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Abstract
This paper develops a framework for the empirical analysis of the determinants of input
supplier choice on the extensive margin using firm-to-firm transaction data. Building on
a theoretical model of production network formation, we characterize the assumptions
that enable a transformation of the multinomial logit likelihood function from which the
seller fixed effects, which encode the seller marginal costs, vanish. This transformation
conditions, for each subnetwork restricted to one supplier industry, on the out-degree of
sellers (a sufficient statistic for the seller fixed effect) and the in-degree of buyers (which
is pinned down by technology and by “make-or-buy” decisions). This approach delivers
a consistent estimator for the effect of dyadic explanatory variables, which in our model
are interpreted as matching frictions, on the supplier choice probability. The estimator
is easy to implement and in Monte Carlo simulations it outperforms alternatives based
on group fixed effects. In an empirical application about the effect of a major Costa
Rican infrastructural project on firm-to-firm connections, our approach yields estimates
typically much smaller in magnitude than those from naive multinomial logit.
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1 Introduction

Establishing a buyer-supplier relationship between a firm located downstream in the
production network and one located more upstream is a consequential decision. For
both buyers and sellers, the identity of their trading partner can affect performance
(Alfaro-Ureña et al., 2022). For sellers, expanding the set of customer firms is a key
driver of their growth (Bernard et al., 2022). For the economy at large, the structure
of the production network that results from aggregating all such choices affects the
propagation of macroeconomic shocks (Acemoglu et al., 2012; Carvalho et al., 2021).
Understanding how buyer-supplier linkages are determined bears implications for the
study of industrial policy,1 agglomeration economies,2 firms in developing economies,3

and more. In these settings, factors as diverse as policies targeting selected segments of
supply chains, spatial proximity, and personal connections across firms, are potential
drivers of production network formation.

This paper develops an empirical framework to quantitatively assess the impact of
factors like these on the extensive margin of firms’ supplier choice, to be used on data
about firm-to-firm transactions.4 In particular, we study how to estimate the effect of
explanatory variables which, as in the previous examples, display a dyadic variation:
that is, they depend on the specific buyer-seller pair. Relative to conventional models
of multinomial choice, this particular problem presents a central challenge: the prices

1Building upon insights originally by Hirschmann (1958), Liu (2019) has shown that industrial
policies targeting upstream sectors of the production network can generate positive aggregate effects
under market imperfections affecting the extensive margin of input demand. Lane (2023) has shown
how policies of this sort were key for the historical industrial development of South Korea.

2Theories of agglomeration economies typically conjecture that the ability to access specialized
suppliers that are close in space generates economies of scale (Duranton and Puga, 2004; Moretti,
2011). By calibrating a model of firm-to-firm matching in space on Japanese data, Miyauchi (2023)
shows that this mechanism explains a substantial portion of the grand agglomeration force. Earlier,
Bernard et al. (2019) showed that a decrease in search costs due to the introduction of high-speed
trains makes firms more productive and more likely to source their inputs from farther locations.

3See e.g. Bartelme and Gorodnichenko (2015) and the discussion in Atkin and Khandelwal (2020).
The latter in particular advocate the use of firm-to-firm transaction data to study distortions in trade
and development. This resonates with both the main objective of this paper and with the theoretical
framework, which features matching frictions, that leads to our econometric model.

4This kind of data, typically elaborated from administrative records on value added tax or from
firm censuses, typically covers the (quasi-)universe of a country’s domestic transactions in a given
time period, e.g. a year. The availability of firm-to-firm transaction data for an increasing number of
countries has benefited research on production networks. These countries include: Belgium (Bernard
et al., 2022), Costa Rica (Alfaro-Ureña et al., 2022), Ecuador (Adão et al., 2022), Japan (Carvalho
et al., 2021), Turkey (Demir et al., 2023), Uganda (Almunia et al., 2023) and others.
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of the alternative choices available to a buyer are typically unobserved in transaction
data. In addition, prices are also endogenous because they encode the marginal costs
of direct suppliers, which are recursively dependent on the more upstream structure
of the production network (better suppliers-of-suppliers make direct suppliers more
productive). Since the explanatory variables are likely to co-vary with firm marginal
costs, the construction of a consistent estimator for the effects of interest must take
into account the implications of the network structure on firms’ input demand.

Our framework tackles this problem via a sufficient statistic approach that extends
Chamberlain (1980). This approach is supported by assumptions formulated within a
model of production network formation where the explanatory variables of interest are
treated as matching frictions, akin to iceberg trade costs in international trade models.
More specifically, we assume that in every time period firms must perform a given
number of tasks associated with a particular technology; as a result, the total number
of distinct tasks fulfilled by a seller within a given time period, as approximated for
example by the total number of its buyers in a year,5 is a sufficient statistic for that
seller’s equilibrium marginal cost. The intuition is straightforward: a lower marginal
cost enables sellers to undercut their competitors and increase their count of trading
partners in equilibrium. Our assumption about technology is supported by a stylized
fact that we document using Costa Rican data: firms typically purchase their inputs
from suppliers that are restricted to a very idiosyncratic set of four-digits sectors.

This insight enables a transformation of the multinomial logit likelihood function
that allows consistent estimation of the parameters of interest. This transformation,
however, differs substantively from those typical of conditional logit models for panel
data, which express the conditional probability for an observed sequence of outcomes
over time. In fact, our transformation expresses the conditional probability that in
the same time period (e.g., year) and in a specific section of the production network
(the one restricted to sellers of a specific four-digits sector) the configuration of buyer-
seller linkages is the one actually observed, conditional on all sellers supplying, and
at the same time on all buyers sourcing, the respective observed number of tasks.

5A supplier may perform more than one task for the same buyer. To accommodate this possibility,
our framework adopts a mixture-of-distributions approach to infer the total number of tasks from
the total value of observed bilateral transactions, on the grounds that the share of input purchases
for a single task over total firm revenue is pinned by technology. As we document with Costa Rican
data, the empirical distribution of the standardized ratios of transaction values over buyers’ revenue
appears bimodal, which suggests that some buyers source multiple tasks via a single transaction.
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In other words, in the transformation the observed subnetworks are pitted against
alternative configurations of the same subnetworks that display the same out-degree
and in-degree sequences,6 respectively for buyers and for sellers, as the observed ones.
To help build intuition, in Graph 1 we provide an illustration of a stylized subnetwork
and two alternative configurations of linkages that share the same degree sequences.
Think for example of the solid, darker edges as an observed subnetwork; while the
dashed, lighter edges represent an alternative configuration.

S1 S2 S3 S4

B1 B2 B3 B4 B5

Sellers

Buyers

Graph 1: Two subnetwork configurations with identical out- and in-degree

Notes. This graph represents two alternative configurations with identical out-degree and in-degree
of a stylized bipartite network where “buyers” (blue nodes) and “sellers” (red nodes) are the two sides.
The two configurations are represented, respectively, by the solid-dark and dashed-light directed edges.

The transformed likelihood function does not depend on firm marginal costs, but
the contributions of each subnetwork-year to it feature a summation over alternative
configurations in the denominator. As usual with networks, the enumeration and full
specification of all subnetworks with the same degree sequences is a computationally
expensive problem which scales non-linearly with (sub)network size. To overcome the
resulting curse of dimensionality and operationalize our framework, we restrict the
denominators to randomly sampled alternative subnetworks. As shown by McFadden
(1978) for the conventional multinomial logit, and later by D’Haultfœuille and Iaria
(2016) for its conditional (on fixed effects) version, this approach allows for consistent
estimation at the cost of an efficiency loss. Our approach is easy to implement; still, it
is useful to evaluate how it compares against alternatives that are arguably even easier

6In a directed network: one where connections between nodes are not symmetric, the out-degree
of a node is the count of the linkages stemming from it (e.g. the number of tasks supplied by sellers),
whereas the in-degree is the count of linkages directed to it (e.g. the tasks sourced by buyers).
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while also more intuitive, such as a plain multinomial logit with fixed effects that are
shared by appropriately defined groups of sellers. In Monte Carlo simulations, we
show that such an alternative displays a substantial bias even under conditions that
are favorable to it, with little to no gain in terms of variance to compensate.

We showcase our framework with an empirical application: we study how spatial
distance measured as travel times between two different locations in Costa Rica affects
the probability of a connection between a buyer and a seller from such places. More-
over, we examine the effect of a major infrastructural project, the Ruta 27 (Highway
27) opened in 2011 to facilitate travel between the country’s populous central valley
and the developing Pacific coastline, with its seaports.7 While this “treatment” dis-
plays a dyadic variation both in geographical space and in time, it is unlikely to be
exogenous, since the regions that Highway 27 helps to connect are the most produc-
tive ones. In light of this, we find it unsurprising that our approach returns estimates
that are much smaller in magnitude, though still statistically significant, with respect
to those obtained via a naive multinomial logit that neglects seller fixed effects. The
latter also yields predictions about choice probabilities that we find implausibly large,
unlike those obtained via our proposed estimator.

Because of its aims, our paper connects with several diverse strands of literature.
We consider our contribution primarily as an adaptation of multinomial logit models
that condition on fixed effects (see e.g. Chamberlain, 1980; Honoré and Kyriazidou,
2000; D’Haultfœuille and Iaria, 2016; Crawford et al., 2021) to the particular setting of
production networks. These models have a reputation for being difficult to implement;
as a result, empirical applications are scant.8 We show that the additional network
dimension offered by the input-output structure, where choices are taken over time as
well as across multiple tasks, if anything makes implementation easier, which we see
as favorable towards applications with micro-level data in the expanding literature on
production networks. We also examine a number of extensions of our framework, with
features such as random parameters, richer specifications for the seller fixed effects,

7Our application thus speaks to the extant literature on the economic effects of infrastructures.
Previous studies have typically focused on the effect upon regions (Faber, 2014) or firms (Holl, 2016).
To the best of our knowledge, Bernard et al. (2019) is the only contribution that studies the effect
on firm-to-firm connections; unlike our empirical application, it takes a reduced-form approach.

8Fixed effects are problematic for most non-linear models; for this reason, theoretical econome-
tricians have recently investigated the properties of simpler-to-implement models with “group fixed
effects” that assume an underlying discrete structure of unobserved heterogeneity (Bonhomme et al.,
2022). These models inspire the estimators adversarial to ours in the Monte Carlo simulation.
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and “structural dynamics” (dependence of current choices on past realizations of the
network). Except for the extra assumptions that the latter demands, these extensions
do not present particular challenges or issues about implementation.

This paper also relates to the literature on the econometrics of network formation,
which we contribute to by developing the distinctive case of production networks. The
problem of seller fixed effects that we address bears analogies with that of bilateral
unobserved heterogeneity in dyadic models for binary, undirected networks. Similarly
to Charbonneau (2017) and Graham (2017) for these models, we develop a conditional
logit approach. The differences between our approach and theirs stem from the nature
of the supplier choice problem: multinomial, constrained by technology, and resulting
in a directed network. The econometrics of network formation also emphasizes issues
due to multiple equilibria that in undirected networks arise from structural transitivity
(Leung, 2015; Mele, 2017; de Paula et al., 2018; Sheng, 2020; Gualdani, 2021).9 In our
framework structural transitivity is absent because firm behavior is governed by cost
functions, yet multiple equilibria are still possible as in other models of production
network formation. Our sufficient statistic approach is robust to equilibrium selection,
as the only variables that co-vary with the equilibria while affecting buyer choice are
the seller fixed effects, which disappear in the transformation.

The conceptual framework of this paper is inspired by recent models of production
network formation from macroeconomics and international trade, particularly those
where matching is buyer-initiated,10 such as Dhyne et al. (2023) (which builds on
Antràs et al., 2017), and Panigrahi (2023).11 Our model adapts that by Dhyne et al.
(2023) by introducing some key differences: for example, our “task-based” production
functions, our treatment of matching frictions, and our lower emphasis on relationship

9Structural transitivity is a primitive property of the preferences of the agents involved in network
formation, specifically their taste for connections with agents that share connections with some third
party agents (“being friends with friends of my friends”). In strategic models of network formation,
structural transitivity yields multiple equilibria, which complicates econometric estimation. For an
extended discussion, see the survey by de Paula (2020).

10In other models of production network formation, matching is either seller-initiated (Lim, 2018;
Huneeus, 2020; Bernard et al., 2022) or based on a search-and-matching protocol (Arkolakis et al.,
2022; Miyauchi, 2023). We believe that a buyer-initiated matching protocol is more appropriate for
our aims, since it ties more naturally with econometric models of discrete choice.

11Oberfeld (2018) also developed an input-output model where equilibrium hinges on the choices
of entrepreneurs-buyers, though limited to one input; our framework accommodates multiple input
choices. In the model by Acemoglu and Azar (2020), buyers choose which and how many suppliers
to source from, and the network becomes denser as technology improves or frictions are mitigated.
Our framework is one for the short run, where network density is pinned down by technology.
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fixed costs. We see the contribution by Panigrahi (2023) as especially close to ours, as
it constitutes the attempt to develop an empirical framework for supplier choice to be
used on firm-to-firm transaction data. Like ours, his model is based on a multinomial
logit specification at the core; however, it differs in two key respects, which we believe
warrant our distinct approach. First, Panigrahi (2023) assumes a Cobb-Douglas firm
production function; we assume a constant elasticity of substitution (CES) technology
instead. Second, he assumes tasks in the production function to be homogeneous and
symmetric, potentially fulfilled by any firm regardless of its characteristics; while this
allows one to elegantly solve for the seller fixed effects in closed form, we find this at
odds with the highly sparse nature of the input-output network, which we believe is
best captured by our assumptions on technology-determined tasks.

The rest of this paper proceeds as follows. Section 2 introduces the data and some
motivating stylized facts. Section 3 develops the conceptual framework and derives
from it the econometric estimator. Section 4 describes the Monte Carlo simulations.
Section 5 illustrates the empirical application. Lastly, Section 6 concludes.

2 Data and stylized facts

To motivate and illustrate the proposed framework, we use firm-to-firm transaction
data from Costa Rica, which have already appeared in other contributions (among
the others, Alfaro-Ureña et al., 2022, 2023). These data are actively maintained at the
Central Bank of Costa Rica (BCCR) as part of the Registro de Variables Económicas
del BCCR (“Revec”), and are elaborated from value added tax records. They collect
all firm pairs that have been observed to transact with one another since 2006, and the
total amount of the unilateral yearly transactions (i.e. the total transfers from a buyer
to a seller), provided that in each year, such an amount is higher than a threshold
set at about $4,800.12 Importantly, like similar datasets cited in the introduction, it
is impossible to appreciate any finer granularity of total transactions (e.g. if a buyer
makes two separate orders from the same seller in the same year, one for $6,000 and
one for $4,000, we only observe the total $10,000). Thanks to unique firm identifiers,
we can link balance sheet as well as additional firm information (such as location and
four-digits sector code) to both sides of each transaction.

12Below this threshold, firms are not obliged to report the identity of their transaction partners
to the tax authorities. We treat unobserved transactions below this threshold as negligible.
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Table 1: Costa Rican production network: summary of key distributions

Min 25p 50p 75p Max

Buyers (total number: 68,385)

Yearly no. of suppliers (“in-degree”) 1 1 3 7 402
Total no. of sourced sectors (2-digits) 1 2 3 6 67
Total no. of sourced sectors (4-digits) 1 2 4 8 182

Sellers (total number: 49,279)

Yearly no. of buyers (“out-degree”) 1 1 2 6 3, 861
Total no. of served sectors (2-digits) 1 1 2 6 73
Total no. of served sectors (4-digits) 1 1 3 7 259

Notes. This table reports key percentiles (minimum, first quartile, median, third quartile, maximum) of some
specific topological properties of the Costa Rican firm production network, for buyers and suppliers separately.
A “yearly no. (number)” is conditional on a firm being observed to transact (as buyer or seller) in a given year.
A “total no. (number)” is calculated over the entire 2008-2017 interval. Source: Revec.

We use 2,283,102 total yearly transactions that occurred between 2008 and 2017.13

This number results from matching all firm-to-firm transactions to the firm balance
sheets, and removing transactions whose total amount exceeds the revenue of buyers
(these are arguably major investment projects rather than purchases of intermediate
inputs). From the universe of 95,477 Costa Rican firms tracked in our panel of balance
sheets, 68,385 are observed at least once as the buyer of a transaction, whereas 49,279
are at least one-time sellers. Table 1 summarizes some key facts about the Costa Rican
transaction data. In particular, the distributions of both the number of sellers (“in-
degree”) and number of buyers (“out-degree”) that a firm has in a year are, as expected,
highly skewed; the same applies to the distribution of the number of sectors that firms
interact with over time, as either buyers or sellers. Notably, most firms interact with
partners from a handful of sectors only, regardless of the sector classification one is
adopting (two- versus four-digits). A full-fledged description of the dataset is outside
the scope of this paper; interested readers can consult the cited contributions and the
specialized paper by Alfaro-Ureña et al. (2018), which is dedicated to a comprehensive
descriptive analysis of the Costa Rican production network.14

13This interval corresponds with the second version of the dataset (the BCCR constantly updates
the transaction and balance-sheet data with information from more recent years). The time window
we utilize is appropriate for the empirical application discussed in section 5, which revolves around
a policy intervention – the construction of a major highway – that was completed in 2011.

14This paper is based on the first version of the dataset, covering transactions from 2008 to 2015.
The stylized facts that this paper describes hold across versions of the dataset.
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Next, we document some stylized facts, each supported by a figure, that are useful
to motivate certain features of the proposed empirical framework.

Fact 1. Buyer (seller) firms occasionally transact with more than one seller (buyer)
firm from the same narrowly defined industry in the same year.

Figure 1: Frequency of transactions with multiple partners from the same sector

Notes. This figure reports the empirical frequency of all those episodes, counted over the time interval
spanned by the data (2008-2017), where in a given year a firm transacts with x “partners” belonging
to the same sector, separately for the two sides of a transaction and for two classifications of sectors
(two- versus four-digits). If the transaction side is the buyer’s the partners are sellers, and vice versa.
The horizontal axis runs over x and is truncated at 10. The vertical axis is cast on a logarithmic scale.
Source: Revec.

Figure 1 shows that typically firms buy from, or sell to, only another firm in the
same industry (however the latter is defined), and yet, sometimes firms have multiple
partners from the same sector. While the frequency of such occurrences is one order
of magnitude smaller than instances of “only one partner per sector,” it is substantial
and unlikely induced by chance. To elaborate, suppose that individual buyers (sellers)
connect at random with sellers (buyers) from a given restricted subset of sectors. This
“balls and bins” problem can, under careful parametrization, reproduce the patterns of
Figure 1. However, we find overwhelming evidence against the hypothesis that firms
link up with partners from random sectors: see the discussion in Appendix A.15 This

15Furthermore, random association is unlikely to reproduce the observations for x = 2 and x = 3
in Figure 1, each of which displays similar values across sector classifications (and transaction sides).
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suggests that buyers’ choice of suppliers as well as sellers’ ability to find customers are
idiosyncratically determined by the technology (the empirical counterpart of which is
the sector classification) of potential partners. In short, “sectors matter” in production
network formation. We introduce this property explicitly in our empirical framework.
Besides enabling our model to reproduce the empirical regularity from Figure 1, this
property is key for econometric identification.

Fact 2. Across combinations of buyer and seller sectors, the empirical distribution of
the share of transactions over the revenue of buyers appears at least bimodal.

Figure 2: Distribution of normalized shares of transactions over buyer revenue

Notes. This figure reports kernel density estimates (Gaussian kernel, 0.1 bandwidth size) of the share
of transactions over total buyer revenues, standardized separately for each combination of buyer sector,
seller sector and year for two classifications of sectors (two- versus four-digits). Source: Revec.

Figure 2 displays two separate kernel density estimates of “normalized transaction
revenue shares,” which are defined as the ratio between transactions and the revenue
of the corresponding buyers, then standardized into z -scores for each combination of
buyer sector, seller sector, and year.16 The standardization allows one to appreciate

16More formally, let Shareijt = Transactionijt/Revenueit for each transaction occurred between
a buyer i and a seller j on year t; the normalized shares that yield the kernel density estimates are thus
obtained as Normalized shareijt = (Shareijt − avg (Shareijt)) /sd (Shareijt), where avg (·) and
sd (·) are the mean and standard deviations of the original shares calculated across all transactions
where the buyer is in the same sector as i, the seller as in j, and the year is t.
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via a single figure some features of the empirical distributions of raw shares shared
across multiple combinations of industries. The only difference between the two kernel
densities lies in the granularity of the sectors involved in the standardization. While
both estimates display heavy right tails, the one based on four digits is clearly bi- if not
multimodal. This suggests that at least in some industries, buyers occasionally make
larger-than-average or multiple purchases. Along with a theoretical motivation, this
finding informs our approach for inferring a discrete number of “input choices” from
the observed value of transactions, aimed at addressing a censoring problem typical
of firm-to-firm transaction data: we can only observe the total value of transactions
between two firms, and not separate orders for possibly distinct intermediate inputs.

Fact 3. Buyer-supplier relationships are highly persistent in time.

Figure 3: Estimates of survival probabilities for firm-to-firm transactions

Notes. This figure reports estimates of survival probabilities of transactions, along with 95% confidence
intervals, based on extended “transaction spells” that allow for interruptions (see the discussion in the
text). The blue step function reports “naive” estimates based on the observed proportions of spells of
different duration. The yellow step function reports estimates that correct for data censoring at both
ends of a spell based on the estimator by Turnbull (1974). Each step marks the estimated probability
of survival for as many years as indicated on the right of an interval. The Turnbull estimator does not
yield an estimate for survival at year 2, hence the initial step extending up to year 3. Source: Revec.

Buyer-supplier relationships between firms are all but ephemeral. To quantify the
persistence of matches, we define “transaction spells” as the time interval bounded by
the first and the last observation of a transaction between any two distinct firms (this
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allows for occasional gaps of one-two years where no transactions are observed), and
we estimate the survival probabilities of such spells. As Figure 3 shows, a naive count
suggests that about half of matches last at least five to six years, and about a quarter
of them lasts nine years of more.17 However, such simple counts do not account for
censoring (matches observed in 2008 may have started earlier, and we cannot observe
the termination of spells still occurring in 2017). Censoring-corrected estimates based
on the Turnbull (1974) estimator are unsurprisingly even larger.18 This evidence calls
for an econometric model that accommodates sources of path-dependence if estimated
on longitudinal firm-to-firm transaction data.

These stylized facts are largely novel in the literature on production networks.19

As shown in the cited descriptive paper by Alfaro-Ureña et al. (2018), stylized facts
about production networks reported in other contributions (e.g. Bernard et al., 2019,
2022) are reproduced on the Costa Rican data; this suggests that Facts 1, 2 and 3 are
likely, while tentatively, reproducible on transaction data from other countries too.
Verifying this is outside the scope of this paper; however, we find the evidence of this
section as encouraging for the idea that some key features of the framework outlined
in the next section bode well with the empirical facts.

3 The empirical framework

This section develops our econometric framework. For the sake of exposition, we first
outline the basic version of the model cast in a cross-sectional environment. Later,
we illustrate a more extended version that is adapted for longitudinal data and that
introduces additional elements, such as foreign sellers and “make or buy” decisions.
Lastly, we provide a miscellaneous discussion about additional extensions and issues
of implementation in practice. These three parts are organized as distinct subsections.
The proofs of our key analytical results or “propositions” are developed in Appendix
B, while Appendix C provides further discussion of selected features of the model.

17We calculate confidence intervals associated with the naive estimates; however, due to the sheer
size of the data, they are too small to be appreciable in the figure.

18We also conducted this exercise under a stricter definition of “spell” where interruptions are not
allowed (and where multiple short spells can be observed for the same pair of firms); the results are
virtually unchanged.

19The high persistence of transactions is a well-known fact but, to the best of our knowledge, there
are no extant estimates of match survival probability that correct for censoring.
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3.1 Cross-sectional framework

An economy is populated by a discrete number N of firms, indexed as i, j = 1, . . . , N ;
we denote the set of all firms by I. Each firm belongs to a unique sector (industry),
which identifies the technological type of output that it produces. Two firms belonging
to the same sector may still produce output that is perceived as differentiated by final
consumers, by other firms, or both. There are in total S sectors in the economy, which
are indexed as s, z = 1, . . . , S. We let S ≪ N : typically, many firms share the same
sector. With some convenient abuse of notation, we denote by s (i) the function that
associates a firm i to its sector, and we write the set of all firms that belong to some
sector s by Ss = {i ∈ I : s (i) = s}. The collection {Ss}Ss=1 is a partition of I.

To produce its own output Yi, a firm i must perform an idiosyncratic set of “tasks,”
which are denoted by Ki, that represent the organization and/or assembly of multiple
goods and services. Hence, a task k requires firm i to use of some intermediate inputs
Xik (interpreted as quantity of the intermediate good or service), for any k ∈ Ki. We
introduce two assumptions that regulate the association between tasks, sectors and
suppliers for all firms in the economy.

Assumption 1. To accomplish a task k ∈ Ki, a firm i ∈ I must use inputs Xijk = Xik

supplied from only one firm j ∈ I, j ̸= i. We denote such a firm-supplier by j (k).

This assumption implies no loss of generality, as tasks can always be re-defined
so as to meet it. We uninspiringly call function j (k), which associates an individual
supplier to any given task k, the “supplier function,” and Ji ≡

⋃
k∈Ki

j (k) the firm’s
“supplier set.” All firms choose their supplier sets endogenously, under the restrictions
and assumptions that are discussed next. Importantly, a firm j ∈ I can appear multi-
ple times in another firm’s supplier set Ji, as it may provide inputs for distinct tasks.
A collection of transactions is denoted by G ≡

⋃
i∈I
⋃

k∈Ki
(i, j (k)), and the ordered

pair (I,G) fully characterizes the topological structure of the economy’s production
network, which is directed and (in the case of multiple-task suppliers) weighted.

Assumption 2. For any task k ∈
⋃

i∈I Ki, inputs can only be provided by suppliers of
a specific sector, denoted as z (k). Hence, j (k) must always satisfy (s ◦ j) (k) = z (k).

This assumption imposes a fundamental technological restriction: only firms from
the appropriate industry can provide inputs to fulfill a certain task. We view this as
a realistic hypothesis: one would typically not source car tires from fruit companies;
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similarly, tire producers are not the appropriate providers of pineapples. Importantly,
a sector can potentially fulfill multiple tasks for the same producer i. Hence, for any
two tasks k, k′ ∈ Ki it is either Sz(k) = Sz(k′) or Sz(k) ∩ Sz(k′) = ∅. This remark helps
clarify why our framework adopts a distinction between tasks and sectors, rather than
a more parsimonious approach. Thanks to the distinction, the framework can in fact
replicate the evidence from Figure 1, where buyers are observed to source more than
once from the same sector in the same year.

All firms are characterized by a general Constant Elasticity of Substitution (CES)
production function with constant returns to scale and elasticity of substitution σ > 1,
which combines labor Li with the intermediate inputs Xijk. For a given Ji, it reads:

Yi = Ai

[
(α0iLi)

σ−1
σ +

∑
k∈Ki

(
αkXij(k)k

)σ−1
σ

] σ
σ−1

, (1)

where Ai is firm i’s exogenous total factor productivity, while α0i and αk (for k ∈ Ki)
are firm-specific parameters that weigh the saliency of, respectively, the labor and the
task-specific inputs.20 From (1) one derives the firm’s marginal cost Ci as:

Ci =
1

Ai

[(α0i

W

)σ−1

+
∑
k∈Ki

(
αk

Pij(k)k

)σ−1
] 1

1−σ

, (2)

where W is the exogenous real wage while Pijk is the effective unit real price charged
by an eligible supplier j ∈ Sz(k) for the inputs it provides to fulfill some task k ∈ Ki.
We allow suppliers to price-discriminate and offer buyer-specific prices.

The endogenous choice of firms’ supplier sets Ji is dictated by cost minimization:
per (2), firms select for any task k the eligible supplier j that offers the lowest effective
price Pijk. The latter can be decomposed, for all j ∈ Sz(k), as:

Pijk =
µijkCjτij
exp (εijk)

, (3)

where µijk is a task-specific mark-up on j’s marginal cost Cj; εijk is a match-specific
random shock that measures how convenient it is, in relative terms, for firm i to source
specifically from firm j for task k; while τij ≥ 1 is a measure of total matching frictions

20The saliency parameters as well as Ai play only a small role in our framework. The i subscript
in α0i indicates that we allow firms to be heterogeneous in their intensity of labor utilization.
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akin to iceberg costs in models of international trade and economic geography, which
effectively inflate the cost borne by a firm for its inputs, because only a fraction τ−1

ij

of the inputs that are paid for can be actually used by firm i.
The τij measure is central in our framework, as it encodes those dyadic observable

variables whose effect on linkage formation we aim to estimate. More specifically:

τij = τij (zij) = exp
(
β0 − z′

ijβ
)

(4)

where zij = (Zij1, . . . , ZijQ) is a vector of some Q dyadic observable characteristics,
β = (β1, . . . ,βQ) is a vector of associated parameters, whereas β0 ≥ 0 is a constant,
which vanishes in estimation, that can be arbitrarily set to ensure that β0−z′

ijβ ≥ 0

(and hence, τij ≥ 1) always holds. The most straightforward example of a dyadic Zij

variable is a direct measure of travel costs, such as spatial distance or travel times.
Other examples may be setting- or data-specific: to make a few of them, a Zij variable
may encode some exogenous policy treatment (say, a governmental policy that favors
linkages between firms with selected characteristics) or more micro-level information
about firms (like the existence of personal connections between their workers, possibly
due to those workers’ prior careers, provided that these can be observed). Our model
clearly accommodates also variables that only vary at the level of the seller j.

A major motivation for this framework is that prices are typically not observed
separately from quantities in real-world transactions, but even if they were, we would
never be able to observe the prices for unrealized transactions (which did not occur).
Both considerations make the estimation of β via some variation of (3) impractical, if
not altogether unfeasible. We thus propose an indirect approach based on a multino-
mial logit of supplier choice derived from (3). To construct it, we need two additional
assumptions: a distributional one about the shock εijk, and one about the formation
of mark-ups in equilibrium. A rigorous treatment of the latter would require closing
the model and fully characterizing its equilibria, but to the detriment of exposition.
Thus, here we only outline a limited assumption about supplier pricing behavior, and
we defer a more extended discussion of the model to Appendix C.

Assumption 3. Potential suppliers compete à la Bertrand and enact limit pricing.

This assumption states that in equilibrium, all suppliers offer marginal cost pricing
for a given task, except the one that can provide the ex ante (before mark-up) most
favorable conditions. This supplier is able to charge a mark-up that makes its effective
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price (almost) equal to the second best’s; we leave a formal characterization to the
appendix. Thus, taking the marginal costs of all eligible suppliers as given, the optimal
choice for buyer’s i task k, denoted as j∗ (i, k), follows from (3) and (4) as:

j∗ (i, k) = argmax
j∈Sz(k)

γj + z′
ijβ+ εijk (5)

where γj ≡ − logCj. In what follows, we name the collection {γj}j∈I the seller fixed
effects. While intuitive, this denomination can be misleading: these quantities, which
are inversely related to marginal costs, are not really “fixed,” but rather endogenous
and recursively dependent, as an inspection of (2), (3) and (5) would show. Intuitively,
sourcing tasks from cheaper upstream suppliers lowers a firm’s marginal cost, and
hence also that of its downstream buyers. However, the expression “fixed effects” is
useful to convey the idea that these quantities shift the probability to select a given
supplier across tasks, and that they pose a challenge for our econometric approach.

Assumption 4. The εijk shocks are known by firms under perfect information; they
are exogenous and mutually independent across buyers, suppliers and tasks; and they
all follow a standard Gumbel (type I extreme value) distribution.

This is a typical assumption that conveniently yields a multinomial logit expression
for the probability of choosing a given supplier for a task. However, it is not the only
hypothesis that would deliver it, exactly or approximately: alternatives are discussed
in Appendix C. Following a standard derivation, conditional on the fixed effects of the
eligible suppliers ℓ ∈ Sz(k): γℓ, and conditional also on the dyadic “friction” variables
ziℓ, the probability that supplier j is chosen for task k obtains as:

P
(
j∗ (i, k) = j

∣∣∣ {(γℓ, ziℓ)}ℓ∈Sz(k)

)
=

exp
(
γj + z′

ijβ
)∑

ℓ∈Sz(k)
exp (γℓ + z′

iℓβ)
. (6)

This familiar expression is not very amenable to estimation in this setting due to
the challenge posed by the fixed effects γj, which is threefold. First, estimating tens
of thousands of fixed effects can be computationally very expensive, if at all feasible.
Second, many buyers and sellers only appear in a handful of transactions, which can
cause or amplify the incidental parameter problem. Third, the seller fixed effects are
themselves endogenous, as they co-vary with G. A possible solution is to condition the
likelihood function on the full {γj}j∈I sequence: this would require to either observe,
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compute, or estimate firms’ marginal costs via external information, which might be
data-demanding and subject to assumptions and statistical uncertainty; alternatively,
one could establish assumptions that allow to solve for the fixed effects in closed form,
which is the route pursued by Panigrahi (2023). On the other hand, omitting the seller
fixed effects γj from estimation would yield inconsistent estimates if firms’ marginal
costs correlate with the friction variables zij of their potential matches; for example
if, because of agglomeration economies, those potential suppliers that are closer to a
buyer in geographical space tend to be also more productive, on average.

We solve the problem via a sufficient statistic approach à la Chamberlain (1980),
which conditions in particular on the observed sequence of each seller’s total number
of customers (the “out-degree” of the production network). To illustrate our key result
it is useful to establish some additional notation. Let hij = |{ℓ ∈ Ji : ℓ = j}| be the
number of times that a firm j is selected as the supplier for any of firm i’s tasks, for
some (possibly non-optimal) Ji and for any pair (i, j) ∈ I2. Let gij be the value of
hij that occurs in the data.21 By construction, hij = gij = 0 if i = j. Let H and G be
the adjacency matrices of size N ×N that array the hij and gij values, respectively.
Let Hs be the subset of columns of H such that j ∈ Ss, and arrayed into an N ×|Ss|
matrix; define Gs analogously. Let d = (D1, . . . , DN) be the out-degree sequence that
collects the observed counts of all tasks sourced to each seller, with Dj =

∑
i∈I gij for

j = 1, . . . , N . Lastly, let Z = {z1j, . . . ,zNj}j∈I . Our main result follows.

Proposition 1. By conditioning on the out-degree sequence d, one can formulate the
following likelihood function for β:

L (β|d,G,Z) =
S∏

s=1

exp
(∑

i∈I
∑

j∈Ss
gijz

′
ijβ
)

∑
Hs∈Hs

exp
(∑

i∈I
∑

j∈Ss
hijz′

ijβ
) (7)

where:

Hs ≡

{
Hs :

∑
i∈I

(hij − gij) = 0 ∀j ∈ Ss,
∑
j∈Ss

(hij − gij) = 0 ∀i ∈ I

}
(8)

is defined as the collection of all potential Hs matrices that share the same “margins”
(sums along rows and sums along columns) as Gs, for s = 1, . . . , S.

21According to our model, this is the value that emerges from buyers’ optimal choices. Formally,
gij = |{ℓ ∈ J ∗

i : ℓ = j}| for J ∗
i ≡

⋃
k∈Ki

j∗ (i, k), and for any (i, j) ∈ I2.
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The likelihood function (7) features no seller fixed effects, similarly to applications
of the sufficient statistic approach to (binary or multinomial) logit models for panel
data. With respect to the latter, our approach presents two distinctive features. First,
rather than conditioning on “success counts” (here, the number of tasks-inputs that a
firm supplies) that occur over time, our approach exploits the spatial dimension given
by the network: intuitively, the number of buyers a firm displays at any point in time
conveys information about how intrinsically convenient that particular firm-seller is
for all its potential buyers. Second, the sets of alternatives in the denominator, which
is defined in (8), also constrains the sectoral in-degree of buyers (the number of tasks-
inputs that a firm sources from a given sector). This follows from Assumption 2 and
bears two implications: as argued, it disciplines the ability of the model to reproduce
empirical facts, and it facilitates the implementation of our approach for reasons to be
discussed shortly. By segregating task choices across sectors, we construct a likelihood
function based on the probability that some collection of subnetworks, each restricted
to sellers from a particular sector, is the one being actually observed. This probability
is defined over a sample space restricted to collections that share both in-degree and
out-degree sequences across all sectors. Graph 2 below illustrates this idea, extending
the representation from Graph 1 to allow for two different seller sectors (“A” and “B”).
This way, the graph captures a key dimension of the likelihood function (7).
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Graph 2: Two network configurations with two distinct seller sectors

Notes. This graph represents two alternative network configurations (similarly as in Figure 1, although
displayed on two distinct panels: left and right), with identical out-degree and in-degree for two distinct
seller sectors (“A” and “B”). Using our notation, they correspond to two distinct (HA,HB) pairs. The
edges need not be configuration-specific: a typical linkage usually appears in multiple configurations.
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To obtain a maximum likelihood estimator from (7), one should in principle specify
all sets Hs for s = 1, . . . , S. If feasible at all, this is a very computationally demanding
task for sectors featuring even a moderate number of sellers, and their corresponding
buyers. Thus, we propose an approach based on the random sampling of the elements
of Hs across sectors, which builds on McFadden (1978) and D’Haultfœuille and Iaria
(2016), and that allows for a consistent, feasible estimator at the cost of an efficiency
loss. This is expressed as our next result.

Proposition 2. We define the Random Subnetwork Logit (RSL) estimator of β as:

β̂RSL = argmax
β∈RQ

S∏
s=1

exp
(∑

i∈I
∑

j∈Ss
gijz

′
ijβ
)

∑
Hs∈H∗

s
exp

(∑
i∈I
∑

j∈Ss
hijz′

ijβ
) (9)

where, for s = 1, . . . , S, H∗
s is a random collection of possibly repeated elements of

Hs which satisfies the uniform conditioning property, i.e. for any two H ′
s ∈ H∗

s and
H ′′

s ∈ H∗
s, and for Zs = {z1j, . . . ,zNj}j∈Ss

:

P (H∗
s|Gs = H ′

s;Zs) = P (H∗
s|Gs = H ′′

s ;Zs) . (10)

The RSL estimator thus defined is consistent and asymptotically normal, but is less
efficient than an unfeasible estimator based on the maximization of (7).

To implement the RSL estimator, it is necessary to draw the H∗
s collections via a

sampling scheme that is consistent with (10). We propose the following approach: to
construct each H∗

s collection as the union of Gs together with Rs more elements of
Hs that are uniformly sampled with replacement.22 In this setting, uniform sampling
from Hs corresponds with the well-studied problem of uniformly sampling matrices
with given row and column sums. The algorithm by Patefield (1981) is an established,
fast solution to this problem, and it is easy to implement;23 we adopt it in both our
Monte Carlo simulations as well as in our empirical application. Assumption 2 is key
for this approach, as it imposes constant row-sums across the elements of Hs. Because

22This means making Rs identical random draws where each element of Hs, including the observed
subnetwork Gs itself, can occur with probability equal to the inverse of the dimension of the Hs set.
It is straightforward to see that this complies with the uniform conditioning property. This scheme
is independent of Z; note that (10) also conditions on Zs for notational consistency with the proof
of the proposition (see Appendix B).

23See e.g. function r2dtable() from the stats package for the R computing language.
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random sampling with replacement can possibly return multiple realizations of the
same subnetwork Hs (including Gs itself), the statement of the proposition explicitly
allows for repeated elements in H∗

s. This is novel in the practice of multinomial logit
estimation; thus, we show in the proof of the proposition that this does not affect the
asymptotics of the RSL estimator.

A typical issue with sufficient statistic approaches to fixed effects in logit models
is that the interpretation of the estimated parameters is hampered by the inability to
observe the fixed effects and thus evaluate marginal effects. However, the seller fixed
effects in our framework have a structural interpretation in terms of marginal costs.
Hence, marginal effects can still be calculated via (6) for a hypothetical distribution
of sectoral fixed costs which is empirically plausible, possibly informed via a separate
exercise in cost function estimation. This does not invalidate one of the motivations
for our approach: to enable consistent estimation of β even if firms’ marginal costs are
unknown. In fact, one can draw meaningful interpretations of the RSL estimates in
terms of marginal effects even via uncertain estimates or hypothetical guesses of the
marginal costs. We provide more concrete examples in our discussion of the empirical
application.

3.2 Longitudinal framework

Typical firm-to-firm transaction data possess a time dimension, which is ideally fully
exploited for the sake of estimating β; this is even more important if some Zij variables
of interest feature variation over time, as in our empirical application. In what follows,
we extend the cross-sectional framework developed thus far to allow for a longitudinal
dimension of the data. In the rest of this section, we index time as t = 1, . . . , T , where
t is either a subscript or an argument of the variables and functions introduced earlier,
and T is the number of time periods observed in the data. In case of mild ambiguity,
we clarify the use of the index more explicitly. We allow the set of firms observed at
time t in the economy, which we denote as Id

t , to change over time; in addition, we
write Id =

⋃T
t=1 Id

t . This implies variation in the composition of sectors over time,
though the number of sectors is fixed at S. We write the set of local firms from sector
s that are observed at time t as Sd

st. The upperscript d, for reasons that are to be
clarified immediately, stands throughout for “domestic.”

Longitudinal data pose two main issues. First, firms are observed to change over
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time the set of sectors which they source from; this makes Assumptions 1 and 2 too
restrictive in their present formulation. Since we adopt the view that the requirements
of production encoded by the task sets Ki (note the lack of the t subscript) are fixed
in the short run, buyers must be substituting domestic suppliers either with foreign
ones, or with in-house execution of tasks. Import relationships with foreign suppliers
are not stable either,24 suggesting that the model should accommodate the choice of
individual foreign supplier firms. Second, transactions are highly persistent in time, as
per our discussion of Fact 3. To incorporate this feature into our framework, one can
make the error terms εijkt dependent over time, or introduce structural dependence in
zijt (for example, via a dummy variable that identifies past transactions) or both. We
mainly pursue the former approach; we also discuss what additional complications or
assumptions would be entailed by the latter.

In what follows, we outline a version of our framework that allows us to extend our
RSL estimator to longitudinal transaction data. To this end, we replace Assumptions
1 and 4 with “augmented” versions of them, enumerated as 1a and 4a. Furthermore,
we allow for foreign suppliers to provide inputs to domestic buyers. Specifically, we
let there be If

t foreign suppliers in each time period t, and we write If =
⋃T

t=1 I
f
t .

The latter set is partitioned between the same S sectors of domestic firms; we denote
the set of foreign suppliers that belong to sector s and that are available at time t by
Sf
st. The upperscript f , as opposed to d, means “foreign.” We keep slightly abusing

notation and use the j index to also denote individual foreign suppliers in If . Hence,
function s (j) can also associate a foreign supplier j ∈ If to a particular sector s. We
thus enable more options for domestic firms to fulfill their tasks.

Assumption 1a. To fulfill a task k ∈ Ki at time t, a firm i ∈ Id
t alternatively can:

a. use inputs supplied from only one firm j ∈ Id
t , j ̸= i; b. import them from a single

foreign firm j′ ∈ If
t ; or c. produce (“make”) them in-house.

This assumption introduces more realism into our model as it allows additional
options for firms to secure their production inputs, consistently with the observation
that buyers’ supplying sectors can change over time. In what follows, we partition Ki,
for every firm i ∈ Id

t and for every time period t, between the three subsets Kd
it, K

f
it,

and Km
it , which, respectively, collect tasks sourced to domestic firm, tasks sourced to

foreign firms, and tasks fulfilled internally (“make”). For any firm i, this partition can
24See Fitzgerald et al. (2023) for a recent study of the dynamics of international trade, although

more focused on exporters than on importers.
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change over time. Like in the static framework, restricting tasks in either Kd
it or Kf

it to
one supplier bears no loss of generality. The supplier function j (k) is interpreted here
according to the origin of suppliers (domestic or foreign); we express it formally as
j :
⋃T

t=1

⋃
i∈Id

t
Kd

it → Id and j :
⋃T

t=1

⋃
i∈Id

t
Kf

it → If . The supplier set at time t now
collects both types of suppliers: Jit ≡

⋃
n∈{d,f}

⋃
k∈Kn

it
j (k).25 With this notation, we

can keep Assumption 2 in its original wording; hence, Assumption 2 now also applies
to foreign suppliers, with the same interpretation as for the domestic ones.

If a firm chooses to execute a task k internally instead of relying on other sellers, it
establishes an internal division that employs some workers L0ikt hired specifically to
produce some substitute inputs Xikt. These inputs are obtained according to a simple
linear production function: Xikt = LiktMikt, where Mikt gives both the marginal and
the average product of labor. Furthermore, we decompose Mikt as a function of two
elements, as follows:

Mikt = exp
(
mis(k)t + ε0ikt

)
. (11)

Here, mis(k)t is a deterministic factor that is specific to firm i, sector s (k) and time t;
while ε0ikt is a task-specific random shock. One could think of mis(k)t as a function of
measurable firm-level variables such as the technological proximity of the firm’s own
output s (i) with that of sector z (k); however, such a function would not be identified
in our framework. Because the firm lacks the knowledge that is necessary to produce
the Xikt inputs, it must delegate the management of the division to an external agent,
who demands a compensation equal to (µ0ikt − 1)Wt, µ0ikt ≥ 1, per managed worker.
Ultimately, the firm spends P0ikt ≡ µ0iktWt for each worker hired in the division. The
agent-manager acts strategically and makes a “take-it-or-leave-it” request for µ0ikt at
the beginning of each period; if the division is not set up the agent’s payoff is zero.

In the time-varying version of the CES production function (1), the total factor
productivity Ait is understood as stochastic, whereas the saliency parameters α0i and
αk, as well as the elasticity of substitution σ, are treated for simplicity’s sake as fixed.
In this setup, the marginal cost of firm i at time t, given the supplier set Jit, is:

Cit =
1

Ait

(α0i

Wt

)σ−1

+
∑

n∈{d,f}

∑
k∈Kn

it

(
αk

Pij(k)kt

)σ−1

+
∑
k∈Km

it

(
αkMikt

P0ikt

)σ−1
 1

1−σ

, (12)

25The domestic production network at time t is given by
(
Id
t ,Gt

)
, with Gt ≡

⋃
i∈Id

t

⋃
k∈Kd

it
(i, j (k)).

The bipartite network of domestic buyers and foreign suppliers is obtained analogously.
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where Pijkt = µijktCjtτijt exp (−εijkt) is the longitudinal extension of (3). Note that
here, the marginal cost Cjt of foreign suppliers (for j ∈ If ) is exogenous to the model.
As in the static case, it is log τijt = β0 − z′

ijtβ; without loss of generality, zijt is the
same random vector of length Q whether j denotes a domestic or a foreign supplier.
Foreign suppliers set markups µijkt strategically as specified by Assumption 3, thereby
enacting limit pricing.

Every domestic firm i ∈ Id chooses an optimal partition of Ki between Kd
it, K

f
it and

Km
it in every time period t. To characterize buyers’ optimal choices, it is necessary to

make additional assumptions about the stochastic components of (12). The following
“augmented” version of Assumption 4 addresses the model’s random shocks.

Assumption 4a. For each firm i, task k and time t, the joint cumulative distribution
of the random vector εikt =

(
ε0ikt, {εijkt}j∈Sd

z(k)t
, {εijkt}j∈Sf

z(k)t

)
is given by:

Fε (εikt) = exp

− exp (−ε0ikt)−
∑

n∈{d,f}

 ∑
j∈Sn

z(k)t

exp

(
−εijkt
ρn

)ρn
i.e. a Generalized Extreme Value distribution in the sense of McFadden (1978), with
scale parameters (ρd, ρf ) ∈ (0, 1]2. In addition, the random vectors εikt are exogenous
and mutually independent across buyers and tasks.

This assumption is clearly conducive to a nested logit formulation of buyers’ choice
probabilities: this is appropriate in this setting, since importing inputs and especially
“making” them are distinctive options for the buyers. A nested logit model introduces
a correlation structure regulated by the two scale parameters ρd and ρf , such that any
comparison between the choice probabilities for two options of different kind (say, a
domestic supplier versus a foreign one) is not independent of irrelevant alternatives.26

Note that the statement of the assumption implicitly allows errors that are dependent
in time for the same buyer and task, which would lead to persistence in buyers’ choices.
In Appendix C we illustrate a simple model of random technological learning which,
under minimal distributional assumptions, leads to a time-dependent structure of the
shocks which complies with Assumption 4a. In short, firms learn in every period some
“techniques” that they can use to fulfill their buyers’ tasks, without forgetting them.

26To substantiate with a practical example, consider the problem of sourcing electric appliances.
Foreign suppliers may adopt different country standards for power outlets and plugs, which leads to
correlation between the εijkt shocks associated with them.
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Thus, suppliers always offer the techniques that deliver the best value εijkt. Results
from multivariate extreme value theory ensure that the joint distribution of the errors
is asymptotically as given in the assumption, provided that the dependence between
the original techniques shares the same nesting structure.27

We complete the description of the model by introducing a fifth assumption that
is specific to the longitudinal setting.

Assumption 5. For each firm i and time period t, the total factor productivity Ait

and the set of dyadic characteristics {zijt}j∈In (for n = d, f) are not Granger-caused
by the sequence of all past supplier sets expressed as

{
Jℓ(t−u)

}
ℓ∈Id

(t−u)

, for u ∈ N.

This assumption states that for every firm i, any variables of the Ait and zijt kind
are statistically independent, conditional on any other information possibly available
at time t (such as for example their own past realizations), of all past realizations of the
networks, both domestic and international. This rules out any structural dependence
in zijt; other examples where Assumption 5 is violated are those where Ait or some Zijt

variable (such as a measure of personal connections across employees of firms i and j)
are endogenous to past transactions. Observe that this assumption implicitly allows
time-dependence in either Ait or zijt (or both), which would make transactions more
persistent over time. Assumption 5 simplifies the analysis considerably, as it removes
the intertemporal dimension of the problem. Current networks cannot predict future
profits: thus, buyers simply pick for each of their tasks in Ki the option that appears
most cost-effective in the current period. It is possible to relax Assumption 5, but to
the detriment of exposition: our framework would still be well-specified if future state
variables were endogenous to current choices, but in a way that the most convenient
suppliers of today are expected to remain so in the future. We elaborate on this idea
in Appendix C, where we formally outline an assumption alternative to 5.

We can thus characterize buyers’ optimal choices in the longitudinal framework.
By Assumption 5, for every firm i and time t, a task k ∈ Ki is assigned to Km

it if and
only if the set:

Bikt ≡
{
j ∈

(
Sd
z(k)t ∪ Sf

z(k)t

)
: γjt + z′

ijtβ+ εijkt ≥ β0 − logWt +mis(k)t + ε0ikt

}
(13)

27The only restriction on the probability distribution that generates the original techniques is that
it falls within the “basins of attraction,” of the Gumbel or Fréchet cases; this includes a wide range of
distributions. In the multivariate case, additional assumptions on the strength of cross-dependence
may be necessary, see e.g. Genest and Rivest (1989).
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is empty, i.e. there is no convenient eligible supplier. In particular, (13) follows since
the agents who would manage the “make” divisions of a firm are strategic, and compete
against actual firm-suppliers; in equilibrium, they undercut their request for µ0ikt to
the level that makes buyers indifferent between “make” and the best eligible suppliers.
Conversely, task k is assigned to a supplier identified by the following function:

j∗ (i, k, t) = argmax
j∈Bikt

γjt + z′
ijtβ+ εijkt, (14)

if Bikt is nonempty. Hence, the “make” choice can also be expressed as j∗ (i, k, t) = ∅.
It follows from Assumption 4a that the all choice probabilities for domestic suppliers,
foreign suppliers and the “make” option take the familiar nested logit structure; these
are functions of the seller effects γjt = − logCjt, similarly to the cross-sectional case.

We can thus reformulate Proposition 1 by restricting the attention to a likelihood
function that conditions on the observations only from a single time period t. In what
follows, we maintain the use of the n = d, f upperscripts to represent information that
is specific to dyads and/or (sub)networks that involve domestic and foreign suppliers,
respectively. Thus, for example dd

t is the out-degree sequence of domestic firms at time
t, while Gf

t is the adjacency matrix that collects information about all tasks sourced
from foreign firms at t. We also introduce the random vector bnst = (Bn

1st, . . . , B
n
Ntst

),
where Bn

ist =
∑

j∈Sn
st
gijt for s = 1, . . . , S; gijt is the (i, j) entry of Gd

t or Gf
t depending

on context, and Nt is the size of Id
t ; bnst is thus the collection of in-degree sequences

for each sector of the economy, that is the total number of tasks that each domestic
firm sources at time t from firms of type n in sector s. Lastly, we gather all in-degree
sequences of a given type across sectors via the vector bnt = (bn1t, . . . , b

n
St). Our revised

proposition follows.

Proposition 3. Under the revised assumptions, and for n = d, f , by conditioning
in particular on both the in-degree and out-degree sequences bnt and dn

t observed at
time t, one can formulate the following likelihood function for the combined parameter
φn = β/ρn, for t = 1, . . . , T :

L (φn| bnt ,dn
t ,G

n
t ,Z

n
t ) =

S∏
s=1

exp
(∑

i∈Id
t

∑
j∈Sn

st
gijtz

′
ijtφ

n
)

∑
Hst∈Hn

st
exp

(∑
i∈Id

t

∑
j∈Sn

st
hijtz′

ijtφ
n
) , (15)

where Hn
st is defined as in (8) given Sn

st and the subnetwork Gn
st observed at time t.
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There are three key differences with Proposition 1. First, our result is expressed in
terms of the combined parameter sets φd and φf ; short of making more assumptions
or gathering external information that enables the calculation of the seller fixed effects
γjt = − logCjt, β is not identified under the current formulation of Assumption 4a.
Second, each of the two parameter sets is associated with a specific likelihood function,
which conditions on distinct observations. This arises from the structure of the nested
logit model which here formulates probabilities to select a given supplier conditional
on it being a domestic or a foreign one. Third, (15), unlike (7), explicitly conditions on
the observed in-degree sequences because these are now endogenous and incorporate
the outcome of the “make-or-buy” decision for each task; this follows from the nested
logit structure of the choice probabilities, as we show in the proof. Note that the Hst

matrices hold all in-degree and out-degree sequences fixed. This leads us to formulate
an RSL estimator adapted to the longitudinal dimension of the data.

Proposition 4. Under the revised assumptions, and for n = d, f , the RSL estimator
of φn is a quasi-maximum likelihood estimator (QMLE) defined as:

φ̂n
RSL = argmax

φ∈RQ

T∏
t=1

S∏
s=1

exp
(∑

i∈Id
t

∑
j∈Sn

st
gijz

′
ijφ
)

∑
Hst∈Hn∗

st
exp

(∑
i∈Id

t

∑
j∈Sn

st
hijz′

ijφ
) (16)

where, for s = 1, . . . , S and for t = 1, . . . , T , Hn∗
st is a random collection of possibly

repeated elements of Hn
st which satisfies the uniform conditioning property as in (10).

This RSL estimator is consistent and asymptotically normal; its asymptotic variance-
covariance matrix depends on the assumed time-dependence structure of the model.

The extended RSL estimator for the longitudinal framework is a QMLE, as stated
by the Proposition, because we allow for arbitrary time-dependence in the εijkt shocks.
Even if the structure of this dependence was relatively simple, the aggregation of all
dyad-level observations across subnetworks would make it difficult to formulate the
“true” likelihood function. This makes a QMLE approach suitable to this problem; in
the proof we show that this RSL estimator converges in probability to the true value
of φn by applying established results by White (1994) that extend Gourieroux et al.
(1984). To conduct statistical inference, we advocate clustered covariance estimation
of the standard errors, where a cluster is a collection of subnetworks for a particular
industry s observed at different points in time. In terms of practical implementation,
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the Hn∗
st collections shall be drawn with replacement via Patefield’s algorithm for each

combination of industry s and year t.
The RSL estimator specified in Proposition 4 can be independently calculated on

both the domestic production network (n = d) and the bipartite network based on
domestic buyers and foreign exporters (n = f). The latter requires observing detailed
cross-border transactions, which is typically obtained via customs data. Although
this can be useful in empirical studies on international trade, our main intention is to
show that our framework can accommodate substitution between domestic and foreign
suppliers, and yet φd can be estimated only using firm-to-firm domestic transaction
data. How to interpret such estimates? First, even if β is not identified separately of
ρd (or ρf ), the estimates of φ̂n

RSL can still be used to perform odds-ratio comparisons
between pairs of alternative counterfactual subnetworks, like in all logit models that
condition on fixed effects. Second, our framework does not prevent practictioners to
make more assumptions to facilitate the interpretation of the estimates. For example,
if one believes that foreign exporters are a more selected group than domestic firms,
it is reasonable to assume ρd = 1 while allowing for ρf ≤ 1. Hence, (16) would return
a consistent estimator of β (for n = d) which allows one to calculate marginal effects
on the probability that a single supplier is chosen, conditional on a task being sourced
domestically, under some assumptions on the distribution of sellers’ marginal costs.

3.3 Implementation and extensions

In this final part of the section, we discuss some miscellaneous issues about practical
implementation of the RSL estimator, as well as additional extensions of it.

Inferring the true (censored) task count. Typical firm-to-firm transaction data
do not enumerate the number of distinct purchases (“tasks”) of a buyer, as they merely
provide the total yearly amount of bilateral transactions; as discussed in Section 2,
this is also the case for our illustrative Costa Rican data. Hence, if according to our
framework’s lenses a firm sources more than one task from a distinct seller (gijt > 1),
this information is effectively censored. This can lead to misspecifying the likelihood
functions (7) or (15), possibly introducing biases in the estimates. To mitigate this
problem in practical applications, in what follows we suggest a data pre-processing
approach to infer the task count from actually observed transaction values, and which
builds upon our previous discussion of Fact 2.
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In our framework, the intensive margin of firm-to-firm transactions is determined
by input demand functions. Given (1), the cost share for one task k over total input
costs is:

PijkXijk

CiYi

=
(αk/Pijk)

σ−1

(α0i/W )σ−1 +
∑

k′∈Ki
(αk′/Pijk′)

σ−1 . (17)

Suppose that “similar” firms (e.g. firms in the same four-digits industry s), have equal
technologies, hence equal Ki sets and saliency parameters αk. Then any variation in
(17) across transactions that involve any buyer i ∈ Ss and any seller j ∈ Ss(k) should
depend on variation in the determinants of prices as per (3). It is not immediate to
see how this can lead to the type of multimodal distribution discussed in Fact 2. Our
favorite explanation for this is that the transaction values we observe are the sum of
multiple task-specific purchases obtained from a finite mixture of distributions, each
component of which corresponds to a given number of tasks in Ki. This suggests using
clustering algorithms designed for statistical mixture models to infer the number of
distinct transactions; we pursue this approach in our empirical application.28

Structural dynamics. A researcher may want to study how supplier choice depends
on a function of the past realizations of the network, say a dummy variable equal to
Zijt = 1

[
gij(t−1) > 0

]
. The resulting model would feature “structural dynamics:” the

frictions associated with bilateral transactions decrease after the first match, offering
an additional explanation of transaction persistence (Fact 3).29 However, structural
dynamics violates Assumption 5: our model would be misspecified as forward-looking
buyers must take into account the consequences that, in expectation, current choices
have on future profits. Introducing intertemporal buyer choice would entail analytical
complications that deserve separate research.

In Appendix C, we discuss alternatives to Assumptions 5 that allow for structural
dynamics. To build intuition, suppose that choosing a supplier j for two consecutive

28A related issue is the truncation problem due to administrative data not reporting transactions
below a certain threshold. Our framework can accommodate small transactions as a fourth decision
allowed by Assumption 4a: “buying inputs from the retail market” as final consumers do, implying
non-strategic markups. Thanks to our sufficient statistics approach, the RSL estimator would not be
affected by the addition of such a fourth option. However, per (17), even some formal transactions
may be truncated if both the buyer and the saliency parameter αk associated with a task k are too
small. This is an empirical issue that must be assessed by the researcher given the data at hand.

29This explanation can be related to the idea of fixed costs of transactions, which feature in a
number of (static) theoretical models of endogenous production networks (e.g. Bernard et al., 2022;
Dhyne et al., 2023) as the initial transaction in a sequence would imply a larger “set-up” cost.
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periods positively affects its future productivity in such a way that increases in the
seller fixed costs γj(t+1) offset the reduced frictions. So long as the “effect” of lagged
connections is small enough, in expectation the optimal supplier of today is also an-
ticipated to be the best option always in the future; hence the choice probabilities
are well-specified. Under such assumptions, the effect of past realizations of the net-
work is identified. Intuitively, this follows because unlike in the standard multinomial
logit with individual-alternative fixed effects and lagged dependent variables (Honoré
and Kyriazidou, 2000), our likelihood transformation is based on the network, rather
than the temporal dimension of the data. Motivated by this insight, in our empirical
application we experiment with a “transaction lag” dummy variable.

Sellers’ sectoral effects. Suppose that the match-specific shocks are actually given
by εijkt = ηs(i)jt + ε̃ijkt, where ηs(i)jt is a constant effect of seller j that is specific for
buyers from sector s (i): a seller’s sectoral effect ; while ε̃ijkt complies with Assumption
4a. This decomposition conveys the idea that firms are heterogeneous in their intrinsic
capacity to supply different sectors, which is a realistic hypothesis. In such a setting,
one could obtain an augmented version of the RSL estimator in (16) as:

φ̂n
RSL = argmax

φ∈RQ

T∏
t=1

S∏
s=1

S∏
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exp
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)
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szt
exp
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zt
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st
hijz′

ijφ
) , (18)

where Hn∗
szt is obtained via uniform draws from:

Hn
szt ≡

Hszt :
∑
i∈Sd

zt

(hijt − gijt) = 0 ∀j ∈ Sn
st,
∑
j∈Sn

st

(hijt − gijt) = 0 ∀i ∈ Sd
zt

 , (19)

while Hszt denotes a block of some adjacency matrix Hn
t which is restricted to sellers

from sector s and buyers from sector z. Intuitively, ηs(i)jt adds up to the seller fixed
effects γjt resulting in seller-and-buyer-sector effects; our likelihood transformation
would still remove such total effects if applied to every combination of buyer sector,
seller sector, and year; all the derivations are analogous. The implementation of this
extended RSL estimator does not pose special challenges, and the choice between (16)
and (18) shall be taken by the researcher.30

30We plan to study differences in statistical efficiency between the two estimators in future work.
We expect these to depend on the details of the clustering scheme.
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Random parameters. Our discussion so far has assumed that φn is constant across
buyers and sellers of different kinds, and over time. However, this implicit assumption
is easily relaxed when one allows for random parameters. Because the RSL estimator
is a multinomial logit, the situation where φn

st is a random parameter that varies by
the sector of sellers s and by year t is well understood: a leading case is that where
one assumes a more elaborate dependence structure than implied by Assumption 4a,
one where the scale parameters ρnst vary along s and t, then φn

st = β/ρnst and ρnst
may be treated as a random draw from an appropriate distribution (e.g. the Beta).
One can design even more elaborate random parameter schemes; suppose for example
that in the cross-sectional framework, log τij = β0−z′

ijβi, where βi is a buyer-specific
parameter set. Thus, (7) becomes:

L (β|d,G,Z) =
S∏

s=1

∫
RN

exp
(∑

i∈I
∑

j∈Ss
gijz

′
ijβij

)
∑

Hs∈Hs
exp

(∑
i∈I
∑

j∈Ss
hijz′

ijβij

)dFβ (βi) (20)

where Fβ (βi) is the joint distribution from which the random parameters are drawn.
A simulation-based RSL estimator would be obtained accordingly; in practice though,
it may be too computationally expensive because it would feature as many random
parameters as there are buyers in the data. Thus, the appropriate random parameters
scheme shall be evaluated in light of one’s particular data and setting.

4 Monte Carlo

Our RSL estimator is a variation of a multinomial logit: hence, if the transformation
of the likelihood function that motivates it is grounded on appropriate assumptions,
it is expected to have asymptotic properties that are acceptable in practice. However,
the mild complications involved in the construction of the H∗

s sets beg two questions:
to what extent do the RSL asymptotics depend upon the details of implementation,
and to what extent do they improve, if at all, upon alternative estimators that may be
mildly inconsistent, but at the same time simpler and more intuitive to implement?
While definite answers to these questions are not immediate to obtain, we conducted a
number of Monte Carlo experiments based on a streamlined version of our framework.
These experiments allow us to provide some tentative answers to our questions, which
are favorable to the RSL estimator and to a simple implementation of it.
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In each or our experiments we simulate 1,000 times a stylized economy observed
over “time,” setting all key parameters as constant. In each repetition we construct
S “sectors” each populated by Ns firms; these firms must choose “suppliers” from
pre-determined sectors. We simulate the task sets Ki for every firm i ∈ I via random
draws from a Poisson distribution with parameter λ; in particular, every firm i receives
S such draws, each corresponding with the number of tasks that must be sourced from
a sector s, including s (i). This determines the “technology” specific to a repetition,
which is kept constant over T “years.” In each year t, a different production network
is obtained by aggregating simulated “choices” given by:

j∗ (i, k, t) = argmax
j∈Ss(k)

γjt + βZijt + εijkt,

where γjt is randomly drawn from one of two distributions as discussed below; εijkt
is a random draw from the standard Gumbel distribution that is independent across
buyers, sellers, tasks as well as years; and, for any two firms (i, j) ∈ I2 and year t:

Zijt = ξϕijt + ζ |γit − γjt| ,

where ϕijt is a random draw from the standard normal distribution, whereas ξ and
ζ are two real parameters. If ζ ̸= 0 the simulation features endogeneity, since dyadic
characteristics are a function of the distance between two firms’ fixed effects. Hence,
depending on the sign of β and ζ firms are relatively more attracted to suppliers with
“fixed effects” γjt that are either closer to, or farther from, their own.31

This is a much sanitized version of our longitudinal framework, where the “make-
or-buy” problem, foreign suppliers, as well as time-dependence in the random shocks
are all removed. The latter choice in particular strikes a balance between simplicity
of the simulation and its adherence to a key feature of the model: the time-invariant,
exogenous task sets Ki. Network formation is also simplified in the simulations, as the
seller fixed effects γjt are exogenous random draws instead of being endogenous to the
choices themselves. Since we aim to compare the RSL estimator against an alternative
which is not designed to address the recursive structure of the fixed effects, we find

31If one thinks about Zijt for example as a measure of spatial distance, this particular specification
would be consistent, if ζ > 0, with the idea that Zijt correlates with productivity differentials at the
level of firm dyads. Conversely, if Zijt represents cross-firm connections (e.g. between their workers
or managers) we may expect ζ < 0 due to the operation of knowledge spillovers.
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it appropriate to remove such a feature; hence, our comparison must be interpreted
as a conservative one, conducted under conditions that are expected to be relatively
unfavorable to the RSL.32 We treat the fixed effects γjt as unobservable; hence, both
our competing estimators are computed using only the simulated values of the dyadic
variables Zijt and the simulated choices j∗ (i, k, t) at each repetition.

We compare RSL estimates of β against multinomial logit estimates where in lieu
of the seller fixed effects, we introduce κ dummy variables inspired by the “group fixed
effects” (GFE) approach by Bonhomme et al. (2022). Specifically, in every repetition
we assign each firm to one of κ groups following a k -means partition of the simulated
out-degree distribution; the intuition being, as in our sufficient statistics approach,
that higher γjt leads to higher Djt. Bonhomme et al. (2022) show that if the support
of unobserved heterogeneity is discrete and low-dimensional, their approach leads to a
consistent estimator of the parameters of interest; we conjecture that this may apply
to our setting, and perhaps deliver an estimator that is even more performant (in
terms of mean squared error) than RSL. Furthermore, we conjecture that even if the
support of γjt was continuous (which is arguably more realistic), such a GFE-based
approach may be a viable option if it traded off a small bias for improved precision, in
addition to being likely easier to implement in practice. To evaluate both conjectures
we conduct two groups of experiments: one where exp (γjt) has a continuous support,
being drawn at every repetition for each firm-year from a Type I Pareto distribution
with unit scale parameter and tail index equal to two, and one with discrete support,
where draws are taken from a geometric distribution with parameter 0.5, and are then
increased by one unit. All draws are independent over pseudo-time for each firm j.

Table 2 provides a summary of our Monte Carlo results for fifty combinations of
estimators and experiments. We examine five estimators: two variations of the RSL,
which differ by the number R ∈ {5, 20} of random subnetworks Hst that, along with
the “observed” Gst ones, enter the construction of each H∗

st set; and three variations of
the GFE-augmented multinomial logit, for κ ∈ {3, 6, 12}. Each group of experiments
(continuous versus discrete fixed effects) features five variations, symmetrical across
groups. In our baseline we set (S, T ) = (10, 10) as well as (λ, ξ, ζ) = (0.10, 0.25, 0.25);
in addition, sectors are ex ante symmetric, each being made up of fifty pseudo-firms.

32To introduce recursive fixed effects in the simulation, one must model firm production functions
explicitly and introduce an algorithm which iteratively searches for one combination of firms’ choices
and fixed effects such that the former are optimal, and the latter are determined by the production
functions evaluated at the given choices.

31



Variations of this baseline are obtained either by perturbing one of the parameters or
by changing the size of sectors while keeping the size of the pseudo-economy constant.
Across all experiments the parameter of interest is β = 1.

Table 2: Monte Carlo simulations

Estimator Base λ = 0.2 ξ = 0.0 ζ = 0.1 HSS

Continuous fixed effects

RSL, R = 5 1.004 1.019 1.017 1.009 1.010
(0.122) (0.174) (0.199) (0.119) (0.120)

RSL, R = 20 1.006 1.007 1.010 1.003 1.002
(0.087) (0.103) (0.179) (0.087) (0.089)

GFE, κ = 3 1.827 1.828 4.374 1.360 1.810
(0.180) (0.165) (0.551) (0.086) (0.173)

GFE, κ = 6 1.839 1.886 4.269 1.356 1.835
(0.138) (0.129) (0.397) (0.078) (0.131)

GFE, κ = 12 1.742 1.893 3.921 1.320 1.749
(0.124) (0.106) (0.320) (0.076) (0.119)

Discrete fixed effects

RSL, R = 5 1.008 1.014 1.003 1.006 1.003
(0.126) (0.193) (0.163) (0.110) (0.122)

RSL, R = 20 1.006 1.001 0.996 1.002 1.004
(0.086) (0.103) (0.140) (0.083) (0.085)

GFE, κ = 3 1.378 1.387 2.837 1.176 1.373
(0.090) (0.080) (0.368) (0.065) (0.084)

GFE, κ = 6 1.332 1.397 2.563 1.153 1.342
(0.073) (0.054) (0.257) (0.060) (0.068)

GFE, κ = 12 1.271 1.359 2.260 1.125 1.290
(0.064) (0.049) (0.201) (0.059) (0.060)

Notes. This table reports the results of the Monte Carlo simulations described in the text. For each
experiment, we report the results obtained across five estimators: the RSL estimator for R ∈ {5, 20},
and the GFE estimator based upon k-means partitions of the out-degree sequences for κ ∈ {3, 6, 12} as
described in the text. For each combination of experiment and estimator, the table reports the median
of the estimated β coefficient across 1,000 repetitions and, in parentheses, the corresponding standard
deviation. Baseline (“Base”) experiments are all based on (S, T ) = (10, 10), (λ, ξ, ζ) = (0.10, 0.25, 0.25),
and “sectors” of homogeneous size Ns = 50. Other experiments follow either from manipulating one
parameter in (λ, ξ, ζ) as indicated in the table’s header, or through heterogeneous sector sizes (“HSS”)
with four sectors of size Ns = 30, two of size Ns = 40, two of size Ns = 50, and two of size Ns = 100.
All experiments are conducted with either continuous or discrete fixed effects, as described in the text;
each group is reported in one of the two panels in the table: respectively, top and bottom.
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The results show that across all experiments, the median RSL estimate is always
virtually equal to one; the associated standard deviations are one order of magnitude
smaller. The latter decrease as expected when we increase R: the number of sampled
alternative subnetworks; yet the difference does not appear pronounced, except for the
experiment variation where we set λ = 0.2, implying that the simulated networks are
denser: in this case, the standard deviation falls by almost 50 per cent. By contrast,
our adapted GFE logit appears markedly biased across all experiments, with median
estimates up to about 4.4 times the true parameter. As expected, the bias is larger the
higher the proportion of Zijt’s variance that is explained by the fixed effects (higher
ξ and/or lower ζ) and under continuous, rather than discrete fixed effects. Network
density, as set by λ, does not seem to play a role. Furthermore, increasing the number
of dummies κ typically appears inconsequential, with one exception: the experiment
most favorable to GFE, the one with milder endogeneity (ζ = 0.1) and discrete fixed
effects. In this case, κ = 12 yields a median bias of about 12.5 per cent the true value,
but despite the precision gains, GFE is outcompeted by RSL even in that experiment.
Sector size does not appear to impact the estimates, neither for RSL nor for GFE.

In summary, our original concerns about the RSL estimator appear reassuringly
unfounded: the estimator is precise even for low values of R (which are obtained faster
in actual implementations) and a fairly small “effective” sample size ST . In addition,
the alternative estimator that we entertained, based on group fixed effects, does not
seem to be viable, even under conditions that are more favorable to it. In future work,
we plan to conduct additional simulations to examine the relative performance of the
RSL estimator under different setups, for example by allowing for time dependence
or by developing some of the extensions outlined in Section 3.3.

5 Empirical application

We employ the RSL estimator to study how transportation infrastructures and travel
distance affect buyers’ choice of suppliers and hence production network formation. In
particular, we focus on a major Costa Rican highway, the Ruta Nacional Primaria 27
(more simply, Ruta 27 ) that officially opened in 2010. Our expectation is that Ruta
27 has facilitated the formation of buyer-seller relationships across pairs of locations
that are directly or indirectly connected via the highway. Echoing the discussion by
Bernard et al. (2019) in their study of the Shinkansen high-speed train in Japan, such
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a result would identify a particular channel by which infrastructures benefit economic
activity: lowered input costs due to the ability to connect with better suppliers that
are located farther away. The RSL estimator allows one to evaluate such a mechanism
within a structural model of buyer choice based on cost minimization.

The Ruta 27 is a strategic piece of infrastructure: it connects Costa Rica’s Greater
Metropolitan Area, encompassing the capital San José and home to about 60 per cent
of the country’s population, with Caldera, the main seaport along the Pacific coast.
Originally designed in 1978, the Ruta 27 was plagued by construction delays caused
by financial and political issues. When it officially opened in early 2010, segments of
the highway were still incomplete; the Ruta 27 only became fully functional in 2011.
At present, passage through the highway is typically optimal when planning a land
route between San José and some location in one of the two Costa Rican “provinces”
adjacent to the Pacific Ocean, and vice versa; this is due to the particular orography
of the country, as mountain ranges hinder more direct connections between the center
of Costa Rica and both its westernmost and southernmost tips (see Figure 4). This
fact informs one of the two empirical specifications that we examine.

Figure 4: Costa Rican geography and the Ruta 27

Notes. This map of Costa Rica represents: (a) the altitude of the country, displayed via shaded reliefs;
(b) the two endpoints of the Ruta 27, namely the capital city of San José and the seaport of Caldera;
(c) the borders of the seven provinces (first-level administrative division) of Costa Rica. The latter
are colored according to the role played by a province in defining our dyadic binary treatment: first
side (San José, red); second side (Puntarenas or Guanacaste, orange); untreated (others, grey).
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To evaluate the effect of Ruta 27 on buyer choice, we estimate two specifications
of the linear combination z′

ijtβ. The first is based on a binary dyadic treatment that
equals one if one of firms i and j is located in the province of San José (delimited by red
borders in Figure 4), the other is located in either the Guanacaste or the Puntarenas
province (orange borders), and t is 2011 or later; the dyadic treatement is otherwise
zero. Dyads based on any other province pair are never treated. In this specification
we nonparametrically control for the overall distance between two firms by introducing
ten dummy variables in zijt, one for each decile of the empirical distribution of dyadic
commuting distances ; these are calculated as the lengths of the shortest land routes
connecting the centroids of the cantons (second-level administrative division33) where
the two firms in a dyad are established.34 One can interpret this specification, and the
conditional choice probabilities it implies, under the familiar differences-in-differences
framework. Our second specification is based on a simple continuous regressor, defined
as the logarithm of the shortest travel time between any pair of cantons (calculated
via a Google Maps API); however, for years antecedent to 2011, we do not allow the
Ruta 27 to be covered by the calculated paths. In this case, the effect of the Ruta 27
is evaluated in terms of the marginal reduction in travel times. In both specifications
we treat firm locations, which are fixed in our data, as predetermined.

We include additional dyadic controls in both our specifications. All our estimates
include dummy variables that equal one if two firms are located in the same province,
and are zero otherwise. In selected estimates we include three other dyadic controls,
namely: the logarithmic “size ratio” (seller’s employees divided by buyer’s employees)
capturing the role of seller size in linkage formation, inspired by Bernard et al. (2022);
the logarithmic “trade relative exposure” (seller’s imports plus one divided by buyer’s
exports plus one, adding ones accounts for observed zeroes), a measure we conjecture
correlates with a seller’s attractiveness, as access to foreign inputs could make sellers
more valuable; lastly, in some specifications we introduce structural time-depedence
via a dummy variable that equals one if the two firms were transacting in the previous
year, and that is zero otherwise. The terms in the denominators of the two controls
defined as log-ratios are normalization factors that help interpret the measures; they

33Costa Rica is partitioned into seven provinces (first-level administrative division) and eighty-four
cantons (second-level). Each canton is entirely contained within the borders of a province.

34Calculations do not consider land routes passing through the Ruta 27. However, this is irrelevant:
other routes between San José and Caldera have length comparable to that of the Ruta 27, but due
to characteristics of the roads, they require about twice the travel time to be traversed.
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do not affect neither the logit probabilities nor the estimates. For sure, the compliance
of these measures with Assumption 5 is at best debatable, and the lagged transaction
variable mechanically violates it; while our framework could still accommodate these
variables under weaker assumptions, our primary objective is to assess the sensitivity
of the parameters related to Ruta 27 to the inclusion of additional controls.

Table 3: Empirical application: descriptive statistics

Dyadic variable Actual transactions Sampled alternatives

Treatment (“Ruta 27”) 0.050 (0.218) 0.075 (0.263)
log(Commuting distance) 3.019 (1.484) 3.701 (1.356)
log(Travel time) 3.203 (1.769) 3.969 (1.443)
log(Size ratio) 0.622 (3.073) – 1.602 (2.570)
log(Trade relative exposure) 6.426 (9.322) 0.706 (8.160)
Same province 0.465 (0.499) 0.304 (0.460)
Transaction at t− 1 0.578 (0.494) 0.007 (0.082)
Notes. This table reports the mean and, in parentheses, the standard deviation of all dyadic variables listed
in the left column, separately for firm pairs that are observed to transact in a year (“actual transactions”) and
for alternative pairs obtained by randomly sampling, without replacement, sellers sharing the same four-digits
sector with the observed one (“sampled alternatives”). Calculations are based upon all 2,192,003 transactions
from 2009 to 2011. For each observed transaction, up to five alternatives are sampled (if available), yielding on
average 5.993 dyads (0.118 standard deviation) associated with each observed transaction. The “Treatment,”
“Same province,” and “Transaction at t − 1” variables are coded as dichotomous dummies. The “commuting
distance” variable is expressed as the number of kilometers between two cantons’ centroids plus one, while
the “travel time” is measured as the duration of the commute estimated by Google maps in terms of hours
plus one. In both cases, adding one approximates the effective “door-to-door” journey. Source: Revec.

Table 3 displays descriptive statistics about the variables included in our empirical
analysis, separately for dyads that are actually observed to transact and for a sample
of “alternative dyads” such that in each of them, the seller shares its four-digits sector
with at least one of the buyer’s actual sellers. The table shows that sellers involved in
actual transactions are on average larger, make a much more intensive use of imported
inputs, and are typically closer in space, as it takes shorter distances and less time to
reach them; in addition, they are more often located in the same province. However, a
relatively lower share of observed transactions is exposed to Ruta 27 according to our
definition of binary treatment, since many firms located in the province of San José
transact with provinces never exposed to the treatment (colored grey in Figure 4).
Unsurprisingly in light of Fact 3, more than half of actual transactions were connected
in the previous year, while only a very few of the alternative dyads were.

Before performing RSL estimation we take some preparatory steps. Following the
discussion in Section 3.3, we first impute the number of “tasks” associated with each
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transaction. Specifically, we fit a gaussian mixture model with two components on the
transaction cost shares normalized across sector pairs (pooled over years); we assign
transactions to one of two groups according to their highest posterior mixture weight.
As a result, about three quarters of all transactions are classified as “one task,” the
others as “two tasks.” Second, we draw the random sets H∗

st via Patefield’s algorithm
for all subnetwork-year (s, t) combinations, setting R = 5 throughout. To avoid using
combinations where the observed subnetworks Gst are likely to be drawn repeatedly
(which would make the estimates harder to interpret) we drop subnetwork-years with
less than twenty observed transactions (a conservative threshold): about 19 per cent
of the total. Because our data feature 314 four-digit sectors and ten years, this results
in 2,425 effective observations (2,192 if all observations from 2008 are also dropped).
In Appendix D we provide further details about both preparatory steps; in particular,
we show that the empirical distribution of the share of transacting dyads exposed to
the Ruta 27 treatment is analogous across retained and dropped subnetworks, which
diminishes concerns about our data selection choices.

Table 4 displays our RSL estimates. Specifically, Panel A reports estimates based
on the binary treatment specification; Panel B reports those based on a continuous
“travel time” regressor. Column (1) of Panel A shows the parameter estimate for the
binary treatment in case no control variables are added to the specification: it equals
0.02, indicating that Ruta 27 makes transactions more likely across provinces, and it is
statistically significant at the 10 per cent level. Columns (2) through (4) show results
obtained by incrementally adding control variables: the point estimates for the Ruta
27 treatment become larger in magnitude, though also noisier. An analogous pattern
is observed in Panel B. The simple specification of column (5) yields a point estimate
equal to –0.008 for the logarithm of travel time, negative as expected; it is statistically
significant at the 1 per cent level. As shown in columns (6) through (8), adding more
controls generally yields estimates that are larger in magnitude, but still statistically
significant at the 1 per cent level. In both panels, the point estimates for the control
variables indicate that larger suppliers are less likely to be selected, while those that
import more of their inputs are more likely. Interestingly, the point estimate for the
“lagged transaction” dummy is only sizable and statistically significant in column (8)
from Panel B, and not in the corresponding Panel A specification. All estimates are
weighted by the number of transactions observed in each subnetwork, magnifying the
importance of larger sectors. This would yield estimates that are more representative
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of the whole economy in the likely case that the true parameters are heterogeneous.

Table 4: Empirical application: RSL estimates

Panel A: binary treatment specification
(1) (2) (3) (4)

Treatment (“Ruta 27”) 0.020* 0.025** 0.026 0.032
(0.011) (0.012) (0.016) (0.021)

log(Size ratio) – 0.004** – 0.002 – 0.008***
(0.002) (0.002) (0.003)

log(Trade relative exposure) 0.004*** 0.004***
(0.001) (0.001)

Transaction at t− 1 0.007
(0.007)

Distance decile controls YES YES YES YES
Same province controls YES YES YES YES
Akaike information criterion 175.71 164.31 112.94 89.21
Number of subnetworks 2,425 2,425 2,425 2,192

Panel B: continuous regressor specification
(5) (6) (7) (8)

log(Travel time) – 0.008*** – 0.007*** – 0.010*** – 0.018***
(0.0002) (0.0002) (0.0004) (0.004)

log(Size ratio) – 0.004*** 0.001 – 0.011**
(0.0004) (0.001) (0.005)

log(Trade relative exposure) 0.001*** 0.008***
(0.0003) (0.002)

Transaction at t− 1 0.096***
(0.011)

Same province controls YES YES YES YES
Akaike information criterion 512.02 536.40 455.64 34.84
Number of subnetworks 2,425 2,425 2,425 2,192
Notes. This table reports RSL estimates for the empirical application described in the text, for both specifications
(each associated to one of the two panels in the table). Both panels display four sets of estimates, with varying sets
of explanatory variables; at the bottom, they also report on the additional controls included, the computed Akaike
information criteria, as well as the total number of subnetworks ST associated with each set of estimates. All H∗

st
sets are constructed by sampling R = 5 alternatives (with replacement) using Patefield’s algorithm. Estimates are
weighted by subnetwork size, defined as the total number of both buyers and sellers associated with a subnetwork
in a year. Estimate sets (4) and (8) obtain after removing the first year of the data, i.e. 2008. Asterisk sequences *,
** and *** denote significance at the 10, 5, and 1 per cent level, respectively. Source: Revec.
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The interpretation of the estimates depends on context, and on the kind of thought
experiment one is willing to entertain. Consider for example a single buyer from the
San José area whose twenty potential sellers are evenly split between two locations:
one that is served by Ruta 27, and one that is not. Suppose that the sellers only differ
by their marginal costs Cjt, which do not depend on the actual choice of the buyer and
are randomly drawn from a log-normal distribution with standard parameters.35 It is
easy to calculate via simulations that an estimate of 0.025 for our binary treatment
yields an increase in the expected probability to pick a seller served by Ruta 27 by
1.24 percentage points. Noting that Ruta 27 decreases commuting times by about 80
minutes, an estimate of –0.01 for logarithmic travel time in the continuous regressor
specification implies instead an increase of the above probability by 0.66 percentage
points in case it originally took exactly three hours to reach either location. Let there
now be one hundred buyers, all located in San José. The same estimates return an
odds ratio between the probability that sixty of the selected suppliers are from the
location served by Ruta 27, and the probability that the choices are evenly split across
the two places, that is respectively equal to 1.284 (binary treatment case) and 1.061
(continuous regressor). These are all economically significant magnitudes.

In Appendix D we also report estimates from a “naive” multinomial logit model
where the contributions of the likelihood function are individual choice probabilities
similar to (6), where the alternatives in the denominator are randomly sampled from
the four-digits sector of the actually observed supplier and where, importantly, seller
fixed effects are utterly omitted. The point estimates are typically larger in magnitude
than those from Table 4; any exercise at interpreting them akin to those discussed
above is likely to return implausible effects and odds ratios. This suggests not only
that, as already shown in Section 4, failing to account for the fixed effects can seriously
bias one’s estimates, but also that the variables employed in this empirical application,
such as for example travel times, correlate with the unobserved productivity and cost-
effectiveness of sellers. See the Appendix for further discussion.

6 Conclusion

Economic research has shown that knowledge of a production network’s structure is
key to assessing how industries and economies react to shocks and policy interventions.

35Observe that this exercise is invariant to multiplicative transformations of Cjt.
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However, our knowledge of how production networks emerge from the aggregation of
many firms’ choices is still scant. This paper develops an econometric framework that
we envision being useful for empirical researchers aiming at uncovering the empirical
determinants of production network formation using firm-to-firm transaction data.
The framework we propose is quite flexible: we examined only a few of all the possible
extensions to the basic setup. It is, however, grounded on two premises that are likely
restrictive in some real-world settings. First, the extensive margin of transactions does
not imply any trade-off for sellers because these simply seek to maximize their buyer
sets. This might be inaccurate, say, under capacity constraints. Second, buyers and
sellers alike act under perfect information. This is likely unrealistic when firms make
choices in sectors or “subnetworks” populated by many agents (buyers and sellers).
We look forward to overcoming both limitations in future work.
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Abstrakt 

 

Tento článek se vytváří rámec pro empirickou analýzu determinantů volby dodavatele (na extenzivním 

marginu) s využitím firemních údajů o transakcích. Na základě teoretického modelu tvorby výrobních sítí 

charakterizujeme předpoklady, které umožňují transformaci multinomické logitové věrohodnostní funkce, 

z níž mizí fixní efekty prodávajícího, kódující mezní náklady. Tato transformace je pro každou dílčí síť 

omezena na jedno dodavatelské odvětví a podmíněna výstupním stupněm prodávajících (postačující 

statistika pro fixní efekt prodávajícího) a vstupním stupněm kupujících (který je dán technologií a 

rozhodnutími "vyrob nebo kup"). Tento přístup poskytuje konzistentní odhad vlivu dyadických 

vysvětlujících proměnných (které jsou v našem modelu interpretovány jako párovací frikce) na 

pravděpodobnost volby dodavatele. Odhad je snadno proveditelný a v simulacích Monte Carlo překonává 

alternativy založené na skupinových fixních efektech. V empirické aplikaci o vlivu velkého kostarického 

infrastrukturního projektu na propojení mezi firmami poskytuje náš přístup odhady, které jsou obvykle 

mnohem menší než odhady z naivního multinomického logitu. 



A The sectoral structure of the network: discussion
This appendix provides more evidence and discussion about the sectoral dimension of
firm-to-firm matching in the production network; this is aimed at providing additional
motivation to Assumption 2, which underpins our empirical framework. We start by
presenting the input-output matrix of the Costa Rican economy in graphical form
via Figure A.1. This shows that the Costa Rican production network is, like that of
other countries (and as one would expect), highly sparse, suggesting that technology
plays a fundamental role at shaping it.

Figure A.1: The Costa Rican input-output matrix

Notes. This figure depicts the input-output matrix of the Costa Rican economy. Each cell represents
a pair of sectors, one for buyers and one for sellers; the intensity of the color in a cell is proportional to
the total number of unidirectional transactions observed in it over time (2008-2017). Source: Revec.

Sparsity of the input-output matrix is not, however, per se enough to motivate the
hypothesis that the choices of individual buyer firms are technologically constrained,
as stated by Assumption 2; instead, it could be the outcome of a random process. To
elaborate, suppose that similar firms can potentially source their inputs from a subset
of sectors, but not necessarily always from all of these, as in the stylized, constructed
example in Table A.1, involving four buyer firms and four seller sectors that the former
can source from. There, buyers display some variation in their choice of sectors, but a
Fisher’s exact test of indepedence (better suited to contingency tables with low count
values than a Pearson’s chi-squared test) cannot reject the null hypothesis that their
“choices” are independent. Both sparsity of the input-output matrix and Figure 1 can
be rationalized by a “balls and bins” model where buyers choose their suppliers from
random sectors, provided that the average number of choices is sufficiently low.
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Table A.1: Random sourcing from sectors: a constructed example

Sector A Sector B Sector C Sector D Total
Buyer 1 1 2 1 1 5
Buyer 2 0 2 0 1 3
Buyer 3 1 1 2 0 4
Buyer 4 1 0 0 2 3
Total 3 5 3 4 15

Notes. This contingency table outlines a stylized, constructed example about a supplier choice pattern
consistent with the hypothesis that transactions are independent of the sellers’ sectors. A non-marginal
cell reports the number of distinct transactions that any buyer firm (rows) makes with seller firms from a
given sector (columns). A Fisher’s exact test of independence for this example yields a p-value of 0.679.

A scenario where buyers chose suppliers from random sectors would invalidate our
empirical framework, as the latter would impose undue constraints on buyers’ choices.
Thus, we test this hypothesis statistically. Specifically, we conduct a number of Fisher
exact tests, each restricted to all buyer firms from a given four-digits sector, pooling
all years in the data. For every such selection of buyer-year observations, we construct
a contingency table akin to A.1, though typically much larger. Figure A.2 displays the
p-values from the resulting Fisher exact tests via a histogram. Clearly, the evidence
overwhelmingly supports the favorable case where the choice of supplying sectors is
idiosyncratic for buyers, a central assumption of our empirical framework.

Figure A.2: Distribution of Fisher test p-values across four-digits sectors

Notes. This histogram displays the empirical distribution of the p-values from the Fisher exact tests
discussed in the text, one for each four-digit sector. The horizontal axis is cast on a logarithmic scale.
Source: Revec.
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B Proposition proofs
This appendix provides analytical derivations of the propositions from Section 3.

Proof of Proposition 1

We start from characterizing the probability mass function of the production network
G conditional on the sequence of seller fixed effects γj and the dyadic characteristics
zij. As we discuss in Appendix C, linkages are typically not pairwise independent and
the model can feature multiple equilibria. However, under our assumptions, the only
source of dependence lies in the recursive structure of sellers’ fixed effects. Hence, by
conditioning on these one can simplify the statistical characterization of the network.
Let γ = {γj}j∈I . We write the conditional mass function of the network as:

fG (G|γ,Z) =
∏
i∈I

∏
k∈Ki

∏
j∈I

[
P
(
j∗ (i, k) = j

∣∣∣γ,Z)]1[j∗(i,k)=j]

=
∏
i∈I

∏
k∈Ki

∏
j∈I

(
exp

(
γj + z′

ijβ
)∑

ℓ∈Sz(k)
exp (γℓ + z′

iℓβ)

)1[j∗(i,k)=j]

=
∏
i∈I

∏
j∈I

(
exp

(
γj + z′

ijβ
)∑

ℓ∈Ss(j)
exp (γℓ + z′

iℓβ)

)gij

,

(B.1)

where the second equality follows from Assumption 4 and from conditioning on both
γ and Z, while the third one follows from Assumption 2 and the definition of gij.

From (B.1) we can derive the mass function of the out-degree sequence d:

fd (d|γ,Z) =
∑
H∈H

fG (H|γ,Z)

=
∑
H∈H

∏
i∈I

∏
j∈I

(
exp

(
γj + z′

ijβ
)∑

ℓ∈Ss(j)
exp (γℓ + z′

iℓβ)

)hij

 ,

(B.2)

where H is defined as the set of networks that feature the out-degree sequence d, and
that are consistent with the assumptions of our model:

H ≡

{
H :

∑
i∈I

(hij − gij) = 0 ∀j ∈ I,
∑
j∈Ss

(hij − gij) = 0 ∀i ∈ I ∧ s = 1, . . . , S

}
.

Every matrix H ∈ H corresponds bijectively with a unique collection {Hs}Ss=1 where
Hs ∈ Hs for s = 1, . . . , S, with H resulting from (re-)joining the columns of all Hs

matrices according to their appropriate ordering along I. Thus, the Cartesian product
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×S
s=1Hs maps H one-to-one and onto. Armed with this observation, one obtains the

joint mass function of the network, conditional on the out-degree sequence, as:

fG|d (G|d,γ,Z) =
f(G,d) (G,d|γ,Z)

fd (d|γ,Z)

=
fG (G|γ,Z)

fd (d|γ,Z)

=
exp
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j∈I Djγj
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exp
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i∈I
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j∈I gijz
′
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(B.3)

where: the second equality follows from the fact that G implies d, hence the proba-
bilities in the numerators must coincide; the third equality follows from the definition
of Dj and the sectoral structure of buyers’ choice as prescribed by Assumption 2 and
embedded in the definition of H, which allows one to drop the denominators of (B.1)
and (B.2); the fourth equality drops the seller fixed effects; lastly, the manipulation
of the denominator in the fifth equality follows from the previous observation about
H. The likelihood function in (7) derives from (B.3); note that we drop γ from the
list of conditioned variables as it is implicit from conditioning on d.

Proof of Proposition 2

This is largely an application of existing results to our particular case. We will focus
on proving consistency under sampling schemes of the alternatives with replacement;
this extends the original results by McFadden (1978) which was restricted to sampled
subsets of the full set of alternatives. To proceed, it is useful to simplify some notation.
Recognizing that both (7) and the maximand in (9) represent likelihood functions for
the event that some collection of subnetworks is observed, we write for s = 1, . . . , S:

Φ
(
Gs

∣∣∣H̃s;Zs;β
)
=

exp
(∑

i∈I
∑

j∈Ss
gijz

′
ijβ
)

∑
Hs∈H̃s

exp
(∑

i∈I
∑

j∈Ss
hijz′

ijβ
)

where H̃s is some collection of, possibly repeated, elements of Hs (such as Hs, or H∗
s),

while Zs is the subset of Z restricted to those elements zij such that s (j) = s. The

B.2



RSL estimator thus maximizes the following log-likelihood function:

logL ∗ (β|d,G,Z) =
1

S

S∑
s=1

logΦ (Gs|H∗
s;Zs;β) . (B.4)

We show that the maximum of (B.4) converges to the true value of β, which we write
as β◦ (not to be mistaken for β0), as S → ∞.

Following McFadden (1978), the probability limit of (B.4) for S → ∞, accounting
for H∗

s being random and for sectors not being identically distributed, is:

plim logL ∗ (β|d,G,Z) = lim
S→∞

1

S

S∑
s=1

L (Gs,Hs,H∗
s,Zs;β) , (B.5)

where, for s = 1, . . . , S:
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∑

j∈Ss
hijz

′
ijβ◦

)
∑

Hs∈Hs
exp

(∑
i∈I
∑

j∈Ss
hijz′

ijβ◦

) ·

·
∑

Gs∈Hs

P (H∗
s|Gs;Zs)Φ (Gs|H∗

s;Zs;β◦) logΦ (Gs|H∗
s;Zs;β)

dFZ (Zs) ,

(B.6)

where Zs is the support of Zs; FZ (Zs) is the cumulative distribution function of Zs;
while Hs is the collection of all eligible H∗

s sets. Importantly, Hs is designed by the
econometrician and allows for sampling with replacement. If the uniform conditioning
property (10) holds, and regardless of whether subnetwork sampling is with or without
replacement, the P (H∗

s|Gs;Zs) terms reduce to a constant; thus, (B.5) is understood
as a weighted average of terms of the kind:∑

Gs∈Hs

Φ (Gs| · ;β◦) logΦ (Gs| · ;β)

where
∑

Gs∈Hs
Φ (Gs| · ;β) = 1. Hence, the maximum of (B.5) is unique and equals

β◦; moreover, by standard arguments the maximum of (B.4) converges in probability
to that of (B.5); therefore, the RSL estimator is consistent. This derivation is easily
extended to the case in which uniform conditioning does not hold but P (H∗

s|Gs;Zs)
is known by the econometrician, as in the original analysis by McFadden (1978).
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The other statements of the proposition are easily shown by the same arguments as
in D’Haultfœuille and Iaria (2016). Since this RSL estimator is a maximum likelihood
estimator, it is asymptotically normal with an asymptotic variance-covariance given
by the inverse of the information matrix, and a rate of convergence equal to the square
root of the number of addends of the log-likelihood function. By the standard algebra
of the multinomial logit, the RSL information matrix conditional on Z is:

IS

(
β̃RSL

∣∣∣Z) =
1

S

S∑
s=1

EHs

 ∑
Hs∈Hs

Φ
(
Hs

∣∣∣Hs;Zs;β◦

)
Z◦ (Hs)Z

′
◦ (Hs) −

−
∑

(Hs,Ks)∈H2
s

Φ
(
Hs

∣∣∣H∗
s;Zs;β◦

)
Φ
(
Ks

∣∣∣H∗
s;Zs;β◦

)
Z◦ (Hs)Z

′
◦ (Ks)

 , (B.7)

where Z◦ (Hs) ≡
∑

i∈I
∑

j∈Ss
hijz

′
ijβ◦ and all expectations are taken over the Hs sets.

The above is derived from (9) noting that the Φ (Hs| ·) probabilities are not identically
distributed across the S subnetworks, but are conditionally (on Z) independent per
Assumption 4. Since the information matrix of the unfeasible maximizer of (7) also
follows (B.7) but with singleton Hs sets which only contain Hs for s = 1, . . . , S, to
show that such an estimator is more efficient than any RSL estimator one shall show
that the matrices defined as:

Ms (Zs) ≡
∑

(Hs,Ks)∈H2
s

Z◦ (Hs)Z
′
◦ (Ks)Π (Hs,Ks|H∗

s;Zs;β◦) ,

where:

Π (Hs,Ks|H∗
s;Zs;β◦) ≡ EHs

[
Φ
(
Hs

∣∣∣H∗
s;Zs;β◦

)
Φ
(
Ks

∣∣∣H∗
s;Zs;β◦

)]
−

− Φ
(
Hs

∣∣∣Hs;Zs;β◦

)
Φ
(
Ks

∣∣∣Hs;Zs;β◦

)
, (B.8)

are symmetric positive matrices for s = 1, . . . , S. This follows from some algebraic
analysis as the (B.8) terms themselves can be arranged in symmetric positive matrices
with the same size as their corresponding Hs sets; see the supplementary material by
D’Haultfœuille and Iaria (2016) for a more detailed discussion of an analogous case.

Proof of Proposition 3

This is an extension of Proposition 1 which accounts for the nested logit structure of
the longitudinal setup. Before proceeding, it is useful to establish some more notation.
For all firms j ∈

(
Id ∪ If

)
, let χjt = γjt/ρn, where n = d if j ∈ Id while n = f if

j ∈ If . Let νikt ≡ β0− logWt+mis(k)t. Lastly, let Kis = |{k ∈ Ki : s (k) = s}| be the
number of tasks which firm i can only source from external suppliers of sector s. The
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probability that a domestic firm i chooses a supplier j ∈ In for task k ∈ Ki at time
t for n = d, f , conditional on the dyadic covariates zijt, the rescaled seller effects χjt,
and νikt, is obtained by Assumptions 3, 4a and 5 and for the reasons outlined in the
discussion of (13) and (14) in the text as:

P
(
j∗ (i, k, t) = j, j ∈ In

∣∣∣ {(χℓ, ziℓt)}ℓ∈
(
Sd
z(k)

∪Sf
z(k)

) , νikt
)

= ΨistnΨ ijt|n

where:

Ψiktn ≡ P
(
j∗ (i, k, t) ∈ In

∣∣∣·) =

[∑
ℓ∈Sn

z(k)t
exp (χℓt + z′

iℓtφ
n)
]ρn

exp (νikt) +
∑

ñ∈{d,f}

[∑
ℓ∈Sñ

z(k)t
exp (χℓt + z′

iℓtφ
ñ)
]ρñ

is the total probability that firm i chooses any supplier in In; and:

Ψ ijkt|n ≡ P
(
j∗ (i, k, t) = j

∣∣∣j∗ (i, k, t) ∈ In; ·
)
=

exp
(
χjt + z′

ijtφ
n
)∑

ℓ∈Sn
z(k)t

exp (χℓt + z′
iℓtφ

n)

is the probability that j is chosen conditional on the choice falling within the In set.
Similarly,

Ψiktm ≡ P
(
j∗ (i, k, t) = ∅

∣∣∣·) =
exp (νikt)

exp (νikt) +
∑

ñ∈{d,f}

[∑
ℓ∈Sñ

z(k)t
exp (χℓt + z′

iℓtφ
ñ)
]ρñ

is probability of the “make” choice. The expressions of the Ψiktd, Ψiktf and Ψiktm kind
are, for any given i and t, identical across task pairs (k, k′) such that s (k) = s (k′).

By extending (B.1), one obtains the joint mass function of the networks (domestic
and foreign) at t = 1, . . . , T , for χn

t = {χjt}j∈In
t

and νt = {νi1t, . . . ,νiSt}i∈Id
t
, as:

fG,G

(
Gd

t ,G
f
t

∣∣∣χd
t ,χ

f
t ,Z

d
t ,Z

f
t ,νt

)
=

=
∏
i∈Id

t

∏
k∈Ki

(Ψiktm)
1[j∗=∅]

∏
j∈Id

t

(
ΨiktdΨ ijkt|d

)1[j∗=j]
∏
j′∈If

t

(
ΨiktfΨ ij′kt|f

)1[j∗=j′]


=
∏
i∈Id

t

∏
j∈Id

t

Ψ
gijt
ijkt|d

∏
i∈Id

t

∏
j′∈If

t

Ψ
gij′t
ij′kt|f

S∏
s=1

∏
i∈Id

t

(Ψistm)
Kis−Bd

ist−Bf
ist (Ψistd)

Bd
ist (Ψistf )

Bf
ist ,

(B.9)

where j∗ is shorthand for j∗ (i, k, t). Note that it is not necessary to specify a random
vector which identifies the sequence of “make” choices for each firm in each sector of the
economy, since these are determined residually from the Kis exogenous constants. The
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first line of (B.9) follows from Assumption 4a, and in particular on the εikt random
vectors being independent across buyers i and tasks k given t. The decomposition in
the second line follows from the observation that all Ψiktn terms, for n = d, f,m and
given i and t, are identical across sectors (hence the replacement of the k subscript
with the s ones) as well as the fact that per Assumption 1a, j∗ (i, k, t) is a function
(tasks can be fulfilled by at most one supplier). Similarly, the joint mass function of
the in-degree sequences bdt and bft , for n = d, f and t = 1, . . . , T , is derived as:

fb,b

(
bdt , b

f
t

∣∣∣χd
t ,χ

f
t ,Z

d
t ,Z

f
t ,νt

)
=
∏
i∈Id

t

∏
k∈Ki

(Ψiktm)
1[j∗=∅] (Ψiktd)

1[j∗∈Id] (Ψiktf )
1[j∗∈If ]

=
S∏

s=1

∏
i∈Id

t

(Ψistm)
Kis−Bd

ist−Bf
ist (Ψistd)

Bd
ist (Ψistf )

Bf
ist .

(B.10)

Hence, the joint mass function of the networks, conditional on the in-degree sequences,
can be obtained as the ratio between (B.9) and (B.10), which in turn can be factorized
as follows, as the two networks of type d and f are conditionally independent:

fG,G|b,b

(
Gd

t ,G
f
t

∣∣∣ bdt , bft ,χd
t ,χ

f
t ,Z

d
t ,Z

f
t ,νt

)
=

fG,G

(
Gd

t ,G
f
t

∣∣∣ ·)
fb,b

(
bdt , b

f
t

∣∣∣ ·)
=

∏
n∈{d,f}

fG|b (G
n
t | bnt ,χn

t ,Z
n
t ) ,

where, for n = d, f and t = 1, . . . , T :

fG|b (G
n
t | bnt ,χn

t ,Z
n
t ) =

∏
i∈Id

t

∏
j∈In

t

(
exp

(
χjt + z′

ijtφ
n
)∑

ℓ∈Sn
z(k)t

exp (χℓt + z′
iℓtφ

n)

)gijt

. (B.11)

Note that the set of conditioned variables on the left-hand side of (B.11) only includes
variables of type n. This is admissible as one can show that for n = d, the bdt vector
is sufficient for the variables of the f type, and vice versa.

The derivation then proceeds as in the proof of Proposition 1: one first obtains the
mass function of the out-degree sequence dn

t of type n, which is a sufficient statistic
for the vector of rescaled fixed effects χn

t , for n = d, f ; hence, given a proper definition
of Hn

st, (15) is obtained from a derivation specular to (B.3); the details are omitted.

Proof of Proposition 4

This is an application of standard results in econometrics; one can derive the result in
two interrelated ways. The first is to acknowledge that the model delivers a categorical
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distribution representation of the probability to draw a specific subnetwork Hst ∈ Hn
st

for any Hn
st and for n = d, f , with the property that, given φn

◦ ≡ β◦/ρn:

E [1 [Gst = Hst]|Zst;β◦] = Φ (Hn
st|Hst;Z

n
st;φ

n
◦ ) (B.12)

for s = 1, . . . , S and t = 1, . . . , T . Note that since |Φ ( ·| ·)| < ∞ and the categorical
distribution belongs to the exponential family, the unfeasible subnetwork logit (USL)
estimator based on Hn

st instead of Hn∗
st and defined as:

φ̂n
USL = argmax

φ∈RQ

T∏
t=1

S∏
s=1

exp
(∑

i∈Id
t

∑
j∈Sn

st
gijz

′
ijφ
)

∑
Hst∈Hn

st
exp

(∑
i∈Id

t

∑
j∈Sn

st
hijz′

ijφ
) , (B.13)

satisfies the conditions of Theorem 5.4 and Corollary 5.5 by White (1994), which are
based on Gourieroux et al. (1984). Consequently, plimφ̂n

USL = φn
◦ . In addition, one

can adapt the proof of Proposition 2 to the longitudinal dimension; this would show
that plimφ̂n

USL = plimφ̂n
RSL = φn

◦ .
The second approach leverages the Method of Moments interpretation of QMLE.

Again by adapting the proof of Proposition 2, it is easy to show that:

E [∇φ logΦ (Gst|Hn∗
st ;Zst;φ

n
◦ )] = 0 (B.14)

for s = 1, . . . , S and t = 1, . . . , T . Hence, by standard arguments the RSL estimator is
consistent and asymptotically normal, with an asymptotic variance-covariance matrix
which is function of the data-dependence structure specific to a setting.
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C Extended discussion of the model
This appendix elaborates on selected features of both the theoretical and econometric
sides of the framework developed in Section 3 of the text, specifically: a. existence and
uniqueness of equilibrium; b. distributional assumptions on the task-specific shocks;
and c. extended assumptions that would enable structural dynamics.

Existence and uniqueness of equlibrium

This section rephrases results by Dhyne et al. (2023) in the context of our framework.
Its objective is to formalize the concept of equilibrium in our setting, and to clarify
under what assumptions equilibria exist and are unique. For the sake of simplicity, we
restrict the discussion to the “static” framework from Section 3.1 in the text: absent
structural dynamics, the results can be extended to the longitudinal model.

Demand side. We first introduce the consumers’ preferences, which we neglected in
the main text as they are not conducive to the development of the RSL estimator. As
in Dhyne et al. (2023) and many other contributions, we assume consumers to have
identical, homothetic CES preferences over the differentiated consumption goods sold
by the firms of our economy. The utility U of the representative consumer is thus:

U =

(∑
i∈I

(δiX
c
i )
ψ−1
ψ

) ψ
ψ−1

(C.1)

where Xc
i denotes the amount of the total output Yi of any firm i ∈ I that ends up in

the final consumer market (hence the upperscript c), δi measures how salient firm i’s
good is at determining consumer utility, while ψ > 1 is the elasticity of substitution.
This leads to a standard expressions for consumers’ final demand, for any i ∈ I:

Xc
i = P−ψ

i (δiP )ψ−1E (C.2)

where Pi (with only one subscript) is the price charged to final consumers, E is the
aggregate expenditure, whereas P (with no subscripts) is the domestic consumer price
index that satisfies:

P 1−ψ =
∑
i∈I

(
δi

Pi

)ψ−1

. (C.3)

Furthermore, the representative consumer supplies one unit of labor inelastically.

Structure of firm sales. Given (1) and (2), the share of costs that any firm i ∈ I
spends on a particular task k ∈ Ki, given Ji, is given by:

PijkXijk

CiYi

=
(αk/Pijk)

σ−1

Θi

(C.4)
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where Θi = (CiAi)
1−σ = (α0i/W )σ−1 +

∑
k∈Ki

(αk/Pijk)
σ−1 is, borrowing terminology

by Antràs et al. (2017), the sourcing capability of firm i. Similarly:

WLi

CiYi

=
(α0i/W )σ−1

Θi

(C.5)

is the wage bill over a firm’s cost. The total sales Υj of a firm j ∈ I are given by the
sum of sales to final consumers and sales to customer firms:

Υj = PjX
c
j +

∑
i∈I

∑
k∈Kij

PijkXijk

=

(
δjAjP

µc
j

)ψ−1

ΘjE +
∑
i∈I

∑
k∈Kij

(
αijkAj

µijk

)σ−1
Θj

Θi

Υi

µ̄i

(C.6)

where Kij ≡ {k ∈ Ki : j (k) = j} is the subset of all tasks Ki of a firm i ∈ I that are
supplied by j, given Ji; αijk ≡ αk exp (εijk); µc

j is the markup charged by firm j on
final consumers, while

µ̄j ≡
1

Yi

µc
jX

c
j +

∑
i∈I

∑
k∈Kij

µijkXijk

 (C.7)

is a firm’s “average” (quantity-weighted) markup. Note that the dyadic frictions τij do
not appear explicitly in (C.6) since, due to their “iceberg” nature, they are extra costs
borne by buyers not transferred to sellers; however, they appear implicitly through
the sourcing capabilities Θi, per (3), and through the markups µijk, as shown next.

Determination of markups. In our model the transaction-task-specific markups
µijk are governed by Assumption 3 on limit pricing. Hence, writing j∗ as shorthand
for j∗ (i, k) and j∗∗ as shorthand for j∗∗ (i, k), i.e. the second best eligible supplier for
a given task k of any firm i:

j∗∗ (i, k) = argmax
j∈{Sz(k)\j∗(i,k)}

γj − log τij + εijk (C.8)

we obtain:
µijk =

Cj∗∗

Cj∗

τij∗∗

τij∗
exp (εij∗k − εij∗∗k) . (C.9)

Final consumers are charged a monopolistically competitive markup:

µc
i =

ψ

ψ− 1
, (C.10)

for all i ∈ I. This is obtained as profit-maximizing firms treat Pψ−1E as given.
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Aggregation. Firm profits are distributed to consumer-workers:

E = WL+
∑
i∈I

(
1− 1

µ̄i

)
Υi (C.11)

where L is the total size of the economy. Moreover, for the labor market to clear,
total labor income must equal total labor costs:

WL =
∑
i∈I

Υi

µ̄i

(α0i/W )σ−1

Θi

. (C.12)

Equilibrium definitions. To expedite exposition, unlike Dhyne et al. (2023) here we
define only one type of equilibrium in which the network is endogenous, and matching
is initiated by buyers.

Definition C.1. In this economy, an equilibrium is the collection of: a. a network

G∗ ≡
⋃
i∈I

⋃
k∈Ki

(i, j∗ (i, k)) ;

b. a sequence of firm marginal costs {Ci}i∈I; c. a sequence of firm labor demands
{Li}i∈I; d. a sequence of price-quantity combinations in the final consumer markets,
{(Pi, X

c
i )}i∈I; e. a set of price-quantity combinations for each sourced input specified

in the above definition of G∗:{{(
Pij∗(i,k)k, Xij∗(i,k)k

)}
k∈Ki

}
i∈I

;

f. a consumer price index P ; and g. an aggregate expenditure E; such that equations
(2), (5) (C.2), (C.3), (C.4), (C.5), (C.6), (C.9), (C.10), (C.11), (C.12) are satisfied
for some L, numeraire W , sequence (A1, . . . , AN), matrix of friction measures τij and
set of task-specific shocks εijk under the assumptions and parameters of the model.

Our analysis of equilibrium specializes to a limit case defined as follows.

Definition C.2. In a limit economy all sectors grow indefinitely in size: |Ss| → ∞
for s = 1, . . . , S.

We consider a variation of the “acyclic production network” by Dhyne et al. (2023)
as adapted to our setting.

Definition C.3. An acyclic input-output sectoral structure is one where the S sectors
can be ordered in such a way that buyers can only source their inputs from sectors
that precede the buyer’s in the order. Thus, there is an order s(1), . . . , s(S) such that
for all i ∈ I, if s (i) = s(1) it is Ki = ∅; while if s (i) = s(r) for any r = 2, . . . , R, it
is z (k) = s(q) with q < r for all k ∈ Ki.
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This definition implies a “tree-like” structure of all potential production networks
that is determined by the technology characteristic of a sector; the order specified in
the definition moves from upstream to downstream. Note that the first sector in the
order only uses the labor input. While unlikely to hold in the real world, this concept
is a useful abstraction that can approximate the technological input-output structure
of actual production.

Existence and uniqueness. We adapt the analysis by Dhyne et al. (2023) noting
first that (2) can be recast as a system of N linear equations:

c = A (l+ Γc) , (C.13)

where c =
(
C1−σ

1 , . . . , C1−σ
N

)
, A = diag

(
Aσ−1

1 , . . . , Aσ−1
N

)
, l = W 1−σ (ασ−1

01 , . . . ,ασ−1
0N

)
while Γ is an N ×N matrix whose Γij elements, for i, j = 1, . . . , N , read as:

Γij =
∑
k∈Ki

1 [j (k) = j]

(
αijk

µijkτij

)σ−1

(C.14)

for some given G. In what follows we write Γ∗ as the version of Γ such that in (C.14),
µijk = 1 for any i ∈ I, k ∈ Ki, and j ∈ Sz(k).

We next formulate two lemmata; the first one adapts a special case of the “fixed
network” analysis by Dhyne et al. (2023).

Lemma C.1. If the production network G is given, the spectral radius of AΓ∗ is less
than one, and µij(k)k = 1 for any k ∈ Ki and i ∈ I, it is possible to solve uniquely for
c, P , E and all input demands, prices and quantities as specified in the definition of
equilibrium so that they meet the respective definitions or conditions.

Proof. If the spectral radius of AΓ∗ is less than one it is c = (I−AΓ∗)−1Al, where I
is the identity matrix of dimension N . As all the markups are given, this determines
all prices in the economy as well as the price index P . Because no profits are obtained
from selling inputs to firms, combining the aggregation equation (C.11) together with
(C.6) allows one to solve for the total expenditures E via:

E = WL+
∑
i∈I

1

ψ

(
(ψ− 1) δiAiP

ψ

)ψ−1

ΘiE.

This allows to obtain the quantities sold to final consumers through (C.2). Lastly, all
input demands are backed up via (C.9) and (C.10).

The second lemma is specific to our own setting: intuitively, it states that as the
set of potential suppliers becomes increasingly larger, the markets for intermediate
inputs approach perfect competition, in the sense that prices equal marginal costs.
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Lemma C.2. If all firms choose their suppliers according to (5), while both Ai and
τij have bounded support, then in a limit economy equilibrium asymptotically it holds
that µij∗(i,k)k → 1 for all i ∈ I and k ∈ Ki.

Proof. Given (C.8) and (C.9), this lemma is equivalent to the following statement on
convergence in probability, for any δ > 0 and for all tasks and buyers in question:

lim
|Sz(k)|→∞

P (|(εij∗k − εij∗∗k) + (θij∗ − θij∗∗)| > δ) = 0,

where θij ≡ γj − log τij for any (i, j) ∈ I2. This probability is the same as:

P

 ⋃
ℓ∈Sz(k)

ℓ̸=j∗

{(εij∗k − εiℓk) > − (θij∗ − θiℓ) + δ}

 =
exp (θij∗ − δ)∑
ℓ∈Sz(k)

exp (θiℓ)
,

which goes to zero at the limit as the number of addends in the denominator increase,
so long as both constituent elements of θij are drawn from a distribution with bounded
support. In the case of τij, this holds by assumption; as for γj, this follows from the
analogous assumption on Ai and from the limit economy being in equilibrium, which
implies that γj is a deterministic function of the infinite sequence (A1, A2, . . . ).

While the “speed of convergence” here may depend on the specific distribution of
both Ai and τij, the intuition stands unaffected.

We can now state the main result by recombining the above lemmata. Specifically,
similarly to Dhyne et al. (2023) we provide conditions for the existence and uniqueness
of the equilibrium, along with an algorithm to derive it based on our proof.

Theorem C.1. Under the hypotheses of Lemma C.2, a limit economy with an acyclic
input-output sectoral structure whose all eligible AΓ matrices have spectral radius less
than one has a unique equilibrium.

Proof. The proof is constructive and inductive. Start from firms that belong to sector
s(1): as they only decide on how much labor to hire and what combination of price and
quantity to set in the final consumers market, their choices are uniquely determined.
Move to firms in sector s(2): these must additionally buy inputs from firms in sector
s(1). Yet, since the marginal costs in the latter are determined in the previous step,
the choices of sector s(2) are also uniquely determined. Firms in sector s(3) source from
both sectors s(1) and s(2), and so forth. Iterate until sector s(S) to obtain a candidate
equilibrium limit network G∗. Thus, make two observations. First, the AΓ∗ matrix
associated with G∗ has spectral radius which is less then one; hence, the conditions
of Lemma C.1 are satisfied and the economy’s equilibrium is fully determined as long
as markups are all unitary. This is in turn ensured by Lemma C.2. Consequently,
the unique equilibrium of this particular limit economy is identified.
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This analysis does not rule out equilibrium multiplicity (for examples, see Dhyne
et al., 2023), nor degenerate cases without equilibria where firms would always want
to update their supplier choices for some tasks as they observe other firms to do so.
We note, however, that neither case is problematic for our empirical approach, since
this treats firm choices as conditional on the actual marginal costs (firm fixed effects)
that are realized in the data. We find it nonetheless useful to formalize the conditions
under which our framework also exhibits desirable theoretical properties.

On the distribution of the errors

This section expands the discussion about Assumptions 4 and 4a of our framework,
which specify distributional assumptions for the εijk shocks of our model.

On other distributions. As it is well known, the multinomial logit probabilities
that are foundational to our model may be obtained via other means. For example,
if instead of (3) prices were assumed as:

Pijk =
µijkCjτij

υijk
, (C.15)

where υijk is independent across buyers, suppliers and tasks and follows the Fréchet
(type II generalized extreme value) distribution with location parameter equal to zero,
arbitrary scale parameter, and unitary shape parameter, (6) would still hold exactly
and our cross-sectional framework would stay unchanged; an analogous modification
applies to the longitudinal case too. One can also derive (6) as an approximation under
the assumption that υijk follows a type I Pareto distribution where both parameters
are equal to one, see e.g. Panigrahi (2023). The statistical literature emphasizes more
general assumptions leading to multinomial logit probabilities as approximations.

On scale parameters. The model allows unrestricted scale parameters for εijk (or
in the Fréchet case, shape parameters for υijk); setting them as one is a convenient
normalization. Note, however, that the interpretation of the estimates is affected by
the normalization. Suppose that the “true” εijk has scale parameter equal to π−1 > 0
(or υijk has shape parameter equal to π); then (6) is replaced by:

P
(
j∗ (i, k) = j

∣∣∣ {(γℓ, ziℓ)}ℓ∈Sz(k)

)
=

exp
(
π
(
γj + z′

ijβ
))∑

ℓ∈Sz(k)
exp (π (γℓ + z′

iℓβ))
. (C.16)

While the combined parameter set πβ is still identified, the construction of the RSL
estimator would proceed unchanged, and any interpretation of the estimates in terms
of odd-ratios is still valid; those interpretations based on imputed or simulated values
of γj must acknowledge that they are affected by the value of π in (C.16). Therefore,
we suggest that researchers pursuing this route discuss how the calculated marginal
effects change as a function of the unknown scale or shape parameter.
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On microfoundations. The structural motivation for Assumption 4a summarized
in Section 3.2 is as follows. Suppose that in every time period t, which for simplicity
we equate to the time dimension of the data (though this is not necessary), all dyads,
including those involving foreign sellers, receive a shock ωijkt for each task k of the
buyer. This shock represents the value of a specific production technique that can be
used to fulfill task k. If one such a technique is used, the effective price for the buyer
is Pijkt ∝ µijktCjtτijt exp (−ωijkt). We assume that in each time period, these shocks
are independent across buyers and tasks. However, it is:

Cov (ωijkt, ωiℓkt) =


ϱd if (j, ℓ) ∈

(
Id
)2

,

ϱf if (j, ℓ) ∈
(
If
)2

,

0 otherwise;
(C.17)

that is they present equal correlation across sellers of the same type, where ϱn > 0 for
n = d, f . Techniques are never forgotten, but may be replaced as better alternatives
become available. Thus, assuming that firms have started learning the techniques T0

time periods before present:

εijkt =
max

{
ωijkt, ωijk(t−1), . . . , ωijk(t−T0)

}
− bT0

aT0

, (C.18)

where aT0 > 0 and bT0 ∈ R are two “standardizing” sequences. Multivariate extensions
of the Fisher–Tippett–Gnedenko theorem show that under these hypotheses, T0 → ∞
implies convergence in distribution of εijkt to the distribution specified by Assumption
4a for a vast set of underlying assumptions about the original distributions of the ωijkt

shocks. Here, aT0 and bT0 are interpreted similarly as the location and scale parameters
of εijk discussed previously. A similar analysis applies to the “make” shocks ε0ikt too.
It is important to note that this particular microfoundation leads to εijkt shocks that
are strongly persistent in time for any given (i, j, k) triplet.

On extensions. More general assumptions on the random component of transaction
values would lead naturally to extensions of our framework. Suppose for example that
the covariance of the production techniques is constant for techniques coming from
the same seller sector, and is zero otherwise. Then, Assumption 4a might be modified
so as to accommodate the following joint distribution of the error term:

Fε (εikt) = exp

− exp (−ε0ikt)−
∑

n∈{d,f}

 ∑
j∈Sn

z(k)t

exp

(
− εijkt
ρnz(k)t

)ρnz(k)t
 (C.19)

where the parameters ρnst ∈ (0, 1] vary over n = d, f , s = 1, . . . , S and t = 1, . . . , T .
This is conducive to a random parameter treatment of our estimation framework as
discussed in section 3.3 of the text.

C.7



Allowing for structural dynamics

As we discussed in Section 3, allowing for structural dynamics would make our model
misspecified by construction. To appreciate why, suppose that:

− log τijt + β0 = z′
ijtβ+ ϕ1

[
gij(t−1) > 0

]
, (C.20)

where parameter ϕ measures the extent to which past transactions reduce frictions
(interpretations, e.g. in terms of set-up costs of a relationship, are easy to formulate).
Because firms maximize their stream of future profits, ϕ > 0 implies that a buyer i
may source a task k from a supplier j† ̸= j∗ = j∗ (i, k, t) when gij∗(t−1) > 0, even if:

γj∗t + z′
ij∗tβ+ ϕ+ εij∗t > γj†t + z′

ij†tβ+ εij†t > γj∗t + z′
ij∗tβ+ εij∗t

because in period t+1, supplier j† is expected to gain ϕ units of log-value. One may
specify conditions about the expectation of future realizations of the state variables
such that for firm i, switching to j† at time t would lead to a higher present value of
profits. A full-fledged characterization of the choice problem as dynamic and forward-
looking would considerably increase the complexity of the model.

Nevertheless, it is possible to formulate assumptions and restrictions that allow the
identification of structural dynamics as per (C.20) within the framework developed
in the paper. Write the count of suppliers that have been fulfulling any task of a firm
i for at least two years up to time t as:

∆it =
∑
j∈Id

t

∑
k∈Ki

1 [j = j∗ (i, k, t) ∧ j = j∗ (i, k, t− 1)]

and consider the following replacement for Assumption 5.

Assumption 5a. The set of dyadic characteristics {zijt}j∈I are not Granger-caused
by the sequence of past networks G∗

(t−u), u ∈ N0. However, the total factor productivity
of every firm i evolves according to a stochastic process that satisfies:

E
[
Aσ−1

i(t+1)

∣∣∣Ait,∆it,∆i(t−1)

]
≥ Aσ−1

it exp
(
ϕ̃
(
∆it −∆i(t−1)

))
where ϕ̃ ≥ ϕ (σ− 1), for all past configurations of the network Gt−u, u ∈ N.

This assumption states that whenever a task k is sourced to a supplier j for at least
two consecutive periods, j’s total factor productivity is then expected to increase by
a percentage amount at least as high as ϕ. Holding (C.20), this offsets any loss ϕ due
to “anticipated switching” as per the previous discussion. It follows that for any task
k ∈ Ki of some buyer i ∈ I, the optimal supplier at time t defined as (14) is also on
expectation the optimal one at every subsequent period t+u, u ∈ N. Hence, a version
of our model that allows for structural dynamics as per (C.20) is well-specified, since
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the “short-term” optimal choices at time t are consistent with forward-looking optimal
plans based on the present value of all future profits. To formalize this intuition, it is
useful to define G−(ik)t = Gt \ (i, j (k)) as the network at time t minus the connection
between firm i and the supplier (if there is any) that fulfills task k ∈ Ki. In addition,
let j∗

(
i, k, t+ u| G−(ik)t+u

)
denote the expected optimal supplier for firm i’s task k in

any future time period, for u ∈ N, conditional on G−(ik)t+u.

Theorem C.2. Let G−(ik)t+u = G−(ik) be constant for all u ∈ N0. Under assumptions
1a, 2, 3, 4a, 5a, and structural dynamics as specified in (C.20), for all u ∈ N it is:

j∗ (i, k, t) = j∗
(
i, k, t+ u| G−(ik)

)
when j∗ (i, k, t) = j∗ (i, k, t− 1) for all i ∈ Id and k ∈ Ki: that is, suppliers that are
“optimal” in the sense of (14) for a given buyer’s task for two consecutive periods are
on expectation the ex ante optimal choice in every other future period, regardless of
the buyer’s previous choices for that particular task.

Proof. Consider u = 1, and suppose that j∗ = j∗ (i, k, t) ̸= j∗
(
i, k, t+ 1| G−(ik)

)
= j†.

As both zijt and εijt are (conditionally) independent of firm i’s choices, this implies
that j† would only be preferable to j∗ at time t+1 if it were also chosen for the same
task k at time t (anticipated switching), which occurs if:

E
[
C1−σ

j†(t+1)

∣∣∣ (i, j† (i, k, t)) ∈ G∗
t

]
= C1−σ

j†t
exp (ϕ (1− σ))

≥ E
[
C1−σ

j∗(t+1)

∣∣∣ (i, j∗ (i, k, t)) ∈ G∗
t

]
≥ (Cj∗tAj∗t)

1−σ E
[
Aσ−1

j∗(t+1)

∣∣∣Aj∗t, (i, j
∗ (i, k, t)) ∈ G∗

t

]
≥ C1−σ

j∗t exp
(
ϕ̃
)
.

The second inequality (third line) follows from (12) and from G−(ik) being fixed, and
the third inequality (fourth line), from Assumption 5a. This implies j† = j∗ (i, k, t),
which is a contradiction. The result for u = 2 obtains analogously, and by induction,
it also extends to all other higher values of u.

While one could consider extensions for more elaborate versions of structural time-
dependence on past realizations of the network, two considerations are in order. First,
Assumption 5a has a meaningful economic interpretation: supplying inputs to other
firms leads to increases, however small, of the supplier’s productivity. Whereas this
is reasonable in many settings (e.g. with learning-by-doing) this assumption must be
defended and ideally, tested. Second, defending the assumption is increasingly more
difficult the larger one expects ϕ to be. Our empirical application shows that the RSL
estimates associated with the “past transactions dummy” are small in magnitude and
in one case, not statistically significant: at least in this particular case, this diminishes
concerns about the defensibility of this approach.
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D Supplement to the empirical application
This appendix elaborates on some miscellaneous aspects of our empirical application
discussed in Section 5 of the text.

Classification of transactions by number of tasks. As motivated in Section 3.3,
we implement a mixture-of-distributions approach to infer the unobserved number of
tasks associated with each transaction. To this end, we calculate “normalized shares”
as:

Normalized shareijt =
Shareijt − avg (Shareijt)

sd (Shareijt)

where Shareijt = Transactionijt/Revenueit, while avg (·) and sd (·) are the empirical
mean and standard deviation calculated among those transaction shares such that the
four-digits sector of buyers is s (i), that of sellers is s (j), and time is t (these are the
same quantities used to calculate the red-colored kernel density of Figure 2 in the text,
see footnote 16). We thus provide an approximate normalized counterpart to equation
17, though with buyer revenue instead of total costs in the shares’ denominator: the
two quantities are proportional to one another in equilibrium, but the former is more
accurately measured, as we cannot observe transactions that are too small. We drop
un-normalized shares larger than one: likely transactions for long-term investments.

Figure D.1: Frequency of transactions by number of imputed choices or “tasks”

Notes. This figure reports kernel density estimates (Gaussian kernel, 0.1 bandwidth size) of the share
of transactions over total buyer revenues, standardized separately for each combination of buyer sector,
seller sector (both defined at the four-digits level) and year, as in Figure 2 in the text. Two separate
estimates are reported, one per group of transactions with given imputed number of “task” choices (1
versus 2). The legend reports the share of each group (in percentage) over the total. Source: Revec.
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We fit a simple Gaussian mixture model with two components on the normalized
shares, which we cluster according to their highest predicted component probability.
The results are displayed in Figure D.1: 75.46 per cent of all transactions are classified
as “one task,” 24.54 per cent as “two tasks;” the figure reports kernel density estimates
separately for both groups: they appear nicely unimodal, suggesting that two is the
appropriate number of mixture components. We use the imputed value of gijt ∈ {1, 2}
to inform our RSL estimates. Clearly, under this approach some transactions may be
misclassified, especially over the interval where the two densities overlap the most. In
some unreported Monte Carlo simulations, we show that if the simulated production
network has density comparable to the real one, this approach carries only a minuscule
bias to the RSL estimates, if any.

Characteristics of the dropped subnetworks. As discussed in the text, before
performing RSL estimation we drop subnetworks with less than 20 transactions, but
this can cause issues of interpretation of the estimates if small subnetworks are selected
on particular dimensions. Figure D.2 dispels this concern: it displays kernel density
estimates for four subnetwork-level variables, each time separately for selected (cyan)
and dropped (red) subnetworks. The figure shows that while the dropped subnetworks
are smaller, which is so by construction, the share of treated dyads (pairs of observed
transactions sharing the same seller sector and year that are exposed to Ruta 27 ) is
distributionally the same for both groups. Hence, our sample cut rule does not select
on the treatment. Furthermore, Figure D.2 shows that retained subnetworks feature
buyer-seller pairs that are, on average, more distant in space (a mechanical effect due
to the higher chance that small subnetworks are entirely confined within Costa Rica’s
Greater Metropolitan Area) and have about the same share of dyads that carry over
from the previous year as the dropped subnetworks, albeit with a lower dispersion.

Naive multinomial logit estimates. We compare how RSL estimator fares against
a seemingly simpler model for buyer choice that neglects the issue of seller fixed effects
(hence “naive”). Thus, we estimate a number of specifications, symmetric to those of
our RSL estimates from Table 4, of a multinomial logit model where:

• the unit of observation is an observed transaction whose un-normalized revenue
share does not exceed 1;

• the set of potential alternatives are those firms that share the same seller sector
as the observed seller in a transaction;

• however, following McFadden (1978), the alternatives entering the denominator
of the likelihood function probabilities are the observed seller and a number of
uniformly sampled eligible firms (here: five);

• the estimates are weighted by the number of imputed tasks for each transaction.

To let the BCCR computers handle the estimation problem, we are compelled to use
only a random sample of about 10 per cent of all eligible transactions.
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(a) Logarithm of the number of transactions (b) Share of “treated” dyads

(c) Average logarithm of dyadic distance (d) Share of dyads transacting at t− 1

Figure D.2: Analysis of subnetworks (un-)selected for RSL estimation

Notes. This figure reports kernel density estimates (Gaussian kernel, 0.1 bandwidth size) about four
variables, one per each subfigure, that are measured at the subnetwork level, where subnetworks are as
discussed in Section 5. Each subfigure reports two estimates: one for the subnetworks used to inform
the RSL estimates of Table 4 (“swapped,” cyan) and one for the unused subnetworks (“unswapped,”
red). In subfigure (d) “shares” are calculated using, in the denominator, the number of tasks imputed
for each transaction, averages are then calculated at the cell level; hence the support running from 0
through 2. Source: Revec.

The results from this estimation exercise are reported in Table D.1. Remarkably,
for most parameters point estimates are larger by one or more orders of magnitude
than the corresponding RSL estimates from Table 4, and are statistically significant at
the 1 per cent level throughout. Signs are usually preserved, except for the logarithmic
“size ratio” control. This suggests that neglecting seller fixed effects can seriously bias
one’s estimates; interpretations vary by explanatory variable. Thus, our dyadic binary
treatment is arguably positively correlated with the seller fixed effects because Ruta
27 connects the most productive and developed areas of Costa Rica; similarly, travel
time negatively correlates with the cost-effectiveness of sellers due to agglomeration
economies. For control variables, the analysis proceeds analogously. In particular, the
large bias seemingly associated with the “lag connection” dummy must be attributed
to the latter clearly selecting sellers that are even ex ante more convenient.
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Table D.1: Empirical application: “naive” multinomial logit estimates

Panel A: discrete treatment specification
(1) (2) (3) (4)

Treatment (“Ruta 27”) 0.406*** 0.290*** 0.237*** 0.259***
(0.016) (0.020) (0.020) (0.030)

log(Size ratio) 0.812*** 0.674*** 0.547***
(0.002) (0.003) (0.004)

log(Trade relative exposure) 0.073*** 0.069***
(0.001) (0.001)

Transaction at t− 1 5.588***
(0.028)

Same province dummies YES YES YES YES
Distance decile dummies YES YES YES YES
Akaike information criterion 633301.12 404700.32 394235.10 179478.00
Number of choices 197,203 197,203 197,203 197,203

Panel B: continuous regressor specification

(5) (6) (7) (8)

log(Travel time) – 0.404*** – 0.380*** – 0.375*** – 0.331***
(0.002) (0.003) (0.003) (0.004)

log(Size ratio) 0.822*** 0.678*** 0.550***
(0.002) (0.003) (0.004)

log(Trade relative exposure) 0.076*** 0.072***
(0.001) (0.001)

Transaction at t− 1 5.592***
(0.027)

Same province dummies YES YES YES YES
Akaike information criterion 646974.99 410568.55 399075.27 181548.50
Number of choices 197,203 197,203 197,203 197,203
Notes. This table reports estimates of a “naïve” multinomial logit model that explains observed transactions using
the same dyadic variables as in the RSL estimates from Table 4 in the text, but without attempting to control for
seller fixed effects. As in Table 4, this table displays estimates for both specifications under consideration, one per
panel; the two panels follow the same structure as those from Table 4. Estimates are based on a random sample of
10 per cent of all post-2008 transactions used to compute the summary statistics from Table 3 in the text, reported
here as the “number of choices” associated with each set of estimates; the set of alternatives used to construct the
multinomial logit probabilities is also obtained via random sampling as described in the notes of Table 3. Estimates
are weighted by each transaction’s imputed number of “tasks,” as described in this Appendix. Asterisk sequences *,
** and *** denote significance at the 10, 5, and 1 per cent level, respectively. Source: Revec.
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