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Abstract

Learning and Macroeconomic Dynamics

by

Dmitri Kolyuzhnov

CERGE�EI, Prague

Professor Sergey Slobodyan, Chair

My dissertation makes a contribution to the �eld of adaptive learning in macroeconomic
models. This contribution is presented in the form of four research papers that constitute
di¤erent chapters of my thesis.

The �rst chapter of my dissertation, "Escape Dynamics: A Continuous �Time Approxi-
mation" (joint with Anna Bogomolova and Sergey Slobodyan) extends a continuous�time
approach to the analysis of escape dynamics in economic models with adaptive learning
with constant gain. This approach is based on applying results of the continuous�time ver-
sion of the large deviations theory to the di¤usion approximation of the original discrete�
time dynamics under learning. We characterize escape dynamics by analytically deriving
the most probable escape point and mean escape time. The continuous�time approach is
tested on the Phelps problem of a government controlling in�ation while adaptively learn-
ing the approximate Phillips curve, studied previously by Sargent [61] and Cho, Williams,
and Sargent [17].

The second chapter of my dissertation is presented in the paper "Stochastic Gradient versus
Recursive Least Squares Learning" (joint with Anna Bogomolova and Sergey Slobodyan),
where we perform an in-depth investigation of the relative merits of two adaptive learning
algorithms with constant gain, Recursive Least Squares (RLS) and Stochastic Gradient
(SG), using the Phelps model of monetary policy studied in the �rst paper as a testing
ground.

The third chapter of my dissertation, "Economic Dynamics Under Heterogeneous Learn-
ing: Necessary and Su¢ cient Conditions for Stability" takes further the issue of di¤erent
learning of agents, such as RLS and SG learning, in particular the question of stability of
equilibrium under the situation when agents di¤er in the form of adaptive learning algo-
rithms used, in speed of adaptation of their beliefs about the economy to new information,
and in initial perceptions, that is the situation of the so-called heterogeneous learning.

The fourth chapter of my dissertation is presented by the paper "Optimal Monetary Pol-
icy Rules: The Problem of Stability Under Heterogeneous Learning" (joint with Anna
Bogomolova). In this paper we extend the analysis of optimal monetary policy rules in
terms of stability of the economy, started by Evans and Honkapohja [31], to the case of
heterogeneous learning.



6

All chapters of my dissertation are related to the question of behavior around the point
of equilibrium of the models under adaptive learning of agents. While the �rst paper
analyzes the behavior associated with the tails of the process distribution, that is, escapes
out of the point of the self con�rming equilibrium (SCE) under homogeneous RLS with
constant gain learning, the second paper studies stability of the SCE and escape issues
under RLS and SG with constant gain homogeneous learning, comparing dynamics under
these two types of learning. The contribution of the third chapter of my dissertation is
the derivation of conditions for stability of economic systems under any type of adaptive
learning, including homogeneous RLS, homogeneous SG, as well as the general case of
heterogeneous mixed RLS/SG learning with di¤erent learning adaptation speeds (degrees
of inertia) of agents. The fourth chapter uses the stability conditions results derived in the
third chapter to extend the analysis of optimal monetary policy rules in terms of stability
of the economy, started by Evans and Honkapohja [31], to the case of heterogeneous agents
learning.

Professor Sergey Slobodyan
Dissertation Committee Chair
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To Anna, Egor and Adelaida
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Chapter 1

Preface

1.1 Adaptive Learning and its Role in Macroeconomics

Until some time ago, the hypothesis of rational expectations of agents was the

major assumption in works studying models of economic dynamics. Later, more and

more works appeared that questioned this hypothesis, e.g., Fuchs [35]; Fuchs and Laroque

[36]; Grandmont [39, 40]; Grandmont and Laroque [41]; Bray [9]; Bray and Savin [10];

Fourgeaud, Gourieroux, and Pradel [33]; Marcet and Sargent [55]; Evans and Honkapohja

[25, 26, 27]; Arifovic [2]; Kirman and Vriend [49]; Cho and Sargent [16]; Marimon [56];

Giannitsarou [37]; Honkapohja and Mitra [43]; Cho and Kasa [15]; and many others. The

need to study models under bounded rationality of agents was well argumented in Sargent

[60]. Later this approach was also adopted (among others) in the works of Evans and

Honkapohja, and a standard argument in defense of bounded rationality can be found in

Evans and Honkapohja [29], as well as in Sargent [60].

The rational expectations (RE) approach implies that agents have a lot of knowl-

edge about the economy (e.g., of the model structure and its parameter values), while in

empirical work, economists making the RE assumption do not know the parameter values

and must estimate them econometrically. According to the argument of Sargent [60], it

is more natural to assume that agents face the same limitations economists face and to

view agents as econometricians (or statisticians) when forecasting the future state of the

economy, who estimate forecasting models using standard statistical procedures, e.g., least

squares, and form beliefs about the economic model. The beliefs thus formed are then used

to generate agents�actions, and thus in�uence the realized values of economic variables
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which are taken as a new data point by the agents. In the next period, agents update

their beliefs with the new data. New beliefs then a¤ect actions and economic variables,

and this process repeats period after period.

Such a procedure of updating beliefs is called adaptive learning of economic agents

and this approach to modeling economic agents constitutes a speci�c form of bounded

rationality and is called the adaptive (econometric) learning1 approach.

Adaptive learning in macroeconomics plays several roles. First, it is used to test

the validity of the rational expectations hypothesis, in particular, whether the dynamics of

an economic system with boundedly rational agents may converge to a rational expecta-

tions equilibrium (REE) under some learning rule. Second, it is used as a selection device

in models with multiple REE. The REE that is chosen is the one that is expected to ap-

pear in practice. Third, the dynamics under learning itself could be of interest in a sense

that it can be used to explain the behavior of macroeconomic data. And fourth, learning

algorithms can be used as method for calculating REE in the model. The advantage of

this method is that one can calculate only those REE that could be learned.

The general motivation of my thesis is to make a contribution to the economic

literature on adaptive learning described above, to do research in two progressive areas of

macroeconomic studies, namely, escape dynamics, which is aimed at exploiting the third

role of adaptive learning, and heterogeneous learning, in which adaptive learning appears

in its �rst and second role.

1.2 Escape Dynamics

Adaptive learning of agents generates the �uctuating behavior of macroeconomic

indicators, such as in�ation and unemployment. These �uctuations can be analytically

characterized using two forces that exist in such a dynamic system: mean dynamics, which

moves the system to the point of weak convergence, and escape dynamics, which moves

the system out.

1Note that in my thesis I concentrate on the econometric (statistical) type of adaptive learning. Two
other types of adaptive learning approaches: the one that is based on generalized expectation functions
(in nonstochastic models) (e.g. papers by Fuchs [35]; Fuchs and Laroque [36]; Grandmont [39, 40]; and
Grandmont and Laroque [41]) and the computational intelligence approach, among which are classi�er
systems, neural networks and genetic algorithms (e.g., papers by Arifovic [2]; Kirman and Vriend [49]; and
Cho and Sargent [16]) are described in Evans and Honkapohja [28, pp. 464-465] and are beyond the scope
of this thesis.
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Major e¤orts of researchers in this area have been made towards the analytical

characterization of the second force, escape dynamics. The approach that has received a bit

wider development in the literature, such as in Cho, Williams and Sargent [17] (hereafter,

CWS) and Williams [64], is based on the analytical derivation of escape dynamics for the

original discrete�time learning process. This approach has both theoretical and practical

problems. The theoretical problem is that for cases where a shock to the state process is

unbounded (for example, Gaussian), theoretical results allowing full description of escape

dynamics are not available. In particular, the theory in this case does not allow one to

say what is the most probable direction of deviations from the point of convergence and

what is the limiting behavior of the expected time until such an escape.

The practical problem is that the derivation of escape dynamics characteristics

for a discrete�time process proposed by Williams [64] implies numerically solving a system

of non-linear di¤erential equations with the functions given only numerically. With many

lags in the structure of the state process (highly dimensional state variable), this system

is hardly solvable.

My work contributes to the current literature on escape dynamics by suggest-

ing another way of deriving analytical characteristics of escape dynamics, which resolves

the above mentioned problems. This approach suggests �rst using a continuous�time ap-

proximation of the recursive dynamic system under consideration and then applying the

analytical tools developed by Freidlin and Wentzel [34] in order to analytically characterize

escape dynamics.

This approach is relatively new in the literature. The only existing paper, Kasa

[47], considers this approach only for a very simple one-dimensional case that cannot be

easily generalized. Application of the proposed approach can be very useful in complicated

non-linear economic models. In case of high dimensionality and lag structure of the un-

derlying model, the costs of deriving escape dynamics for a linearized discrete�time model

can be very high compared to the bene�ts of the continuous�time approach.

The �rst chapter of my dissertation, "Escape Dynamics: A Continuous�Time Ap-

proximation" (joint with Anna Bogomolova and Sergey Slobodyan)2 extends the continuous�

2This paper is published in the CERGE-EI Working Paper Series as working paper number 285. Cur-
rently it is on �revise and resubmit� in the Journal of Economic Theory. The compressed and abridged
four-page version of this paper named "Escape Dynamics: A Continuous Time Approach" is published
in the Proceedings of the 4th International Conference on Computational Intelligence in Economics and
Finance (CIEF - 2005), Salt Lake City, July 21 -26, 2005.
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time approach to the analysis of escape dynamics in economic models with adaptive learn-

ing with constant gain.3 This approach is based on applying the results of the continuous�

time version of the large deviations theory to a di¤usion approximation of the original

discrete�time dynamics under learning. In this paper, we characterize escape dynam-

ics by analytically deriving the most probable escape point and the mean escape time.

The proposed continuous�time approach is tested on the Phelps problem of a government

controlling in�ation while adaptively learning the approximate Phillips curve, studied pre-

viously by Sargent [61] and CWS. We compare our theoretical results with simulations

and the results obtained by CWS.

As a result of our analysis, we express reservations regarding the applicability of

the escape dynamics theory to the characterization of the mean escape time for economi-

cally plausible values of constant gain in the model of CWS. We show that for these values

of the gain, simple considerations and formulae generate much better mean escape time

results than the large deviations theory. We explain it by insu¢ cient averaging near the

point of the self�con�rming equilibrium for relatively large gain values and suggest two

changes which might help the approaches based on the large deviation theory work better

in this gain interval.

The second chapter of my dissertation is presented in the paper "Stochastic

Gradient versus Recursive Least Squares Learning" (joint with Anna Bogomolova and

Sergey Slobodyan)4, where we perform an in-depth investigation of the relative merits of

two adaptive learning algorithms with constant gain, Recursive Least Squares (RLS) and

Stochastic Gradient (SG), using the Phelps model of monetary policy studied in the �rst

paper as a testing ground. The di¤erence between the two algorithms is that the RLS

algorithm5 has two updating equations: one for updating the parameters entering the

3Adaptive learning in such models looks as follows. Each period agents update the parameter estimates
in the following way: the updated parameter estimate equals the previous estimate plus some function of
the most recent forecast error multiplied by the gain parameter, capturing how important is the forecast
error to the agent. In usual recursive least squares derived from OLS, this gain parameter is represented
by a decreasing sequence 1=t. Constant gain learning is used to re�ect discounting of the past data by
assigning a greater weight to more recent data.

4This paper is published in the CERGE-EI Working Paper Series as working paper number 309. Cur-
rently it is on �revise and resubmit� in Macroeconomic Dynamics.
Note also that though the �rst two papers have the same co-authors, they are listed in di¤erent (not

alphabetical) order. It is done in order to highlight the author who wrote the �rst draft and received the
�rst results of the paper. Thus, the name of this author goes �rst, then the rest of the authors�names
follow in alphabetical order.

5The RLS algorithm can be obtained from ordinary least squares (OLS) estimation of parameters, by
rewriting it in the recursive form. The generalized RLS is derived from RLS by substituting the gain
sequence 1=t; used in updating the regression coe¢ cients, with any decreasing gain sequence.
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forecast functions, the other �for updating the estimates of the second moments matrix

of these parameters. The SG algorithm assumes this matrix to be �xed (thus modeling

"less sophisticated" agents).

The behavior of the two learning algorithms is very di¤erent. Under the mean

(averaged) RLS dynamics, the Self�Con�rming Equilibrium (SCE) is stable for initial

conditions in a very small region around the SCE, and large distance movements of the

perceived model parameters from their SCE values, or �escapes,�are observed.

On the other hand, the SCE is stable under the SG mean dynamics in a large

region. However, the actual behavior of the SG learning algorithm is divergent for a wide

range of constant gain parameters, including those that could be justi�ed as economically

meaningful. We explain the discrepancy by looking into the structure of eigenvalues and

eigenvectors of the mean dynamics map under the SG learning.

The results of our paper suggest that caution is needed when the constant gain

learning algorithms are used. If the mean dynamics map is stable but not contracting in

every direction and most eigenvalues of the map are close to the unit circle, the constant

gain learning algorithm might diverge.

1.3 Heterogeneous Learning

The third chapter of my dissertation, "Economic Dynamics Under Heterogeneous

Learning: Necessary and Su¢ cient Conditions for Stability,"6 takes further the issue of

di¤erent types of learning of agents, such as RLS and SG, and in particular the question

of stability of an equilibrium when agents di¤er in a form of adaptive learning algorithms

used, in speed of adaptation (degree of inertia) of their beliefs about the economy to new

information, and in initial perceptions, that is, the situation characterized as heterogeneous

learning.

This paper is devoted to the derivation of necessary conditions and su¢ cient

conditions for stability in the general setup of a stochastic linear forward-looking model of

Honkapohja and Mitra [43], which implies possible structural heterogeneity of the model

structure and a general case of heterogeneous learning of agents. Studying stability of a

dynamic economic model, we may answer the question of a particular economy�s behavior

6This paper is written as a part of the project "Adaptive learning as a shocks propagation mechanism
in the New Keynesian model and optimality and stability of monetary policy rules" supported by the
Granting Agency of Charles University, Prague (GAUK), grant number 321/2006/A-EK/CERGE.
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around the steady state and also the question of equilibrium selection if the model performs

multiple equilibria. However, in models with a very general setup, it may be di¢ cult to

�nd stability conditions that would be computationally tractable and would, additionally,

have some economic meaning. This has motivated the research presented in the third

chapter.

This paper introduces the concept of ��stability. Written for heterogeneous learn-

ing models, this concept is similar to the E�stability condition � the concept widely used

in stability analysis of models with homogeneous learning. This concept follows from the

general criterion for stability derived by Honkapohja and Mitra [43] for an economy in the

above-mentioned general setup. Their general criterion provides conditions in terms of the

model structure and learning heterogeneity, while ��stability means stability independent

of heterogeneity in learning.

In my paper, I derive two groups of su¢ cient conditions and one group of nec-

essary conditions for ��stability in terms of the model structure, that is, independent of

the type and parametrical characteristics of learning heterogeneity. I have found an easily

interpretable unifying condition which is su¢ cient for convergence of an economy under

mixed RLS/SG learning with di¤erent degrees of inertia towards a rational expectations

equilibrium for a broad class of economic models and a criterion for such a convergence

in the univariate case. The conditions are formulated using the concept of a subeconomy

and a suitably de�ned aggregate economy. In the end of the paper I also demonstrate and

provide an interpretation of the derived conditions and the criterion on univariate and

multivariate examples, including two speci�cations of the overlapping generations model

and the model of simultaneous markets with structural heterogeneity.

The fourth chapter of my dissertation is presented by the paper "Optimal Mon-

etary Policy Rules: The Problem of Stability Under Heterogeneous Learning" (joint with

Anna Bogomolova). In this paper we extend the analysis of optimal monetary policy

rules in terms of stability of an economy, started by Evans and Honkapohja [31], to the

case of heterogeneous learning. Following Giannitsarou [37], we pose the question about

the applicability of the representative agent hypothesis to learning. This hypothesis was

widely used in the learning literature at early stages to demonstrate convergence of an

economic system under adaptive learning of agents to one of the rational expectations

equilibria in the economy. We test these types of monetary policy rules de�ned in Evans
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and Honkapohja [31] in the general setup of the New Keynesian model that is a work

horse of monetary policy models today. It is of interest to see that the results obtained by

Evans and Honkapohja [31] for the homogeneous learning case are replicated for the case

when the representative agent hypothesis is lifted.

1.4 Summary and Thesis Structure

My dissertation thesis makes several contributions to the �eld of adaptive learning

in macroeconomic models. These contributions are presented in the four research papers

that constitute di¤erent chapters of my thesis. All chapters of my dissertation are related

through the question of behavior around the point of equilibrium of the models under

adaptive learning of agents. While the �rst paper analyzes the behavior associated with

the tails of the process distribution, that is, escapes out of the point of the SCE under

homogeneous RLS with constant gain learning, the second paper studies stability of the

SCE and escape issues under RLS and SG with constant gain homogeneous learning,

comparing dynamics under these two types of learning.

The contribution of the third chapter of my dissertation is the derivation of

conditions for stability of economic systems under any type of adaptive learning, including

homogeneous RLS, homogeneous SG, as well as the general case of heterogeneous mixed

RLS/SG learning with di¤erent learning adaptation speeds (degrees of inertia) of agents.

The fourth chapter uses the stability conditions results derived in the third chapter to

extend the analysis of optimal monetary policy rules in terms of stability of an economy,

started by Evans and Honkapohja [31], to the case of heterogeneous learning of private

agents.

The chapters are divided into two parts re�ecting the research area where a

particular contribution has been made. Thus the �rst two papers are collected in Part1

called "Escape Dynamics," while the third and fourth papers are presented in Part 2

that carries the name "Heterogeneous Learning." The Afterword summarizes the results

and describes possible directions for further research in the areas of escape dynamics and

heterogeneous learning.
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Part I

Escape Dynamics
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Chapter 2

Escape Dynamics: A

Continuous�Time Approximation
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Escape Dynamics: A Continuous�Time Approximation�

Dmitri Kolyuzhnov, Anna Bogomolova and Sergey Slobodyany

CERGE�EIz

Politických vµezµn°u 7, 111 21 Praha 1,
Czech Republic

Abstract

We extend a continuous�time approach to the analysis of escape dynamics in economic
models with constant gain adaptive learning. This approach is based on applying re-
sults of continuous�time version of large deviations theory to the di¤usion approximation
of the original discrete�time dynamics under learning. We characterize escape dynam-
ics by analytically deriving the most probable escape point and mean escape time. The
continuous�time approach is tested on the Phelps problem of a government controlling
in�ation while adaptively learning the approximate Phillips curve, studied previously by
Sargent [61] and Cho, Williams and Sargent [17] (henceforth, CWS). We compare our re-
sults with simulations and the results obtained by CWS. We express reservations regarding
the applicability of large deviations theory to characterization of mean escape time for eco-
nomically plausible values of constant gain in the model of CWS. We show that for these
values of the gain, simple considerations and formulae generate much better mean escape
time results than the large deviations theory. We explain it by insu¢ cient averaging near
the point of self�con�rming equilibrium for relatively large gains and suggest two changes
which might help the approaches based on large deviation theory to work better in this
gain interval.
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2.1 Introduction

The aim of this paper is to extend the continuous�time approach to the analysis

of escape dynamics in economic models with adaptive learning and to test it on the Phelps

problem of a government controlling in�ation while adaptively learning the approximate

Phillips curve, studied previously by Sargent [61] and Cho, Williams, and Sargent [17]. In-

corporating the continuous�time approach into the analysis is motivated by the restricted

applicability and computational intensity of the approach used to derive theoretical char-

acteristics of escape dynamics in the recent economic literature. Theoretical analysis of

escape dynamics in economic models with adaptive learning allows to theoretically charac-

terize diverse economic phenomena such as currency crises, in�ation episodes, endogenous

collusion in oligopoly, and cycles of economic activity (see Cho and Kasa [15]; Williams

[64, 65, 66, 67]; Bullard and Cho [12]; Cho et al. [17]; Kasa [47]). Escape dynamics also

was used to study large mutations in evolutionary games (see Kandori, Mailath, and Rob

[45]; and Binmore and Samuelson [5]).

In this literature these phenomena are modeled as a result of escape dynamics in

economic models with boundedly rational economic agents who use adaptive learning in

the form recently summarized in Evans and Honkapohja [29] to update their beliefs about

the economic model. Among the literature devoted to this form of adaptive learning are

Bray [9]; Bray and Savin [10]; Fourgeaud, Gourieroux and Pradel [33]; Marcet and Sargent

[55]; Evans and Honkapohja [25, 26, 27]; Marimon [56]; and many others. In this literature,

agents are considered as econometricians who estimate forecasting models using standard

statistical procedures, such as recursive least squares, stochastic gradient, or Bayesian

learning, and form beliefs about an economic model. The beliefs thus formed are then used

to generate agents�actions, and thus in�uence the realized values of economic variables,

which are taken as a new data point by the agents. In the next period, the agents update

their beliefs with the new data. New beliefs then a¤ect actions and economic variables,

and this process repeats period after period.

Combined dynamics of parameters describing agents� beliefs and of observed

economic variables forms a stochastic recursive algorithm (SRA). Under some regularity

conditions, the SRA corresponding to a particular adaptive learning process converges to

the rational expectations equilibrium (REE) of the model (or one of the REE in multiple

equilibria models), and thus limit dynamics under adaptive learning is the same as that
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under rational expectations. Stability under adaptive learning which guarantees such

convergence has been considered a very important characteristic of the REE in recent

monetary policy literature (c.f., Evans and Honkapohja [30] or Bullard and Mitra [11]).

Beyond using the adaptive learning as a de�facto equilibrium selection mechanism

or a tool for designing policy rules, one could concentrate on the dynamics of the model

under adaptive learning as such, in particular, in a case of adaptive learning with a constant

gain.1 In this case convergence of the learning process to REE is only in distribution: there

are persistent �uctuations around the REE caused by such learning, and thus rare events �

large distance movements called �escapes�� may occur with nonzero probability. During

an escape, agents�beliefs about the model move away from nearly rational expectations.

As a rule, their actions and the values of realized economic variables also deviate from

those observed in the REE.

The analysis of such escape dynamics caused by the adaptive learning process

is possible using the theory of large deviations by Freidlin and Wentzell [34] (FW hence-

forth); Dupuis and Kushner [24]; and others. Depending on what version of the large

deviations theory � continuous�time by FW or discrete�time by Dupuis and Kushner

[24] � one wants to utilize, there are two possible approaches to the theoretical analysis

of escape dynamics: the discrete�time approach and the continuous�time approach. The

discrete�time approach, which has received wider attention in the literature, is based on

the analytical derivation of escape dynamics for the original discrete�time SRA used to

describe a learning process. In the continuous�time approach, a continuous�time di¤usion

approximation of the discrete�time SRA is derived, and then escape dynamics is stud-

ied for this approximation. Kasa [47] applied this approach to a simple one�dimensional

model. In this paper, we extend the approach to a multi�dimensional, non�reachable case.

The �rst approach was used in the majority of the papers cited above, in particu-

lar in Cho, Williams, and Sargent [17] (henceforth CWS). These papers work directly with

discrete�time SRA processes and use the recent results of Williams [64], who derived nu-

merically the action functional for a linear�quadratic case when the state variable process

is autoregressive with Gaussian noise.

There are three basic problems associated with the above approach. First, if

the state variable process is subject to unbounded (for example, Gaussian) shocks, the

1Constant gain learning discounts the past by assigning more weight to more recent data.
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discrete�time version of large deviations theory does not contain theoretical results allow-

ing for a full description of escape dynamics. In particular, the most probable point of

escape from the neighborhood of convergence point (as stated above, this point is usually

a REE) and the expected time until escape, are unavailable (see CWS, Theorem 5.3). Sec-

ond, characterizing escape dynamics for the discrete�time process in the way proposed by

Williams [64] implies numerical calculation of a functional in a calculus�of�variation prob-

lem that leads to a system of non�linear di¤erential equations with numerically derived

right�hand side functions. For complicated problems (many lags, high dimensionality),

this approach can become numerically intractable. Finally, the analytical solution for

escape dynamics of a discrete�time process can be derived only for a restrictive form of

learning processes, such as recursive least squares or stochastic gradient learning with a

constant gain.

The continuous�time approach developed here resolves these problems. Since

di¤usion is a natural approximation for a di¤erence equation with Gaussian noise and since

FW have developed the theory of large deviations for di¤usions, the problem of insu¢ cient

theoretical results is removed. The second and the third problems are partially alleviated

because the di¤usion, derived by approximation around REE � the stationary point of

the SRA � is linear. In the large deviations theory, all escape dynamics characteristics �

expected time until the beliefs escape any given neighborhood D, the point through which

this escape is most likely, and probability of leavingD within a given amount of time � are

obtained by minimizing a so�called action functional on the boundary of the neighborhood,

@D. Given our choice of a linear approximating di¤usion, this is a standard linear control

theory problem, and the problem of minimizing the action functional is reduced to the

trivial task of �nding a minimum of a quadratic form on @D.

In order to compare the performance of the two approaches of deriving escape

dynamics characteristics, the continuous�time approach developed here is tested on the

model where the escape dynamics characteristics were already derived using discrete�

time approach. This is the Phelps problem of a government controlling in�ation while

adaptively learning the approximate Phillips curve, studied previously by Sargent [61]

and CWS.2

2CWS show that under a constant�gain recursive least squares algorithm, the self�con�rming equilib-
rium (SCE) � a unique set of beliefs corresponding to a time�consistent Nash equilibrium of the RE
version of the model � is weakly stable. In this equilibrium, the government believes in strong in�ation�
unemployment tradeo¤. Attempts to exploit this tradeo¤, combined with the private sector�s rational
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The rest of the paper is organized as follows. We brie�y describe the dynamic

and static versions of the model of CWS in Section 2. We develop the continuous�time

approach in Section 3. In Section 4 we present the results of testing the continuous�

time approach developed in Section 3 on the model of CWS and compare the approach

prediction results with the results of simulations. In Section 5 we discuss the results

presented in Section 4 and compare them with the results of CWS, and Section 6 concludes.

2.2 The Model

2.2.1 Setup: Two Versions of the Model

The economy consists of the government and the private sector. The government

uses the monetary policy instrument xn to control in�ation rate �n and attempts to

minimize losses from in�ation and unemployment Un. It believes (in general, incorrectly)

an exploitable tradeo¤ between �n and Un (the Phillips curve) exists. The true Phillips

curve is subject to random shifts and contains this tradeo¤ only for unexpected in�ation

shocks. The private sector possesses rational expectations bxn = xn about the in�ation

rate, and thus unexpected in�ation shocks come only from monetary policy errors.

Un = u� � (�n � bxn) + �1W1n; u > 0; � > 0; (2.1a)

�n = xn + �2W2n; (2.1b)

bxn = xn; (2.1c)

Un = 
1�n + 

T
�1Xn�1 + �n: (2.1d)

Vector 
 =
�

1; 


T
�1
�T
represents government�s beliefs about the Phillips curve.

W1n and W2n are two uncorrelated Gaussian shocks with zero mean and unit variance.

�n is the Phillips curve shock as perceived by the government, believed to be white noise

uncorrelated with regressors �n and Xn�1. Following CWS, we consider two versions of

the model: �dynamic�and �static�ones. In the �dynamic�model, vector Xn�1 contains

expectations, lead to high average in�ation. However, in�ation periodically performs large deviations, or
�escapes,� from a neighborhood of the RE Nash equilibrium toward the low in�ation time�inconsistent
Ramsey outcome of the RE version of the model. This happens when a sequence of stochastic shocks
makes the government learn that there is very little tradeo¤ between unemployment and in�ation. These
beliefs about the Phillips curve force the government to set in�ation low and thus approach the Ramsey
outcome.
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two lags of in�ation and unemployment rates and a constant,

Xn�1 =
�
Un�1; Un�2; �n�1; �n�2; 1

�T
; (2.2)

while only the constant is present in Xn�1 in the �static� version. In other words, the

only di¤erence between the two versions of the model lies in the structure of government�s

beliefs (2.1d), which are more �sophisticated� in the dynamic model. In the sequel we

concentrate on the dynamic model and consider the static one only in Section 5.

Given beliefs 
; the government solves

min
fxng1n=0

E
P1

n=0 �
n
�
U2n + �

2
n

�
; (2.3)

subject to (2.1b) and (2.1d). This Linear�Quadratic problem produces a linear monetary

policy rule

xn = h(
)TXn�1: (2.4)

2.2.2 Nash, Ramsey, and Self�Con�rming Equilibria

CWS identify three beliefs consistent with the model. If the government holds

Belief 1, 
 =
�
��; 0; 0; 0; 0; u(1 + �2)

�T
, the policy function becomes xn = �u: In a model

where the government knows the true Phillips curve (2.1a), this is the Nash, or discre-

tionary equilibrium of Sargent [61] and Barro and Gordon [3, 4]. Beliefs 2 of the form


 = (0; 0; 0; 0; 0; u�)T lead to xn = 0 and zero average in�ation for any u�: Ramsey, or op-

timal time�inconsistent equilibrium of Kydland and Prescott [53]. Finally, Beliefs 3 where


1+
4+
5 = 0 (sum of coe¢ cients on current and lagged in�ation is zero) asymptotically

lead to xn = 0: this is the �induction hypothesis�belief (see Sargent [61]).

In the model with learning, the equilibrium is de�ned as a vector of beliefs at

which the government�s assumptions about orthogonality of �n to the space of regressors

are consistent with observations:

E
h
�n � (�n; Xn�1)

T
i
= 0: (2.5)

CWS call this point a self�con�rming equilibrium, or SCE: despite the fact that the gov-

ernment believes into incorrent Phillips curve (2.1d), a particular assumption about it,

exempli�ed by (2.5), turns out to be true. Williams [64] shows that the only SCE in the

model is Belief 1.
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2.2.3 Adaptive Learning and SRA

In period n, the government uses its current vector of beliefs 
n to solve (2.3),

assuming the beliefs will never change. Thus generated monetary policy action xn is

correctly anticipated by the private sector and produces Un according to (2.1a). Then the

government adjusts its beliefs about the Phillips curve coe¢ cients 
n and their covariance

matrix Rn in an adaptive learning step. De�ne �n =
h
W1n W2n XT

n�1

iT
, g(
n; �n) =

�n �
�
�n; X

T
n�1
�T
; and Mn(
n; �n) =

�
�n; X

T
n�1
�T � ��n; XT

n�1
�
: Next period�s beliefs 
n+1

and Rn+1 are given by


n+1 = 
n + �nR
�1
n g(
n; �n); (2.6a)

Rn+1 = Rn + �n (Mn(
n; �n)�Rn) : (2.6b)

Equations (2.6) represent a speci�c form of a recursive learning algorithm. When the

gain sequence �n is given by 1=n; an appropriate choice of 
0 and R0 generates OLS in a

recursive form. When �n = const, this is constant gain learning or tracking algorithm.3

As Un = u� ��2W2n + �1W1n and �n = h(
n)
TXn�1 + �2W2n, the evolution of

the state vector �n can be written as

�n+1 = A(
n)�n +BWn+1; (2.7)

where Wn+1 =
h
W1n+1 W2n+1

iT
; for some matrices A(
n) and B. Finally, stack

lower�triangular elements of the symmetric matrix Rn into a vector, vech(Rn); and form

the parameter vector

��n =
h

Tn ; vechT (Rn)

iT
(2.8)

and the right�hand side vector

H(��n; �n) =
h �

R�1n g(
n; �n)
�T
; vechT (Mn(
n; �n)�Rn)

iT
: (2.9)

Then the dynamics of the model under constant�gain learning can be written as

��n = ��n + �H(�
�
n; �n); (2.10a)

�n+1 = A(
n)�n +BWn+1; (2.10b)

3Constant gain algorithm�s assigning more weight to recent data makes sense when agents suspect the
world around them to be non�stationary. Presence of sudden breaks in data generating processes, for
example as a result of an unpredicted change in the government policy, also calls for tracking algorithms
such as constant gain learning. See Evans and Honkapohja [29] for an extensive discussion of constant gain
learning and its relation to decreasing gain learning such as OLS.



38

which is the standard SRA form.4

2.3 Continuous�Time Approach

2.3.1 Convergence of SRA and Di¤usion Approximation

De�ne the approximating ordinary di¤erential equations corresponding to our

SRA as

�

 = R�1g(
) = R�1E[g(
; �n)]; (2.11a)
�
R = M(
)�R = E[Mn(
; �n)]�R: (2.11b)

Vector 
 that forms Belief 1 and corresponding 2nd moments matrix R are the only equilib-

rium of the above ODE. This equilibrium is stable. CWS show that under some assump-

tions, the continuous�time process �"t de�ned as �
"
t = ��n for t 2 [n"; (n+ 1) ") converges

weakly (in distribution) to �(t; a) = [
T ; vechT (R)]T ; solution of the ODE (2.11), where

a = � (0) is the initial condition for the ODE (2.11), and starting point of the process �"t .

This solution is also called the �mean dynamics trajectory�of the SRA (2.10), with the

right�hand side of (2.11) being the �mean dynamics�.

Because of the constant gain learning, the convergence of ��n to the mean dy-

namics trajectory �(t) is only weak (in distribution). This implies persistent �uctuations

around the trajectory �(t; a) and its stationary point �. Large deviations theory studies

the probability of rare events, during which these �uctuations force the stochastic process

��n out of any given region around the converging trajectory �(t; a). Freidlin and Wentzell

[34, p.6] state that the probabilities of these rare events �have asymptotics of the form

exp
�
�C"�2

	
as " ! 0 (rough asymptotics, i.e., not up to equivalence but logarithmic

equivalence)�.

The theoretical results of FW on escape dynamics characteristics in continuous

time can be applied to the continuous�time approximation of the original discrete�time

SRA. This is the essence of the proposed continuous�time approach.5 Evans and Honkapo-

hja [29, Prop. 7.8] show that as " ! 0; the process U "t =
�"t��(t;a)p

"
converges (weakly) to

4Note that vector � is 27�dimensional, with 6 components representing the government�s beliefs 
, and
the remaining 21 representing its beliefs about the second moments matrix of 
.

5The advantages of the continuous�time approach are discussed in the introduction.
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the following di¤usion:

dU �t = D�p(� (t; a))U
�
t dt+�

1=2 (� (t; a)) dWt; (2.12)

where Wt is a multi�dimensional Brownian process with dimensionality equal to that of

�. p(�) is the mean dynamics vector, and � the matrix whose elements are covariances

of di¤erent components of the mean dynamics vector, both with respect to the unique

invariant probability distribution ��(dy) of the state vector X:6

p(�) =

Z
H(�; y)��(dy); (2.13)

�ij =
P1

k=�1Cov [Hi(�;Xk(�));Hj(�;X0(�))] : (2.14)

This result is used to get continuous�time approximation of SRA, given any

initial condition:

d�"t = D�p(� (t; a)) [�
"
t � � (t; a)] dt+

p
"�1=2 (� (t; a)) dWt: (2.15)

Williams [64, Theorem 3.2] shows that the above results can be used to derive a local

continuous�time approximation of the SRA around the limit point � (stable point of the

associated ODE (2.11), SCE):

d't = D�p(��)'tdt+
p
��1=2(��)dWt; (2.16)

where 't = �t � � are deviations from the SCE. The 6�6 upper left corner of �(��) is

equal to the fourth moments matrix Q of CWS evaluated at �. Matrices D�p(��) and �(��)

need to be evaluated only at the SCE. This could be performed analytically (the technical

appendix with these derivations is available from the authors upon request).

Di¤usion (2.16), used in this paper, approximates a highly nonlinear multidimen-

sional SRA only at the stationary point of the mean dynamics. Dembo and Zeitouni [22,

p. 223] argue that �the rationale here is that any excursion o¤ the stable point has an

overwhelmingly high probability of being pulled back there, and it is not the time spent

near any part of @D that matters but the a priori chance for a direct, fast exit due to a

rare segment in the Brownian motion�s path.�

6State vector �n has a unique invariant probability distribution: it contains stationary Gaussian random
variables W1n and W2n; a constant, and a stable 4�dimensional AR(1) variable. This distribution can be
calculated explicitly.
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2.3.2 Action Functional and Escapes

Suppose that we have a stochastic process, for example, some di¤usion. The

basic idea of the theory of large deviations for paths of stochastic processes is that the

probability of stochastic process�s deviating from a given path along a speci�c trajectory

can be determined by the value of a certain functional (called action functional) on this

trajectory. Action functional I0T (') represents the costs associated with moving along

some trajectory ' for a period of time [0; T ]. Cost function I (T; x; y) = min
'0=x;'t=y

I0t (')

is the minimal cost required for transition from x to y in time T . Quasipotential I (x; y) =

inf
T>0

I (T; x; y) is the minimal cost necessary to move from x to y given arbitrary (potentially

in�nite) time. The idea here is that the system moves in the direction along which it incurs

the least cost.

Suppose that such a functional exists. We are given some neighborhood D of

a stationary point of the di¤usion�s drift, O. Under certain assumptions one can derive

the probability that a stochastic process belongs to D from the minimum value of the

quasipotential I (O; y) on the boundary of D, fy : y 2 @Dg. The most probable point at

which the stochastic process leaves (escapes)D, is the point where I (O; y) has a minimum.

The minimum of I (O; y) also allows one to derive asymptotic behavior of the mean escape

time, i.e., the expected time needed for the stochastic process to cross the boundary of D

for the �rst time.

The exact results on the mean exit time and the dominant escape point are given

in Dembo and Zeitouni [22, Theorem 5.7.11]. In particular, the limiting behavior of the

mean escape time, Ex (� ") ; is given by

lim
�!0

" lnEx (�
") = I; (2.17)

where �I is a minimum value of the quasipotential on @D. The most probable escape point

is an extremal of the quasipotential on @D; see Appendix A.1 for exact de�nitions.
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2.3.3 Minimizing the Action Functional

For a di¤usion d't = A'tdt+
p
�BdWt, Dembo and Zeitouni [22, p. 214] provide

the following expression for the action functional:

I0T (') = inf
1

2

Z T

0

��� �gt���2 dt; (2.18a)

s.t.
�
't = A't +B

�
gt; (2.18b)

'0 = 0; (2.18c)

where a stationary point of the drift O is assumed to be the origin. Minimization is

performed over all possible trajectories of
�
gt = ut, which take the system from the origin

to 'T in exactly T time units. In the approximating di¤usion (2.16) the matrix A equals

D�p(��); and B = �1=2(��):

The only complication with this formulation stems from the fact that matrix

B = �1=2(��) can be singular.7 As a result, there might be points in the state space

that could not be reached in any time using any control trajectory futg1t=0: the system

(A;B) is not necessarily reachable.8 The way to proceed with the control problem for

an unreachable system is to transform the state space so that �rst k new coordinates

(z1) form the basis of the reachable subspace, where the remaining n� k (z2) coordinates

all equal zero. In these coordinates, the system�s evolution on the reachable subspace is

governed by
�
z1 = A1z1 +B1u; (2.19)

where z1 = (T1)
T '; T1 is the basis of the reachable subspace, and the system (A1; B1) is

by construction reachable; see Dahleh et al. [21, Ch. 22] for the construction. The action

functional (2.18) is then rewritten as

I0T (z1) = inf
1

2

Z T

0

��� �gt���2 dt; (2.20a)

s.t.
�
z1 = A1z1 +B1

�
gt; (2.20b)

z1(0) = 0: (2.20c)

7It turns out that it is singular in the model of CWS. Singularity comes from collinearity of regressors
at the SCE: in�ation rate and unemployment rate equal a constant plus i.i.d. noise. As a result, 14 out
of 21 entries in R are constants which do not depend on the noise magnitude, and the rank of matrix �
equals 27� 14 = 13.

8A general way of dealing with singular di¤usion matrices is to consider two subsystems, such that
the difusion matrix is uniformly positive de�nite in one of them, and no di¤usion is present in the second
subsystem; see Roy [59].
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To �nd �I, one has to minimize I0T (z1) over the time to escape T and all points

z1;D such that T1z1;D 2 @D: In other words, the problem of �nding the minimum value

of the action functional over all trajectories starting at the origin and terminating on @D

in an arbitrary time is split into two separate problems: �rst, �nd the minimum norm

control path,
�
gt, which takes the linear control system from the origin to z1;D in arbitrary

time, and then minimize over all possible terminal points z1;D.

The �rst problem is a standard control problem that has the following solution:

I(z1;D) =
1

2
zT1;D �G

�1 � z1;D; (2.21)

where G is Gramian of the reachable subsystem. See Appendix A.2 for details and de-

�nitions of matrices T1 and G. The problem of �nding the minimum value of the ac-

tion functional then becomes a trivial one: minimize the quadratic function of z1;D on

fz1;D : T1z1;D 2 @Dg. By solving this problem, we �nd the most probable point of escape,

T1z1;D, and the rate of convergence, I, that characterizes the limiting behavior of the mean

escape time by the limit expression lim
�!0

" lnEx (�
") = I.

2.4 Testing the Approach on the Phelps Problem

2.4.1 Simulations and Reduced Dimensionality of the Model

In this section we present the results of applying the continuous�time approach

developed in the previous section to the Phelps problem studied previously by CWS, who

exploited the discrete�time approach. All the model parameters are taken to be the same

as in CWS in order to guarantee the possibility of comparison between the results.9 Before

applying the theory, we �rst run simulations of the model to have an initial picture of the

dynamics in the system.

Following CWS, we plot simulation runs in two�dimensional space, where the

abscissa is set to be the �in�ation slope coe¢ cient�(the sum of beliefs coe¢ cients before

in�ation and lagged in�ation, 
1+ 
4+ 
5) in order to see how the system moves towards

the �induction hypothesis�plane, 
1+ 
4+ 
5 = 0. In contrast to CWS, we use as an or-

dinate the intercept coe¢ cient summed with the �lagged unemployment slope coe¢ cient�

multiplied by the average unemployment rate, 
6+u � (
2+ 
3), rather than the intercept
9Throughout the paper we use the same parameter values as in CWS: �1 = �2 = 0:3; u = 5; � = 1;

� = 0:98. All the �gures are for simulations with � = 0:001; unless otherwise noted.
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coe¢ cient, 
6, alone. The exact algebraic form of the coordinates used is explained by the

following consideration.

Suppose that the government�s beliefs are �xed for a number of periods at 
n;

so that the state dynamics becomes stationary, with an unconditional expectation of Un

being u and that of �n being some e�:What is the expected value of �n? �n = Un�
1�n�


T�1Xn�1; and so

E[�n] = u� (
1 + 
4 + 
5)e� � (
2 + 
3)u� 
6: (2.22)

This back�of�the�envelope calculation suggests that from the government�s point of view,

linear combinations 
1+
4+
5 and (
2+
3)u+
6 rather than the whole vector 
 matter.

As it is exactly a perceived error �n which matters for the adjustment of � in (2.6), one

presumes that coordinates

(e
1; e
2) = � 
1 + 
4 + 
5; u � (
2 + 
3) + 
6
�

(2.23)

are useful in thinking about the model.

The above coordinates are used to plot a typical simulation run started at SCE

with � = 0:001, including an escape towards the �induction hypothesis�belief (Belief 3 of

CWS) and very low in�ation. In the (e
1; e
2) plane, all simulation points are very close
to a one�dimensional curve (a straight line). Very similar graphs are obtained in all 1000

runs, which strongly suggests that we could use coordinates (e
1; e
2) to e¤ectively reduce
the dimensionality of the system.

The reason for such almost �one�dimensionality�of the dynamics can be found

by looking at the parametrical structure of the SRA. Consider equation (2.6a). At the

SCE,10 the largest eigenvalue of R
�1
is �1 =3083.8 and the next largest �2 =29.1, less

that 1% of �1.11 Therefore, if one writes g(
n; �n) as a linear combination of eigenvectors

of R
�1
, then the projection of g(
n; �n) onto v1; the eigenvector corresponding to �1, is

magni�ed 100 times as strongly as the projection onto v2. The dynamics described by

R
�1
g(
n; �n) is, thus, almost 1�dimensional. In coordinates (e
1; e
2), v1 is approximately

proportional to (1,-5)´. Figure 2.1 shows that, indeed, all the simulation run points are

aligned along this vector.

10SCE is a starting point of the process for all simulations and theoretical derivations.
11This dramatic di¤erence is due to the fact that u is so large. Entries of R are of order u2; u; and 1.

Large u leads to signi�cantly di¤erent entries of R and thus to a large �1=�2 ratio. For u = 1, the ratio
�1=�2 drops to 5.17.
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Figure 2.1: Typical simulation run and the �largest�eigenvector of R�1:

One cannot help noticing the striking similarity between our Figure 2.1 and

Figure 6 of CWS, which uses coordinates (b
1; b
2)=� 
1 + 
4 + 
5; 
6

�
. In (b
1; b
2)

space v1 is proportional to (1,-7.86)´, which is again su¢ ciently close to the line drawn by

simulation run points of CWS. Therefore, straight lines drawn in di¤erent coordinates by

CWS and by us in this paper are nothing but projections of the �largest�eigenvector of

R
�1
; v1; onto di¤erent hyperplanes.12

It is possible to neglect the dynamics of R in considering escapes because the

covariance matrix �� = cov[H(�;X(�))] contains R
�1
in its upper�left corner, and its

largest eigenvalue�s eigenvector ev1 is proportional to (1,-5)´ in (e
1; e
2) coordinates. The
parametrical structure of �� is close to block�diagonal, so there is very little interaction

between RHS terms of ( 2.11), R�1n g(
n; �n) and Mn(
n; �n) � Rn; which in�uence com-

ponents of 
 and of R, at least for �largest�eigenvectors which determine the dynamics

12The fact that simulation run points plot almost an ideal straight line suggests that the matrix R does
not change much along the typical escape path, preserving the ratio of the largest to the second largest
eigenvalue and the direction of the �largest� eigenvector. This conjecture turns out to be correct for
relatively large values of �.
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Figure 2.2: The mean dynamics trajectories.

of the model.13

After reducing the dimensionality of the model, it is possible to analyze the

behavior of the mean and the stochastic part of dynamics using the simulations results.

Several trajectories of the mean dynamics of the model, given by (2.11), are presented in

Figure 2.2 in (e
1; e
2) coordinates. The region around the SCE where the mean dynamics
points back towards it is very small; if the initial deviation from the SCE is relatively large,

the mean dynamics trajectory treks towards Belief 3, or the �induction hypothesis�plane,

where e
1=0. After spending some time in the neighborhood of e
1=0, the trajectory slowly
returns back to the SCE. The right panel of Figure 2.2 tracks several mean dynamics

trajectories as they travel to the �induction hypothesis� plane. The paths are almost

13Matrix �� is close to being block�diagonal, similarly to R(�) in Evans and Honkapohja [29, Eq. 14.6], in
the following sense: If one takes one �largest�eigenvector of 6�6 upper left corner of �� and two �largest�
eigenvectors of 21�21 lower right corner and pads them with zeros appropriately, the resulting vectors are
almost indistinguishable from the three largest eigenvectors of the whole �� (for a block�diagonal matrix,
they should be exactly equal).
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Figure 2.3: Noise-to-signal ratio along the "largest" eigenvector of R�1:

indistinguishable at this scale: Away from the immediate neighborhood of the SCE, mean

dynamics trajectories are rapidly converging to the line connecting the SCE with (0,5).

To understand the relation between the mean and the stochastic parts of the

dynamics of (2.6), consider Figure 2.3. It plots a ratio of the relative magnitude of the

stochastic dynamics, given by R�1n fg(
n; �n)� E[g(
n; �n)]g averaged over 4000 realiza-

tions of �n; and of the mean dynamics R
�1
n E[g(
n; �n)]: The ratio is evaluated at di¤erent

points � along the eigenvector ev1: For large deviations from the SCE the mean dynamics

dominates the stochastic part. In the small region around SCE where the mean dynamics

points back towards it, stochastic dynamics is on average hundreds and thousands times

larger than the mean dynamics.14

14To understand the importance of this point, consider the heuristic derivation of the mean dynamics
ODE in Evans and Honkapohja [29, p.127]. N steps ahead value of �, �n+N , is given approximately as

�n+N � �n + (N
)
1

N

N�1P
i=0

H (�n; Xn+1+i) � �n +N
h (�n) :

The last approximation is justi�ed by invoking the law of large numbers. But as we have shown in Figure
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Using the theoretical derivations and the knowledge of the system obtained

through simulations, we think about escapes in the following way. Consider a small neigh-

borhood D of the SCE. After the trajectory crosses the boundary @D, we assume that

the stochastic dynamics does not play any role, and the model�s behavior is determined

exclusively by its mean dynamics (2.11). Arguments presented in the previous paragraph

allow us to claim that this is a very good approximation far from the SCE. Moreover, as

all mean dynamics trajectories are very close in this region, one does not need to know the

exact escape point to predict the most likely behavior of the system during travel to the

low in�ation outcome. A process of excursion towards e
1 = 0 is, therefore, split into two
parts: �rst, stochastic �escape� from D, and second, almost deterministic movement toe
1 = 0 and back to the SCE. If our selection of @D is such that after crossing it the mean

dynamics points towards e
1 = 0; there is no additional contribution to the quasipotential,
as the system does not need any additional energy to move away from the SCE. Therefore,

we concentrate on the �rst part, the stochastic �escape� from the set D; such that after

the escape the mean dynamics points away from the SCE.

2.4.2 Analytical Results vs. Simulations: Point of Escape

We select the set D and its boundary @D in several ways. The �rst way is to

use a cylinder: a sphere in six�dimensional 
 space, and no binding restrictions in 21�

dimensional space of components of R. This approach is similar to the road taken by CWS.

The theoretical results of the problem of minimizing action functional on the cylinder

are presented in Appendix A.2. This simple calculation does not replicate the behavior

observed in simulations for gain value � = 0:001:15 no matter what the cylinder�s radius

is, the escape from the SCE is predicted to occur in the approximate direction (1,-6.5)´

in (e
1; e
2) coordinates. When one selects the cylinder�s radius so that the cylinder crossesev1 at e
1=-0.985 (more on this choice below), the distance between the mean of observed
escape points and the theoretically derived escape point, d1, equals 100% of the distance

from the SCE to the theoretical escape point. Figure 2.4 presents a histogram of observed

2.3, the mean value of jH (�n; Xn+1+i)� h (�n)j is overwhelmingly large relative to the h (�n). Under these
circumstances,

PN�1
i=0 H (�n; Xn+1+i) could be very di¤erent from h (�n) unless N is very large.

15Gain value � = 0:001 is chosen for a comparison of simulations with analytical results as the lower
boundary for economically plausible values of �. Large deviations theory has to work for 0:001, if it works
for economically plausible values of � 2 [0:001; 0:01] at all.
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Figure 2.4: Histogram of tangents of escape directions in (~
1; ~
2) space for � = 1 �
10�3: Cylinder with the radius described in the text.

escape directions.16 As is easy to see, the theoretical prediction of approximately -6.5 is

way o¤ the mode of the empirical distribution, which is -5. Fewer than 1% of simulation

runs result in escape in the direction with tangent less than -6. Therefore, we conclude

that the cylinder is not a good choice for the escape region D, at least at this value of

�. Additionally, simulation runs show that many of the �escapes�generated in this way

violate our basic assumption: mean dynamics paths, initiated at the escape point, do not

deviate towards Belief 3, see Figure 2.5, where such points are marked by green crosses.

Our second way of selecting the boundary of the set D is the curve in (e
1; e
2)
space, de�ned numerically as a path �separating�trajectories coming back to the SCE from

those which �rst travel to the �induction hypothesis�plane under the mean dynamics.17

We derive this curve as follows. Find two points on the eigenvector ev1; such that one
16These tangents are obtained as follows. For a given simulation run, determine the point of escape

from the cylinder and project it into (e
1; e
2) space. Write the vector which starts at the SCE and points
towards the escape point as (1; T g)�: Then Tg is simply a tangent of the angle between (1,0)´ and (1; T g)�.
Figure 2.4 shows the histogram of Tg.
17This surface is not a separatrix in the strict sense of the word, as all trajectories eventually return

back to the SCE and asymptotically converge to it. However, there is a sensitive dependence on the initial
conditions in the neighborhood of this surface.
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Figure 2.5: Continuation of escape runs under mean dynamics. Runs that ended in a
point marked by �+�return to the SCE immediately, those marked by �o�come back only
after an excursion to the "induction plane".

of them generates a trajectory of (2.11) immediately coming back to the SCE, while

another starts an excursion toward the induction hypothesis plane. Using a sequence of

binary bisections, shrink the interval between two such points to any desired small number.

Starting from this point, solve (2.11) forward and backward in time. Project the resulting

trajectory into (e
1; e
2) space and call this curve @D. In the left panel of Figure 2.2, we plot
two trajectories that turn back to the SCE (two leftmost lines), and two paths travelling

to the �induction hypothesis�plane �rst and then coming back (two rightmost lines). The

�separating�curve is plotted as a dashed line. At the point where the �separating�curve

intersects with eigenvector ev1; e
1 approximately equals -0.985. Radius of the cylinder,
described above, was selected in such a way that it intersects ev1 at the same point as the
"separating" curve.

Deriving a �separating� surface has the advantage of taking into account some

information about behavior of the mean dynamics away from the SCE. The linear ap-

proximating di¤usion (2.16) discards this information by taking into account only D�p(��)

rather than D�p(�). On the other hand, this procedure is very simplistic and heuristic:

assuming that such a separating surface exists in the original 27�dimensional space, there
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is no particular reason to believe that its projection into two�dimensional (e
1; e
2) space
coincides with, or is concentrated around, the projection of one particular path. Never-

theless, Figure 2.5 shows that empirically the separating curve does a good job at least in

some respects: consider projections of all 1000 simulated points of escape from the cylinder

described above. We use these escape points as initial values for the trajectory of (2.11).

If this trajectory comes back to the SCE, projection of the escape point is plotted using

a �+�symbol in Figure 2.5. If the path �rst travels to the �induction hypothesis�plane,

the corresponding projection is marked as �o�. Escape points with projections to the left

of the separating curve tend to start converging trajectories, while those projected to the

right of the curve initiate an excursion towards Belief 3. There are several points well to

the left of the separating curve which nevertheless start excursions. We believe that these

points represent very unlikely escapes, during which the structure of the matrix R changes

a lot, and these points are actually very far from ev1 in the original 27D space.
Using a thus constructed boundary improves the match to simulations for gain

value � = 0:001. The theoretical escape calculated in this way occurs through the point

that lies in the approximate direction (1,-4)´ in (e
1; e
2) coordinates. The distance between
the average of empirical escape points and the theoretical escape point equals d2 = 31%

of the distance between the SCE and the theoretical point. Figure 2.6 shows that there

is some accumulation of the escape tangents towards -4; however, the majority tends to

center on -5, exactly as in the case of escape from the cylinder.

According to point (b) of the Theorem A.1, as �! 0; the probability of observing

the escape in the neighborhood of the point minimizing action functional converges to

one. This is not the behavior observed in our simulations: For both boundaries used

above simulated escapes tend to occur close to points in (1,-5)´ direction rather than the

theoretically predicted (1,-6.5)´ or (1,-4)´.

The source of the discrepancy lies in the non�validity of continuous�time ap-

proximation for the values of � used in economic literature and for simulations in the

comparison above. To see it, one could compare the mean dynamics given by (2.11) and

the realizations of the stochastic process simulated in (2.6). As is mentioned above, for �

near the SCE such that the mean dynamics points towards �; mean dynamics magnitude

(R�1E[g(
; �n)]) is dramatically lower than the typical realizations of R
�1g(
; �n): the

�noise�to�signal� ratio, kR
�1(g(
;�n)�E[g(
;�n)])k
kR�1E[g(
;�n)]k

; ranges from hundreds to several thou-
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sand, depending on �. Figure 2.3 plots this ratio for points along the eigenvector ev1,
averaged over 4000 realizations of (W1n;W2n) for every point. The horizontal axis shows

corresponding e
1 values. Near the SCE, the noise�to�signal ratio tends to be extremely
high. In this situation one expects (2.16) to be a good approximation of (2.6) only if the

system stays in the neighborhood of every point � long enough to allow the average of

R�1g(
; �n) to approach R
�1E[g(
; �n)]:With noise�to�signal ratios from 10 to 1000, this

means hundreds and thousands of iterations near every point �. However, for the values

of � used in CWS and commonly applied in the literature (�=0.001�0.01), the expected

escape time is measured in hundreds of iterations: this is the time spent by the system

near all points around the SCE. Therefore, �=0.001�0.01 is not small enough for the

approximation (2.16) to be valid.

Given such large noise�to�signal ratio, one could simply disregard the mean dy-

namics (set D�p(�) = 0) and repeat minimization of the action functional. This is our

third way of deriving escape dynamics. The region D is the cylinder described above.

The theoretical results of the problem of minimizing action functional on the cylinder
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Dynamic model Static model
� d1, % d2, % d3, % d1, % d3, %

2 � 10�5 75.45 86.72 99.99
3 � 10�5 81.56 73.65 72.25 24.82 244.93
5 � 10�5 88.50 70.69 40.95 29.37 229.23
1 � 10�4 93.04 57.73 20.39 40.91 189.36
2 � 10�4 92.78 45.68 22.75 54.73 141.64
4 � 10�4 95.83 35.26 7.61 67.41 97.85
1 � 10�3 99.65 30.98 4.35 81.02 50.82
1 � 10�2 99.39 127.86 11.87 93.78 6.77

Table 2.1: Distance between the average of simulated escape points and the theoretically
predicted escape points, expressed as a percentage of the distance between the SCE and
the theoretically predicted point.

in the case of di¤usion without drift term are presented in Appendix A.2. Theoretical

escape occurs in the direction of the largest eigenvalue of �; ev1.18 This way provides a
much better agreement between the theory and the simulations: for the same radius of the

cylinder as in the �rst approach, distance d3 between the mean of observed escape points

and the theoretically predicted point is only 4.4% of the distance between the SCE and

the theoretical point. Figure 2.4 shows that most runs end in escapes along the direction

(1,-5)´, which is the theoretically predicted one for this approach.

To support further our claim that � = 0:001 is not low enough to guarantee

su¢ cient averaging, we have performed simulation runs for smaller values of �. Consider

Figure 2.7, which plots a histogram of escape directions from the cylinder, for a 1000

simulations with � = 2 �10�5. Comparison with Figure 2.4 shows that one indeed observes

an accumulation of escape directions towards the theoretically predicted direction of -6.5,

but there is still a long way to go: A full 14% of escapes occur in the bin centered on -5

with the width of 0.25, and only 66% escape direction tangents are in bins with centers

below -5. Given that theoretically one expects a mode at -6.5, we calculated the share of

escapes in the bin centered at -6 and below it. Only 9.6% of escapes fall into this category,

which is still much better than less than 1% observed for � = 1 � 10�3.

In contrast, performance of the second way of selecting @D does not improve as

� decreases.19 At � = 1 � 10�3; only 41% of escapes are at -5, and 26% escape at �correct�

18This escape direction could be derived more easily: take the largest eigenvector of R�1 and project it
into (e
1; e
2) space. The result is the same as the result based on the formula in Appendix A.2 up to third
decimal point.
19The reason for the failure of the second way for smaller � is clear: for large �; the majority of escapes are
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Figure 2.7: Histogram of tangents of escape directions in (~
1; ~
2) space for � = 2 � 10�5.
Cylinder with radius described in the text.

-4.5 or above (recall that the second way predicts an escape direction of -4). However, the

percentage of �correct� escapes does not increase as � falls but �uctuates between 25%

and 28% for � = 2 � 10�4, 4 � 10�4; and 2 � 10�5. A large number of escapes occurs below -5

and below -6 (59% and 9.7% respectively at � = 2 � 10�5). In other words, the distribution

of the directions of escape from the region bounded by the separating curve resembles the

distribution of escapes from the cylinder, even though theoretically we expected them to

diverge.

concentrated along ev1; and we used a point on ev1 as a starting point in deriving the trajectory which, after
being projected into (e
1; e
2) plane, became the separating curve. As a result, we are relatively con�dent
that this curve is a good description of the true 27�dimensional separating surface for majority of escaping
trajectories. As � decreases, more and more escapes start to take place away from ev1 (and thus away from
the initial point used to derive the separating curve), and the curve stops working as a result. We could

use a point on the vector T1G
1=2
� derived in Appendix A.2 as the initial point for deriving the separating

curve. We believe that this trajectory, projected into (e
1; e
2) plane, would have worked well for very small
�; when almost all escapes do occur in the direction prescribed by G.
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Figure 2.8: Comparison of empirical behavior of average escape time (dots) and the the-
oretical prediction (solid line).

2.4.3 Analytical Results vs. Simulations: Escape Time

To see how the proposed approach works in terms of predicting the mean escape

time we exploited the relation (2.17). It implies that a plot of lnEx (� ") vs. 1=� is a straight

line with the slope equal to the rate of convergence I. Note that � "; �rst escape time, is

given in continuous time units of the approximating di¤usion (2.16), and is approximately

equal to � times the expected number of iterations of the discrete�time process (2.10)

needed to observe the �rst escape. Figure 2.8 shows that the straight line is not observed:

The slope decreases as one moves towards higher 1=� (lower �), and seems to converge

asymptotically to the solid line with the slope I only for the lowest considered values of

� .20

Table 2.2 shows the theoretically predicted values of the slope I for the �rst and

second way of selecting @D as well as empirically observed slopes (calculated at the slope of

20Though the limiting characteristics of mean escape time predicted by the large deviations theory do
not hold true for economically plausible region of gain �, the empirical distribution of escape times follows
the theoretically predicted exponential distribution even for �large��: Figure 2.9 shows that the logarithm
of the empirical cumulative distribution function, ln[Pr(�" � T )]; is approximately linear in T , as expected
for the exponential distribution.



55

0 50 100 150 200 250 300 350 400
­7

­6

­5

­4

­3

­2

­1

0
Empirical c.d.f. of escape time distribution, cylinder, ε=0.001

iterations to escape, N

ln
( ε

*E
[N

])

Figure 2.9: Cumulative distribution function of escape times

the line connecting the last two observations in Figure 2.8 and its analog for the separating

curve). For the �rst (second) way, the empirical slope almost converges to (undershoots)

the theoretically predicted value for � = 2 � 10�5: As explained in footnote 26, our method

is likely to produce values of �I which are higher than the true ones, which explains the

observed undershooting.

The theoretical formula for mean escape time in the third way of characterizing

escape dynamics in the model can be derived using the formula for mean exit time of one�

dimensional Brownian motion in Karatzas and Shreve [46]. We derive the mean escape

time for the projection of the process d't =
p
��1=2(��)dWt on the most probable direction

of escape, the �largest�eigenvector of �. The formula for the mean escape time, derived

in Appendix A.3, is given as E� " = rad2

�� , where � is the largest eigenvalue of �, and rad is

the distance between the SCE and the point where the �largest�eigenvector of � crosses

the cylinder described above. In Table 2.3, we compare this formula�s predictions with

averages from simulations. The formula performs very well, especially for � 2 [0:001; 0:01],



56

Dynamic model Static model
� Way 1 Way 2 Way 1

Simulations 2 � 10�5 2:21 � 10�5 2:14 � 10�5
3 � 10�5 3:67 � 10�5 3:19 � 10�5 1:96 � 10�4
5 � 10�5 6:60 � 10�5 4:92 � 10�5 1:86 � 10�4
1 � 10�4 1:31 � 10�4 8:46 � 10�5 2:30 � 10�4
2 � 10�4 2:49 � 10�4 1:77 � 10�4 3:42 � 10�4
4 � 10�4 4:90 � 10�4 3:79 � 10�4 5:66 � 10�4
1 � 10�3 8:14 � 10�4 6:76 � 10�4 1:32 � 10�3

Theory 2:01 � 10�5 3:01 � 10�5 3:20 � 10�4

Table 2.2: A comparison of the theoretically derived value of the action functional and
empirically observed slope of lnEx (� ") vs. 1=� line.

the range used previously by CWS and others. Indeed, when we plot average simulated

escape time vs. 1=�2 in Figure 2.10,21 we see a straight line with the slope approximately

equal to rad2

� for a large range of �. The formula starts to lose precision once one moves

to lower �, i.e. into the region where the averaging is better as the system spends more

periods in the neighborhood of SCE, and so the large deviations theory becomes to be

more applicable to characterizing mean escape times.

�

Simulation results for very low � tell a consistent story: one can use large devia-

tions theory estimates for escape time only for gain values � . 2 � 10�5; even � = 2 � 10�5

is still not low enough to observe the limiting behavior predicted by the large deviations

theory. Note that this is true for both continuous�time approach developed here and

discrete�time approach used by CWS.22 As for the continuous�time approach, one can

avoid the non�applicability of the large deviations theory for economically interesting val-

ues of � by disregarding the mean dynamics altogether and following the third way of

deriving the escape dynamics, which works well for such �.

For the lowest � considered here, the large deviations theory just begins to work.

Is it possible to claim that empirically observed disin�ations are, indeed, escapes from

21Observe that �"; �rst escape time, is given in continuous time units of the approximating di¤usion
(2.16), and is approximately equal to � times the expected number of iterations of the discrete time process
(2.10) needed to observe the �rst escape (see the beginning of this subsection for explanation). Therefore,
we divide the �continuous�time mean escape time�E� � by � to get the �mean number of periods before
escape.�
22Even if one believes that our calculations overestimate the rate of convergence because of the arguments

presented in footnote 25 and the true I is closer to the numbers given in CWS, the empirically observed
slope at � = 0:001 is 80 times larger than predicted. This result means that both discrete�and continuous�
time approaches fail at least for � � 0:001.
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Figure 2.10: Expected escape times predicted for a one�dimensional Brownian model
without drift versus simulation results.

the SCE generated by the model? At � = 2 � 10�5, the average number of simulation

periods needed to observe the �rst escape is about 1 � 105 (for cylinder) and 1:5 � 105 (for

the separating curve). Add to these numbers the time needed to travel to the induction

hypothesis plane e
1 = 0 (of order 104) and recall that the time period in the Phelps model
could not be much lower than a quarter. In this economy, one would wait, on average,

twenty thousand years or longer for the low in�ation episode caused by adaptive learning

with constant gain equal to 2 � 10�5. It is immediately obvious that the region of � values,

for which large deviations theory estimates of mean escape time start to be applicable in

the dynamic model of CWS, is far removed from those � values which lead to simulated

escapes at empirically interesting times, such as 65 periods at � = 1 � 10�3.
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Dynamic model Static model

� Simulations Theory, rad
2

�2�
Simulations Theory, rad

2

�2�

2 � 10�5 1:10 � 105 1:26 � 105
3 � 10�5 5:10 � 104 5:61 � 104 4:38 � 107 6:97 � 105
5 � 10�5 1:88 � 104 2:02 � 104 1:98 � 106 2:51 � 105
2 � 10�4 1:26 � 103 1:26 � 103 1:56 � 105 6:27 � 104
4 � 10�4 336:96 315:65 4928:00 3919:27
1 � 10�3 64:59 50:50 733:57 627:08
2 � 10�3 21:49 12:63 189:98 156:77
3 � 10�3 12:50 5:61 87:00 69:68
4 � 10�3 8:77 3:16 52:08 39:19
5 � 10�3 6:79 2:02 34:39 25:08
6 � 10�3 5:99 1:40 24:76 17:42
7 � 10�3 4:98 1:03 19:14 12:80
8 � 10�3 4:49 0:79 15:02 9:80
9 � 10�3 4:12 0:62 13:32 7:74
1 � 10�2 3:70 0:51 11:16 6:27

Table 2.3: A comparison of the theoretically derived values of expected escape time and
empirically observed average escape times.

2.5 Discussion

2.5.1 Better Averaging for Larger �

As we have shown in the dynamic model of CWS at empirically relevant values

of the constant gain parameter, the mean escape time can be easily characterized using a

simple formula for the expected exit time of one�dimensional Brownian motion, while the

large deviations theory predictions of mean escape time do not hold. This is due to three

facts. A large value of u leads to very large �1=�2; the ratio of the two largest eigenvalues

of the inverse second moments matrix at SCE. This fact makes the SRA dynamics almost

one�dimensional. Second, both static and dynamic models of CWS have a very speci�c

phase portrait: despite potentially global stability of the SCE, the region where the mean

dynamics points back to it is exceedingly small. Third, the dominant eigenvalue �1 is huge,

which means that any stochastic deviation in the �only�direction is strongly magni�ed.

A combination of these three features of the SRA in the dynamic CWS model makes

�escape� easy and puts very tight requirements on the values of � used in the constant

gain learning algorithm. In particular, this means that values of � commonly used in the

literature are not small enough to guarantee enough time for averaging, and therefore,
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methods of characterizing the mean escape time, based on the theory of large deviations

which relies on the mean (averaged) dynamics, are not expected to work well in this

particular setting. This argument is applicable to both the continuous�time approach and

to the discrete�time approach used in CWS and elsewhere. Nevertheless, a version of the

continuous�time approach which disregards the mean dynamics, and in fact does not rely

on the large deviations theory to characterize the mean escape time, provides a very good

�t to the simulations.

Lack of time for averaging near the SCE leads to the relative failure of our �rst

and second ways in deriving the properties of escapes. This failure could be tracked

down to the limited applicability of (2.11) and of approximating di¤usion (2.16). With

better averaging, both large deviations theory characteristics of mean escape time and

continuous�time approximation (2.16) improve. We have three suggestions on how to

achieve better averaging in this model for empirically interesting region of �.

First, the matrix R
�1
should be more balanced: A lower value of �1=�2 e¤ectively

increases the dimensionality of the problem and expands the volume of the state space

available to the system, thus increasing the expected escape time and producing better

averaging. In the current model, a more balanced second moments matrix means lower

value of u. Second, having a stronger drift towards SCE under mean dynamics (this

probably implies a larger region of immediate attraction to the SCE) will help to achieve

better averaging around SCE and thus ensure that (2.16) approximates (2.6) reasonably

well. We conjecture that smallness of the region where the mean dynamics points towards

SCE is due to the fact that at the SCE, the learning is not well speci�ed: some of the

regressors are perfectly collinear in both static and dynamic models of CWS. In other

words, forcing the agents to use better speci�ed learning might help. Third, reducing the

magnitude of �1 while keeping �xed the SCE�s region of attraction increases the time spent

by the system in this region and provides better averaging, at a potential cost of a higher

expected escape time; as a result, the region of the constant gain parameter � where large

deviations theory�s asymptotic predictions start to be valid is more likely to not include

empirically interesting magnitudes of �.
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2.5.2 Static Model vs. Dynamic Model

In order to test some of these conjectures, we repeated our analysis for the static

model of CWS. In contrast to the dynamic model analyzed previously, the government�s

beliefs do not take into account lagged in�ation and unemployment rates, and the vector

Xn�1 contains only the constant.23 We expect the large deviations theory to become

applicable for larger values of � than with the dynamic model because the phase portraits

of the mean dynamics in the dynamic (in (e
1; e
2) coordinates) and static models are very
similar, but the largest �static�eigenvalue of R

�1
equals 26.09 and is much smaller than

3084 for the dynamic model. On the other hand, the ratio of the �rst two eigenvalues,

�1=�2; equals 7561 compared to 106. In other words, the static model is even more one�

dimensional than the dynamic one, but the system is expected to spend more time in the

neighborhood of the SCE before the �rst escape and thus achieve better averaging than

in the dynamic model.24

Based on the discussion in the previous section, we do not consider the second

way of selecting @D and use only the �rst and the third one. The cylinder is chosen so

that it intersects the �largest�eigenvector ev1 at 
1 =-0.975, using the same reasoning as in
the dynamic model case. Theoretically predicted directions of escape out of the cylinder

are (1,-7.5)´ and (1,-5)´ for the �rst and third way, respectively.

On several dimensions, the �rst way produces more favorable results when applied

to the static model. First, at � = 1 � 10�3; only 22% of escapes happen in the -5 bin,

compared to 56% for the dynamic model. At � = 2 � 10�4; this number drops to 6.7% for

the static model, but still stands at 49% in the dynamic one. At � = 3 � 10�5 in the static

model, a full 34% of the escapes happen at the direction -7 or below and 100% of them

are below -5. As is clear from the Table 2.1, the distance to the escape point predicted

by the �rst way declines very fast as � decreases in the static model, but it decreases only

slightly in the dynamic one. Finally, already at � = 1 �10�4; the empirically observed slope
23The government�s problem (2.3) can be solved explicitly for the policy function h(
). A preliminary

analysis of the static CWS model was performed in Evans and Honkapohja [29, Section 14.4]. In particular,
the matrix V derived on p. 358 is nothing else but the Gramian G of the 2�dimensional problem which
discards 3 elements of the covariance matrix. As stated by Evans and Honkapohja [29], one could do
so because the matrix D�p(��) is block�lower�triangular and the matrix �(��) is block�diagonal. In order
to preserve continuity with our analysis of the dynamic model, we analyze the full 5�dimensional static
problem, with two elements of the vector 
 and 3 elements of the variance�covariance matrix R.
24This prediction is borne out by the simulations: at � = 1 � 10�2; 1 � 10�3; and 2 � 10�4; the average

escape times out of the cylinder which intersects ev1 at -0.985 are 3.7, 64.6, and 1255 periods for the dynamic
model, while for the static one the corresponding numbers are 5.6, 265.6, and 6903 periods, respectively.
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of the lnEx (� ") vs. 1=� line is lower than the theoretically predicted one, see Table 2.2.25

As for the third way we see that it works well in predicting the point of escape (see

Table 2.1) and in predicting the mean escape time (see Table 2.3). However, the simpli�ed

continuous�time approximation (without drift term) and the simple mean escape time

formula based on it are valid for the region of � shifted to a larger � compared to the one

for the dynamic model, see Figure 2.10. This is explained by better averaging for larger �

in the static version of the model.

2.5.3 Comparisons with CWS

Comparing the predictions of our most successful (third) way of deriving the most

probable escape point and the mean escape time for economically plausible region of gain

values in both dynamic and static versions of the CWS model with the CWS predictions,

we obtain that our estimates of magnitudes of mean escape times �t simulations very

well, whereas the mean escape times� limiting behavior predicted by the large deviations

theory used by CWS is not con�rmed by simulations. The reason for this failure (and for

the failure of our �rst and second ways of describing mean escape time for economically

interesting gain values) is bad averaging as discussed above.

In terms of the escape point, all three ways used in this paper have the same

escape point as understood by CWS26: escaping trajectories hit the �induction hypothesis�

plane very close to the point prescribed by the largest eigenvalue�s eigenvector of R
�1
, the

inverse second moments matrix of beliefs evaluated at the SCE. We explain this by the

fact that this �escape� is for the most part a deterministic movement along the mean

dynamics trajectory, and all such trajectories are very close to each other, see Figure 2.2.

We have to address three technical considerations that could potentially in�u-

ence our comparison. The �rst is �Kushner critique�: Can one guarantee that the escape

dynamics generated by a continuous�time approximating process is a valid approximation

of the escape dynamics of the original discrete�time learning process? Kushner [52] pro-

25Recall that I; which determines this slope, is called quasipotential. It measures the energy needed to
get the system out of region D around the point O. The reason one needs to spend the energy at all is
because of the drift, or non�stochastic component of the di¤usion, which points back towards O. We have
selected our region D in such a way that the drift pointing inwards becomes very weak near the boundary
@D. However, as the approximation to (2.6) is made at point O; it overestimates the strength of the drift
which has to be overcome in order to cross @D; and so overestimates I. The argument from Dembo and
Zeitouni [22], cited in Section 2.1, persuades us that this upward bias is not likely to be very large.
26In their paper they consider escape out of a cylinder with radius 66 times as large as in our paper.



62

posed that this question could be answered by checking whether the action functional of

a discrete�time process converges to the action functional of its continuous�time approxi-

mation. Checking the convergence is very hard to do taking into account that the action

functional for a discrete�time process in the CWS model depends on a numerically derived

function. Therefore, the only way of judging the performance of the large deviations the-

ory approach based on a continuous�time approximation of the discrete�time SRA is to

compare the predictions of this approach to the predictions of the discrete�time approach

and to simulation results.

Second, the CWS approach ignores the cross e¤ects of the second moments matrix

R for dynamic version of the model due to numerical complications, while we fully take

them into account. We estimate that the in�uence of this assumption is not large as the

matrix � is close to being block diagonal (see footnote 13 for a discussion). We believe

that if one were to implement the CWS approach without ignoring the cross e¤ects of R;

the results obtained would be more valid than those obtained here. This path, however,

might be blocked by computational complications.

Third, the discrete�time version of large deviations theory does not contain the-

oretical results for the most probable point of escape and mean escape time in case of

unbounded (for example, Gaussian) shocks (see CWS, Theorem 5.3). The result which

is available for unbounded shocks is that �the probability of observing an escape episode

is exponentially decreasing in the gain with the rate given by the minimized value of the

cost function S�, see CWS, p. 13. The extent to which this lack of theoretical results

in�uences numerical predictions is not generally known, but has been shown to be small

in some situations: CWS use both normal (unbounded) and binomial (bounded) shocks

in the static model and obtain the values of S (I in our notation) which are numerically

very close to each other; predicted most probable escape paths also are very similar.

2.6 Conclusion

We extended a continuous�time approach for the analysis of escape dynamics

in economic models with adaptive constant gain learning. Foundations of this approach

were laid down by Evans and Honkapohja [29, Ch. 14], Williams [64], and Kasa [47].

This approach is based on applying the results of FW�s continuous�time version of large

deviations theory to the di¤usion approximation of the original discrete�time learning
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process.

When applied to the Phelps problem of government controlling in�ation using

an approximate Phillips curve, deriving escape dynamics characteristics for the �original�

di¤usion approximation with a drift term did not generate results compatible with the

results of simulations in terms of the mean escape time. This is due to the limited validity

of such an approximation for economically plausible values of the constant gain parameter

�. Limited validity of the approximation, in turn, is caused by bad averaging in the CWS

model. To account for high �noise�to�signal� ratio near the SCE, we used a �modi�ed�

di¤usion approximation without the drift term and the formula for the mean exit time

of one�dimensional Brownian motion, rather than limiting characteristics provided by the

theory of large deviations. We managed to predict the values of mean escape times with

high precision for the �modi�ed�approximation.

All our ways of deriving escape dynamics characteristics work well in predicting

the �nal point of escape: Escape occurs in the small neighborhood of the SCE, then mean

dynamics move the system along the largest eigenvector of the inverse second moments

matrix evaluated at the SCE towards the �induction hypothesis�plane. As for predicting

the most probable point of �initial� escape out of a small neighborhood of the SCE,

the ways based on an �original� continuous�time approximation did not work well for

economically plausible region of � because the approximation has limited validity at such

�. Considering an escape out of a separating surface on which the mean dynamics changes

its direction, thus taking into account some information about the behavior of the mean

dynamics away from the SCE, provides better results for the point of �initial�escape.

As another result of this paper we express reservations regarding the applicability

of large deviations theory for the characterization of mean escape time for economically

plausible values of gain in both versions of the CWS model. We show that for the region

of gain values used in economics literature, simple considerations and formulae work much

better than large deviations theory�s results. This, again, is explained by bad averaging

for a relatively large � in this model.

We suggest two changes to help the approaches based on large deviations theory

work better in terms of characterizing mean escape time for the model and gain values

considered: to set lower mean unemployment rate, in order to construct a more balanced

second moments matrix, and to use better speci�ed learning of agents. The same changes
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will help our �original�continuous�time approximation to become valid for larger gain val-

ues. In general, one has to look for economically sensible models with better averaging for

economically plausible gain values in order to apply large deviations theory characteristics

of the mean escape time.

Finally, we believe that utilizing a continuous�time approximation can be used

to analyze escape dynamics in more complicated models, where it is not possible to derive

analytical characteristics of escape dynamics in discrete time. For example, the model with

a dynamic Phillips curve can be studied as a possible extension of the approach proposed

here. The question, however, remains whether large deviations theory predictions of mean

escape time would be valid in this model for economically plausible �, or whether one would

have to employ something resembling our reliance on the �modi�ed�approximation and

the mean exit time result for one�dimensional Brownian motion. This is the focus of our

current research.
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Abstract

In this paper, we perform an in�depth investigation of the relative merits of two adaptive
learning algorithms with constant gain, Recursive Least Squares (RLS) and Stochastic
Gradient (SG), using the Phelps model of monetary policy as a testing ground. The
behavior of the two learning algorithms is very di¤erent. Under the mean (averaged) RLS
dynamics, the Self�Con�rming Equilibrium (SCE) is stable for initial conditions in a very
small region around the SCE. Large distance movements of perceived model parameters
from their SCE values, or �escapes,�are observed.

On the other hand, the SCE is stable under the SG mean dynamics in a large region. How-
ever, actual behavior of the SG learning algorithm is divergent for a wide range of constant
gain parameters, including those that could be justi�ed as economically meaningful. We
explain the discrepancy by looking into the structure of eigenvalues and eigenvectors of
the mean dynamics map under SG learning.

Results of our paper hint that caution is needed when constant gain learning algorithms
are used. If the mean dynamics map is stable but not contracting in every direction,
and most eigenvalues of the map are close to the unit circle, the constant gain learning
algorithm might diverge.
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3.1 Introduction

In this paper, we perform an in�depth investigation of the relative merits of

two adaptive learning algorithms with constant gain, Recursive Least Squares (RLS) and

Stochastic Gradient (SG). Properties of RLS as a learning algorithm are reasonably well

understood as it has been used extensively in the adaptive learning literature. For an

extensive review, see Evans and Honkapohja [29]. SG learning received more limited

attention in the past, but the situation is changing: Evans, Honkapohja and Williams [32]

promote the constant gain SG (and generalized SG) as a robust learning rule, which is

well suited to the situation of time�varying parameters.

A di¤erent motivation for studying the properties of the SG learning comes from

recent interest in heterogeneous learning (cf. Honkapohja and Mitra [42] or Giannitsarou

[37]). In this literature, several types of agents use di¤erent adaptive learning rules to

arrive at the parameter values of the model. Often, some of the groups are using RLS

while the others employ SG. A desirable property of such a model is its stability under all

implemented types of learning.

Finally, our interest is not restricted to the dynamics of the learning algorithm in

a small neighborhood of the rational expectations equilibrium (REE) which motivates our

focus on constant gain learning. It is known that E�stability of the REE, which implies

local stability under RLS learning with decreasing gain, does not automatically imply local

stability under SG with decreasing gain, see Giannitsarou ([38]). Here the equilibrium is

E�stable under both RLS and SG learning, but the behavior of the constant gain versions

of the two methods is substantially di¤erent away from the equilibrium.

As a testing ground for comparison, we use the Phelps problem of a govern-

ment controlling in�ation while adaptively learning the approximate Phillips curve, stud-

ied previously by Sargent [61] and Cho, Williams, and Sargent [17] (CWS hereafter). A

phenomenon known as �escape dynamics� can be observed in the model under the con-

stant gain RLS learning. In Kolyuzhnov, Bogomolova, and Slobodyan [50], we applied a

continuous�time version of the large deviations theory to study the escape dynamics and

argued that a simple approximation by a one�dimensional Brownian motion can be better

suited for describing the escape dynamics in a large interval of values of the constant gain.

Here, we derive an even better one�dimensional approximation and discuss the Lyapunov

function�based approach in establishing the limits of applicability of this approximation.
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We also extend our analysis to the SG constant gain learning.

The rest of the paper is organized as follows. We brie�y describe the dynamic

and static versions of the model of CWS and de�ne the RLS and SG learning in Section

2. In Section 3, we present and contrast the non�local e¤ects arising under the constant

gain versions of these algorithms and discuss the possible explanations for the di¤erence

in behavior of the mean dynamics and the actual real�time learning algorithm. Section 4

concludes.

3.2 The Model and Learning Algorithms

The economy consists of the government and the private sector. The government

attempts to minimize losses from in�ation �n and unemployment Un:

min
fxng1n=0

E
P1

n=0 �
n
�
U2n + �

2
n

�
; (3.1)

It uses the monetary policy instrument xn to control �n, Eq. (3.2b). It believes (in

general, incorrectly) in the Phillips curve (3.2c). The true Phillips curve is given by (3.2a):

Unemployment is a¤ected only by unexpected in�ation. The private sector possesses

rational expectations bxn = xn about the in�ation rate, and thus unexpected in�ation

shocks come only from monetary policy errors. The whole model is presented below.

Un = u� � (�n � bxn) + �1W1n; u > 0; � > 0; (3.2a)

�n = xn + �2W2n; (3.2b)

Un = 
1�n + 

T
�1Xn�1 + �n: (3.2c)

In the �static�version of the model, Xn�1 contains only a constant, while two

lags of � and U are added to Xn�1 in the �dynamic� version. W1n and W2n are zero

mean, unit�variance independent Gaussian shocks. Vector 
 =
�

1; 


T
�1
�T
represents a

government�s beliefs about the Phillips curve; it is 6�dimensional in the �dynamic� and

2�dimensional in the �static�model. �n is perceived by the government as white noise

uncorrelated with regressors �n and Xn�1.

The equilibrium is de�ned as a vector of beliefs 
 at which the government�s

assumptions about orthogonality of �n to the space of regressors are consistent with ob-

servations:

E
h
�n � (�n; Xn�1)

T
i
= 0: (3.3)
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CWS call this point a self�con�rming equilibrium, or SCE. Williams [64] shows that at the

SCE, 
 =
�
��; 0; 0; 0; 0; u(1 + �2)

�T , and the average in�ation is xn = �u: For a detailed

description of the model, see CWS.

In a period n, the government solves (3.1), subject to (3.2b) and (3.2c), assum-

ing that current beliefs 
n will never change. The monetary policy action xn is cor-

rectly anticipated by the private sector. Un is generated according to (3.2a), and the

government�s beliefs are adjusted in a constant gain adaptive learning step. Let �n =h
W1n W2n XT

n�1

iT
; g(
n; �n) = �n �

�
�n; X

T
n�1
�T
; and Mn(
n; �n) =

�
�n; X

T
n�1
�T ��

�n; X
T
n�1
�
. The next period�s beliefs 
n+1 and Rn+1 are given by


n+1 = 
n + �R
�1
n g(
n; �n); (3.4a)

Rn+1 = Rn + � (Mn(
n; �n)�Rn) ; (3.4b)

under RLS learning and by


n+1 = 
n + �g(
n; �n) (3.5)

under the SG learning.1

Set the parameter vector ��;SGn equal to 
n for the SG and �
�;RLS
n =

h

Tn ; vechT (Rn)

iT
for the RLS case.2 De�neHRLS(��n; �n) =

h �
R�1n � g(
n; �n)

�T
; vechT (Mn(
n; �n)�Rn)

iT
and HSG(��n; �n) = g(
n; �n) to write the Stochastic Recursive Algorithm (SRA) in the

standard form:

��;jn+1 = ��;jn + �Hj(��;jn ; �n); j = fRLS; SGg ; (3.6a)

�n+1 = A(
n)�n +B �
h
W1n+1 W2n+1

iT
: (3.6b)

Finally, the approximating ordinary di¤erential equations corresponding to the above SRA

are given by
�
�j = E[Hj(��;j ; �n)]: (3.7)

The SCE (vector 
 and corresponding 2nd moments matrix R if RLS is used) is

the only equilibrium of the above ODE. The SCE is stable for both RLS and SG in the

dynamic and static versions of the model: the SCE is E�stable under both algorithms.

The solution of the ODE (3.7) is called the �mean dynamics trajectory�of the SRA (3.6),

1Rn is the current estimate of the 2nd moments matrix of the regressors.
2Following the notation of Lütkepohl [54], vech denotes a column vector in which abridged columns

(the main diagonal and below) of a symmetric square matrix are stacked.
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with the right�hand side of (3.7) being the �mean dynamics.�For details and derivations,

see Evans and Honkapohja [29]. Another local continuous�time approximation of the

SRA around the SCE � can be derived in the constant gain case, as shown by Evans and

Honkapohja [29, Prop. 7.8] and Williams [64, Theorem 3.2];

d'RLSt = P'tdt+
p
��1=2(��

RLS
)dWt; (3.8)

where 't = �RLSt � �RLS are deviations from the SCE, see Kolyuzhnov, Bogomolova, and

Slobodyan [50]. We use the approximation (3.8) to study behavior of the model when RLS

learning is employed.

Still another variant of the mean dynamics approximation is the following di¤er-

ence equation obtained from (3.6a):

��;jn+1 = ��;jn + � � E[Hj(��;jn ; �n)]: (3.9)

The di¤erence between the above approximation and (3.7) is that � is not assumed to

be approaching zero asymptotically. This approximation turns out to be useful when we

consider the learning dynamics in the SG case.

3.3 Behavior of Simulations

The discussion below refers to the model as parametrized in CWS: �1 = �2 = 0:3;

u = 5; � = 1; � = 0:98.

3.3.1 Recursive Least Squares

Dynamic Model

It is well known that under the constant gain RLS learning, beliefs in the Phelps

problem can exhibit �escapes�: After a number of periods spent in the neighborhood of

the SCE, the beliefs vector 
 suddenly deviates from the SCE towards the �induction

hypothesis� plane 
1 + 
4 + 
5 = 0 (
1 = 0 axis for the static model) (see CWS, in

particular Figures 6 and 7). During such an escape, the in�ation rate falls from its Nash

equilibrium value equal to �u and approaches 0 (see Figure 1 in CWS).

In Kolyuzhnov, Bogomolova, and Slobodyan [50], we have studied these escapes

extensively and described the following sequence of events. If the constant gain parameter

� is not too small, the behavior of equation (3.4a) is almost one�dimensional because
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Figure 3.1: The mean dynamics trajectories under RLS.

the two largest eigenvalues of R
�1
, �1 and �2, equal 3083.8 and 29.1. As a result, the

projection of g(
n; �n) onto v1; the dominant eigenvector of R
�1
, is ampli�ed about 100

times as strongly as the projection onto the second largest eigenvector. It is also well

known that in this model, the region of attraction of the SCE is very small (see Figure

3.1 reprinted from Kolyuzhnov, Bogomolova, and Slobodyan [50] or Figures 8 and 9 in

CWS). Outside of the immediate neighborhood of the SCE, the mean dynamics point

away from it and towards the �induction hypothesis�plane in the direction which is very

close to v1. These trajectories linger in the neighborhood of the plane for a relatively long

time and then start a slow return to the SCE. As a result, simulation runs with escapes

tend to contain a set of points aligned along the dominant eigenvector of R
�1
all the way

towards the �induction hypothesis�plane, which is clearly demonstrated in the Figure 3.2,

reprinted from Kolyuzhnov, Bogomolova, and Slobodyan [50].3

3In Figure 3.2, a 6�dimensional vector of beliefs 
 is presented in the space of (e
1; e
2); de�ned as

1+
4+
5 and u � (
2+
3)+
6: A government�s beliefs about the in�uence of past and current in�ation
on Un are given by e
1, while e
2 represents the beliefs about the e¤ect of past unemployment (and a
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Figure 3.2: Typical simulation run and the �largest�eigenvector of R�1 under RLS.

We use this essential one�dimensionality to derive the following approximation

of (3.8). Write 't � xt � ev1; and multiply (3.8) by evT1 from the left. The resulting 1�

dimensional approximation is then given by

dxt � evT1 D�p(��
RLS

)ev1 � xtdt+q�e�1 � evT1 � dWt = A � xtdt+
q
�e�1dWt; (3.10)

where e�1 is the dominant eigenvalue of �. Note that evT1 � dWt is a one�dimensional

standard Brownian motion. (3.10) is then an Ornstein�Uhlenbeck process with well�known

properties. In particular, one could easily derive the expected time until the process leaves

any interval of the real line (see Borodin and Salminen [7]).4

To estimate the region of applicability of the approximation (3.10), take x2t as

constant). The signi�cant disbalance of eigenvalues of R
�1
is inherited by the matrix � in (3.8), and the

eigenvector v1 is essentially collinear to the �rst 6 components of ev1; the dominant eigenvector of �.
4Ornstein�Uhlenbeck approximation could also be useful in case one is interested in selecting the value

of � such that for a given time period the probability of observing an escape is below some given threshold
(dynamics under learning is empirically stable).
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the Lyapunov function and calculate LV for one�dimensional di¤usion (3.10):5

LV = 2 �
�
Ax2t + �

e�1� :
Clearly, LV is positive for small xt; and thus V (xt) = x2t is expected to increase. In other

words, in a small neighborhood of the SCE, the Stochastic Recursive Algorithm (3.6) is

expected to be locally divergent on average. We would call values of � �small� if for xt

corresponding to the boundary of the SCE�s stability region under the mean dynamics, the

value of LV is negative: Once the SRA approaches this boundary, it is expected to turn

back towards the SCE. If such behavior is observed, one expects the invariant distribution

derived along the lines of Evans and Honkapohja [29, Ch. 14.4] to be valid, and other

methods of describing escape dynamics are needed, such as the Large Deviations Theory

(see CWS and Kolyuzhnov, Bogomolova, and Slobodyan [50]). For values of � which are

not �small,� the approximation (3.10) could be used to derive expected escape time. In

the dynamic model, values of � below 2 � 10�5 are �small.�

What is the right � and the time scale?

How should one approach the problem of choosing �? Putting aside any con-

siderations related to the stability of learning in a particular model, two rules of thumb

for selecting � seem sensible. The �rst is based on the fact that constant gain adaptive

learning is well suited to situations with time�varying parameters or structural breaks. In

this case, 1/� should be related to the typical time which is needed to observe a break,

or for the time variation to become �signi�cant.�Alternatively, one could imagine that

the initial value of parameters is obtained through some method of statistical estimation

such as OLS. In this case, it is natural to assign to every point in the initial estimation a

weight equal to 1=N . If there is no reason to believe that subsequent points are in some

sense superior to those used to derive an initial estimate, the constant gain � should be

comparable to 1=N . Given the nature of the Phelps problem where in�ation might be

available on a monthly basis but the output gap could be evaluated only quarterly, values

of � not much larger or smaller than 0.01 seem empirically justi�ed. In a recent paper,

Orphanides [58] considers values of � between 0:01 and 0:03 as �tting the data in a model

5The operator L de�ned for a function V has the following meaning: Under certain conditions, the
expected value of V (t;X(t))�V (s;X(s)) is given as an integral from s to t over LV (see Khasminskii [48,
Ch. 3]). In some sense, in stochastic di¤erential equations LV plays the role of a time derivative of the
Lyapunov function dV

dt
for the deterministic system.
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Dynamic model Static model

� Simulations Theory Simulations Theory

2 � 10�5 1:10 � 105 1:86 � 105
3 � 10�5 5:10 � 104 7:21 � 104 4:40 � 107 9:40 � 108
5 � 10�5 1:88 � 104 2:34 � 104 1:93 � 106 9:90 � 106
1 � 10�4 4:84 � 103 5:43 � 103 1:50 � 105 2:75 � 105
2 � 10�4 1:26 � 103 1:31 � 103 2:38 � 104 2:97 � 104
4 � 10�4 336:96 321:5 5:06 � 103 5:26 � 103
1 � 10�3 64:59 50:9 733:57 701:5
2 � 10�3 21:49 12:68 189:98 165:7
3 � 10�3 12:50 5:63 87:00 72:27
4 � 10�3 8:77 3:16 52:08 40:28
5 � 10�3 6:79 2:02 34:39 25:64
6 � 10�3 5:99 1:40 24:76 17:74
7 � 10�3 4:98 1:03 19:14 13:00
8 � 10�3 4:49 0:79 15:02 9:93
9 � 10�3 4:12 0:62 13:32 7:84
1 � 10�2 3:70 0:51 11:16 6:34

Table 3.1: A comparison of the theoretically derived values of expected escape time and
empirically observed average escape times.

with constant gain RLS learning. He also uses � = 0:005 for the SG constant gain learning

of a natural real rate and a natural unemployment rate.

Notice that the period in the Phelps model could not be shorter than a quarter

(or a month). As Table 3.1 shows, for � < 1 � 10�4 in the dynamic model and � < 4 � 10�4

in the static one, the expected time until escape becomes larger than an economically

relevant time scale (say, a hundred years); probability of observing an escape within this

time becomes negligible as � decreases even further. An important caveat to this statement

is that both the theoretical and simulation results are obtained by imposing the SCE as

the starting point of learning. In other words, one starts from a situation of completed

learning, where the government and the private sector are playing Nash equilibrium, and

is interested in the expected time until the economy �unlearns�the Nash equilibrium given

a particular constant gain learning rule. If, instead of the SCE, initial beliefs are given by

a point which is closer to the stability region�s boundary, one would expect smaller escape

times.
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Figure 3.3: Iterations of the mean dynamics map. �+�sign � start of the simulation. �*�
� the SCE location.

Static Model

Dynamics of the static model under the constant gain RLS learning is qualita-

tively similar to that of the dynamic one: a move out of the immediate region of attraction

of the SCE, followed by a long trek to the Ramsey equilibrium outcome with zero average

in�ation. The dynamics is essentially one�dimensional. However, the radius of the region

of attraction is slightly larger in the dominant direction than in the dynamic model, and

the di¤usion is less powerful.6 As a result, in the static model � starts to be �small� at

about 3 � 10�4.

The combined e¤ect of the stronger drift, weaker di¤usion, and larger stability

region is obvious: a signi�cantly larger than in the dynamic model expected number of

periods until the simulations escape the neighborhood of the SCE. Table 3.1 compares

empirically observed average time needed to escape with the theoretically predicted values

6In the dynamic (static) model, A=-0.41 (-0.52) and e�1 =278 (26).
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Figure 3.4: Divergence of a simulation run from the SCE.

for di¤erent choices of the constant gain parameter �. For values of � which are not �small,�

the agreement is rather good, especially for the static model. In agreement with our

estimate of the Ornstein�Uhlenbeck approximation�s applicability, it starts to overpredict

for �small��. This e¤ect is especially pronounced for the static model.

3.3.2 Stochastic Gradient Learning

It is necessary to note that in the SG case, the dependence of the learning dy-

namics on � is dramatically di¤erent from the RLS case. In a nutshell, simulations are

divergent for a rather wide interval of �. On the other hand, the term R�1n does not

multiply the right�hand�side in Eq. (3.5), which prevents usage of a one�dimensional

approximation which proved to be so successful in the RLS case.

Dynamic Model

In the approximation (3.9), the matrix

z(�) = I + �D�p(��
SG
)
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Figure 3.5: Projection of beliefs onto the subspace spanned by the mean dynamics map�s
almost unitary eigenvalues�eigenvectors in a typical simulation run.

is stable but only just: For � = 0:01; its eigenvalues range from �1 =0.2447 to �2 =0.9988

to �6 =0.99999862. Five out of six eigenvalues are almost unitary. Under the mean

dynamics (3.9), any deviation from the SCE results in a fast movement along x1; the

eigenvector which corresponds to �1, and then an extremely slow convergence back to the

SCE along the remaining �ve directions, see Figure 3.3. On the other hand, simulations

of (3.6) behave very di¤erently. Figure 3.4 plots a norm of deviations from the SCE and


6 � 
6: There is a clearly distinguishable movement away from the SCE which seems

almost deterministic.7 For this value of �; the in�ation rate will drop below 4 (at the SCE,

mean in�ation equals 5) in a couple of hundred periods, which is de�nitely the time scale

with which one should be concerned. How could one explain the discrepancy between the

mean dynamics (3.9) and the simulations?

Figure 3.5 plots a projection of 
n�

k
n�
k

onto the sub�space spanned by �ve eigen-

7If we observe the simulations for a larger number of periods, the belief vector 
 eventually reaches
values at which the state vector process loses stationarity, and the simulation breaks down.
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Figure 3.6: Projection of beliefs onto the expansive direction of the mean dynamics map
in a typical simulation run.

vectors of z(�) which correspond to the almost unitary eigenvalues for a typical simulation

run with � = 0:01. Within the �rst hundred simulation periods, this projection becomes

very close to unity: average value for the �rst ten (hundred) periods is 0.69 (0.80). Thus,

a simulation run quickly approaches some neighborhood of the sub�space and does not

leave it for any extended period of time. This behavior is natural: Any initial deviation

along x1 will shrink to 0.253 �1.5% of its initial size in just 3 steps. On the other hand,

deviations along �ve other eigenvectors will take at least ln(0:5)
ln(0:9988) �577 periods to reach

50% of their initial magnitude.

Another feature of the matrix z(�) which helps to explain the behavior of simu-

lations is the presence of directions along which deviations are expected to increase before

declining. Such directions exist because the symmetric part of z(�); zsym(�) = z(�)+z(�)T
2 ,

is not stable. After one iteration of the map z(�), initial deviation in the direction w; the

unstable eigenvector of zsym(�); is expected to increase its projection onto w and thus to
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Figure 3.7: Evolution of beliefs under iterations of the mean dynamics map. Initial devi-
ation in the expanding direction.

increase its norm.8 The largest eigenvalue of zsym(�) equals 1.103 at � = 0:01; 1.01 at

� = 0:001 and 1.001 at � = 1 � 10�4. A projection of 
n�

k
n�
k

onto w is plotted in Figure

3.6 (only the absolute value of the projection matters, not its sign). It becomes large very

fast, in about one hundred simulation periods or less. The system (3.9) is expected to

demonstrate a locally divergent behavior whenever this projection is large. To support

further the crucial importance of the projection onto w; Figure 3.7 presents the norm of

deviation from the SCE for the mean dynamics trajectory which started from a point 


that lies in the direction w. There is a steep initial increase in the norm, followed by a long

decline which is still far from complete after 2000 periods. To overcome the initial increase

and return the system to the norm of deviation equal to its initial value, 150 periods are

needed.
8Suppose an initial deviation is given by w. After one period, this deviation is transformed into Fw.

Projection wTFw then gives a measure of expansion or contraction in the direction of w after one iteration
of map F: But for any vector w, wTFw = wTF symw. Therefore, in order to �nd expanding (after one
iteration) directions of F , one could look at eigenvalues of F sym.
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Figure 3.8: The largest is the projection of beliefs onto the expanding direction of the
mean dynamics map (�+�sign), the faster the beliefs deviate from the SCE (�.� sign).

The norm of the projection of w onto the sub�space spanned by the �ve eigen-

vectors is rather large and equals 0.95. When the dynamics of (3.6) is restricted almost

exclusively to this subspace, mean dynamics plays almost no role in the short run. Random

disturbances are then very likely to produce the value of 
n � 
, which has a signi�cant

projection onto w during the 150 periods which are needed to eliminate the e¤ect of the

previous shock in this direction. Once such shock happens, the projection is not likely to

disappear given a very weak stabilizing force of the mean dynamics on the sub�space.

As a �nal piece of evidence connecting the vector w with the divergent behavior

of simulations, consider Figure 3.8. In the periods when the projection of 
n�

k
n�
k

onto w

(crosses) is particularly large, the distance between the beliefs 
n and the SCE 
 (solid

line) grows the fastest; a relative decline in the projection is correlated with a temporary

stop or even a reversal of the divergent behavior.

Summarizing the discussion, we could say that a clear instability observed in
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the behavior of the SRA for SG learning in the dynamic Phelps problem is caused by

a particular structure of the mean dynamics map z(�). The sub�space spanned by the

almost unitary eigenvalues�eigenvectors of z(�) is almost parallel to the direction along

which the mean dynamics is expanding in the short run rather than contracting. Given

that any random deviation away from the subspace is likely to be very short�lived, and

that a contracting mean dynamics within the sub�space is very weak, random vectors with

a relatively large projection onto the expansive direction are likely to appear. Once such

a projection appears, it is unlikely to be averaged away by the mean dynamics.

We checked the behavior of the algorithm for other values of �. Qualitatively,

the picture does not change: There is still an apparent divergence of the vector of a

government�s beliefs 
n away from the SCE. One could still observe a very fast convergence

towards the sub�space spanned by the �ve almost unitary eigenvalues�eigenvectors and

a signi�cant projection onto the expanding direction w. Only for very small values of

� � 8 � 10�6 we start observing a di¤erent behavior, when the system (3.6) does not

systematically diverge and �uctuates in some neighborhood of the SCE.

Static Model

Taking into account that under RLS learning the static model was much more

stable (it took much longer for the escape to the �induction hypothesis�plane to happen),

we expect this feature to be preserved under SG learning as well. This is what is indeed

observed. Clearly unstable behavior is observed only for relatively large values of � above

3 � 10�2. This instability could take two forms: either a convergence to a quasi�stable

stochastic steady state where k
 � 
k is about 3 for � between approximately 6:5 � 10�2

and 7:9 � 10�2 (above � � 7:9 � 10�2, the mean dynamics map z(�) has a real eigenvalue

which is less than -1 making the SCE unstable), or a divergence of simulations from the

SCE for 3:5�10�2 . � . 6:5�10�2. When � equals 3:5�10�2 or less, empirically relevant time
scales are characterized by what seems to be stable dynamics. The speed of divergence

signi�cantly depends on the value of �: While at � = 5 � 10�2, less than 100 iterations are

typically needed to observe a deviation from the SCE such that k
 � 
k � 0:1; such large

excursions are not likely to be observed before the 500th iteration for � = 4 � 10�2. As in

the dynamic model, the eventual outcome of divergent simulations is the value of 
 which

leads to at least one eigenvalue of the matrix A(
) in (3.6b) being outside of the unit circle
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and thus to a non�stationary state process.

Applying the reasoning demonstrated above to the dynamics of the static model

under SG learning in real time, we could say the following. The map z(�) has two

eigenvalues. One is always close to one (0.9999 for � = 3 � 10�2). The other is a linearly

decreasing function of �. It equals -1 when � � 7:9 � 10�2 and approaches 1 as � ! 0.

It is still true that the divergent behavior is related to the movement along the almost

unitary eigenvalue�s eigenvector: Projection of w onto this eigenvector equals 0.9988, and

the fastest divergence of beliefs from their SCE values occurs when 
 � 
 is in the closest

alignment with w (wT � 
n�

k
n�
k

is close to one). There are two crucial di¤erences with

the dynamics model, however. First, the direction w is very weakly expansive: The

unstable eigenvalue of zsym(�) equals only 1.0018 when � � 3 � 10�2 and becomes even

smaller as � decreases. At the same time, the dominant eigenvalue of z(�) equals 0.23 for

� � 3 � 10�2 and is decreasing in �. Thus, for smaller values of �, the dynamics of (3.9)

loses its essentially one�dimensional nature in the expanding direction, and the expansive

movement in the direction w is not too strong (compare 1.0018 to the 1.103 reported for

the dynamic model). Instead of 150 periods needed to start reversing a deviation in the

direction of w, which we reported for the dynamic model at � = 0:01; only 3-4 iterations

are needed to achieve the same result in the static model at similar values of �. It is not

a big surprise, then, that the static model under the SG learning stops diverging at much

larger values of the constant gain.

Reasons for di¤erence with the RLS case

Why do we observe the diverging behavior documented above only in the SG

case? RLS case di¤ers from the SG one in three respects. First, the mean dynamics is very

weak relative to the stochastic dynamics especially in the direction of dominant eigenvector

of R
�1
, as documented in Kolyuzhnov, Bogomolova, and Slobodyan [50]. Second, the mean

dynamics map z(�) does not contain strongly contracting eigenvalues. And third, those

eigenvalues of z(�) that are closest to the unit circle are much further from it than in the

SG case. A combination of these three factors assures that even though simulation runs

under RLS learning do exhibit relatively large projections in the expanding direction of

zsym(�), these projections are not correlated with episodes of particularly fast deviations

from the SCE.
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3.4 Conclusion

We compared the performance of two methods of adaptive learning with constant

gain, Recursive Least Squares and Stochastic Gradient learning, in a Phelps model of a

monetary policy which has been extensively studied previously. For the values of � which

might be justi�ed for the problem, it is a well�known fact that the RLS adaptive learning

could force the government�s beliefs about the Phillips curve to �escape,�or deviate sig-

ni�cantly, from the neighborhood of the Self�Con�rming Equilibrium, where the in�ation

level is set at high levels, towards the beliefs which lead the policy maker to set in�ation

close to zero. We approximated the discrete�time Stochastic Recursive Algorithm which

describes RLS constant gain learning by a one�dimensional continuous�time Ornstein�

Uhlenbeck process and derived expected escape times out of a small neighborhood of the

SCE. The theoretical prediction works rather well when compared with the simulation

results.

Turning our attention to the SG learning, we showed that the model dynamics

is divergent for a large interval of values of �. The divergence is especially pronounced

when SG learning is used in the dynamic version of the Phelps problem. This behavior is

caused by the existence of eigenvalues of the SRA mean dynamics map which are very close

to the unit circle; deviations in the direction of corresponding eigenvectors contract very

slowly. Moreover, the SRA mean dynamics map has direction where deviation is expected

to expand in the short run rather than contract, and this direction is almost parallel to the

sub�space spanned by the slowly contracting eigenvectors. Such a combination leads to a

divergent behavior of the SRA, which is reversed only for the very small � values when the

expansion rate becomes very small. Behavior of the static model exhibits similar features,

with a crucial di¤erence of the expansion rate: For the empirically relevant values of �,

it is less than 1.02 instead of 1.1 as in the dynamic model. This di¤erence means that

the SRA stops exhibiting divergent behavior for much larger values of the constant gain

parameter in the static than in the dynamic model.

Comparing the two variants of the model under two types of constant gain adap-

tive learning, we could say that only SG learning in the static model demonstrates an

absence of large excursions of beliefs from the SCE at an empirically relevant time scale

and for constant gain values likely to be used in practice (�stability�). Additionally, the

expected escape time rises very steeply as � decreases. Following Evans, Honkapohja, and
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Williams [32], one could thus endorse using this adaptive learning method for the static

model. The overall result, however, cannot be judged as very good as three out of four

modi�cations produce an �unstable�result.

A very unbalanced nature (large di¤erences between the dominant eigenvalue

and the rest) of the second moments matrix R plays a signi�cant role in the results,

making the stochastic dynamics strongly one�dimensional in the RLS case and leading

to almost unitary eigenvalues in the SG case. Whether this feature is caused by the fact

that the government uses a mis�speci�ed model in the Phelps problem warrants further

investigation.

The behavior of the SRA under SG learning in real time leads us to express a

warning. Checking that the mean dynamics map is asymptotically stable is not enough to

guarantee �stable�behavior of the constant gain learning algorithm in real time; moreover,

checking that the mean dynamics trajectories are stable in a large region is not enough

either. If many eigenvalues of the mean dynamics map for a constant gain learning algo-

rithm are close to the unit circle, and the mean dynamics map is not contracting in every

direction, the Stochastic Recursive Algorithm might exhibit divergent behavior despite

convergent mean dynamics.
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4.1 Introduction

Until some time ago, works studying models of economic dynamics assumed ratio-

nal expectations of agents. However, the need to study models under bounded rationality

of agents was well argumented in Sargent [60]. Later this approach was also adopted

(among others) in works of Evans and Honkapohja, and a standard argument in defense

of bounded rationality can be found in Evans and Honkapohja [29], as well as in Sargent

[60].

The rational expectations (RE) approach implies that agents have a lot of knowl-

edge about the economy (e.g., of the model structure and its parameter values). However,

in empirical work, economists who assume RE equilibria in their theoretical model do not

know the parameter values and must estimate them econometrically. According to the ar-

gument of Sargent [60], it appears more natural to assume that in a given economy agents

face the same limitations. It is then suggested to view agents as econometricians when

forecasting the future state of the economy. Each time agents obtain new observations,

they update their forecast rules. This approach introduces a speci�c form of bounded

rationality captured by the concept of adaptive learning.

The bounded rationality approach can serve several purposes, for example, to

test the validity of the RE hypothesis by checking if a given dynamic model converges

over time to the rational expectations equilibrium (REE) implied by the model (under the

RE hypothesis), or for equilibrium selection (in models with multiple equilibria). In both

cases we have to analyze convergence of our model under adaptive learning to a REE.

To do this, we need to check certain stability conditions. This introduces the area of my

research: studying stability conditions in models with adaptive learning.

Following the adaptive learning literature, I consider two possible algorithms

used to re�ect bounded rationality: the generalized recursive least squares (RLS) and

the generalized stochastic gradient (SG) algorithms. Both algorithms are examples of

econometric learning.1 Each period agents update the parameter estimates in the following

way: the updated parameter estimate equals the previous estimate plus a linear function of

the most recent forecast error multiplied by the gain parameter, capturing how important

is the forecast error to the agent. The description of both algorithms can be found,

1One more type of econometric learning is Bayesian learning. See Honkapohja and Mitra [43] for
references of other forms of learning �like bounded memory rules and non-econometric learning (including
computational intelligence algorithms).
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for example, in Evans and Honkapohja [29]; Giannitsarou [37]; Evans, Honkapohja, and

Williams [32]; and Honkapohja and Mitra [43].

The di¤erence between the two algorithms is that the RLS algorithm2 has two

updating equations: one for updating the parameters entering the forecast functions, the

other � for updating the estimates of the second moments matrix of these parameters.

The SG algorithm assumes this matrix �xed (re�ecting modeling of "less sophisticated"

agents).

The �rst papers taking the bounded rationality approach of Sargent [60] con-

sidered an economy of a representative agent (assuming that all agents follow the same

learning algorithm, be it RLS or SG). Later, some works began to introduce heterogeneity

in the updating procedure. The idea was to check whether the representative agent hy-

pothesis (implied by homogenous learning) in learning in�uences stability results. It has

been demonstrated that, in general, stability under homogeneous learning does not imply

stability under heterogeneous learning. Examples of such works are Giannitsarou [37],

who assumed agents homogeneous in all respects but the way they learn, and Honkapohja

and Mitra [43], who consider a general setup assuming both structural heterogeneity and

heterogeneous learning. Both papers study stability conditions of the economy. Honkapo-

hja and Mitra [43] derive a general stability criterion, in which stability is de�ned both in

terms of the model structure and learning characteristics.

The di¤erence in learning characteristics across agents means heterogeneity in

learning. Among these learning characteristics are initial perceptions meaning that agents

may have di¤erent perceptions about the economy re�ected in di¤erent initial values in

their learning algorithms; the type of the updating algorithm: RLS or SG (re�ecting "so-

phisticated" and "less sophisticated" agents, respectively); and parameters of the updating

algorithm (degree of inertia) � relative weights agents put on the most recent forecast

error, while updating the parameter estimates in their forecast functions (it can be called

the speed of updating, re�ecting how agents di¤er in their reaction to innovation).

A combination of all di¤erences in the learning characteristics described above

can be expressed by the type of learning when one part of agents uses the RLS algorithm

and the other part uses the SG algorithm, and all of them have di¤erent degrees of inertia

2The RLS algorithm (non-generalized) can be obtained from OLS estimation of parameters by rewriting
it in the recursive form. The generalized RLS is derived from RLS by substituting the gain sequence 1=t
used in updating the regression coe¢ cients with any decreasing gain sequence.
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as well as di¤erent initial perceptions. Such type of learning algorithm is called mixed

RLS/SG learning with (possibly) di¤erent degrees of inertia.

In my paper I solve the following open question posed by Honkapohja and Mitra

[43] � to �nd conditions for stability of a structurally heterogeneous economy under

mixed RLS/SG learning with (possibly) di¤erent degrees of inertia in terms of structural

heterogeneity only, independent of heterogeneity in learning.

Though Honkapohja and Mitra [43] have formulated a general criterion for such

stability and have been able to solve for su¢ cient conditions for the case of a univariate

model (model with one endogenous variable), they did not derive the conditions (necessary,

and/or su¢ cient) in terms of the model structure only, independent of learning charac-

teristics, for the general (multivariate) case with an arbitrary number of agent types and

any degree of inertia.

As, in essence, the criterion (in its su¢ ciency part) for stability of a structurally

heterogeneous economy under mixed RLS/SG learning by Honkapohja and Mitra [43]

implies looking for su¢ cient conditions for D�stability of a particular stability Jacobian

matrix corresponding to the model, where, according to Johnson [44, p. 54], �the D�

stables are just those matrices which remain stable under any relative reweighting of the

rows or columns,�I use di¤erent sets of su¢ cient conditions forD�stability of this Jacobian

matrix and simplify them using a particular structure of the model, and try to provide

the derived conditions with some economic interpretation.

Speci�cally, in this paper I conduct a systematic analysis of this problem. First,

I analyze what has been done so far in mathematics on deriving su¢ cient conditions for

stability of a matrix in the most general setup of a matrix di¤erential equation: _x = Ax+b,

where A has the form D
, with D being a positive diagonal matrix. It has turned out

that the most general results can be grouped according to the perspective from which the

problem was approached.

One group of results is based on the Lyapunov theorem3 and its application

to D�stability by the theorem of Arrow and McManus;4 another group is based on the

negative diagonal dominance condition which is su¢ cient for D�stability (McKenzie the-

orem5); a third set of results can be derived from the characteristic equation analysis,

3See Theorem B.2 in Appendix B.2.
4See Theorem B.3 in Appendix B.2.
5See Theorem B.4 in Appendix B.3.
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using Routh�Hurwitz necessary and su¢ cient conditions6 for negativity of all eigenvalues

of the polynomial of order n; and the last set of su¢ cient results can be derived using an

alternative de�nition of D�stability7 that allows to bypass the Routh�Hurwitz conditions.

Among the approaches mentioned above, the ones that are based on the negative

diagonal dominance, the characteristic equation analysis, and the alternative de�nition

(criterion) of D�stability turn out to be fruitful, each to a di¤erent extent. (The condition

based on the Lyapunov theorem looks very theoretical and economically intractable here.)

Using the negative diagonal dominance and the alternative de�nition of D�stability, I have

derived the "aggregate economy stability" and the "same sign" su¢ cient conditions. As

for the characteristic equation analysis, I have been able to derive a block of necessary

conditions using the negativity of eigenvalues requirement, bypassing the Routh�Hurwitz

conditions since they are quite complicated and do not have economic interpretation.

I have studied each group of results in application to the particular setup of mod-

els I am working with in order to make the procedure of testing for stability more tractable

and at the same time to attach some economic interpretation to this very procedure. The

conditions derived are then adapted by me to more simple cases of the general framework

considered, namely, univariate economy and structurally homogeneous economy case.

Among the di¤erent su¢ cient conditions and necessary conditions that I have

derived, I would like to highlight an easily interpretable unifying condition which is suf-

�cient for convergence of a structurally heterogeneous economy under mixed RLS/SG

learning with di¤erent degrees of inertia towards a rational expectations equilibrium for

a broad class of economic models and a criterion for such a convergence in the univariate

case. These conditions are formulated using the concept of a subeconomy and a suitably

de�ned aggregate economy.

The rest of the paper is structured as follows. In the next section I present

the environment I am working with: a structurally heterogeneous economy under mixed

RLS/SG learning of agents and introduce and explain the concept of ��stability used

to explain the stability of a structurally heterogeneous economy under mixed RLS/SG

learning for any (possibly di¤erent) degrees of inertia of agents. Section 3 is devoted to

su¢ cient conditions for such a stability, among which are the "aggregate economy" and

6See Theorem B.5 in Appendix B.4.
7See Theorem B.6 in Appendix B.5.
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the "same sign" conditions. In Section 4, I present the necessary conditions for ��stability8

that are based on the characteristic equation approach. In Section 5, I demonstrate and

provide an interpretation of the derived conditions and the criterion on univariate and

multivariate examples, including two speci�cations of the overlapping generations model

and the model of simultaneous markets with structural heterogeneity. Section 6 concludes

the paper.

4.2 The Model and Concept of ��stability

Deriving conditions for stability of a structurally heterogeneous economy under

mixed RLS/SG learning for any (possibly di¤erent) degrees of inertia of agents, I naturally

employ the general framework and notation from Honkapohja and Mitra [43], who were

the �rst to formulate a general criterion for stability of a structurally heterogeneous econ-

omy under mixed RLS/SG heterogeneous learning. Structural heterogeneity here means

that expectations and learning rules of di¤erent agents are di¤erent, as well as may be

di¤erent their fundamental characteristics, such as preferences, endowments, and tech-

nology (as opposed to structural homogeneity, which corresponds to the assumption of a

representative agent).

�Mixed RLS/SG learning�refers to persistently heterogeneous learning, de�ned

by Honkapohja and Mitra [43] as the one arising when di¤erent agents use di¤erent types

of learning algorithms. In the setup of Honkapohja and Mitra [43] these are RLS and SG

algorithms.9

The class of linear structurally heterogeneous models with S types of agents with

di¤erent forecasts is presented by

yt = �+
SP
h=1

AiÊ
h
t yt+1 +Bwt; (4.1)

wt = Fwt�1 + vt; (4.2)

where yt is an n � 1 vector of endogenous variables, wt is a k � 1 vector of exogenous

variables, vt is a vector of white noise shocks, Êht yt+1 are (in general, non-rational) ex-

pectations of the vector of endogenous variables by agent h. It is further assumed that F
8The formal de�nition of this concept is given in the corresponding part of the paper.
9More on this (as well as some useful reference for a more detailed study of the terms) can be found

in Honkapohja and Mitra [43]. In order not to repeat Honkapohja and Mitra [43], I just brie�y present
the general setup and the general criterion of stability results. For the full presentation of the RLS/SG
learning and the setup, please see Honkapohja and Mitra [43].
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(k�k matrix) is such that wt follows stationary VAR(1) process with Mw = limt!1wtw
0
t

being a positive de�nite matrix.

The vector form presented above is a reduced form of the model describing the

whole economy, i.e., it is an equation corresponding to the intertemporal equilibrium of the

dynamic model. In this model expectations of di¤erent agent types in�uence the current

values of endogenous variables.

I also stress the diagonal structure of matrices which I analyze, namely

F = diag(�1; :::; �k);Mw = lim
t!1

wtw
0
t = diag

�
�21
1��21

; :::;
�2k
1��2k

�
: (4.3)

Structural heterogeneity in the setup of Honkapohja and Mitra [43] is expressed

through matrices Ah, which are assumed to incorporate the mass �h of each agent type.

That is, Ah = �h � Âh, where Âh is de�ned as describing how agents of type h respond

to their forecasts. So these are the structural parameters characterizing a given economy.

Those may be basic characteristics of agents, like those describing their preferences, en-

dowments, and technology. Structural heterogeneity means that all Âh�s are di¤erent for

di¤erent types of agents. When Âh = A for all h and
P
�h = 1; the economy is structurally

homogenous.

In forming their expectations about the next period endogenous variables, agents

are assumed to believe that the economic system develops according to the following model,

which is called agents�perceived law of motion (PLM).

yt = ah;t + bh;twt: (4.4)

Mixed learning of agents is introduced as follows. Part of the agents, h = 1; S0,

are assumed to use the RLS learning algorithm, while others, h = S0 + 1; S, are assumed to

use the SG learning algorithm. Moreover, all of them are assumed to use possibly di¤erent

degrees of responsiveness to the updating function. These degrees of responsiveness are

presented by di¤erent degrees of inertia �h > 0, which, in formulation of Giannitsarou [37],

are constant coe¢ cients before the deterministic decreasing gain sequence in the learning

algorithm, which is common for all agents.10

After denoting zt = (1; wt) and �h;t = (ah;t; bh;t); the formal presentation of the

learning algorithms in this model can be written as follows.
10Honkapohja and Mitra [43] use a more general formulation of degrees of inertia as constant limits in

time of the expected ratios of agents� random gain sequences and the common deterministic decreasing
gain sequence satisfying certain regularity conditions.
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RLS: for h = 1; S0

�h;t+1 = �h;t + �h;t+1R
�1
h;tzt

�
yt � �0h;tzt

�0 (4.5a)

Rh;t+1 = Rh;t + �h;t+1
�
zt�1z

0
t�1 �Rh;t

�
(4.5b)

SG: for h = S0 + 1; S

�h;t+1 = �h;t + �h;t+1zt
�
yt � �0h;tzt

�0
: (4.6)

Honkapohja and Mitra [43] show that stability of the REE, �t, in this model is

determined by the stability of the ODE:

d�h
d�

= �h
�
T (�0)0 � �h

�
; h = 1; S0 (4.7)

d�h
d�

= �hMz

�
T (�0)0 � �h

�
; h = S0 + 1; S; (4.8)

whereMz = limt!1Eztz
0
t =

0@ 1 0

0 Mw

1Aand T (�0) is a mapping of the PLM parameters

into the parameters of the actual law of motion (ALM)

yt =

�
�+

SP
h=1

Ahah;t;

�
SP
h=1

Ahbh;t

�
F +B

�24 1

wt

35 = T (�0)zt,

which is obtained when one plugs the forecast functions based on the agents�PLMs (4.4)

Êht yt+1 = ah;t + bh;tFwt (4.9)

into the reduced form of the model (4.1) and (4.2). So,11

T (ah;t; bh;t) =

 
�+

SX
h=1

Ahah;t;

 
SX
h=1

Ahbh;t

!
F +B

!
. (4.10)

The conditions for stability of this ODE give the general criterion of stability for

this class of models presented in Proposition 5 in Honkapohja and Mitra [43], introduced

(without proof) here for the reader�s convenience.

Criterion 4.1 (Proposition 5 in Honkapohja and Mitra [43]) In the economy (4.1) and

(4.2), mixed RLS/SG learning converges globally (almost surely) to the minimal state

11For details, please see Honkapohja and Mitra [43].
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variable (MSV)12 solution if and only if matrices D1
 and Dw
F have eigenvalues with

negative real parts, where

D1 =

0BBB@
�1In � � � 0
...

. . .
...

0 � � � �SIn

1CCCA ;
 =

0BBB@
A1 � In � � � AS

...
. . .

...

A1 � � � AS � In

1CCCA (4.11)

Dw =

0BBB@
Dw1 � � � 0
...

. . .
...

0 � � � DwS

1CCCA ;
Dwh = �hInk; h = 1; S0

Dwh = �h (Mw 
 In) ; h = S0 + 1; S


F =

0BBB@
F 0 
A1 � Ink � � � F 0 
AS

...
. . .

...

F 0 
A1 � � � F 0 
AS � Ink

1CCCA ,
with 
 denoting the Kronecker product.

In the "diagonal" environment I consider, the problem of �nding conditions for

stability of both D1
 and Dw
F under any (possibly di¤erent) degrees of inertia of agents,

� > 0; is simpli�ed to �nding stability conditions of D1
 and D1
�l ;where 
�l is obtained

from 
 by substituting all Ah with �lAh, where j�lj < 1 as wt follows stationary VAR(1)

process by the setup of the model (see Appendix B.6 for a more detailed proof of Propo-

sition 4.2 below).


�l =

0BBB@
�lA1 � In � � � �lAS

...
. . .

...

�lA1 � � � �lAS � In

1CCCA ;8l = 0; :::; k; (�0 = 1): (4.12)

Proposition 4.2 (The criterion for stability of a structurally heterogeneous economy

under mixed RLS/SG learning for the diagonal environment case under any (possibly

di¤erent) degrees of inertia of agents, � > 0). In the structurally heterogeneous economy

(4.1), (4.2) and (4.3), mixed RLS/SG learning (4.5), (4.6) and (4.9) converges globally

(almost surely) to an MSV REE solution for any (possibly di¤erent) degrees of inertia of

12As it is mentioned in ch. 8 of Evans and Hokapohja [29], the concept of the MSV solution was intro-
duced by McCallum [57] for linear rational expectations models. As is de�ned in Evans and Honkapohja
[29], this is the solution that depends linearly on a set of variables (in our case it is the vector of exogenous
variables and the intercept); this solution is such that there is no other solution that depends linearly on
a smaller set of variables.
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agents, � > 0; if and only if matrices D1
�l are stable for any � > 0, where D1 and 
�l

are de�ned in (4.11) and (4.12), respectively.

Proof. See Appendix B.6. �

I also use the special blocked� diagonal structure of matrix D1 which is the

feature of the dynamic environment in this class of models. In a sense these positive

diagonal D�matrices now may be called positive blocked� diagonal ��matrices. It allows

me to formulate the concept of ��stability by analogy to the terminology of the concept

of D�stability, studied for example in Johnson (1974).

De�nition 4.1 Given n; the number of endogenous variables, and S, the number of

agent types, ��stability is de�ned as stability of the structurally heterogeneous economy

(4.1) and (4.2) under mixed RLS/SG learning (4.5), (4.6) and (4.9) under any (possibly

di¤erent) degrees of inertia of agents, � > 0.

��stability, thus formulated, has the same meaning in models with heterogeneous

learning described above as has the E�stability condition in models with homogeneous

RLS learning. The E�stability condition is a condition for asymptotic stability of an

REE under homogeneous RLS learning. The REE of the model is stable if it is locally

asymptotically stable under the following ODE:

d�

d�
= T (�)� �; (4.13)

where � are the estimated parameters from agents PLMs, the T�map is de�ned in (4.10),

and � is a "notional" ("arti�cial") time. The �xed point of this ODE is the REE of the

model.

4.3 Su¢ cient Conditions for ��stability

4.3.1 Aggregate Economy Conditions

Following the description of the approaches to stability in the introduction, I

now separately consider each of them. First, I follow the negative diagonal dominance

approach and it allows me to show that in the setting speci�ed above ��stability depends on

E�stability of the aggregate economy which is the upper boundary of aggregate economies
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with weights of aggregation across agents, �, and weights of aggregation across endogenous

variables,  .

I have been encouraged by the result that follows from Propositions 2 and 3 in

Honkapohja and Mitra [43] that for stability under heterogeneous RLS or SG learning

with the same degrees of inertia, stability in the economy aggregated across agent types

(average economy) turns out to be crucial. Following Honkapohja and Mitra [43], who

aggregated an economy across agents by introducing the concept of average (aggregated

across agents) economy, I also began to look for the concept of an aggregate economy

that has to be crucial for stability of a structurally heterogeneous economy under mixed

RLS/SG heterogeneous learning with di¤erent degrees of inertia of agents. The basic idea

is that there has to be a way to aggregate an economy in an economically reasonable way,

so that E�stability in the aggregate economy is su¢ cient for ��stability in the original

economy.

I proceed with aggregation of the economy starting from the following aggregation

across agents used by Honkapohja and Mitra [43]:

yt = �+AM ÊAVt yt+1 +Bwt.

It turns out that it is convenient, in addition to the aggregation across agents above,

to consider aggregation across endogenous variables. The economy aggregated across

endogenous variables will no longer be a vector but a scalar, which means that it can

characterize many economies.

I rewrite the formulas used by Honkapohja and Mitra [43] for average expectations

as

EAVt yt+1 = (AM )�1
�
S

SP
h=1

1

S
AhE

h
t yt+1

�
AM = S

SP
h=1

1

S
Ah = S

SP
h=1

1

S
�hÂh.

After this, one can interpret the aggregation done by Honkapohja and Mitra [43]

as follows: �rst, one takes the weight of each agent type in calculating aggregate expecta-

tions of one representative agent to be equal to 1
S and then multiplies these expectations

by S in order to be consistent with the model that consists of S types of agents. (So that

the size of the economy is preserved by replacing each type of agent with a representative

agent).
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In general, when aggregating expectations one may use di¤erent weights for dif-

ferent types of agents that sum up to one in order to re�ect the relative importance of

a particular agent type expectation in the aggregate economy. So, in my aggregation, I

�rst create a representative agent type by averaging across all agent types (assigning a

weight to each type and summing over all types) and then I aggregate over all types by

multiplying the representative (average) agent type by S in order to preserve the size of

the aggregate economy.13

If I write the aggregate economy using di¤erent weights for aggregation of expec-

tations across agents, I will get

ÊWeighted
t yt+1 =

�
AWeigted

��1�
S

SP
h=1

�hAhÊ
h
t yt+1

�
AWeigted = S

SP
h=1

�hAh = S
SP
h=1

�h�hÂh;

where �h > 0, h = 1; S are weights of single agent types used in calculating aggregate

expectations, such that
SX
h=1

�h = 1.

Next, given the weights of aggregation across endogenous variables  i > 0,
nP
i=1

 i = 1, and across agent types �h > 0,
SP
h=1

�h = 1 (and denoting ahij the element

in the ith row and jth column of matrix Ah), I aggregate the economy in the following way

yAGt =
P
i
 iyit =

P
i
 i�i +

P
h

S�h
P
i
 i
P
j
ahijÊ

h
t yjt+1 +

�P
i
 iB

i

�
wt =

=
P
i
 i�i + �

AG ( ; �) ÊAGt
�
yAGt+1

�
+

�P
i
 iB

i

�
wt, where

�AG ( ; �) = S
P
h

�h
P
i
 i
P
j
ahij ; (4.14)

ÊAGt
�
yAGt+1

�
= (

SP
h=1

S�h
P
i
 i
P
j
ahij| {z }

�h

)�1
SP
h=1

S�h
P
i
 i
P
j
ahij| {z }

�h

Êht yjt+1; (4.15)

and Bi denotes the ith row of B. So, using the derivations above I formulate the following

de�nition.
13The new dimension in weighting agent types, in addition to the mass of each agent type �h incorporated

in matrices Ah; may also have the following interpretation. I can assume that the share of each agent
type expectation in the average expectations of the population is determined not only by their mass in the
population (their physical share), but also by each type�s in�uence, other than their share in the population
(e.g., political or mass media power or other type of in�uence in the social life of the whole population).
By assigning additional weights to each agent type I provide a measure of the share of in�uence of each
agent type in the overall expectations, bypassing the intermediate step of measuring the in�uence of each
agent type on other agent types separately.
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De�nition 4.2 Given the weights of aggregation across endogenous variables  i > 0,
nX
i=1

 i = 1, and across agent types �h > 0,
SX
h=1

�h = 1, the aggregate economy for an

economy described by (4.1), (4.2) and (4.3) is de�ned as

yAGt =
P
i
 i�i + �

AG ( ; �) ÊAGt
�
yAGt+1

�
+

�P
i
 iB

i

�
wt;

(4.2) and (4.3),

where �AG ( ; �) and EAG
�
yAGt+1

�
are de�ned in (4.14) and (4.15) respectively.

It is also useful to consider an economy that bounds above all possible economies

with all possible combinations of signs of ahij aggregated using weights  and �. This

is obviously our original aggregate model written in absolute values. When all elements

in the model, ahij ; endogenous variables and their expectations are positive, this limiting

model exactly coincides with the model considered. So, this is an attainable supremum.

Thus I have the following limiting aggregate model:

yAGt =
P
i
 iyit � yAGmodt =

P
i
 i jyitj �

�
P
i
 i j�ij+ �AGmod ( ; �) ÊAGmodt

�
yAGmodt+1

�
+

�����P
i
 iB

i

�
wt

���� ; where
�AGmod ( ; �) = S

P
h

�h
P
i
 i
P
j

���ahij��� (4.16)

ÊAGmodt

�
yAGmodt+1

�
= (

SP
h=1

S�h
P
i
 i
P
j

���ahij���| {z }
�h

)�1
SP
h=1

S�h
P
i
 i
P
j

���ahij���| {z }
�h

Êht jyjt+1j :(4.17)

De�nition 4.3 Given the weights of aggregation across endogenous variables  i > 0,
nP
i=1

 i = 1, and across agent types �h > 0,
SP
h=1

�h = 1, the limiting aggregate

economy for an economy described by (4.1), (4.2) and (4.3) is de�ned as

yAGmodt =
P
i
 i j�ij+ �AGmod ( ; �) ÊAGmodt

�
yAGmodt+1

�
+

�����P
i
 iB

i

�
wt

���� ;
(4.2) and (4.3),

where �AGabs ( ; �) and E
AG
abs

�
yAGabst+1

�
are de�ned in (4.16) and (4.17) respectively.

Remark 4.1 If this limiting aggregate economy is E�stable, then all corresponding ag-

gregate economies with various combinations of signs of ahij are E�stable.
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The structure of this limiting aggregate coe¢ cient �AGmod is as follows.
P
i
 i

���ahij���
is the coe¢ cient before the expectation of endogenous variable j in the aggregate econ-

omy composed of one single agent type h. Notice that this coe¢ cient is calculated for the

expectation of endogenous variable j, that enters the aggregate product with coe¢ cient

 j . So, I may name the ratio
P
i
 i

���ahij��� = j endogenous variable j "own" expecta-
tions relative coe¢ cient. By looking at the values of these coe¢ cients I will be able

to judge the weight a particular agent type has in the economy in terms of the aggregate

��coe¢ cient. The next proposition is formulated in terms of these relative coe¢ cients

and stresses the fact that weights of agents in calculating aggregate expectations have

to be put into accordance with this economic intuition in order to have stability under

heterogeneous learning.

Proposition 4.3 If there exists at least one pair of vectors of weights for aggregation of

endogenous variables  and weights � for aggregation of agents such that for each agent

every endogenous variable�s "own" expectations relative coe¢ cient is less than the weight

of the agent used in calculating aggregate expectations, i.e.
P
i
 i

���ahij��� = j < �h;8j; 8h,

then the economy described by (4.1), (4.2) and (4.3) is ��stable.

Proof. See Appendix B.6. �

But this proposition above does not give a real rule of thumb (as it implies

looking for systems of weights) that could be used to say if a particular economy is stable

under heterogeneous learning. For this purpose I have constructed four maximal aggregate

��coe¢ cients described below. If they are less than one, the economic system is ��stable.

Thus I go even further looking for upper boundaries by considering not only any

possible signs of aij ; but also values of weights  and �. These boundaries can be derived

for four di¤erent subsets of aggregate economies depending on the values of weights  

and �: with arbitrary weights of agents and endogenous variables, and with either equal

weights of agents 1S or equal weights of endogenous variables
1
n , or both. So, each aggregate

economy from a particular subset of aggregate economies is bounded above by the following

maximal aggregate economy

yAGt =
P
i
 iyit � yAGmodt =

P
i
 i jyitj � yAGmaxt =

=
P
i
 i j�ij+ �AGmaxr ÊAGmaxt

�
yAGmaxt+1

�
+

�����P
i
 iB

i

�
wt

����, where �AGmaxr is de-

�ned in Table 4.1.
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r = 1 r = 2 r = 3 r = 4

Subset  �any, ��any  �any, � = 1
S  = 1

n , ��any  = 1
n , � =

1
S

�AGmaxr = S
P
j
max
h;i

���ahij��� max
i

P
h

P
j

���ahij��� S
P
i
max
h;j

���ahij��� P
h

max
j

P
i

���ahij���
Table 4.1: Maximal aggregate ��coe¢ cients.

First, let us prove that these maximal aggregate ��coe¢ cients are actu-

ally upper boundaries for �AGmod ( ; �) = S
X
h

�h
X
i

 i
X
j

���ahij��� for di¤erent subsets
of aggregate economies. Formally, the result can be written in a form of the following

proposition.

Proposition 4.4 Maximal aggregate ��coe¢ cients de�ned in Table 4.1 are upper bound-

aries for �AGmod ( ; �) = S
X
h

�h
X
i

 i
X
j

���ahij��� for the corresponding subsets of aggre-
gate economies.

Proof. See Appendix B.6. �

Now, it is possible to give the formal de�nition of the maximal aggregate

economy.

De�nition 4.4 Given the weights of aggregation across endogenous variables  i > 0,
nX
i=1

 i = 1, and across agent types �h > 0,
SX
h=1

�h = 1, the maximal aggregate

economy for an economy described by (4.1), (4.2) and (4.3) is de�ned as

yAGmaxt =
P
i
 i j�ij+ �AGmaxr ( ; �) ÊAGmaxt

�
yAGmaxt+1

�
+

�����
 X

i

 iB
i

!
wt

����� ;
(4.2) and (4.3),

where �AGmaxr ( ; �) is de�ned Table 4.1 and ÊAGmaxt

�
yAGmaxt+1

�
is de�ned to be equal to

ÊAGmodt

�
yAGmodt+1

�
in (4.17).

Notice that each of the above�described boundaries is constructed in such a way

that it does not replicate the boundary for a broader set of aggregate models to which

this particular model belongs. It is possible to do so by applying the max operator to

di¤erent groupings of elements of sum and it becomes possible only for a particular subset

of aggregate models and which was not possible to apply to a broader set. Under equal



106

���ahij��� = jaj all these maximal aggregate ��coe¢ cients coincide with �AGmod ( ; �) = nS jaj.

So, these are attainable maxima.

Thus I have managed to aggregate the economy into one dimension and to �nd

the maximal aggregate economies that bound all of such aggregate economies within a

particular subset. If one of these maximal aggregate economies is E�stable (i.e. if at

least one of the maximal aggregate ��coe¢ cients is less than one), then all aggregate

subeconomies from a particular subset of aggregate economies are E�stable. As I have

already mentioned the concept of a subeconomy, I shall now introduce its formal de�nition

as this concept is convenient to use in proofs and conditions for ��stability.

De�nition 4.5 A subeconomy (h1; :::; hp) of size p for an economy (4.1) and (4.2) is

de�ned as consisting only of a part of agents from the original economy:

yt = �+

pX
k=1

AikÊ
h
t yt+1 +Bwt; (4.18)

wt = Fwt�1 + vt; (4.19)

where (h1; :::; hp) � (1; :::; S) is a set of numbers of agent types present in the subeconomy.

A single economy is a particular case of a subeconomy with only one type of agent.

Now I am ready to formulate the result which stresses the key role of E�stability

in the aggregate economy in stability of the original structurally heterogeneous economy

under mixed RLS/SG learning with possibly di¤erent degrees of inertia (recall Proposition

2 and Proposition 3 in Honkapohja and Mitra [43]). The key result is as follows.

Proposition 4.5 If one of the maximal aggregate economies is E�stable (i.e., one of

the maximal aggregate ��coe¢ cients is less than one), then the economy (4.1), (4.2) and

(4.3) is ��stable. Notice that all subeconomies are also ��stable under this condition.

Proof. See Appendix B.6. �

This result gives a direct rule how to construct ��stable economies. I think that

this is quite a strong result that says that there is one economic unifying condition (such

as aggregate ��coe¢ cient less than one) such that when it holds true all the economies

with the same absolute values of ahij (with all possible combinations of their signs) are

��stable.
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This condition shows how robust is the stability of a model to a change in sign

of some coe¢ cients in the economy during the time. Also, �xing certain components in

these aggregate ��coe¢ cients, I may see how the value of other coe¢ cients is �exible for

the economy to remain ��stable. This can be useful in the case when one does not know

the exact sign of some coe¢ cient in matrix Ah, but may estimate that its absolute value

belongs to some interval with some probability (the situation typical for statistical interval

estimation). As an example, the policy maker may know some structural coe¢ cients in

the economy and have to choose some parameters itself (like the ones for the policy rule).

This formula allows it to see what is the range of parameters it may choose in order to

make sure that the economy is ��stable.

It is possible to simplify the derived conditions for more simple cases, namely,

for a univariate model and a structurally homogeneous model.

Proposition 4.6 A univariate (n = 1) economy described by (4.1) and (4.2) is ��stable

for any combination of signs of coe¢ cients if and only if jA1j+ jA2j+ :::+ jAsj < 1:

Proof. Obvious: the necessary condition for 
 to be stable under any � is A1+:::+As < 1

It follows from the condition on the determinant of �
; which has to be positive. This

determinant equals � (A1 + :::+As) + 1. For the above condition to hold true for any

signs of Ah; h = 1; S, it is necessary and su¢ cient that jA1j+ jA2j+ :::+ jAsj < 1. �

Proposition 4.7 For a structurally homogeneous economy: Ah = �hA, �h > 0;
SX
h=1

�h =

1; to be ��stable it is su¢ cient that at least one of the following maximal aggregate ��

coe¢ cients be less than one; max
i

X
j

jaij j and max
j

X
i

jaij j.

Proof. Direct application of Proposition 4.5. �

4.3.2 �Same Sign�Conditions

Following the steps of the proof of observation (iv) in Johnson [44] (the formu-

lation of this observation is presented in Appendix B.5), which is, in fact, the alternative

de�nition ofD�stability, I get an alternative de�nition of blocked� diagonal (Db)�stability,

that is stability of Db
 for any positive blocked� diagonal matrix Db. This alternative

de�nition of Db�stability is then used to derive conditions for ��stability.
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De�nition 4.6 (Db�stability) Matrix A of size nS � nS is Db�stable if DbA is stable

for any positive blocked�diagonal matrix Db = diag(�1; :::; �1; :::; �S ; :::; �S).

Proposition 4.8 (Alternative de�nition of Db�stability). Consider MnS(C); the set of

all complex nS�nS matrices, DbnS ; the set of all nS�nS blocked�diagonal matrices with

positive diagonal entries. Take A 2 MnS(C) and suppose that there is F 2 DbnS such

that FA is stable. Then A is Db�stable if and only if A � iDb is non�singular for all

Db 2 DbnS. If A 2MnS(R); �the set of all nS�nS real matrices, then ���in the above

condition may be replaced with �+�since, for a real matrix, any complex eigenvalues come

in conjugate pairs.

Proof. (The proof is just a modi�cation of the proof of observation (iv) in Johnson [44]

for my blocked�diagonal case) Necessity. Let A be Db�stable, that is EA is stable for

all positive blocked�diagonal E 2 DbnS . This means that �i cannot be an eigenvalue

of matrix EA for any E 2 DbnS . That is EA � iI is non�singular for all E 2 DbnS ,

or A � iDb is non�singular for all Db = E�1 2 DbnS . Su¢ ciency. By contradiction.

Let A be not Db�stable. Thus, I have that there exists some E 2 DbnS such that FA

is stable, while EFA is not stable. By continuity, it follows that either value, �i; is an

eigenvalue of 1� (tE + (1� t)I)FA for some 0 < t � 1 and � > 0. So, A� iDb is singular

for Db = �F�1 (tE + (1� t) I)�1 2 DbnS . Contradiction. �

Taking F as an identity matrix, and D as diag( 1�1 ; :::;
1
�1
; :::; 1�S ; :::;

1
�S
), �h >

0; h = 1; S; in the above proposition, I get the following necessary and su¢ cient condition

(criterion) for ��stability:

Proposition 4.9 (criterion for ��stability in terms of structural and learning hetero-

geneity) An economy described by (4.1), (4.2) and (4.3) is ��stable if and only if the

corresponding matrix 
, de�ned in (4.11), is stable and

det

�
SP
h=1

�
��lAh
1+ i

�h

�
+ I

�
= det

" 
SP
h=1

1
1+ 1

�2
h

(��lAh) + I
!
� i
 

SP
h=1

1
�h

1+ 1

�2
h

(��lAh)
!#

6= 0

8�h > 0; h = 1; S;8l = 0; 1; :::; k; (�0 = 1)

For the univariate case (n = 1) this condition simpli�es to 
 � stable and 
SP
h=1

1
1+ 1

�2
h

(��lAh) + 1
!

6= 0 or
SP
h=1

1
�h

1+ 1

�2
h

(��lAh) 6= 0;

or both;8�h > 0; h = 1; S;8l = 0; 1; :::; k; (�0 = 1):
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The alternative de�nition of D�stability approach allows us to derive the

"same sign" conditions for the cases n = 1; 2 and necessary and su¢ cient conditions for

��stability for n = 1.

Proposition 4.10 (Criterion for ��stability in the univariate case in terms of structural

heterogeneity only) In the case n = 1; an economy described by (4.1), (4.2) and (4.3)

is ��stable if and only if the corresponding matrix 
, de�ned in (4.11), is stable and at

least one of the following holds true: the same sign condition (all Ah are greater than

or equal to zero and at least one is strictly greater than zero or all Ah are less than

or equal to zero and at least one is strictly less than zero), or all average economies

with A(h1;:::;hp) =
P

(h1;:::;hp)

Ah.corresponding to subeconomies (h1; :::; hp) of all sizes p are

not E�unstable and for each l = 0; 1; :::; k (�0 = 1) there exists at least one average

economy corresponding to subeconomy (h�1(l); :::; h
�
p(l)) in each size p for which the stability

coe¢ cient
P

(h�1(l);:::;h
�
p(l))

�lAi is strictly less than one.

Remark 4.2 Due to Proposition 2 of Honkapohja and Mitra [43], E�stability/instability

of a particular average economy is necessary and su¢ cient for stability/instability of the

corresponding subeconomy under transiently heterogeneous SG learning, which is deter-

mined by the stability of matrix 
(h1;::;hp). So, using this criterion, one may use in-

terchangeably the conditions for the stability of average economies or the conditions for

stability of subeconomies, whatever is more convenient in a particular setting. By the same

Proposition 2 of Honkapohja and Mitra [43], the condition for stability of matrix 
 can

also be considered as a condition for E�stability of the "largest" (including all agents in

calculating the average coe¢ cient) average economy corresponding to the original economy.

Proposition 4.11 In the case n = 2, the economy described by (4.1), (4.2) and (4.3)

is ��stable if the corresponding matrix 
, de�ned in (4.11), is stable and the following

"same sign" condition holds true:

det (��lAi) � 0; [detmix (��lAi;��lAj) + detmix (��lAj ;��lAi)] � 0; i 6= j;M1(��lAi) � 0

or

det (��lAi) � 0; [detmix (��lAi;��lAj) + detmix (��lAj ;��lAi)] � 0; i 6= j;M1(��lAi) � 0;

8l = 0; 1; :::; k; (�0 = 1);
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where mix (��lAi;��lAj) denotes a matrix of structural parameters of a pairwise�mixed

economy and is composed by mixing columns of a pair of matrices �lAi; �lAj, for any i;

j = 1; S.

Proof. See Appendix B.6. �

Remark 4.3 Unfortunately, though similar "same sign" conditions naturally follow from

the alternative de�nition of D�stability for cases n > 2; stability of 
 and a similar "same

sign" condition are not su¢ cient for ��stability in this case. For example, a similar "same

sign" condition for case n = 3 looks like

M3 (mix (��lAi;��lAj ;��lAk)) > 0;M2(mix (��lAi;��lAj)) > 0;M1(��lAi) > 0

or

M3 (mix (��lAi;��lAj ;��lAk)) < 0;M2(mix (��lAi;��lAj)) < 0;M1(��lAi) < 0;

8l = 0; 1; :::; k(�0 = 1)

Here, the Mn(mix()) operator means the sum of all possible principal minors of size n of

a particular mix between matrices.

4.4 Necessary Conditions for ��stability

The characteristic equation approach (which in my formulation leaves aside

the intractable Routh�Hurwitz conditions) has allowed me to derive strong necessary con-

ditions for ��stability that provide an easy test for non���stability of the model. Note

that necessary conditions do not require a diagonal structure of F and Mw.

Condition (?) All sums of the same-size principal minors of D1r (�
r) are nonnegative

for all subeconomies r = (h1; :::; hp) for all p for all positive block�diagonal matrices D1r,

where D1r and 
r de�ned similar to D1and 
 in (4.11) correspond to a subeconomy of

the economy under consideration.

Proposition 4.12 Necessary condition for ��stability: For the economy (4.1) and (4.2)

to be ��stable, it is necessary that Condition ( ?) holds true.

Proof. See Appendix B.6. �
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The condition above can not be used as a test for non���stability, as it requires

checking all subeconomies�sums of minors for all possible D1r. That is why below I have

constructed a condition that has a direct testing application.

Proposition 4.13 Necessary condition for ��stability: For the economy (4.1) and (4.2)

to be ��stable, it is necessary that all sums of the same-size principal minors of minus

matrices corresponding to subeconomies (�
r) be non-negative for each corresponding

subeconomy r = (h1; :::; hp).

Proof. See Appendix B.6. �

I think that this is quite a strong necessary condition, which implies that a lot

of models will not satisfy it, and will not be ��stable. Note that stability of each single

economy and subeconomies is a su¢ cient condition for the condition above to hold true.

A weaker requirement that all subeconomies be not unstable (non-positive real parts of

eigenvalues) is also su¢ cient.

4.5 Economic Examples

4.5.1 Univariate Case

I exploit the same reduced form used as an example of a univariate model in

Honkapohja and Mitra [43]. Such a reduced form can be a result of equilibrium in a non-

stochastic basic overlapping generations model (so-called Samuelson model) developed in

Chapter 4 of Evans and Honkapohja [29]. Here I develop it for the heterogeneous agents

case.

There are S types of agents in the economy, each of whom lives for two periods

(young and old). Population is constant: old agents who died in the second period are

replaced with the same number of young agents in the next period. When agents are young

they work supplying labor nh;t and save the revenue obtained from working; when they

are old, they consume their savings in amount ch;t+1. Output equals labor supply, so wage

earned equals the same period price of the consumption good. There is a constant stock

of money, M , which is the only means of saving in the economy. So, in a non-autarky

case, there is trade in the economy between generations: each period t, output produced

by the young generation is sold to the old agents on a competitive market using money.
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Each agent h born at time t has a constant elasticity of substitution utility

function

Uh(ch;t+1; nh;t) =
(ch;t+1)

1��h

1� �h
� (nh;t)

1+"h

1 + "h
; �h; "h > 0:

Budget constraints for the �rst and second periods of the life of agent h are

ptnh;t = Mh;t

ph;et+1ch;t+1 = Mh;t;

respectively, where pt is the price of the good andMh;t denotes the nominal savings of agent

h after the �rst period. ph;et+1 denotes expectations of the next period price made today

(they are taken to be point expectations, as the economy considered is non�stochastic).

After solving the agent�s problem, the (real) saving function of the agent looks

like

Fh

 
ph;et+1
pt

!
�
 
ph;et+1
pt

!��1
�+"

=
Mh;t

pt
:

The market clearing condition equates total savings to the stock of money in the economy

each period

M

pt
=

SP
h=1

Fh

 
ph;et+1
pt

!
=

SP
h=1

 
ph;et+1
pt

!��1
�+"

, or

H(pt; (p
h;e
t+1)

S
h=1) �

M

pt
�

SP
h=1

Fh

 
ph;et+1
pt

!
=
M

pt
�

SP
h=1

 
ph;et+1
pt

!��1
�+"

= 0. (4.20)

I use Taylor expansion to linearize this condition around the steady state pt+1 = pt = �p =

M=S,

~pt =
SP
h=1

24� @H

@pt

@H

@ph;et+1

�����
pt+1=pt=�p

35
| {z }

Ah

~ph;et+1:

@H
@pt

and @H

@ph;et+1
could be easily calculated using (4.20) and evaluated at the steady state.

Thus,

@H

@pt

����
pt+1=pt=�p

= �M
�p2
+
1

�p

SP
h=1

F 0h(1); (4.21)

@H

@ph;et+1

�����
pt+1=pt=�p

= �1
�p
F 0h(1), where

F 0h(1) =
�h � 1
�h + "h

.
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So, Ah =
1��h
�h+"h

S+
P
h

�
1��h
�h+"h

� .14
It is possible to show, using the criterion for ��stability for univariate economies,

that this economy is always ��stable for any �h; �h > 0. Consequently, it is E�stable, as

well.

Proposition 4.14 The OLG economy de�ned above is ��stable.

Proof. I have Ah =
1��h
�h+"h

S+
P
h

�
1��h
�h+"h

� and �h; �h > 0. Writing down the second part of the

criterion in strict inequalities, I get:
P

h�(h1;:::;hp)
Ah < 1 ()

P
h2(h1;:::;hp)

1��h
�h+"h

SP
h=1

�h+1

�h+"h

� 1 < 0 ()

�
P

h=2(h1;:::;hp)

1
�h+"h

�
P

h2(h1;:::;hp)

�h
�h+"h

�
SP
h=1

1
�h+"h

SP
h=1

�h+1

�h+"h

< 0 for any subeconomy (h1; :::; hp) (including

the original economy). For �h; �h > 0; the condition is always satis�ed. �

The behavior around the steady state equilibrium of the OLG exchange economy

considered by Honkapohja and Mitra [43] is presented by the following system of equations:

~pt =
SP
h=1

Ah~p
h;e
t+1, where (4.22)

Ah =
F 0h(1)

�M
�p +

P
h

F 0h(1)
; F 0h(1) =

!2;h(2� �h) + !1;h�h
4(�h � 1)

;
M

�p
=
1

2

P
h

(!1;h � !2;h) ,

where !1;h and !2;h denote the endowment of a single good to the agent of type h for its

�rst and second periods of life, respectively. �h < 1 is a parameter of agent of type h

born in period t utility function of consumption in the �rst and the second periods of its

life: Uh(ch;t; ch;t+1) =
�
c
�h
h;t + c

�h
h;t+1

�1=�h
.

Similarly to the OLG economy of the Samuelson type considered by me above, it

is possible to show that this economy is always E�stable. Moreover, for the speci�cations

satisfying !1;h > !2;h for all h = 1; S (all examples of Honkapohja and Mitra [43] satisfy

this speci�cation), the criterion for ��stability for the univariate economy (Proposition

4.10) allows me to say that the economy is ��stable.

14Notice, that Honkapohja and Mitra [43] do not have minus before the �rst term in (4.21). My deriva-
tions of the reduced form are algebraically analogous to their derivation, and I suspect they lost this minus
during derivation. Though their example for values of Ah remains valid for this reduced form, the values of
�h�s in agents CES utiliy functions in their overlapping generations exchange economy could not be found
in a plausible range (that is, �h < 1) for their speci�cation of Ah�s.
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Proposition 4.15 The OLG exchange economy (4.22) is E�stable. If !1;h > !2;h for

all h = 1; S, it is ��stable.

Proof. To prove the �rst part of the proposition, I may use only the condition on the

parameters of the utility function, �h < 1 and the condition that !1;h; !2;h > 0 From the

formula for F 0h(1) I get �h =
2!2;h+4F

0
h(1)

4F 0h(1)+!2;h�!1;h
< 1. It leads to inequality F 0h(1) <

!1;h�!2;h
4 .

Using M
�p =

1
2

SP
h=1

(!1;h � !2;h), I get
SP
h=1

F 0h(1) <
M
2�p . Next using the formula for Ah, I get

SP
h=1

F 0h(1) =
M
�p

P
AhP

Ah�1
< M

2�p . As
M
�p > 0 (from its economic meaning), I arrive at inequalityP

Ah+1P
Ah�1

< 0 that leads to �1 <
SP
h=1

Ah < 1. Condition
SP
h=1

Ah < 1 is the condition of

E�stability. �

To prove the second part of the proposition, I �rst express Ah via �h,!1;h; !2;h. I have Ah =

F 0h(1)

�M
�P
+

SP
h=1

F 0h(1)

. Substituting for F 0h(1) and
M
�P
I arrive at Ah =

!2;h+!1;h
1��h

+!2;h�!1;h
SP
h=1

�
!2;h+!1;h

1��h
+!1;h�!2;h

� .
Writing down the second part of the criterion in strict inequalities I get:

P
h�(h1;:::;hp)

Ah < 1()
�

P
h=2(h1;:::;hp)

!2;h+!1;h
1��h

�
SP
h=1
(!1;h�!2;h)+

P
h2(h1;:::;hp)

(!2;h�!1;h)

SP
h=1

�
!2;h+!1;h

1��h
+!1;h�!2;h

� <

0 for any subeconomy (h1; :::; hp), including the original economy. Since we have �h <

1; !1;h > !2;h � 0, the condition is always satis�ed. Q:E:D:

In addition, I will show how my criterion works for the speci�cation of the reduced

form used by Honkapohja and Mitra [43]. Let us say that these values of Ah are possible

for some other model. Honkapohja and Mitra [43] consider the following speci�cations:

S = 3, A1 = 0:1, A2 = �0:2 and A3 = �0:5; S = 3, A1 = �15, A2 = 0:5 and A3 = 0:6;

S = 3, A1 = �15, A2 = 1:1 and A3 = 0:6.

Since I have been able to derive a criterion for ��stability in the univariate case,

I can say, looking only at the structure of the model, whether it is stable under all types

of heterogeneous learning, or not, without looking for examples with various degrees of

inertia of agents that violate convergence.

For the �rst speci�cation, applying the criterion for ��stability in the univariate

case, and �nding that the same sign condition is violated, one is left to check the condition

for stability of subeconomies: since the setup here is non�stochastic, one is left to check

that all average economies corresponding to subeconomies are not unstable and at least one



115

of them is stable, and it can be easily checked by considering stability of the corresponding

average economies. A1 = 0:1 < 1; A2 = �0:2; A3 = �0:5 < 1; A1 + A2 = �0:1 <

1; A1 + A3 = �0:4 < 1; A2 + A3 = �0:7 < 1; A1 + A2 + A3 = �0:6 < 1. So, all

average economies corresponding to all subeconomies (including the original economy) are

E�stable. This means that economy is ��stable.

For the second speci�cation, using the criterion above, it is clear that the economy

will not be ��stable, as none of the conditions of the criterion is satis�ed: the same sign

condition is violated, and there exists an average economy corresponding to subeconomy

(2; 3) for which A(2;3) = A2 + A3 = 1:1 > 1, that is, this average economy is E�unstable.

Alternatively, one can easily check that eigenvalues of 
(2;3) =

0@ A2 � 1 A3

A2 A3 � 1

1A =0@ �0:5 0:6

0:5 �0:4

1A are �1 and 0:1, which violates the stability conditions.

A similar situation is for the third speci�cation. The economy is not ��stable

since the conditions of the criterion are not satis�ed: the same sign condition is violated, as

Ah�s have di¤erent signs, and there exist average economies corresponding to subeconomies

(2) and (2; 3) for which A(2) = A2 = 1:1 > 1 and A(2;3) = A2 + A3 = 1:7 > 1, that is,

these average economies are E�unstable. Alternatively, one can check that eigenvalues of


(2;3) =

0@ A2 � 1 A3

A2 A3 � 1

1A =

0@ 0:1 0:6

1:1 �0:4

1A and of 
(2) = A2 � 1 = 0:1 are �1 and

0:7, and 0:1, respectively, which violates the stability conditions.

In order to further demonstrate the power of the derived criterion for ��stability,

I will consider the case of more than 3 agents in the economy. Let us consider S = 6;

A1 = �0:1, A2 = �0:2, A3 = �0:5; A4 = �15, A5 = 0:5, A6 = 0:5.

The economy under this speci�cation is ��stable, notwithstanding that the same

sign condition is violated and there is an average economy corresponding to subeconomy

(5; 6) for which A(5;6) = A5+A6 = 1. The condition of the criterion is satis�ed. Indeed, all

A(h1;:::;hp) =
P

(h1;:::;hp)

Ah are less or equal than 1, and for each size p there exists an average

economy for which this coe¢ cient is strictly less than one: for p = 1; A(1) = �0:1 < 1; for

p = 2; A(1;2) = �0:3 < 1, for p = 3; A(1;2;3) = �0:8 < 1, for p = 4; A(1;2;3;4) = �15:8 < 1,

for p = 5; A(1;2;3;4;5) = �15:3 < 1, for p = 6; A(1;2;3;4;5;6) = �14:8 < 1. So, even if

the economy contains a subeconomy which is E�unstable (lies on the boundary of the

stability/instability) and the same sign condition is violated, the whole economy can be
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��stable.

4.5.2 Multivariate Case

I demonstrate the aggregate economy su¢ cient conditions on a model of simul-

taneous markets with structural heterogeneity15. The idea is to add more economic inter-

pretation to these conditions on an example of a particular multivariate model.16

The economic environment is given by the following equation:

pt = l + vdt + "t;

which is the demand function in matrix form for di¤erent goods j = 1; J .

pt is a J � 1 vector of prices, which are endogenous variables in this model, l is

a vector of intercepts, v is a J � J matrix which corresponds to the inverse of the matrix

of price e¤ects. d(t) is a vector of quantities of the J goods, "j;t = fj"j;t�1 + vj;t, "j;t are

demand shocks, jfj j < 1, and vj;t are independent white noise processes.

There are S types of suppliers with supply functions:

sht = gh + nhÊht�1pt; h = 1; S;

which depend on the expected price due to a production lag. Each supplier produces all

J goods. s(h; t) is a J � 1 vector of goods supplied by type h supplier.

It is further assumed that di¤erent outputs are produced in independent processes

by each producer h, so nh is a positive diagonal matrix. Expectations (non-rational, in

general) of prices are formed by each supplier at the end of period t�1 before the realization

of the demand shock "t:

The market clearing condition, dt =
SP
h=1

sht ; leads to the following reduced form:

pt = l + v

�
SP
i=1

gi
�
+

SP
h=1

vnhÊht�1pt + "t:

For the case with equal weights of single agent types used in calculating aggregate

expectations, the aggregate stability su¢ cient condition for this model has the form

P
i
 i jvij j <

 j

Snhjj
;8j; h:

15The author expresses sincere thanks to Seppo Honkapohja who suggested to use this example.
16��stability of a bivariate (New Keynesian) model under two types of optimal monetary policy rules of

a policy maker is considered in a companion paper (Bogomolova and Kolyuzhnov [6]).



117

This condition can be derived by the direct application of Proposition 4.3 to the given

model.

I am going to show now that this su¢ cient condition for ��stability at the same

time is a su¢ cient condition for E�stability of the aggregate (univariate) cobweb model.

In order to show this, I have to derive, �rst, the aggregate supply and demand curves

using weights of aggregation across agents and expectations I used to derive the su¢ cient

conditions for ��stability above.

So, the aggregate demand curve for the price index17 can be derived as follows:

Pt =
P
i
 ipit =

�P
i
 ivi1

�
d1t + :::+

�P
i
 iviJ

�
dJt +

P
i
 ili +

P
i
 i"it <

<

�P
i
 i jvi1j

�
d1t + :::+

�P
i
 i jviJ j

�
dJt +

P
i
 ili +

P
i
 i"it =

=

�P
i
 i jvi1j+ :::+

P
i
 i jviJ j

�
| {z }

rp

8><>:
 P

i

 ijvi1j
!
d1t+:::+

 P
i

 ijviJ j
!
dJtP

i

 ijvi1j+:::+
P
i

 ijviJ j

9>=>;| {z }
DAG

+
P
i
 ili+

P
i
 i"it =

= rpD
AG +

P
i
 ili +

P
i
 i"it:

Note that here, aggregating over the elements of the price vector, I obtain the

demand function in terms of the price index. This is an example of economic interpretation

of the aggregation procedure that I propose in my paper, in particular, of assigning weights

to the endogenous variables.

To derive the aggregate supply curve for the price index I, �rst, write the aggre-

gate (over all supplier types) supply equation:

P
h

sht =
P
h

gh +
P
h

nhÊht�1pt =
P
h

gh +

�P
h

nh
�
ÊAGt�1pt:

Then I write equations for each component of the supply vector: the aggregate supply of

each product equations. So, for each product j,

P
h

shjt =
P
h

ghj +

�P
h

nhÊht�1pt

�
j

=
P
h

ghj +
�
n111 + :::+ n

S
JJ

�
Êaggregt�1 pjt :

Next, I aggregate over all supply equations using weights  j . Aggregating across endoge-

nous variables (prices) to get the price index, I �nally get the aggregate supply curve for

17To get this function, I aggregate the individual demand functions, not the reduced form equations (in
which case I would obtain an equation for the intertemporal equilibrium price index).
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the aggregate model

ÊAGt�1Pt: =
�

 1
n111+:::n

S
11

�P
h

sh1t+:::+
�

 J
n1JJ+:::n

S
JJ

�P
h

shJt�
P
j
 j

�P
h

ghj =
�
n111 + :::+ n

S
JJ

��
=
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�P
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�
n111 + :::+ n

S
JJ

��
:

Thus, we have the following aggregate cobweb model in structural form:

Pt = rpD
AG +

P
i
 ili +

P
i
 i"it is the aggregate demand curve

ÊAGt�1Pt = rmS
AG �

P
j
 j

�P
h

ghj =
�
n111 + :::+ n

S
JJ

��
is the aggregate supply curve,

where

rp =
P
i
 i jvi1j+ :::+

P
i
 i jviJ j

rm =
�

 1
n111+:::n

S
11
+ :::+  J

n1JJ+:::n
S
JJ

�
:

It is clear that from the su¢ cient condition for ��stability
P
i
 i jvij j <

 j
Snhjj

;8j; h,

follows
P
i
 i jvij j <

 j
Smax

h
fnhjjg

;8j and, in turn,  j
Smax

h
fnhjjg

<
 j

n1jj+:::n
S
jj
;8j. Thus, the

su¢ cient condition for ��stability in this class of models,
P
i
 i jvij j <

 j
Snhjj

;8j; h, is the

condition for E�stability of the aggregate cobweb model (rm > rp).

4.6 Conclusion

My paper to some extent resolves the open question posed by Honkapohja and

Mitra [43]. As has been mentioned, Honkapohja and Mitra [43] provide a general stability

condition (criterion) for the case of persistently heterogeneous learning � a joint restriction

on matrices of structural parameters and degrees of inertia, which implies that stability in

such an economy is determined by the interaction of structural heterogeneity and learning

heterogeneity. For the general (multivariate) case, however, it was not possible to derive

easily interpretable stability conditions expressed in terms of an economy aggregated only
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across agent types. Honkapohja and Mitra [43] have derived su¢ cient conditions in terms

of the structure of the economy, but this condition is very general: it requires D�stability

and H�stability of the structural matrices.

In this paper, I attempt to �ll this gap and provide easily interpretable su¢ cient

and necessary conditions for such a stability. Based on the analysis of the negative diag-

onal dominance, the alternative de�nition of D�stability, and the characteristic equation

analysis, I have been able to derive two groups of su¢ cient conditions and one group of

necessary conditions for ��stability, that is, stability under heterogeneous learning, inde-

pendent of heterogeneity in parameters of learning algorithms. I have found an easily

interpretable unifying condition which is su¢ cient for convergence of an economy under

mixed RLS/SG learning with di¤erent degrees of inertia towards a rational expectations

equilibrium for a broad class of economic models and a criterion for such a convergence

in the univariate case. The conditions are formulated using the concept of a subeconomy

and a suitably de�ned aggregate economy.

In particular, using the negative diagonal dominance (su¢ cient for D�stability)

and my concept of aggregating an economy (both across agent types and endogenous

variables), I have obtained su¢ cient conditions for ��stability expressed in terms of E�

stability of the aggregate economy and its structure. These were summarized as the

aggregate economy su¢ cient conditions. One of them can serve as a rule of thumb for

checking a model for ��stability.

I have found a unifying condition for the most general case of heterogeneous learn-

ing in linear forward�looking models. Though it is quite restrictive, my main achievement

was to show that such a simple condition with the E�stability meaning of some aggregate

economy (a notion that has already proved useful as a condition for stability under het-

erogeneous learning in previous learning literature) does exist for a large class of models.

The economic example provided in the end of the paper demonstrates the application of

the aggregate economy conditions.

Next, based on the analysis of the alternative de�nition of D�stability, I have

obtained su¢ cient conditions on the structure of the economy summarized as the �same

sign" conditions. Further, based on the analysis of the characteristic equation and the

requirement for negativity of all eigenvalues (necessary and su¢ cient for stability), I have

derived a group of necessary conditions. Their failure can be used as an indicator of
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non���stability.

Moreover, using the alternative de�nition of D�stability and the characteristic

equation approaches, I obtain the criterion for ��stability in the univariate case. On the

example of two types of OLG models I show that this criterion can be easily used to test

an economy for ��stability.
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Chapter 5

Optimal Monetary Policy Rules:

The Problem of Stability Under

Heterogeneous Learning
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5.1 Introduction

The stabilization monetary policy design problem is very often studied in the New

Keynesian model. Using the environment of this model, we may study di¤erent monetary

policy rules to �nd out which is more e¢ cient in smoothing business cycle �uctuations and

also which monetary policy rule would not lead to indeterminacy of equilibria in our model.

For a comprehensive overview of various interest rate rules in the New Keynesian model,

one can address Woodford [69]. Also, very often cited works on monetary policy design

are Clarida, Gali, and Gertler [19, 20]. Svensson [62] gives a clear distinction between

instrument and target rules and implications of their use.

A number of recent studies also consider the New Keynesian model environment

with adaptive learning of agents. Examples are works of Evans and Honkapohja [30, 31],

Bullard and Mitra [11] and Honkapohja and Mitra [42] on stability of an economy under

various policy rules. Evans and Honkapohja [30, 31] take up the issue of stability under

learning for optimal monetary policies in economies with adaptive learning.

The concept of adaptive learning of agents in economic models is introduced

as a speci�c form of bounded rationality advocated by Sargent [60]. According to the

argument of Sargent [60], it is more natural to assume that agents face the same limitations

economists face (in a sense that economists have to learn the model structure and its

parameter values themselves) and view agents as econometricians when forecasting the

future state of the economy.

Using adaptive learning in an economy makes it possible to test the validity of

the rational expectations hypothesis by checking if a given dynamic model converges over

time to the rational expectations equilibrium (REE) implied by the model. It can also

be used as a selection device in models with multiple equilibria. Even if the model has a

unique REE, it is still of interest to see if the rational expectations (RE) hypothesis holds

under learning, which is done by checking if our model under learning converges to a given

REE. In both cases (multiple or unique REE), one has to check certain stability conditions.

After this analysis of stability conditions, the next step could be studying policy rules for

e¤ectiveness and indeterminacy, assuming or making sure that the stability conditions on

the model structure are satis�ed.

That is why, before we start analyzing particular monetary policies for e¢ ciency

(evaluating a particular type of policy: Taylor rule, optimization�based rule with or with-
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out commitment), we should take a general type of a linear policy feedback rule, plug

it into our structural form of the New Keynesian model and obtain some general linear

reduced form (RF) of this model. All things being equal (the same structural equations:

Phillips and IS curves), we can obtain di¤erent RFs depending on the policy rule used by

the policy maker. Hence, we obtain di¤erent REEs and di¤erent stability results. Then

we should study a given reduced form for stability in order to see if a given REE is cho-

sen. In this paper, we study the stability of a New Keynesian model under the following

classi�cation of policy rules introduced by Evans and Honkapohja [31].

Depending on the assumptions of the central bank about the expectations of the

private agents (�rms, households), Evans and Honkapohja [31] divide all policy rules into

fundamentals�based rules and expectations�based rules. The fundamentals�based rule is

obtained if the policy maker assumes RE of private agents, while the expectations�based

rule takes into account possibly non�rational expectations of agents (assuming that these

expectations are observable to the central bank).1

We consider the stability question under the assumption of heterogeneous learn-

ing of agents. As has been shown in Giannitsarou [37] and Honkapohja and Mitra [43], sta-

bility results may be di¤erent under homogeneous and heterogeneous learning. Honkapo-

hja and Mitra [43] also demonstrate that stability may depend on the interaction of struc-

tural heterogeneity and learning heterogeneity, and Honkapohja and Mitra [42] examine

how structural heterogeneity in the New Keynesian model may a¤ect stability results

under various types of policy rules.

Note that though Honkapohja and Mitra [42] consider heterogeneity in learning

in the New Keynesian model, their de�nition of heterogeneity implies a situation when

the central bank and private agents have (possibly) di¤erent learning algorithms with

(possibly) di¤erent parameters of these algorithms. They essentially consider the situation

when all private agents could be considered as one representative agent, and in this sense

learning of private agents considered by Honkapohja and Mitra [42] is homogeneous. In

some sense, the situation considered by Honkapohja and Mitra [42] could be called two-

sided learning in a structurally heterogeneous bivariate economy.

1We should note here that in Taylor�type rules the current value of interest rate depends on the current
values of in�ation and output gap. In this paper we study stability under feedback rules that are derived
from the policy maker minimization problem, in particular, study their two categories, according to Evans
and Honkapohja [31]: fundamentals�based and expectations�based. Stability under Taylor�type rules,
which do not fall under this classi�cation, will be studied later in a separate work.
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In this paper we do not consider learning of the central bank and assume, follow-

ing Evans and Honkapohja [31], that the policy maker takes expectations of private agents

as given or assumes and knows the exact structure of their rational expectations; at the

same time we fully exploit the case when private agents have heterogeneous learning. The

case of the internal central bank forecasting (that includes Taylor rules) in a situation of

heterogeneous learning of private agents, which develops the model of Honkapohja and

Mitra [42] since Honkapohja and Mitra [42] consider only the situation of a representative

private agent, is the topic of our further research.

It turns out that under the fundamentals�based linear feedback policy rule (optimization�

based), learning in our model never converges to the REE of the model. Evans and

Honkapohja [31] demonstrate this instability result for the homogeneous recursive least

squares (RLS) and for the stochastic gradient (SG) learning,2 while we obtain a similar

instability result for the three types of heterogeneous learning considered by Giannitsarou

[37].

The other category of policy rules � expectations�based rules � is supposed to

react to agents�expectations. Under certain conditions, we can have stability under such

rules. Evans and Honkapohja [31] obtain a stability result for homogeneous RLS or for

SG learning. We obtain a stability result (with conditions on the model structure) for the

case of the three types of heterogeneous learning considered by Giannitsarou [37].

Originally, when heterogeneous learning in a general setup of self-referential lin-

ear stochastic models was studied by Giannitsarou [37], the purpose of introducing het-

erogeneous learning of agents was to see if the representative agents hypothesis in�uences

stability results, i.e., if one may always apply this hypothesis. For some cases, it is demon-

strated that it does make sense to consider the heterogeneous setup. Our paper is about

stability under monetary policy rules, so, though we, in fact, prove that the representative

agent hypothesis holds true for the New Keynesian model, the accent of our paper is shifted

away from testing the importance (in�uence) of the representative agent hypothesis.

We, essentially, apply the stability analysis of the model under heterogeneous

2Honkapohja and Mitra [43] and we in this paper consider two possible algorithms used to re�ect
bounded rationality of agents: RLS and SG learning algorithms (which are examples of econometric
learning). Their description can be found, e.g., in Evans and Honkapohja [29], Honkapohja and Mitra
[43], Giannitsarou [37], and Evans, Honkapohja and Williams [32]. Both are used by agents to update the
estimates of the model parameters. Essentially, the di¤erence is as follows. The RLS algorithm has two
updating equations: one� for updating parameters entering the forecast functions, the other� for updating
the second moments matrix (of the model state variables). The SG algorithm assumes this matrix �xed.
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learning in the same manner the stability analysis of the model under homogeneous (when

all agents can be substituted with a representative agent) learning is applied in Evans

and Honkapohja [31].3 In our paper, we link the study of stability conditions under a

certain category of linear monetary policy rules of [31] with the study of stability under

heterogeneous learning of Giannitsarou [37].

We �rst show that in the New Keynesian�type of models, stability can be ana-

lyzed using the structural parameters, whatever the type of heterogeneous learning, using

the general criterion of Honkapohja and Mitra [43]. These results are the structural

matrix eigenvalues su¢ cient and necessary conditions for stability of a structurally ho-

mogeneous model derived in this paper and the aggregate economy su¢ cient conditions

derived in Kolyuzhnov [51], where the concept of stability under heterogeneous learning,

termed as ��stability, is introduced. Then we apply these results to derive stability and

instability results under heterogeneous learning for the two categories of feedback rules:

fundamentals�based and expectations�based, in the model with an arbitrary number of

agent types.

Summarizing all the above, our work now looks, on the one hand, like a link

between the study of stability under monetary policy rules for homogeneous learning of

Evans and Honkapohja [31] and the study of stability conditions under heterogeneous

learning of Giannitsarou [37], � the link through the ��stability conditions derived by

us for the general setup of Honkapohja and Mitra [43] and through the general stability

criterion of Honkapohja and Mitra [43]. On the other hand, this study can serve as

one more economic example demonstrating the application of ��stability su¢ cient and

necessary conditions.

The structure of the paper is as follows. In the next section we present the basic

New Keynesian model. In Section 3 we discuss the general stability results under hetero-

geneous learning and the concept of ��stability introduced in Kolyuzhnov [51]. In Section

4, we give necessary and su¢ cient conditions for ��stability for structurally homogeneous

3Evans and Honkapohja [31] study stability conditions under monetary policy rules for the case of
homogeneous learning. Their major input is (both for the one�sided learning and the two�sided learning)
to have shown that under fundamentals based rules the REE of the model is always unstable, while under
the expectations based rule there is always stability. In the two cases the reduced form of the model is
di¤erent, which has, as a consequence, the di¤erence in the stability results. So, the policy implication
of such a stability analysis is that, given the structure of the model (the two structural New Keynesian
equations), the central bank can in�uence (determine) the outcome of its policy by selecting the appropriate
optimal monetary policy: the one that guarantees convergence to a particular REE.
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models. Section 5 describes the two types of optimal policy rules and the structure of the

reduced forms under each type. In Section 6 we provide stability and instability results

for the types of optimal monetary policies considered in application to the New Keynesian

model. Section 7 concludes.

5.2 Model

The model that we consider is a general New Keynesian model with observable

stationary AR(1) shocks. The structural form of the model looks as follows

xt = c1 � �
�
it � bEt�t+1�+ bEtxt+1 + �01wt (5.1)

�t = c2 + �xt + � bEt�t+1 + �02wt, (5.2)

where the �rst equation is for the IS curve and the second equation is for the Phillips

curve. wt =
h
w1t ::: wkt

i0
is a vector of observable AR(1) shocks4,

wit = �iwit�1 + �it; j�ij < 1; �it � iid
�
0; �2i

�
; i = 1; k (5.3)

To introduce heterogeneity in the model, we assume that we have S types of

private agents characterized by their share �h > 0 in the economy,
SP
h=1

�h = 1. So, bEtxt+1 =
SP
h=1

�h bEht xt+1, bEt�t+1 = SP
h=1

�h bEht �t+1, where bEht xt+1 and bEht �t+1 are expectations (in
4Typically, New Keynesian models include only an observable component, which is assumed to follow

an AR(1) process. However, there are speci�cations including both observable and unobservable shocks.
For example, Evans and Honkapohja [32], who study stability rules under recursive least squares learning,
include unobservable shocks to the New Keynesian model equations. In our case a more general speci�cation
with unobservable shocks would contain additional term 
1�t in the IS curve and 
2�t in the Phillips curve,
where �t =

�
�1t ::: �mt

�0
are unobservable shocks, �it � iid

�
0; 
2i

�
, i = 1; :::;m, not correlated with

observable shocks gt.
Of course, these unobservables do not bring a di¤erence into the stability results (that is why we omit

them in the model analyzed), but introducing them into the setup has its own reasoning. For example,
it makes sense to introduce unobservable shocks into structural equations when we consider central bank
learning structural coe¢ cients of the model. If we have only observable shocks (which play a role of just
another regressor �some exogenous variable) as well as other observable regressors, we will evaluate the
equations�coe¢ cients exactly if we have a su¢ cient number of observations. In this case learning is trivial:
the convergence will be very quick if initially we did not have enough observations, but gained them over
a short period of time.
If we think of how these unobservable shocks can emerge at the micro foundations level, we may think of

the following economic interpretation. For example, let us assume that preference and technology shocks
consist of observable and unobservable components. As for preference shocks, we can imagine a qualitative
change in our preferences, such that we know how the shock has changed our preferences qualitatively,
but we cannot precisely measure this change quantitatively. A similar interpretation can be given to the
technological shock. What we have measured enters as an observable component, while the measurement
error (which always exists since we assume that our quantitative measurement of any change is imprecise)
is treated as an unobservable component.
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general, non�rational) of private agent of type h made at time t about the next period

output gap and in�ation, respectively.

The model (5.1), (5.2) and (5.3) is a general formulation of models derived from

microfoundations that are considered in macroeconomics and monetary economics litera-

ture. The two basic equations of the New Keynesian model, which are the Phillips curve

and the IS curve are derived from the optimal problems of the representative household

and the representative monopolistically competitive �rm, with the assumption of Calvo

[13] pricing mechanism in the �rms�price�setting decision. So the two New Keynesian

curves are derived using the optimality conditions of the private agents (households and

�rms). The derivation of these two curves for the standard New Keynesian model setup

can be found, e.g., in Walsh [63]. The description of the New Keynesian model can also

be found in Woodford [68, 69] and in Christiano, Eichenbaum, and Evans [18].

In solving their optimization problems, private agents are assumed to take the

interest rate (entering the IS curve equation) as given. The interest rate, in turn, is set

by the policy maker � the central bank. In various studies of monetary policy issues (in

the New Keynesian framework), it is normally assumed that the policy maker uses some

linear feedback rule to set the interest rate. In general, a feedback rule that is derived

from the loss function minimization problem determines how the interest rate reacts to the

expected values of the model�s endogenous variables (in�ation and output gap in the New

Keynesian model) and the model�s exogenous variables (various shocks, e.g., technology

shock, preference shock, cost-push shock). Instrument rules, like Taylor�type rules, are

designed to respond to the target variables (e.g., in�ation and output gap). As is noted

in the introduction, Taylor�type rules will be considered in a separate study.

Plugging the feedback rule into the IS curve equation, we obtain the model

reduced form. Using the same New Keynesian equations (IS and Phillips curves), we can

obtain di¤erent reduced forms for di¤erent policy rules, i.e. other things being equal, the

reduced form structure depends on the policy rule. It depends not only on the type of it

(Taylor or optimization�based), but, as is demonstrated by Evans and Honkapohja [31],

on the assumption of the central bank about private agents expectations, resulting either

in the fundamentals�based or in the expectations�based category of feedback rules.

After plugging some monetary policy rule of the central bank it, assuming that

the central bank knows expectations of private agents or assumes and knows the form of
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rational expectations of agents (we will talk about the types of optimal monetary policy

rules later), the model can be written in the reduced form that has a general representation

of a bivariate system with a stationary AR(1) observable shocks process

yt = �+AÊtyt+1 +Bwt, (5.4)

yt =
h
�t xt

i0
(5.5)

and (5.3).

In what follows, for the derivation of our stability results we may allow for some general-

ization (as it is just a matter of notation compared to the bivariate model) and consider a

multivariate (not just bivariate) system (5.4) with a stationary AR(1) observable shocks

process (5.3).

In our notation, the reduced form is written in such a way that it includes all

factors that appear in the structural form. This means that the absence of some factor

in the reduced form in our notation is expressed by the corresponding zero column of

matrix B. Note that here we adopt such a notation in order to be able later to consider

di¤erent speci�cations of learning algorithms that include factors from di¤erent sets.5 So

our notation is the most general that can be.

In adaptive learning models of bounded rationality it is assumed that agents do

not know the rational expectations equilibrium and instead have their own understanding

of the relation between variables in the model. The coe¢ cients in this relation (that are

called beliefs) are updated each period as new information on observed variables arrives

(in this respect agents are modeled as if they were statisticians, or econometricians ) For

the beginning, we assume that agents have the following perceived relation among the

variables in the economy, which is called the perceived law of motion (PLM)

yt = ah + �hwt,

with ah =
h
ah1 ah2

i0
;�h =

24 
h11 
h12 ::: 
h1k


h21 
h22 ::: 
h2k

35 in the bivariate case,

that includes all components of wt. A bit later we weaken this assumption. Though we

assume that the parameters of the PLM may di¤er across agents, we assume that the

5An example when a model reduced form may not include all shocks that are present as factors in the
model structural form can be found in Evans and Honkapohja [31], who used the New Keynesian model
setup of Clarida, Gali, Gertler [19].
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structure of the PLMs is the same for all agents. We may also write the average (or

aggregate) PLM using the weights of agents.

yt = a+ �wt, where a =
SP
h=1

�ha
h;� =

SP
h=1

�h�
h: (5.6)

Thus agents have the following forecast functions based on their PLMs

bEht yt+1 = ah + �hdiag(�1; :::; �k)wt

and consequently the average forecast function is given by

bEtyt+1 = SP
h=1

�h

�
ah + �hdiag(�1; :::; �k)wt

�
= a+ �diag(�1; :::; �k)wt. (5.7)

After plugging the average forecast function (5.7) corresponding to the average

PLM (5.6) into the reduced form (5.4), we derive the actual law of motion (ALM)

yt = Aa+ �+ (A�diag(�1; :::; �k) +Bwt) : (5.8)

The rational expectations equilibrium (REE) de�ned as Etyt+1 = bEtyt+1 = bEityt+1 (see,
e.g., Sargent [60] or Evans and Honkapohja [29] for the meaning of the RE concept) can be

calculated by equating the parameters of the average PLM (5.6) with the corresponding

parameters of the ALM (5.8). If we de�ne the T�map as a mapping of beliefs from the

average PLM (5.6) to the ALM (5.8),

T (a;�) = (Aa+ �;A�diag(�1; :::; �k) +B) , (5.9)

we will be able to write the REE condition as T (a;�) = (a;�).

Now we will widen the set of PLMs considered. Let us start with the following

de�nition.

De�nition 5.1 The active factors set is a subset of a set of histories of wit up to time

t and a constant used by agents in their PLMs.6

Following the de�nition, we renumber the subscripts corresponding to regressors

that are included into agents�active factors set from 1 to k0, and denote the set of subscripts

taken from f1; :::; kg corresponding to the active factors set as eI. Assuming, as before,
6Note that by the active factors set we mean not the variables that agents are actually aware of at

time t, but essentially those that are used by agents in their PLMs (a subset that may be smaller than the
subset of actually available variables).
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that all agents have the same structure of their individual PLMs, agents now are assumed

to have the following average perceived law of motion (PLM)

yt = a+ e� ewt

with a =
h
a1 a2

i0
; e� =

24 e
11 e
12 ::: e
1k0e
21 e
22 ::: e
2k0
35 in the bivariate case,

where ewt consists of the components of wt included in agents�active factors set. Conse-
quently, T�map (5.9) can be rewritten as

eT (a; e�) = �Aa+ �;Ae�diag(�1; :::; �k) + eB� :
where eB consists of columns of matrix B that correspond to the active factors set.

Similarly, one may try to write the REE condition as eT (a; e�) = (a; e�): However,
in this case, it is clear that for the existence of a REE, agents have to include into their

active factors set those factors wit that correspond to non-zero columns of matrix B in

the reduced form. A PLM which consists only of such factors is a PLM that corresponds

to the so�called minimal state variable (MSV) solution. Also, in the above PLMs we have

used the following assumption.

Assumption 5.1 Agents include in their PLM of each endogenous variable all factors

from their active factors set.7

Essentially, Assumption 5.1 postulates that we may write each agent�s PLM

equations in matrix form, without a priori setting coe¢ cients at some factors to zero. In

addition, we assume that all agents use the same set of factors (which in matrix form

means that they use the same vector). We also note here that a similar assumption on

the matrix formulation of PLMs has been made by Giannitsarou [37] and Honkapohja and

Mitra [43].8

7So we exclude situations when agents do not include into the PLM equation of one endogenous variable
some factor having a zero coe¢ cient in matrix B of the reduced form, while including the same factor in the
PLM equation of the other endogenous variable, with this factor having a non�zero coe¢ cient in matrix B
of the reduced form. We assume that agents do not know the true structure of the reduced form and use
all the available information to form their expectations. So, if one factor is present in one PLM equation,
it is present in another PLM equation.

8Notice that here we also do not consider situations of the restricted perceptions equilibrium (RPE),
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The Propositions below state the necessary and su¢ cient conditions for the ex-

istence and for the uniqueness of a REE in a general multivariate model with stationary

AR(1) observable shocks. These conditions are well-known, but we prefer to state them

here for the reader�s convenience. To formulate the following propositions, we return back

to the initial numbering of shocks, denote the constant term in the active factors set

of agents as w0 and take �0 = 1 and B0 = �. So, now i takes integer values from 0

to k. We will denote this set as I0 and the corresponding set of subscripts taken from

I0 = f0; 1; :::; kg as eI0. Note that the constant term is always included as a factor in any

active factors set, therefore 0 always belongs to I0:

Proposition 5.1 (Necessary and su¢ cient conditions for existence of a REE) Under

Assumption 5.1, a REE solution exists if and only if agents� active factors set includes

among others all wi such that Bi 6= 0 in the reduced form and rank(�iA�I) = rank(�iA�

I;Bi _) for i such that det (�iA� I) = 0 and Bi 6= 0.

Proof. See Appendix C.1. �

Proposition 5.2 (Necessary and su¢ cient conditions for existence and uniqueness of a

REE): Under Assumption 5.1, a REE solution exists and is unique if and only if agents�

active factors set includes, among others, all wi such that Bi 6= 0 in the reduced form and

for all wi included, det (�iA� I) 6= 0:

Proof. See Appendix C.1. �

So, in what follows we always assume that Assumption 5.1 and the necessary

and su¢ cient conditions9 for existence of a REE hold true. Basically, we assume that

in both equations of their PLM, agents use at least all the regressors that appear in the

right�hand side of the reduced form (5.4), and that the REE solution (either unique or

the discussion of which may be found, for example in Evans and Honkapohja [29]. In our terminology, for
the situation of the RPE, one has to assume that agents do not include into their active factors set some
of the factors that are present in a unique REE, that is, factors that correspond to non�zero coe¢ cients in
matrix B. Here we introduce the notion of the active factors set only to allow for considering the PLMs not
only corresponding to the MSV, but also those PLMs that include more factors than enough to determine
a unique REE. It is done to derive the "strong ��stability" or "strong ��instability result." (Compare to
the notion of "strong E�stability" in the homogeneous learing literature.)

9The propositions above have a similar meaning to Proposition 1 of Honkapohja and Mitra [43]: again,
the condition requires matrices participating in the derivation of the RE values of beliefs to be invertible.
So, the above propositions stress that we are aware of cases when an REE may not exist and of the
conditions that are required for its existence (and uniquness).
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multiple) exists under this PLM. That is, in principle, we consider all possible PLMs that

satisfy these conditions.

After specifying PLMs of agents and conditions for existence and uniqueness

of the REE we are ready to introduce heterogeneous learning of agents in the economy

considered and derive conditions for stability of the REE under this learning. Then we

use these conditions to study stability under heterogenous learning in the general New

Keynesian model when optimal monetary policy rules are applied.

5.3 Heterogeneous Learning and the Concept of ��stability

The model (5.4) and (5.3) that we consider belongs to the class of multivari-

ate forward�looking economic models. Thus we naturally employ the general framework

and notation from Honkapohja and Mitra [43], who were the �rst to formulate the gen-

eral criterion for stability of a multivariate forward�looking economy under heterogeneous

learning.

Honkapohja and Mitra [43] consider the class of linear structurally heterogeneous

forward-looking models with S types of agents with di¤erent forecasts presented by

yt = �+
SP
h=1

AhÊ
h
t yt+1 +Bwt; (5.10)

wt = Fwt�1 + vt; (5.11)

where yt is an n � 1 vector of endogenous variables, wt is a k � 1 vector of exogenous

variables, vt is white noise, Êht yt+1 are (in general, non-rational) expectations of the en-

dogenous variable by agent type h, Mw = limt!1wtw
0
t is positive de�nite, and F is such

that wt follows a stationary VAR process.

The PLM is presented by (5.6). Part of agent types, h = 1; S0, is assumed to

use the RLS learning algorithm, while the rest, h = S0 + 1; S, are assumed to use the SG

learning algorithm.10 Moreover, all of them are assumed to use possibly di¤erent degrees

of responsiveness to the updating function that are presented by di¤erent degrees of inertia

�i > 0, constant coe¢ cients before the common for all agents decreasing gain sequence in

the learning algorithm.11

10Essentially, the part of agents using RLS are assumed to be more sophisticated in their learning,
because from the econometric point of view, the RLS algorithm is more e¢ cient since it uses information
on the second moments.
11Honkapohja and Mitra [43] use a more general formulation of degrees of inertia.
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It is worth noting that the model (5.4) and (5.3) that we consider belongs to the

subclass of models considered by Honkapohja and Mitra [43], namely, a class of structurally

homogeneous forward looking models. Structural heterogeneity in the setup of Honkapohja

and Mitra [43] is expressed through matrices Ah, which are assumed to incorporate mass

�h of each agent type. That is, Ah = �h � Âh, where Âh is de�ned as describing how agents

of type h respond to their forecasts. So these are the structural parameters characterizing

a given economy. Those may be basic characteristics of agents, like the ones describing

their preferences, endowments, and technology. Structural heterogeneity means that all

Âh�s are di¤erent for di¤erent types of agents. When Âh = A and
P
�h = 1; the economy

is structurally homogenous.

When we apply conditions for a structurally homogeneous economy, Ah = �hA,

where
SX
h=1

�h = 1, and 1 > �h > 0; to the model (5.10) and (5.11) considered by Honkapo-

hja and Mitra [43], we get

yt = �+
SX
h=1

AhÊ
h
t yt+1 +Bwt = �+

SX
h=1

�hAÊ
h
t yt+1 +Bwt =

= �+A

SX
h=1

�hÊ
i
tyt+1| {z }

Êavert yt+1

+Bwt,

which is exactly the formulation of the structurally homogeneous model considered by

Giannitsarou [37].12 Thus conditions for stability valid for the (more general) class of

structurally heterogeneous forward�looking models remain valid for the class of struc-

turally homogeneous models.

After denoting zt = (1; wt) and �h;t = (ah;t;�h;t); the formal presentation of the

learning algorithms in this model can be written as follows.

RLS: for h = 1; S0

�h;t+1 = �h;t + �h;t+1R
�1
h;tzt

�
yt � �0h;tzt

�0 (5.12)

Rh;t+1 = Rh;t + �h;t+1
�
zt�1z

0
t�1 �Rh;t

�
12Heterogeneous learning in the structurally homogeneous case was considered by Giannitsarou [37]

for a more general class of self�referential linear stochastic models, which includes in itself the case of
forward�looking models. Since our setup does not assume lagged endogenous variables, we concentrate on
the structurally homogeneous case of forward�looking models that are a subclass of models considered by
Giannitsarou [37] and at the same time are a special case of the setup of Honkapohja and Mitra [43].
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SG: for h = S0 + 1; S

�h;t+1 = �h;t + �h;t+1zt
�
yt � �0h;tzt

�0 (5.13)

Honkapohja and Mitra [43] show that stability of the REE, �t, in this model is determined

by stability of the ODE13:

d�h
d�

= �h
�
T (�0)0 � �h

�
; h = 1; S0

d�h
d�

= �hMz

�
T (�0)0 � �h

�
; h = S0 + 1; S,

where Mz = limt!1Eztz
0
t.

The conditions for stability of this ODE give the general criterion for stability

result for this class of models presented in Proposition 5 in Honkapohja and Mitra [43]. In

the economy (5.10) and (5.11), the mixed RLS/SG learning (5.12) and (5.13) converges

globally (almost surely) to the minimal state variable (MSV) solution if and only if matrices

D1
 and Dw
F have eigenvalues with negative real parts, where

D1 =

0BBB@
�1In � � � 0
...

. . .
...

0 � � � �SIn

1CCCA ;
 =

0BBB@
A1 � In � � � AS

...
. . .

...

A1 � � � AS � In

1CCCA (5.14)

Dw =

0BBB@
Dw1 � � � 0
...

. . .
...

0 � � � DwS

1CCCA ;
Dwh = �hInk; h = 1; S0

Dwh = �h (Mw 
 In) ; h = S0 + 1; S


F =

0BBB@
F 0 
A1 � Ink � � � F 0 
AS

...
. . .

...

F 0 
A1 � � � F 0 
AS � Ink

1CCCA ;

with 
 denoting the Kronecker product.

Note, that agents in the setup of Honkapohja and Mitra [43] are assumed to use

PLMs that correspond to the so-called MSV solution, i.e., include all factors that appear

in the right hand side of the reduced form. However, Honkapohja and Mitra [43] in their

proof of conditions for stability of the system do not have restrictions on the matrix B:

13In the general case, to obtain the associated ODE, one has to take the math expectation of the RHS
term (at the gain sequence) from the stochastic recursive algorithm (SRA) speci�cation of a learning algo-
rithm, with respect to the limiting distribution of the state vector. See Ch. 6.2 in Evans and Honkapohja
[29] for assumptions on the learning rule and state dynamics that have to hold so that we are able to apply
the theory on SRA and local convergence analysis and the general formula for ODE (6.5) on p. 126.
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This means that we may, in principle, consider additional factors in learning that enter

the reduced form with zero coe¢ cients in matrix B for all agents. This means that we

may consider the criterion conditions for all possible PLMs that include (among others)

all factors that appear in the right hand side of the reduced form, satisfying conditions for

existence speci�ed in the previous chapter.

Kolyuzhnov [51] shows that in the "diagonal" environment, namely

F = diag(�1; :::; �k);Mw = diag

�
�21

1� �21
; :::;

�2k
1� �2k

�
; (5.15)

which we consider in this paper, the problem of �nding stability conditions for both D1


and Dw
F is simpli�ed to �nding stability conditions for D1
 and D1
�l;where 
�l is

obtained from 
 by substituting all Ah with �lAh, where j�lj < 1 as wt follows a stationary

VAR(1) process.


�l =

0BBB@
�lA1 � In � � � �lAS

...
. . .

...

�lA1 � � � �lAS � In

1CCCA ;8l = 0; :::; k; (�0 = 1): (5.16)

Kolyuzhnov [51] uses a special blocked� diagonal structure of matrix D1; which

is the feature of the dynamic environment in this class of models. In a sense, these

positive diagonal D�matrices may now be called positive blocked� diagonal ��matrices.

This makes it possible to formulate the concept of ��stability by analogy to the terminology

of the concept of D�stability about matrices that remain stable under multiplication by a

diagonal matrix with positive elements, studied for example in Johnson [44].

De�nition 5.2 Given n; the number of endogenous variables, and S, the number of agent

types, ��stability is de�ned as stability of the economy under structurally heterogeneous

mixed RLS/SG learning for any (possibly di¤erent) degrees of inertia of agents, � > 0.

��stability, thus formulated, has the same meaning in models with heterogeneous

learning described above as has the E�stability condition in models with homogeneous

RLS learning. The E�stability condition is a condition for asymptotic stability of an

REE under homogeneous RLS learning. The REE of the model is stable if it is locally

asymptotically stable under the following ODE:

d�

d�
= T (�)� �,



138

where � are the estimated parameters from agents PLMs, T (�) is a mapping of the PLM

parameters into the parameters of the actual law of motion (ALM), which is obtained

when we plug the forecast functions based on the agents�PLMs into the reduced form of

the model, and � is a "notional" ("arti�cial") time. The �xed point of this ODE is the

REE of the model.14

Note that the ��stability concept comprises stability under the three types of

heterogeneous learning considered by Giannitsarou [37]. It is worth noting that in the

case of heterogeneous learning in a structurally homogeneous economy, which we employ

in the current setup, the criterion of Honkapohja and Mitra [43] is simpli�ed to conditions

on the Jacobians considered by Giannitsarou [37]. First, as has been discussed before,

to get the structurally homogeneous economy as discussed before, one has to replace Ai

in the setup of Honkapohja and Mitra [43] with �iA. After that, one has to make the

following simpli�cations in the setup corresponding to a particular type of heterogeneous

learning considered.

The �rst type of heterogeneous learning is characterized by di¤erent initial per-

ceptions of agents and equal degrees of inertia. This type is termed transiently hetero-

geneous learning by Honkapohja and Mitra [43]. The condition for stability under this

learning is easily derived from the criterion above by setting all ��s to be equal, and setting

S0 to S or to 0 in order to get transiently heterogeneous RLS or SG learning, respectively.

The second type of heterogeneous learning considered by Giannitsarou [37] is

such that agents use di¤erent degrees of inertia and the same type of learning algorithm

(RLS or SG). This is what Honkapohja and Mitra [43] call persistently heterogeneous

learning in a weak form. The Jacobians for this case are easily derived by setting S0 to S

or to 0 in order to get heterogeneous RLS or SG learning, respectively, and allowing for

possibly di¤erent ��s.

The third type of heterogeneous learning considered by Giannitsarou [37] is char-

acterized by possibly di¤erent initial perceptions, possibly di¤erent degrees of inertia, and

by di¤erent agents using di¤erent learning algorithms (RLS or SG). Such kind of learning

14Notice that ��stability conditions on the Jacobian in the general forward�looking model of Honkapohja
and Mitra [43] do not depend on the particular equilibrium point (in case of multiple equilibria), because
the system of di¤erential equations is linear in this setup, in which case the �rst derivatives of the RHS
of the associated ODE do not depend on a particular value of a RE equilibrium. So if stability conditions
are satis�ed for a given Jacobian, then all equilibrium points are stable. Convergence to a particular point
depends on the initial conditions. In this paper we do not consider how equilibrium selection is made.
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Type of heterogeneity Type of learning Assumptions in the general
H&M (2006) model

structurally structurally
heterogeneous homogeneous
Ah = �hÂh Ah = �hA

I Di¤erent initial perceptions RLS �h = � for all h, S0 = S
(transiently heterogeneous SG �h = � for all h, S0 = 0
learning)
II Di¤erent degrees of inertia RLS S0 = S
(persistently heterogeneous SG S0 = 0
learning in a weak form)
III Di¤erent learning algorithms RLS and SG
(persistently heterogeneous
learning in a strong form)

Table 5.1: Types of heterogeneity in learning.

Honkapohja and Mitra [43] call persistently heterogeneous learning in a strong form. The

stability Jacobians for this case are derived by writing the general criterion for stability

for the structurally homogeneous case, i.e., by setting Ai = �iA.

The relation between the above�described formulations of the types of heteroge-

neous learning by Giannitsarou [37] and by Honkapohja and Mitra [43] can be conveniently

summarized in the following table15:

Notice that in the "diagonal" case (5.15), ��stability does not depend on S0.

Thus if the economy (5.10), (5.11) and (5.15) is ��stable, it is stable under all three types

of heterogeneous learning and under RLS and SG homogeneous learning.

15Note that there is one type of heterogeneous learning that was not introduced by Giannitsarou [37]
and is introduced here. It is heterogeneity in degrees of inertia under which all types of agents use the SG
learning algorithm. Although Honkapohja and Mitra [43] have the general criterion for stability in this
case (as discussed above), their formulation includes only forward�looking models. In the general setup of
self-referential structurally homogeneous models of Giannitsarou [37], the stability conditions under such
type of learning (in Giannitsarou [37] notation, naturally extended from her proofs) would depend on
the stability of matrix JSG2 (�f ) = diag (�1; :::; �S) 
 I 
M (�f ) J

LS
1 (�f ), where �f is an REE, M (�f )

is de�ned similarly to Mz and JLS1 (�f ) is a Jacobian that de�nes stability in case of the �rst type of
heterogeneity (di¤erent initial perceptions of agents) when all agents use RLS learning. For details, see
Giannitsarou [37] . Again, it is clear that in the forward�looking case these conditions for stability fall
under the general stability criterion of Honkapohja and Mitra [43] with S0 = 0 (see the table above).



140

5.4 Conditions for ��stability of Structurally Homogeneous

Models

After establishing the universal role of the concept of ��stability for stability

under all three types of heterogeneous learning discussed above, we present necessary and

su¢ cient conditions. First, we provide the reader with a set of su¢ cient conditions for

��stability applicable to our setup, that is, for a class of structurally homogeneous models.

We present (without proofs) the so�called aggregate economy su¢ cient condition for the

case of a structurally homogeneous model and the "same sign" su¢ cient condition for the

case of a structurally heterogeneous bivariate economy that were derived in Kolyuzhnov

[51]

Proposition 5.3 For the structurally homogeneous economy (5.4) and (5.3) to be ��

stable, it is su¢ cient that at least one of the following maximal aggregated ��coe¢ cients

(which are the coe¢ cients before the expectation term of a one�dimensional forward�

looking aggregate economy model. For details see Kolyuzhnov [51]): max
i

X
j

jaij j and

max
j

X
i

jaij j are less than one, where aij denotes an element in the ith row and the jth

column of A.

Proposition 5.4 In case n = 2, the economy (5.10), (5.11) and (5.15) is ��stable if

the corresponding matrix 
, de�ned in (5.14), is stable and the following "same sign"

condition holds true:

det (��lAi) � 0; [detmix (��lAi;��lAj) + detmix (��lAj ;��lAi)] � 0; i 6= j;M1(��lAi) � 0

or

det (��lAi) � 0; [detmix (��lAi;��lAj) + detmix (��lAj ;��lAi)] � 0; i 6= j;M1(��lAi) � 0;

8l = 0; 1; :::; k; (�0 = 1);

where mix (��lAi;��lAj) denotes a matrix of structural parameters of a pairwise�mixed

economy and is composed by mixing columns of a pair of matrices �lAi; �lAj, for any i;

j = 1; S.

It is also possible to derive some necessary conditions and su¢ cient conditions

of ��stability in the structurally homogeneous case in terms of the values of eigenvalues
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of the matrix of structural parameters of the reduced form, A. It is possible by the direct

application of the characteristic equation approach, when one requires that all the roots of

the polynomial (that are eigenvalues of the Jacobian matrix) be less than zero for stability,

the latter being equivalent to the well-known Routh�Hurwitz conditions.

Proposition 5.5 If all eigenvalues of A are real and less than one, then the structurally

homogeneous system (5.4) and (5.3) with two agents is ��stable, that is, stable under the

three types of heterogeneous learning: agents with di¤erent initial perceptions with RLS or

SG learning, agents with possibly di¤erent degrees of inertia with RLS or SG learning, and

agents with di¤erent learning algorithms, RLS and SG. For the structurally homogeneous

system (5.4) and (5.3) with any number of agents to be ��stable, it is necessary that all

real roots of A be less than one. This gives a test for non���stability.

Proof. See Appendix C.1. �

In the proof of the proposition above, using the structure of the Jacobian matrices

in our setup, we have derived a su¢ cient condition for stability under all three types of

heterogeneous learning with two agent types. We did this using the criterion for stability

of Honkapohja and Mitra [43]. For the case of real roots of A, we have shown that in this

setup, the analysis of stability of a particular Jacobian turns into the analysis of stability

of A, which gives us very simple eigenvalues conditions. Also, using the general criterion

of Honkapohja and Mitra [43], we have proved here the necessary conditions for ��stability

(the failure of which is su¢ cient for non���stability) for the case of an arbitrary number

of agent types.

5.5 Optimal Policy Rules and the Structure of the Reduced

Forms

After deriving and stating the conditions for stability under the three types of

heterogeneous learning discussed in the previous section, we are ready to study the general

New Keynesian model (5.1), (5.2) and (5.3) for stability under heterogenous learning when

optimal monetary policy rules are applied. Here we describe the types of optimal policy

rules that are analyzed in this study.
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The policy maker is assumed to use the loss function minimization problem,

which comes from the �exible in�ation targeting approach (a policy regime adopted in

several countries in the 1990s), described and defended by Svensson [62]. The central

bank here has two options: adopt a discretionary policy, by solving the problem every

period, or commit to a rule which is once and for all derived from the minimization of the

in�nite horizon loss function. Svensson [62] and Cecchetti [14] advocate the �rst option,

which is essentially commitment to a certain behavior (minimizing the loss function) with

reconsidering the optimal rule every period, so that to take into account new information.

They provide various arguments, like ine¢ ciency (in general) of instrument rules designed

to respond only to target variables or the way monetary policy decisions are made in

practice.

The in�nite horizon loss function of the policy maker for the �exible in�ation

targeting approach looks as follows.

1

2
Et

1X
i=0

�i
h
� (xt+i � �x)2 + (�t+i � ��)2

i
According to the discussion above, we assume the discretionary policy of the policy maker

and the problem of minimizing the loss function simpli�es to solving each period

min
1

2

h
� (xt � �x)2 + (�t � ��)2

i
+Rt (5.17)

subject to

�t = c2 + �xt + Ft

(the central bank takes the remainder terms of the loss function Rt; and the constraint

Ft = � bEt�t+1 + �2wt as given).
The classi�cation below of the loss�function�optimization�based rules into fundamentals�

based and expectations�based rules provided below is due to Evans and Honkapohja [31].

The derivation of these rules and the corresponding reduced forms is done by Evans and

Honkapohja [31] for a slightly more narrow setup than is assumed here (we assume gen-

eral structure of autoregressive shocks), therefore in the derivations that follow below we

basically repeat their steps extending them for our setup.

5.5.1 Expectations�based Optimal Policy Rules

The expectations�based policy rule implies the central bank�s reaction to (pos-

sibly non-rational) expectations of private agents, assuming that these expectations are
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observable (or can be estimated). Its general form is it = �0+��Êt�t+1+�xÊtxt+1+�
0
wwt:

The coe¢ cients of this rule are obtained by solving the equilibrium conditions: struc-

tural equations with non�rational expectations of private agents (5.1) and (5.2) and the

�rst order conditions (FOC) of the optimization problem of the central bank (5.17),

� (�t � ��) + � (xt � �x) = 0. Thus, the expectations�based policy rule looks as follows:

it = �0 + ��Êt�t+1 + �xÊtxt+1 + �
0
wwt, where (5.18)

�0 = �
�
�2 + �

��1
��1

�
��� + ��x� �c2 �

�
�+ �2

�
c1
�
,

�� = 1 +
�
�2 + �

��1
��1��, �x = ��1, �w = ��1�1 +

�
�2 + �

��1
��1��2

After plugging this policy rule into the IS curve equation, we get the following

reduced form.

yt = cE +AEÊtyt+1 + �
Ewt,

wt = Fwt�1 + �t,

yt =
h
�t xt

i0
, where F = diag(�i), j�ij < 1; �it � iid

�
0; �2i

�
; i = 1; n,

AE =

0@ ��
�
�2 + �

��1
0

���
�
�2 + �

��1
0

1A , (5.19)

cE =

0@ c2 + � (c1 � ��0)
c1 � ��0

1A , �E =
0@ �02

h
1� �2

�2+�

i
� �2

�2+�
�02

1A
Note that the REE solution is not needed either for deriving matrix AE , or for

deriving the coe¢ cients of the optimal expectations�based policy rule. The REE solution

will be needed for deriving the optimal fundamentals�based policy rule, and therefore will

be derived in the corresponding part of the text.

5.5.2 Fundamentals�based Optimal Policy Rules

In general, the fundamentals�based policy rule (not necessarily optimal) has the

form

it =  0 +

nX
i=1

 wiwit =  0 +  
0
wwt (5.20)

Later we show that there exists a unique fundamentals�based optimal policy rule in this

setup and derive this rule.
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Plugging this policy rule into the structural form (5.1) and (5.2), we get the

following reduced form:

yt = cF +AF bEtyt+1 + �Fwt,
wt = Fwt�1 + �t,

yt =
h
�t xt

i0
, where F = diag(�i), j�ij < 1; �it � iid

�
0; �2i

�
; i = 1; n,

AF =

0@ � + �� �

� 1

1A ; (5.21)

cF =

0@ c1 � � 0
c2 + � (c1 � � 0)

1A ; �F =

0@ �
�
�� 0w + �01

�
+ �02

�� 0w + �01

1A :

The optimal fundamentals�based rule, under the central banks� discretionary

policy, is obtained from the loss function minimization, with the central bank assuming

that private agents have RE. With the REE structure being yt = a+�wt, its general form

is it =  0+ 
0
wwt, where wt is a vector of exogenous variables. Using the equilibrium con-

ditions (economy�s structural equations (5.1) and (5.2), with the REE structure entering

them and the FOC of the central bank�s optimization problem), we obtain the coe¢ cients

of the REE and of the optimal fundamentals�based policy rule.

To get the REE, one has to write the ALM using the Phillips curve (5.2), the FOC

of the central bank�s optimization problem and the PLM in the general form, yt = a+�wt,

and then according to the RE principle, equate coe¢ cients of the resulting ALM (T�

mapping) with the corresponding coe¢ cients of the PLM. The resulting ALM looks like

�t =
c2 + � [��� + ��x]

�2 + �
+

��

�2 + �
[a1 + 
11�1w1t + :::+ 
1n�nwnt] +

�

�2 + �
�02wt

xt =
��� + ��x

�
� �

�
�t

and the REE looks like

�t = a�1 +
nX
i=1


�1iwit (5.22)

xt = a�2 +
nX
i=1


�2iwit, where

a�1 =
c2 + � [��� + ��x]

�2 + � (1� �)
; a�2 =

��� + ��x

�
� �

�
a�1 =

��
�c2 + (1� �) [��� + ��x]

�2 + � (1� �)
,


�1i =
��2i�i

� (1� ��i) + �2
; 
�2i = �

�

�

�1i = �

��2i�i
� (1� ��i) + �2

; i = 1; n:
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To get the optimal fundamentals�based policy rule, one has to express it using

the IS curve (5.1), plugging in it the REE solution (5.22) derived above.

it = �
1

�

 
a�2 +

nX
i=1


�2iwit

!
+

 
a�1 +

nX
i=1


�1i�iwit

!
+
1

�

 
a�2 +

nX
i=1


�2i�iwit

!
+
1

�
�01wt

As a result, the optimal fundamentals�based policy rule looks like

it =  �0 +  
�0
wwt, where (5.23)

 �0 = a�1,  
�
w =

1

�

h�

21 (�1 � 1) : : : 
2n (�n � 1)

�
+ �1

i
+
�

11�1 : : : 
1n�n

�
.

In both cases of optimal monetary policy rules, we plug the corresponding policy

rule into the structural equations and obtain the corresponding reduced form of the model.

These reduced forms were studied for stability under homogeneous RLS learning in the

Clarida, Gali, and Gertler [19, 20] formulation of the New Keynesian model by Evans and

Honkapohja [31] , who derived the stability results for the expectations�based rule and

the instability results for the fundamentals�based rule. We study stability and instability

for the two categories of rules under the heterogeneous learning of private agents in the

general setup of the New Keynesian model (5.1), (5.2) and (5.3).

5.6 Stability Problem in the New Keynesian Model

After deriving the reduced forms corresponding to the optimal monetary pol-

icy rules, we are ready to check them for ��stability. To do this we have to test the

resulting matrix A of the reduced form (5.19) or (5.21) for the applicability of the su¢ cient

and necessary conditions for ��stability. For the situation of the optimal expectations�

based policy rule we have the following result.

Proposition 5.6 The general New Keynesian model with a stationary AR(1) observable

shocks process (5.1), (5.2) and (5.3) is ��stable when the optimal expectations�based policy

rule (5.18) is applied.16

Proof. We know that the corresponding A matrix in the optimal expectations�based

policy rule case is AE =

0@ ��
�
�2 + �

��1
0

���
�
�2 + �

��1
0

1A. Using the su¢ cient condition in

16This result is not very surprising as Evans, Honkapohja, and Williams [32] have a convergence result
under the optimal expectations�based policy rule when all agents use SG learning.
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Proposition 5.4, we have that 
 is stable, since its eigenvalues are determined from the

following characteristic equation det
�
AE � I2 (1 + �)

�
(1 + �)2(S�1) = 0 and therefore, are

equal to �1 and ��
�
�2 + �

��1 � 1, i. e., are negative, and we have that det (��lAi) = 0;
[detmix (��lAi;��lAj) + detmix (��lAj ;��lAi)] = 0; i 6= j; M1(��lAi) = ��l�h��

�
�2 + �

��1 �
(�) 0;for all l = 0; 1; :::; k (�0 = 1), so the "same sign" condition holds true. Notice

that using the "aggregate economy" su¢ cient condition from Proposition 5.3, we can

write two aggregate ��coe¢ cients in the expectations�based policy rule case. These are

�max1 = max
i

X
j

jaij j = max
n
��
�
�2 + �

��1
; ��

�
�2 + �

��1o
and �max2 = max

j

X
i

jaij j =

� (�+ �)
�
�2 + �

��1
. It is clear that both coe¢ cients are less than one if � � 1. So,

the "aggregate economy" su¢ cient condition for ��stability is a more restrictive condition

compared to the "same sign" condition since it requires additional assumptions on the

structure of the economy. However, it can be with success applied in more than two di-

mensional economies where similar "same sign" conditions are not su¢ cient for ��stability

(see Kolyuzhnov [51]). �

Note that Evans and Honkapohja [31] have a similar result for homogeneous

learning. The proposition below presents the instability result for the situation of the

fundamentals�based monetary policy rule.

Proposition 5.7 The general New Keynesian model with a stationary AR(1) observable

shocks process (5.1), (5.2) and (5.3) is non���stable when the fundamentals�based policy

rule (5.20) (as well as the optimal fundamentals�based policy rule (5.23)) is applied.

Proof. We know that the corresponding matrix A in the fundamentals�based policy rule

case is AF =

0@ � + �� �

� 1

1A. Using the "eigenvalues" necessary condition from Proposi-

tion 5.5,17 we get the eigenvalues of this matrix:.�1;2 = 1 +
�+���1

2 �
r�

�+���1
2

�2
+ ��.

Both of these eigenvalues are real and eigenvalue �1 = 1+
�+���1

2 +

r�
�+���1

2

�2
+ �� is

greater than one. So, the su¢ cient condition for non���stability is satis�ed. �

Again, Evans and Honkapohja [31] have a similar result for homogeneous learning.

17In principle, we could also use our necessary conditions for ��stability (derived in Kolyuzhnov [51]) to
show the instability of the fundamentals�based rule. However, these may be more di¢ cult to check than
the necessary conditions on eigenvalues that we derived in this paper. Besides, our eigenvalues necessary
conditions work for the case of an arbitrary number of agent types.
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Proposition 5.6 means that the REE in this model, resulting after implementing

the optimal expectations�based policy rule, is stable under the recursive least squares

and the stochastic gradient homogeneous learning and the three types of heterogeneous

learning: agents with di¤erent initial perceptions with the RLS or SG learning, agents with

di¤erent degrees of inertia with RLS or SG learning, and agents with di¤erent learning

algorithms, RLS and SG. Proposition 5.7 claims that the REE of this model with the

fundamentals�based policy rule is always unstable under any type of heterogeneous and

homogeneous learning of agents.

5.7 Conclusion

We have used the environment of the New Keynesian model to explore the ques-

tion of stability of two categories of optimal monetary policy rules under the assumption

of heterogeneous learning of private agents.

These two categories were introduced by Evans and Honkapohja [31], and this

division is based on the assumption about the central bank�s perception of private agents�

expectations: RE or possibly non-rational. Under the central bank assuming private agents

to have RE, the fundamentals�based rule is obtained, while the case of the central bank

assuming possibly non-rational expectations of private agents results in the fundamentals�

based rule.

The purpose of this research was, on the one hand, to explore whether, given

structural homogeneity of the model, heterogeneity in learning of agents in�uences the

stability results implied by the application of either of the two categories of policy rules.

Using the general criterion for stability of Honkapohja and Mitra [43] and the

su¢ cient ��stability conditions derived in Kolyuzhnov [51] for the case of heterogeneous

learning, we obtain results similar to those obtained by Evans and Honkapohja [31] for

the case of homogeneous learning. In particular, under the fundamentals�based policy

rule, the model economy is always unstable, so there is no convergence to the associated

REE of the model, while there is stability under the optimal expectations�based rule and

the economy converges to the REE corresponding to the optimal monetary policy without

commitment.

The above�described results have been obtained using only the structure of the

model, so there is no dependence on heterogeneity of any type considered. This implies
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that in the New Keynesian model, the stability results are independent of heterogeneity

in learning, so the representative agent hypothesis is applicable in this setup.

The method of analysis presented in this paper allows us to check the applica-

bility of this hypothesis in the case of heterogeneous leaning of private agents in the New

Keynesian economy under Taylor�type rules (the case of internal central bank forecast-

ing), which do not fall under the classi�cation of Evans and Honkapohja [31]. This issue

will be considered in a separate study.
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Chapter 6

Afterword

My thesis makes a contribution to the economic literature on adaptive learning,

in particular, to the areas of escape dynamics and heterogeneous learning. In the �eld of

escape dynamics, I (together with Anna Bogomolova and Sergey Slobodyan) have devel-

oped a new way of calculating escape dynamics characteristics using the continuous�time

approximation of the original discrete�time dynamics of the model, thus resolving the

theoretical and computational problems associated with the discrete�time approach con-

sidered in CWS. The developed approach is presented in the �rst chapter of the thesis.

The second chapter compares the behavior of the RLS and SG algorithms with constant

gain in terms of dynamics (namely, mean and escape dynamics) under learning around

the point of SCE and shows that the behavior of these learning algorithms substantially

di¤ers in terms of escape dynamics.

The third and fourth chapters make a contribution to the area of heterogeneous

learning. In the third chapter I have derived conditions for stability of a structurally het-

erogeneous economy under heterogeneous learning in the form of mixed RLS/SG learning

with (possibly) di¤erent degrees of inertia of agents. These conditions have strong the-

oretical and practical implementation. In terms of the theory, it is shown that these

conditions are formulated using such theoretically reasonable concepts like an aggregate

economy and a subeconomy and relate the concept of stability under homogeneous learn-

ing (E�stability) to the concept of stability under heterogeneous learning (��stability).

From the practical point of view, it is shown, on an example of two types of OLG models,

that it is very easy to test an economy for stability under heterogeneous learning using

the conditions derived in this chapter.
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In the fourth chapter, using the results on ��stability derived in the third paper, I

(together with Anna Bogomolova) show that the fundamentals based monetary policy rule

is unstable and optimal expectations based monetary policy rule is stable in the general

setup of the New Keynesian model under any type of heterogeneous private agents learning

considered by Giannitsarou [37], thus extending the result of Evans and Honkapohja [31]

derived for the case of representative private agent (homogeneous) learning.

The directions for future contributions are promising and follow directly from

the previous contribution. One of the possible directions in the area of escape dynamics is

to consider the case of mixed RLS/SG learning with constant gain in the Phelps problem

considered in the �rst chapter in order to see what the resulting dynamics is1. Another

direction in this area is to apply the developed continuous�time approach to another

model. In this sense, one has to look for economically sensible models with better averaging

(compared to the Phelps problem) for economically plausible gain values in order to apply

the large deviations theory characteristics of escape time.

In particular, the large deviations theory analysis can be applied in models where

one may observe new data and learn almost continuously due to an almost continuous data

�ow. Such a situation is typical for �nancial markets and currency exchange rates. For

example, the continuous�time approach can be applied to the model of Aghion, Baccheta

and Banerjee [1] of currency crises with the government and the public sector learning

that was introduced into this model by Cho and Kasa [15], in which it is not possible

to analytically characterize escape dynamics using the discrete�time approach due to its

computational intensity. Cho and Kasa [15] used the continuous�time approximation

derived in the �rst chapter of this thesis to qualitatively explain the dynamics in their

model with two-sided learning. It could be also of interest to apply the continuous�time

approach to the extension of the Sargent [61] model, i.e., to the case of the Dynamic

Phillips Curve.

In the area of heterogenous learning of agents, the direction of my nearest future

research (besides other directions that include stability of cycles and sunspot equilibria

under heterogeneous learning) is to apply the derived conditions to study Taylor rules for

stability under heterogeneous learning. Moreover, it is possible to consider a more general

case of the internal central bank forecasting (that includes Taylor rules) in a situation

1The author thanks Kaushik Mitra for suggesting this direction of research.
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of heterogeneous learning of private agents that develops the model of Honkapohja and

Mitra [42], as Honkapohja and Mitra [42] consider only the situation of a representative

private agent.
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A.1 Large deviations theory

De�nition A.1 Action functional for di¤usion d't = A'tdt +
p
�BdWt is de�ned

as

I0T (') = infn �
't=A't+B

�
gt
o12 R T0 ��� �gt���2 dt (see Dembo and Zeitouni [22, p. 214]).

The results on the mean exit time and dominant escape point are given in Dembo

and Zeitouni [22, Theorem 5.7.11].

Consider the system dx"t = b (x"t ) dt+
p
�� (x"t ) dWt; x

"
t 2 Rd; x"0 = x:

Assumption A.1 The unique stable equilibrium point in D (open, bounded domain) of

the d-dimensional ODE
�
xt = b (xt) is at O 2 D and x0 2 D =) 8t > 0; xt 2 D and

lim
t�!1

xt = O.

Assumption A.2 All the trajectories of the deterministic ODE
�
xt = b (xt) starting at

x0 2 @D converge to O as t �!1.

Assumption A3 I
def
= inf

y2@D
I (O; y) <1.

Assumption A.4 There exists an M <1 such that for all � > 0 small enough and all

x; y with jx� zj+ jy � zj � � for some z 2 @D[fOg, there is a function u satisfying that

jjujj < M and 'T (�) = y, where 't = x+
R t
0 b ('s) ds+

R t
0 � ('s)usds and T (�) �! 0 as

� �! 0.

De�nition A.2 � "
def
= inf ft > 0: x"t 2 @Dg :

Theorem A.1 (Dembo and Zeitouni [22, Theorem 5.7.11]) Assume A.1�A.4. (a) For

all x 2 D and all � > 0, lim
"�!0

Px

�
e(I+�)=" > � " > e(I��)="

�
= 1. Moreover, for all x,

lim
"�!0

" lnEx (�
") = I. (b) If N � @D is a closed set and inf

z2N
I (O; z) > I; then for

any x 2 D, lim
"�!0

Px
�
x"�" 2 N

�
= 0. In particular, if there exists z� 2 @D such that

I (O; z�) < I (O; z) for all z 6= z�; z 2 @D , then 8� > 0;8x 2 D; lim
"�!0

Px
���x"�" � z���� = 1.

Part a) of the theorem characterizes the escape probability and the mean escape

time, and part b) gives the dominant escape point.



162

A.2 Minimizing the action functional

We need to solve the problem

min
1

2

Z T

0
kutk2 dt;

subject to

�
't = A't +But;

'(0) = 0; '(T ) 2 @D

We know that matrix B is singular, and therefore, the system (A;B) is not reachable. Such

systems are usually converted into the standard form as follows.1 Change the coordinates

so that ' = Tz:

z = T�1' =

24 z1

z2

35 ;
where dimension of z1 is r; a dimension of the reachable subspace. In the new coordinates,

we get

T
�
z = ATz +Bu; or

�
z = T�1AT| {z }

�A

z + T�1B| {z }
�B

u:

The matrix T is constructed as [T1 jT2 ] ; where T1 consists of columns that form the basis

of the reachable subspace. (It is convenient to select columns of T to be the [orthonormal]

basis of Gramian G in the initial problem. T1 are the columns corresponding to the

nonzero eigenvalues of G; therefore, they constitute the basis of reachable subspace.)

Columns of T2 form the (orthonormal) basis of the complement to the reachable subspace.

By construction, matrix T is invertible.

Let us �nd the structure of �A and �B. Look at AT = A [T1 jT2 ] = [T1 jT2 ]A:

Reachable space is invariant for all controls including u = 0; therefore, the range of

[T1 jT2 ]A should not include vectors from T2: This could be achieved if

A =

24 A1 A12

0 A2

35 :
Similarly, no control should push the system out of reachable subspace; this means that

B = [T1 jT2 ]B = [T1 jT2 ]

24 B1

0

35 :
1See details in Dahleh, Dahleh, and Verghese [21] and Boyd [8].
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With this, we can now write our system as

�
z = T�1ATz + T�1Bu =

24 A1 A12

0 A2

3524 z1

z2

35+
24 B1

0

35u:
As we are interested in the movement from initial point z(0) = 0; unreachable dimensions

z2 cannot in�uence dynamics of z1 :

�
z1 = A1z1 +B1u:

This system is called a reachable subsystem of the original one.

Let us �nd �A1 and �B1. T�1AT = �A, or

24 T 01

T 02

35 [A] [T1 jT2 ] =
24 A1 A12

0 A2

35.
Therefore, T 01AT1 = A1. For B1; T�1B = �B )

24 T 01

T 02

35B =
24 B1

0

35 =) T 01B = B1.

In the new variables our problems transform into

min I0T =
1

2

Z T

0
kutk2 dt;

subject to

�
z1 = A1z1 +B1u;

z1(0) = 0; T1z1 (T ) 2 @D:

(Note that z2 stays zero under our dynamics; therefore, Tz = [T1 jT2 ]

24 z1

0

35 = T1z1).

This problem is easily solved as the system
�
A1; B1

�
is reachable by construction.

The standard result is that I = 1
2z
T
1;des � G

�1 � z1;des, where G is Gramian in the reduced

problem, given as a solution of the matrix Lyapunov equation A1G + GA
0
1 + B1B

0
1 = 0

and T1z1;des 2 @D.

In the case when the set @D is the surface of the cylinder � a sphere of radius

R in 
 space,k
k = R; and no binding restrictions in space of components of R � the

problem of minimizing the action functional becomes

min
1

2
zT1 �G

�1 � z1;

s. t.
�
I627T 1z1

�T � �I627T 1z1� = R2;

where I627 is 27�27zero matrix 6�6 identity matrix in the upper left corner. After de�ning

v = G
�1=2 � z1, it is straightforward to get solution 'des = � R

�1
T1G

1=2
�, where � is the
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unit eigenvector of matrix � = G
1=2
T
0
1T 1G

1=2
, corresponding to the largest eigenvalue;

(�1)
2. Note that if matrix � is block�diagonal, as in the static model, the eigenvector �

coincides with the �largest�eigenvector of G, and eigenvalue �1 coincides with the largest

eigenvalue of G.

For the problem when @D is given numerically, one has to �nd min
z12@D

1
2z
T
1 �G

�1 �z1:

All the points on the boundary are given parametrically by 2�dimensional function " (t),

where t is the index number of the point in (~
1; ~
2) space. Write Fz1 = " (t), where F

transforms 13 dimensions of z1 into 2�dimensional space (~
1; ~
2): De�ne v = G
� 1
2 z1: Then

the problem becomes

min
1

2
kvk2

s. t.

FG
1
2 v = " (t)

and the solution of this problem is

vt = pinv
�
FG

1
2

�
" (t) ; �t = argmin




pinv �FG 1
2

�
" (t)




 ;
" (�t) is the predicted point of escape in (~
1; ~
2) space. To transform this point into the

original 27�dimensional space of beliefs, use the following transformation:

z1�t = G
1
2 pinv

�
FG

1
2

�
" (�t) =) ' = T 01G

1
2 pinv

�
FG

1
2

�
" (�t) :

For the problem (disregarding the mean dynamics), we set A = 0 and using the

general result above, get I = 1
2z
T
1;des �G

�1 �z1;des: In this case G is de�ned for arbitrary time

T as G
�1
=
�
B1B

0
1

��1
1
T = (T

0
1BB

0T1)
�1 1

T = T1 (BB
0)�1 T 01

1
T = T1

�
�
�
��
���1

T 01
1
T ;where

T1 is the basis of spectral decomposition of �
�
��
�
; and in the same time the orthonormal

basis of the reachable subspace: For any T the solution of the problem on the cylinder is

expressed by the formula for escape out of the cylinder written above, where instead of G

one uses T1�
�
��
�
T 01. In the model of CWS the resulting direction almost coincides with

the eigenvector corresponding to the largest eigenvalue of �
�
��
�
.

A.3 Formula for the third way of deriving mean escape time

The third way of deriving escape dynamics characteristics is based on the �mod-

i�ed� continuous�time approximation without drift term d't =
p
��1=2(��)dWt. To �nd
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the projection of the process on the most probable direction of escape ~v1, the �largest�

eigenvector of �, we multiply the above expression by this eigenvector from the left. The re-

sulting di¤usion is d'projectiont =
p
��dWt, where � is the largest eigenvalue of �. Then we

use the formula for the mean exit time for one�dimensional Brownian motion in Karatzas

and Shreve [46, Eq. 5.62, p. 345]. For a process Yt = x+

Z t

0
� (Ys) dWs, the mean of exit

time Ta;b(x) = inf ft � 0;Yt =2 (a; b)g is expressed as ETa;b(x) =
Z b

a

(min(x;y)�a)(b�max(x;y))
b�a �

2dy
�2(y)

. In our case x, the starting point of the projection of the process of deviations from

the SCE, is zero, �(y) is replaced by
p
��, and the interval (a; b) is given by (�rad; rad),

where rad is the distance between the SCE and the point where the �largest�eigenvector

of � crosses the cylinder used in the �rst and third way of deriving escape dynamics.

After plugging these values into the expression for the mean exit time and evaluating the

integral, we get the formula for the mean escape time: E� " = rad2

�� .
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Appendix B

Appendix to Chapter 4
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Here I provide the reader with de�nitions and theorems adapted from math-

ematics literature that I used for deriving conditions for ��stability. These results are

structured according to the approach which is used for deriving stability conditions.

B.1 General de�nition of stability and D�stability of a ma-

trix

De�nition B.1 Matrix A is stable if all the solutions of the system of ordinary di¤erential

equations _x(t) = Ax(t) converge toward zero as t converges to in�nity.

Theorem B.1 Matrix A is stable if and only if all its eigenvalues have negative real

parts.

De�nition B.2 (D�stability) Matrix A is D�stable if DA is stable for any positive

diagonal matrix D.

B.2 Lyapunov theorem approach

Theorem B.2 (Lyapunov) A real n� n matrix A is a stable matrix if and only if there

exists a positive de�nite matrix H such that A0H +HA is negative de�nite.

Theorem B.3 (Arrow-McManus, 1958) Matrix A is D�stable if there exists a positive

diagonal matrix C such that A0C + CA is negative de�nite.

B.3 Negative diagonal dominance approach

De�nition B.3 (introduced by McKenzie) A real n� n matrix A is dominant diagonal

if there exist n real numbers dj > 0; j = 1; :::; n, such that dj jajj j >
P
dijaij j : i 6= j);

j = 1; : : : ; n This is called �column� diagonal dominance. �Row� diagonal dominance is

de�ned as the existence of di > 0 such that dijaiij >
P
dj jaij j : j 6= i); i = 1; : : : ; n.

Theorem B.4 (su¢ cient condition for stability, McKenzie, 1960): If an n � n matrix

A is dominant diagonal and its diagonal is composed of negative elements ( aii < 0, all

i = 1; : : : ; n), then the real parts of all its eigenvalues are negative, i.e., A is stable.
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Corollary B.1 If A has negative diagonal dominance, then it is D�stable.

B.4 Characteristic equation approach

Theorem B.5 (Routh-Hurwitz necessary and su¢ cient conditions for negativity of eigen-

values of a matrix) Consider the following characteristic equation

j�I �Aj= �n+b1�
n�1+:::+ bn�1�+ bn= 0

determining n eigenvalues � of a real n � n matrix A, where I is the identity matrix.

Then eigenvalues � all have negative real parts if and only if �1 > 0;�2 > 0; :::;�n > 0,

where

�k =

��������������

b1 1 0 0 0 � � � 0

b3 b2 b1 1 0 � � � 0

b5 b4 b3 b2 b1 � � � 0
...

...
...

...
...

. . .
...

b2k�1 b2k�2 b2k�3 b2k�4 b2k�5 � � � bk

��������������
:

B.5 Alternative de�nition of D�stability approach

Theorem B.6 (From Observation (iv) in Johnson [44]). Consider Mn(C); the set of

all complex n � n matrices, and Dn; the set of all n � n diagonal matrices with positive

diagonal entries. Take A 2 Mn(C) and suppose that there is an F 2 Dn such that FA

is stable. Then A is D�stable if and only if A � iD is non�singular for all D 2 Dn.

If A 2 Mn(R); the set of all n � n real matrices, then ��� in the above condition may

be replaced with �+�since, for a real matrix, any complex eigenvalues come in conjugate

pairs.
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B.6 Proofs of propositions in Chapter 4

B.6.1 Proof of Proposition 4.2 (The criterion for stability of a struc-

turally heterogeneous economy under mixed RLS/SG learning for

the diagonal environment case under any (possibly di¤erent) de-

grees of inertia of agents, � > 0)

We have to consider conditions for stability for any positive (�1; :::; �S) of the

following matrices

D1
 =

0BBB@
�1In � � � 0
...

. . .
...

0 � � � �SIn

1CCCA
0BBB@

A1 � In � � � AS
...

. . .
...

A1 � � � AS � In

1CCCA
and

Dw
F =

0BBB@
Dw1 � � � 0
...

. . .
...

0 � � � DwS

1CCCA
0BBB@

F 0 
A1 � Ink � � � F 0 
AS
...

. . .
...

F 0 
A1 � � � F 0 
AS � Ink

1CCCA ;

where
Dwh = �hInk; h = 1; S0

Dwh = �h (Mw 
 In) ; h = S0 + 1; S
, F = diag(�1; :::; �k);Mw = diag

�
�21
1��21

; :::;
�2k
1��2k

�
:

The expression for Dw
F in the diagonal case looks as follows

Dw
F =

0BBB@
Dw1 � � � 0
...

. . .
...

0 � � � DwS

1CCCA
0BBB@

F 0 
A1 � Ink � � � F 0 
AS
...

. . .
...

F 0 
A1 � � � F 0 
AS � Ink

1CCCA =

= diag(�1; : : : ; �1| {z }
nk

; : : : ; �S0 ; : : : ; �S0| {z }
nk

;
�S0+1�

2
1

1��21
; : : : ;

�S0+1�
2
1

1��21| {z }
n

; : : : ;
�S0+1�

2
k

1��2k
; : : : ;

�S0+1�
2
k

1��2k| {z }
n

; : : :

: : : ;
�S�

2
1

1��21
; : : : ;

�S�
2
1

1��21| {z }
n

; : : : ;
�S�

2
k

1��2k
; : : : ;

�S�
2
k

1��2k| {z })
n

�

�

0BBBBBBBBBBBBBBB@

�1A1 � In � � � 0 � � � �1AS � � � 0
...

. . .
... � � �

...
. . .

...

0 � � � �kA1 � In � � � 0 � � � �kAS
...

...
...

. . .
...

...
...

�1A1 � � � 0 � � � �1AS � In � � � 0
...

. . .
... � � �

...
. . .

...

0 � � � �kA1 � � � 0 � � � �kAS � In

1CCCCCCCCCCCCCCCA
:
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After some permutations of rows and columns that do not change the absolute value of

the determinant of Dw
F � �I, I obtain that the following characteristic equation for

eigenvalues � of Dw
F

det [Dw
F � �I] = 0

is equivalent to

0 = det[diag((�1; : : : ; �1| {z }
n

; : : : ; �S0 ; : : : ; �S0| {z }
n

;
�S0+1�

2
1

1��21
; : : : ;

�S0+1�
2
1

1��21| {z }
n

; : : : ;
�S�

2
1

1��21
; : : : ;

�S�
2
1

1��21
)| {z }

n

; : : :

: : : ; (�1; : : : ; �1| {z }
n

; : : : ; �S0 ; : : : ; �S0| {z }
n

;
�S0+1�

2
k

1��2k
; : : : ;

�S0+1�
2
k

1��2k| {z }
n

; : : : ;
�S�

2
k

1��2k
; :::;

�S�
2
k

1��2k| {z }
n

))�

�diag(

26664
�1A1 � In � �In

�1
� � � �1AS

...
. . .

...

�1A1 � � � �1AS � In �
(1��21)�In

�S�
2
1

37775 ; : : :

: : : ;

26664
�kA1 � In � �In

�1
� � � �kAS

...
. . .

...

�kA1 � � � �kAS � In �
(1��2k)�In

�S�
2
k

37775)];
or, in matrix form:

0 = det

2664
~D1
�1 � �InS

~Dk
�k � �InS

3775 = kQ
l=1

det
h
~Dl
�l � �InS

i
;

where

~Dl =

0BBBBBBBBBBBB@

�1In � � � 0

. . .

�S0In
...

�S0+1�
2
l

1��2l
In

...
. . .

0 � � � �S�
2
l

1��2l
In

1CCCCCCCCCCCCA
;
�l =

0BBB@
�lA1 � In � � � �lAS

...
. . .

...

�lA1 � � � �lAS � In

1CCCA ;

l = 1; k:

Thus, the analysis of stability of Dw
F , de�ned in (4.11), is equivalent to the analysis of

stability of ~Dl
�l , 8l = 1; k:
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So, the analysis of the stability of Dw
F can be split into the analysis of the

stability of the unrelated matrix blocks. Changing notation �h :=
�h�

2
l

1��2l
> 0 for h =

S0 + 1; S for each case l = 1; k, I obtain that the analysis of stability of Dw
F for any

� > 0 is equivalent to the analysis of stability of k matrices D1
�l . Introducing notation

�0 = 1, I can write the general criterion for stability of a structurally heterogeneous

economy under mixed RLS/SG learning for the diagonal environment case under any

(possibly di¤erent) degrees of inertia of agents, � > 0 as follows: D1
�l is stable for all

l = 0; 1; :::; k. Q:E:D:

B.6.2 Proof of Proposition 4.3

Use "columns" negative diagonal dominance of 
�l , which is su¢ cient for the

real parts of eigenvalues of D1
�l to be negative; look for a condition which would

be su¢ cient for negative diagonal dominance in this setup. As weights for rows use

(�1( 1; :::;  n); :::; �s ( 1; :::;  n)), �i > 0;  h > 0;
P
i
 i = 1;

P
h

�h = 1:

For any l take any block h and any column j8<: �la
h
jj � 1 < 0 - negative diagonal

�h j

����lahjj � 1��� > (�1 + :::+ �s)P
i
 i

����lahij���� �h j ����lahjj��� - dominance 8j; 8h;8l

m8<: �la
h
jj � 1 < 0

��h j�lahjj + �h j > (�1 + :::+ �s)
P
i
 i

����lahij���� �h j ����lahjj��� 8j;8h;8l
m

Case 1

8>><>>:
0 � �la

h
jj < 1P

i
 i

����lahij��� < �h j

�1 + :::+ �S| {z }
=1

8j; 8h;8l

[

Case 2

8>><>>:
�la

h
jj < 0P

i
 i

����lahij��� < �h j

�1 + :::+ �S| {z }
=1

� 2'h j

�1 + :::+ �S| {z }
=1

�la
h
jj
8j;8h;8l

Since in the second case �la
h
jj < 0; one may formulate the following su¢ cient

condition
P
i
 i

����lahij��� < �h j 8j; 8h;8l. The condition 1 > �la
h
jj is implied by this

relation, and the condition of case 2 is also satis�ed. To prove that 1 > �la
h
jj , notice thatP

i
 i

����lahij��� < �h j =)

P
i6=j

 ij�lahijj
 j| {z }
>0

+
����lahjj���| {z }
>0

< �h < 1 =)
����lahjj��� < 1 =) �la

h
jj < 1.

As j�lj < 1, the derived su¢ cient condition follows from
P
i
 i

���ahij��� < �h j 8j;8h,
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that is, the condition for l = 0 (�0 = 1). So this condition alone is su¢ cient for � �stability.

This is the condition of Proposition 4.2. Q:E:D:

B.6.3 Proof of Proposition 4.4

1. �AGmod ( ; �)
��
��any
 �any

= S
X
h

�h
X
i

 i
X
j

���ahij��� �
� S

X
h

�h
X
j

X
i

 imax
h;i

���ahij��� = S
X
j

 X
h

X
i

�h i

!
| {z }

=1

max
h;i

���ahij��� = �AGmax1 :

2. �AGmod ( ; �)
��
��any
 =

1
S

= S
X
h

1

S|{z}
�h

X
i

 i
X
j

���ahij��� =X
h

X
i

 i
X
j

���ahij��� �
�
 X

i

 i

!
| {z }

=1

max
i

X
h

X
j

���ahij��� = �AGmax2

3. �AGmod ( ; �)
��
�=

1
n

 �any

= S
X
h

�h
X
i

1

n|{z}
 i

X
j

���ahij��� � S
X
i

1

n

X
h

X
j

�hmax
h;j

���ahij��� =
= S

X
i

1

n
max
h;j

���ahij���
0@X

h

X
j

�h

1A
| {z }

=n

= S
X
i

max
h;j

���ahij��� = �AGmax3

4. �AGmod ( ; �)
��
�=

1
n

 =
1
S

= S
X
h

1

S|{z}
�h

X
i

1

n|{z}
 i

X
j

���ahij��� =X
h

X
i

1

n

X
j

���ahij��� �
�
X
h

1

n

X
j

max
j

X
i

���ahij��� =X
h

max
j

X
i

���ahij��� 1nX
j

1| {z }
=1

= �AGmax4 ; Q:E:D:

B.6.4 Proof of Proposition 4.5

1. for �AGmax1 :

We have �AGmax1 = S
P
j
max
h;i

���ahij��� < 1 and have to prove that there exist weights
 and � such that

P
i

 ijahijj
 j

< �h 8j;8h:

Let us take �h =
1
S 8h, and  j = Smax

h;i

���ahij���+
>0z }| {

1� S
P
j
max
h;i

���ahij���
n

8j. These can

be considered as weights since
SP
h=1

�h = 1; 0 < �h < 1 and
nP
j=1

 j = 1; 0 <  j < 1.
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Notice that
 j
S > max

h;i

���ahij��� =P
i
 imax

h;i

���ahij��� >P
i
 i

���ahij��� ;8j; 8h, or, after rewrit-
ing:

P
i
 i

���ahij��� <  j �h|{z}
= 1
S

;8j; 8h.

4. for �AGmax4 :

We have �AGmax4 = S
P
h

max
j

P
i

���ahij��� < 1 and have to prove that there exist

weights  and � such that

P
i

 ijahijj
 j

< �h 8j;8h:

Let us take  j =
1
n 8h, �h = max

j

P
i

���ahij��� +
>0z }| {

1�
P
h

max
j

P
i

���ahij���
S

8j. These are

weights as
SP
h=1

�h = 1; 0 < �h < 1 and
SP
j=1

 j = 1; 0 <  j < 1.

Notice that �h > max
j

P
i

���ahij��� >P
i

���ahij��� ;8j;8h, or, after rewriting:
P
i

1
nz}|{
 i

���ahij���
 j|{z}
1
n

=

P
i
 i

���ahij��� < �h;8j;8h.

To prove the proposition for �AGmax2 and �AGmax3 , I �rst derive a su¢ cient con-

dition for � �stability that follows from the "rows" diagonal dominance condition, which

is also su¢ cient for stability of matrices D1
�l. Therefore my derivation of this con-

dition resembles the steps in the proof of Proposition 4.2. As weights for columns use

(d1; :::; dn; :::; d1; :::; dn), di > 0;
P
i
di = 1

For any l take any block h and any row i:8><>:
�la

h
ii � 1 < 0 - negative diagonal

di
���lahii � 1�� >P

h

P
j
dj

����lahij���� di ���lahii�� - dominance 8i; 8h;8l

m8><>:
�la

h
ii � 1 < 0

�di�lahii + di >
P
h

P
j
dj

����lahij���� di ���lahii�� 8i;8h;8l
m

Case 1

8><>:
0 � �la

h
ii < 1P

h

P
j
dj

����lahij��� < di
8i; 8h;8l

[

Case 2

8><>:
�la

h
ii < 0P

h

P
j
dj

����lahij��� < di � 2di�lahii
8i;8h;8l
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Since in the second case �la
h
ii < 0; one may formulate the following su¢ cient

condition
P
h

P
j
dj

����lahij��� < di 8i; 8h;8l. The condition 1 > �la
h
ii is implied by this rela-

tion, and the condition of case 2 is also satis�ed. To prove that 1 > �la
h
ii, notice thatP

h

P
j
dj

����lahij��� < di =)
P
h

P
j 6=i

dj

����lahij���| {z }
>0

+
P
h

di

����lahii���| {z }
>0

< di < 1 =)
���lahii�� < 1 =)

�la
h
ii < 1.

As j�lj < 1, the derived su¢ cient condition follows from
P
h

P
j
dj

���ahij��� < di 8i; 8h,

that is, the condition for l = 0 (�0 = 1). So this condition alone is su¢ cient for ��stability.

Next I use the derived su¢ cient condition to prove Proposition 4.2 for �2max and

�3max.

2. for �AGmax2 :

We have �AGmax2 = max
i

P
h

P
j

���ahij��� < 1 and have to prove that there exist weights
d = (d1; :::; dn; :::; d1; :::; dn), di > 0;

P
i
di = 1, such that

P
h

P
j
dj

���ahij��� < di 8i; 8h.

Let us take dj = 1
n 8j.

Notice that
P
h

P
j

���ahij��� < max
i

P
h

P
j

���ahij��� < 1;8i;8h, or, after rewriting: P
h

P
j

1

n|{z}
dj

���ahij��� <
1

n|{z}
di

;8i; 8h.

3. for �AGmax3 :

We have �AGmax3 = S
P
h

max
h;j

���ahij��� < 1 and have to prove that there exist weights
d = (d1; :::; dn; :::; d1; :::; dn), di > 0;

P
i
di = 1 such that

P
h

P
j
dj

���ahij��� < di 8i;8h.

Let us take di = Smax
h;j

���ahij��� +
>0z }| {

1� S
P
i
max
h;j

���ahij���
n

8i. These can be taken as

weights since
nP
i=1

di = 1; 0 < di < 1.

Notice that di > Smax
h;j

���ahij��� = nP
j=1

dj| {z }
=1

SP
h=1|{z}
=S

max
h;j

���ahij��� >X
h

X
j

dj

���ahij��� ;8i;8h.

B.6.5 Proof of Proposition 4.10

For the case of n = 1, the condition for the alternative de�nition of D�stability

simpli�es the requirement for 
 to be stable and for at least one of the following to hold
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true  
1
�1

1+ 1

�21

(��lA1) + :::+
1
�S

1+ 1

�2
S

(��lAS)
!
6= 0; 

1
1+ 1

�21

(��lA1) + :::+ 1
1+ 1

�2
S

(��lAS) + 1
!
6= 0 for all l = 0; 1; :::; k (�0 = 1):

The �rst "same sign" condition follows directly from the �rst inequality above.

The second condition that follows from the second inequality is proved below.

Necessity: Follows directly from the proof of Proposition 4.12. Just note that in

the univariate economy setup any sum of minorsMk consists of elements �h1�h2 :::�hk(��lAh1�

�lAh2� :::��lAhk+1) and that if the sum of nonnegative elements is strictly greater than

zero, then at least one of them has to be strictly positive:

Su¢ ciency: I have ��lAh1 � �lAh2 � ::: � �lAhp + 1 � 0 for any subeconomy

(h1; :::; hp) and for each group of subeconomies of size p, 9 h�1(l); :::; h�p(l)
...��lAh�1��lAh�2�

:::��lAh�p+1 > 0, and have to prove that
 

1
1+ 1

�21

(��lA1) + :::+ 1
1+ 1

�2
S

(��lAS) + 1
!
6= 0.

I group separately the terms corresponding to non-positive �lAi�s and terms

corresponding to strictly positive �lAi�s.

Schematically, I will have24 1

1 + 1
�21

�
�lA

�
1

�
+ :::+

1

1 + 1
�2k

�
�lA

�
k

�35
| {z }

�0

+

"
1

1 + 1
�21

�
�lA

+
1

�
+ :::+

1

1 + 1
�2m

�
�lA

+
m

�#
| {z }

�1

�

1. If the �rst sum is strictly less than zero, then the whole expression is less than zero. If the

�rst sum is equal to zero, then the second sum (if there are any positive �lA
0s at all) has to

be less than 1: for the whole economy I have to have that ��lA1��lA2� :::��lAS+1 > 0,

that is, excluding zero �lA
0s I have to have ��lA+1 � :::� �lA+m+1 > 0, and also take into

account that 0 < 1
1+ 1

�21

< 1, which proves the su¢ ciency part of the second condition in

Proposition 4.10.
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B.6.6 Proof of Proposition 4.11

For the case of n = 2, the inequality in the alternative de�nition of D�stability

looks as follows:

det

�
��lA1
1+ i

�1

+ :::+ ��lAS
1+ i

�S

+ I

�
= 1+det (��lA1)

1+ i
�1

+:::+det (��lAS)
1+ i

�S

+M1(��lA1)
1+ i

�1

+:::+M1(��lAS)
1+ i

�S

+

+ detmix

�
��lA1
1+ i

�1

; ��lA2
1+ i

�2

�
+ :::+ detmix

�
��lAS�1
1+ i

�S�1
; ��lAS
1+ i

�S

�
=

= 1 +

 
1� i

�1

1+ 1

�21

!2
det (��lA1) + :::+

 
1� i

�S

1+ 1

�2
S

!2
det (��lAS)+

+

 
1� i

�1

1+ 1

�21

!
M1(��lA1) + :::+

 
1� i

�S

1+ 1

�2
S

!
M1(��lAS) + :::+

+

 
1� i

�1

1+ 1

�21

! 
1� i

�2

1+ 1

�22

!
[detmix (��lA1;��lA2) + detmix (��lA2;��lA1)] + :::+

+

 
1� i

�S�1
1+ 1

�2
S�1

! 
1� i

�S

1+ 1

�2
S

!
[detmix (��lAS�1;��lAS) + detmix (��lAS ;��lAS�1)] 6= 0

for all l = 0; 1; :::; k; (�0 = 1):

Taking real and imaginary parts, one gets

Redet

�
��lA1
1+ i

�1

+ :::+ ��lAS
1+ i

�S

+ I

�
= 1 +

1� 1

�21�
1+ 1

�21

�2 det (��lA1) + :::+

+
1� 1

�2
S�

1+ 1

�2
S

�2 det (��lAS) + 1
1+ 1

�21

M1(��lA1) + :::+ 1
1+ 1

�2
S

M1(��lAS) + :::+

+
1� 1

�1�2�
1+ 1

�21

��
1+ 1

�22

� [detmix (��lA1;��lA2) + detmix (��lA2;��lA1)] + :::+
+

1� 1
�S�1�S�

1+ 1

�2
S�1

��
1+ 1

�2
S

� [detmix (��lAS�1;��lAS) + detmix (��lAS ;��lAS�1)]
Imdet

�
��lA1
1+ i

�1

+ :::+ ��lAS
1+ i

�S

+ I

�
=

� 2i
�1�

1+ 1

�21

�2 det (��lA1) + :::+
+

� 2i
�S�

1+ 1

�2
S

�2 det (��lAS) + � i
�1

1+ 1

�21

M1(��lA1) + :::+
� i
�S

1+ 1

�2
S

M1(��lAS) + :::+

+
�i
�
1
�1
+ 1
�2

�
�
1+ 1

�21

��
1+ 1

�22

� [detmix (��lA1;��lA2) + detmix (��lA2;��lA1)] + :::+

+
�i
�

1
�S�1

+ 1
�S

�
�
1+ 1

�2
S�1

��
1+ 1

�2
S

� [detmix (��lAS�1;��lAS) + detmix (��lAS ;��lAS�1)]
for all l = 0; 1; :::; k (�0 = 1) for all l = 0; 1; :::; k (�0 = 1).
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From the Im part of the determinant I see the "same sign" su¢ cient condition

for this case:

det (��lAi) � 0; [detmix (��lAi;��lAj) + detmix (��lAj ;��lAi)] � 0; i 6= j;

M1(��lAi) � 0;

or

det (��lAi) � 0; [detmix (��lAi;��lAj) + detmix (��lAj ;��lAi)] � 0; i 6= j;

M1(��lAi) � 0 for all l = 0; 1; :::; k (�0 = 1)

If all inequalities above are equalities to zero, then the real part equals 1, and

the su¢ cient condition for ��stability holds true.

B.6.7 Proof of Propositions 4.12 and 4.13

I consider � = D(�
). A necessary and su¢ cient condition for stability of this

matrix is that real parts of eigenvalues of D(�
) be greater than zero. And for the

condition on eigenvalues to hold true it is necessary that all sums of principal minors of

D (�
) grouped by the same size be greater than zero.

Indeed, the characteristic equation for eigenvalues of � has the form

det (� + I�) = det �+�Mn�1 + �2Mn�2 + :::+ �n�1M1 + �
n = 0, where � = ��

is the eigenvalue of �: and Mk is the sum of all principal minors of � of size k.

On the other hand, the same characteristic equation can be written in terms of

the product decomposition of the polynomial:

(�+ �1) � � � (�+ �n) = �1:::�n| {z }
>0

+:::+�n�2(�1�2 + :::+ �n�1�n)| {z }
>0

+�n�1(�1 + :::+ �n)| {z }
>0

+

�n = 0.

Thus, all Mk > 0.

By writing this condition in terms of D(�
), one gets that in each size group the

sum of minors is subdivided into groups of sums of minors that contain the same number

of columns of each block of (�
), i.e. Ai � I. The coe¢ cient before such particular sum

has the form (�h1)
j1 (�h2)

j2 :::
�
�hp
�jp . This coe¢ cient uniquely speci�es the sum of minors

by the size, the number of columns from each block, and from which subeconomy it is

formed, (h1; :::; hp). The size of minors in such a group is equal to the total power of

the coe¢ cients, j1 + ::: + jp, and the subscripts of ��s denote from which block of (�
)

columns are taken, while the power of each � indicates how many columns are taken from

this particular block.
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Let us �x one subeconomy (say, formed by blocks 1, 2, 3) and consider the limit

of inequalities for the sum of minors, with ��s for other blocks going to zero. Doing the

same operation for all subeconomies, I will get condition (*). The statement in Proposition

13 is derived by setting all ��s for all subeconomies in condition (*) equal to 1.



181

Appendix C

Appendix to Chapter 5
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C.1 Proofs of propositions in Chapter 5

C.1.1 Proof of Propositions 5.1 and 5.2

The PLM in general form is yt = a + �wt. If wi is not included in the PLM, it

is re�ected in the corresponding zero column of �. The REE conditions can be written as

(�iA� In)
h

1i : : : 
ni

i0
+Bi = 0, i 2 I0.

It is clear that in case i is not included into the active factors set, that ish

1i : : : 
ni

i0
= 0, then in order to have a REE solution, Bi has to be equal to

0, so that one can omit only those factors in the PLM , that have a zero column in B in

the reduced form. Equivalently, it is clear that if Bi 6= 0, then, in order to have a REE

solution, one should not have
h

1i : : : 
ni

i0
= 0, that is, one has to include wi into the

active factors set.

In case i is included in the active factors set, that is
h

1i : : : 
ni

i0
6= 0, the

REE solution exists if and only if the following conditions holds true.

Bi = 0, or (Bi 6= 0 and det (�iA� I) 6= 0), or (Bi 6= 0 and det (�iA� I) = 0 and

rank(�iA� I) = rank(�iA� I;Bi _)).

Combining the two cases we get the statement in Proposition 5.1.

For Proposition 5.2, one has only to transform the last conditions to guarantee

the uniqueness of the solution.

In case i is included in the active factors set, that is
h

1i : : : 
ni

i0
6= 0, the

REE solution exists and is unique if and only if the following condition holds true.

det (�iA� I) 6= 0.

C.1.2 Proof of Proposition 5.5 (Necessary conditions and su¢ cient con-

ditions in terms of eigenvalues for the structurally homogeneous

case)

We have to study matrix D1
�l for stability under any �h > 0, where D1 and


�l are de�ned in (5.14) and (5.16), respectively. Thus we consider

det
�

�l �D

�1
1 �I

�
= det

26664
�lA1 �

�
1 + �

�1

�
I � � � �lAS

...
. . .

...

�lA1 � � � �lAS �
�
1 + �

�S

�
I

37775 = 0,
8l = 0; :::; k; (�0 = 1),
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where Ah = �hA,
P
�h = 1.

It is clear from the structure of the matrix above that � = ��i0 is a root if and

only if at least one of the following holds true: �A is singular or there exists at least one

other �j that equals �i0 . (If A is singular, then �h = ��h; h = 1; S are the roots. That is,

if none of ��0s is the root, then A is non-singular.)

Assume that A is non-singular and all �h�s are di¤erent, that is assume that none

of ��0s is the root. If there are roots other than ��0hs (the case of eigenvalues �h = ��h < 0

is obvious), then they satisfy the characteristic equation for obtaining the eigenvalues of

D1
�l that are not equal to ��h:

det
�

�l �D

�1
1 �I

�
= det

26664
�lA1 �

�
1 + �

�1

�
I � � � �lAS

...
. . .

...

�lA1 � � � �lAS �
�
1 + �

�S

�
I

37775 =
(subtracting the last row from other rows)

= det

26666666664

�
�
1 + �

�1

�
I 0 � � � 0

�
1 + �

�S

�
I

0 �
�
1 + �

�2

�
I � � � 0

�
1 + �

�S

�
I

...
...

. . .
...

...

0 0 � � � �
�
1 + �

�S�1

�
I

�
1 + �

�S

�
I

�lA1 �lA2 � � � �lAS�1 �lAS �
�
1 + �

�S

�
I

37777777775
=

(for � 6= �h 8h)

=

�
1 +

�

�1

�
� :::�

�
1 +

�

�S

�
det

266666664

�I � � � 0 I
...

. . .
...

...

0 � � � �I I
�lA1�
1+ �

�1

� � � � �lAS�1�
1+ �

�S�1

� �lAS�
1+ �

�S

� � I

377777775
=

(adding all columns to the last one)

=

�
1 +

�

�1

�
�:::�

�
1 +

�

�S

�
det

2666666664

�I � � � 0 0
...

. . .
...

...

0 � � � �I 0

�lA1�
1+ �

�1

� � � � �lAS�1�
1+ �

�S�1

� �
�lA1
1+ �

�1

+ :::+ �lAS
1+ �

�S

� I
�

3777777775
=
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=

�
1 +

�

�1

�
� :::�

�
1 +

�

�S

�
(�1)n(S�1) det

"
�lA1
1 + �

�1

+ :::+
�lAS
1 + �

�S

� I
#
= 0:

As we consider � 6= ��h, the last equation is equivalent to

det

"
��lA1
1 + �

�1

+ :::+
��lAS
1 + �

�S

+ I

#
= 0, where Ah = �hA;

P
�h = 1.

After some calculations, we obtain

det

"
�lA

 
��1
1 + �

�1

+ :::+
��S
1 + �

�S

!
+ I

#
= 0,

and �nally

�l�k

 
�1

1 + �
�1

+ :::+
�S

1 + �
�S

!
= 1

for those �k, eigenvalues of A, that are not equal to zero. If all �k = 0, then A is a zero

matrix and the only eigenvalues of D
 are ��h�s.

As complex eigenvalues of a real matrix A come in conjugate pairs, the system

above is equivalent to8>><>>:
�l Re (�k)Re

�
�1

1+ �
�1

+ :::+ �S
1+ �

�S

�
� �l Im (�k) Im

�
�1

1+ �
�1

+ :::+ �S
1+ �

�S

�
= 1

�l Im (�k)Re

�
�1

1+ �
�1

+ :::+ �S
1+ �

�S

�
+ �l Re (�k) Im

�
�1

1+ �
�1

+ :::+ �S
1+ �

�S

�
= 0

for each pair of conjugate eigenvalues. In case of a real eigenvalue, Im (�k) = 0; the

corresponding system simpli�es to

�l Re (�k)

 
�1

1 + �
�1

+ :::+
�S

1 + �
�S

!
= �l�k

 
�1

1 + �
�1

+ :::+
�S

1 + �
�S

!
= 1

For any S we have that for eigenvalues � to be negative, it is necessary that
1

�l�k
�1

1
�l�k�1:::�S

> 0 and therefore that �l�k < 1;8l = 0; :::; k; (�0 = 1). As j�lj < 1;8l = 1; k, the

latter condition is equivalent to �k < 1.

For S = 2, the system corresponding to a real eigenvalue looks as follows:8>><>>:
�l�k

�
�1

1+ �
�1

+ �2
1+ �

�2

�
= 1

�2 + �
1

�l�k

�
1
�1
+ 1
�2

�
�
�
�1
�2
+
�2
�1

�
1

�l�k�1�2

+
1

�l�k
�1

1
�l�k�1�2

= 0:

The Routh�Hurwitz conditions for negativity of real parts of � are necessary and

su¢ cient and look as follows:8>><>>:
1

�l�k
�1

1
�l�k�1�2

> 0

1
�l�k

�
1
�1
+ 1
�2

�
�
�
�1
�2
+
�2
�1

�
1

�l�k�1�2

> 0

.
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The system of inequalities above is equivalent to8><>:
�l�k < 1

�l�k <
1
�1
+ 1
�2

�1
�2
+
�2
�1

:
.

Since
1
�1
+ 1
�2

�1
�2
+
�2
�1

> 1, as 1��1
�1

+ 1��2
�2

> 0; the last system of inequalities is equivalent to

�l�k < 1;8l = 0; :::; k; (�0 = 1). As j�lj < 1;8l = 1; k, the latter condition is equivalent to

�k < 1.

Thus, we get the su¢ cient condition for stability for the case of S = 2, that all

eigenvalues of A are real and less than 1; and the necessary condition for stability for any

S is that all real eigenvalues of A have to be less than 1. Q:E:D:


