the notion of migration stability allows us to reduce the number of plausi-

ble equilibria and ensures our impossibility results, the remaining multiplicity of stable

equilibria is somewhat disturbing. Therefore, in this section we develop another notion
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of stability as a selection criterion: stability against actions by a �developer� (local gov-

ernment) who aims to maximize the representative citizen's utility in her city and who

has some power to invite in or push out citizens. Of course, it would be fair to call this

actor �benevolent local government� or �city mayor,� but if we believe that the bene�ts

of a particular city structure to citizens can be capitalized in the land rent, there should

not be any di�erence between a mayor's behavior and that of a developer. However, this

decision-making di�ers from Anas' global planner. It also di�ers from simple migration

� because it considers all intra-city bene�ts from inviting a new citizen in or forcing

a citizen to exit � instead of considering personal bene�ts to a migrant. Nevertheless,

we still impose the requirement of stability against dispersion or creation of a new city,

because the developer cannot force citizens to stay in the city. We consider two cases

with similar outcomes: a wise developer and a myopic developer.

Wise developer. We assume in this paragraph that each developer correctly predicts

all changes in the trade equilibrium that will occur after a new citizen is invited from

some other city.

(Symmetric) stable equilibrium of wise developers is a system of cities (n,N) such

that it is a strict local Nash equilibrium among n developers choosing their city sizes.

It means that there is an ε̂ > 0 such that all possible local ε-perturbations of the city

population (ε < ε̂) bring strictly negative value changes to a developer.

This notion does not consider the possibility of new cities and other asymmetric

situations. By our assumption of wise predictions, the changes in the equilibrium trade

and welfare coincide with predictions that we made when studying migration, because

the wise developer understands that she can attract a new citizen only from some other

city. Further, she expects a citizen to join some other city (not to die) once expelled

from hers. This allows us to show that the new concept of equilibrium is a selection from

the previous concept. Namely, under any ϕ, the wise developer's equilibrium is the lower

border of related equilibria zone displayed in Fig. 2.2. Interestingly, a wise developer

would chose a system with the largest number of cities and the smallest city size among

migration stable equilibria.

Indeed, if the migrant goes out and thereby decreases welfare in the destination city, by

symmetry, she increases welfare in her city of origin. Only when the derivative of welfare

with respect to migration is zero can the situation be a wise developers' equilibrium.

Thus, we come to
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Proposition 8. (Wise developers) (i) A system of cities (n,N) is a stable equilibrium

of wise developers only if it satis�es stability against agglomeration as equality:

L = La(n) =
n

k2

[
2

σ + 2 + (σ−1)σnϕ
(2σ−1)(1−ϕ)

]2
; (2.12)

(ii) It belongs to stable equilibria. Thereby, the developer's equilibrium remains possible

within same three bounds: world population, trade freeness and number of cities�all must

be small enough.

Myopic developer. Although the introduced notion is a rational one, we �nd our

requirements for the local government to have perfect foresight too demanding. Indeed,

the setup requires a developer to predict changes not only in her city, but in all cities

throughout the country as well. To relax this requirement, we introduce the notion of a

myopic developer. More precisely, we assume that each developer is myopic (boundedly-

rational) when predicting outside trade consequences caused by excluding or inviting a

citizen. This means that when maximizing welfare in her city, she expects no response

from all relevant variables in other cities: population, price indices and wages. Suppose

there are n−1 cities of size N , whereas #1 developer's city has size N1 (to be optimized).

Then, given symmetry in n − 1 other cities, the (trade) equilibrium conditions for price

index and wage in developer's city can be formulated as:

P 1−σ
1 =

Nθ(N)

Fσ

(
στc

σ − 1

)1−σ

(n− 1) +
N1θ(N1)

Fσ

(
σcw1

σ − 1

)1−σ

(2.13)

(n− 1)τθ(N)N [στcw1/(σ − 1)]−σ

P 1−σ
i

+
θ(N1)N1w1[σcw1/(σ − 1)]−σ

P 1−σ
1

= (σ − 1)F/c (2.14)

This form of equilibrium conditions is standard. However, the developer's optimiza-

tion with respect to N1 is di�erent, since she takes N and Pi as given. Denote elasticities

of price index and wage (perceived by the developer) in city #1 with respect to local

population N1 as ε
P1
d and εw1

d , respectively.

De�nition. We call a symmetric equilibrium (n,N) stable against a myopic developer

if elasticity of indirect utility (perceived by developer) is equal to zero εV1
d ≡ εθ+εw1

d −εP1
d =

0 evaluated at N1 = N and the equilibrium stable against dispersion.

Proposition 9. (Myopic developers) (i) A system of cities (n,N) is a stable equilibrium
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of myopic developers only if it satis�es the following condition:

L = Lm(n) =
n

k2

[
2

σ + 2 + (σ−1)σnϕ
(2σ−1)

]2
; (2.15)

(ii) It belongs to migration-stable equilibria. Thereby, the developer's equilibrium remain

possible within same three bounds: world population, trade freeness and number of cities

� must all be small enough.

The established condition for stability against actions by a myopic developer is similar

to the condition of stability against agglomeration (2.11). It di�ers only by the multiplier

(1−ϕ) in the last term of the denominator. Thus, the costlier trade is, the more developer

stability behavior resembles that of stability against agglomeration (and that of a wise

developer). The intuition is straightforward: cities a�ect each other through trade only.

Therefore, the higher trade costs are, the less impact a developer's city has on other cities,

and the smaller the developer's mistake in assuming a lack of change in other cities will

be. Moreover, the developer's myopia pushes the system towards fewer cities, i.e, larger

size: Lm(n) > La(n).

Now we present comparative statics analysis of the stability against a developer's ac-

tion graphically. Fig. 2.3 is a copy of Fig. 2.2 supplemented with the line of developer's

stable equilibria Lm(n) and its counterpart L̃m(N). Observe that when the world pop-

ulation L grows, the related point on the solid curve of the developer's equilibria moves

to the right in the left panel. Its counterpart shifts to the left in the right panel, which

describes the same equilibrium in terms of the city size N = L/n. Such behavior means

that the number of cities increases in response to population growth, whereas the city size

decreases.

A similar conclusion follows for trade freeness, only the comparison does not go along

each solid curve, but across three curves. When freeness increases, the point of equilibrium

(for any size of the world L) goes to the right in the left panel and to the left in the right

panel. This again means that the number of cities increases in response to decreasing trade

costs, whereas the city size decreases. Indeed, Lm(n)/n is again a decreasing function of ϕ,

meaning that the new equilibrium must have smaller city size and, hence, a larger number

of cities. Thus, we have come to the proposition which was the purpose of introducing

the developers' equilibria.

Proposition 10. Consider the growth of population L under �xed other parameters, or
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Figure 2.3: Developer stable con�gurations in coordinates (n, L) or (N,L) (under k =
0.001, σ = 11).

decreasing trade cost τ under �xed other parameters. In each case, both wise and myopic

developers' equilibrium displays either gradually decreasing city size or abrupt collapse of

cities, but not an increase in city size.

2.5 Extension to Two Sectors

A thoughtful reader has noticed the discrepancy between our theoretical framework

and its empirical interpretation as a divergent evolution of manufacturing cities in contrast

with other cities. Describing the �deurbanization� of a particular manufacturing industry

among others, we have hitherto dealt with a general equilibrium model with one sector

only. Now, we show how our setup may be embedded into a multi-sector framework, and

maintain qualitatively similar results.

Model. Assume our small-city system remains the same. However, now it also trades

through the same hub with a region called "capital city" (our results would also hold true

for several �xed big cities). This city completely belongs to another sector; it produces

some aggregate good S, using its own sector-speci�c labor. We prefer to interpret this

good as �tradable services,� including blueprints, research, governance, etc. However, the

capital residents share same preferences as our provincial residents. Any citizen here or

there consumes two goods: composite good U produced in our provincial cities (de�ned

as 2.2) and good S produced in the capital city. Preferences for the two goods have a
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standard Cobb-Douglas form:

Ǔ =

[ n∑
i=1

ˆ mi

0

x
(σ−1)/σ
kji dj

]σ/(σ−1)
µ

S1−µ
k

where Ǔ denotes overall utility of consumption and the Cobb-Douglas parameter µ sat-

is�es 0 < µ < 1. Utility is maximized under the budget constraint

n∑
i=1

ˆ mi

0

pkjixkjidj + PsSk ≤ I(Nk)

that includes the outside good and its �nal price Ps, which may include the cost of

transportation to our cities. In what follows, we treat the second commodity S as a

homogeneous good produced under constant returns (another possibility would be a di-

versi�ed good with some CES preferences and price index Ps). Then, spending some mass

Ls of sector-speci�c labor with unit productivity, the capital produces as much as Ls. It

consumes Cs = (1− µ)Ls out of Ls, because of the well-known two-stage budgeting rule,

resulting from Cobb-Douglas-CES preferences. The reminder of Ls goes for export and,

after iceberg reduction during transportation, becomes the aggregate provincial import

S =
∑n

k=1 SkNk = µLs/τs. Here τs is the transport coe�cient for good S. Thus, S

is pinned down as a constant. Further, the trade balance between the capital and the

province should determine the terms of trade Ps/P through equation

n∑
i=1

ˆ mi

0

psjiysjidj = PsS

where ysji denotes exports of manufacturing from the province, i.e., our provincial output

net of provincial consumption and net of transportation losses. The pro�t function of a

provincial �rm now takes into account exports to the capital, but no additional analysis is

needed, because the pro�t-maximizing pricing rule (2.7) remains the same. The internal

structure of our provincial cities remains the same. Our �rms and developers take the

price Ps of "services" as given.

An allocation includes: a mass n of (symmetric) provincial cities, a massm of varieties,

a consumption vector (X,S) in each of the cities, a consumption vector in the capital,

and production and prices of all goods. An allocation is an equilibrium if it satis�es

natural conditions for provincial cities: rational behavior of consumers, producers, and
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balanced budget constraints, plus similar conditions for the capital city (we do not need

to detail the consumption and production in the capital because of well-known two-stage

budgeting under Cobb-Douglas-CES combination: budget shares for both goods in both

worlds always remain constant).

Analysis. Instead of previous indirect utility (2.5), now, under Cobb-Douglas pref-

erences, the indirect utility in any provincial city i is standardly determined (up to a

constant multiplier) as income divided by the weighted product of prices, as follows:

Vi =
θ(Ni)wi

P µ
i P

1−µ
s

. (2.16)

Now since the shipment of good S is �xed, we can normalize its unites so that S = 1.

With this normalization and a citizen's disposable income θ(Ni)wi, the trade balance

between the province and the capital determines the price of services:

PS = (1− µ)
n∑
i

Niθ(Ni)wi (2.17)

We focus now on the stability of manufacturing cities against dispersion to villages.

From (2.17) we see that if a new zero-size town is established, the price of the outside

good is una�ected. Further, under CES preferences, the size of �rms is �xed, and thus

the number of our varieties (2.8) and their prices (2.7) are una�ected by the presence of

the capital. Therefore, the stability condition analogous to (2.10) now requires wn+1 <

θ(N)(Pn+1/Pn)
µ. The stability condition analogous to (2.10) now becomes

1− k

√
L

n
>

[
1 + (n− 1)τ 1−σ

nτ 1−σ

]− 1
σ
− µ

σ−1

(2.18)

Lemma 2. If the stability condition (2.18) is violated in a one-sector world (for µ = 1),

it is also violated in a two-sector world (for µ < 1).

Indeed, since the bracketed term in (2.18) is greater than one, when its power increases

(µ ↓) the right-hand side increases and the inequality can become violated.

Corollary 1. All propositions about bounded zone of stable migration equilibria and de-

velopers equilibria in a one-sector world (for µ = 1) remain valid in a two-sector world

(for µ < 1). The zone of stable equilibria must shrink.

Economically, due to trade costs, the price index in a newly established small city
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is larger than that in the old ones, this di�erence being an agglomeration force. Now,

in the presence of µ < 1, this force fades due to a lower share of manufacturing in the

expenditure of a citizen. Thus, µ < 1 reinforces the dispersion result. This argumentation

bridges our Introduction with the developed theoretical setup.

Testable prediction. Importantly, the two-sector version of the model sets a ques-

tion for empirical work. Indeed, the comparative statics in µ suggest a testable prediction:

under Cobb-Douglas preferences, parameter µ represents the share of income spent on

manufacture. Recall also (see Fig. 2.3 and related discussion) that the cities' size de-

creases in response to decreasing trade costs, and growing world population. A new topic

is comparative statics in parameter µ. It should push cities' size in the same direction as

trade freeness ϕ, because both work as dispersion forces against agglomeration. Thus, in

a cross-section comparison of industries, one would expect to observe a negative correla-

tion between the urbanization level of each sector and the share of consumer spending on

its product. To conduct this task, one needs to control only for technological di�erences

in transportation and employment. Cost parameters (c, F ) do not a�ect city sizes. To

the best of our knowledge, this hypothesis is novel, and can be tested in future work.

Although we do not explicitly model the reasons for "exportable services" being pro-

duced exclusively in the capital or few cities, it is not di�cult to imagine a number of

potential explanations for that. First of all, indivisibilities may preclude dispersion of

speci�c activities, like large scale governance which is characteristic for capital cities or

major cities. Second, communication externalities may lead to concentration of R&D

activities and education in large cities. Finally, strong complementarities, or the impor-

tance of good matching between two sides of the market may require a thick market,

which is supposedly the case for arts and movies industries in New York and Los Angeles

(see Florida et al., 2012). Combining such post-industrial cities with industrial ones in a

uni�ed framework is our goal in future work.

2.6 Conclusion

We have revisited Anas' (2004) framework that predicts how, in response to growing

population or decreasing trade costs, some cities can gradually decline and disappear.

These are the "industrial" cities, which do not need externalities. To enhance the realism

of the model, instead of Anas' normative approach, we consider migration and developers'

equilibria. Still, the vanishing e�ect proves to be robust, because it rests on decreasing
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agglomeration force (home-market e�ect) and stable dispersion force (urban cost). Also,

it turns out to be robust to the presence of other ("non-industrial") sectors in the economy,

which are not a�ected by decreasing trade costs in the "industrial" sector. Additionally,

we reveal details of comparative statics: how city size changes monotonically with the

trade costs, the population of the world and preferences between the two sectors. In

particular, goods with better transportation technology are more likely to be produced

in smaller cities.

Generally, we interpret this vanishing e�ect as a realistic outcome a in post-industrial

world, in which many industries indeed relocate to small towns or rural areas. Competing

with other studies of "urban hierarchies" and city specialization, this model is one possible

explanation for deindustrialization. To give an example, our study may shed some light on

the coexistence of large metropolitan areas, such as Tokyo, and small specialized towns,

such as Toyota city, the nature of industrial mix being an important determinant of city

size. An extension of this approach would be a full-�edged general equilibrium model of

qualitatively di�erent sectors residing in di�erent cities and their joint evolution.
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2.A Proofs

Proof of Lemma 1. (1) Consider a city system perturbed by a new small city of

size ε, (n+1, N,N, ..., N − ε, ε). Since �rst n− 1 cities are symmetric, we concentrate on

trade equilibrium, which is symmetric for those cities and take labor in the �rst city as

numeraire. This implies wage wi = 1 for all these i = 1, n− 1. Using pricing rule (2.7)

that uses constant markups, this system has at most six distinct prices (domestic and

export prices for normal city, the same for the disturbed city, and for new city):

pii =
σc

σ − 1
, pi′i =

στc

σ − 1
, pnn =

σcwn

σ − 1
,

pi′n =
στcwn

σ − 1
, pn+1,n+1 =

σcwn+1

σ − 1
, pi′,n+1 =

στcwn+1

σ − 1
. (2.19)

This system can be aggregated into price indexes, evaluated at point ε = 0, so that we

distinguish only �big� cities from �new� ones (by symmetry, we obtain wn = 1):

Pi =

[
Nθ(N)

Fσ

(
σc

σ − 1

)1−σ

(1 + (n− 1)τ 1−σ)

]1/(1−σ)

(2.20)

Pn+1 =

[
Nθ(N)

Fσ

(
στc

σ − 1

)1−σ

n

]1/(1−σ)

(2.21)

At trade equilibrium, the utilities also depend on wages. To �nd the wages, we recall

constant �rm size and use market clearing equations (2.9) for varieties produced in n big

cities and in (n+ 1)-st city, which is small:

(1 + (n− 1)τ 1−σ)θ(N)N [σc/(σ − 1)]−σ

P 1−σ
i

= (σ − 1)F/c (2.22)

nτθ(N)N [στcwn+1/(σ − 1)]−σ

P 1−σ
i

= (σ − 1)F/c. (2.23)

Taking a ratio of these two conditions, we obtain the equilibrium (shadow) wage in

(n+ 1)-st city:

w−σ
n+1 =

1 + (n− 1)τ 1−σ

nτ 1−σ
(2.24)

Recall that θ(0) = 1. Therefore, we can rewrite the comparison of utilities in small and
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big cities Vn+1 ≤ Vn as a comparison of real incomes wn+1/Pn+1 ≤ θ(N)/Pn. Substituting

the de�nition of θ(N), wn+1 and the ratio of price indexes from above we get result (2.10).

(2) Consider a city system perturbed (as in the de�nition of agglomeration stability)

by small migration ε from the second city to the �rst, (n, N + ε,N − ε,N, ..., N). We

apply the same method. There are again at most six distinct prices and we can write the

equilibrium equations for the price indexes and wages with labor in cities i = 3, n being

a numeraire good:

P1 =

[
(N + ε)θ(N + ε)

Fσ

(
σcw1

σ − 1

)1−σ

+
(N − ε)θ(N − ε)

Fσ

(
στcw2

σ − 1

)1−σ

+
Nθ(N)

Fσ

(
στc

σ − 1

)1−σ

(n− 2)

]1/(1−σ)

(2.25)

P2 =

[
(N + ε)θ(N + ε)

Fσ

(
στcw1

σ − 1

)1−σ

+
(N − ε)θ(N − ε)

Fσ

(
σcw2

σ − 1

)1−σ

+
Nθ(N)

Fσ

(
στc

σ − 1

)1−σ

(n− 2)

]1/(1−σ)

Pi =

[
(N + ε)θ(N + ε)

Fσ

(
στcw1

σ − 1

)1−σ

+
(N − ε)θ(N − ε)

Fσ

(
στcw2

σ − 1

)1−σ

+
Nθ(N)

Fσ

(
σc

σ − 1

)1−σ

(1 + (n− 3)τ 1−σ)

]1/(1−σ)

(N + ε)θ(N + ε)w1[σcw1/(σ − 1)]−σ

P 1−σ
1

+
τ(N − ε)θ(N − ε)w2[στcw1/(σ − 1)]−σ

P 1−σ
2

+(n− 2)
τNθ(N)[στcw1/(σ − 1)]−σ

P 1−σ
i

= (σ − 1)F/c (2.26)

66



τ(N + ε)θ(N + ε)w1[στcw2/(σ − 1)]−σ

P 1−σ
1

+
(N − ε)θ(N − ε)w2[σcw2/(σ − 1)]−σ

P 1−σ
2

+(n− 2)
τNθ(N)[στcw2/(σ − 1)]−σ

P 1−σ
i

= (σ − 1)F/c

Di�erentiating this system of equation w.r.t. ε we aim to sign dV1

dε
at the symmetric

point ε = 0.

Note that: (1) at the symmetric point w1 = w2 = 1; (2) by symmetry and de�nition

of N2 we have
dw2

dε
= −dw1

dε
and similar equality applies to price indexes; �nally, dPi

dε
= 0,

i.e. for any third city (i ̸= 1, 2) the e�ect of the population increase in city #1 is canceled

out by the e�ect from exactly same decrease in city #2. Denote the elasticity of any

variable X with respect to ε as EX ≡ dX
dε

ε
X
and totally di�erentiate equations (2.25) and

(2.26) with respect to ε we obtain:

(1− σ)(1 + (n− 1)τ 1−σ)EP1 = (1− τ 1−σ)(1 + Eθ + (1− σ)Ew1) (2.27)

σ(1 + (n− 1)τ 1−σ)Ew1 = (1− τ 1−σ)(1 + Eθ + Ew1 + (σ − 1)EP1) (2.28)

We are interested in the elasticity of indirect utility, which can be expressed as EV1 =

Eθ + Ew1 − EP1 . The solution to the system of elasticity equations delivers:

Ew1 − EP1 = (1 + Eθ)
2σ − 1

(σ − 1)
(
σ − 1 + σ 1+(n−1)τ1−σ

1−τ1−σ

)
Therefore, the stability condition EV1 ≤ 0 can be rewritten as

2σ − 1

(σ − 1)
(
σ − 1 + σ 1+(n−1)τ1−σ

1−τ1−σ

) ≤ − Eθ

1 + Eθ
.

Recall that θ(N) = 1− k
√
N and, hence, Eθ = − k

√
N

2(1−k
√
N)
. Substituting Eθ into previous

inequality delivers result (2.11). Q.E.D.

Proof of Proposition 5. (1) We start with the behavior of Ld(n) when n goes to

in�nity. Brief inspection reveals that this limit is of type ∞× 0 indeterminacy. However,
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we can apply l'Hospital's rule to rearrangements:

lim
n→∞

k√Ld(n) =
1−

(
1 + 1−ϕ

nϕ

)− 2σ−1
(σ−1)σ

1/
√
n

=

2σ−1
σ(σ−1)

(
1 + 1−ϕ

nϕ

)− 2σ−1
(σ−1)σ

−1 (
−1−ϕ

n2ϕ

)
− 1

2n3/2

 ,
and get

lim
n→∞

[
k
√
Ld(n)

]
= 0.

Then, by continuity limn→∞ Ld(n) = 0. This fact can be interpreted as the existence of

some n̄ such that ∀n ≥ n̄ Ld(n) ≤ Ld(1) > 0. By the extreme value theorem, Ld(n) on

interval [1, n̄] attains its maximum Ld∗ (which is �nite) and, therefore, it is bounded by

the value of this maximum on the whole interval [1,+∞). Then, for L greater than the

universal critical population Ld∗, the equilibrium (n,N) is unstable for all n.

(2) The proof of the second part is similar. First, applying l'Hospital's rule to the

expression for ϕd(n), it is possible to show that limn→∞ ϕd(n) = 0. Further, ϕd(n) is

separated from one for any �nal n, and attains some maximum ϕd∗ < 1 at some �nite n,

as in the previous argument. Thus, ϕd∗ is separated from 1, so that on the entire interval

[1,+∞) ∋ n any equilibrium (n, L/n) is unstable against dispersion. Q.E.D.

Proof of Proposition 6. As we have shown in the proof of Proposition 5, critical

Ld(n) approaches zero at a speed 1/n. Therefore, consider the following limit and apply

to it l'Hospital's rule:

lim
n→∞

k√nLd(n) =
1−

(
1 + 1−ϕ

nϕ

)− 2σ−1
(σ−1)σ

1/n
=

2σ−1
σ(σ−1)

(
1 + 1−ϕ

nϕ

)− 2σ−1
(σ−1)σ

−1 (
−1−ϕ

n2ϕ

)
− 1

n2

 =
(2σ − 1)(1− ϕ)

σ(σ − 1)ϕ

Similarly,

lim
n→∞

k√nLa(n) =

2

σ+2+
(σ−1)σnϕ

(2σ−1)(1−ϕ)

1/n
=

2n

σ + 2 + (σ−1)σnϕ
(2σ−1)(1−ϕ)

 =
2(2σ − 1)(1− ϕ)

σ(σ − 1)ϕ

Combining these limits together and applying continuity we obtain limn→∞ n(La(n)−
Ld(n)) > 0. This implies that n̄ exists such that ∀n ≥ n̄ La(n) > Ld(n), or equivalently,

there is no L such that La(n) ≤ L ≤ Ld(n), which is the necessary condition for migration
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stable equilibrium. Q.E.D.

Proof of Proposition 9. Let us perform comparative static exercise w.r.t. N1.

Taking elasticity of the equilibrium conditions, we �nd

(1− σ)(1 + (n− 1)τ 1−σ)EPn
d = 1 + Eθ + (1− σ)Ewn

d (2.29)

σ(1 + (n− 1)τ 1−σ)Ewn
d = 1 + Eθ + Ewn

d + (σ − 1)EPn
d (2.30)

Here the subscript d emphasizes that elasticity is perceived by the developer. The

elasticity equations for the stability against agglomeration (2.27) and (2.28) look very

much alike, only with (1 − ϕ) multiplier on the right hand side. Therefore, the costlier

the trade, the more developer stability behavior resembles that of stability against ag-

glomeration. The intuition is straightforward: cities a�ect each other through trade only.

Therefore, the higher trade costs are, the less impact a developer's city has on other

cities, and therefore, the smaller the developer's mistake in assuming no change in other

cities will be. Solving these equations and evaluating the elasticity of indirect utility, we

obtain:

EV1
d =

2σ − 1

(σ − 1)(2σ − 1 + σ(n− 1)ϕ)
(1 + Eθ) + Eθ (2.31)

Straightforward algebra yields the result. Q.E.D.

Proof of Proposition 10. We start with the case of a wise developer. First, observe

that due to Bernoulli's inequality

Ld(n) =
n

k2

[
1−

(
1 +

1− ϕ

nϕ

)− 2σ−1
σ(σ−1)

]2
≤ n

k2

[
(2σ − 1)(1− ϕ)

σ(σ − 1)nϕ

]2
(2.32)

Second, observe that La(n) is a unimodal function with

argmax
n

La(n) = n̄ =
(σ + 2)(2σ − 1)(1− ϕ)

σ(σ − 1)ϕ
(2.33)

Thus, for n > n̄ La(n) is decreasing. Moreover, we now show that for such n La(n) ≥
Ld(n). Indeed,

La(n) =
n

k2

[
(2σ − 1)(1− ϕ)

σ(σ − 1)nϕ

]2 [
2

(σ+2)(2σ−1)(1−ϕ)
σ(σ−1)nϕ

+ 1

]2
≥ n

k2

[
(2σ − 1)(1− ϕ)

σ(σ − 1)nϕ

]2
≥ Ld(n)
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where the �rst inequality follows from n > n̄ and de�nition of n̄ (2.33) and the second

inequality follows from (2.32). Recall that stability against dispersion requires L(n) <

Ld(n), therefore, wise developer stable equilibrium is possible only on the increasing part

of La(n). Thus, with population L growing, the number of cities n grows as well, and

since La(n)/n is a decreasing function, the city size N declines. Further, La(n) decreases

with the increase in freeness ϕ. Again, because the equilibrium must be on the increasing

part of the curve, decreasing ϕ given L leads to an increase in the number of cities n.

The city size N declines.

Proof for the myopic developer works along the same lines. Q.E.D.
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Chapter 3

Hotelling Meets Chamberlin: Spatial

Monopolistic Competition

Co-authored by Sergey Kokovin and Takatoshi Tabuchi.

3.1 Introduction

Motivation. Addressing consumers' heterogeneity in the markets for di�erentiated

products, we observe that individual consumers typically favor di�erent �ideal goods�,

e.g. favorite type of beer or co�ee � and, further, often choose something di�erent from

time to time. In other words, each consumer's love for variety struggles with her love

for ideal product type. This con�ict results in a non-equal mixture of ideal and non-ideal

varieties in the consumption bundle of an individual. Somewhat similarly, consumers in

a city quite often buy food from the nearest shop but also use other shops from time

to time. Such behavior generates an intersection of the shops' ranges of service. On a

country-wide scale, we also observe intersecting trade areas of various �rms, though closer

clients are served more frequently. Overall, in many real markets, the partially-localized

preferences of consumers give rise to partially-localized competition.

Equally important in this respect is the question of the market structure: Why do

some seemingly similar markets show very di�erent degree of product di�erentiation,

e.g. why is more than half of the beer market in the US covered by only three brands,

whereas no one brand has even ten percent of the beer market in the UK. It is important

to understand which features of the consumer's partially-localized preferences or market
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geography may account for such di�erent outcomes.

These questions are not exactly new in economic theory. Almost simultaneously,

Hotelling (1929) and Chamberlin (1933) introduced two competing ideas: consumers'

ideal points and their love for variety. The subsequent Hotelling-style tradition of mod-

eling spatial markets maintains the homogenous good assumption (see Lancaster (1966),

Salop (1979), Vogel (2008)). In this case, each consumer is served by a single �rm, i.e,

ranges of service do not intersect because each �rm competes only with its adjacent

neighbor for the borderline consumer. By contrast, Chamberlinian tradition (which be-

came the mainstream market concept after Dixit-Stiglitz (1977) and has taken a central

place in new theories of trade, geography, and growth since then) assumes a �horizontally�

di�erentiated good without space. This makes the ranges of service completely coincid-

ing : every �rm competes equally with every other �rm. In our view, a representative

consumer's �love for variety� concept in usual monopolistic competition theory remains

subject to doubts and objections. We believe that the real life love for variety stems

mainly from consumer heterogeneity. We would like to make this intuition explicit, akin

to the theory of product di�erentiation under discreet choice (see Anderson et al. (1992)

for a review).

Another question is robustness. Given that the market structure we have in mind

appears to be di�erent to those widely studied, would standard theoretical conclusions

remain or change drastically after the introduction of heterogeneous consumers? Does

market equilibrium behave the way we are used to in response to a change in endogenous

variables such as the market size?

Aiming to answer these questions, we introduce a model that �lls the gap between

two polar views on competition. The present paper bridges the (free-entry version of)

Hotelling (1929) and Chamberlin (1933) approaches in a simple but general way. It

includes both these polar special cases, di�ering in essence by two parameters: love for

variety (absent in Hotelling) and distance cost (absent in Chamberlin). Our construction

aims to keep all features of the mainstream monopolistic competition theory present but

to replace the representative consumer with heterogenous consumers. Introducing the

simplest rich model of this kind, we compare it with other models bridging space and

love for variety, and point out various important extensions for subsequent work. At the

center of this paper is the question of how a spatial dimension (consumer heterogeneity)

changes the nature and comparative statics of market competition.

Setting. Consumers are continuously distributed with some given density along a cir-
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cumference, similar to the Salop (1979) model. This space can represent a geographical

space, or a space of consumers' tastes, i.e., ideal points among varieties of the di�erenti-

ated good. In contrast to inelastic demand in Salop and discrete-choice papers, here each

consumer combines various quantities of ideal and non-deal varieties in her consumption

bundle, due to love for variety. Consumers are identical in preferences, have the same

(unspeci�ed additive) utility function and income, but di�er in their locations. Naturally,

everybody prefers varieties (�rms) located closer than those farther away and buys more

of a variety located closer to her ideal point. This feature is described by some �cost of

distance� linearly introduced into two versions: either as monetary cost to transport the

good or as disutility of distance to ideal point. The former version is better suited for

geographical interpretation of the model (and also for intermediate production goods),

whereas disutility of distance has more bite in a setting with product characteristics space

of consumer goods.

As to (the continuum of) �rms, their number and location, unlike in Hotelling, is

not given but endogenous. Following Chamberlin (1933) and Dixit-Stigliz (1977), our

market exhibits free entry and increasing returns in producing a di�erentiated good.

Homogeneous �rms simultaneously choose their prices and their locations, taking as given

the density of consumers and current local intensity of competition everywhere. Gross

demand of a �rm is the aggregate of the demands of all consumers within its range

of service (where distance costs allow for positive demand). Market equilibrium in the

general version of the model consists of three curves in the consumer space: (i) the

density distribution of �rms, (ii) their prices, (iii) competition intensity (marginal utility

of money). The volumes of individual demand for all �rm-consumer pairs and ranges of

service can be derived from these variables. However, in the basic version of the model

with uniform density of consumers and symmetric (uniform) distribution of �rms, such an

equilibrium boils down to three scalars: mass of �rms, price, and competition intensity.

Actually, when the circular space of consumers shrinks to a point or distance cost shrinks

to zero, at the limit one arrives at the standard model of monopolistic competition.

Otherwise, the new model enables richer predictions, especially an endogenous range of

service, at least under those utilities which have a �nite derivative at zero (choke-price);

for instance linear-quadratic utility. Without a choke-price, e.g. under constant elasticity

of substitution (CES) preferences, the whole consumer space is always served by every

�rm.

Results. First, we analyze the basic setting, trying to reveal similar e�ects of compe-
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tition as in usual monopolistic competition theory (see Zhelobodko et al., 2012, henceforth

ZKPT). Should a growing population make �rms more numerous and larger, and simulta-

neously push their prices down? The technical achievement in this direction is convenient

reformulation of the aggregated demand faced by a �rm into �consumer surplus� of ele-

mentary utility at maximal local consumption. Then, the uniform spatial model turns out

equally simple and tractable to usual monopolistic competition. This news may inspire

theorists wishing to expand the usual analysis of international trade to the in�uence on

consumer tastes and �rms core competencies.

For both versions of our model (monetary cost and disutility of distance) we obtain

general propositions of comparative statics. Namely, under incomplete coverage of space

by a �rm's service (choke-price), population growth (e.g., opening trade) always leads to

more numerous �rms, higher competition and smaller individual consumption of each va-

riety, but price behavior and �rm size both depend on the elasticity of elementary utility.

Under the natural DEU (decreasingly-elastic utility) condition, prices go down, otherwise

the opposite outcome takes place. This outcome reminds us of the necessary and su�cient

condition from ZKPT for �pro-competitive e�ect� of the market size or trade, which is in-

creasing (in the absolute value) elasticity of the inverse demand function (IED). However,

now IED is replaced by the DEU condition, which appears to be a direct application of

ZKPT to the integrated demand, because of the crucial simpli�cation described. These

e�ects are similar, which generally supports the robustness of monopolistic competition

modeling: spatial generalization does not destroy it.

Moreover, although the two conditions do not seem to be directly related, intuitive

interpretations of them are strikingly similar: expanding market size generates pro-

competitive e�ects when demand is not too convex.

However, instead of similarity, a theorist should be more interested in the direction

in which spatial monopolistic competition di�ers from usual modeling. How does the

heterogeneity of integrated demands change the shape of gross demand function? As we

know, generally, heterogeneity combined with integration makes the demand more convex

(see such a conclusion for income heterogeneity in Osharin et al., 2014). Indeed, consider

a simple example of quadratic elementary utility u(q) = q − 0.5q2 which generates linear

demand function q = 1 − P of total price P = p + t which depends on cost-of-distance

coe�cient t. One may check that the range of service will be (1− p) /t and the gross

demand of a �rm is quadratic: Q = 0.5(1−p)2/t, more convex than initial linear demand.

It is the elasticity and convexity of the gross demand that govern the behavior of �rms
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and generates many market e�ects. So, turning from a usual consumer-homogeneous

monopolistic competition model to a spatial one may essentially change some theoretical

predictions. Upturning this idea, we may say that when empirical estimates of gross

demand are found to be a quadratic function in the form Q = 0.5(1−p)2, then under the

assumption of spatial monopolistic competition, the elementary utility revealed must also

be quadratic, not cubic, as one would conclude assuming spaceless competition. A similar

conclusion applies to numerous econometric estimates of CES demand: the magnitude of

the underlying elementary elasticity of substitution σ between varieties must be di�erent

from one reported under the assumption of spaceless competition. Furthermore, in some

cases, introducing space and the related demand convexi�cation may destroy the usual

assumption of concave pro�t. In this case multiple equilibria arise, as our preliminary

inquiry in this direction suggests.

Second, we analyze the case with complete coverage of space by service. It is neces-

sary not only to include the CES case into the study, but also to be able to show that

usual monopolistic competition is really a limiting case of a spatial one when distance

cost fades away. This case is substantially less tractable. However, we show that, as

expected, as transportation costs diminish to zero, the model converges to the standard

spaceless monopolistic competition model of ZKPT. We also show that the general con-

clusion persists: the market is pro-competitive when demand is not too convex. However,

unfortunately in this case we do not have an exact border line case between two market

modes. It remains an empirical question in which mode � partial coverage or complete

coverage � each particular market operates.

3.2 The Uniform Model

In this section we set up a simpli�ed version of our model. We assume that consumers

are distributed uniformly over a circumference of unit length. A point of the circumference

can be viewed as a geographic location or a speci�c product in the product characteristic

space. Firms are free to choose any point of the circumference to enter. For now we

constrain our attention to the case where �rms are also distributed uniformly over the

circumference. In what follows, we label it a uniform equilibrium. The concept of uniform

equilibria may be criticized, because they need not be stable and because non-uniform

consumer distribution is unlikely to give rise to uniform distribution of �rms. However,

without this basic model, more complicated equilibria are di�cult to comprehend. More-
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over, to support an approximately-uniform, or at least continuous distribution of �rms,

we introduce, in a reduced form, an external dispersion force that pushes one �rm away

from another. It represents land prices and other congestion forces common to economic

geography but not modeled here explicitly. In this case, the tendency towards dispersion

of �rms looks more plausible.

In what follows we consider two versions of spatial models: (i) monetary cost of

distance and (ii) disutility of distance. In the �rst version, the adjustment cost for con-

suming products produced further away from the consumer's location enters the budget

constraint. This formulation is common in economic geography; it is also �ts well to

the case when our �consumer� is actually a �rm that consumes some intermediate good,

incurring costs for adjusting the good to �t its exact needs. The second version has more

bite in the case of consumption goods; here �distance� from one's favorite variety has

some disutility value. We now turn to the formal description of our model.

3.2.1 The Model Setup

Consumers and varieties. We assume identical consumers, each possessing one

unit of a numeraire good (for instance, labor). As in Hotelling (1929), any consumer

type is characterized by her bliss point x in some space Ω, i.e., her beloved variety of the

di�erentiated good. The types are uniformly distributed with density L along the circular

space of product characteristics, the circumference Ω = [−1/2, 1/2] of length 1 (Salop's

�race-track economy� is a proxy for �long" linear interval). Following the Chamberlinian

tradition, each variety is produced by a single �rm and each �rm produces single-product.

There is a continuum of �rms. A �rm's type, denoted y ∈ [−1/2, 1/2] refers to its location

on the circumference, i.e., its targeted type of consumers, whereas (endogenous) density

µy is the measure of �rms in the same location. As has been stated, in this section the

density µy ≡ µ > 0 is assumed to be constant at each point y ∈ Ω. In addition, we assume

mill pricing by the �rms, i.e. a �rm at y charges gate price py for its product. Again,

with our focus on the symmetry, price distribution is also uniform with py ≡ p > 0.

Ranges of service of various �rms do intersect with each other, because consumers love

variety. However, they love various varieties unequally. The bliss-point variety is slightly

preferred to other varieties. For instance, one can imagine a consumer occasionally using

many restaurants in her city but preferring not to go too far. More generally, either

adjusting the non-ideal variety to consumer's tastes is costly, or carrying a purchase
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home from a remote shop is costly. Speci�cally, we assume adjustment costs q · τ(θ) for
buying q and carrying it home from distance θ, where τ(·) is an increasing function of

distance, which for the simplicity of exposition we assume to be linear. Hence, remote

varieties will be consumed in smaller amounts. In particular, extremely remote varieties

may become ignored, not consumed. Therefore, in equilibrium each consumer x has an

(endogenous) range of varieties (�rm types) that she wishes to buy, θ̂ ∈ (0, 1/2] denotes

the length of the range of service, also constant for every consumer. An equilibrium may

result in a small range θ̂ < 1/2 which means �incomplete coverage� of the circumference

Ω by each �rm's service. Another possibility is �complete coverage by service� θ̂ = 1/2, in

the case when the cost of distance is small enough to buy products (in di�erent quantities)

from all �rms.

Now we can formulate the consumer problem. Given the (uniform) price distribution

p and �rm distribution µ, the consumer seeks to maximize her utility subject to budget

constraint:

Monetary cost Disutility of distance

max
qxy>0

µ
´
Ω
u(qxy)dy max

qxy>0
µ
´
Ω
u(qxy)− qxyτ(x, y)dy

s.t. µ
´
Ω
(p+ τ(x, y))qxydy = 1 s.t. µ

´
Ω
pqxydy = 1

A consumer at x buying quantity qxy from a �rm at y receives direct consumption

utility u(qxy) in both versions of the model. The elementary utility function u(·) is as-
sumed to be increasing, thrice di�erentiable and concave, thus, generating love for variety.

In addition, u(0) = 0, i.e. the presence of a variety does not generate any utility if the

consumer does not consume it. This normalization allows for neat representation of the

comparative statics results. Total utility is additive in elementary utilities over the whole

range of varieties. This unspeci�ed additive utility will allow us to relate comparative

statics market e�ects to features of preferences and to contrast the results with the cur-

rent literature on non-spatial monopolistic competition (see ZKPT). Adjustment cost

function τ(x, y) depends on the distance between x and y and represents either the mon-

etary or utility cost per unit of consumption of worse than ideal variety, by assumption

τ(x, x) = 0. For simplicity, we assume the transportation cost to be linear in distance.

Given that our space is circumference, it implies

τ(x, y) = tmin {|x− y|, 1− |x− y|} .
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In the �rst formulation, the costs enter budget constraint, therefore, we refer to this

version as the monetary cost model. In the second version, these costs enter utility

directly, and we refer to that version as the disutility of distance model.

Producers. The solution to the consumer problem gives rise to the location speci�c

demand functions dxy(py, p, µ), i.e. given the price of variety y and collection of other

prices p and density of �rms µ how much product a consumer at x buys from a �rm at

y. Each producer takes the demand functions and number of competitors as given and

prices her variety to maximize pro�t. As is standard in the monopolistic competition

literature, we assume that the producer incurs constant marginal cost m of production

and �xed cost F to operate on the market. In addition, we introduce a dispersion force

in a reduced form into the model. We assume that �xed cost F = Fy = F (µy) = F (µ) is

a non-decreasing function of the density of �rms at y.

In most of our analysis we treat the �xed cost component as constant (independent of

the number of �rms), assuming that dependency is weak enough not to a�ect comparative

statics results. Nevertheless, we introduce a dispersion force for two reasons. First, the

dispersion forces are conceptually important, especially in the case relevant to economic

geography. The concentration of the activity in a particular point raises the price of

land and increases congestion costs. Second, on theoretical grounds, the presence of a

dispersion force counters the potential instability of continuous uniform equilibria. The

latter consideration will be especially relevant in future development of the model, since

preliminary results show that continuous equilibria are not always stable.

Formally, a producer at y chooses the price to solve the following pro�t-maximization

problem:

max
py≥0

π(py, p, µ) = max
py≥0

(py −m)

ˆ
Ω

dxy(py, p, µ)dx− F (µ)

Equilibrium. Entry into the market is free. Because of the entry, pro�ts must vanish

at each location:

π(py, p, µ) = 0.

Symmetric equilibrium is a bundle {p, µ, dxy(py, p, µ)} of price, density of �rms and

location-speci�c demand functions, that satisfy all consumer and producer optimization

conditions, and the free-entry condition. This general de�nition is valid for both versions

of the model. In the following analysis of each of the setups, we re�ne the equilibrium

de�nition accordingly to simplify exposition in each case.
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3.2.2 Monetary Transportation Costs

We begin our analysis of features of the spatial monopolistic competition with the

monetary transportation cost version of our model. First, we derive the demand function.

Standardly, consumer optimization implies:

qxy(u
′(qxy)− λx(p+ τ(x, y))) = 0.

Here, λx is the Lagrange multiplier of the budget constraint of a consumer at x, which

can be interpreted as the intensity of competition for this consumer. Due to symmetry,

λx = λ for all x. From the complimentary slackness of the consumer's optimality condition

it can be seen that if u′(0) is small enough qxy = 0 for some y su�ciently far from x. On

the other hand, it might be the case that qxy > 0 for every pair x and y (indeed, it has

to be the case, if u′(0) = ∞). We refer to the former as partial coverage, because �rms

do not serve each and every consumer, and to the latter as full coverage, by analogous

reasoning. As we show later, this distinction is quite important because the comparative

statics of the equilibrium di�ers substantially between these two cases. Essentially, the

length of coverage can be found as:

θ̂(p) = max

{
1

t

(
u′(0)

λ
− p

)
, 1/2

}
Partial Coverage

We start with the analysis of the case of partial coverage of consumers by �rms.

Because we consider uniform equilibria when �rms are identical up to rotation we can

focus on the �rm at y = 0. Let the elementary demand function D(p) = u′−1(p) when-

ever the inverse of marginal utility exists and zero otherwise. With this notation qxy =

D(λx(p+ τ(x, y)), and the �rm's pro�t can be written as:

Π(p, λ) = 2(p−m)L

ˆ θ̂(p)

0

D(λp+ λτ(θ, 0))dθ − F (µ)

When maximizing the pro�t, producers take intensity of competition λ as given.

Here we use the variable θ = |x − y| of consumer-producer distance, i.e., distance of

any consumer-type θ ∈ [0, θ̂] from a �rm located at 0. Aggregate quantity sold by the

�rm is the sum of quantities sold to consumers between −θ̂(p) and θ̂(p). Density L

of consumers at each location factorizes the total output of the �rm dedicated to all
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consumers everywhere (L is also total population).

An integral of (inverse) derivative can be simpli�ed. Namely, for the case of linear

cost function τ(θ) = tθ we consider D (whose argument runs from minimal �price" λp

to maximal �price" λp + λtθ̂), and argue that integrating D is the same as integrating

its inverse u′ whose argument runs from 0 to maximum value q0 = D(λp), which is

the maximal purchase occurring near the bliss-point. Intuitively, instead of integrating

quantities over the consumers in the space, we integrate them over the price range.

Technically, this amounts to substitution of variables: q = D(λp + λtθ), or a change of

the axis of integration in the price-quantity space. Thus, any �rm's gross output Q can

be represented as

Q = 2L

ˆ θ̂(p)

0

D(λp+ λtθ)dθ =
2L

λt

0ˆ

D(λp)

qd(D−1(q)− λp) = −2L

λt

D(λp)ˆ

0

zdu′(z) =

=
2L

λt

−D(λp)u′(D(λp)) +

D(λp)ˆ

0

u′(z)dz

 =
2L

λt
[u (D(λp))− λpD(λp)]

which is similar to �consumer surplus� in spaceless IO models and decreases in p. In

fact, it is the surplus of a consumer located exactly at the �rm's location. It must be

noted that this simpli�ed structure of aggregate demand relies on the assumption of linear

transportation costs.

Thus, under linear distance cost τ(θ) = tθ and uniform equilibrium, any producer's

pro�t can be rewritten without an integral, simply as

Π(p, λ) = (p−m)
2L

λt
[u(D(λp))− λpD(λp)]− F (µ). (3.1)

Di�erentiating our pro�t (3.1) w.r.t. p we arrive at the FOC:

Πp =
2L

λt
[u(D(λp))− λpD(λp)− (p−m)λD(λp)] = 0 (3.2)

Furthermore, di�erentiating the previous expression (3.2) we get the producer's second

order condition for pro�t maximization:

Πpp =
2L

λt
[−(p−m)λD′(λp)− 2D(λp)] < 0
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which we assume to hold strictly in equilibrium. Thus, producer's optimality condition

Πp(p, λ) = 0 together with the free entry condition Π(p, λ) = 0 determine equilibrium

pair of price and competition intensity (p, λ). From them, other equilibrium quantities

of interest, i.e. consumption, density of �rms and range of service can be obtained via

the consumer's optimal choice and budget constraint discussed above.

Comparative statics. We have characterized equilibrium in the case of partial

coverage. Now we turn to the question of interest: how does the equilibrium react

to changes in market size? In particular, whether increasing market size or decreasing

transportation costs and the associated increase in competition leads to lower prices. In

what follows, we �nd it helpful to de�ne the additional equilibrium variable q0 = D(λp),

which represents the consumption of an ideal variety. The next proposition establishes

that the elasticity of the elementary utility function εu(q) =
qu′(q)
u(q)

plays a de�ning role in

the comparative statics behavior: decreasing elasticity of utility leads to pro-competitive

e�ects, whereas increasing εu(q) leads to anti-competitive e�ects of the increasing market

size.

Before proceeding to the proposition, we would like to address a concern that εu(q),

as de�ned, is not immune to a�ne transformations of the elementary utility function.

Given our assumption of separable additive aggregate utility, an a�ne transformation of

u(·) must not change the equilibrium outcome. However, our normalization assumption

is u(0) = 0, which we used in the derivation of the aggregate demand for the �rm's

product. Without it, the result of our comparative statics analysis would depend on the

more cumbersome ε̃u(q) =
qu′(q)

u(q)−u(0)
. To ease the notation, we stick to our normalization,

and elasticity of utility as the quantity of interest.

Proposition 11. Consider the version of the model with monetary costs of transportation

and with partial market coverage. Then an increase in the market size L, or a decrease in

the transportation cost t, leads to: (i) an increase in the intensity of competition λ; (ii)

a decrease in purchases of the ideal variety q0; (iii) a decrease (an increase) in the prices

whenever εu(q) is a decreasing (increasing) function. In addition, expanding market size

L leads to increasing µ, i.e. more �rms entering the market, and decreasing θ̂, i.e. the

competition being more localized.

Proof. First, observe that L/t enters �rm's equilibrium conditions only as a ratio,

therefore, the results for the transportation cost follow immediately from the result for

the market size. Thus, we focus only the market size e�ects. Now we rewrite the �rm's
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�rst order and zero pro�t conditions in (p, q0) instead of (p, λ) variables, using the fact

that λ = u′(q0)
p

. The �rm's �rst order condition becomes:

u(q0)− u′(q0)q0 − (p−m)
u′(q0)q0

p
= 0,

and zero pro�t condition:

(p−m)
2pL

u′(q0)t
[u(q0)− u′(q0)q0] = F (µ).

Denote εu(q0) =
u′(q0)q0
u(q0)

the elasticity of the utility function at q0. With this standard

notation and some algebra, the equilibrium conditions become:

1

εu(q0)
= 2− m

p
(p−m)2

2L

t
q0 = F (µ).

Observe that from the �rst equation it follows that in equilibrium 1/2 < εu(q0) < 1.

We now totally di�erentiate both equations, obtaining:

−ε
′
u(q0)

ε2u(q0)

dq0
dL

=
m

p2
dp

dL

and

2(p−m)Lq0
dp

dL
+ (p−m)2L

dq0
dL

+ (p−m)2q0 = 0.

Observe that from the �rst equation it follows that price p and quantity q0 co-move

when the elasticity of utility is decreasing, and move in the opposite direction when the

elasticity of utility is increasing. Combining them, we get:[
p−m− 2q0

ε′u(q0)p
2

ε2u(q0)m

]
dq0
dL

= −(p−m)q0
L

(3.3)

Using the fact that ε′u(q0) =
(

q0u′(q0)
u(q0)

)′
= u′(q0)u(q0)+q0u′′(q0)u(q0)−q0u′2(q0)

u2(q0)
we can rewrite

the expression in the square brackets.

p−m− 2q0
ε′u(q0)p

2

ε2u(q0)m
= p−m− 2q0

u′(q0)u(q0) + q0u
′′(q0)u(q0)− q0u

′2(q0)

q20u
′2(q0)

p2

m
=

= p−m− 2q0

(
1

q0ε(q0)
+
u′′(q0)

u′(q0)

1

ε(q0)
− 1

q0

)
p2

m
=
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= p−m− 2

(
1

ε(q0)
− 1

)
p2

m
− 2q0

u′′(q0)

u′(q0)

1

ε(q0)

p2

m
=

= p−m− 2

(
1− m

p

)
p2

m
− 2q0

u′′(q0)

u′(q0)

1

ε(q0)

p2

m
=

= (p−m)(1− 2
p

m
)− 2q0

u′′(q0)

u′(q0)

1

ε(q0)

p2

m
= (p−m)

−1

εu(q0)

p

m
− 2q0

u′′(q0)

u′(q0)

1

ε(q0)

p2

m
=

= − 1

εu(q0)

p2

m

u′′(q0)

u′(q0)

[
p−m

p

u′(q0)

u′′(q0)
+ 2q0

]
The term in front of the bracket is clearly positive. We can now use the �rm's second

order condition, which in our variables can be expressed as p−m
p

u′(q0)
u′′(q0)

+ 2q0 > 0, which is

exactly the bracketed term. Thus, the bracketed term in (3.3) is positive. This implies

that dq0
dL

< 0, i.e. consumption of the ideal variety always decreases with the market size.

The result for the price behavior follows from the discussion above.

To understand the behavior of the intensity of competition λ notice that Π(p, λ) = 0

together with Πp = 0 imply that

dλ

dL
= −ΠL

Πλ

= − F (µ)/L

− 1
λ
F (µ) + (p−m)2L

λt
[−pD(λp)]

> 0

Therefore, the intensity of competition increases with the market size regardless of

the nature of preferences. In addition,

dλ

dt
= −Πt

Πλ

= − −F (µ)/t
− 1

λ
F (µ) + (p−m)2L

λt
[−pD(λp)]

< 0

and,

ελt = − t

λ

dλ

dt
=

F (µ)

F (µ) + (p−m)2L
t
[pD(λp)]

= 1− εu(q0) < 1/2

Thus, the intensity of competition increases when transportation costs decrease. How-

ever, it does not increase too fast: ελt < 1/2 implies that both λt and λ2t decrease when

transportation costs decrease.

Now, we focus on the cases we �nd plausible, i.e. on the decreasing or slowly increas-

ing elasticity of utility. In these cases q0 decreases, thus, λp = u′(q0) increases. Therefore,

the radius of service θ̂ =
u′
0−λp

λt
decreases as market size increases. The case of decreasing

transportation costs is less clear. On the one hand, equilibrium forces, as before, push

the radius of service down, yet at the same time, the mechanical e�ect of cheaper trans-

portation leads to the expansion of coverage. The direction of the aggregate a�ect, which
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is the sum of these two (direct and equilibrium) e�ects, is unclear. The last equilibrium

variable of interest is the number of �rms µ. To understand its behavior, we return to

the consumer's budget constraint:

1

2µ
=

ˆ θ̂

0

(p+ tθ)D(λp+ λtθ)dθ =
1

λt

ˆ 0

D(λp)

q
u′(q)

λ
du′(q) =

1

2tλ2

ˆ D(λp)

0

qd(−u′(q)2)

The integrand does not depend on any equilibrium variables, and at the same time

the upper limit of integration q0 decreases with the market size. Therefore, the entire

integral decreases. In addition, the intensity of competition increases, thus, as expected,

the expanding market size leads to more entry and an increase in the density of �rms.

However, as shown before, the intensity of competition does not increase su�ciently fast

with the decrease in the transportation cost, and λ2t is decreasing. This generates an

ambiguous e�ect on the density of �rms when transportation costs decrease. Q.E.D.

Thus, we have classi�ed markets according to the εu into two categories: those with

DEU react to relative market size pro-competitively (decreasing prices under higher com-

petition), and those with IEU behave anti-competitively. The open question is what case

is more realistic? For instance, under the widely used linear demand, and CARA and

HARA utility functions, elasticity of utility is decreasing. All these preferences generate

similar pro-competitive e�ects in usual spaceless monopolistic competition as well but

for a di�erent reason: they generate increasingly-elastic demand (IED); see ZKPT. In

principle, a combination of properties IED+DEU of demand/utility is widely used and

considered natural but not guaranteed.

These comparative static results generally look intuitive. Indeed, more dense con-

sumer population should entoce more �rms to each location. This shift increases local

competition and pushes consumption of each individual variety down, because more va-

rieties become closer and available to the consumer. As a consequence, one would expect

decreasing prices. Indeed, this is really the case under the natural and widely used im-

plicitly DEU assumption. Thus, here increasing or decreasing elasticity of utility governs

prices, unlike increasing or decreasing demand elasticity in ZKPT.

The di�erence stems from the fact that now gross demand is the aggregation of the

local demands u′−1 of various consumers (di�erent in distance from the producer). Inte-

grating u′−1 can be looked upon as integrating u′, which is why maximizing pro�t reminds

us of maximizing utility u. Put di�erently, what is important for price behavior is the

elasticity of the aggregate demand a �rm faces. At the same time, the aggregation of
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heterogeneous demands does not directly inherit properties of individual demands. In

other respects, general explanation of price behavior is the same: a su�ciently �at gross

demand curves generate natural e�ects, more convex demands enable paradoxical price

behavior in response to growing competition.

Complete coverage

In the case of complete coverage, every �rm sells its product to every consumer but,

unlike the ZKPT spaceless model, in di�erent quantities. This case is more di�cult to

analyze because it is a mixture of two very di�erent market operating modes. Intuitively,

assume �rst that the transportation cost is very small. Then, the model converges to the

spaceless case, and the comparative statics is governed by the behavior of the elasticity of

individual demands, i.e. marginal utility, as in the ZKPT model. On the other hand, if

the space is just covered, i.e. consumption of the most remote varieties is very small, the

model is basically the same as the model with partial coverage, and comparative statics is

governed by the elasticity of the elementary utility function. Therefore, the comparative

statics in any case in between these will depend on both elasticity of utility and elasticity

of marginal utility. For this reason, here we provide only partial characterization of this

case, focusing on the most popular and arguably natural case: that of not very convex

demand.

To study this case, in addition to the quantity of an ideal variety q0 = D(λp) we

introduce the quantity of the least preferred variety q1 ≡ D(λp + λt0.5). This allows us

to express a �rm's gross demand Q in a similar fashion as before, i.e. as a combination

of consumer surpluses:

Q(p, λ) = 2L

ˆ 0.5

0

D(λp+ λtθ)dθ =
2L

λt

ˆ q1

q0

qdu′(q) =

=
2L

λt

[
q1u

′(q1)− q0u
′(q0)−

ˆ q1

q0

u′(q)dq

]
=

2L

λt
[u (q0)− λpq0 − u (q1) + (λp+ λt0.5)q1]

In words, the total demand is proportional to the di�erence in consumer surpluses

between the closest and the furthest consumer. Again, this relatively straightforward

representation relies on the linear distance cost. Although this assumption is very re-

strictive, it is not uncommon in the literature. Now, as in the case of partial coverage,

�rms' optimal behavior and free entry condition de�ne the equilibrium in (p, λ) variables.

All other equilibrium quantities of interest can be recovered from them. Indeed, the free
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entry condition requires that in equilibrium:

Π(p, λ) = (p−m)Q(p, λ)− F (µ) = 0

and �rm's optimal behavior is characterized by the �rst order condition:

Πp = Q(p, λ) + (p−m)
2L

λt
[−λD(λp) + λD(λp+ λt0.5)] = 0

Similarly to the case studied before, consumption of varieties q0 and q1 and density

of �rms µ can be derived from (p, λ) using a consumer's optimality condition and budget

constraint. We now formulate our comparative statics result. As we have mentioned, the

analytical complexity of the case precludes complete characterization of the comparative

statics e�ects. Nevertheless, we show that in the most popular cases, when individual

demand is relatively �at, the market behaves pro-competitively.

Proposition 12. In the version of the model with monetary cost of transportation and

with complete market coverage, let the elasticity of marginal utility εu′ = − qu′′(q)
u′(q)

< 1.

Then an increase in the market size L leads to an increase in the intensity of compe-

tition λ. Moreover, if the demand is not very convex, i.e. if the ratio −u′′(q)/u′(q) is

an increasing function, then increasing market size leads to decreasing prices p, and the

market is pro-competitive.

Proof. First, totaly di�erentiating free entry condition and using the fact that Πp = 0

in equilibrium, we get:

dλ

dL
= −ΠL

Πλ

=
F (µ)/L

F (µ)/λ+ (p−m)2L
λt
[pD(λp)− (p+ t/2)D(λp+ λt/2)]

> 0

where the inequality follows from the fact that pD(p) is a decreasing function whenever

the elasticity of demand is greater than one (i.e. the elasticity of marginal utility is less

then one). Second, totally di�erentiating the free entry condition, we get: Πpp
dp
dL
+Πpλ

dλ
dL
+

ΠpL = 0, notice further that ΠpL = LΠp = 0, therefore:

dp

dλ
= −Πpλ

Πpp

dλ

dL

Since Πpp < 0 in equilibrium and dλ
dL
> 0 as established, the sign of the comparative

statics of the price with respect to the market size is determined by the cross derivative
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of the pro�t function. The last step is to characterize that sign:

Πpλ =
2L

λt
[−pD(λp) + (p+ t/2)D(λp+ λt/2)]+

+(p−m)
2L

λt
[−D(λp) +D(λp+ λt0.5)− λpD′(λp) + (λp+ λt/2)D′(λp+ λt0.5)]

We now rewrite it in terms of variables q0 = D(λp) and q1 = D(λp+ λt/2) using the

fact that D′(p) = 1
u′′(D(p))

:

Πpλ ∝ [−q0u′(q0) + q1u
′(q1)]/λ+ (p−m)[−q0 + q1 −

u′(q0)

u′′(q0)
+
u′(q1)

u′′(q1)
]

Since naturally q0 > q1because demand is a decreasing function, and q0u
′(q0) >

q1u
′(q1) since the elasticity of marginal utility is less than one, the �rst two terms in

the cross-derivative are negative. The question of the sign of the cross-derivative comes

down to understanding the nature of the ratio of the �rst and second derivatives of the

utility function. Whenever u′(q)
u′′(q)

is an increasing function, i.e. the elementary utility

function exhibits increasing absolute risk aversion, the last term is also negative and the

comparative statics are pro-competitive, i.e. prices decrease with increasing market size

and competition. It is worth noting that increasing absolute risk aversion corresponds to

low convexity demands, i.e. less convex than demand generated by CARA utility func-

tion. Furthermore, this condition is only su�cient and not necessary for pro-competitive

e�ects. Indeed, even if the last term is positive it is not guaranteed to dominate the two

other terms. Q.E.D.

3.2.3 Model with Disutility of Distance

Consumers and varieties. We now study an alternative formulation of the model.

Instead of bearing monetary cost for transporting varieties produced elsewhere to their

consumption point, consumers experience disutility from consumption of varieties di�er-

ent from their �ideal variety". In other words, transportation costs now enter the utility

function rather then the budget constraint. In all other respects the setup is the same as

before. In this setup the consumer problem becomes

max
qθ>0

2

ˆ θ̂

0

µ(u(qθ)− qθtθ)dθ (3.4)
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s.t. 2

ˆ θ̂

0

µpqθdθ = 1.

Here again θ̂ ∈ (0, 1/2] is her range of consumption, with θ̂ = 1/2 representing

the case of consumption of all present varieties (full coverage). For a symmetric model,

studying location x ≡ 0 or any other makes no di�erence, and instead of absolute location

we focus on the distance between consumer and producer θ. As before, denoting the

demand function D(·) ≡ u′
−1
(·), solution to the consumer problem implies that demand

for a variety from θ, whenever positive, is given by qθ = D(λpθ + tθ), where λ is the

Lagrange multiplier of the budget constraint, i.e. marginal utility of money and, at the

same time, intensity of competition. Now we can observe the main di�erence between

the two setups: since the cost of the mismatch between consumer and producer locations

are now non-monetary, they are not multiplied by the marginal utility of money in the

demand function. In other words, there is no need for the additional step of �translating"

monetary cost into utility units.

Producers. As before, there is a continuum of producers, and each producer takes

the intensity of competition λ and the demand schedule as given when maximizing her

pro�t in price

max
p≥0

Π(p, λ) = max
p≥0

2(p−m)L

ˆ θ̂(p)

0

D(λp+ tθ)dθ − F (µ).

The producer's problem is similar to the monetary transportation cost case. We simplify

the objective function using the change of integration axes: instead of integrating over

locations, we integrate consumption over prices. That gives rise to a relatively simple

representation of aggregate demand. Then, in the case of partial coverage θ̂ < 1/2, any

producer's pro�t can be rewritten as

Π(p, λ) = 2(p−m)
L

t
[u(D(λp))− λpD(λp)]− F (µ)

Analogously for the case of full coverage θ̂ = 1/2:

Π(p, λ) = 2(p−m)
L

t
[u(D(λp))− λpD(λp)− [u(D(λp+ t/2))− (λp+ t/2)D(λp+ t/2)]]

−F (µ)

Equilibrium. We allow �rms to relocate in space and enter/exit the market. Thereby,

88



in equilibrium, pro�t must vanish at each location: Π(p, λ) = 0. The free entry condition

along with the �rm's optimality condition de�nes equilibrium in (p, λ) variables. All

other equilibrium variables can be derived from these two variables using the consumer's

optimality condition and budget constraint.

Symmetric equilibrium is a bundle (p, µ, λ, θ̂) ∈ R4
+ including the price, mass of �rms,

marginal utility of income, and radius of service that satisfy consumer and producer

optimization conditions, free-entry, and budget constraint.

Characterizing the equilibrium. We start by characterizing the equilibrium in

the case of only partial coverage θ̂ < 1/2. First, observe that the �rst and second order

condition for pro�t maximization essentially do not di�er between the two versions of the

model. Indeed, the only di�erence between a �rm's objective function in the two cases

is the multiplier λ in the variable part, which is treated by the producers as exogenous.

This observation allows for the straightforward characterization of equilibrium in variables

(p, λ) through the pro�t maximization and free entry conditions:

u(D(λp))

λD(λp)
= 2p−m, 2(p−m) [u(D(λp))− λpD(λp)] =

tF (µ)

L

The only di�erence from the previous case is an absence of multiplier λ in the free

entry condition. This relatively simple characterization of the equilibrium allows us to

study the comparative statics with respect to the market size and disutility cost.

Proposition 13. Consider the version of the model with disutility cost and with partial

market coverage. Then an increase in the market size L or a decrease in the transportation

cost t leads to: (i) an increase in the intensity of competition λ; (ii) a decrease in the

purchase of the ideal variety q0; (iii) a decrease (an increase) in the prices when εu(q)

is a decreasing (increasing) function. In addition, expanding market size L leads to the

competition being more localized viewed as the decrease in the coverage θ̂.

Proof. We start again by noticing that market size L and disutility cost t enter the

free entry condition as a ratio. Therefore, the comparative statics e�ects on prices and

intensity competition are symmetric. We use the �rm's second order condition, which is

the same as in the case of the monetary cost of distance, and which can be expressed as

2 +
p−m

p

u′(q0)

q0u′′(q0)
> 0

We again study the equilibrium through quantities, and make use of the fact that con-
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sumption of a variety produced by the closest �rm is q0 = D(λp), and λp = u′(q0). The

zero pro�t and free-entry conditions become

u(q0)

q0u′(q0)
= 2−m/p, (p−m) [u(q0)− q0u

′(q0)]L = tF (µ)/2

Totally di�erentiating them, we obtain

−ε
′
u(q0)

ε2u(q0)

dq0
dL

=
m

p2
dp

dL

and

[u(q0)− q0u
′(q0)]L

dp

dL
− q0u

′′(q0)(p−m)L
dq0
dL

+ [u(q0)− q0u
′(q0)] (p−m) = 0

Again, price and quantity co-move when the elasticity of utility is decreasing, and

move oppositely when the elasticity of utility is increasing. Combining the two we get:[
−ε

′
u(q0)

ε2u(q0)

p2

m
[u(q0)− q0u

′(q0)]− q0u
′′(q0)(p−m)

]
dq0
dL

= − [u(q0)− q0u
′(q0)] (p−m)

L

The right hand side of it is clearly negative. We now study the the bracketed term

on the left hand side, using the fact that from the �rm's �rst order condition, it follows

that u(q0)− q0u
′(q0) =

p−m
p
q0u

′(q0):

−ε
′
u(q0)

ε2u(q0)

p2

m
[u(q0)− q0u

′(q0)]− q0u
′′(q0)(p−m) =

= −q0u′′(q0)
[
p−m+

u′(q0)u(q0) + q0u
′′(q0)u(q0)− q0u

′2(q0)

q20u
′2(q0)

p2

m

u(q0)− q0u
′(q0)

q0u′′(q0)

]
=

= −q0u′′(q0)
[
p−m+

(
1

q0εu(q0)
+

u′′(q0)

u′(q0)εu(q0)
− 1

q0

)
p2

m

p−m

p

q0u
′(q0)

q0u′′(q0)

]
=

= −q0u′′(q0)(p−m)

[
1 +

(
1

q0εu(q0)
+

u′′(q0)

u′(q0)εu(q0)
− 1

q0

)
p

m

u′(q0)

u′′(q0)

]
=

= −q0u′′(q0)(p−m)

[
1 +

p

m

1

εu(q0)
+

1

q0

(
1

εu(q0)
− 1

)
p

m

u′(q0)

u′′(q0)

]
=

= −q0u′′(q0)(p−m)

[
1 +

p

m
(2− m

p
) + (1− m

p
)
p

m

u′(q0)

q0u′′(q0)

]
=

= −q0u′′(q0)(p−m)
p

m

[
2 +

p−m

p

u′(q0)

q0u′′(q0)

]
=
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In the last expression the outer term is clearly positive since u′′(·) < 0, and the

bracketed term is positive because of the �rm's second order condition. Altogether, this

implies that dq0
dL

< 0, i.e. consumption of an ideal variety decreases with increasing market

size. The result for the prices follows from the discussion above.

The next parameter of interest is the range of service θ̂. To understand its behavior

consider the demand there: D(λp + tθ̂) = 0, or alternatively λp + tθ̂ = u′(0) = u0. The

last step is to note that λp = u′(q0), thus,

θ̂ =
1

t
(u0 − u′(q0))

It immediately follows that, following the change in the market size L, behavior of the

range of service replicates that of the consumption of ideal variety q0. Hence, the range

of service decreases with market size in the case of the increasing elasticity of utility. Put

di�erently, when elasticity of utility is an increasing function, an increase in the market

size leads to more localized competition. Finally, to show that intensity of competition

increases, we totally di�erentiate free entry condition and use Πp = 0. Then

dλ

dL
= −ΠL

Πλ

=
F (µ)/L

2(p−m)L
t
pD(λp)

> 0

and intensity of competition increases. Q.E.D.

Thus, we have shown that both versions of the model exhibit similar comparative

statics: the market is pro-competitive whenever the elasticity of utility is a decreasing

function. The other variables behave naturally: an increase in the market size inten-

si�es competition, leads to smaller consumption of each variety, and to more localized

competition.

The intuition behind the result remains the same independently of the model for-

mulation. The pro- or anti-competitive behavior of the market is determined by the

increasing or decreasing elasticity of the aggregate demand. However, the aggregate de-

mand of the heterogeneous consumers does not inherit the properties of their individual

demand, rather the behavior of the elasticity of aggregate demand depends on higher

order properties of individual demands.

Characterizing the equilibrium with full coverage. Now we consider prop-

erties and comparative statics of equilibrium when coverage is full. As in the version

of the model with monetary transportation cost, this case is substantially less analyti-
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cally tractable. Start with the case when the reason for a consumer to buy from each

and every �rm is su�ciently low transportation cost. Then, using the �rst order Taylor

approximation, we can write

u(D(λp+ t/2))− (λp+ t/2)D(λp+ t/2) = u(D(λp))− λpD(λp) +−D(λp)
t

2
+ o(t)

Substituting it into pro�t de�nition for the case of full coverage and using only the

�rst order approximation, we e�ectively obtain an approximation of the pro�t function:

Π(p, λ) = (p−m)LD(λp)− F (µ).

In other words, the model collapses to a case with no distance, as studied in ZKPT.

As they show, in this case, the behavior of the elasticity of marginal utility (rather than

utility itself) de�nes the direction of comparative statics e�ects with respect to market

size. This observation sheds light on the model behavior between the two extreme cases,

i.e. when �rms serve all consumers but the disutility from shopping far away is not

su�ciently small.

Now we turn to formal analysis of the comparative statics under full coverage. Denote

q0 = D(λp) the consumption of the ideal variety and q1 = D(λp+ t/2) the consumption

of the least liked variety, i.e. one produced at the opposite point of the circumference.

Di�erentiating pro�t with respect to price, we obtain the �rm's �rst order condition:

Πp(p, λ) = 2
L

t
[u(q0)− λpq0 − [u(q1)− (λp+ t/2)q1]]− 2(p−m)

L

t
λ(q0 − q1) = 0

The transparent complexity of the model in the case of full coverage precludes full

characterization of the comparative statics. Nevertheless, it is still possible to guarantee

pro-competitive behavior of the market when demand is not too convex.

Proposition 14. Consider the version of the model with monetary cost of transportation

and with complete market coverage. Then an increase in market size L leads to an

increase in the intensity of competition λ. Moreover, if the demand function D(·) is

concave, or marginal cost of production m = 0, then increasing market size generates

leads to decreasing prices p, and the market is pro-competitive.

Proof. As before, we begin comparative statics analysis with respect to the market

size assuming that congestion is su�ciently small, so that we can disregard the indirect
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e�ect stemming from entry or exit of �rms. In this case, one can write down the free

entry condition as:

Π(p, λ, L) =
2L

t
(p−m)

[
u(D(λp))− λpD(λp)−

[
u(D(λp+

t

2
))− (λp+

t

2
)D(λp+

t

2
)

]]
−F (µ) = 0.

Totally di�erentiating it with respect to L we arrive at:

Πp
dp

dL
+Πλ

dλ

dL
+ΠL = 0

The �rst term is zero because of the pro�t maximization. Hence

dλ

dL
= −ΠL

Πλ

=
tF (µ)/L

2(p−m)Lp(q0 − q1)
> 0

In other words, as intuitively expected, an increase in the market size leads to an

increase in the intensity of competition measured as the marginal utility of money.

To understand the e�ect of increasing market size on the pricing behavior of �rms,

consider now the �rm's �rst order condition written as:

Πp(p, λ, L) = 2
L

t
[u(D(λp))− λpD(λp)− [u(D(λp+ t/2))− (λp+ t/2)D(λp+ t/2)]]−

−2(p−m)
L

t
λ(D(λp)−D(λp+ t/2)) = 0

Firstly, note that the second order condition requires:

Πpp = −4
L

t
λ(q0 − q1)− 2(p−m)

L

t
λ2(D′(λp)−D′(λp+ t/2)) < 0

Now, we totally di�erentiate the �rm's �rst order condition with respect to market

size to characterize the comparative statics:

Πpp
dp

dL
+Πpλ

dλ

dL
+ΠpL = 0

As Πpp < 0, dλ
dL

> 0 as established, and linearity in L implies that ΠpL = LΠp = 0,

the direction of the comparative statics is determined by the reaction of marginal pro�t
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to changes in the intensity of competition Πpλ:

dp

dL
∝ Πpλ = −2(2p−m)

L

t
[q0 − q1]− 2(p−m)

L

t
λp(D′(λp)−D′(λp+ t/2))

The �rst term here is clearly negative. The sign of the second term depends on the

shape of demand function. In case of concave or linear demand D′′(·) ≤ 0 and the second

term is negative as well, implying unambiguously that in response to an increase in the

market size, prices go down. Alternatively, if demand is convex, the second term is

positive and the total e�ect is ambiguous. Whether the second term outweighs the �rst

depends on how strong the convexity of demand is. However, the general conclusion of

the literature on the role of demand shapes persists; concave and not too convex demands

generate pro-competitive e�ects � prices go down with the increase in market size and

competition � whereas very convex demands generate anticompetitive market outcomes.

Alternatively, if the marginal cost m = 0, then Πp(λ, p) is a function of the product

λp only. Therefore, in equilibrium the product is constant independently of the market

size L, and the behavior of the price is exactly opposite to the behavior of the intensity

of competition, and the market is always pro-competitive. Q.E.D.

The conditions elicited in Proposition 14 are strong. However, they are only su�cient

but not necessary. In fact, from the continuity argument we expect the market also

to behave pro-competitively in the presence of small marginal cost and low convexity

demands.

3.3 Conclusion

This paper attempts to bridge two traditions in modeling markets with horizontal

product di�erentiation. We develop a model that features both product space charac-

teristics in the spirit of Hotelling (1929) and monopolistic competition as introduced by

Chamberlin (1933). The preference structure we employ allows consumers in the model

to have an ideal product and love for variety at the same time, which leads to the con-

sumption of a wider range of varieties of products but in di�erent quantities. In doing so

we aimed to capture the idea that in real life consumers shop in a limited number of shops

and consume a particular type of a given product most of the time, but occasionally de-

viate. In addition, the model formalizes the idea that love for variety in aggregate stems

not only from personal preference for variety, but also from heterogeneity of preferences,
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and therefore might seem stronger on the aggregate than the individual level.

Our main contribution is to show that despite its cumbersome structure, this approach

can still be tractable in a number of important cases. We characterize a uniform equi-

librium when product space is a circumference, i.e. symmetric, consumers are uniformly

distributed across it, and the cost of a mismatch between the location of a consumer

and product are linear, either in monetary or in utility terms. We show that in all ver-

sions of the model under the most natural and widely used preference shapes � when

demand is not too convex � the market behaves pro-competitively: in response to an

increasing market size, prices decrease. At the same time convex demands can gener-

ate anti-competitive market e�ects. In other words, our work reinforces the conclusion of

spaceless monopolistic competition theory on the connection between comparative statics

e�ects and the shape of consumer preferences.

The other important question that remains outside the scope of this paper is what

spacial distribution of �rms may arise under the market structure we study. Throughout

the paper we have focused on the uniform distribution of �rms which can be intuitively

understood as the maximal di�erentiation equilibrium. However, can it be the case that

free entry of �rms can lead to standardization of products in the characteristic space

and minimal di�erentiation as was believed by Hotelling? Can competition of �rms per

se lead to the agglomeration of �rms in space? More formally, this is the question of

multiplicity of equilibriua and stability of the uniform equilibrium. Our preliminary

inquiry shows that indeed, under very �at demands, maximum di�erentiation is unstable

and standardization occurs as an equilibrium outcome, but the general result is yet to

come. We believe that further clari�cation of this question is an important issue and

leave it for future work.
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3.A Appendix 3

Here we quantify the notion of small enough congestion force of �rm agglomeration in

the space, for the case of disutility of distance and incomplete coverage. The other cases

can be studied analogously.

First, denote elasticity of utility function as qu′(q)
u(q)

= εu(q). Then the �rm's �rst order

condition can be rewritten as 1
εu(q0)

= 2 − m
p
. Concavity of u(·) together with u(0) = 0

imply that εu(q) < 1. In addition, a positive solution to the price maximization problem

implies εu(q0) > 1/2 in equilibrium. We start with the budget constraint combined with

optimal pricing by the �rm:

1 = 2

ˆ θ̂

0

µpqθdθ = 2µp

ˆ θ̂

0

D(λp+ tθ)dθ = 2µ
mεu(q0)

2εu(q0)− 1

1

t
(u(q0)− u′(q0)q0)

Putting together the �rm's �rst order condition, free entry condition and budget

constraint leads to an equation with only one variable q0:

2m
1− εu(q0)

2εu(q0)− 1
[u(q0)− u′(q0)q0] =

t

L
F

([
2
mεu(q0)

2εu(q0)− 1

1

t
(u(q0)− u′(q0)q0)

]−1
)

2m
1− εu(q0)

2εu(q0)− 1
[u(q0)− u′(q0)q0] =

t

L
F

([
2
mεu(q0)

2εu(q0)− 1

1

t
(u(q0)− u′(q0)q0)

]−1
)

Using this equation as an implicit function q0(L) and taking derivatives with respect

to L we obtain the comparative statics characterization:

2m
−1

(2εu(q0)− 1)2
[u(q0)− u′(q0)q0] ε

′
u(q0)

∂q0
∂L

+ 2m
1− εu(q0)

2εu(q0)− 1
[−u′′(q0)q0]

∂q0
∂L

=

= − t

L2
F (µ) +

t

L
F ′(µ)

t

2m
[

ε′u(q0)

ε2u(q0)(u(q0)− u′(q0)q0)
+

u′′(q0)q0(2εu(q0)− 1)

εu(q0)(u(q0)− u′(q0)q0)2
]
∂q0
∂L

The last term in this equation is the indirect e�ect stemming from congestion force.

First, note that in the case of the decreasing elasticity of utility, the indirect e�ect re-

inforces the direct e�ect of the market size through increasing competition. Therefore,

independently of the size of the F ′(·), the consumption of ideal variety is always decreas-

ing with the market size. However, in the case of increasing elasticity of utility, an indirect
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e�ect can potentially have a di�erent sign, therefore, the requirement that congestion is

not too strong, i.e. �xed costs do not rise too fast, can be formally expressed as:

2m

2εu(q0)− 1
Abs

{
[u(q0)− u′(q0)q0] ε

′
u(q0)

(2εu(q0)− 1)2
+ u′′(q0)q0(1− εu(q0))

}
>

>
t2

2mL
F ′(µ)

1

εu(q0)(u(q0)− u′(q0)q0)
Abs

{
ε′u(q0)

εu(q0)
+
u′′(q0)q0(2εu(q0)− 1)

(u(q0)− u′(q0)q0)

}
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