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Abstract

This paper provides a generalized disappointment aversion (GDA) interpretation
of the variance and skew risk premia in equity returns and the volatility skew in
equity index options. The key ingredients are Bayesian learning about a hidden con-
sumption growth rate and the investor’s tail aversion induced by GDA preferences
which amplify the impact of consumption shocks. This model with disappointment
risk reproduces salient properties of the variance and skew risk premia and generates
a realistic volatility skew implied by index options, while simultaneously matching
the mean and volatility of risk-free rate and equity returns, and the level of the
price-dividend ratio. Additionally, the time-varying probability of disappointment
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1. Introduction

U.S. financial data have provided many stylized facts that are difficult to reconcile in

the standard rational framework. The equity market, in particular, is a source of several

puzzling features of asset returns, including a high equity premium (Mehra and Prescott,

1985), a low risk-free rate (Weil, 1990), and high excess stock market volatility (Shiller,

1981). Based on this evidence, recent theories have revived the consumption-based model

by introducing rare disasters (Rietz, 1988; Barro, 2006), habits (Campbell and Cochrane,

1999; Menzly, Santos and Veronesi, 2004), or long-run risks (Bansal and Yaron, 2004;

Bansal, Kiku and Yaron, 2010) into consumption growth. Although these leading theories

have proved to be successful in explaining the salient features of equity returns, a number

of important facts from the derivative market remain unexplained. For example, a growing

body of the empirical literature documents the puzzling variance and skew risk premia in

equity returns (Bollerslev, Tauchen and Zhou, 2009; Kozhan, Neuberger and Schneider,

2013). Additionally, the volatility skew, the pattern in the volatility curves implied by

equity index options, has been a well-known feature since the 1987 stock market crash

(Rubinstein, 1994; Jackwerth and Rubinstein, 1996). The risk premia associated with

option prices and higher moments of equity returns are difficult to reproduce in the

traditional consumption-based models 1. Motivated by these shortcomings, the main goal

of this paper is to explain the derivatives-related puzzles while simultaneously capturing

salient features of equity returns.

In this paper, I construct an equilibrium representative-agent model with general-

ized disappointment aversion (GDA) preferences and an unobservable mean consumption

growth rate. In the model, consumption growth follows a hidden two-state Markov chain

and, hence, the agent filters a posterior belief about the hidden regime based on past

consumption growth realizations. The representative investor dislikes negative news to

consumption growth due to generalized disappointment aversion, which penalizes con-

tinuation utility levels below a scaled certainty equivalence. The negative consumption

growth innovations suggest that, according to Bayes’ rule, the posterior belief partially

1Backus, Chernov and Martin (2011) note that the distribution of rare disasters in macroeconomic
data is inconsistent with option prices. Du (2010) finds that the habit formation model cannot fit the
observed volatility smirk. Drechsler and Yaron (2011); Drechsler (2013) and Shaliastovich (2015) show
that the long-run risk model cannot reproduce both the variance premium and implied volatility skew in
option prices.
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falls. Crucially, the agent’s GDA preferences amplify the impact of the fluctuating belief

on the equity returns and option prices, and thus help explain the empirical evidence.

Specifically, I show that this mechanism can generate a number of stylized facts observed

in the equity and derivatives markets, including (i) a high equity premium and volatility

of equity returns (ii) a low and stable risk-free rate (iii) a large and volatile variance pre-

mium (iv) predictability of excess returns by the variance premium (v) a large and volatile

skew premium (vi) high prices of at-the-money (ATM) and out-of-the-money (OTM) Eu-

ropean put options. Consequently, the results provide strong evidence that the investor’s

asymmetric preferences and incomplete information about fundamentals are important

sources of equity return and option premiums. These theoretical results can be motivated

by three empirical observations:

The high prices of OTM put options can be attributed to the investor’s desire to hedge

market declines (Bates, 2003). The investors are willing to pay a high premium for

deep OTM put options, as they will provide the owner with a high payoff conditional

on the occurrence of a market crash.

The increased realized variance volatility is associated with large stock market de-

clines (French, Schwert and Stambaugh, 1987; Glosten, Jagannathan and Runkle,

1993). Therefore, the price of a variance swap contract, which pays the holder the

realized return variance, can be thought of as an insurance premium for the market

downside moves, similarly to the put option prices.

Kozhan, Neuberger and Schneider (2013) show that the skew and variance risk premia

are manifestations of and compensate for the same risk factor. Consequently, the

profits of a variance swap similarly embed an insurance premium for the downside

risk.

In line with the empirical evidence above, the representative agent in the economy

is willing to pay high prices for options, variance, and skew swaps in order to hedge

against disappointment consumption shocks. In the calibrated model, the disappointment

aversion coefficient of 2.33 implies that the investor penalizes these disappointment events

approximately 3.33 times more than other outcomes. Consequently, the representative
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agent’s desire to compensate for disappointment risks amplifies the prices of derivatives,

helping generate a steep implied volatility surface, high variance, and skew risk premia.

In contrast to existing frameworks employing a number of risks, I propose a parsimonious

framework with a single pricing factor, a time-varying probability of disappointment, to

capture numerous salient features of the equity and derivatives markets. This framework

is the first, to my knowledge, to jointly explain the equity returns and risk premiums of

options, variance, and skew swaps.

Despite a simple structure and a single state variable, the asset pricing implica-

tions of the benchmark with GDA preferences are striking. Generalized disappointment

aversion brings the benchmark model in line with the financial data. The calibration

reconciles empirical features of the variance and skew risk premia. Learning produces

the predictive power of the variance premium for the log excess returns with 1-, 3-, and

6-month horizons. Additionally, the model-based implied volatility curves closely match

the empirical counterparts. The key role of an endogenous probability of disappointment

due to Bayesian learning and generalized disappointment aversion can be seen when one

looks at alternative preferences specifications. For example, the framework with disap-

pointment aversion predicts basically flat implied volatilities that are roughly equal to

the realized equity return volatility of around 16%. The variance and skew risk premia

statistics are also inconsistent with the data. If the high risk aversion in the Epstein-Zin

economy without any source of disappointment aversion improves the results, although

the mean variance and skew risk premia appear in about half of the empirical estimates.

In addition, the agent’s preference for early resolution of uncertainty alone cannot match

the observed volatility skew in option prices.

This paper contributes to several streams of the literature. It is closely related to

the growing literature studying the asset pricing implications of asymmetric preferences.

The idea that investors exhibit asymmetric tastes over gains and losses has been cru-

cial for understanding how downside risks are perceived and reflected in asset premiums.

A number of studies incorporate asymmetric preferences into the standard asset pricing

framework (Campbell and Cochrane, 1999; Barberis and Huang, 2001; Barberis et al.,

2001; Routledge and Zin, 2010) and find that these models better explain the asset re-

turns compared to those with symmetric preferences. More specifically in the context
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of generalized disappointment aversion, Bonomo, Garcia, Meddahi and Tedongap (2011)

construct a consumption-based asset pricing model with GDA preferences and long-run

volatility risks to explain the equity premium. Bonomo, Garcia, Meddahi and Tedongap

(2015) recalibrate their model at the daily frequency to reproduce the risk-return trade-off

at high- and low-frequency. Additionally, Liu and Miao (2014) focus on the production-

based asset pricing with GDA preferences. Augustin and Tedongap (2016) further shed

light on the role of GDA preferences in explaining sovereign credit spreads. Recently, De-

likouras (2017) employ disappointment aversion to explain the cross-section of expected

returns. In this paper, I contribute to the existing literature by exploring additional

asset pricing implications of generalized disappointment aversion for options prices, the

variance, and skew risk premia.

The existing asset pricing literature typically explains option prices within the rare

disasters and long-run risks models. Under the rare disasters umbrella, the implied volatil-

ity surface can be explained with model uncertainty about rare events (Liu, Pan and Wang,

2005), consumption habits with rare disasters (Du, 2010), rare jumps in persistence (Ben-

zoni, Collin-Dufresne and Goldstein, 2011), or stochastic volatility of disasters (Seo and

Wachter, 2017). The long-run risks alone cannot explain the high premium embedded in

option prices. Therefore, the researchers generalize Bansal and Yaron (2004)’s model by

introducing jump risks (Eraker and Shaliastovich, 2008; Shaliastovich, 2015). Addition-

ally, several papers can explain the variance premium in the equilibrium model. These

mainly include the long-run risks models with transient non-Gaussian shocks to funda-

mentals (Bollerslev, Tauchen and Zhou, 2009; Drechsler and Yaron, 2011) and multiple

volatility risks (Zhou and Zhu, 2014), among others.

The framework in this paper is different from the existing literature in several im-

portant ways. Other papers mainly introduce volatility, jump, and/or persistence risks

in the endowments dynamics, which are then reflected in large premiums. In contrast,

asset prices in this economy are driven by the agent’s fluctuating beliefs that are further

magnified by GDA preferences. The pessimism and tail aversion induced by generalized

disappointment aversion generate significantly different conditional prices in the good

regime. It is especially pronounced given that the economy spends most of the time in a

high-growth state with a homoscedastic volatility of endowments. Additionally, this paper
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simultaneously explains salient features of the equity prices, variance, and skew premi-

ums, as well as options prices, while other papers cannot account for all features of the

data. Although Drechsler (2013) is an exception in this respect, as his paper explains the

variance premium and options, the skew premium is not targeted. In comparison to his

work, my model is significantly more parsimonious and capture a wider range of stylized

facts with only one risk factor, endogenously fluctuating probability of disappointment,

which is again different from the driving forces in Drechsler (2013).

The remainder of the paper is organized as follows: Section 2. describes the economy.

Section 3. derives asset prices inside the model. Section 4. discusses stylized facts of

the data. Section 5. provides asset pricing results of the benchmark model and two

other specifications. Section 6. concludes. Appendix A. contains technical details of the

representative agent’s maximization problem, Appendix B. outlines the application of the

projection method.

2. Model Setup

2.1 Generalized Disappointment Aversion Risk Preferences

The environment is an infinite-horizon, discrete-time exchange economy with a rep-

resentative agent extracting utility from a consumption stream. Following the recursive

utility framework of Epstein and Zin (1989, 1991), the agent’s utility Vt in period t is

defined as:

Vt =
[
(1− β)Cρ

t + βµρt

]1/ρ

, (1)

where Ct is consumption at time t, 0 < β < 1 is the subjective discount factor, 1
1−ρ > 0

is the intertemporal elasticity of substitution (IES), and µt = µt(Vt+1) is the certainty

equivalent of random future utility using the t-period conditional probability distribution.

The certainty equivalent captures the generalized disappointment-aversion (GDA)

risk attitude as defined by Routledge and Zin (2010). These risk preferences allocate more

weight on the tail events compared to the expected utility. In the Routledge and Zin (2010)

model, the representative agent perceives some outcomes as ”disappointing” similarly to

the disappointment aversion preferences of Gul (1991). For the Gul (1991) model, an

outcome is viewed as disappointing when it is below the certainty equivalent, whereas

for the Routledge and Zin (2010) generalized disappointment aversion specification this

outcome should be below some fraction of the implicit certainty equivalent. Formally, the
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certainty equivalent µt(Vt+1) of GDA risk preferences is defined as:

[µt(Vt+1)]α

α
= Et

[
V α
t+1

α

]
− θEt

[
I
(

Vt+1

µt(Vt+1)
6 δ

)(
[δµt(Vt+1)]α

α
−
V α
t+1

α

)]
(2)

or equivalently:

µt(Vt+1) =

Et

V α
t+1 ·

1 + θI(Vt+1 6 δµt(Vt+1))

1 + θδαEt
[
I(Vt+1 6 δµt(Vt+1))

]
1/α

,

where I(·) denotes the indicator function, 1 − α > 0 is the relative risk aversion, δ ∈

(0, 1] and θ ≥ 0 represent a disappointment threshold and a disappointment penalty,

respectively. The GDA risk preferences enable to control for a disappointment threshold

by changing δ. In this case, the outcome Vt+1 is considered to be disappointing only when

it is below the scaled certainty equivalent δµt(Vt+1).

The Routledge and Zin (2010) preferences defined by (1) and (2) nest two preference

specifications. The expected utility of Epstein and Zin (1989, 1991) can be obtained by

setting θ = 0, in which case the certainty equivalent µt(Vt+1) simplifies to
(
Et[V α

t+1]
) 1
α .

Assuming θ 6= 0 and δ = 1, GDA preferences reduce to the Gul (1991) disappointment

aversion utility.

2.2 Endowments and Inference Problem

A popular paradigm in the asset pricing literature is the application of a regime

switching framework for modeling aggregate consumption growth 2. I follow this tradition

in the asset pricing literature and subject log consumption growth to hidden regime

switches:

∆ct+1 = µst+1 + σεt+1, εt+1 ∼ N(0, 1).

The consumption volatility σ is assumed to be constant, whereas the mean growth rate

µst+1 is driven by a two-state Markov-switching process st+1 with the state space

S = {1 = expansion, 2 = recession},
2Since Hamilton (1989) and Mehra and Prescott (1985), researchers have used these models to embed

business cycle fluctuations in the mean growth rates and volatility of consumption growth (Cecchetti,
Lam and Mark, 1990; Veronesi, 1999; Ju and Miao, 2012; Johannes, Lochstoer and Mou, 2016; Collin-
Dufresne, Johannes and Lochstoer, 2016). By changing the number of states and parameters controling
the persistence and conditional distribution of regimes, these models can also embed ’peso problem’
in the growth rate (Rietz, 1988; Barro, 2006; Backus, Chernov and Martin, 2011; Gabaix, 2012) or
persistence (Gillman, Kejak and Pakos, 2015) of consumption. Additionally, a proper calibration of a
regime switching model can match the dynamics of long-run risks in consumption and dividend growth
as studied in Bonomo, Garcia, Meddahi and Tedongap (2011, 2015).
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and a transition matrix

P =

 π11 1− π11

1− π22 π22

 ,

where πii ∈ (0, 1) are transition probabilities. I further assume µ1 > µ2 in order to identify

states st+1 = 1 and st+1 = 2 as expansion and recession, respectively.

I now specify a dividend stream of the equity. There are several approaches in

the literature to model dividends. A standard Lucas-type model (Lucas Jr., 1973) im-

plies dividends and consumption are the same in the equilibrium. However, dividends

are more volatile than consumption in the data. I follow Bansal and Yaron (2004) and

model consumption and equity dividends separately. In the endowment economy, it is

commonly assumed that aggregate consumption is generated by several stochastic en-

dowments, including dividends as one of them, and is the sum of all these endowments

in the equilibrium. Similarly to Campbell (1996), one can interpret other endowments as

labor income.

I seek to price the equity (a levered consumption claim) with monthly log dividend

growth defined as:

∆dt+1 = gd + λ∆ct+1 + σdet+1, (3)

where et+1 ∼ N(0, 1) is the idiosyncratic shock of dividend growth, λ > 0 is the leverage

ratio on expected consumption growth. I use a growth rate of dividends gd to match

the long-run consumption growth, and the volatility of dividends σd to match the annual

11.04% dividend growth volatility observed in the data. In addition, the chosen value

of the leverage parameter enables me to match the observed correlation between annual

consumotion and dividend growth.

The investor knows the true parameters of the model (e.g., π11, π22, µ1, µ2, σ, gd, σd, λ),

but does not observe the state st+1 of the economy. Consequently, he forms a posterior

belief about the hidden state st+1, conditional on the observable history of consumption

and dividend growth rates at time t :

Ft =
{

(∆cτ ,∆dτ ) : 0 ≤ τ ≤ t
}
.

The inference problem is to derive the evolution of πt = P(st+1 = 1|Ft). The agent holds

the initial belief π0 (the stationary prior) and uses Bayes’ rule to update his belief πt+1
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as follows:

πt+1 =
π11f(∆ct+1|st+1 = 1)πt + (1− π22)f(∆ct+1|st+1 = 2)(1− πt)

f(∆ct+1|st+1 = 1)πt + f(∆ct+1|st+1 = 1)(1− πt)
, (4)

where

f(∆ct+1|st+1 = i) =
1√
2πσ

e−
(∆ct+1−µst+1)

2

2σ2 .

I assume that the agent takes into account only consumption for belief updating, while

dividends do not provide any additional information.

3. Asset Prices

The representative agent consumes Ct in period t and invests the remaining wealth

in multiple assets. The agent maximizes his utility subject to a budget constraint:

Wt+1 = (Wt − Ct)Rω
t+1,

where Rω
t+1 is the return on the total (unobservable) wealth Wt. Additionally, the return

Rω
t+1 satisfies:

Rω
t+1 =

N∑
i=1

ωi,tRi,t+1 ∧
N∑
i=1

ωi,t = 1,

where ωi,t is the fraction of the t-period wealth invested in the i-th asset with gross real

return Ri,t+1. Whilst Appendix A. provides the solution of the agent’s consumption and

portfolio choice problem for an arbitrary number of assets, this paper is focused on three

asset classes: one period risk-free bonds, equities, and European put options. Bonds pay

zero coupons and act as purely discount real bonds with the realized gross rate of return

Rf,t+1. Equities entitle the owner to a stochastic amount of dividends in each period with

the realized gross rate of return Re,t+1. The t-time price of a European put option with

the given maturity time τ and the strike price K is denoted by P o
t (τ,K).

3.1 The Impact of GDA and Learning

In equilibrium, the representative investor makes his consumption and portfolio de-

cisions subject to the endogenous determination of asset prices and markets clearing

conditions. Following Routledge and Zin (2010), it can be shown (see Appendix A.) that

the gross return Ri,t+1 on the i-th traded asset satisfies:

Et [Mt+1Ri,t+1] = 1, (5)
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where the pricing kernel of the economy is defined as:

Mt+1 = β

(
Ct+1

Ct

)ρ−1

︸ ︷︷ ︸
MCRRA
t+1

·
(

Vt+1

µt(Vt+1)

)α−ρ
︸ ︷︷ ︸

MEZ
t+1

·

 1 + θI(Vt+1 6 δµt(Vt+1))

1 + θδαEt
[
I(Vt+1 6 δµt(Vt+1))

]


︸ ︷︷ ︸
MGDA
t+1

. (6)

To better understand the mechanism that enables the model to match moments of the

data and to generate a wide range of dynamic asset pricing phenomena, it is important to

note the role of generalized disappointment aversion and learning about the unobservable

state of the economy.

First, for the impact of GDA preferences, consider different components of the pric-

ing kernel. The first part MCRRA
t+1 is the pricing kernel of the time-separable power utility.

The second multiplier MEZ
t+1 is the adjustment of Epstein-Zin preferences, which allow a

separation between the coefficient of risk aversion and elasticity of intertemporal substi-

tution. The third component MGDA
t+1 represents the generalized disappointment aversion

adjustment. When the agent’s utility is below a certain fraction of the certainty equiv-

alent, more weight is attached to the pricing kernel. The generalized disappointment

aversion thus magnifies the countercyclical dynamics of the pricing kernel.

Second, the presence of learning is crucial for reproducing the conditional properties

of asset prices. In the complete information setting, asset prices would fluctuate only upon

the realization of a rare recession. Hence, this model would predict flat implied volatility

curves, constant equity returns, and constant variance risk premium based on the post-

war US history when the US economy did not experience a rare disaster. In contrast,

the unobservable state of the economy induces endogenously time-varying beliefs due to

the inference problem. Consequently, the variation in the posterior belief will lead to

endogenous fluctuations in equity returns, variance premium, and option prices.

Furthermore, it is important to note the interaction between the agent’s generalized

disappointment aversion and the posterior state belief fluctuations. I can express the

continuation utility using the wealth-consumption ratio (see Apendix B.) and further

rewrite the disappointment condition Vt+1

µ(Vt+1)
≤ δ as:

βeρ∆ct+1 · Wt+1

Ct+1

≤ δ ·
(
Wt

Ct
− 1

)
.

As the equilibrium wealth-consumption ratio Wt

Ct
is a function of the posterior state belief
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πt, the probability of disappointment events will be time-varying and depend on both

current belief πt and future belief πt+1, as well as actual consumption growth realization

∆ct+1. Moreover, the presence of the disappointment threshold δ, the major difference

between the consumption-based GDA and DA frameworks, will allow to control which

events will be disappointing. By properly choosing the disappointment threshold, one

can generate endogenous countercyclical risk aversion, a desirable property of the dynamic

asset pricing model.

3.2 Risk-free Rate and Equity Returns

I solve the model numerically due to the lack of an analytical solution for equilibrium

returns. I first need to solve for the return on the wealth portfolio Rω
t+1 (the return on

the aggregate consumption claim) and then the equity return Re,t+1 (the return on the

aggregate dividend claim), which are implicitly defined by the equation (5). Denoting the

equity price by P e
t , the returns on the wealth portfolio and equity can be rewritten as:

Rω
t+1 =

Wt+1

Wt − Ct
=

Wt+1

Ct+1

Wt

Ct
− 1
· e∆ct+1 ∧ Re

t+1 =
P e
t+1 +Dt+1

P e
t

=

P et+1

Dt+1
+ 1

P et
Dt

· e∆dt+1 .

I conjecture that the wealth-consumption ratio Wt

Ct
= G(πt) and the price-dividend ratio

P et
Dt

= H(πt) are functions of the state belief πt. Substituting Rω
t+1 and Re

t+1 into (5), I

apply the projection method (Judd, 1992) to approximate G(πt) and H(πt) by a basis

of complete Chebyshev polynomials. The details of the numerical solution algorithm are

provided in Appendix B. Having solved for wealth-consumption and price-dividend ratios,

I can simulate asset pricing moments associated with the one-period risk-free rate, equity

returns and price-dividend ratio. Furthermore, I can numerically calculate the pricing

kernel and all asset prices, including implied volatilities and quantities in the skew and

variance risk premia.

3.3 The Variance and Skew Risk Premia

In this paper, I focus on the monthly variance and skew risk premia associated with

equity returns. The t-time monthly variance premium vpt is defined as the difference

between risk-neutral and physical expectations of the total return variance between time

t and t+ 1. As in Drechsler and Yaron (2011), the variance premium equals:

vpt = EQ
t (varQt+1(re,t+2))− EP

t (var
P
t+1(re,t+2)), (7)
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where varQt+1(re,t+2) and varPt+1(re,t+2) are (t + 1)-period conditional variances of the log

return re,t+2 = ln(Re,t+2) under the risk-neutral Q and physical P probability measures, re-

spectively. As noted in Drechsler and Yaron (2011), the variance premium is decomposed

of two components called the level difference and drift difference. The level difference,

defined as

varQt (re,t+1)− varPt (re,t+1),

reflects the difference in the conditional return variance under the risk-neutral and physical

measures. The drift difference, defined as

[
EQ
t (varQt+1(re,t+2))− varQt (re,t+1)

]
−
[
(EP

t (var
P
t+1(re,t+2))− varPt (re,t+1))

]
,

incorporates the difference in the expected change of vart+1(re,t+2) under the measures Q

and P.

The t-time monthly skew premium is defined as the expected payoff of the skew

swap, a contract paying the difference between the implied skew and the realized skew of

the index return between time t and t+ 1 (Kozhan, Neuberger and Schneider, 2013). The

monthly implied and realized skews simply equal the risk-neutral and physical expecta-

tions of the index return skewness denoted by EQ
t (skewQ

t+1(re,t+2)) and EP
t (skew

P
t+1(re,t+2)),

respectively. As in Kozhan, Neuberger and Schneider (2013), I further express the skew

risk premium as a percentage of the implied skew that results in the definition of the skew

risk premium as stated below:

skt =
EP
t (skew

P
t+1(re,t+2))

EQ
t (skewQ

t+1(re,t+2))
− 1.

The quantity skt reflects the dollar amount of profit per $1 investment in the implied

skew.

3.4 Implied Volatilities

I now describe how I compute model-based option prices and solve for their Black-

Scholes implied volatilities. Consider a European put option written on the price of the

equity that is traded in the economy. Note that the equity price should not include

dividend payments; that is, options are written on the ex-dividend stock price index.

Using the Euler condition (5), the relative price Ot(πt, τ,K) =
P ot (πt,τ,K)

P et (πt)
of the τ -period
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European put option with the strike price K, expressed as a ratio to the initial price of

the equity P e
t , should satisfy:

Ot(πt, τ,K) = Et

[
τ∏
k=1

Mt+k ·max

(
K −

P e
t+τ

P e
t

, 0

)]
. (8)

It is worth noting that a put price P o
t depends on the equity price P e

t , whereas the

normalized price Ot does not. One can express the ratio
P et+τ
P et

in terms of the dividend

growth rates and price-dividend ratios on the equity and, hence, the state belief πt pro-

vides sufficient information for the calculation of the option prices. Specifically, I com-

pute model-based European put prices Ot = Ot(πt, τ,K) via Monte Carlo simulations. I

convert them into Black-Scholes implied volatilities with properly annualized continuous

interest rate rt = rt (πt) and dividend yield qt = qt (πt) . Thus, given the time to maturity

τ, the strike price K, the risk-free rate rt, and dividend yield qt, the implied volatility

σimp
t = σimp

t (πt, τ,K) solves the equation:

Ot = e−rtτ ·K ·N(−d2)− e−qtτ ·N(−d1), (9)

d1,2 =

ln
(

1
K

)
+ τ

(
rt − qt ±

(σimp
t )

2

2

)
σimp
t

√
τ

.

4. Data

4.1 Consumption, Dividends, and Market Returns

I follow Bansal and Yaron (2004) and construct the real per-capita consumption

growth series (annual due to the frequency restriction) for the longest sample available

1930-2016. In the literature, consumption is defined as the sum of personal consump-

tion expenditures on nondurable goods and services. I download the data from the U.S.

National Income and Product Accounts (NIPA) as provided by the Bureau of Economic

Analysis. I first apply the seasonally adjusted annual quantity indexes from Table 2.3.3.

(Real Personal Consumption Expenditures by Major Type of Product, Quantity Indexes,

A:1929-2016) to the corresponding series from Table 2.3.6. (Real Personal Consumption

Expenditures by Major Type of Product, Chained Dollars, A:1995-2016) to obtain real

personal consumption expenditures on nondurable goods and services for the sample pe-

riod 1929-2016. I further retrieve mid-month population data from NIPA Table 7.1. to

convert both real consumption series to per capita terms.
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I measure the total market return as the value-weighted return including dividends,

and the dividends as the sum of total dividends, on all stocks traded on the NYSE, AMEX,

and NASDAQ. The dividends and value-weighted market return data are monthly and

are retrieved from the Center for Research in Security Prices (CRSP). To construct the

monthly nominal dividend series, I use the CRSP value-weighted returns including and ex-

cluding dividends of CRSP common stock market indexes (NYSE/AMEX/NASDAQ/ARCA),

denoted by RIt and REt, respectively. Following Hodrick (1992), I construct the price se-

ries Pt by initializing P0 = 1 and iterating recursively Pt = (1+RIt)Pt−1. Next, I compute

normalized nominal monthly dividends Dt = (RIt − REt)Pt. The proxy of the risk-free

return Rf,t+1 is the 1-month nominal Treasury bill. The nominal annualized dividends are

constructed by summing the corresponding monthly dividends within the year. Finally, I

retrieve the inflation index from CRSP to deflate all quantities to real values.

4.2 The Variance and Skew Risk Premia Data

I define risk premia associated with higher moments of equity returns consistent with

the existing literature. For the variance risk premium, I closely follow Bollerslev, Tauchen

and Zhou (2009), Bollerslev, Gibson and Zhou (2011), Drechsler and Yaron (2011) and

Drechsler (2013), while the empirical strategy and key definitions of the skew risk premia

are in line with Bakshi, Kapadia and Madan (2003) and Kozhan, Neuberger and Schneider

(2013).

The variance premium is a phenomenon on the variance swap market that can be

defined as a difference between expectations of return variance under the risk-neutral Q

and actual physical (i.e., true/statistical) P probability measures for a given horizon. The

focus of this paper is on the one-month variance premium defined as:

vpt = EQ
t

[
Return Variation(t, t+ 1)

]
− EP

t

[
Return Variation(t, t+ 1)

]
.

Under the no-arbitrage assumption, the risk-neutral conditional expectation of the return

variance is equal to the price of a variance swap, a forward contract on the realized variance

of the asset. Britten-Jones and Neuberger (2000) show that a continuous price process

under the risk-neutral expectation of the underlying’s variance can be implied from prices

of European calls on that asset. Their result follows from the fact that the payoff of a

variance swap can be replicated by a portfolio of options. Furthermore, Britten-Jones and
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Neuberger (2000) follow the so called ”model-free” approach, meaning that their result

is not based on any particular option pricing model (Jiang and Tian, 2005). Since the

Chicago Board of Options Exchange (CBOE) calculates the VIX index as a measure of

the 30-days ahead risk-neutral expectation of the variance of the S&P 500 index, I use the

VIX index as a proxy for the risk-neutral expectation of the market’s return variation.

The VIX is quoted in annualized standard deviation. Hence, I first take it to a second

power to transform to variance units and then divide by 12 to obtain monthly frequency.

Thus, I obtain a new series defined as [VIX]2t = VIX2
t

12
. I further use the last available

observation of [VIX]2t in a particular month as a measure of the risk-neutral expectation

of return variance in that month.

For the objective expectation of return variance, a second component in the variance

premium, I calculate a one-step-ahead forecast from a simple regression similar to Drech-

sler (2013). I first calculate the measure of the realized variance by summing the squared

daily log returns on the S&P 500 futures and S&P 500 index obtained from the CBOE.

The constructed series are denoted by FUT2
t and IND2

t , respectively. Subsequently, I

estimate the following regression:

FUT2
t+1 = β0 + β1 · IND2

t + β2 · [VIX]2t + εt+1. (10)

The actual statistical expectation is measured by the one-period ahead forecast given

by (10). I refer to the resulting series as the realized variance and denote it by RVt.

Theoretically, the variance premium should be non-negative in each period. Thus, I

truncate the difference between the implied series of [VIX]2t and RVt from below by 0.

For the empirical strategy above, I obtain the data series of the VIX index, S&P 500

index futures, and S&P 500 index from the CBOE. The main restriction on the length

of the constructed monthly variance premium is the VIX index, reported by the CBOE

only from January 1990. Using high-frequency data would provide a finer estimation

precision of the realized variance, but the empirical statistics of the variance premium

remain largely consistent with the existing estimates in the literature (Drechsler and

Yaron, 2011; Drechsler, 2013).

The skew risk premium can be considered as a payoff of a skew swap, which pays

the holder the difference between the implied skew and realized skew of the index return.
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Kozhan, Neuberger and Schneider (2013) show that a skew swap contract can be replicated

by a trading strategy, which involves long positions in OTM calls and short positions in

OTM puts. As in Kozhan, Neuberger and Schneider (2013), I focus on one-month skew

risk premium defined as an average profit from a skew swap. I further express this profit

as a percentage of the implied skew. Formally, the definition of the skew risk premium

reads as follows:

skt =
EP
t

[
Return Skewness(t, t+ 1)

]
EQ
t

[
Return Skewness(t, t+ 1)

] − 1.

I use empirical estimates of the realized and implied skew from Kozhan, Neuberger and

Schneider (2013) 3. In their empirical strategy, the authors use European options written

on the S&P 500 index and traded on the CSOB. The options dataset used to construct the

skew risk premia is obtained from OptionMetrics and covers the period from January 1996

to January 2012. Further details about the empirical strategy of the skew risk premium

can be found in Kozhan, Neuberger and Schneider (2013).

4.3 Option Prices

For the empirical implied volatility curves, I use European options written on the

S&P 500 index and traded on the CBOE. The option data set covers the period from

January 1996 to December 2016 and is from OptionMetrics. Option data elements include

the type of options (call/put) along with the contract’s variables (strike price, time to

expiration, Greeks, Black-Scholes implied volatilities, closing spot prices of the underlying)

and trading statistics (volume, open interest, closing bid and ask quotes), among other

details.

To construct the empirical implied volatility curves, I first compute the moneyness

for each observed option using the daily S&P 500 index on a particular trading day. I

filter out all data entries with non-standard settlements. I use the remaining observations

to construct the implied volatility surface for a range of moneyness and maturities. In

particular, I follow Christoffersen and Jacobs (2004) and perform polynomial extrapola-

tion of volatilities in the maturity time and strike prices. This strategy makes use of all

available options and not only those with a specific maturity time. The fitted values are

further used to construct the implied volatility curves for 1-, 3-, and 6-month maturities.

3I would like to thank Roman Kozhan for providing the skew-risk-premium-related series.
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5. Calibration and Quantitative Results

In this section, I first calibrate the cash-flow processes for consumption and dividend

growth. The chosen parameters are consistent with the historical US data from January

1930 to December 2016. The consumption-based asset pricing economy in this paper

has a key ingredient, generalized disappointment aversion. Therefore, I consider three

specifications of preference parameters for the comparative statistics exercise: the bench-

mark model (GDA) with generalized disappointment preferences, a pure disappointment

aversion economy (DA) with linear preferences and infinite elasticity of intertemporal sub-

stitution, and an Epstein-Zin framework (EZ). The comparison between GDA and DA

isolates the contribution of disappointment aversion, while the comparison between GDA

and EZ illustrates the impact of the representative agent’s preference for early resolution

of uncertainty.

As the model does not admit an analytical solution, I solve for equilibrium pricing

ratios using the projection method (Judd, 1992) with Chebyshev interpolation. Having

solved the model, I generate 20,000 simulations of the economy and report annualized

statistics of cash-flows and asset prices corresponding to their empirical counterparts.

Specifically, for the returns data, consumption and dividend growth rates, I report the

annualized moments based on the simulations with 1044 monthly observations, consistent

with the data sample spanning the period from January 1930 to December 2016. The

monthly variance premium statistics are obtained based on the simulations with 324

monthly observations, in line with the constructed variance premium series, in particular,

the historical VIX index reported by CBOE from January 1990. The sample monthly

skew risk premium statistics are calculated based on the simulations with 193 monthly

observations, consistent with the empirical series covering the period from January 1996

to January 2012. The model-based implied volatility curves for 1-, 3-, and 6-month

maturities are unconditional averages of implied volatilities based on the simulations with

a sample length of 252 months, corresponding to the empirical option prices data set from

January 1996 to December 2016.
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5.1 Calibrated Parameters

I begin with the parameters of a regime-switching process for aggregate consumption

growth (π11, π22, µ1, µ2, σ). As in Bansal and Yaron (2004), I make the model’s time-

averaged consumption statistics consistent with observed annual log consumption growth

from 1930 to 2016. I calibrate a two-state regime-switching model of monthly consumption

growth with the recession state mimicking large declines like the Great Depression and

the expansion state reflecting normal business cycle fluctuations. Therefore, I set π11 =

1151/1152 and π22 = 47/48. These numbers imply the average duration of the high-growth

state of about (1− π11)−1 = 96 years and the low-growth state of about (1− π22)−1 = 4

years. Furthermore, the unconditional probability of being in expansion π11 = (1 −

π22)/(2 − π11 − π22) results in π11 = 0.96 and, hence, the agent experiences one 4-year

depression per century consistent with the historical data. For the mean growth rate,

consumption tends to grow on average at the annualized rates of about µ1 × 12 = 2.08%

and µ2 × 12 = −4.6% in the expansion and recession states, respectively. The depression

state is consistent with an average annual decline in the real, per capita log consumption

growth during the Great Depression and is less severe than rare disasters, defined as a

drop in annual consumption growth larger than 10 percent (Rietz, 1988; Barro, 2006). I

calibrate the consumption volatility σ to match the observed standard deviation 2.22%. 4

I now turn to calibrating parameters in the dividend process. I regress the annual

dividends on the annual consumption covering the period 1930-2016 and find the estimate

of the leverage ratio of around 2.5, a conservative number within an interval of plausible

values from 1.5 to 4. The leverage ratio is an important parameter for two reasons.

First, it controls the volatility of dividends in normal times. Second, it determines the

decline of dividends in the recession state. As a result, increasing the leverage would

4The reason for calibrating the model with two regimes only is twofold. First, I want to retain
parsimony for the sake of convenient interpretation of results. Second, I do not introduce additional risks
in consumption growth as considered in other papers (more states, non-gaussian shocks in consumption
growth, alternative information settings, etc.) in order to isolate and emphasize the impact of learning
and GDA risk preferences. Of course, the model with more regimes would lead to richer consumption
dynamics. For example, it could introduce long-run risks in consumption as studied in Bonomo, Garcia,
Meddahi and Tedongap (2011, 2015). Alternatively, the framework with a multidimensional learning
problem (Collin-Dufresne, Johannes and Lochstoer, 2016; Johannes, Lochstoer and Mou, 2016) could
additionally contribute to the dynamics of the model. Although taking into account all these risks
channels would certainly improve the model’s performance, I show that a combination of learning about
an unobservable state and the agent’s GDA risk attitude alone can reproduce a wide array of dynamic
asset pricing phenomena observed in the equity and derivatives markets.
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Table 1
Parameter values

Parameter Description Value

β Discount factor 0.9989
1− α Risk aversion 2.5
1/(1− ρ) EIS 1.5
θ Disappointment aversion 2.33
δ Disappointment threshold 0.94

π11 Transition probability from expansion to expansion 0.9991
π22 Transition probability from recession to recession 0.9787
µ1 Consumption growth in expansion 0.17(3)
µ2 Consumption growth in recession −0.38(3)
σ Consumption volatility 0.7217
gd Mean adjustment of dividend growth −0.2417
σd Std. deviation of dividend growth shock 3.28
λ Leverage ratio 2.6

This table reports parameter values in the benchmark model (GDA). All parameters are calibrated
at a monthly frequency.

increase the payoffs of put options, conditional on the realization of recession. To compare

model performance with the existing literature, particularly the literature on rare disasters

with the asset pricing implication for option prices, I set the leverage ratio λ = 2.6,

corresponding to the value used in Seo and Wachter (2017). I further follow the empirical

evidence and set gd to equalize the long-run dividend and consumption growth. The

standard deviation of the dividend process σd is used to match annual dividend volatility

11.04% observed in the data.

I can now choose parameter values for the preferences. In the benchmark model,

I would like to keep the GDA parameters in line with existing studies for comparison

purposes. In particular, I fix the subjective discount factor β, the relative risk aversion

1 − α, the EIS 1/(1 − ρ), and the disappointment aversion θ at the values chosen by

Bonomo, Garcia, Meddahi and Tedongap (2011, 2015). I only change the disappointment

threshold δ to match the high equity premium observed in the data. Therefore, it appears

that all other relevant moments of returns and variance premium, observed patterns of

the excess return predictability, and implied volatility surface are not directly targeted

during the model calibration. Surprisingly, these complex features of the data compare

well with the model-generated statistics, which endogenously arise in the model due to

fluctuations in the posterior state belief. Table 1 summarizes the calibrated values of the

benchmark model.
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For the DA model, I shut off the generalized disappointment aversion channel by

setting δ = 1. Furthermore, the DA specification does not exhibit any curvature in the

pricing kernel associated with the relative risk aversion, which is set 1−α = 0, or elasticity

of intertemporal substitution, which is equal (1−ρ)−1 =∞. I only adjust the disappoint-

ment aversion to match the observed equity premium. The remaining parameters are

fixed at the benchmark values. For the EZ model, I turn off all (generalized) disappoint-

ment aversion by setting θ = 0. In this case, the representative agent only exhibits the

preference for early resolution of uncertainty, a popular workhorse in the asset pricing

literature. By keeping the risk aversion at the benchmark value 1 − α = 2.5, the EZ

model predicts (although not reported) too small equity and variance risk premium, in

addition to too low implied volatility curves. Therefore, I increase the risk aversion to

1 − α = 6, where the model matches the equity premium observed in the data. Other

parameters correspond to those in the benchmark model.

5.2 Asset Pricing Implications

Before discussing the asset pricing implications of GDA, DA, and EZ models, I look

at the cash-flow dynamics predicted by a two-state regime switching model. Panel A in

Table 2 compares the annualized consumption and dividends moments of the data with

those implied by the calibration in this paper. The model-based median estimates of the

mean and volatility of consumption and dividends growth come out close to their empir-

ical counterparts, although mean dividend growth is slightly higher in the simulations.

The autocorrelation of cash-flows is also in line with the empirical estimates, although the

number for consumption is somewhat smaller than in the data. The choice of the lever-

age parameter allows me to capture the observed correlation between consumption and

dividends. Overall, one can see that a two-state Markov-switching model of consumption

and dividend growth matches the key empirical statistics well.

5.2.1 Risk-free Rate and Equity Returns

Panel B in Table 2 reports the key annualized moments of the risk-free rate, eq-

uity returns, and price-dividend ratio for three model specifications: GDA, DA, and EZ.

Overall, all three models do a good job of accounting for the salient features of the equity

returns, as all predict the low risk-free rate, the large equity premium and volatility of
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Table 2
Benchmark Calibration and Sensitivity Analysis: Cash Flows and Stock Market Returns

Data GDA DA EZ

5% 50% 95% 5% 50% 95% 5% 50% 95%

β 0.9989 0.9989 0.9989
1− α 2.5 0 6
1/(1− ρ) 1.5 ∞ 1.5
θ 2.33 0.55 0
δ 0.94 1

Panel A: Cash Flows

E(∆c) 1.83 0.93 1.86 2.42 0.93 1.86 2.42 0.93 1.86 2.42
σ(∆c) 2.22 1.86 2.24 3.17 1.86 2.24 3.17 1.86 2.24 3.17
ac1(∆c) 0.50 0.09 0.30 0.63 0.09 0.30 0.63 0.09 0.30 0.63
E(∆d) 1.44 −1.14 1.87 4.46 −1.14 1.87 4.46 −1.14 1.87 4.46
σ(∆d) 11.04 9.51 11.06 13.01 9.51 11.06 13.01 9.51 11.06 13.01
ac1(∆d) 0.19 0.08 0.26 0.45 0.08 0.26 0.45 0.08 0.26 0.45
corr(∆c,∆d) 0.55 0.37 0.54 0.70 0.37 0.54 0.70 0.37 0.54 0.70

Panel B: Returns

E(rf ) 0.81 0.49 1.34 1.82 1.32 1.32 1.32 0.65 1.44 1.81
σ(rf ) 1.87 1.05 1.88 2.71 0.00 0.00 0.00 0.67 1.43 2.29
E(re − rf ) 5.22 3.29 5.74 8.06 2.59 5.40 7.93 3.00 5.45 7.79
σ(re − rf ) 19.77 14.93 18.53 22.57 13.16 16.85 22.52 14.44 18.55 23.44
E(pd) 3.11 2.92 3.00 3.02 2.97 3.05 3.07 2.95 3.04 3.06
σ(pd) 0.33 0.03 0.07 0.19 0.01 0.06 0.22 0.03 0.07 0.22
skew(re − rf )[M] −0.47 −0.33 −0.08 0.18 −0.53−0.13 0.23 −0.42−0.08 0.25
kurt(re − rf )[M] 10.06 4.18 5.02 6.25 3.45 6.16 10.03 4.52 6.07 8.27
skew(re − rf )[A] −0.93 −0.73 −0.10 0.52 −1.28−0.28 0.37 −0.90−0.15 0.56
kurt(re − rf )[A] 4.24 2.75 4.00 6.59 2.60 4.45 9.97 2.78 4.58 8.28

Panel A reports moments of consumption and dividend growth rates denoted by ∆c and ∆d, re-
spectively. Panel B reports the moments of the log risk-free rate rf , the excess log equity returns
re − rf , and the log price-dividend ratio pd. The statistics of macroeconomic quantities and asset
returns are for the data and three models: the benchmark model with generalized disappointment
aversion preferences GDA, a pure disappointment aversion specification with linear preferences and
infinite elasticity of intertemporal substitution DA, and an Epstein-Zin economy EZ. The entries of
the table are annualized statistics except for the [M] rows, which provide the higher-order moments of
the excess log equity returns sampled at a monthly frequency. The emirical moments are for the U.S.
data from January 1930 to December 2016. For each model, I simulate 20,000 economies sampled at
a monthly frequency with a sample size equal to the empirical counterpart. The simulation results
are percentiles of sample moments based on these 20,000 artificial series. I use the common notations
for the average E, standard deviation σ, autocorrelation ac1, skewness skew, and kurtosis kurt of the
series.

excess returns. In addition, the volatility of the risk-free rate and level of the log price-

dividend ratio correspond well to the empirical estimates under all specifications, with the

benchmark model’s values closer to the data. The main shortcoming of the three models

is the low volatility of the log price-dividend ratio.

For brevity, the bottom of Panel B also presents the higher moments of excess returns
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Table 3
Benchmark Calibration and Sensitivity Analysis: Variance Premium and Predictability

Data GDA DA EZ

5% 50% 95% 5% 50% 95% 5% 50% 95%

β 0.9989 0.9989 0.9989
1− α 2.5 0 6
1/(1− ρ) 1.5 ∞ 1.5
θ 2.33 0.55 0
δ 0.94 1

Panel A: Variance Premium

E(vp) 10.24 5.99 8.95 12.70 1.28 1.97 3.09 3.15 4.95 7.31
σ(vp) 10.49 8.75 11.95 14.64 1.39 2.81 4.72 4.97 7.77 11.34
skew(vp) 2.62 1.01 1.65 2.46 0.08 2.86 4.21 −0.50 1.94 3.14
kurt(vp) 14.15 2.68 4.75 9.03 6.57 12.94 26.07 4.34 7.73 14.73
σ(varPt (re)) 31.14 16.24 27.05 37.79 4.90 15.02 41.99 14.33 30.10 48.86
ac1(varPt (re)) 0.76 0.66 0.81 0.89 0.57 0.76 0.91 0.62 0.80 0.90

σ(varQt (re)) 34.34 25.16 39.72 53.04 5.58 16.44 42.63 18.04 35.63 54.01

ac1(varQt (re)) 0.80 0.65 0.80 0.87 0.58 0.76 0.91 0.62 0.80 0.89

skew(varQt (re)) 3.45 1.30 2.11 3.12 2.74 4.31 6.86 1.82 2.91 4.29

kurt(varQt (re)) 20.72 3.34 6.83 13.96 11.11 25.43 62.76 5.19 11.90 25.60

Panel B: Predictability

β(1m) 0.81 0.06 0.86 1.70 −1.84 1.95 5.70 −0.82 0.94 2.65
R2(1m) 2.63 0.06 2.03 6.45 0.02 1.06 4.10 0.01 1.35 6.02
β(3m) 0.89 0.05 0.72 1.33 −1.50 1.66 4.39 −0.69 0.86 2.03
R2(3m) 8.32 0.14 4.73 13.95 0.04 2.33 9.06 0.03 3.36 12.84
β(6m) 0.61 0.03 0.58 1.02 −1.17 1.32 3.33 −0.59 0.70 1.51
R2(6m) 7.26 0.21 6.73 19.45 0.05 3.14 13.03 0.07 4.90 17.38

Panel A reports moments of the conditional variance premium vp, market return variances varPt (re)
and varQt (re) under the physical P and risk-neutral Q probability measures, respectively. The entries of
Panel A are monthly statistics. Panel B reports results of the predictive regression of h-month future

excess log equity returns constructed as rext+1→t+h =
h∑

i=1

(
re,t+i − rf,t−1+i

)
on the lagged variance

premium vpt. Specifically, the slope estimates β(h) and R2(h) are based on the linear projection:

100× rext+1→t+h = Intercept + β(h)× vpt + εt+h,

where h = 1, 3 and 6 months. The moments and regression outputs are for the data and three
models: the benchmark model with generalized disappointment aversion preferences GDA, a pure
disappointment aversion specification with linear preferences and infinite elasticity of intertemporal
substitution DA, and an Epstein-Zin economy EZ. The empirical statistics are for the U.S. data from
January 1990 to December 2016. For each model, I simulate 20,000 economies at a monthly requency
with a sample size equal to the empirical counterpart. I obtain moments, the slope coefficients β(h)
and R2(h) for each simulation and report percentiles of sample statistics over all 20,000 artificial series.
I use the common notations for the average E, standard deviation σ, autocorrelation ac1, skewness
skew, and kurtosis kurt of the series.

at the monthly (labeled [M]) and annual (labeled [A]) frequencies. It is well known that

the distribution of log excess returns exhibits non-normality at the high frequency and,

according to the central limit theorem, approach a normal distribution over longer horizons
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(because the n-period log return is the sum n one-period returns). In line with this

evidence, the kurtosis of the monthly log excess returns in our sample is larger than the

kurtosis of the corresponding annualized series. The annualized log excess returns are more

negatively skewed compared to the monthly data. All three specifications qualitatively

respect these features of the data, although quantitatively the GDA model better captures

the excess kurtosis in monthly returns with its lower value at the annual frequency.

5.2.2 The Variance and Skew Risk Premia

Benchmark Model: GDA. In Table 3, I collect moments of the variance premium and

conditional variances of the market return under the actual and risk-neutral probability

measures. Panel A in Table 3 shows that the GDA model is able to generate a large and

volatile variance premium. Although the mean variance premium predicted by the bench-

mark is slightly lower than in the data, the empirical estimate easily falls into the 90%

model-based confidence interval. It is well-known that the variance premium distribution

is fat-tailed with positive skewness and large excess kurtosis. The GDA model qualita-

tively respects the non-normality of the distribution, although the benchmark statistics

are smaller relative to the data.

Most importantly, the GDA model is able to account for the first and second mo-

ments of the variance premium with empirically consistent conditional return variances

under both probability measures. Specifically, the total return variance is more volatile

under the risk-neutral probability measure relative to the physical probability measure.

Additionally, both volatilities are persistent as in the data. I also report the skewness and

kurtosis of the VIX index. Interestingly, these statistics dramatically changed after the

2007-2008 Financial Crisis, which can be mainly attributed to large values of VIX during

October and November 2008. Consequently, the skewness and kurtosis of the risk-neutral

conditional variance increased from around 2 and 9 in the pre-crisis period to 3.45 and

20.72 in the full sample ranging until December 2016. The median statistics of the GDA

model are closer to empirical estimates based on the pre-crisis period. This can be par-

tially explained by the fact that I rule out realizations of rare recessions in consumption

while generating model-based statistics.

Empirical literature further documents the predictability of excess returns by the

23



variance premium. To study this predictive relationship, I regress the one-, three-, and

six-month cumulative excess log returns, which are expressed in percentages, on the lagged

monthly variance premium. Consistent with the existing literature, the ”Data” column

of Panel B in Table 3 indicates a positive impact as measured by positive and slightly de-

creasing regression coefficients, in addition to an increasing predictive power as measured

by increasing R2 over longer horizons. It is striking that the GDA model replicates this

empirical finding by closely matching the magnitude of coefficients and R2.

The literature on the risk premia in higher-order moments of equity returns also

documents a puzzling skew premium. Kozhan, Neuberger and Schneider (2013) quantify

its value by looking at the profit of a skew swap, a financial contract paying the difference

between the implied skew and the realized skew of the equity return. Table 4 summarizes

descriptive statistics of the skew premium and related variables. The benchmark model

with GDA preferences produces a sizable negative skew premium that closely matches the

historical data (-42%). Note that the possibility for a large jump in the conditional skew

premium leads to wide simulation percentiles for the sample volatility, skewness, kurtosis,

and first-order autocorrelation. Nevertheless, the calibration’s median statistics of these

moments are reasonably close to the data and reflect the key features of the skew premium.

Additionally, the conditional first and second moments of the return skewness under risk-

neutral and physical probability measures are in line with their empirical counterparts,

although the volatility of the realized skew in the model is too low relative to the data.

Pure Disappointment Aversion and Epstein-Zin Specifications. Although the model

provided a good fit with equity returns in the data, comparable the performance of the

GDA framework, the crucial difference between them can be observed in the light of the

variance and skew risk premia statistics. Table 3 shows that disappointment aversion

alone produces the mean and volatility of the variance premium that are approximately

five times smaller than the benchmark values. Turning off the GDA channel also leads

to a significant reduction in the volatility of return variance. As the variance premium

decreases, its predictive power for the excess log returns also suffers. This is manifested

in the lower median values of R2 and empirically inconsistent regression coefficients. The

asset pricing implications of the DA model are further augmented by Table 4. Specifically,
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Table 4
Benchmark Calibration and Sensitivity Analysis: Skewness Premium

Data GDA DA EZ

5% 50% 95% 5% 50% 95% 5% 50% 95%

β 0.9989 0.9989 0.9989
1− α 2.5 0 6
1/(1− ρ) 1.5 ∞ 1.5
θ 2.33 0.55 0
δ 0.94 1

E(sp) −0.42 −0.44 −0.39 −0.18 0.07 0.12 0.17 −0.22−0.20 −0.12
σ(sp) 1.17 0.07 0.41 1.93 0.13 0.16 0.81 0.03 0.14 0.77
skew(sp) 6.05 −3.89 7.41 13.47 −8.50 1.07 5.05 −7.77 3.70 12.50
kurt(sp) 44.78 1.91 71.60 190.04 2.52 3.71 132.14 1.88 56.53 175.19
ar1(sp) 0.06 −0.11 0.04 0.56 −0.04 0.58 0.68 −0.25 0.15 0.59

E(skewP
t (re)) −1.00 −1.09 −1.01 −0.88 −0.73−0.54 −0.40 −1.14−0.99 −0.85

σ(skewP
t (re)) 2.23 0.26 0.29 0.58 0.26 0.41 0.58 0.37 0.43 0.73

E(skewQ
t (re)) −1.81 −1.72 −1.55 −1.31 −0.69−0.51 −0.37 −1.44−1.26 −1.06

σ(skewQ
t (re)) 0.72 0.55 0.63 1.03 0.28 0.42 0.57 0.51 0.59 0.89

Table reports moments of the conditional skew premium sp, market return skewness skewP
t (re) and

skewQ
t (re) under the physical P and risk-neutral Q probability measures, respectively. The entries of

the table are monthly statistics. The moments are for the data and three models: the benchmark
model with generalized disappointment aversion preferences GDA, a pure disappointment aversion
specification with linear preferences and infinite elasticity of intertemporal substitution DA, and an
Epstein-Zin economy EZ. The empirical statistics are for the U.S. data from January 1996 to January
2012. For each model, I simulate 20,000 economies at a monthly requency with a sample size equal
to the empirical counterpart. The simulation results are percentiles of sample moments based on
these 20,000 artificial series. I use the common notations for the average E, standard deviation σ,
autocorrelation ac1, skewness skew, and kurtosis kurt of the series.

Table 4 shows that a simple pecification does not reproduce the skew premium statistics.

The skew premium turns out to be positive with excessively median values of sample

volatility, skewness, kurtosis and excessively high median autocorrelations. The bottom

part of Table 4 shows that the DA model predicts 2-3 times smaller first and second

moments of return skewness.

Next, I turn off any source of (generalized) disappointment aversion and consider a

representative agent with preferences for early resolution of uncertainty, a widely used

utility specification in asset pricing studies. According to Table 3, the EZ model increases

the mean and volatility of the variance premium by a factor 2.5 compared to the DA

model. However, the mean variance premium is still only half of the benchmark value.

In addition, the predictive regression of the excess log returns on the variance premium

indicates a weaker predictability power. As an additional robustness exercise, I raise

risk aversion to the value 10, an upper bound of reasonable values according to Mehra
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and Prescott (1985). In this case, the median value of the sample mean of the variance

premium increases marginally to 5.15, while the median volatility statistics are dampened

at the level of around 4.11. Moreover, the regression of the excess log returns on the

variance premium produces weaker predictive power with R2 less than 2% at the 6-month

horizon. Overall, these results indicate the important role of generalized disappointment

aversion for the equity returns and variance premium, as DA and EZ models cannot

account for salient features of the data.

5.2.3 The Term Structure of Implied Volatilities

In this section, I examine the asset pricing implications of all models for index op-

tions. The top graph of Figure 1 compares the 3-month volatility curves for the data and

three models (GDA, DA, and EZ). The implied volatilities are expressed as a function of

moneyness ranging from 0.9 to 1.05. The plot shows that the empirical implied volatilities

are declining in moneyness, a pattern also known in the literature as the volatility skew.

The top panel of Figure 1 shows that the DA implied volatilities for the 3-month maturity

are very flat and approximately equal the realized stock market volatility. One apparent

candidate to generate a steep volatility skew is high risk aversion. Although increased

risk aversion in the EZ model improves the model performance, it cannot fully account

for the level in implied volatilities. In contrast, the GDA framework can fit the option

prices very closely.

The middle and bottom plots of Figure 1 additionally present the term structure

of implied volatilities for ATM and 0.90 OTM options. In the data, ATM volatilities

slightly increase over the horizon, while the downward trend can be observed for OTM

volatilities. The model-based results clearly indicate that neither DA nor EZ models can

match the empirical curves, although high risk aversion in EZ produces higher volatilities.

The benchmark with generalized disappointment aversion can closely fit the empirical

ATM volatilities for 1-, 3-, and 6-month maturities. Although the GDA model cannot

fully account for the steep slope of the OTM volatilities, the model-predicted level of the

term structure corresonds the one in the data. In general, the performance of the GDA

framework clearly indicates the importance of generalized disappointment risk in option

prices.
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Figure 1: Benchmark Calibration and Sensitivity Analysis: Volatility Term Structure. The
top panel plots the 3-month implied volatility curve as a function of moneyness (Strike/Spot Price) for the
data and three models: the benchmark model with generalized disappointment aversion preferences GDA,
a pure disappointment aversion specification with linear preferences and infinite elasticity of intertemporal
substitution DA, and an Epstein-Zin economy EZ. The middle and bottom panels plot the empirical and
model-based (GDA, DA, and EZ) implied volatility curves for ATM and OTM options as functions of the
time to maturity expressed in months. The empirical statistics are for the U.S. data from January 1996
to December 2016. For each model, I simulate 20,000 economies at a monthly requency with a sample
size equal to the empirical counterpart. The model-based curves are calculated for option prices using the
annualized model-implied interest rate rt(πt) and dividend-yield qt(πt) in each period. The simulation
results are medians of implied volatilities based on these 20,000 artificial series.
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Figure 2: Sensitivity of Asset Prices to Preference Specifications and Parameter Values. The
figure plots asset pricing implications of alternative preference calibtations in a benchmark GDA model, a
pure disappointment aversion specification, and an Epstein-Zin economy. In each of these models, a single
parameter is changed while others are fixed at original values. Specifically, I change a disappointment
threshold, a disaappointment aversion and a relative risk aversion over a range of values in GDA, DA
and EZ models, respectively. For each model specification, I simulate 20,000 economies at a monthly
frequency. The entries of the figure are medians of sample statistics (annualized for the risk-free rate, the
equity premium and the price-dividend ratio; monthly for the variance and skew risk premia) based on
these 20,000 artificial series. I use the common notations for the average E and standard deviation σ of
the series.
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The (generalized) disappointment aversion and risk aversion both stand between the

physical P and risk-neutral Q probability measures through the Radon-Nikodym deriva-

tive
dQ
dP

=
Mt+1

Et(Mt+1)
.

However, the failure of DA and EZ models and the striking success of the GDA specifica-

tion can be attributable to the difference in their impacts on a Q-distribution. Notice that

DA preferences penalize many more outcomes relative to GDA preferences due to higher

disappointment threshold. Consequently, the risk-neutral measure implied by DA puts

less weights on the adverse negative consumption growth rates and more weights on the

milder consumption realizations relative to GDA . Similarly, a high risk aversion smoothly

distorts a Q-density towards a left tail and hence the impact is not strong enough to fully

capture option prices. Since generalized disappointment aversion enables me to control

the threshold of disappointment events, it becomes instrumental in generating a fatter

left tail of a Q-measure compared to alternative preferences. By penalizing the outcomes

below a scaled certainty equivalence, the GDA model exhibits more countercyclical risk

aversion that helps explain the volatility skew, variance and skew risk premia in the data.

5.3 Sensitivity Analysis

Figure 2 provides an extensive sensitivity analysis with respect to different preference

specifications and parameter values. In the sensitivity exercise, I consider three model

settings (GDA, DA, and EZ) and change a key parameter in each of them while holding

remaining values as in original economies. In the GDA model, I vary a disappointment

threshold δ between 0.92 and 0.955. In the DA model, a disappointment aversion θ

changes between 0.35 and 0.7. In the EZ model, the results are provided for the relative

risk aversion ranging from 4 to 7.5. I focus on the first and second moments of the risk-

free rate, the equity premium, the price-dividend ratio, the variance and skew risk premia.

The panels in Figure 2 present the model-based median statistics implied by the GDA

(a dashed line), DA (a red line with dots), and EZ (a blue line) frameworks. The asset

pricing moments are expressed as a function of a varying parameter.

Figure 2 shows that the risk-free rate decreases with a disappointment threshold δ

in GDA and a risk aversion 1− α in EZ, while it is equal to a constant −12 ln β regard-
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less of a disappointment aversion θ in DA. Furthermore, the equity premium increases

and equity prices decline in δ, θ, and 1 − α, when the agent faces more disappointing

outcomes or becomes more averse to negative consumption growth rates as induced by

higher values of these parameters. The impact of δ and 1 − α on the volatility of asset

prices is similar in GDA and EZ: the higher disappointment threshold or the higher risk

aversion leads to more volatile risk-free rate, while the volatility of equity returns and

the price-dividend ratio exhibits a hump-shaped pattern with a maximum approximately

in the middle of considered parameter intervals. In DA, increasing the disappointment

aversion slightly increases the equity volatility, while the risk-free rate remains unaffected

due to linear preferences and infinite elasticity of intertemporal substitution. Overall, the

magnitude of changes in the risk-free rate, the equity returns, and the price-dividend ratio

are quite comparable across three preference specifications, especially when looking at the

performance of GDA and EZ. These findings suggest that all three preference specifica-

tions can reasonably explain first and second moments of equity returns by adjusting a

key preference parameter. In contrast, the four bottom panels in Figure 2 indicate the

crucial importance of generalized disappointment aversion for generating significant risk

premiums in higher moments of equity returns.

It is evident from Figure 2 that a pure disappointment-aversion model can pro-

duce a high mean and volatility of equity returns, however, the model-generated variance

premium is too low and less volatile compared to the data. Moreover, disappointment

aversion alone cannot reproduce salient moments of the skew premium at all. Increasing

a disappointment aversion parameter θ in the DA setting does not improve the model

performance, as the variance and skew risk premia moments are not very sensitive to

changes in θ. The Epstein-Zin economy provides a better fit with the data. In particular,

when the risk aversion increases from 4 to 7.5, the mean variance premium increases from

less than 2 to around 5, while the skew premium declines from around -10% to -20%.

However, note that the mean and volatility of the variance premium actually start declin-

ing at some time and, thus, the higher risk aversion will bring the model away from the

data. The comparative analysis with respect to the disappointment threshold in GDA

preferences provides the overall patterns in the variance and skew risk premia similar to

those generated by different risk aversion parameters in Epstein-Zin preferences. However,
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with generalized disappointment aversion, the magnitude of the variance and skew risk

premia is significantly amplified. The sensitivity analysis in Figure 2 confirms that the

distribution of the stochastic discount factor, necessary to reconcile the empirical asset

pricing moments, is attributable to the agent’s generalized disappointment aversion and

cannot be supported by any parameter values in alternative preference specifications.

6. Conclusion

This paper builds a representative agent, consumption-based asset pricing frame-

work in which the agent has generalized disappointment aversion risk preferences and

consumption growth is modeled as a hidden Markov-switching process. I show that the

combination of the investor’s aversion to tail events and fluctuating economic uncertainty

due to Bayesian learning help to successfully explain a wide variety of asset pricing phe-

nomena. The benchmark model is able to reproduce variance and skew risk premia and to

generate a realistic volatility surface implied by equity index options, while simultaneously

capturing the salient moments of equity returns.

The success of the model is attributable to the endogenously varying probability of

disappointment events, which has a large impact on asset prices, particularly on the higher

moments risk premia in equity returns and implied volatilities. The agent’s time-varying

beliefs induce rich conditional dynamics that are reflected in the equity and option prices.

To emphasize the importance of GDA preferences, I consider alternative models with

disappointment aversion and preferences for early resolution of uncertainty. Although

all three specifications can reasonably match moments of equity returns, the benchmark

model outperforms the other two calibrations by additionally capturing the salient features

of options prices, variance, and skew risk premia. These results suggest the important

role of generalized disappointment aversion in asset pricing models.
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Appendix

A. Representative Agent’s Maximization Problem

A representative agent starts with an initial wealth denoted by W0. Each period t, the

agent consumes Ct consumtion goods and invests in N assets traded on the competitive

market. Denote the fraction of the total t-period wealth Wt invested in the i-th asset with

gross real return Ri,t+1 by ωi,t. Then, the agent’s budget constraint in period t takes the

form:

Wt+1 = (Wt − Ct)Rω
t+1 (A1)

where
N∑
i=1

ωi,t = 1 and Rω
t+1 =

N∑
i=1

ωi,tRi,t+1. (A2)

The agent chooses the allocation {Ct, ω1,t, ..., ωN,t} in period t in order to maximize (1)

subject to (A1) and (A2).

The Bellman equation becomes:

Jt = max
Ct,ω1,t,...,ωN,t

{
(1− β)Cρ

t + β [µt(Jt+1)]ρ)
}1/ρ

with the constraints (A1) and (A2). I guess optimal value function of the form Jt = φtWt.

Using this conjecture of Jt and the form of µt from (2), I rewrite the Bellman equation

as:

φtWt = max
Ct,ω1,t,...,ωN,t

{
(1− β)Cρ

t + β
[
Et
[
(φt+1Wt+1)αK(φt+1Wt+1)

]ρ/α}1/ρ

,

where

K(x) =
1 + θI{x 6 δµt(x)}

1 + θδαEt
[
I{x 6 δµt(x)}

] .
Note that the function K defined above is homogeneous of degree zero.

The Return on the Aggregate Consumption Claim Asset. I further conjecture that

the consumption Ct is homogeneous of degree one in wealth at the optimum, that is

Ct = btWt. Then, I obtain the Bellman equation:

φρt =

{
(1− β)

(
Ct
Wt

)ρ
+ β

(
1− Ct

Wt

)ρ [
Et
[
(φt+1R

ω
t+1)αK(φt+1R

ω
t+1)
]ρ/α}

(A3)
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or equivalently

φρt = {(1− β)bρt + β (1− bt)ρ y∗t } (A4)

where

y∗t =
[
Et
[
(φt+1R

ω
t+1)αK(φt+1R

ω
t+1)
]ρ/α

.

Taking the FOC of the right side of a simplified Bellman equation (A3) with respect to

Ct, I find:

(1− β)

(
Ct
Wt

)ρ−1

= β

(
1− Ct

Wt

)ρ−1

y∗t .

or using the notations:

(1− β)bρ−1
t = β(1− bt)ρ−1y∗t . (A5)

Solving for y∗t from the last equation and substituting it into (A4), I deduce:

φt = (1− β)
1
ρ b

ρ−1
ρ

t = (1− β)
1
ρ

(
Ct
Wt

) ρ−1
ρ

Shifting one period ahead the formula for φt and substituting the resulting form of φt+1

into (A5), I obtain:

(1− β)Cρ−1
t = β(Wt − Ct)ρ−1

[
Et

[
(1− β)α/ρ

(
Ct+1

Wt+1

)α ρ−1
ρ (

Rω
t+1

)αK (φt+1R
ω
t+1

)]]ρ/α
.

Then, I rewrite the equation above as:

Cρ−1
t = βEt

( Ct+1

Wt+1

(Wt−Ct)

)α ρ−1
ρ (

Rω
t+1

)αK
( Ct+1

Wt+1

Wt−Ct

) ρ−1
ρ

Rω
t+1

ρ/α .
and derive the asset pricing restriction for the return on the total wealth Rω

t+1 :

Et



(
β

(
Ct+1

Ct

)ρ−1

Rω
t+1

)1/ρ

︸ ︷︷ ︸
zt+1



α

K


(
β

(
Ct+1

Ct

)ρ−1

Rω
t+1

)1/ρ

︸ ︷︷ ︸
zt+1




1/α

= 1.

Define Rc
t+1 the return on the consumption endowment. In equilibrium, Rc

t+1 = Rω
t+1 and,

as in Routledge and Zin (2010), using the definition of the certainty equivalent (2) and

the function K, the return Rc
t+1 should satisfy the equation:

µt(zt+1) = 1 (A6)
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where

zt+1 =

(
β

(
Ct+1

Ct

)ρ−1

Rc
t+1

)1/ρ

.

Rewriting Rc
t+1 in the form:

Rc
t+1 =

Wt+1

Wt − Ct
=

Wt+1

Ct+1

Wt

Ct
− 1
· Ct+1

Ct
=

ξt+1

ξt − 1
· Ct+1

Ct
,

the wealth-consumption ratio ξt = Wt

Ct
can be found from the functional equation:

Et

[
β
α
ρ

(
Ct+1

Ct

)α
·
(
ξt+1

ξt − 1

)α
ρ

· K(zt+1)

]
= 1.

The Return on the Aggregate Dividend Asset. Following Routledge and Zin (2010),

the portfolio problem for the obtained values φt+1 reads as follows:

max
ω1,t,...,ωN,t

µt(φt+1R
ω
t+1),

subject to the constraints
N∑
i=1

ωi,t = 1 and Rω
t+1 =

N∑
i=1

ωi,tRi,t+1. Taking the FOC with

respect to the weight ωi,t, I derive:

Et
[
φαt+1(Rω

t+1)α−1[1 + θI(φt+1R
ω
t+1 < δµt)]Ri,t+1

]
= 0.

Taking the difference between the i-th and j-th FOCs, I thus obtain:

Et
[
φαt+1(Rω

t+1)α−1[1 + θI(φt+1R
ω
t+1 < δµt)](Ri,t+1 −Rj,t+1)

]
= 0.

Multiplying the last equation by ωj,t and summing over all possible values of j, I further

obtain:

Et

φαt+1(Rω
t+1)α−1[1 + θI(φt+1R

ω
t+1 < δµt)]Ri,t+1

N∑
j=1

ωj,t︸ ︷︷ ︸
=1

 =

= Et

φαt+1(Rω
t+1)α−1[1 + θI(φt+1R

ω
t+1 < δµt)]

N∑
j=1

Rj,t+1ωj,t︸ ︷︷ ︸
=Rωt+1


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or

Et
[
φαt+1(Rω

t+1)α−1[1 + θI(φt+1R
ω
t+1 < δµt)]Ri,t+1

]
=

= Et
[
φαt+1(Rω

t+1)α[1 + θI(φt+1R
ω
t+1 < δµt)]

]
. (A7)

Following Epstein and Zin (1989, 1991), it is straightforward to show that φt+1 = zt+1

Rωt+1

holds in equilibrium. Using these equilibrium conditions and the definition of µt, I have:

Et
[
φαt+1(Rω

t+1)α[1 + θI(φt+1R
ω
t+1 < δµt)]

]
= Et

[
zαt+1[1 + θI(zt+1 < δµt)]

]
=

Et

1 + θδαI(zt+1 < δ µt(zt+1)︸ ︷︷ ︸
=1

)]

µt(zt+1)α︸ ︷︷ ︸
=1

= Et [1 + θδαI(zt+1 < δ]] . (A8)

Combining (A7)-(A8) and using the equilibrium condition Rc
t+1 = Rω

t+1, I finally obtain

the asset pricing restriction for the gross return Ri,t+1 :

Et
[
zαt+1(Rc

t+1)−1(1 + θI(zt+1 < δ)Ri,t+1

1 + θδαEt [I(zt+1 < δ)]

]
= 1, (A9)

Moreover, the pricing kernel Mt+1 is:

Mt+1 =
zαt+1(Rc

t+1)−1(1 + θI(zt+1 < δ))

1 + θδαE [I(zt+1 < δ)]
.

Rewriting Ri,t+1 in the form:

Ri,t+1 =
Pi,t+1 +Di,t+1

Pi,t
=

Pi,t+1

Di,t+1
+ 1

Pi,t
Di,t

· Di,t+1

Di,t

=
λt+1 + 1

λt
· Di,t+1

Di,t

,

the price-dividend ratio of the i-th asset λt =
Pi,t
Di,t

can be found from the functional

equation:

Et

[
β
α
ρ

(
Ct+1

Ct

)α−1
Di,t+1

Di,t

·
(
ξt+1

ξt − 1

)α
ρ
−1

· K(zt+1) · (λt+1 + 1)

]
= λt.

B. Numerical Algorithm

This technical appendix provides the description of the numerical method used to

solve the model. Following the notation from the paper, aggregate consumption growth

∆ct+1 = ln

(
Ct+1

Ct

)
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is given by:

∆ct+1 = µst+1 + σεt+1, εt+1 ∼ N(0, 1).

Whereas the consumption volatility σ is assumed to be constant, the mean growth rate

µst+1 is driven by a two-state Markov-switching process st+1 with the state space:

S = {1 = expansion, 2 = recession},

a transition matrix

P =

 π11 1− π11

1− π22 π22


and transition probabilities πii ∈ (0, 1). Let

X (y1, y2, y3) =
1 + θI

{
βeρy1

(
y2

y3−1

)
6 δρ

}
1 + θδαEt

[
I
{
βeρy1

(
y2

y3−1

)
6 δρ

}] ,
then, the wealth-consumption ratio ξt = Wt

Ct
satisfies the equation:

Et

[
β
α
ρ eα∆ct+1 ·

(
ξt+1

ξt − 1

)α
ρ

· X
(

∆ct+1, ξt+1, ξt

)]
= 1, (B1)

and the price-dividend ratio λt = Pt
Dt

of the asset with gross return Rt+1 (I skip the

subscript i for convenience) is given by:

Et

[
β
α
ρ e(α−1)∆ct+1+∆dt+1 ·

(
ξt+1

ξt − 1

)α
ρ
−1

· X
(

∆ct+1, ξt+1, ξt

)
· λt+1 + 1

λt

]
= 1. (B2)

I apply the projection method of Judd (1992) to solve for the equilibrium pricing functions

when the state of the economy is unobservable.

The Return on the Aggregate Consumption Claim Asset. I conjecture the wealth-

consumption ratio of the form ξt = G(πt), where πt is the posterior belief defined by (4).

I seek to approximate the functional form of G(πt), which solves (B1). I approximate

G(πt) by a basis of complete Chebyshev polynomials Ψ = {Ψk(πt)}nk=0 of order n with

coefficients ψ = {ψk}nk=0 :

G(πt) =
n∑
k=0

ψkΨk(πt) ∀πt ∈ [0, 1]5. (B3)

5I adjust the domain of the Chebyshev polynomials from [−1, 1] to the domain of the state variable
πt which is [0, 1].
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I further define the function:

Γ(πt; j) = Et,j

[
β
α
ρ eα∆ct+1 ·

(
ξt+1

ξt − 1

)α
ρ

· X
(

∆ct+1, ξt+1, ξt

)]
=

= β
α
ρ

∫
eαy
(
G(B(y, πt))

G(πt)− 1

)α
ρ

· X
(
y,G(B(y, πt)), G(πt)

)
f(y, j)dy (B4)

where B(y, πt) is given by:

B(y, πt) =
(1− q)f(y, 1)(1− πt) + pf(y, 2)πt

f(y, 1)(1− πt) + f(y, 2)πt

and f(y, j) is the probability density function of a normal distribution N(µSt , σ
2) condi-

tional on St = j. Substituting G(πt) from (B3) and Γ(πt; j) from (B4) into (B1), I obtain

the residual function:

Rc(πt;ψ) = (1− πt)Γ(πt, 1) + πtΓ(πt, 2)− 1.

The objective is to choose the unknown coefficients ψ in order to make the residual

function Rc(πt;ψ) close to zero ∀πt ∈ [0, 1]. I apply the orthogonal collocation method.

Formally, I evaluate the residual function in the collocation points {rk}n+1
k=1 given by the

roots of the n + 1 order Chebyshev polynomial 6 and then solve the system of n + 1

equations:

Rc(rk;ψ) = 0 ∀k = 1, ..., n+ 1

for n+1 unknowns ψ = {ψk}nk=0. Let ξ̃t = G̃(πt) =
n∑
k=0

ψ̃kΨk(πt) denote an approximation

of the wealth-consumption ratio.

The Return on the Aggregate Dividend Asset. I conjecture the price-dividend ratio

of the form λt = H(πt), where πt is the posterior belief defined by (4). Now, I seek to

approximate the functional form of H(πt), which solves the equation (B2). I approximate

H(πt) by a basis of complete Chebyshev polynomials Υ = {Υk(πt)}nk=0 of order n with

coefficients υ = {υk}nk=0 :

H(πt) =
n∑
k=0

υkΥk(πt) ∀πt ∈ [0, 1]. (B5)

6Again, I adjust the domain of the Chebyshev polynomials from [−1, 1] to the domain of the state
variable πt which is [0, 1].
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Define the function:

Λ(πt; j) = Et,j

β α
ρ e(α−1)∆ct+1+∆dt+1

(
ξ̃t+1

ξ̃t − 1

)α
ρ
−1

· X
(

∆ct+1, ξ̃t+1, ξ̃t

)
· λt+1 + 1

λt

 =

= β
α
ρ

∫∫
e(α+λ−1)y+gd+z

(
G̃(B(y, πt))

G̃(πt)− 1

)α
ρ
−1

· X
(
y, G̃(B(y, πt), G̃(πt)

)
· (B6)

·H(B(y, πt))

H(πt)− 1
f(y, j)g(z, j)dydz,

where f(y, j) and g(z, j) are probability density functions of normal distributionsN(µSt+1 , σ)

and N(gd, σd), respectively, conditional on St+1 = j. Substituting H(πt) from (B5) and

Λ(πt; j) from (B6) into (B2), I obtain the residual function:

Rd(πt; υ) = (1− πt)Λ(πt, 1) + πtΛ(πt, 2)− 1.

Next, I evaluate the residual function Rd(πt;ψ) in the collocation points {sk}n+1
k=1

given by the roots of the n+ 1 order Chebyshev polynomial and solve the system of n+ 1

equations

Rd(sk; υ) = 0 ∀k = 1, ..., n+ 1

for n+ 1 unknowns υ = {υk}nk=0.
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Abstrakt 

Tento článek dává novou interpretaci skrze obecnou averzi ke zklamání (GDA) rozptylu a 

šikmosti rizikové prémie výnosů z akcií a šikmosti ve volatilitě opcí na akciové indexy. 

Klíčovými ingrediencemi modelu jsou učení se o růstu spotřeby a averze k extrémům 

způsobená GDA preferencemi investorů, která umocňuje vliv spotřebních šoků. Tento model 

je za použití rizika ze zklamání schopen napodobit hlavní vlastnosti rozptylu a šikmosti rizikové 

prémie a zároveň je schopen generovat realistickou šikmost ve volatilitě implikovanou opcemi 

na akciové indexy. Zároveň model generuje realistický průměr a volatilitu bezrizikové 

výnosové míry z akcií a také poměr jejich cen k dividendám. V neposlední řadě v čase se měnící 

pravděpodobnost zklamání generuje širokou škálu fenoménů dynamického oceňování akcií. 
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