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Abstract

When technological innovations are implemented in the wind energy sector,
we should observe reductions in the production cost of electricity. However, the
accuracy of inferring the rate of innovation from production cost reductions is
open to challenge when those costs change due to factors not attributable to
technological innovation. This study applies an engineering model to generate
time-series of wind energy production cost data as the measure of innovation.
This approach enables us to exclude factors which are not attributable to
technological innovation. In order to illustrate the importance of our measure of
innovation, we conduct a learning curve analysis which measures the correlation
between deployment of wind energy technology and cost reductions in electricity
production. Our data delivers an improved fit of the learning curve in wind
energy technology relative to alternative measures of innovation from the
literature.
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1 INTRODUCTION

Technological innovations can reduce costs of electricity production in the wind energy
sector. Despite the achieved reduction in costs, many producers still receive subsidies
to allow them to compete with conventional power producers. Understanding the
drivers of technological innovation is a first step towards constructing effective policies
to accelerate innovation process to an extent that the subsidies are no longer required.
However, we cannot fully understand the drivers of innovation without an accurate
measure of innovation itself. This paper focuses on generating a more accurate
innovation measure for wind energy technologies, which the current literature does
not provide. We illustrate the importance of our data by conducting a learning curve
analysis - a widely applied method in the energy literature to predict reductions in
the costs of electricity production.

Innovation in this paper refers to any type of wind turbine modification which
produces electricity at a lower cost than did its predecessor. If we directly use
production cost reductions as the measure for innovation, we will obtain biased results,
because production costs can also change due to factors unrelated with technological
innovation, such as interest rates, material prices, exchange rates, and wind speed
fluctuations.

In order to derive an accurate measure of innovation, we apply an engineering
model (Malcolm & Hansen, 2002; Poore & Lettenmaier, 2000-2002) and estimate
the cost of the wind electricity production of wind turbines installed each year in
the US from 1998 to 2017. The engineering model calculates the costs of electricity
production based on the engineering properties of installed turbines, their material
composition and the corresponding material prices in the selected year. This approach
can effectively exclude from the estimated production cost the factors unrelated to
technological innovation, such as interest rate, material price and exchange rate
fluctuations. This is the major motivation for using the engineering model in this
paper. We refer to our production cost data as an ’innovation measure’ or levelized
engineering cost of energy (LECOFE) series.

We illustrate the usefulness of our measure of innovation by conducting a learning
curve analysis. A learning curve measures the correlation between deployment of wind

technology and electricity production cost reduction. Using our levelized engineering



cost of energy measure delivers an improved fit of the learning curve in comparison
to alternative data. This is crucial as the learning curve is a popular tool in the
energy literature to measure technological innovation. In addition, learning rates are
frequently used in other electricity market modeling practices which influence policy
decisions. Therefore, learning rates inferred from improved data should be more
reliable for informing successful policies.

The paper is organized in the following way: section 2 describes the process of
generating our innovation data for wind technology in the US and compares it with
other studies; section 3 summarizes and analyzes wind technology support policies in
the US; section 4 evaluates these policies in the context of learning curve literature,

and section 5 concludes.

2  MEASURING INNOVATION IN WIND ENERGY TECHNOLOGIES

2.1 Defining the Levelized Cost of Energy (LCOF)

Technological innovations are reflected in cost reductions in energy production. Other,
non-innovative factors may also contribute, and we aim to eliminate these. To describe
how we accomplish this, it is helpful to define the terminologies used in the study. In
this section, we define the components of production cost.

Traditionally, the production cost of electricity is assessed using the levelized cost
of energy (LCOE) (e.g., McKenna, Hollnaicher, & Fichtner, 2014). LCOE includes
all capital and operating costs throughout the useful life of a wind turbine. A simple

formula for calculating LCOE is the following (Ramadhan & Naseeb, 2011):

CRF x CapEx + O&M
AEP (1)

LCOFE =

Capital Cost (CapEz). Capital cost includes: (i) the cost of a turbine,
(ii) the balance of system cost (BOS), which includes development costs of the
wind farm, permits, engineering and management, roads for site access, foundation,
transportation, assembly, installation and electrical infrastructure costs. Investment
costs are expressed in §/MW, where MW measures the turbine capacity. Turbine
capacity is the maximum amount of electricity that a particular wind turbine can
generate in an hour. Generated electricity depends on the wind speed. The maximum

amount can be reached above some threshold wind speed. We denote the capital cost



of a turbine as CapFx and

Turbine Cost + BO.S
Turbine Capacity

CapEx = (2)

Capital Recovery Factor (CRF). We can represent capital cost as a
discounted sum of annual fixed payments throughout a wind turbine’s useful life.
These fixed payments, or the rental rate of capital, is a product of capital cost and
a capital recovery factor (CRF), where C RF equals to % (Chabot & Saulnier,
2001). In this formula, n is the expected useful life of a turbine and 7 is discount rate.
The rental rate is measured in $/MW /year.

Operations and Maintenance Costs (O&M ). Operations and maintenance
costs (O&M) include replacement of wind turbine components, insurance, land lease
and all other costs that occur from the time the wind farm starts operation. Some
of these costs are fixed each year and does not depend on the amount of electricity
produced, and some are variable. However, for convenience, we convert this cost to
$/MW /year.

Annual Energy Production (AEP). Wind turbines can reach maximum
turbine capacity at a certain wind speed. However, wind speed varies throughout a
day, at various seasons and across geographic locations. In fact, wind turbines rarely
produce at their maximum capacity. Therefore, in order to calculate the production
costs of a unit of electricity, we need to know the electricity production per MW of
turbine capacity per year. The unit of measurement is MWh/MW /year, which can

be phrased as effective hours in operation annually.

2.2 Identifying Gaps in the Literature

Before describing the process used to generate our measure of innovation, we explain
why we did not rely on measurements from prior studies. Firstly, the vast majority of
papers on innovation in wind energy technology (e.g., Hayward & Graham, 2013;
Grafstrom & Lindman, 2017; Yu, Li, Che, & Zheng, 2017; Huenteler, Schmidt,
Ossenbrink, & Hoffmann, 2016; Wiebe & Lutz, 2016) use changes in average capital
expenditures or average turbine price per unit capacity as the measure of innovation.
Using only capital expenditures in the literature may be a result of a lack of production

cost data. This approach is problematic because, as turbines become larger, capital



expenditures per unit capacity may rise!. Considering only capital expenditures as
the measure of innovation in this case would suggest technological decay. However,
as turbines become taller, effective hours in operation also increase and this may
compensate for rises in the capital costs.

Another problem is that the most frequently cited International Energy Agency’s
(1991-2008) capital expenditure data is not of equal quality across countries. In this
source, some countries report all components of capital costs, while others only report
parts of it. For example, for some countries, the BOS cost component is missing.
In addition, capital expenditure data or turbine price data reflect the exchange
rate, material prices, and/or interest rate fluctuations, none of which contributes
to technological innovation (Bolinger & Wiser, 2012). Thus, these factors should be
eliminated when deriving measurements of innovation.

McKenna et al. (2014) uses the same wind turbine component-cost-scaling model
(Fingersh, Hand, & Laxson, 2006) as we do, in order to calculate the LCOE across
various wind turbine designs that are matched with a particular wind resource and the
terrain of a geographic location in Germany. However, McKenna et al. (2014) do not
attempt to produce series that describe trends in technological development. Instead,
the authors try to produce a high resolution image of the theoretical cost potential
of wind energy across different locations. In contrast, we only identify technological
innovation trends where small site-specific variations are not of crucial importance.

Several papers use a different approach to measure innovation. Qiu and Anadon
(2012) measure production costs using average tariffs that potential wind farm
developers were bidding to receive in the Chinese wind energy concession program of
2003-2007. Tang and Popp (2016) criticize the approach of Qiu and Anadon (2012)
arguing that wind farm investors are inclined to underbid their costs in order to win
auctions. Instead, Tang and Popp (2016) use the levelized cost of energy data from
Chinese wind energy subsidy project that covers 2002-2009. Their data represents the
expected levelized cost of energy estimated by eligible investors. Even if truthfully
reported, this data is likely to reflect fluctuations in the factors that do not contribute
to technological innovation, such as material price, exchange rates, and interest rate

fluctuations. This is due to the fact that investors’ expectations are most likely based

!The reason for the rising capital expenditures is that wind speed rises as it reaches higher
altitudes. Stronger wind exerts more force on the turbine, requiring heavier materials to withstand
these forces (Hemami, 2012)



on actual turbine prices.

We found only one source (Wiser & Bolinger, 2018), which delivers an innovation
measure that follows LC'OFE notion from equation 1, in which the series are sufficiently
long, and comparable to our innovation data. Wiser and Bolinger (2018) measure
the capital cost (CapEx) component of LCOFE based on the average investment
cost of newly installed turbines each year. In addition, they compute the AEP
component based on the empirical data of the actual average production of these
turbines. Similarly to the papers mentioned above, the problem with this approach
is that wind farm investment costs may reflect interest rates, material price, and
exchange rate fluctuations. In addition, historical electricity production data may
reflect variations in geographical, annual, seasonal and daily wind resources. Our
paper estimates both CapEx and AEP components of LCOFE using an engineering
model. We will discuss this in more details in section 2.5.

To summarize, many papers do not rely on the traditional notion of LCOFE and
measure innovation by using capital expenditures or turbine prices. Several papers
proxy LCOFE using other methods. Nevertheless, the estimated values are likely to
reflect fluctuations of variables unrelated to technological innovation. Furthermore,
the data series of these papers are quite short and may not represent actual innovation

trends.

2.3 Deriving our Innovation Measure

In this section we derive our innovation measure, discuss the strengths and the
weaknesses of our method and compare our LECOFE data to alternative series.

Each year new wind turbines are installed in the US. The average characteristics
of the turbines installed change annually due to innovation. Key characteristics
including turbine capacity, rotor diameter, and hub height are the major determinants
of the technological progress of wind turbines. The fact that production rates improve
at higher altitudes and that stronger wind exerts more force on wind turbines implies
that the major innovation in wind technology has to come from increases in the size of
turbines. Figure 1 confirms that the wind turbines have been persistently increasing
in size.

The figure shows the distribution of key turbine characteristics by year of

installation. According to the figure, on average, older turbine models are gradually



Figure 1: Distribution of Wind Turbine Vintage Characteristics
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updated. Therefore, we argue that the average characteristics of wind turbines installed annually

represent the frontier technology in the year of installation. Source. Wiser and Bolinger (2018)

replaced by new ones. Therefore, we argue that the frontier technology is advancing.
For these reasons, we use the average key characteristics of turbines installed in a
particular year as a representative of frontier technology in that year. For convenience,
we refer to the hypothetical wind turbine model possessing the key characteristics of
turbines installed in a particular year as vintage.

Several studies, which we characterize as engineering models, use the key turbine
characteristics as inputs to derive the mass of turbine components (Malcolm &
Hansen, 2002; Poore & Lettenmaier, 2000-2002). Once the turbine mass is properly
estimated and the material composition of the turbine is known, we can use material
prices to calculate the cost of turbine components. Similarly, these key turbine
characteristics can be used to assess productivity of the turbines. Hence, we can

exploit engineering models to estimate LCOE in equation 1. We refer to LCOFE



estimated using engineering models as levelized engineering cost of energy (LECOE).

We calculate the LECOE of each wind turbine vintage installed in the US from
1998 to 2017. The data for average key characteristics is taken from Wiser and
Bolinger (2018) and is documented in the Appendix table Al. Below, we begin
calculating LECOFE from the simplest components of equation 1.

Capital Recovery Factor (CRF). CRF is a function of the useful life of a
wind turbine and a discount rate. In the literature, the discount rate is calculated as
a weighted interest rate to finance capital® (e.g Mone, Smith, Maples, & Hand, 2015).
Certainly, the discount rate may differ across vintages due to the fact that the set of
firms installing new wind farms in a particular year face different market-specific and
company-specific conditions which affect the interest rate. We abstract from these
short-run interest rate fluctuations to focus only on engineering factors affecting the
costs of electricity production. Therefore, we use the same discount rate across the
vintages.

Our data is expressed in 2015 dollars because the engineering cost model is
expressed in 2015 dollars (Dykes, K, personal communication, January 29, 2019).
Taking the discount rate of 7% is appropriate during this period (Mone et al., 2017).
In fact, the magnitude of the discount rate is not crucial. As long as we fix the
discount rate across vintages, changing it affects the level, but not the trend, of our
LECOEFE data. The purpose of our analysis is to identify the trends in innovation
correctly. Figure 2 illustrates this point and shows our LECOFE data measured using
7% and 1% discount rates, respectively.

Regarding the useful life of the wind turbines, we do not have empirical evidence
about the improvement of wind turbines’ useful life with technological innovation. In
fact, wind farms installed in 1998 when our data-set starts, are expected to still be
in operation. Therefore, we do not vary useful life across vintages. Manufacturers
typically assign 20 years of useful life to wind turbines, so the literature frequently

assumes the same (Mone et al., 2017). We follow this practice, and it delivers a CRF

2Weighted interest rate calculates the rate to be paid as the interest on debt and the rate of return
on equity depending on the proportion of the debt and equity in the total investment cost. The
formula is the following: rate of return on equity x equity share in the portfolio 4 interest on debt x
debt share in the portfolio x (1 — income tax rate). The argument against using weighted interest
rate is that individual firms usually face increasing marginal interest rates to finance new projects.
However, we do not focus on firm-level differences, instead we depict an industry-level picture. When
many wind farms enter the market, it is reasonable to assume that the interest rates remain constant,
because not all owners of new wind farms face financial limitations. In addition, using a weighted
interest rate is a common practice in the energy literature.



of approximately 9.5% for each vintage.

Figure 2: Impact of Discount Rates on the Levelized Engineering Cost of Energy

1
»
-

1 | 1 1 1
>
»
> [ ]

LECOE 2015 $/MWh
30 35 40 45 50 55 60 65 70 75 80 85 90
|
>
>
-

T T T T T T T T
1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
Vintage

& 7% discount rate 4 1% discount rate

Notes. The figure plots our LECOE data calculated using 7% and 1% discount rates. This illustrates

that changing the discount rate for all vintages does not affect trend of the data.

Annual Energy Production (AEP). As mentioned earlier, AEP measures
the annual effective operational hours of a wind turbine. Calculating the AEP of
a wind turbine depends on the wind speed distribution at the site and the power
curve of the turbine. Wind speed density reflects the probabilities of various wind
speeds occurring in an hour at a site at a certain altitude. The power curve
measures the amount of electricity generated at each wind speed bar, based on the
turbine characteristics. Multiplying the probability of each wind speed bar by the
corresponding power expected to be produced and summing these products delivers
the AEP of a wind turbine.

Hence, calculating AE P partly depends on turbine characteristics and partly on
wind conditions and geographic location. Since we want to capture productivity
changes due solely to technological innovation, we do not vary the wind speed
distribution and other location-specific parameters across the vintages. The idea
is to measure the improvement in the productivity of a new wind turbine if we put it

in exactly the same location as the old one.?

3Fixing the wind resource parameters might be questionable if wind turbines were increasingly
installed on lower wind speed areas due to geographic constraints. In this case we would suspect
that the wind turbines were specifically designed for these locations and do not necessarily represent
the frontier technologies. However, we show in figure A2 that such crowding out of new wind farms
has not occurred so far.



To measure the AEP* we estimate the power curve of each vintage using the
vintage characteristics documented in table A2 as inputs. In addition, we fix wind
and location-specific parameters across vintages at the levels recommended in Mone
et al. (2017). The recommended wind and location-specific parameters reflect the
average wind conditions and the altitude of a representative site in the interior of the
US, where most wind farms are located. To understand the theoretical model behind
the AEP estimation, readers are referred to Fingersh et al. (2006). The estimated
AEP for each vintage is documented in table A2.

Capital Cost (CapEx). Deriving CapEx accurately is the most challenging
of the LECOE components. Below we derive capital costs for each vintage using
engineering wind turbine component-mass scaling models. The National Renewable
Energy Laboratory (NREL) provides the most extensive engineering turbine-scaling
studies. The WindPACT project (Malcolm & Hansen, 2002; Poore & Lettenmaier,
2000-2002) represents NREL'’s first attempt to measure scaling of the mass of a turbine
with its key characteristics.

There are approximately twenty major components which make up a turbine,
including blades, hub, low-speed-shaft, tower, generator and gearbox.  The
WindPACT studies take a baseline wind turbine and project how the mass of each
component has to scale when blades become longer, hubs increase in height, and
capacity grows. Hence, the WindPACT studies build component-mass scaling models
which represent the mass of each turbine component as a function of the key turbine
characteristics.

A WindPACT model first simulates wind turbines of various sizes and
parameters. Second, it calculates the stress on turbine components under certain wind
distributions and parameters. The underlying stress has to be within predetermined
limits for the wind turbine to withstand the wind forces for a desired period of time.

For many component-mass scaling models, the arguments have power functions
with exponents ranging from 2 to 3. This implies a non-linear increase in turbine
mass with turbine characteristics. Certainly, technological innovation can reduce the
exponents on the power functions. Some of this type of innovation may be anticipated

by the engineering model, while others may not. For this reason, the engineering

4In this paper we estimate AEP for each vintage using the Plant-EnergySE plug-in of the
WISDEM software by NREL available on GitHub (NREL, 2015a). Specifically, we use the nrel-
csm-aep script.
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component-mass-scaling models may become outdated. The WindPACT studies were
conducted between 2000 and 2002. During that time, turbines were significantly
smaller than today. As the large-size turbines entered the market, a discrepancy
arose between the predicted and the actual mass of these turbines. To account for
this, NREL produced new component mass-scaling models® in 2015. In the rest of the
paper we frequently refer to the engineering component-mass-scaling models presented
in the WindPACT studies as the ’old model’ and the new component-mass-scaling
models as the 'new model’.

A different approach is used to project the mass of turbine components in the
new model. The authors first collect data about various wind turbines, their key
characteristics and the mass of their components. Then they regress the values of the
turbine characteristics on the mass of turbine components and identify a polynomial
fit to the data. The resulting polynomial functions are the new component-mass-
scaling models. Although, the new model does not rely on a pure engineering
estimation technique, it is based on the engineering parameters of turbines.

According to equation 2, CapFEx includes turbine cost and BOS cost. We will

first derive turbine cost based on each model:

Turbine Cost - Old Model

Fingersh et al. (2006) uses the old component-mass-scaling models, the material
composition of components and material prices to offer component-cost-scaling
models. Component cost-scaling models express the costs of turbine components
as a function of its key characteristics. The procedure that the authors use to derive

these models is the following:

step 1: Convert the turbine component-mass vector into the component-material-
mass vector. For most turbine components only one material is used and
they do not require assembly®. For the components that consist of several
materials, the WindPACT studies assume that the proportion of materials in

the component remains the same when turbine components scale.

®The new model has not been published officially (Stehly, Beiter, Heimiller, & Scott, 2018),
however, the Turbine-CostsSE plug-in is available on GitHub (Dykes, 2015) as a part of WISDEM
software, which is programmed to calculate the mass of each turbine component based on key turbine
characteristics. Specifically, we use the nrel-csm-tcc-2015 and the turbine-costsse-2015 scripts.

8These components are readily available in the market and turbine manufacturers do not produce
them separately
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step 2: Apply material prices to compute the component-material-cost vector.
Material prices in Fingersh et al. (2006) are given as producer price indices
of these materials (PPIs). We are flexible to choose material prices of a

particular year and to express all the costs in that year.

step 3: Compute labor costs for turbine components. As mentioned, most turbine
components consists of only one material and do not require assembly by the
manufacturer. Labor costs are already reflected in the PPI of such materials.
The same is true for several more complex components, such as generators.
In Fingersh et al. (2006), a generator is treated as a single material to which
a single PPI applies, which includes the labor costs. Only three turbine
components: blades, nacelle cover, and the electrical connections require labor
by manufacturers, according to Fingersh et al. (2006). The labor costs are
assumed to amount to fifteen percent of the total cost of the nacelle cover
and the electrical connections. For the blade, labor costs are scaling with the
rotor radius. Certainly, there are labor costs associated with the assembly and
installation of a turbine itself. However, these are included in the balance of

system (BOS) cost.

step 4: Summing material and labor costs of components yields the component costs.
Component costs can be expressed in 2015 US dollars by applying the PPIs
of 2015.

We use the component-cost-scaling models in Fingersh et al. (2006) to derive the
turbine cost for each vintage. To do this, we plug the key vintage characteristics from
table A1 and the PPIs” of 2015 into the component-cost-scaling models and calculate
component costs in 2015 dollars® for each vintage. The sum of component costs yields

the turbine cost in 2015 dollars for each vintage.

"Producer price indices can be selected based on the NAICS codes suggested in Fingersh et al.
(2006). PPIs are available from the Bureau of Labor Statistics web-page.

8Using the PPIs of 2015 for materials would be wrong if the material composition of vintages
changed frequently; however, Fingersh et al. (2006) assumes a fixed proportion of materials in each
component based on WindPACT studies. This can be explained by the fact that the industry has
significantly converged to three-bladed tubular horizontal axes wind turbines due to their efficiency
and, therefore, material composition usually does not substantially differ across vintages (Hemami,
2012).
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Turbine Cost - New Model

The new model does not explicitly provide either the composition or the
proportion of materials in each component. Therefore, we cannot apply producer
price indices in order to calculate the cost of each turbine component as we did based
on the old model. However, Dykes (2015) provides the costs per kilogram of each
component in 2015 dollars. These costs are likely computed with similar steps as in
Fingersh et al. (2006). In order to compare the old and the new LECOE series, we
express both in 2015 dollars.

To calculate the turbine cost for each vintage based on the new model we use
nrel-csm-tcc-2015 and turbine-costsse-2015 python scripts, which contain the turbine

component-mass-scaling models”. The calculation procedure is the following:

step 1: Calculate the mass of each wind turbine component for each vintage given
the key vintage characteristics from table A1l. The new model offers four
alternative component-mass-scaling functions for blade mass depending on
the type of blade used. Hence, blade type is an additional input variable for
the blade-scaling model. Blades differ based on whether they have carbon
content, and whether the turbine is class I or class II/III. Carbon content
makes blade lighter, however, according to Fingersh et al. (2006), carbon
should not be used for blades with rotor diameters of less than 100 meters in
size. The average rotor diameter for the vintages 1998-2014 is less than 100
meters (See table Al). Hence, we calculate the blade mass for these vintages

using no carbon’ as input. For all other vintages we assume carbon content.

The prevailing wind conditions in a location determine which class of turbine
should be installed. The literature distinguishes at least five classes of turbines
(Wiser & Bolinger, 2018), however, the new model divides these classes in
two groups: class I and class II/III turbines. The reason for division into two
groups is that the second group is designed for particularly low-wind-speed
areas. The first group includes turbine classes up to class II/III, these are:
class I, class I/II and class II. The second group includes turbine classes I1/111
and III. According to Wiser and Bolinger (2018), since 2012 there has been a
greater tendency to install group two turbines (II/III and III) although wind

conditions have not changed (See figure Al). Because more of the second

9These scripts are available as a part of Turbine-CostsSE plug-in on GitHub (Dykes, 2015).
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group turbines have been installed since 2012, we calculate the blade mass
by using 'class I’ group as input in the blade-scaling model for vintages 1998-
2011. We calculate the blade mass by using ’class II/III’ group as input for

vintages installed in 2012 and afterwards.

step 2: Calculate cost per component in 2015 dollars for each vintage. As we
mentioned, we are given the cost per kilogram of each component in 2015
dollars.  Therefore, we multiply the cost per kilogram of a particular

component by its mass calculated in the previous step.

step 3: The sum of all turbine component costs is the turbine cost for each vintage

in 2015 dollars.

Balance of System Costs

Both, the old and the new models offer models for BOS cost-scaling with turbine
characteristics. The old BOS cost-scaling models are linear in the number of turbines.
This implies that installing a second turbine in an existing wind farm adds exactly the
same amount of BO.S cost as the first turbine. The new BOS model takes the number
of turbines as an additional input variable. This implies that adding a turbine to an
existing wind farm saves some part of the BOS costs. However, there is a trade-off
between the number and the size of turbines. With larger turbines, fewer can be
installed per area for efficiency and security reasons (Hemami, 2012).

We plug the key turbine characteristics from table A1 and 2015 PPIs into the
BOS cost-scaling models documented in Fingersh et al. (2006) to generate the old
BOS cost series for each vintage in 2015 dollars.

As we mentioned, in the new BOS model'®, the number of turbines is an
additional input variable. The number of turbines multiplied by turbine capacity
is referred to as farm size. A common practice is to fix farm size and calculate the
number of turbines installed per wind farm. We follow this practice and fix farm size
for each vintage at 200 MW, which is a typical farm size according to Mone et al.
(2017). Subsequently, together with the number of turbines, we input the key vintage
characteristics in the new BOS model, which is expressed in 2015 dollars, to compute

the new BOS cost series for each vintage in 2015 dollars.

0The new BOS model is available as a part of the Plant-CostsSE plug-in on Github (NREL,
2015b).
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The sum of turbine and BO.S cost divided by turbine capacity is CapFEx in 2015
US $/MW for each vintage. The estimated CapEx for each vintage using both models
is documented in table A2.

Operations and Maintenance Costs (O&M). O&M costs can also be
modeled as a function of turbine characteristics. However, the O&M cost-scaling-
models which the old model proposes are not accurate, partly because there are
insufficient empirical observations of the frequency at which the turbine parts are
replaced in order to validate the model. Public data on O&M costs that wind
electricity producers incur is typically unavailable. Wiser and Bolinger (2008-2018)
collect limited and mostly confidential empirical data about O&M costs annually.
This data may not be representative but could be informative of the trend of O& M
costs across the vintages. According to the plot of O& M data in Wiser and Bolinger
(2018), long-run O&M costs are generally declining,.

Since 2010, NREL has published Costs of Wind Energy Reviews (2011-2018),
in which O&M costs are reported in nominal values. They infer O& M costs from
expert opinions combined with the O&M data from Wiser and Bolinger (2008-2018).
For vintages installed between 2010 and 2017, we use their reported values of O& M
cost and convert them to 2015 dollars using the GDP deflator’! (Fingersh et al.,
2006). In addition, Wiser and Bolinger (2018) reports the value of O&M costs for
vintage 1998 at 80 $/kW //year in 2017 dollars based on expert opinions. We take
this value, convert it to 2015 dollars and use linear interpolation to proxy the O& M
costs for vintages 1998-2009. When we calculate LECOF based on the old and the
new engineering models, we use this O&M data in both calculations. The estimated
O& M costs for each vintage are documented in table A2.

The O&M cost component is the weakest in our estimation of LECOE.
However, its share of the total costs is not significant and it is also unlikely to vary
significantly with engineering improvements and hence, across vintages. As a result,

we do not expect that it would markedly influence the trend of the LECOE data.

Hwe extracted the GDP deflator from the U.S. Bureau of Economic Analysis
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2.4 Comparing the Results from the New and the Old

Engineering Models and the Lessons Learned

According to the procedure described above, we derived the LECOFE components for
vintages 1998-2017 using the old and the new engineering models (see table A2 in the
appendix). Figure 3 shows the LECOE derived using the two alternative models.
The new model produces a steeper series. The series start to significantly diverge
from the 2005 vintage. We can suggest several explanations for these differences: an
unanticipated technological innovation occurred, the old model required a correction,
or both. If the old model was correct, then an unanticipated technological innovation
alone would deliver a different picture: the new series would precisely follow the old
series until the technological switch occurred. Figure 3 rules out that the old model

was correct, since the series follow different paths from the beginning of the period.

Figure 3: Levelized Engineering Cost of Energy
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Notes. The figure plots our LECOF series calculated based on the old and the new engineering
models. We use a 7% discount rate. The figure illustrates the margin of error that using the

engineering method may produce.

To repeat, in the old model, the component-mass-scaling relationships are derived
based on simulated conceptual wind turbines. In contrast, in the new model, the same
relationships are fitted curves given the data on the actual key characteristics of the
turbines and the mass of their components.

Hence, the old model identifies technological trends from simulated wind

turbines, while the new model uses actual wind turbine data on units installed in the
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US. When the original engineering study was undertaken, the turbines on the market
were small in size. Figure 3 implies that the old model significantly mismeasured the
mass of the turbines that were not available on the market at the time.

The comparison of the two LECOF series provides information on the margin
of error that an application of the engineering estimation method can produce. The
new engineering model may require further improvement as new turbines enter the
market. Therefore, caution must be taken when predicting LECOFE for future wind
turbine vintages using this model. Nevertheless, we can rely on the new model to
calculate LECOF for the vintages installed during the period under review. This
is due to the fact that the new engineering model already incorporates the data of
turbines installed in this period.

Hence, in the rest of the paper, we consider our LECOF series generated based
on the new model as the innovation measure. We argue that our innovation measure
reflects the engineering improvement of the vintages and is not influenced by interest
rates, material prices or wind resource variations. In order to illustrate how the
influence of these factors can impair innovation measures, in what follows, we compare

our LECOEFE series to an alternative measure.

2.5 Comparing our Innovation Data with Alternative Series

We compare our LECOFE data with alternative series from Wiser and Bolinger (2018).
The procedure for calculating LCOFE in Wiser and Bolinger (2018) is the following:

step 1: Calculate CapFEx for each vintage based on the empirical data about capital
expenditures of wind farms installed in the US. Wiser and Bolinger (2018)
have compiled capital expenditure and performance data on approximately
86% of such wind farms. The CapFEx data typically includes turbine and
BOS cost. The authors note that, due to the diversity of sources, the
available data is not of equal quality, therefore, they warn readers to rely
only on the general trends in the data, not on the individual. Using empirical
CapFEx data to measure innovation is problematic in several ways. First, its
major component is the price of a turbine. Turbine prices may vary due to
temporary shocks such as fluctuations in the exchange rates, material prices
or interest rates. We do not consider that these temporary shocks contribute

to technological innovation. Second, C'apEx represents the largest part of the
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lifetime cost of a wind farm. Investors are likely to react to the temporary
market shocks or technology-related policy changes and shift their investment
decision to a different period. Therefore, using empirical CapEzr data may
represent a distorted view of the actual trend of the capital cost. In contrast,
using engineering properties of newly installed turbines to measure the CapFEx

avoids these issues.

step 2: Unlike this study, the authors do not fix the value of the discount rate across
vintages when calculating C RF'. In particular, they vary the interest on debt
throughout the period with respect to the changes in the twenty-year swap
rate and bank spread. The fact that two vintages are charged different interest
rates should not be the reason for the difference in the production costs if our

goal is to measure changes in the production costs due to innovation.

step 3: The authors calculate AEP based on the actual performance of the vintages
installed. AEP estimated in this manner will reflect annual, seasonal and
locational wind resource variations. We instead calculate AEP for each
vintage using an engineering model and by fixing wind resource parameters

across the vintages.

step 4: For O&M costs Wiser and Bolinger (2018) rely on their own compiled data
and the expert opinions to assign the value in 1998 $80/kW /year, in 2003 -
$60/kW /year, in 2010 - $51 /kW /year and in 2017 $44/kW /year.

Figure 4 compares our LECOE data with the series from Wiser and Bolinger
(2018). First we notice that the Wiser and Bolinger (2018) data is very volatile.
Our LECOEFE measure represents the production costs of energy, which is free from
market driven temporary shocks such as, material costs, interest rates, and exchange
rate fluctuations, while, the Wiser and Bolinger (2018) data reflects such fluctuations.
For example, their data reflects an abnormal period between 2006 and 2011 when
the production cost was rising. Certainly, this was not due to technological decay
but because CapFEx largely reflected increases in turbine prices during this period.
Bolinger and Wiser (2012) explained the rise of turbine prices in this period: first,
many turbines were imported into the US from abroad, and during this period, the
US currency was depreciating against the importing country currencies. Second,

demand for turbines increased significantly and the supply side could not catch up

18



with this trend immediately. For this reason, manufacturers started to face labor
supply issues, which increased labor costs. In addition, manufacturers increased their
profit margins, given the supply deficit. Finally, the rise in the wind turbine material

prices also contributed to the increase in turbine prices.

Figure 4: Visualizing the Advantage of Our Innovation data
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Notes. The figure contrasts our innovation data with the alternative series from Wiser and Bolinger
(2018). Because the alternative LCOE data was not directly accessible, we measured it from the
bar-chart produced in the 2017 Wind Technologies Market Report (Wiser & Bolinger, 2018). We
used the WebPlotDigitizer tool to measure the bars.

If we omit the abnormal period, we notice that both series show similar trends and
that our data series are slightly above the ones from Wiser and Bolinger (2018). This
is a good indicator that the engineering costs quite realistically reflect the empirical
cost of the turbines. One reason our LECOF series is slightly above the alternative
ones, omitting the abnormal period, is that we may be using a higher discount rate
on average. Another reason could be that we fix wind resource parameters and
distribution to calculate turbine productivity, while actual productivity might have
been higher on average during this period.

Hence, in this section we have illustrated the advantage of using the engineering
method to calculate the production costs of wind turbines. The engineering model

more realistically reflects production cost reductions driven by innovation.
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3 TuHE US WIND ENERGY PoLICY ENVIRONMENT

In order to discuss potential applications of our measure of innovation, we first study
the current wind technology market structure and policy environment in the US. For
this reason, we explore the supply and demand sides of wind electricity producers and

the prevailing equilibrium outcomes given the current government policy instruments.

3.1 The Cost Side of Wind Electricity Producers

Figure 5: Long-run and Short-run In the previous section we found that long-
Electricity Supply Curves _
run marginal cost curve (the supply curve)
MCys
‘ of wind electricity is downward sloping due
\ M Cog

$/MWh

to innovation. We now observe that the

electricity supply curve for each vintage is

horizontal (see figure 5). On the maps in

figure A2 in the appendix, we see that the

majority of wind farms have been built in
Notes. The LECOE curve represents the long- densely populated areas and close to one
run marginal cost curve of wind electricity another. This indicates that geographic

producers, while MC curves illustrate short-

. .. ) constraints have not crowded out the wind
run marginal costs of electricity production by

each vintage 1998-2017. Q denotes cumulative farms to less windy areas. The crowding
production. out of wind farms would imply an upward
sloping electricity supply curve for each vintage. The upward sloping curve would
reflect an increase in the marginal costs due to poorer wind resources, which electricity
producers would face in remaining wind farm sites. To reinforce the claim that
geographic constraints have not yet become binding in the US, we check the changes in
the average wind speed across various vintages at the wind farm cluster level. Figure

A3 in the appendix shows that wind quality has not worsened for newer vintages at

the location level.

3.2 The Revenue Side of Wind Electricity Producers

Wind electricity producers receive income from selling electricity and from subsidies.
Electricity sales are usually established through long-term power purchasing

agreements (PPAs). The most significant subsidies producers receive are federal

20



production tax credits and depreciation benefits. Before we summarize these sources
of income and provide some statistical data, it is crucial to introduce the market
players and to review the US electricity market structure. What follows is mostly
based on the handbook of Federal Energy Regulatory Commission (2015).

Many types of players participate in the complex electricity markets, so we
introduce only the core players. Electricity producers, electricity generators and
wind farm owners own a generation facility and produce electricity. Utilities own
transmission and distribution lines and are regulated by the government. Electricity
suppliers deliver electricity to the final consumers. A supplier may be a utility or a
non-utility company. We will frequently refer to a non-utility electricity supplier as
a retail electricity provider (REP). Electricity suppliers, unless they own generation
facilities, purchase electricity from generators, therefore, we will also refer to them as
wholesale electricity purchasers when needed.

Utilities have interconnected their transmission lines in the US, and this has
formed several electricity markets. Transmission capacity between these markets is
usually limited. Figure 6 displays the markets. Market structure determines the
predominant nature of trade in these markets - bilateral or wholesale. Independent
system operators (ISO) run the wholesale markets. The ISOs are non-profit
organizations and they enforce efficient and non-discriminatory trade between
participants.

Three types of market structures are prevalent in the US: vertically integrated
markets (VIM), partially deregulated markets (PDM) and fully deregulated markets
(FDM). In VIMs utilities own generation facilities and also supply electricity to
final consumers. Utilities enter into bilateral trade in VIMs. In PDMs utilities
are unlikely to own generation facilities, but they still supply electricity to final
consumers. Electricity producers participate in the wholesale markets and compete
to sell electricity to utilities.

FDMs are similar to PDM, however, competition is established not only at the
generation level but also at the supply level. By default, in FDMs utilities purchase
electricity in the wholesale market and supply electricity to consumers in the areas
where they own transmission and distribution lines. Nevertheless, final electricity
consumers have the option to switch to REPs. The reason for the switch could be

due to a cheaper electricity package or a green electricity option. If consumer chooses
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Figure 6: US Electric Power Markets

California (CAISO)

2y

Texas (ERCOT)

Notes. The figure shows deregulated and vertically integrated electricity markets in the US. The
Northwest, Southeast and Southwest regions are vertically integrated, while the rest is operated
as wholesale markets by independent system operators. Source. Federal Energy Regulatory
Commission (2019).

a REP as a supplier, then the REP is responsible for purchasing electricity from
generators and scheduling it for transmission and distribution. Transmission and
distribution fees will be included in final electricity bills. The fees are very small in
comparison to the cost of energy.

Figure 6 shows that the markets referred to as Southeast, Southwest and
Northwest are VIMs (Federal Energy Regulatory Commission, 2019). The rest of
the markets are either PDM or FDM. Comparing figures A2 and 6 suggests that
the majority of wind farms operate in the interior region of the US where electricity
markets are at least partially deregulated. This implies that utilities in these regions
are unlikely to own wind farms and that most wind farms operate in the wholesale
markets. However, participation in the wholesale markets is not mandatory for wind
electricity producers. To hedge against market price fluctuations, they can enter into
long-term power-purchasing agreements (PPAs) with electricity suppliers.

Statistically, utilities own only fifteen percent of the cumulative wind generation
capacity installed between 1998 and 2017. In addition, only 23% of the cumulative
capacity participates in the wholesale markets (Wiser & Bolinger, 2018). Therefore,
we argue that PPAs are the most common source of revenue for wind electricity
producers in the US. Hence, PPA is the best measure of the revenue. We summarize
the average PPA rates across vintages below as the revenue source, and judge whether
they are set competitively. Assessing the degree of competitiveness between wind

farms is necessary for analyzing wind technology support policies.
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Income From Power Purchasing Agreements

A power purchasing agreement is the negotiated price per unit of electricity
between a wind electricity producer and an electricity supplier. A typical PPA
specifies the price of unit electricity, annual escalation of this tariff, and the duration
of the contract. The duration of approximately 60% of contracts is 20 years and
about 90% of contracts is 15-25 years (Wiser & Bolinger, 2018). Therefore, the vast
majority of wind electricity generators are locked-in at a specified price throughout
the useful life of a wind farm project. As a result, electricity producers are protected
from wholesale market price fluctuations.

The wholesale markets are competitive because all technology generators
compete with each other. However, it may not always be the case that PPAs are
set competitively. If there are too few wind farms and the utilities or REPs have an
obligation to supply a certain portion of electricity from renewable sources'?, then
wind electricity generators will have incentives to set premiums on their electricity
prices.

We investigated the number of wind electricity generating firms that have entered
each electricity market annually to assess potential competition levels between them.
We first obtained data on all operating wind farms since 1998 in the US. The US
Geological Survey, the Berkeley Lab, and the American Wind Energy Association
(2016) compile such data in the United States Wind Turbine Database. The database
provides the names of each wind farm, the years the farms were installed, and the
locations and technical parameters of installed turbines. We then identified the wind
farm owners and the electricity suppliers which purchase electricity from these wind
farms'?

We removed all observations when a wind farm owner and a corresponding
electricity purchaser was the same entity, or one was a subsidiary of the other. Such
firms would not be appropriate to analyze competition. Furthermore, we disregarded

the Southeast market because there are few wind farms and the majority are owned

12Renewable portfolio standards represent state-specific targets for the share of electricity that
suppliers are obliged to procure from renewable sources cumulatively in a particular state by a
certain date. Some states may have high targets and implement penalties for non-compliers, while
others require only goals and apply no penalties. The targets can be subject to change. (DSIRE,
2019b)

3Information on wind farm owners and corresponding electricity purchasers was mostly taken
from the American Wind Energy Association (2013-2017), the Open Energy Information Database
(2019) and The Wind Power database (2019). Information on electricity purchasers was confidential
in only about one percent of cases.
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by utilities (refer to the map in figure A2)

Using the locations of wind farms, we assigned each of them to the electricity
markets in figure 6, where they most likely sell electricity. Table A3 in the appendix
shows the cumulative number of wind farm owners in each market each year. The
table suggests that there has been a reasonable level of competition between wind
farms since the mid- 2000s. However, in the beginning of the period under review,
wind farms were less competitive. To verify whether there is sufficient competition
between probable electricity purchasers, we found information on the number of
utilities and REPs participating in each electricity market. Table A4 demonstrates a
reasonable level of competition between probable electricity purchasers as well.

Data series regarding the levelized PPA are documented by Wiser and Bolinger
(2018). We convert the values into 2015 dollars using the GDP deflator'* The
authors generate levelized PPA series using the steps described below. The unit

of measurement of levelized PPA is $/MWh:

step 1: Group individual power purchasing agreements by their execution date.
PPAs are usually executed one or two years before wind farms are installed.

Therefore, the PPA execution date and vintage launching date are different.

step 2: If an individual PPA involves annual price escalation, levelize it using a 7%

discount rate, which implies making the negotiated price constant each year.

step 3: Assign weights to individual PPAs based on the generation capability of
wind farms by PPA execution date. This implies that the authors assign
bigger weights to wind farm projects which produce more, instead of simply

averaging individual PPA prices by their execution date.

step 4: Derive levelized PPA by their execution date, i.e. sum the generation-

weighted individual PPAs by their execution date.

The 'Revenue + Subsidy’ curve in figure 7 is the sum of levelized PPA prices
and levelized subsidies. Levelized PPA represents approximately 70% of the total
income of the vintages. We should note that wind farm investors negotiate PPAs one
or two years before installing the wind farms. Levelized PPA data is grouped by the

year when these PPAs were executed, not by the year when the corresponding wind

!The data can be extracted from Wiser and Bolinger’s (2018) data file.
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Figure 7: Costs and Revenues
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Notes. The figure plots the cost and income sides of each vintage, where income includes revenues
from PPAs and subsidies. The cost side is calculated using an engineering model, while the income
data is primarily empirical. Therefore, caution should be taken when inferring information from

these curves.

farms were installed (Wiser & Bolinger, 2018). For example, PPAs executed in 2010
primarily denotes the vintages installed between 2011 and 2012. According to Wiser
and Bolinger (2018), PPAs that are executed in a particular year effectively reflects
the market conditions for the vintage that was installed in the same year. Following
this argument, when we plot figure 7, we assign to each vintage the levelized PPA
which was executed in the year of installation.

The revenue side of the wind electricity producers can be affected by the
integration costs as well. Integration costs are those that wind technology brings
to the power system due to the intermittent nature of wind resources (Milligan &
Kirby, 2009). When the share of intermittent generation rises in the system, it
becomes more challenging to balance electricity supply and demand. In many cases,
oversupply incidences rise, which is sometimes addressed by forced curtailment of
wind technologies, which in turn implies lost producer revenues (unless losses are
compensated). Figure A4 in the appendix shows the estimated average capacity
factors of wind generation in the US if curtailment had not occurred and compares
it with the actual average capacity factors. The figure shows no curtailment before

2007. After 2007, capacity factors declined by 0.1-1 percent due to curtailment!®.

150nly in 2009 did the average capacity factor decline by two percent due to curtailment.
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This reduction in capacity factors and hence, wind electricity generation, would not
significantly affect the levelized PPAs. Therefore, we omit the curtailment factor
from our discussion. Moreover, we use only the revenue side of the wind electricity
producers for qualitative analysis, and slight reduction in levelized PPA after 2007

will not impact our results.
Production Tax Credits

Wind electricity producers receive subsidies per MWh of production in their
first 10 years of operation as a production tax credit (PTC). The amount of PTC is
determined at 15 $§/MWh, which is the value in 1993 dollars and needs to be adjusted
for inflation using the adjustment factor released annually by the US Internal Revenue
Service!® (Internal Revenue Code, Sec.45(e)). The adjustment factor for each year is
the ratio of the most recently revised GDP implicit price deflator for the preceding
year and the GDP implicit price deflator for 1993.

We derived the levelized value of PTC received for twenty years instead of ten
years in order to distribute its value throughout the useful life of the wind farms.
The process of calculating levelized 20-year PTC is written out in steps below. The

brackets indicate the units of measure in each step:

step 1: Find the value of a ten-year PTC subsidy in 2015 dollars. To be consistent
with our cost data, we want to convert everything into 2015 dollars. The
value of a PTC subsidy in 2015 dollars is the ratio of the GDP deflator in
2015 and 1993 multiplied by 15 $/MWh. As the result, we obtain the value
of a ten-year PTC subsidy in 2015 dollars 21.5$/MWh. ($/MWh).

step 2: Derive the annual PTC subsidy per vintage capacity. The value of PTC is
independent of the productivity of a vintage as it is calculated per unit of
electricity. Therefore, we imagine a wind turbine that works effectively only
one hour per year. In addition, we assume that the annual productivity of
vintages does not change through their useful life. Given these assumptions,
the calculation is simple: we multiply the value of a ten-year PTC subsidy

21.58/MWh by 1 h/year. (§/MW /year).

step 3: Derive the present value of annual PTC subsidy calculated in the previous

16The PTC policy has been stated to expire 10 times since its implementation but has been
extended retroactively each time. Currently, wind energy technologies that were in construction
prior to 2019 will still receive PTC.
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step. We use a 7% discount rate to be consistent with our innovation data.

($/MW).

step 4: Given the present value of a ten-year PTC subsidy, the annual amount of PTC
subsidy per vintage capacity for 20 years would be a constant annuity. The

constant annuity is the product of the present value calculated in the previous

step and the fraction %, where i = 7% and n = 20. ($/MW /year).

step 5: Find the levelized value of a twenty-year PTC subsidy for each vintage by
dividing the annuity calculated in the previous step by 1 h/year. We obtain a
levelized value of twenty-year PTC subsidy in 2015 dollars to be 15 $/MWh.
(3/MWh).

Depreciation Benefits

The Modified Accelerated Cost Recovery System (MACRS) allows wind
generators to depreciate their turbines within 5 years'” (Internal Revenue Code,
Sec.168 (e)(3)(B)). The Federal Economic Stimulus Act of 2008 added a 50% bonus
depreciation for wind technologies placed in operation in 2008 (Internal Revenue
Code, Sec.168 (k)), which was retroactively extended several times and included all
later vintages including 2014. In addition, the Tax Relief, Unemployment Insurance
Reauthorization, and Job Creation Act of 2010 allowed a 100% bonus depreciation
for the 2011 vintage (DSIRE, 2019a). The depreciation rates are listed in table 1.

Table 1: Depreciation Schedule

Year 1 2 3 4 D 6

MACRS 20% 32% 19.20% 11.52% 11.52% 5.76%
MACRS+50% bonus  60% 16% 9.60% 5.75% 5.75%  2.90%
Notes. We use a 12 year linear depreciation schedule as a counterfactual. The schedule

depreciates 4.17% of the capital expenditure in the first and the last years of operation and
8.33% in the remaining years.

In a similar manner as we derived PTC, we calculate the levelized value of net
depreciation benefit per MWh. Net depreciation benefit refers to the amount that

is obtained after subtracting the benefit that wind electricity producers would have

"The depreciation schedule actually extends six years because of the so-called ’half-year
convention’ (Internal Revenue Code, Sec.168(d)). This means that the law treats properties as
being placed into operation in the middle of a year. Hence, in the first year, taxpayers are only
allowed six months of depreciation and any remaining amount is transferred to the sixth year.
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received if their capital were not treated as a five-year property. For simplicity,

we assume that the 5-year depreciation schedule applies to full capital expenditures

because a wind turbine represents the most significant part of the capital expenditure,

and because most of the BOS costs are also depreciated based on the 5-year

depreciation schedule. The derivation steps follow:

step 1:

step 2:

step 3:

step 4:

step 5:

step 6:

Calculate the annual depreciation expense of each vintage. This will be the
product of the CapFx of a vintage and the MACRS depreciation schedule
from table 1. For vintages 2008-2014 the fifty percent bonus depreciation
schedule applies, except for the 2011 vintage, for which a 100% bonus
depreciation applies. ($/MW /year)

Calculate the annual depreciation benefit for each vintage by multiplying the
depreciation expense above by the federal corporate income tax rate - 0.35%
(Mone et al., 2017). This is the amount that would have been paid in taxes
if the depreciation expense was not available. ($/MW /year).

Compute the present value of the five-year depreciation benefit for each

vintage using a 7% discount rate. ($/MW)

Calculate the annual depreciation benefit for each vintage for 20 years, which
is constant annuity. Constant annuity is the product of the present value
calculated in the previous step and the fraction (%Ui where i = 7% and

TH)n—1°
n = 20. ($/MW /year).

Find the levelized depreciation benefit for each vintage by dividing the annuity
calculated in the previous step with the AE P of each vintage from table A2.
(3/MWh).

Calculate the levelized net depreciation benefit. We need to subtract the
levelized depreciation benefit that each vintage would have obtained if it was
not treated as a 5-year property from the previous step. Bolinger (2014)
suggests using a 12 year linear depreciation schedule as the counterfactual.
Hence, we also compute the levelized value of linear depreciation benefit for
each vintage following the previous steps, and subtract it from the levelized

depreciation benefit in step 5. (3/MW).
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Thus, we have calculated the levelized PTC and levelized net depreciation benefit
for each vintage. The sum of these two values we refer to as the subsidies per MWh
of electricity. We add these subsidies to the levelized PPA price data and plot it as

the 'Revenue + Subsidy’ curve in figure 7.

3.3 Analysis of the US Wind Energy Sector

In figure 7 we present historical income and cost figures for vintages. We emphasize
that we calculate the cost side using an engineering model as described in the previous
section. In contrast, the income side is primarily based on the empirical data.
However, we can still compare the trends in the data.

In figure 7, we first notice an abnormal increase in the income side between 2004
and 2009. This abnormality is primarily caused by increased turbine prices and is
well-documented by Bolinger and Wiser (2012). Certainly, wind farm investors take
the capital costs into account when negotiating PPAs. According to Bolinger and
Wiser (2012), the US imports most wind turbines from abroad and the US dollar
was becoming weaker in relation to the largest importing country currencies during
this abnormal period. Furthermore, the US substantially increased wind turbine
installation, and high demand increased turbine prices. Hence, wind electricity
producers required higher PPAs to compensate for rises in capital costs. Finally, in
order to fully monetize production tax credits, wind farm investors typically cooperate
with tax equity investors. During the 2008-09 global financial crises, access to tax
equity substantially declined and raised the discount rate in equation 1. In contrast,
we fix the discount rate across vintages in our computation. Similar factors on a
smaller scale could explain other minor variability in the income side.

We also notice that, omitting the abnormal period, the cost curve is above the
income curve. This is due to the fact that when calculating the engineering cost, we fix
the wind resource parameters and distribution nationwide and compute production
using only the key turbine characteristics as inputs. In contrast, levelized PPAs are
based on the expected production estimated by the wind farm investors. We know
that PPAs are not negotiated for all wind farms installed each year and that most
PPA contracts are signed for farms in the interior of the US because these markets

are deregulated'® (Federal Energy Regulatory Commission, 2019). The interior region

18Tn the vertically integrated markets utilities typically own the wind farms, and hence, do not
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has the most favorable wind resources (Wiser & Bolinger, 2018), hence, PPAs in this
region should be lower on average than nationwide. In addition, a smaller discount
rate in 1 would shift the LECOFE curve down.

If we omit the abnormal period, we can argue that costs and income follow
similar patterns. However, the ratio between costs and revenues is larger in the
beginning of the period under review. This is consistent with our earlier observation
that competition between wind farm owners before the mid 2000s may have been
low. This does not imply that the firms were monopolistic, but they were probably
obtaining more markups, possibly as a return for the risk that they were taking for
entering a relatively immature industry.

Based on the observations above, we developed an intuition into how wind energy
support policies function in the US. The government first determines wind technology
deployment targets. Then, it anticipates the average wholesale market price of
electricity!”, which in turn determines the demand for wind electricity. The wind
electricity demand curve is horizontal for each vintage, as is the marginal cost curve.
In order to achieve an equilibrium, the government provides sufficient production
subsidies to align the demand and supply curves: producers cover their production
costs and obtain some markups using PPAs and subsidies. This provides investors
sufficient incentives to enter the market. However, due to the fact that both demand
and supply curves are horizontal given the vintages, multiple equilibrium outcomes
are possible. To avoid this, the government applies quantity instruments to promote
the deployment of sufficient wind turbines to reach the targeted capacity.

According to this logic, government deployment targets, combined with subsidies,
determine the wind technology deployment rate. Government subsidies alone would
not determine the deployment rate because of the horizontal marginal cost curves
that wind electricity producers face. In addition, if the wind farm owners were
monopolistic, and the demand for wind electricity were not horizontal, the firms would
choose sub-optimal production. This would imply deployment below the targeted
amount. Therefore, given sufficient competition, the government can determine
deployment rates using quantity-based policies.

The ability of the government to determine deployment rates may translate into

make PPA contracts.
19Wind energy currently satisfies only seven percent of the total market demand in the US,
therefore, it cannot influence the average market price of electricity
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its ability to influence the rate of wind technology innovation. A simple guess would
be that wind turbine manufacturers would innovate as a response to anticipated
deployment rates. The relationship between increased deployment and production
cost reduction is the subject of learning curve literature (e.g. Ibenholt, 2002;
Junginger, Faaij, & Turkenburg, 2005; Kobos, Erickson, & Drennen, 2006). In the
following section, we will briefly summarize the learning curve method and evaluate it
using our innovation measure. Later, we will also discuss a possible causal relationship

between government deployment targets and innovation.

4 QUTCOMES OF THE LEARNING CURVE

In this section we illustrate the use of our innovation measure in the learning curve
analysis. Analysis of learning curve is the most widely applied method in the energy
literature of predicting future unit cost reductions. An accurate innovation measure,
would make learning curve analysis more reliable, which we will show by comparing
the performance of our data with alternatives.

The traditional meaning of ’learning curve’ in this sense is that electricity
production costs are reduced with increased production because of learning by
production (Arrow, 1962). However, learning can be a result of innovative activities
not related to production. For example, R&D investments in wind technology may
lead to innovation, but this innovation is not related to production. We refer to this
type of learning as learning by investing. Our analysis of the learning curve combines
both types of learning.

To obtain the learning curve, we express the unit cost of energy at time t as C},
cumulative installed wind generation capacity at time t as Y,¢, the cost of energy at
initial capacity as Cj, and learning elasticity as a in the equation below. We treat
the year 1998 as period zero in our data-set. In addition, since cumulative installed

generating capacity before 1998 was very small, we assume it to be zero:

Cy=Co(1+AY,C )™ for t=1(0,..,T) (3)

The majority of the learning curve papers use CapFEx or turbine prices per
MW as the measure of unit cost (e.g., Hayward & Graham, 2013; Grafstrom &
Lindman, 2017; Yu et al., 2017; Wiebe & Lutz, 2016). We consider that this approach
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underestimates the learning effect. As turbines become larger, CapEx per MW may
rise, however, effective hours of operation also rise, which compensates for the increase
in CapFEx. Therefore, if we measure innovation using CapEx only, it is highly likely to
underestimate the learning effect. In contrast, measuring the unit cost using LECOFE
takes into account increases in effective operating hours. For these reasons, in our
learning curve analysis, LECOFE data represents the unit cost of electricity for each
vintage.

The time lag on the cumulative capacity in equation 3 takes into account the
fact that learning does not occur instantly, given the deployed capacity. Figure A5 in
the appendix plots our LECOF and wind capacity deployment data. The following
observations help us verify that the learning curve can deliver an unbiased measure

of correlation between deployment targets and innovation:

Observation 1 - Wind electricity producers face horizontal marginal cost
curves

If the marginal cost curves were not horizontal, then applying the learning curve
method would deliver a biased measure of correlation without further assumptions.
The bias would be present due to omission of the geographic factor. Figure 8
illustrates the point: when the marginal cost curves are horizontal, the entire cost
reduction is attributed to increased deployment (the segment A on the left graph);
when the marginal cost curves are upward sloping, some cost reduction is not achieved
due to geographic constraints, i.e. due to crowding out of new wind farms from
high-wind-speed areas (the segment B on the right graph). Therefore, the correlation

between increased deployment and technological innovation would be underestimated.

Observation 2 - Cumulative production may be a better explanatory
variable than cumulative capacity.

We argued in the previous section that government deployment targets influence
the deployment rates. If the manufacturing sector anticipates deployment rates and
innovates as a response, then we may wonder why the government would not set
higher targets in order to increase their incentive to innovate. On one hand, the
required subsidy budget increases with installed generation capacity, which might

become unaffordable. On the other hand, short-run marginal costs of innovating
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Figure 8: Illustration of Potential Supply Curves
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Notes. The left graph shows that when short-run electricity supply curves given each vintage are
horizontal, we should attribute all reductions in production costs to increased deployment (segment
A). However, if the curves are upward sloping, we cannot attribute all reductions in production
costs to increased deployment, otherwise, we will miss the impact of geographic factors (segment B
on the right graph).

increase with R&D. This implies that it is costly to speed up the innovation process.

For these reasons, we use cumulative production instead of cumulative capacity
as an explanatory variable in the learning curve. A substantial increase in generation
capacity in a particular year will substantially increase cumulative capacity, while it
will not increase cumulative production as much. Therefore, cumulative production
will have a smoother reaction to changes in the installed generation capacity, and this

will justify the slower response of innovation.

4.1 Learning Curve with Cumulative Production

In this subsection we conduct a learning curve analysis using cumulative production
as an explanatory to the reductions in the production costs, and compare it with
the original specification in equation 3. We run both specifications of the learning
curve using three sets of alternative innovation data: our innovation data generated
using the new and the old engineering models and the innovation data of Wiser and
Bolinger (2018).

In order to derive the time-t cumulative production variable, we first derive
time-t production Q. Not all turbines that are installed in a particular year start
production immediately. In fact, some turbines may be installed at the end of each

period. To account for this, we assume that only half of the newly installed wind
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generation capacity in year t produces electricity in year . The rest starts in the next

period. Taking this into account and denoting time-t capacity by Y, delivers:

t
1
Qf:X}fﬂ%ﬁan%wa for t=1(0,..,T) (4)

s=0
Where AE P, is the effective annual hours in operation for each vintage installed

in year ¢ from table A2. Cumulative production Q¢ will simply be:

Qf =) QY for t=(0,..,T) (5)
s=0

Therefore, learning curve model with cumulative production is the following:
Cy = Co(1+AQY )™ for t=1(0,..,T) (6)

Production before 1998 is assumed to be zero because it is relatively insignificant.
We run a non-linear regression on both equations 3 and 6 to find the parameters Cy,
A, and a. We consider three time series to input as the production cost. The first and
second are our innovation measure generated based on the new and old engineering
models, respectively, and the third is the LCOE data of Wiser and Bolinger (2018).

Regression tables A5 and A6 can be found in the Appendix. In figure 9 we
notice that using cumulative production instead of cumulative capacity in the learning
curve estimation arranges the data cloud more smoothly. However, it does not deliver
significantly different estimation results (compare tables A5 and A6).

A noticeable difference arises when different innovation data are used. The
learning curve is steeper when an innovation measure based on the new model is
used instead of the measure based on the old model. A steeper learning curve
implies a higher rate of learning. Both innovation measures confirm a correlation
between cumulative production and production cost reductions, since the estimated
parameters are statistically significant. In contrast, for the LCOFE data of Wiser and
Bolinger (2018), the learning parameter is very small and statistically insignificant.

Also notice that data cloud is not smooth for Wiser and Bolinger (2018) and
deviation from the fitted line is substantial. In tables A5 and A6 we can see that
innovation data of Wiser and Bolinger (2018) delivers a larger root mean square error
in comparison to our data. This indicates a weak fit. Hence, we have illustrated how

we could improve the fit of the learning curve by supplying our improved measure
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Figure 9: Estimation of the Learning Curve
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Notes. Abbreviations NM, OM and W&B, refer to the innovation measures obtained from the new

model, old model, and Wiser and Bolinger (2018), respectively.

of innovation. Our measure of innovation shows a strong correlation between wind

technology deployment and innovation.

4.2 Effects of Policy on Innovation

In the above learning curve analysis, we show a strong correlation between the
wind technology deployment rate and innovation in the US. In this section we
discuss possible causality. In particular, it is not unreasonable to conjecture that
when the government sets wind technology deployment targets, which determine the
deployment rate, the incentive of wind turbine manufacturers to innovate is likely to
increase.

Certainly, we cannot not rule out reverse causality, i.e., increased deployment
of wind turbines as a response to reduced production costs. In addition, we do not
argue that the US wind technology deployment targets are the only instruments that

could influence wind technology innovation. For example, R&D spending in wind
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technology and other countries” wind technology support policies also contribute
to innovation. However, it is still our conjecture that the US deployment targets
influence innovation.

It is a fact that most countries aim to support clean technologies, particularly,
solar and wind, in order to reduce greenhouse gas emissions and to limit climate
change. For this reason, we consider that innovation is not the main driver of
government policies, or at least policy is an important factor affecting innovation.

Suppose that the US deployment target does not drive innovation. Instead,
suppose that costs would decline regardless of any intervention. We construct a simple
optimization problem to show optimal wind technology deployment in this case. The
government tries to maximize the social surplus. A positive surplus is delivered
by exploiting a cheaper technology, i.e. a technology with lower marginal costs.
We can assume that the long-run marginal cost curve of an alternative technology
is horizontal, because conventional technologies do not experience technological
innovation. The long-run marginal cost curve of wind technology is downward sloping,
according to figure 2.

In equation 7 below, M C} is the marginal cost of production using wind turbines
at time ¢, MC4 is the marginal cost of production using an alternative source, Q; is

wind electricity production at time ¢ and ()7 is the final deployment target:

Hg}X Z?ont(MC’A—MC’t) st. Qo < Qr < Qr

Qr given
The solution to the optimization problem is:
Qo if MCA< MC; for te[0,T—1]
Q=19 Any Q € [Q;_1,Qr] if MCA=MC, for te[1,T—1]
Qr if MCA4 > MC, for te [1,T]

The logic of this result is quite simple: the government will obtain the maximum
social surplus if conventional sources produce electricity until innovation in wind
technology makes it competitive with conventional sources. Once the wind farm
investors do not require subsidies, they will install the needed amount of generation

capacity without government intervention. This is not, however, what we observe in
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the data. The US government has been supporting wind technologies for decades,
and as a result, it has deployed the second largest amount of capacity in the world
after China (Global Wind Energy Council, 2019).

The fact that the US government deploys a significant amount of wind technology
implies that by supporting wind technology either it delivers social benefits different
from least-cost generation, or it actually tries to impact the pace of innovation. Other
benefits of promoting wind technology may include environmental benefits, developing
the domestic wind technology manufacturing sector and creating new jobs (EWEA,

2012).

5 CONCLUSION

Supporting faster innovation in wind energy technology requires an understanding
of the drivers of technological innovation. However, this is not feasible without an
accurate measure for innovation itself. This paper generates such data, and thus
fills a gap in the wind energy technology innovation literature. Our innovation
data represents production cost reductions of wind turbine vintages installed in the
US between 1998 and 2017. Computations of production costs are based on an
engineering model, which allows us to exclude factors that can change production
costs, but which do not contribute to technological innovation.

After generating our more accurate innovation measure for wind energy
technology, we illustrate its potential use. We analyze the learning curve which
measures correlations between the wind energy technology deployment rate and
innovation. Our innovation measure improves the fit of the learning curve in
comparison to alternative measures. The results show strong correlations between

the wind energy technology deployment rate and innovation.
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ABBREVIATIONS USED

AEP
BOS
CRF
FDM
ISO
LCOE
LECOE
NREL
0&M
PDM
PPA
PPI
PTC
REP
RPS

VIM

Annual Energy Production

Balance of System

Capital Recovery Factor

Fully Deregulated Market
Independent System Operator
Levelized Cost of Energy

Levelized Engineering Cost of Energy
National Renewable Energy Laboratory
Operations and Maintenance
Partially Deregulated Market

Power Purchasing Agreement
Producer Price Index

Production Tax Credit

Retail Electricity Provider
Renewable Portfolio Standards

Vertically Integrated Market
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APPENDIX

Table A1l: Vintage Characteristics

Vintage @ CAP (kW) RD (m) HH (m)

1998 710 47.2 52.3
1999 720 48.2 56.6
2000 800 49.4 58.7
2001 890 53.1 58.2
2002 890 52.8 62.9
2003 1370 67.8 67.4
2004 1220 65.1 66

2005 1500 75.3 5.7
2006 1610 77.9 76.2
2007 1650 79 78.2
2008 1670 79.3 78.5
2009 1740 81.5 78.8
2010 1800 84.2 79.8
2011 1970 89 81

2012 1950 93.4 83.8
2013 1860 96.9 80.5
2014 1940 99.5 82.7
2015 2010 102.4 82.4
2016 2150 108.2 83

2017 2320 113 86

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Notes. CAP - Turbine capacity; RD - Rotor diameter; HH -
Hub height; all values are average characteristics of newly installed

turbines. Units in the brackets. The data are borrowed from (Wiser
& Bolinger, 2018) data-file.

Figure A1: Distribution of Turbine Class

Class 3
Class 2/3
Class 2
W Class 1/2
H(lass1

Notes. The figure shows that wind electricity producers have increasingly favored

class 2/3 and 3 turbines, which are more suitable for lower wind-speed areas since
2012. Source. The data are borrowed from Wiser and Bolinger (2018).
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Figure A3: Distribution of Wind Speed across Vintages
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The following figure shows the wind speed distribution across various vintages for three clusters of
wind farms in Minnesota, Texas and California. The wind speed data is taken from the global wind
atlas (Technical University of Denmark, 2017) at 50 meters altitude in the exact location of chosen
wind farms. For the analysis we picked a reference wind farm in each of the three states and collected
the wind speed information for all operational wind farms in the hundred kilometer distance from the
reference wind farms. The reference wind farms are stoneray wind farm in Minnesota, loraine wind
farm in Texas and solano wind project in California. The clusters of wind farms are circled on maps
in figure A2. We chose hundred kilometer distance in order to have sufficient wind farms to reveal
any trend in the wind speed distributions across vintages. The graphs do not reveal downward trend
in wind speed at the cluster level. This indicates that the marginal costs have not been increasing
due to crowding out of wind farms to less windy areas, given location.
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Figure A4: Impact of Curtailment on Capacity Factors
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Notes. The figure shows the impact of curtailment on average capacity factors of wind generation
in the US. Since curtailment has affected 0.1-1 percent of total generation each year, the revenues
of the producers are unlikely to be significantly affected. In addition, forced curtailment is usually

compensated. Source. Wiser and Bolinger (2018) data file.
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Table A5: Estimation of Learning Curve with Cumulative Capacity

(1)

(2) (3)

Parameters LECOE - NM LECOE - OM LCOE - W&B
Co 92.274*** 85.114*** 88.082***
(3.40) (1.66) (13.89)
A 0.584 1.146 5.242
(0.32) (0.68) (24.31)
« 0.157** 0.060*** 0.055
(0.02) (0.01) (0.04)
Root MSE 3.626 1.710 13.908

Notes. Standard errors in parentheses.

*p < 0.05, ** p < 0.01, ** p < 0.00l. The

table reports estimation results of the learning curve model in equation 6 using three
alternative sets of innovation measures. Abbreviations NM, OM and W&B, relate to the
innovation measures obtained from the new model, old model, and Wiser and Bolinger
(2018), respectively. Explanatory variable is cumulative capacity.

Table A6: Estimation of Learning Curve with Cumulative Quantity

(1)

(2) (3)

Parameters LECOE - NM LECOE - OM LCOE - W&B
o 89.247*** 83.626™** 88.358***
(1.37) (0.74) (13.69)
A 0.407* 0.986* 40.606
(0.15) (0.44) (306.68)
« 0.091*** 0.035*** 0.030
(0.01) (0.00) (0.02)
Root MSE 1.970 0.975 13.734

Notes. Standard errors in parentheses.

*p < 0.05 ** p < 001, ** p < 0.001. The

table reports estimation results of the learning curve model in equation 6 using three
alternative sets of innovation measures. Abbreviations NM, OM and W&B, relate to the
innovation measures obtained from the new model, old model, and Wiser and Bolinger
(2018), respectively. Explanatory variable is cumulative quantity.
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Abstrakt

Po implementaci inovaci v odvétvi vétrné energie bychom méli pozorovat pokles produkénich
naklad elektrické energie. Nicméné¢ usudky o mife inovaci zalozené na produkcnich
nakladech nejsou vérohodné, jelikoz zmény v nakladech mohou byt zpusobeny i faktory,
které s inovacemi nesouvisi. Tato studie aplikuje inzenyrsky model k vygenerovani ¢asové
fady produkcnich nakladi vétrné energie jakozto miry inovaci. Tento pfistup ndm umoznuje
vyloucit faktory, které nelze ptisoudit technologickym inovacim. Pro ilustraci vyznamu nasi
miry inovaci provadime analyzu kiivky uceni, ktera meéfi korelaci mezi instalovanym
vykonem vétrnych elektraren a redukci nakladt na produkci elektrické energie. NaSe data
poskytuji lepsi popis kiivky uceni v odvétvi vétrné energie nez alternativni miry inovaci, které
lze nalézt v literatufe.
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