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Abstract

A growing literature exploits a feature of centralized college admission
systems where students with similar admission scores in a neighborhood of a
school’s admission threshold are or are not offered admission based on small
quasi-random differences in admission scores. Assuming that the students at
the margin of admission differ only in the treatment assignment, this literature
relies on admission scores to instrument for admission or graduation. We point
out that non-compliance with the centralized matching assignment typically
corresponds to enrolling in one’s preferred program a year after the initial
assignment, introducing significant non-compliance costs. We show that with
costly non-compliance, the exclusion restriction, the key assumption of the
LATE theorem, is violated, leading to biased estimates when instrumenting
for graduation, i.e., for a treatment taking place after non-compliance costs
are incurred. We use data from a student-college matching market in Croatia
to illustrate the empirical importance of this potential source of bias and
propose a method inspired by Lee (2009), which recovers the treatment effect
bounds under the assumption that the costs of non-compliance are not related
to the treatment assignment.
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1. Introduction

The instrumental variable (IV) estimator is widely used to account for un-
measured confounding factors and to identify causal effects (Angrist and Krueger,
1991). It is predominantly implemented in the form of the 2SLS estimator, which,
under certain assumptions, identifies the local average treatment effect (LATE)
for individuals whose treatment is manipulated by (quasi-) random instrumental
variation—the so-called compliers. In this paper, we consider the properties of the
2SLS estimator in a setup where non-compliance with quasi-random treatment
assignment is costly, which violates the exclusion restriction, one of the crucial
assumptions necessary for the causal interpretation of the 2SLS estimator. We
build on the LATE theorem (Imbens and Angrist, 1994) to show that in the
case of costly non-compliance, the IV estimator can be interpreted as LATE only
after assuming that both the costs and the probabilities of non-compliance do
not depend on the instrument’s value. Intuitively, if the costs depend on the
instrument’s value, the instrument affects non-compliers through the costs of
non-compliance, and becomes correlated with the outcome not only for compliers,
but also for non-compliers, which biases the 2SLS estimator.

We apply this insight to the growing literature exploiting a feature of centralized
college admission systems where students with similar admission scores in a
neighbourhood of a school’s admission threshold are or are not offered admission
based on small differences in admission scores. Assuming that the students at
the margin of admission differ only in their treatment assignment, this literature
relies on an indicator of whether a student is above the school-specific admission
threshold (admission score cutoff) to instrument for graduation or admission. The
LATE theorem is then invoked to interpret these IV estimates (e.g., Kirkeboen
et al. (2016)).

A basic feature of centralized college admission systems (as operated, e.g., in
Chile, Croatia, Norway, and Sweden) is that a student who intends to not comply
with his school assignment can choose to drop out of the system or can accept
the initial admission offer, but apply to and enrol in his preferred school in the
following year(s). The former happens rarely as it typically means not enrolling in
any college in a given year; the latter happens frequently and it delays graduation
and labor market entry by at least a year. Hence, in centralized matching markets
of this type, non-compliance costs arise naturally, at least for always takers, i.e.,
those ultimately enrolling in a given school regardless of the initial application
outcome.

Our analysis implies that when the admission offer is used to instrument
for graduation (as in, e.g., Kirkeboen et al., 2016), these non-compliance costs
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originate before treatment status (graduation) is resolved, and therefore bias the
LATE estimator. A plausible strategy to solve the problem of non-compliance is
to change the treatment of interest. In the context of school-program evaluation,
instead of estimating the effect of graduation, this would correspond to estimating
the effect of admission into the first year of a given program. This strategy may
trade off gains in terms of identification credibility with economic relevance of the
treatment effect. When the admission offer is used to instrument for admission
(as in, e.g., Altmejd et al., 2019), non-compliance costs originate only after initial-
application admission treatment status is determined. In this case, there is no
bias since the instrument-treatment mapping occurs before costs are realized, and
is thus unaffected by the non-compliance costs. Nevertheless, when studies in the
literature interpret admission as extended attendance, the interpretation of the
treatment effect is similarly impaired as in the case of graduation effects.

As a prime example of this literature, consider Kirkeboen et al. (2016), who
estimate the returns to graduating in different fields of education in Norway
by instrumenting for graduation with the initial quasi-random admission offer,
and by measuring labor market returns eight years after the initial application.
Enrolling in a program other than the one initially assigned a year or more
after the initial application (we refer to such situation as ‘re-enrolling’) results in
deferred graduation and thus reduces labor market experience as labor market
returns are measured eight years after the initial application regardless of the
actual graduation date. This in turn implies costly non-compliance.1 Therefore,
according to the results provided here, the estimates in Kirkeboen et al. (2016)
can be interpreted as returns to fields of study only if the costs of foregoing labor
market experience are not field-specific and if the probability of non-compliance
with the initial assignment does not depend on the initial assignment. Using data
from the centralized college-student matching market in Croatia spanning the
period from 2012 to 2018, we show this is not the case by documenting that the
probabilities of non-compliance do depend on the initial assignment.

Using the Croatian data, we consider the same instrument as Kirkeboen et al.
(2016) and document a sizeable re-application rate.2 Importantly, the rate of
applying to programs other than the one initially assigned within two years of the
initial application (referred to as re-applying) for those just below the treatment
program’s admission score cutoff is 18.3% compared with 12% for those just above

1Non-compliance implies net costs if the negative effect of lower labor market experience
outweighs the potential benefits of temporary enrolment in a non-preferred program. Providing
evidence on this issue is beyond the scope of our analysis; for the purpose of our analysis, we
assume the benefits are small.

2In order to re-enroll in the year(s) after the initial college application, a student needs to re-
apply. Therefore, we analyze the re-application rate (intent to non-comply) and the re-enrollment
rate (non-compliance) separately.
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the treatment program’s cutoff.3 This discontinuity in the re-application rate at
the cutoff translates into discontinuity in the non-compliance (re-enrollment) rate
at the cutoff: there are 14.6% of non-compliers just below the cutoff, compared
with 10.1% just above the cutoff. The higher share of non-compliers just below
the cutoff compared with non-compliers just above the cutoff breaks the exclusion
restriction, as the instrument now affects the outcome through channels other
than the treatment assignment since it also affects the non-compliers due to
non-compliance costs.

To deal with this issue, we propose a method inspired by Lee (2009), which
recovers the treatment effect bounds under the homogenous non-compliance costs
assumption, i.e., when all non-compliers pay the same cost. The method consists of
two steps. The first involves trimming the data (excluding observations) until the
non-compliance rates for those assigned and those not assigned to the treatment
program are the same. For example, suppose that the fraction of always takers
(those ultimately receiving the treatment regardless of the instrument’s value from
the initial application year) is larger than the fraction of never takers (those never
getting the treatment) so that the fraction of non-compliers who were assigned
not to get the treatment is disproportionally large. The first step of the proposed
method balances the fraction of always takers assigned away from the treatment
and the fraction of never takers assigned to the treatment by dropping a fraction
of always takers assigned away from the treatment. Due to the homogenous
non-compliance costs assumption, the effect of the non-compliance costs of the
remaining always takers is then offset by (the same amount of) non-compliance
costs of never takers.

However, excluding the non-compliers based on their treatment assignment
and treatment indicator induces selection bias (as selection into non-complying
can generally be non-random). By selectively excluding only the always takers
who are not assigned to the treatment, the instrument now gains predictive power
over outcomes of non-compliers—the probability of an individual being an always
taker becomes higher for those assigned to the treatment in the trimmed sample,
compared to the original sample, and always takers may have different outcomes
than never takers. Therefore, the second step of the proposed procedure accounts
for the sample selection by adapting the Lee (2009) treatment effect bounds,
additionally trimming individuals in order to ensure that the instrument does
not predict the outcome for non-compliers; in our case, this involves trimming
individuals who were assigned to the treatment. The final ingredient of the method

3Following Dustan (2018), Fernandez (2019) and Kirkeboen et al. (2016), we define the
treatment program for a particular applicant as the program for which he was close to the
admission score cutoff, i.e., either just above the cutoff or just below the cutoff.
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is to select individuals for trimming in each stage from the upper/lower tails of
the outcome distribution in order to ensure the most conservative treatment effect
bounds.

The homogenous costs assumption is plausible in the school choice setting
since non-compliance costs here originate in large part in reduced labor market
exerience due to re-enrolling in another program a year or more after the initial
quasi-random assignment, and therefore postponing graduation. 4 Whether these
costs are homogenous can be tested empirically by asking whether the slopes of
experience wage profiles of always takers and never takers who did not comply
with the treatment assignment are similar.

This paper contributes to several strands of the literature. First, it is relevant
to the literature employing 2SLS-type estimators in centralized school-student
matching markets, in which non-compliance costs arise naturally. Using 2SLS
near admission cutoffs or the closely related regression discontinuity design (RDD)
estimators, Kirkeboen et al. (2016) analyze school-specific labor-market returns,
Lucas and Mbiti (2014) and Abdulkadiroglu et al. (2014) study school-specific
attendance achievement effects (measured through standardized test scores), Kauf-
mann et al. (2013) study marriage market returns, while Dustan (2018), Fernandez
(2019) and Altmejd et al. (2019) analyze the role of family ties in school choice.
These applications are potentially affected by the non-compliance cost issue.

More generally, this approach can be applied in other empirical settings. For
example, when programs are offered through a randomized list and applicants can
apply to several lotteries (de Chaisemartin and Behaghel (2020)), or in college
applications without matching markets (see e.g. Zimmerman, 2014, Goodman
et al. (2017), Goodman et al. (2020) and Kozakowski (2020)).

Second, it adds to the literature on exclusion restriction violation. Heckman
(1997) establishes that any selection into treatment based on individual-specific un-
observed characteristics breaks the exclusion restriction and results in economically
un-interesting parameters. Similarly, Jones (2015) identifies economically plausible
potential violations of exclusion restriction for infra-marginal individuals (always
takers and never takers) in cases where treatment may change their outcomes,
which loosely fits our framework. However, Jones (2015) only constructs isolated
theoretical examples, in which the exclusion restriction is likely violated, without
presenting empirical content or developing a solution, while we develop a general
non-compliance setup and tie it directly to a large literature. We also provide

4Postponing graduation could also produce certain gains (i.e maturation effect), or different
types of costs (i.e. the (cognitive) costs of preparing and re-taking the state exam). In this paper,
we interpret the net costs after "aggregating" all gains and costs, thus abstracting away from
potential cost breakdowns.
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an alternative estimator, which addresses the underlying issue. Moreover, in our
setup the cost is generated endogenously to the IV model - by the decision of
agents to not comply - and not by external spillovers of treatment assignment as
in Jones (2015).

The remainder of this paper is structured as follows. In the next section, we
develop the procedure for bounding the treatment effect in the case of costly non-
compliance. In the third section, we demonstrate that the Croatian college-student
matching market is subject to differing probabilities of complying depending on
the college assignment. The fourth section concludes.
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2. Treatment Effect Bounds

In this section, we develop a general framework that supports the assumption
of costly non-compliance and analyzes the behavior of the LATE estimator. We
use the typical LATE notation and introduce an additional parameter γ, which
denotes non-compliance costs. As a result, we produce a practical framework that
can be straightforwardly used in typical LATE applications.

Our illustrative empirical school-choice analysis presented in the next section
is based on a dynamic setup where the costs of non-compliance are embodied
in the time needed to alter the treatment assignment by re-enrolling at another
school. A more complicated, structural model could attempt to elicit the gains
(i.e., maturation effects) and losses (i.e., foregone labor-market experiences) from
this non-compliance process. Our model collapses the net non-compliance costs
into the parameter γ, and applies the newly developed LATE framework. Such an
approach allows one to divide the analysis into two steps. First, to analyze the
components of the non-compliance costs embodied in the parameter γ, and second,
to analyze the LATE conditional on a specific value of the non-compliance costs γ.

We show that in presence of non-compliance costs, the exclusion restriction
is likely violated, thus biasing the LATE estimator. We address this issue by
developing a treatment-bounds method inspired by Lee (2009), and discuss the
assumptions needed to recover treatment effect bounds.

Suppose we are interested in the causal effect of treatment Di on the outcome yi.
Denote with Y1i (Y0i) potential outcomes of individual i when Di = 1 (Di = 0). An
instrument Zi = {0, 1} (treatment assignment) is assumed to shift the treatment
indicator Di. In particular, denote with D1i (D0i) the treatment indicator of
individual i when Zi = 1 (Zi = 0). The outcome of interest yi is now indexed
against two variables, the value of the treatment indicator Di and the value of the
instrument Zi as yi = Yi(Di, Zi).

Define an indicator ti describing an individual i’s type as:

ti =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N if D1i = 0 and D0i=0 (Never taker),

A if D1i = 1 and D0i=1 (Always taker),

C if D1i = 1 and D0i=0 (Complier),

D if D1i = 0 and D0i=1 (Defier),

and denote with P (ti = x) the probability that individual i’s type is x. The LATE
theorem of Imbens and Angrist (1994) is widely used to identify local average
treatment effects in (quasi-) experimental studies:
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Theorem 1. Assume the following LATE assumptions:

• Independence - The instrument is independent:

{Yi(D1i, 1), Yi(D0i, 0), Di(1), Di(0)} ⊥ Zi

• Exclusion restriction - The instrument affects the outcome only through the
treatment indicator:

Yi(d, 0) = Yi(d, 1) ≡ Ydi for d = 0, 1

• First stage - The instrument has predictive power over assignment:

E[D1i − D0i] �= 0

• Monotonicity - There are no defiers:

D1i − D0 ≥ 0 or vice versa, ∀i

Then, the Wald estimator equals the average treatment effect on the treated:

E[yi|Z = 1] − E[yi|Z = 0]
E[Di|Z = 1] − E[Di|Z = 0]

= E[Y1i − Y0i|D1i − D0i > 0]

Proof. See Imbens and Angrist (1994). �

Under the LATE assumptions, the Wald estimator equals the average treatment
effect for compliers (individuals with ti = C). Intuitively, non-compliers, i.e., always
takers (those with ti = A) and never takers (those with ti = N), do not contribute
to the IV estimator for two reasons. First, this is due to the exclusion restriction
as the instrument does not change their treatment assignment. Second, this is
due to the independence assumption, as the instrument is independent from their
treatment decisions Di. Therefore, the instrument has no predictive power over
the outcomes of non-compliers.

In contrast, if non-compliance with the quasi-random treatment assignment is
costly, non-compliers generally do contribute to the IV estimator of LATE. For
example, if always takers with Z = 0 have to pay a cost to get treatment, they
are no longer the same as the always takers with Z = 1 (the exclusion restriction
does not hold). Generally, this implies predictive power of the instrument over
the outcome for the non-compliers, which violates the assumptions of the LATE
theorem.
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Proposition 1. Assume that Independence, First stage and Monotonicity assump-
tions from Theorem 1 hold and assume heterogenous non-compliance costs accross
t:

E[Yi(1, 1) − Yi(1, 0)] = γA and E[Yi(0, 1) − Yi(0, 0)] = γN , γA �= γN .

Let γ̄ = γA+γN
2 . The Wald estimator now equals:

E[yi|Z = 1] − E[yi|Z = 0]
E[Di|Z = 1] − E[Di|Z = 0]

=E[Y1i − Y0i|D1i − D0i > 0]

+
γ̄ · (P (ti = A) − P (ti = N))

P (ti = C)

+
P (ti=A)+P (ti=N)

2 · (γA − γN )
P (ti = C)

.

Proof. Applying the Independence and Monotonicity assumption to the first term
of the Wald estimator we obtain:

E[yi|Z = 1] = E[Y1i|D1i = 1, D0i = 1] ·
Always takers, ti =A︷ ︸︸ ︷

P [D1i = 1, D0i = 1]

+ E[Y1i|D1i = 1, D0i = 0] ·
Compliers, ti =C︷ ︸︸ ︷

P [D1i = 1, D0i = 0]

+ E[Y0i|D1i = 0, D0i = 0] ·
Never takers, ti =N︷ ︸︸ ︷

P [D1i = 0, D0i = 0] .

After performing an analogous decomposition of E[yi|Z = 0], and using the Het-
erogenous non-compliance costs assumption, the numerator of the Wald estimator,
after some algebra, becomes:

E[Y1i − Y0i|D1i − D0i > 0]+γ̄ · (P (ti = A) − P (ti = N))

+
P (ti = A) − P (ti = N)

2
· (γA − γN ).

A similar argument shows that

E[Di|Z = 1] − E[Di|Z = 0] = E[D1i − D0i] = P [D1i = 1, D0i = 1]) = P [ti = C].

�

Proposition 1 says that under costly non-compliance with the (quasi-) random
treatment assignment, the Wald estimator equals the average treatment effect for
compliers if the costs as well as the probabilities of non-compliance are the same
for always takers and never takers (i.e., if γA = γN and P (ti = A) = P (ti = N)).
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In the remainder of this section we propose sharp bounds of the LATE5 for the
simple homogenous non-compliance costs case (i.e, γA = γN ).6 In the next section,
we apply the bounding procedure to the Croatian centralized student-school
matching system, arguing that in these types of settings assuming homogenous
non-compliance costs may be reasonable.

At an intuitive level, the proposed bounding method mechanically equates the
probabilities P (ti = A) and P (ti = N) by excluding individuals leading to the
highest upper (lowest lower) bound. Suppose, WLOG, that P (ti = A) > P (ti = N)
- there are more always takers than never takers. Therefore, to calculate the upper
LATE bound, we trim a proportion of always takers (individuals with D = 1 and
Z = 0) until P (ti = A) = P (ti = C), starting with those with the highest Y

values (to obtain the highest possible value of the Wald estimator). This solves the
problem of differing probabilities of non-compliance for always takers and never
takers, but it also introduces a selection problem by selectively excluding always
takers with Z = 0 values. Intuitively, in the new sample, individuals with Z = 0
are less likely to be always takers than individuals with Z = 1. Therefore, in
addition to predicting treatment, the instrument now predicts the non-compliance
types, and potentially also the outcome (if the selection into non-compliance is
non-random), which breaks the exclusion restriction.

To account for this, we aim to drop the same number of always takers who were
assigned to treatment (i.e., Z = 1). The problem is that among the individuals
with Z = 1, we cannot distinguish compliers from always takers — both of them
accept the treatment assignment. However, by trimming individuals with the
lowest Y values (of those with Z = 1), we generate the upper LATE bound. This
result is formalized in the following adaptation of Proposition 1 from Lee (2009).

Proposition 2. Let Y be a continuous random variable. Assume that Indepen-
dence, First stage and Monotonicity assumptions from Theorem 1 hold and assume
Homogenous non-compliance costs:

E[Yi(1, 1) − Yi(1, 0)] = γ = E[Yi(0, 1) − Yi(0, 0)]

Assume, WLOG, that P (ti = A) > P (ti = N) and introduce R = P (ti=A)−P (ti=N)
P (ti=A) .

Next, set yq|E = G−1(q), where G is the cdf of Y conditional on an event E, which
defines the value of treatment Di and instrument Zi. Under these assumptions,

5The bounds are sharp in the Lee (2009) sense that they are the largest (smallest) lower
(upper) LATE bounds consistent with the data.

6The homogenous costs assumption in the school choice setting is testable with data on labor
market outcomes since the costs originate in large part in the reduced labor market experience due
to re-enrolling in another program. One can test the equality of slopes of the experience profiles
of always takers and never takers who did not comply with the initial treatment assignment by
comparing their realized experience curves.
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ΔLB and ΔUB are sharp lower and upper bounds for the average LATE effect
E[Y1i − Y0i|D1i − D0i > 0]:

ΔLB =
E

[
Y |Z = 1, Y ≤ y1−R·p(ti=A)|Z=1

]
− E

[
Y |(Z = 0, D = 0) ∪ (Z = 0, D = 1, Y ≥ yR|(Z=1,D=0))

]
PL(Ti = C)

,

ΔUB =
E

[
Y |Z = 1, Y ≥ yR·p(ti=A)|Z=1

]
− E

[
Y |(Z = 0, D = 0) ∪ (Z = 1, D = 0, Y ≤ y1−R|(Z=1,D=0))

]
PU (Ti = C)

and PL (PU ) is a probability measure evaluated on the trimmed sample used when
calculating ΔLB (ΔUB). The bounds are sharp in the sense that ΔLB (ΔUB) is
the largest (smallest) lower (upper) bound that is consistent with the observed data.

Proof. First, draw a random proportion R of individuals with Z = 0 and D = 1
and assign them values S0ir = 0, where r indexes the random seed generating
this variable. Assign the remaining individuals with values S0ir = 1. To simplify
notation, assume that the variable S1ir = 1 for each individual i and introduce:

Sir =S1irZ + S01r(1 − Z)

Y ∗
i =Sir · {Y1iZ + Y0i(1 − Z)}

(1)

Next, assume that the variable Y ∗
i is only observed when Sir = 1 and is, in

that case, equal to Yi. In other words, model 1 treats Sir as a sample selection
indicator. Denote with Y ∗

1i (Y ∗
0i) the outcome of the individual i when Zi = 1

(Zi = 0). According to the Lee (2009) theorem, the sharp lower (ΔLB,r) and upper
(ΔUB,r) bounds for the intention to treat estimator (E[Yi|Z = 1, S1i = 1, S0i =
1] − E[Yi|Z = 0, S1i = 1, S0i = 1]) are:

ΔLB,r = E
[
Y |Z = 1, S = 1, Y ∗ ≤ y∗

1−R·p(ti=A)
]

− E [Y |Z = 0, S = 1] ,

ΔUB,r = E
[
Y |Z = 1, S = 1, Y ∗ ≥ y∗

R·p(ti=A)
]

− E [Y |Z = 0, S = 1] .

We index the bounds with r to emphasize the dependence on the seed corre-
sponding to the random draw of R individuals.

Note that on the sample of individuals with Sir = 1, P (ti = A) = P (ti = N).
Therefore, according to Proposition 1:

ΔLB,r

PL(Ti = C)
≤ E[Y1i − Y0i|D1i − D0i > 0, S1ir = 1, S0ir = 1] ≤ ΔUB,r

PU (Ti = C)

=⇒
min

r

( ΔLB,r

PL(Ti = C)

)
≤ E[Y1i − Y0i|D1i − D0i > 0] ≤ max

r

( ΔUB,r

PU (Ti = C)

)
,

where PL (PU ) is the probability evaluated on the trimmed sample used when
calculating ΔLB (ΔUB). Finally, note that the treatment bounds depend on the
random draw R only through the outcome values of randomly sampled individuals
with Z = 1 and D = 0 (i.e., they do not the depend on the randomly sampled
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subset of those with D = 1). The proposition now follows from observing that,
for example, the lowest ΔLB,r is achieved when trimming those individuals with
Z = 1 and D = 0 who have the highest y values. �

To demonstrate the value of Proposition 2, we compare the 2SLS estimator to
the proposed LATE bounds on a simulated dataset. We generate N individuals
according to the following steps:7

• The type of individual i is drawn from the following distribution:

ti =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A with probability pa,

N with probability pn,

C with probability 1 − pa − pn.

(2)

• The treatment assignment Zi is a Bernoulli random variable with parameter
0.5.

• The outcome of interest yi is defined as:

yi = ε − γ · 1Zi �=Di
,

where ε is N(0, 1).

The procedure generates a population with no treatment effect (i.e., the
treatment effect is zero) where assignment to treatment is equiprobable for each
individual. Individuals differ only with respect to their type, which defines their
attitude towards treatment assignment (i.e., ti = A individuals always get treated
regardless of the assignment status, ti = N never get treated and ti = C comply
with the assignment).

We conduct two exercises: First asking about the performance of the 2SLS esti-
mator and of the treatment-effect bounds under fixed costs of non-compliance and
varying gaps between pa and pn, second allowing the cost of non-compliance to vary
but keeping non-compliance probabilities fixed. Specifically, in the first exercise
we set the non-compliance cost to equal the outcome standard deviation (γ = 1).
Next, we set pn at 0.128 and for each value pa ∈ {0.05, 0.075, . . . , 0.175, 0.2}, we
generate 1,000 independent populations and plot the average LATE bounds and
the average of the 2SLS estimates in Figure 1. Even though the treatment effect
is 0 by construction, the 2SLS estimator reflects the asymptotic bias γ·(pa−pn)

1−pa−pn
and

would lead one to reject the zero treatment effect even for small differences between
7N is set at 50,000 to resemble Kirkeboen et al. (2016), where N = 50, 083.
8This probability correspond to an empirical estimate obtained in section 3.
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pa and pn, while the LATE bounds correctly include 0 and remain smaller than
one half of the treatment standard deviation even for large differences between pa

and pn.

Figure 1: LATE bounds vs. 2SLS estimates - varying non-compliance probabilities

Note: The figure plots 2SLS estimates and LATE bounds (y-axis) against the probability (of
being an always taker) pa, holding the probability (of being a never taker) pn fixed at 0.125
on a series of simulated datasets. For each parameter value pa ∈ {0.05, 0.075, . . . , 0.175, 0.2} we
generate 1,000 independent populations using parameters γ = 1, N = 50000, pn = 0.125 under
no treatment effect (LATE= 0), and plot the average LATE bounds from Proposition 2 and the
average 2SLS estimates as well as the corresponding average 95% confidence intervals.

In the second exercise presented in Figure 2, we vary non-compliance costs
γ while holding pa fixed at 18.3% and pn at 12%.9 Again, the 2SLS estimator
coincides with its asymptotic bias and reports significant estimates even for
reasonably small values of γ, while the LATE bounds correctly include 0.10

9Again, these probabilities correspond to empirical estimates obtained in section 3.
10The LATE bounds do not depend on the γ value, since they neutralize the effect of the

non-compliance cost by trimming enough individuals so that the costs of always takers and never
takers cancel.
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Figure 2: LATE bounds vs. 2SLS estimates - varying γ

Note: The figure plots 2SLS estimates and LATE bounds (y-axis) against the costs of non-
compliance γ, while holding fixed the probability (of being a never taker) pn = 0.12 as well as
the probability (of being an always taker) pa = 0.183 on a series of simulated datasets. For
each parameter value γ ∈ {−2, −1, 5, . . . , 2} we generate 1,000 independent populations using
parameters pa = 0.183, pn = 0.12, N = 50000 under no treatment effect (LATE= 0), and plot
the average LATE bounds from Proposition 2 and the average 2SLS estimates as well as the
corresponding average 95% confidence intervals.
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3. Empirical Application to Croatian College Matching Market

In a recent study, Kirkeboen et al. (2016) use RDD to instrument for graduation
and estimate returns to graduating in different fields of education in Norway by
instrumenting for the graduation with the initial admission offer and measuring
labor market returns eight years after the initial college application. In such a
setup, re-enrolling in another field, potentially years after the initial application,
results in deferred graduation and reduces labor market experience. In the likely
case that the length of labor market experience affects labor market returns,
Proposition 1 implies that Kirkeboen et al. (2016) identify unbiased returns to
fields only in the homogenous non-compliance costs case and if the probabilities
of non-compliance do not depend on the initial treatment-program assignment.
In this section, we show that the latter is not the case in Croatia, where the
probabilities of non-compliance do depend on the initial assignment. Therefore,
the LATE bounds from Proposition 2 should be applied when estimating LATE
effects in the Croatian matching market. A similar issue arises naturally in studies
that rely on quasi-random admission offers to instrument for graduation or other
outcomes occuring years after the initial offer of admission (e.g. Hastings et al.,
2014; Lucas and Mbiti, 2014; Abdulkadiroglu et al., 2014; Kaufmann et al., 2013;
Dustan, 2018; Fernandez, 2019; Altmejd et al., 2019).

We begin the section with a brief summary of the estimation strategy employed
in Kirkeboen et al. (2016) and similar student-school assignment studies. We
proceed with a note on the institutional setup in Croatia, followed by a subsection
rejecting equal probabilities of non-compliance for students who were or were not
(quasi-randomly) offered admission to their treatment program (i.e., the program
where they were just below or just above the program-specific admission cutoff).
We conclude the section with a discussion of the homogeneous non-compliance
costs assumption.

3.1. Empirical Strategy

The literature studying school-student centralized matching markets frequently
exploits a feature of these systems in which students with similar admission scores
in a neighborhood of a school’s admission threshold are or are not offered admission
to the schools based on small differences in admission scores. Taking advantage of
these discontinuities, the literature typically uses regression discontinuity design
(RDD) to instrument for admission/graduation , assuming that students around
the cutoff are ‘the same’ in every aspect except the assigned school (program).
The assigned school is assumed to be deterministically linked to the school-specific
admission score (i.e., a student is offered admission if and only if his admission
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score is above the school-specific admission score cutoff). For schools ranked
below the assigned school, this deterministic link between admission score and the
assignment is broken — the student is never considered for admission even if he is
above the cutoff for these schools. For this reason, applications to these schools
are not included in the RDD estimation sample, which consists of applications at
the margin of admission, i.e., within a bandwidth neighbourhood of school-specific
admission score cutoffs.

More formaly, let cjt be the admission score cutoff of program j in year t.
If program j is ranked above program j′ in student i’s preference list, we write
(j) 
i (j′). Denote the school-j-specific application score of individual i as aijt.
Student i’s application to program j belongs to the RDD estimation sample if
student i:

(i) listed program j as his choice, such that all programs preferred to j had a
higher cutoff score than cjt (otherwise assignment to j is impossible):
cjt < cj′t ∀ (j′) 
i (j),

(ii) had a score aijt sufficiently close to j’s cutoff score to be within a given
bandwidth bw around the cutoff:
|aijt − cjt| ≤ bw.

The following regression, applied to the RDD estimation sample, is a typical
specification used in the school-choice literature to estimate various graduation
effects:

yiτ = β · graduatedijt + f(aijt; γ) + μτ + μjt + εijt (3)

where yiτ is the outcome of interest measured at time τ > t of student i who
was near the program j admission cutoff in year t, graduatedijt is an indicator
variable that takes value 1 if student i graduated from program j where he initally
applied in year t, f(aijt; γ) is a function of the application score of student i

for program j in year t, μjt and μτ are fixed effects corresponding to application
year-program combinations and outcome years, respectively, and where εijt is
an error term. Since graduatedijt is likely influenced by various unobserved,
potentially endogenous factors, researchers typically use admission offer (1aijt≥cjt)
to instrument for graduation. In the language of the previous section, being just
above the cutoff corresponds to the instrument value Z = 1, and being just below
the cutoff corresponds to the instrument value Z = 0.

3.2. Institutional Setup

In Croatia, admissions to all college programs are implemented through a
national online platform. Since its introduction in 2010, this platform operates
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a deferred acceptance (DA) algorithm that ranks students based on their high-
school grades and subject-specific elective national-level exams that take place in
June, a month after high-school graduation. Students register on the platform
in early spring of their high-school graduation year when universities also list on
the platform their program-specific admission quotas along with program-specific
weights of subject-specific grades and exams. Students are free to submit their
ranked priority lists of up to 10 programs as of registration and update these
preference rankings until the system closes for clearing at a predetermined date in
mid-July (i.e., in 2019, the final deadline was 2 pm on July 15th).

Students first receive information on their position in various admission queues
one week before the final deadline, immediately after receiving their admission
scores. Admission scores, which are a function of student’s high school grades and
national exam scores, are the only factor determining admission rankings. The
DA algorithm is then regularly updated to show students their current admission
rankings. Students update their preference rankings continuously until the system
closes for clearing in mid-July.

During the application period applicants often drop their previously highly
ranked alternatives they are unlikely to get admitted to.11 Therefore, in order to
study a case similar to the typical centralized college admission system, where
students are not able to get signals on the current school-specific demand, we
analyze admission outcomes implied by the first preference submissions after
receiving the national exam scores (5 days before the system closes), when students
are fully aware of their admission scores but are not yet able to learn about the
market demand structure. We thus consider that a student applied to a particular
program if this program was on the student’s preference list five days before the
admission deadline.

In centralized college admission systems, it is not feasible for always takers to
not comply with their initial assignment out of their treatment program within the
year of initial application. They can, however, apply to their preferred program
in the following years. Further, in Croatia, there is only limited scope for never
takers to not comply with their initial-application assignment to their treatment
program.12 Therefore, since we do not observe enrollment, we assume that the

11Due to the dynamic nature of the admission system, students can get hourly updates about
their admission rankings, and therefore resolve a significant part of the admission uncertainty.
They can do this only after they receive their admission scores, approximately 1 week before the
admission deadline.

12According to the Ministry of Science and Education, 95% of Croatian college applicants
comply with their DA admission assignment, enrolling at their assigned program. If they decide
not to comply, they lose their tuition waiver, otherwise covered by the Ministry. This introduces
an additional (constant) cost of non-compliance.
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final admission offer translates to enrollment one-to-one. Hence, we abstract from
non-compliance within the year of initial application and focus on non-compliance
through re-applications in years following the initial college application.

In sum, we analyze applications (based on the ranking lists submitted 5 days
before the system closes) which resemble the applications at typical centralized
college admission systems, and enrollments (based on the final ranking lists)
separately. We consider that a student re-applied (attempted non-compliance) if
he applied to a program different from the one initially assigned in the two years
following the initial application year. While we observe re-applications, we do
not observe re-enrollment, so again, we assume that a re-applying student always
re-enrolled in a particular program if this program was his final DA admission
assignment.

3.3. Data and Results

We use complete administrative data corresponding to the Croatian centralized
college admission system from years 2012-2018. In these data, we consider a
student to be a non-complier if, following a re-application, he was assigned by the
DA algorithm to a program different from the one initially assigned at most two
years after his initial college enrollment. As the re-application window is two years,
we exclude the boundary years of the data13 and generate the RDD estimation
sample using applications from 2014-2016 that are at most 0.4 standard deviations
(60 admission score points) away from program-specific admission cutoffs.14

Table 1 shows basic summary statistics for the Croatian DA matching market
and the RDD estimation sample defined by a 60 admission score points bandwidth,
throughout 2014-2016. Annually, approximately 35,000 students enter the system,
choosing between about 600 programs belonging to 49 distinct universities. The
RDD estimation sample appears to have similar average characteristics to the
unrestricted sample.

Using the RDD estimation sample, we estimate the following regression:

yi = α0 · aij + α1 · aij1aij≥cj + δ · 1aij≥cj + f(aij) + μj + εi, (4)

where yi is a non-compliance indicator for applicant i (i.e., a dummy variable taking
13We exclude the first two years to ensure that we work with only initial college applicants

who have not applied in previous years. We exclude the last two years to observe re-applications
following initial applications.

14Each cutoff is defined as the admission score of the applicant with the lowest admission score
who was offered admission. The optimal bandwidth according to Imbens and Kalyanaraman
(2012) is 60 admission points. We replicated the analysis for numerous bandwidth values (10, 20,
30, 40, 50, 60, 70, 80, 90 and 100) and obtained similar results.
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the value 1 if the applicant i re-enrolled into a program different from the initially
quasi-randomly assigned program within two years of his initial enrollment), aij is
the initial-application admission score of applicant i at program j, cj is the cutoff
of program j, f(aij) is a polynomial in admission scores, and μj are program
fixed effects. The time index, which should denote the year of the applicant’s first
(initial) college application, is surpressed. We study not only re-enrollment, but
also re-application (non-compliance intent) by estimating a version of regression
(4) with the dependent variable yi indicating if applicant i re-applied after his initial
enrollment. These regressions are also estimated on subsamples where program j

is (or is not) the applicant’s first priority, and where the applicant re-applies to
program j (or not). A significant estimate of δ is interpreted as evidence that the
probabilities of non-complying (re-applying) depend on the initial assignment.

The first column of Table 2 shows statistically as well as economically significant
estimates of δ both when considering re-application (-6.2 p.p. compared to the
baseline of 18.3%) and re-enrollment (-4.5 p.p. compared to the baseline of
14.6%).15 Hence, there are 14.6% of non-compliers just below the admission
cutoff, compared with 10.1% just above the cutoff. Approximately half of these
non-compliance gaps is attributable to students who re-apply to the same program
after they were marginally declined at their initial application (i.e., always takers).
The effects are most pronounced when students are around the cutoff at their
initial-application-ranking top-priority program (-7.9 p.p. when considering re-
applications and -6.4 p.p. when considering re-enrollment). These results can
also be seen in Figure 3 (Figure 4), which plots the re-application (re-enrollment)
probability against the application score distance from the initial-application
cutoff.16

In sum, being just below the admission score cutoff of a program during one’s
initial college application disproportionately incentivizes students to re-apply,
and subsequently re-enroll, relative to students just above an initial-application
program cutoff. If Croatian students are subject to non-complying (re-application
and re-enrollment) costs, Proposition 1 implies that RDD induced estimates cannot
be interpreted simply as graduation treatment effects.

3.4. Discussion

In the Croatian case, the probabilities of non-compliance for applicants just
above the cutoff (Z = 1) are significantly lower (4.5 p.p.) than for those just below
the cutoff (Z = 0). This, according to Proposition 1 violates the LATE theorem,

15On average, around 70% of the re-applying students succeed in changing their initial school
assignment, such that the re-application effects largely translate into re-enrollment effects.

16The distance from cutoff is defined as admission score centered around the cutoff.
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invoked in, e.g., Kirkeboen et al. (2016). In order to apply the LATE bounds
from Proposition 2, one needs to assume the homogenous non-compliance costs
assumption. In our case, the costs of non-compliance originate in the reduced
labor market experience due to re-enrolling in another program.17 For example,
an always taker with Z = 1 is expected to graduate five years after admission,
while an always taker with Z = 0 is going to use at least one additional year due
to re-enrollment. Therefore, the homogenous costs assumption translates into
assuming equal slopes of the experience wage profiles of always takers and never
takers who did not comply with the treatment assignment—this can be tested
empirically by directly comparing experience profiles of always takers and never
takers who did not comply. If the gradients of these experience profiles are not the
same, one can assume that the experience profile is multiplicative, and perform
the same test using the logarithm of returns (or some other transformation of the
outcome variable)

4. Conclusion

In this paper, we consider a quasi-experimental intention-to-treat setup where
non-compliance with treatment assignment is costly (affects the outcome), which
violates the exclusion restriction — one of the crucial LATE assumptions. We
generalize the LATE theorem to include the case of costly non-compliance and
show that the IV estimator can be interpreted as LATE only under the strong
assumption that both the costs and the probability of non-compliance do not
depend on treatment assignment. We recover treatment effect bounds with an
alternative method, inspired by Lee (2009), under the homogenous non-compliance
costs assumption, i.e., if the costs do not depend on the initial assignment.

To illustrate the relevance of this design, we consider the recent study by
Kirkeboen et al. (2016), who estimate returns to graduating in different fields of
education in Norway by instrumenting for graduation with the initial (random)
admission offer and measuring labor market returns eight years after the initial
application. In such a setup, re-enrolling in another field year(s) after the initial
application results in deferred graduation, which reduces labor market experience
(as labor market returns are measured eight years after the initial application
regardless of the actual graduation date). In the likely case that the length of the
labor market experience affects labor market returns, the estimates in Kirkeboen
et al. (2016) can be interpreted as returns to fields of study only if the cost of

17If Croatian students re-enroll, they also lose their national-level tuition waiver (otherwise
covered by the Ministry of Science and Education), which is constant (homogenous) across
programs.
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foregoing labor market experience is not field-specific and if the probabilities of
non-compliance do not depend on the initial assignment. We show that the latter
is not the case in Croatia, using data on the Croatian student-college matching
market from 2012 to 2018, where both the probability of non-compliance (re-
enrollment) and the probability of re-taking the national exam (re-application) do
depend on the initial assignment.

It is reasonable to assume that in the school-college matching market framework,
non-compliance with the initial assignment comes at a cost. Not only does it likely
imply deferred graduation, but, as demonstrated in the case of Croatia, it also
often results in retaking the national exam which is, potentially, also costly (in
terms of the cognitive costs of preparation).

The bounding method developed in this paper can be applied in other empirical
settings where non-compliance costs arise. For example, when programs are
offered through randomized list and applicants can apply to several lotteries
(de Chaisemartin and Behaghel (2020)), or in college applications without matching
markets (see e.g. Zimmerman, 2014, Goodman et al. (2017), Goodman et al. (2020)
and Kozakowski (2020)).

Therefore, our analysis suggests that RDD based IV studies relying on central-
ized student-school matching markets should first test whether the probabilities of
non-compliance with treatment assignment depend on the assignment. If treatment
assignment does affect the probability of non-compliance, and if the homogenous
costs assumption is not rejected, we suggest employing sharp LATE bounds.
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5. Appendix - Tables and Figures

Figure 3: Re-application probability at the initial-application admission cutoff

Notes: The graphs show re-application probabilities, defined using a two-year window
following on the initial-application year, around the admission cutoff in the initial application
year. The bandwidths used for the local polynomials correspond to optimal bandwidths
according to Imbens and Kalyanaraman (2012). The three graphs show cases where the
cutoff school (the school where an applicant was near the school admission cutoff at the initial
application) was anywhere on the student’s ranked choice list, when it was the student’s
first priority, and when it was his lower-ranked priority, respectively.

Figure 4: Re-enrollment probability at the initial-application admission cutoff

Notes: The graphs show re-enrollment probabilities, defined using a two-year window following
on the initial-application year, around the admission cutoffs in the initial application year.
The bandwidths used for the local polynomials correspond to optimal bandwidths according
to Imbens and Kalyanaraman (2012). The three graphs show cases where the cutoff school
(the school where an applicant was near the school admission cutoff at the initial application)
was anywhere on the student’s ranked choice list, when it was the student’s first priority,
and when it was his lower-ranked priority, respectively.
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Table 1: Summary statistics

All data RDD estimation sample

(1) (2)

Number of programs 620 620

Number of universities 49 49

Number of applicants 101,484 22,383

Number of applications 571,354 80,702

Average admission score 634.53 619.19
(122.76) (143.98)

Average GPA 4.01 3.96
(0.62) (0.58)

Fraction male 0.47 0.45

Average re-applying rate 0.13 0.16
(0.33) (0.36)

Average re-enrolling rate 0.10 0.13
(0.31) (0.34)

Notes: The table presents summary statistics calculated for the entire
administrative dataset and for the RDD estimation sample (based on
the bandwidth of 60 admission score points corresponding to 0.5 of
standard deviations, calculated on the ranking lists reported 5 days before
the final admission deadline). Standard errors are in the parentheses.
The first panel shows the number of programs, universities, applicants,
and applications. The second panel shows the average admission score
calculated over all applicant-program pairs and the average GPA and
fraction male calculated over all applicants. The third panel shows the
rates of re-applying and re-enrolling (within a two-year window after the
initial-application year) calculated over applicant-program pairs.
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Abstrakt 

V několika nedávných studiích se odhadují kauzální dopady různých typů vzdělání pomocí dat 
z centrálních systémů, které přiřazují studenty ke školám na základě tzv. algoritmu odložených 
přijetí. Tyto systémy totiž umožňují porovnávat uchazeče o studium s podobným skóre 
(numerickým výsledkem testů) v přijímacím řízení, kteří jsou nebo nejsou přijati ke studiu na 
danou školu na základě velmi malých, kvazi-náhodných rozdílů v tomto skóre. Tato literatura 
pak předpokládá, že tito marginální studenti se liší pouze v přiřazení ke škole a využívá skóre 
jako instrumentální proměnné pro přijetí do programu nebo absolvování daného vzdělávacího 
programu. V tomto článku upozorňujeme, že nedodržení přiřazení vytvořeného v těchto 
systémech většinou odpovídá situaci, kdy se daný uchazeč dostane na danou školu, kam se na 
základě původního přiřazení marginálně nedostal, o rok později. Takové nedodržení původního 
přiřazení vytváří náklady, které narušují restrikci na výlučnost (exclusion restriction), tj. 
klíčový předpoklad LATE teorému, což vede ke zkresleným odhadům v případě, že se 
instrumentuje absolvování daného programu, tj. intervence, která probíhá po té, co jsou náklady 
nedodržení přiřazení realizovány. S pomocí dat z národního párovacího systému v Chorvatsku 
ukazujeme empirickou relevanci tohoto problému a nabízíme metodu inspirovanou prací Lee 
(2009), která odhaduje meze kauzálních efektů na základě předpokladu, že náklady nedodržení 
nejsou provázány s původním přiřazením. 
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