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Abstract

We study perception biases arising under second-best perception strategies. An

agent correctly observes a parameter that is payoff-relevant in many decision problems

that she encounters in her environment but is unable to retain all the information un-

til her decision. A designer of the decision process chooses a perception strategy that

determines the distribution of the perception errors. If some information loss is un-

avoidable due to cognition constraints, then (under additional conditions) the optimal

perception strategy exhibits the illusion of control, overconfidence, and optimism.
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1 Introduction

Within economic discourse, the idea that the human mind is imperfect and that some

information is necessarily lost during any decision process dates back at least to Simon

(1955). Under this premise, an agent faces, apart from the standard action choice, a

problem of lossy data compression; she must choose which information to retain and

which to let go. Within information theory, the problem of lossy data compression is

defined by (i) the information processing technology that determines feasible perception

error distributions and (ii) the loss function that specifies the loss from each possible

misperception of the processed parameter.1 Information theory mainly focuses on the

former and studies sophisticated usage of limited information channels, minimizing simple

ad hoc loss functions. We approach the problem from the economic perspective and focus

on the microfoundation of the loss function.

For instance, the agent may not be able to perfectly retain all relevant information

about the probability of her having more or less talent and thus may arrive at the action

choice as under- or overconfident about her own talent. We provide a definition of the

loss associated with each such misperception that builds on the standard economic welfare

approach. In our model, an agent maximizes a random utility that depends on the chosen

action from a fixed action set and the agent’s type. Each realization of the random utility

function represents a decision problem that the agent may encounter and the distribution of

the utility function provides a statistical description of her environment. The misperceived

probability of high talent distorts choice and leads to a welfare loss in some of the problems.

We define the loss associated with this misperception as the welfare loss averaged across all

decision problems in the agent’s environment. We characterize the loss function, given the

distribution of utility functions, and we report conditions under which the loss function

exhibits useful comparative statics. In particular, we identify cases in which overconfidence

generates a smaller loss than does underconfidence of a same magnitude.

Our main result relates such asymmetries of the loss function to the degree of control

the agent has over her utility. We assume that the agent can be of high or low type and

consider settings in which the high type has more control over her utility than the low

type, in the sense that random payoff for any fixed action has a higher variance in the

high state than in the low one. Then, for most realizations of the utility function, the

agent’s choice has a larger impact on her payoff in the high state than in the low one. We

1See Cover and Thomas (2006) for introductory reading on lossy data compression.
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show that, under this assumption, an overvaluation of the objective probability p leads to

a smaller loss than an undervaluation of the same magnitude.

The intuition is as follows. A misperception of the objective probability p for a sub-

jective probability q leads to a loss only in those decision problems in which the optimal

actions at p and q differ. Thus, the loss arises if and only if the agent is indifferent between

the two actions at some intermediate probability s in-between p and q. When an agent’s

high type has more control than the low type, a tie between the two actions is less likely

to arise in an upper neighborhood of the objective probability p than in the lower neigh-

borhood of p of the same magnitude, because the random expected payoff for any given

action at probability p has a more spread-out density for higher values of the probability

p. Hence, the upward error is less often consequential than its downward counterpart.

Therefore, overvaluing one’s control over one’s own well-being leads to a smaller loss

than undervaluing one’s control. When errorless perception is infeasible, optimization over

the distributions of the perception errors leads to a second-best stochastic perception that

is biased toward the state of the high control. The imperfect agent exhibits an illusion

of control.2 The effect generates further behavioral phenomena. We provide examples in

which the choice of highly talented or well-informed people has a larger impact on their

well-being than the choice of less talented or less well-informed people, and show that an

overconfidence bias is optimal in these cases when perfect perception is infeasible. The

illusion of control can also generate optimism. An optimizing agent benefits from a high

spread of the payoffs to the available actions, and hence (under additional conditions) the

bias toward the high-control state coincides with the bias toward the state in which the

optimizing agent fares better.

Although cognition constraints are uncontroversial, little is known about their exact

form. We examine three variants of the perception problem that differ in the set of

the feasible stochastic perception strategies. In the first and simplest version, the agent

observes the true probability p of the high state, chooses to memorize a probability m,

and recalls probability q = m+ε, where ε is a small additive error of zero mean. We show

that when the agent has more control in the high state than in the low one, the optimal

perception strategy is biased upwards. In this case, the agent memorizes a probability m

that exceeds the true probability p, and the recalled probability q exceeds p on average

2Illusion of control refers to the overestimation of one’s ability to impact one’s own well-being. As an
extreme example, casino visitors may overestimate the relevance of their choices over equivalent lotteries.
The term was introduced by Langer (1975).
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across the error ε. The agent in this setting is naive in the sense that she does not form

Bayesian posteriors about the objective probability p upon recalling q; instead, she treats

the subjective probability q as if it were accurate. Such a model can capture an agent who

makes mistakes in evaluating the available evidence and arrives at a perturbed posterior

q instead of forming the correct posterior p. The optimal perception strategy optimizes

the distribution of the updating errors.

In the second version of the perception problem, we consider a sophisticated agent who

loses information during the decision process but rationally utilizes all the information

she retains. The agent has a binary memory and thus forms a binary partition of the

probability interval, remembers the cell of the partition into which the objective probability

p belongs, and forms a Bayesian posterior about p at the decision stage. We show that, if

the prior density of p is symmetric around 1/2 and the agent has more control in the high

state than in the low one, then the upper cell of the optimal partition is larger than the

lower cell. Thus, the agent is more likely to hold a belief that attaches a high probability

to the high type than a belief favoring the low type.

Our third specification of the perception problem generalizes and unifies the previous

two settings. We assume that the agent chooses from a set of available stochastic percep-

tions, where each such perception is a random variable. The agent observes the objective

probability p, chooses a stochastic perception of the probability p from the available set,

forgets p, and forms a perception equal to the realization of the chosen random variable.

The perception problem is to optimize over the perception strategies that map from p

to the set of stochastic perceptions. We assume that the menu of available stochastic

perceptions is ordered with respect to first-order stochastic dominance and that the agent

has more control in the high state than in the low one.

We compare solutions of two perception problems, both of which share the same menu

of the stochastic perceptions but differ in the loss functions. In the precision maximiza-

tion problem, the agent minimizes the mean-square error of her perception. In the payoff

maximization problem, the agent minimizes the welfare loss. We use minimization of

mean-square error as a benchmark because it is a widespread criterion in statistics and

in information theory, even though it ignores asymmetries of the welfare losses from mis-

perceptions. Comparison of the two solutions isolates the impact of the asymmetries on

the payoff-maximizing perception. We show that, compared to the precision-maximizing

benchmark, the payoff-maximizing strategy is biased upwards: the payoff-maximizing per-
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ception at each objective probability p stochastically dominates the precision-maximizing

perception. Thus, an outsider observing the joint density of the objective and subjective

probabilities and who conjectures that the agent is maximizing precision will conclude

that the agent is biased toward the high control state.

As a technical contribution, we provide a simple and intuitive formula that, for a given

distribution of the utility functions, characterizes the loss from misperceiving the objective

probability p as q. This characterization shows that the loss function can be expressed

as an integral formula that depends only on the value function. The value function, for

each probability p of the high state, specifies the payoff of the optimizing agent who

has correct perception, averaged out across all the decision problems in her environment.

The value function has a simple analytical form when the utility function has a Gaussian

distribution, and hence we focus on the Gaussian payoffs in most of the paper. We obtain

the asymmetry of the loss function and the bias of the optimal perception in settings in

which (i) the payoff for each action consists of two additive terms, and (ii) one of the terms

has a relatively higher weight for the agent’s high type than for the low type. We extend

the results beyond the Gaussian payoff distributions in the last section of the paper.

Rate-distortion theory is a branch of information theory originated by Shannon (1948,

1959). It studies optimal communication via a noisy channel. One of the primitives

of the theory is an exogenous map that specifies a loss to each input and output of the

communication. A popular loss function is the square error. In our paper, the loss function

is derived from the agent’s environment and is equal to the average welfare loss caused by

the distortion.3

Once we establish the relevant loss function, we let the agent engage in optimal error

management: she avoids the costlier types of the errors. Beyond information theory,

the idea of error management has been studied in several scientific disciplines such as

biology and psychology. In Haselton and Buss (2000), males’ interpretation of females’

sexual interest is biased toward false-positives because false-negatives have a larger fitness

cost. Nettle (2004) provides a foundation for optimism by arguing for asymmetry of the

optimistic and pessimistic error costs. See Johnson et al. (2013) for an interdisciplinary

literature review. We contribute to this literature a formal characterization of loss from

misperception based on a statistical description of the agent’s environment.

Sims (1998, 2003) has introduced information capacity constraints to economics. The

3An appropriate definition of the loss function is a nontrivial and important part of the data compression
problem. See the discussion of the loss function for compression of images in Wang et al. (2004).
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subsequent literature on rational inattention studies the information acquisition and pro-

cessing of an agent who, as in our model, is unsure about a payoff-relevant parameter but

who, unlike our agent, knows her payoff function. In that setting (assuming signal cost

is nondecreasing in Blackwell informativeness), the agent acquires only an action recom-

mendation and no additional information beyond that needed for choice. In our model,

the agent does not know her payoff function when she processes information and thus

forms beliefs beyond those needed for the mere action choice in any given problem. The

resulting optimal information structure can then be naturally interpreted as a perception

of the payoff parameter.4

Our assumption that the perception strategy is optimized across many decision prob-

lems has appeared in the literature on the evolution of the utility functions. This literature

studies performance of decision processes across a distribution of the fitness rewards to the

available actions. Depending on the constraints assumed, the optimal decision criterion is

either the expected utility maximization, as in Robson (2001), or its behavioral variants,

as in Rayo and Becker (2007) and Netzer (2009). (See Robson and Samuelson (2010) for

a literature review.) Most of this literature focuses on choice under certainty. Two excep-

tions who, like us, focus on the probability perception are Herold and Netzer (2010), who

propose that biases in probability perception serve as a correction of another behavioral

distortion; and Compte and Postlewaite (2012), who conclude that an agent with limited

memory benefits from ignoring weakly informative signals.

We contribute to the branch of the bounded rationality literature that emphasizes lim-

ited memory. Mullainathan (2002) studies behavioral implications of exogenous imperfect

memory usage. Like us, Dow (1991) and Wilson (2014) study behavioral implications of

an agent who optimizes her usage of limited memory, but they examine effects that are

different from ours. In his survey, Lipman (1995) focuses on memory-related frictions.

This paper adapts the framework from Steiner and Stewart (2016) to new behavioral

phenomena. A subtle but important difference in settings between the two papers is that

Steiner and Stewart analyze perception of a probability that idiosyncratically affects the

payoff to only one action, whereas this paper studies perception of a probability that affects

payoffs to all actions. Because of this difference, the two papers arrive at opposite results.

Steiner and Stewart derive the optimal overvaluation of small probabilities and offer an

explanation for prospect-theory probability weighting. This paper, on the other hand,

4Within the rational inattention literature, Woodford (2012a,b) studies behavioral biases resulting from
perception frictions; in these studies he assumes the mean square error loss criterion.

6



shows that the agent is overconfident about the precision of her belief and thus undervalues

small probabilities attached to unlikely outcomes; it thus provides a microfoundation for

the illusion of control and for overconfidence. In addition to the new application, the

current paper makes a technical advance. The loss characterization based on the value

function is novel and allows us to solve settings with large action sets.

Overconfidence, optimism, and other perception biases impact choices in personal,

economic and political life.5 In Brunnermeier and Parker (2005), overconfidence bias

arises because people derive hedonic payoffs from positive beliefs; in Bénabou and Tirole

(2002) confidence helps to resolve an intrapersonal conflict caused by time-inconsistent

preferences, while in Compte and Postlewaite (2004), confidence is an explicit production

factor. Johnson and Fowler (2011) show that overconfidence provides a strategic advantage

in a conflict. In our model, confidence has no intrinsic value and is a feature of the least

costly feasible distribution of the perception errors.

2 Loss from Misperception

An agent faces a randomly drawn decision problem. She chooses an action a ∈ A =

{1, . . . , n}, n ≥ 2, and receives payoff u(a, θ) where θ ∈ {l, h} is a payoff state. (Below we

use the terms payoff state and payoff type interchangeably.) The agent’s perception of the

probability distribution over θ is imperfect. Correspondingly, we distinguish between an

objective probability p and a subjective probability q of the state h. The objective and

subjective probabilities of the state l are 1− p and 1− q respectively. The expected payoff

for action a under the probability p is u(a, p) = pu(a, h) + (1− p)u(a, l).

We study a two-stage decision process in which a perception stage is followed by a

choice stage. In the choice stage, the agent knows the realized payoff function u, mistakenly

perceives the true probability p as q, chooses an action

a∗q,u = argmax
a∈A

u(a, q)

that maximizes her perceived payoff, and receives the true payoff u
(
a∗q,u, p

)
.6

The decision problem is uncertain in the preceding perception stage. Accordingly,

5See empirical evidence for each of these domains in Puri and Robinson (2007), Hirshleifer (2001), and
Ortoleva and Snowberg (2015).

6In our framework, the maximizer is unique with probability one. We therefore ignore cases with
multiple optima.
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u =
(
u(a, θ)

)
a,θ

and p are random variables with supports R2n and [0, 1], respectively,

both admitting atomless density; u and p are independent. We let

V (p, q) = Eu u
(
a∗q,u, p

)
denote the payoff of the optimizing agent who misperceives the objective probability p as

q, averaged out across the draws of the payoff function u.

Later in the paper, we optimize across the distributions of the perception errors. For

that reason, we need to compare losses from misperception across various perceived prob-

abilities q. Let the value function v(p) = V (p, p) denote the expected payoff of the opti-

mizing agent who perceives the objective probability p correctly, and let

L(p, q) = v(p)− V (p, q)

be the expected loss due to misperceiving the true probability p as q.

Our aim is to characterize how the distribution of the payoffs u translates into the

loss function L. To start, the next section reviews three examples that share a particular

property of the payoff distribution. In all of them, for typical draws of u, the choice of

the agent in the high state has more impact on her well-being than her choice in the low

state. We show that for such payoff distributions, a downward perception error is costlier

than an upward error of the same magnitude.

2.1 Applications

Example 1 (overconfidence). In this application, the agent is uncertain about her talent,

and the choices of highly talented individuals have on average more impact on their well-

being than the choices of the less talented.

The agent chooses one out of n projects. Project a ∈ {1, . . . , n} yields a payoff u(a, θ) =

τθba − ca, where ca is the participation cost, τθ > 0 is the agent’s talent in state θ, and

ba is the talent-unadjusted benefit of participating in project a. At the choice stage, the

agent observes the 2n parameters (ba, ca)a, attributes probability q to the high state, and

chooses the project that maximizes u(a, q) = qu(a, h) + (1− q)u(a, l). The parameters ba

and ca are independently drawn from a normal distribution at the ex ante stage.

We assume that τh > τl. Thus, for high types in comparison to low ones, benefit
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parameters ba are relatively more important than the costs ca.
7 Misperception of talent

leads to misinformed choice and a loss for some realizations of the projects’ parameters.

We show below that the loss function is asymmetric in favor of the upward errors. Once

we introduce optimization over the error distributions, this asymmetry will imply that

when some misperception is unavoidable, the optimal perception exhibits overconfidence.

Example 2 (overprecision). In this example, the agent bets on an event. The agent may

be either well informed or less informed about the event. On average, the better informed

type of the agent faces larger payoff differences among the available bets than the less

informed one.

The agent chooses one out of n binary bets. Bet a ∈ {1, . . . , n} pays reward raγ in

outcome γ ∈ {t, d}, and the probabilities of the outcomes t and d in state θ ∈ {h, l} are πθ

and 1− πθ, respectively. Thus, the value of bet a in state θ is u(a, θ) = πθr
a
t + (1− πθ)r

a
d .

The agent observes the 2n realized rewards
(
raγ
)
a,γ

at the choice stage. She is uncertain

about the state θ, and thus faces compound lotteries. The agent attributes probability q

to state h and chooses the project that maximizes u(a, q) = qu(a, h) + (1 − q)u(a, l). All

rewards raγ are iid. from a normal distribution at the ex ante stage.

We assume that πh > πl > 1/2 to reflect the fact the agent is more informed about the

outcome of the bet in the high state than in the low one.8 Misperception of θ leads to a

mistaken belief about the outcome of the bet and to a suboptimal choice. We show below

that being underconfident about one’s own knowledge of the payoff-relevant outcome is

relatively costlier than the opposite error and that the second-best perception strategy

exhibits overprecision.9

Example 3 (illusion of control). In this example, the two states differ in the predictability

of the payoff consequences of the agent’s choice. The payoffs are more predictable in the

high state than in the low one, and the agent’s choice has on average more impact on her

expected utility in the high state than in the low one.

The agent’s payoff for action a ∈ {1, . . . , n} is ea + la, where ea is a predictable payoff

term (capturing, for instance, the predictable benefit of effort) and la is a luck term. At

the choice stage, the agent observes, for each a, the predictable term ea and a noisy signal

7The optimal perception bias would be the same if we would assume that (i) both types receive the
same participation benefits and (ii) the participation cost of the high types is larger than that of the low
types, reflecting higher opportunity costs.

8The result is identical if πh < πl < 1/2.
9We follow here the terminology from Moore and Healy (2008), who refer to overvaluation of one’s

performance as “overconfidence” and overvaluation of the precision of one’s belief as “overprecision”.
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xa = la+εa about the luck term, but not la itself. The luck terms la are drawn fromN (y, 1)

and the errors εa from N (0, 1/γθ), where precision γθ represents the predictability of luck

in state θ ∈ {l, h}. Thus, the expectation over the luck term la upon observing signal xa in

the state θ is y+γθxa

1+γθ
, and the expected payoff for action a in state θ is u(a, θ) = ea+

y+γθxa

1+γθ
.

The agent observes the 2n parameters (ea, xa)a at the choice stage, attributes probability

q to state h, and chooses the action that maximizes u(a, q) = qu(a, h)+(1− q)u(a, l). The

terms ea are independently drawn from a normal distribution at the ex ante stage.

We assume γh > γl to express that luck is less predictable in the low state than in the

high state. Misperception of p distorts the weight that the agent assigns to the signal xa,

and thus it distorts choice. We show that, again, the loss function is asymmetric in favor

of the upward errors and the second-best perception strategy overestimates predictability

of the payoffs, and thus also overestimates the impact of the agent’s choice.

Proposition 1. In all three examples, the downward perception error is costlier than the

upward error of the same magnitude:

L(p, p− σ) > L(p, p+ σ),

for any σ ∈ (0, 1/2) and p ∈ [σ, 1− σ].

The proposition follows from a general result in Corollary 1.

2.2 Intuition

Misperception of probability p as q causes a loss only when the optimal actions under the

two probabilities differ: a∗p,u ̸= a∗q,u. In this case, there exists a probability s in-between p

and q such that at s, the agent is indifferent between a∗p,u and a∗q,u. Thus, misperception of

p as q is costly for those draws of the payoffs u under which a tie arises in-between p and

q. In all three examples, the variance of the payoff u(a, p) is increasing in p. In the first

example, this is because the high talent magnifies the variance of the benefit parameter

ba. In the second example, the variance of the bet value πrat + (1− π)rad is π2 + (1− π)2,

which increases with π on (1/2, 1). Thus, the more the agent knows about the outcome of

the bet, the larger the payoff differences between the bet values tend to be. In the third

example, the payoff consequences of each action are more predictable in the high state

than in the low one, and thus the expected payoff differences are typically larger in the

high state.
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Larger values of the variance of u(a, s) correspond to lower likelihoods of a tie between

two actions at probability s. Consider these two subjective perceptions: q = p + σ and

q = p − σ. Due to the decreasing payoff variance, a tie is less likely to arise at some

s in (p, p + σ) than for s ∈ (p − σ, p). Therefore, the upward perception error leads

to a loss less often than the downward error of the same magnitude. The next section

completes the above argument by incorporating into the computation the size of the loss

from misperception alongside the probability of the loss.

The technical property unifying all three examples is that the payoff function can be

decomposed as

u(a, θ) = ua + τθηa, (1)

where ua and ηa are independent random variables, iid. across the actions, and τh > τl > 0;

see the appendix for this decomposition. When these conditions hold, we say that the agent

has more control (over her payoff) in the high state than in the low one.

3 Loss Characterization

Recall that v(p) = Eumaxa u (a, p) is the value of the optimizing agent with the correct

perception, averaged out across the draws of the payoffs. Our main technical insight

characterizes the loss function in terms of the value function.

Lemma 1. The expected payoff loss due to misperceiving the probability p as q is

L(p, q) =

∫ q

p
v′′(s)(s− p)ds. (2)

We illustrate Lemma 1 in Figure 1. The left graph depicts functions u(a, p) for all

actions a under a particular realization of the payoffs u. The agent with perception q

chooses the action associated with the full line, whereas the optimal choice at the objective

probability p is the action associated with the dotted line, which implies the loss L(p, q;u).

When we let v(p;u) = maxa u(a, p), the loss is the error of the linear approximation of the

realized value function v(p;u) when it is approximated at q. The right graph depicts the

expected loss as the error of the linear approximation of the expected value function.

Proof of Lemma 1. Note that v(p) = maxq V (p, q) = V (p, p). Applying the envelope

theorem to

V (p, q) = Eu

[
(1− p)u

(
a∗q,u, l

)
+ pu

(
a∗q,u, h

)]
11



Figure 1: Left graph: loss from misperceiving p as q for a realized utility function. Right
graph: Ex ante expected loss from misperceiving p as q.

gives

v′(p) =
∂

∂p
V (p, q)

∣∣∣∣
q=p

= Eu

[
u(a∗p,u, h)− u(a∗p,u, l)

]
. (3)

Using the linearity of the expected payoff with respect to probability and (3), we obtain

V (p, q) = v(q)− v′(q)(q − p),

and thus,

L(p, q) = v(p)− V (p, q) = v(p)− v(q) + v′(q)(q − p)

is the error of the linear approximation of the value function v(p) when it is approximated

at q. Expression (2) follows once we integrate by parts:

∫ q

p
v′′(s)(s− p)ds =

∫ q

p
v′(s)ds−

[
(v′(q)− v′(s))(s− p)

]q
p
= L(p, q).

3.1 The role of v′′

The second derivative of the value function plays a central role in our analysis. We offer

intuitive explanations of how v′′ is related to losses and to the likelihood of suboptimal

choices.

Consider an agent with a prior belief p who receives a weakly informative signal upon

which she updates her belief to π in a neighborhood of p. When the Bayesian constraint

Eπ = p and the second-order Taylor expansion are used, the value of the received infor-
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mation is

E v(π)− v(p) ≈ v′′(p)V ar(π)/2, (4)

where the information value results from the action adjustment to the updated belief.

We point out a geometric representation of the loss from a small misperception that

highlights the fact that the loss arises due to distortion of choice. Notice in the left graph

of Figure 1 that when the realized value function v(·;u) is linear in the neighborhood of p,

the optimal action is identical for all the probabilities near p; hence, a small misperception

is inconsequential. A small misperception of the true probability p leads to a loss only if

the realized value function exhibits a kink in a neighborhood of p where the kink represents

an action reversal.

Now consider potentially large perception errors. L(p, q;u) is positive when the optimal

choices at p and q differ, and hence the loss is positive when the agent is indifferent between

the first-best and the second-best action at some s between p and q. Figure 1 illustrates

a situation in which such indifference arises at two values s and s′ between p and q. The

figure shows that, in this case, the loss L(p, q;u) is the sum of two parts, Ls and Ls′ , where

each of these loss contributions is identified with a tie arising at probabilities s and s′. The

ex ante expected loss L(p, q) can thus be expressed as an integral
∫ q
p w(s)(s− p)ds, where

the weight w(s) captures the likelihood of the tie at s and the angle of the intersection of

the graphs of u(a, p) for the two best actions at s. According to the lemma, the weight

w(s) equals the second derivative of the value function. Indeed, v′(p;u) differs across the

left and the right neighborhoods of s if and only if there is a tie at s. Thus, v′′(s) is

the likelihood of the tie among the two best actions at s, modified by the angle of the

intersection. We formalize this idea in Lemma 4 in section 6.

3.2 Gaussian Payoff Distributions

We show here that the value function has a simple analytical form and the loss character-

ization becomes tractable when the payoff distribution is Gaussian. We address general

distributions in section 6.

We assume in this section that the draws of the payoff values are independent across

the actions a; however, for each a, we allow for a correlation of the payoffs u(a, l) and

u(a, h) across the two states. The payoff pair (u(a, l), u(a, h)) is drawn from a bivariate

normal distribution N (µ,Σ), where µ = (µl, µh) is the vector of means and Σ =
(
Σθ,θ′

)
θ,θ′
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is the covariance matrix. The covariance allows us to accommodate applications in which

the payoffs in the two states are generated by related processes, making the misperceptions

natural.

The value function for the Gaussian setting is

v(p) = (1− p)µl + pµh + c
√

(1− p)2Σll + 2p(1− p)Σlh + p2Σhh, (5)

where the constant c > 0 is the expectation of the maximum of n independent draws

from the standard normal distribution. To see this, note that the payoffs u(a, p) are

iid. from N
(
(1− p)µl + pµh, (1− p)2Σll + 2p(1− p)Σlh + p2Σhh

)
. Result (5) then follows

from the scale and translation invariances of the normal distribution: the expectation of

the maximum of n iid. draws from N (ν, ω2) is ν+cω. The explicit expression for the value

function allows us to characterize the loss function in any Gaussian setting. We focus on

the settings in which the agent has more control (over her payoff) in the high state than

in the low one; see (1).

When the agent has more control in the high state than in the low one, ties are

relatively likely at low probabilities p. Hence, a small misperception of low probabilities

leads relatively often to a choice distortion, and to a relatively large welfare loss.

Lemma 2. If the agent has more control in the high state than in the low one and the

payoffs are normally distributed, then v′′(p) is decreasing.

The next corollary follows from Lemmas 1 and 2. It summarizes the results so far and

applies to all examples in section 2.1.

Corollary 1 (asymmetric losses). If the agent has more control in the high state than in

the low one and the payoffs are normally distributed, then a downward perception error is

costlier than an upward error of the same magnitude: L(p, p − σ) > L(p, p + σ), for any

σ ∈ (0, 1/2) and all p ∈ [σ, 1− σ].

4 Second-Best Perception

The first-best perception strategy—maximizing the expected payoff—sets q = p for all p.

We assume that perception is constrained to be noisy and we study second-best perception

strategies.

14



We consider three specifications of the perception problem that differ in the constraints

on the design of the decision process. We view the first specification as the simplest setting

that allows us to discuss the second-best perception. The second setting relaxes the agent’s

naiveté and the third setting generalizes and unifies.

4.1 A Naive Perception Problem

To model the noise, a perception strategy associates to each objective probability p a

distribution over the subjective perceptions q. In this section, a strategy assigns a stimulus

m(p) to each objective probability p ∈ [0, 1], and a stimulus m triggers a perception q =

m+ε, where ε is a binary random variable taking values σ and −σ with equal probabilities,

where σ ∈ (0, 1/2). Thus, a perception strategy is a map m : [0, 1] −→ [σ, 1− σ].10

A particular example of a perception strategy is the unbiased perception m(p) = p for

p ∈ [σ, 1 − σ]. This strategy does not exhibit a systematic error since E[q | p] = p for all

p ∈ [σ, 1 − σ]. The unbiased strategy is a benchmark to which we compare the optimal

perception strategy m∗(p) that solves a naive perception problem for each p,

m∗(p) ∈ arg min
m∈[σ,1−σ]

Eε L(p,m+ ε). (6)

Note that (6) is equivalent to payoff maximization.

We summarize the two-stage decision process as follows. The agent observes the objec-

tive probability p and memorizes a probability m(p) at the perception stage, where m(p)

is independent of the payoff function u. At the choice stage, the agent recalls probability

q = m(p) + ε (but does not recall p and ε), and chooses an optimal action a∗q,u under her

perception q and payoff u.

Lemma 1 yields a simple first-order condition.

Proposition 2. Let q = m∗(p) + ε be the stochastic perception under the perception

strategy solving the naive perception problem (6) when the true probability is p. If the

optimal stimulus m∗(p) is in (σ, 1− σ), then

Eε

[
v′′ (q) (q − p)

]
= 0. (7)

10The simple additive error specification is not well suited for modelling perception of probabilities near
the boundaries of the probability interval. See section 4.3 for a general perception technology that allows
for nonadditive errors and can naturally accommodate probabilities near 0 and 1. Here, we ensure that
every perception q is in the [0, 1] interval by restricting m to [σ, 1− σ].
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Consider a stimulus m ∈ [p − σ, p + σ].11 A marginal increase in m decreases the

perception error |m + ε − p| when ε = −σ, and increases it when ε = σ. A marginal

change of the perception q affects the agent’s payoff only if it affects her choice—that is,

when the tie arises in-between the first-best and the second-best action at q. The first-

order condition thus equalizes across the two perception errors the likelihood of the tie

at q = m + ε, adjusted for the angle of the intersection and multiplied by the size of the

misperception |q − p|.

When v′′(p) is monotone, the direction of the bias can be determined without fully

solving for the optimal perception.

Proposition 3. If v′′(p) is decreasing, then the perception strategy that solves the naive

perception problem (6) is biased upwards: m∗(p) > p and E[q | p] > p for all p ∈ (0, 1−σ).

The next result summarizes conditions on the decision problem that generate frequent

overestimation of the probability of the high-control state.

Corollary 2 (optimal illusion of control). If the agent has more control in the high state

than in the low one and the payoffs are normally distributed, then the perception strategy

that solves the naive perception problem (6) is biased upwards: m∗(p) > p and E[q | p] > p

for all p ∈ (0, 1− σ).

4.2 A Sophisticated Perception Problem

The agent from the previous section is naive in that she does not fully utilize the informa-

tion available to her at the choice stage. This section studies the sophisticated perception

strategies of an agent who loses some information during the decision process, but who is

then fully capable of utilizing the information retained until the choice.

Let M = {0, 1} be a binary message space. At the perception stage, the agent observes

p, and retains information about it according to a perception function m(p), m : [0, 1] −→

M . At the choice stage, the agent chooses an action knowing payoffs u = (u(a, θ))a,θ and

remembering the message m(p). Her behavior at this stage is therefore described by a

choice rule c : R2n ×M −→ A. The sophisticated perception problem is:

max
m(·),c(·,·)

Eu,p u
(
c
(
u,m(p)

)
, p
)
. (8)

11Stimulus m > p+ σ is dominated by m = p+ σ, and m < p− σ is dominated by m = p− σ.
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The next lemma states that the optimal perception function m(·) generates a binary

partition I(p∗) = {[0, p∗), [p∗, 1]} of the probability interval. The agent at the choice stage

remembers that p belongs to I ∈ I(p∗), forms a Bayesian posterior q = E[p | p ∈ I], and

chooses the optimal action a∗q,u under the posterior belief q.

Lemma 3. There exists p∗ such that m(p) is an indicator function of one of the two

intervals of the partition I(p∗) for almost all p; and c(u,m) = a∗q(m),u for almost all u,

where q(m) is the posterior belief E[p | m(p) = m].

Let us denote the density of p by φ and assume that it has support on [0, 1] and is

symmetric around half: φ(p) = φ(1− p) for all p ∈ [0, 1]. We interpret the symmetry as a

neutrality assumption abstracting from biases driven by an asymmetry of the prior φ.

Denote the two Bayesian posteriors by q(p∗) = E [p | p < p∗], and q(p∗) = E [p | p ≥ p∗].

Proposition 4 (sophisticated perception). If v′′(p) is decreasing, and φ(p) is symmetric

around 1/2, then the optimal threshold probability p∗ is less than 1/2 and the agent attains

the high posterior q (p∗) with a higher probability than the low posterior q (p∗).

As seen in the proof in the appendix, Proposition 4 holds under a weaker condition

on v′′(·), namely, when v′′(p) > v′′(1 − p) for all p ∈ [0, 1/2). This condition is satisfied

in any Gaussian setting in which Var u(a, h) > Var u(a, l); this inequality allows for any

covariance of u(a, l) and u(a, h), and thus relaxes the additive structure of the payoffs from

(1).

Let us summarize the results for the sophisticated perception.

Corollary 3. If the agent has more control in the high state than in the low state, the

payoffs are normally distributed, and φ(p) is symmetric around 1/2, then p∗ < 1/2 and

the agent attains the high posterior q (p∗) with a higher probability than the low posterior

q (p∗).

To obtain some intuition for the last result, recall from (4) that v′′(p) can be interpreted

as a local value of information. Decreasing v′′(p) implies that the local value of information

is higher in the lower half of the probability interval than in the upper one. The optimal

binary partition then discriminates between the probabilities in the lower half of the

probability interval at the expense of not distinguishing among the probabilities in the

upper half.
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The result of this section is related to the work by Menezes et al. (1980) on preferences

against increasing downside risk. The authors study preferences over wealth lotteries with

a common mean, and variances that differ in the size of the downside risk. They show that

agents with a positive third derivative of the utility function prefer a smaller downside risk.

If we interpret v(p) as a “utility” over p, then our agent has a negative third derivative and

thus prefers the “downside risk”—her optimal partition leads to a frequent but modest

upward update to q(p∗) and an infrequent but large update to q(p∗).12

4.3 A General Perception Problem

In this section, we generalize results on the perception biases while being as agnostic as

possible on the perception technology. Our aim is to define perception biases in a general

framework and to clarify the observable predictions of the model.

To that end, we take the perspective of an outsider who observes, for each value of

the objective probability p, the conditional density µ(q | p) of the perceived probabilities

q formed by the agent. We provide a definition of the perception bias that relies only on

the observed conditional densities and makes no assumptions about the agent’s perception

technology. We then extend the results from the previous sections and show that the opti-

mal perception is biased toward the high state if v′′(p) is decreasing and if the perception

technology satisfies a regularity condition.

The benchmark against which we define the perception bias is a statistician whose sole

goal is to maximize the precision of her perception, where precision is measured by the

inverse of the mean-square error. As the agent’s true objective is payoff maximization and

not precision maximization, the agent in general exhibits a different perception from that of

the statistician. Our goal is to characterize the difference between the optimal perception

strategies of the agent and that of the statistician because it reflects the asymmetries of

the loss function that are absent from the statistician’s objective.

The following setting generalizes the two previous perception technologies. The agent

observes the objective probability p and chooses a stochastic perception q ∈ Q, where q is

a random variable with support [0, 1]. For each p, the agent solves the general perception

problem

min
q∈Q

EL(p,q). (9)

The set Q of the feasible random perceptions q depends on the details of the perception

12We thank Collin Raymond for pointing this connection out to us.
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technology available to the agent. For instance, for the technology from section 4.1, the set

Q contains binary lotteries which attain values m+ σ and m− σ with equal probabilities.

For the technology from section 4.2, the set Q consists of two random variables with

degenerate distributions, one of which attains the value q(p∗) with certainty and the other

of which attains the value q(p∗). As in section 4.1, the set Q can be exogenous, or, as in

section 4.2, the set Q may be the outcome of an optimization process.

The outsider observes the conditional density µ(q | p) of the subjective probability q

for each objective probability p.13 When we let q(p) be a random variable with density

µ(q | p), the observed data reveal that the agent can implement any stochastic perception

q(p̂) for p̂ ∈ [0, 1]. Given an objective probability p, a statistician whose motive is to

maximize precision would choose the stochastic perception minimizing E(q − p)2. Thus,

under the outsider’s conjecture that the observed agent is such a statistician, each p ∈ [0, 1]

should belong to this set:

P ∗(p) = arg min
p̂∈[0,1]

E (q (p̂)− p)2 .

When p /∈ P ∗(p), the agent is revealed to be biased relative to the objective of precision

maximization. Unsurprisingly, when the actual objective is payoff maximization, the agent

will be typically biased. The next result provides conditions under which the revealed bias

will be in the upward direction.

Recall that a random variable with cdf.FX strictly stochastically dominates another

random variable with cdf.FY if FX(z) ≤ FY (z) for every z, and the inequality is strict for

some z.

Proposition 5. Assume that the set Q of the feasible perceptions is ordered with respect

to the strict stochastic dominance order, that v′′(p) is decreasing, and that q(p) solves the

problem (9). If the agent is revealed to be biased at p, that is, p /∈ P ∗(p), then supP ∗(p) < p

and q(p) strictly stochastically dominates q(p̂) for all p̂ ∈ P ∗(p).

The last result generalizes both Proposition 3 for the naive perception problem and

Proposition 4 for the sophisticated case. When the perception error is additive as in section

4.1, the precision-maximizing perception strategy is the unbiased one, and Proposition 3

establishes that the agent is revealed to be biased upwards.

13See, for instance, Wu and Gonzalez (1996) on the elicitation of such data.
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Let us verify that the proposition holds for the sophisticated perception from sec-

tion 4.2. We have found that, for a symmetric prior φ(p), the payoff-maximizing percep-

tion threshold is p∗ < 1/2. The symmetry of φ(p) implies that p∗ < (q(p∗)+ q(p∗))/2. For

any given pair of perception levels q < q, the precision-maximizing strategy partitions the

probability interval to [0, p∗∗], and (p∗∗, 1], with p∗∗ = (q+ q)/2. Thus, the two perception

strategies coincide for p ̸∈ (p∗, p∗∗) and differ for p ∈ (p∗, p∗∗). When p ∈ (p∗, p∗∗), the

payoff-maximizing agent forms perception q, while the precision-maximizing agent forms

q. Thus, the agent is again revealed to be upward-biased.

5 Related Perception Biases

This section clarifies the relationship of the illusion of control to two additional perception

biases.

5.1 Optimism

Psychologists classify the illusion of control together with optimism among so-called pos-

itive illusions (Taylor and Brown, 1988). Our model helps to clarify the relationship

between the two biases. Positive belief biases are often rationalized by assuming that the

agent derives felicity from holding favorable beliefs; for example, see Brunnermeier and

Parker (2005), Caplin and Leahy (2001), and Köszegi (2006). In contrast, the belief dis-

tortions are purely instrumental in our model; they guide choice. This section discusses

the conditions under which the instrumental bias of this paper leans in the direction of

optimism.

First, note that the optimal perception strategy in any of the perception problems of

section 4 is invariant to any action-independent modification of the payoffs: the solution

to a perception problem under stochastic payoffs u is also optimal under stochastic payoffs

ũ, where ũ(a, θ) = u(a, θ)+ cθ for all (a, θ), and cθ are action-independent constants. This

is so because the optimal perception depends only on v′′(p) whereas the constants cθ affect

the value function only by an additive linear term.

When we consider the naive perception technology from section 4.1, it is natural to

interpret the agent as optimistic when v(1) > v(0) and when the agent’s perception is

biased upwards in the sense that m∗(p) > p for all p ∈ (σ, 1 − σ). Note, however, that

the optimal perception bias is caused by the ranking of control across the states, rather
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than by optimism. Adding constants to payoffs in either the high or the low state affects

whether v(1) > v(0) or v(1) < v(0) but does not affect v′′ and hence does not affect the

optimal perception. Thus, the illusion of control does not generally entail optimism.

However, the illusion of control generates optimism under the additional assumption

that the average payoff in the high state is at least as large as in the low state.

Proposition 6 (optimism). If the agent has more control in the high state than in the

low one, her payoffs are normally distributed, and Eu u(a, h) ≥ Eu u(a, l), then the agent

is optimistic.

Consider the worst case in which the means of the payoffs at the low and the high state

are the same. The higher payoff variance in the high state implies that the optimizing

agent can achieve a higher value at h than at l. Thus, unless the payoffs in the high-control

state are predictably low, the illusion of control generates optimism.

5.2 Probability Weighting in Prospect Theory

Two well-known stylized phenomena, overconfidence and the prospect-theory probability

weighting, have opposite implications for the perception of small probabilities. Overcon-

fidence about one’s own knowledge implies an undervaluation of the small probabilities

attached to unlikely outcomes, whereas prospect-theory predicts an overvaluation of small

probabilities. Our model predicts both effects in two closely related settings and thus may

help to clarify the respective domains of the two effects.14

We compare two settings. One of them is Example 2 and the second is the setting

of Steiner and Stewart (2016). To facilitate the comparison, we describe both settings in

a unified way. In both cases, the agent evaluates binary lotteries. For a ∈ {1, . . . , n},

lottery ℓa = (rat , πθ; r
a
d , 1− πθ) pays reward raγ in outcome γ ∈ {t, d}. The rewards raγ are

iid. from the standard normal density and are observed by the agent at the choice stage.

The probability πθ of the outcome t is state-dependent, and 1/2 < πl < πh. (The result is

the same if πθ is below half in both states.)

1. Overprecision setting (example 2): The agent chooses one from n lotteries. The

lotteries differ in the rewards raγ but share the same probability parameter πθ;

u(a, θ) = πθr
a
t + (1− πθ)r

a
d for a ∈ {1, . . . , n}.

14The two phenomena were discussed by the same authors within a short period of time. Kahneman
and Tversky (1977) discuss overconfidence, and Kahneman and Tversky (1979) discuss the overvaluation
of small probabilities.
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Figure 2: Solid line: v′′(π) in the overprecision setting. Dashed line: v′′(π) in the
prospect-theory setting (s = 1.5).

2. Prospect-theory setting : The agent chooses lottery ℓ1 or a safe option that pays s

with certainty; a ∈ {1, 2}, u(1, θ) = πθr
1
t + (1− πθ)r

1
d and u(2, θ) = s.

In both settings, the agents solve the naive perception problem (6).

In the overprecision setting, all the lotteries are bets on the same event. The un-

certainty about π thus affects payoffs to all actions. In the prospect-theory setting, the

uncertainty affects only one action but not the agent’s outside option.

Let π(q) = πhq + πl(1− q) be the subjective probability that the agent assigns to the

likely outcome t; note that it is above one-half. We have shown in section 4.1 that the

agent’s perception q is biased upwards in the overprecision setting. Thus, the perceived

probability of the unlikely outcome d is biased downward; E[1 − π(q) | p] < 1 − π(p).

When the agent chooses from several binary bets on the same event, she underestimates

the small probabilities.

The effect is reversed in the prospect-theory setting.

Proposition 7 (Steiner and Stewart, 2016). If the outside option is s > 31/4, then the

perception strategy that solves the perception problem (6) in the prospect-theory setting

overvalues small probabilities: E[1− π(q) | p] > 1− π(p).

Steiner and Stewart interpret s as the maximum over the agent’s alternatives to the

lottery ℓ1. When the agent has sufficiently many alternatives, s is much more valuable

than a typical draw of the lottery, and thus s > 31/4 is satisfied. The agent overvalues

small probabilities that idiosyncratically affect the value of one of her actions but do not

affect the alternatives.

The difference in the optimal biases across the two settings is caused by the difference
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in the pattern of the ties. Abusing notation slightly, let v(π) be the value of the optimizing

agent who correctly perceives the probability π of the outcome t. Figure 2 depicts v′′(π)

in both settings. In the overprecision setting, a tie between the first-best and the second-

best action is likely when the lottery value rat π + rad(1 − π) has a low variance, which

happens when π is close to half; v′′(π) is single-peaked with its maximum at half for the

overprecision setting. In the prospect-theory setting, a tie between the lottery ℓ1 and

the high outside option s is likely when the lottery value r1t π + r1d(1 − π) has a high

variance, and hence v′′(π) is U-shaped in the prospect-theory setting. As the probability

π is bounded above half in both settings, v′′ exhibits opposite monotonicity across the two

cases. Consequently, the optimal perception strategies have the opposite biases.

Kominers et al. (2015) offer an alternative model of frictional information processing

and they too derive an optimal overvaluation of small probabilities. In their example 2, an

agent allocates her unit endowment to two assets, t and d. In our notation, the agent can

choose any lottery (rt, π; rd, 1− π) such that rt, rd ∈ [0, 1] and rt + rd = 1. The agent has

a logarithmic utility function, and thus her expected payoff from a lottery (rt, π; rd, 1−π)

is π log rt + (1− π) log rd. The optimal allocation for a given π is rt = π, rd = 1− π, and

therefore the value function of the optimizing agent with correct probability perception

is v(π) = π log π + (1 − π) log(1 − π). It is easy to verify that v′′ is U-shaped with the

minimum at half. Since v′′ has the same monotonicity properties as the value function

arising in the prospect-theory setting from above, the second-best perception biases in the

two settings have the same direction.

6 General Payoff Distributions

We assume here that the agent has more control in the high state than in the low one.

For the sake of simplicity, we consider only binary action sets in this section. That is,

u(a, θ) = ua + τθηa, τh > τl > 0, a ∈ {1, 2}. We dispense with the assumption of

Gaussian payoffs and provide sufficient conditions on general payoff distributions for the

monotonicity of v′′(p).

Let us introduce the differences δ = u2−u1, and η = η2− η1; we denote their densities

by f(δ) and ϕ(η). We allow for dependencies between u1 and u2 and between η1 and η2

but continue to assume that (u1, u2) and (η1, η2) are independent.

The next result formalizes the connection between the likelihood of the ties and the
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second derivative of the value function. A tie between the two actions arises at probability

p if and only if δ+ τ(p)η = 0, where τ(p) = τhp+ τl(1− p). Thus, the likelihood of the tie

at p is
∫∞
−∞ ϕ(η)f

(
− τ(p)η

)
dη. The next expression for v′′(p) augments the last integral

by a term capturing the angles of the intersections.

Lemma 4.

v′′(p) = (τh − τl)
2
∫ ∞

−∞
η2ϕ(η)f

(
− τ(p)η

)
dη. (10)

For each η, the term (τh − τl)
2 η2 =

(
u(2, l)− u(1, l) + u(1, h)− u(2, h)

)2
is the square

of the angle of the intersection of the graphs of the expected payoffs u(1, p) and u(2, p).

Thus, in line with the intuition from section 3, v′′(p) captures the likelihood of the tie at

p, modified for the sensitivity of the payoff difference to a variation in the belief p.

The last lemma allows us to establish the monotonicity of v′′(p) under a regularity con-

dition without computing v(p). Recall that a function is single-peaked with its maximum

at x if it is increasing below x and decreasing above x.

Lemma 5. If the agent has more control in the high state than in the low one and the

density f(δ) is single-peaked with its maximum at 0, then v′′(p) is decreasing on (0, 1).

The difference δ = u2 − u1 has a single-peaked density when u1 and u2 are drawn

iid. from many common densities, including the normal or Pareto densities. Additionally,

we provide a condition on the joint distribution of u1 and u2 that is sufficient for the

single-peakedness of f(δ). Recall that a function h : R2 −→ R is supermodular if for any

x, y, x′, y′ ∈ R4:

h
(
max{x, x′},max{y, y′}

)
+ h

(
min{x, x′},min{y, y′}

)
≥ h(x, y) + h(x′, y′).

Let g(u1, u2) denote the joint density of u1 and u2. We say that g is symmetric if

g(u1, u2) = g(u2, u1) for every (u1, u2).

Lemma 6. If g is symmetric and supermodular, then f(δ) is single-peaked with maximum

at 0.

The supermodularity assumption is related to the definition of affiliated random vari-

ables (Milgrom and Weber, 1982). The assumption generalizes the notion of positive

correlation between u1 and u2 and corresponds to situations that may arise when the two
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payoff terms u1 and u2 are generated by a common process.15

The following result concludes this section by summarizing conditions under which we

obtain overconfidence.

Corollary 4. If the agent has more control in the high state than in the low one and

the joint density g is both symmetric and supermodular, then v′′(p) is decreasing and the

solution of the naive perception problem (6) is biased upwards: m∗(p) > p and E[q | p] > p

for all p ∈ (σ, 1 − σ). If, additionally, φ(p) is symmetric around 1/2, then the threshold

probability p∗ that solves the sophisticated perception problem (8) is less than 1/2.

7 Discussion

The designer of the decision process and the agent from our model can be interpreted

in different ways. The designer may stand for the biological or cultural evolution of

information processing whereas the agent may represent the individual. Alternatively, the

model may be applied to the problem of the design and organization of a firm subject to

frictions in its internal communication.

The model may help to inform us of the relevant domains of common behavioral

phenomena. Though there is considerable consensus on both overconfidence and prospect-

theory probability weighting, these two phenomena make conflicting predictions for the

perception of small probabilities. A joint microfoundation may help to delineate this

aspect of the two phenomena.

Models that provide microfoundations for behavioral biases can contribute to norma-

tive discussions of debiasing. Our model suggests that a bias relative to the precision-

maximizing perception may be optimal and thus does not justify an intervention on its

own. On the other hand, the model may inform us of circumstances under which an in-

tervention into the decision process may be beneficial. A standard evolutionary argument

for interventions applies: the modern agent’s environment may differ from the one she is

adapted to. In our case, we have assumed that the utility function u and the probability

p are independent random variables. This is reasonable if the decision problem is gener-

ated by a nonstrategic process, but the independence assumption is violated in a market

environment in which the reward for and probability of an outcome of a financial bet are

typically negatively correlated.

15Random variables are affiliated if the logarithm of their joint density is supermodular. Our assumption
applies to the density instead of the log-density.
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The model suggests that an intervention may be justified even if the agent’s environ-

ment has not changed since adaptation took place. To see this, consider a stylized example

in which the intervening outsider knows more about the agent’s decision problem than the

perception designer has known. Assuming that the choices made by a healthy individual

have a larger impact on her well-being than the choices made by a sick individual in most

of the decision problems, the model predicts that health perception will be biased toward

the denial of sickness. The assumption, however, may fail for a finer classification of the

diseases. If some of the diseases are treatable by an appropriate action whereas some

are not treatable, then the individual suffering from a treatable disease has considerable

control over her well-being; the second-best perception should exhibit some hypochondria

in the domain of treatable diseases and denial in the domain of nontreatable diseases. If

the perception of one’s own health status has been designed under a coarse classification

of the diseases, whereas the intervening outsider distinguishes more finely between treat-

able and nontreatable diseases, then the outsider may call for an intervention even if the

distribution of the diseases has not changed. We hope to return to a systematic study of

the normative implications of the model in a future work.

A Proofs

Proof of Proposition 1 is below the proof of Lemma 2.

Proof of Lemma 2. Let ua ∼ N (µ, ω2) and ηa ∼ N (ν, ω′2). Then

u(a, p) ∼ N
(
µ+ τ(p)ν, ω2 + τ2(p)ω′2) ,

where τ(p) = (1−p)τl+pτh. Thus, v(p) = µ+τ(p)ν+cσ(p) where σ(p) =
√

ω2 + τ2(p)ω′2 is

the standard deviation of u(a, p). Observing that the linear term does not affect v′′(p), we

have that v′′(p) = cσ′′(p). Using the equality σ(p) =
√

c1 + c2p+ c3p2 for some constants

c1, c2, and c3, we obtain that

v′′(p) = c
d2

dp2

√
c1 + c2p+ c3p2 = c

−c22 + 4c1c3
4

σ−3(p).

Since the value function is the expectation over the upper envelopes of linear functions

and thus convex and since σ(p) is positive, it must be the case that c
−c22+4c1c3

4 is positive.

By the assumption that τh > τl, the function τ(p) and hence also σ(p) are increasing.
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Thus, v′′(p) is decreasing in p.

Proof of Proposition 1. Example 1 : Identification of −ca with ua and ba with ηa, respec-

tively, from (1) implies that the agent has more control in the high state than in the low

one.

Example 2 : Let ua = (rat + rad) /2, and let ηa = rat − rad ; notice that they are indepen-

dent. Then, u(a, θ) = ua + (πθ − 1/2)ηa. The assumption that πh > πl > 1/2 implies that

the agent has more control in the high state than in the low one.

Example 3 : Assume that the term ea is drawn from N (µ, ω2). Note that u(a, θ) ∼

N
(
µ+ y, ω2 +

γ2
θ (1+1/γθ)

(1+γθ)2

)
= N

(
µ+ y, ω2 + γθ

γθ+1

)
. Thus u(a, θ) equals in distribution

ua +
√

γθ
γθ+1ηa, where ua ∼ N

(
µ+ y, ω2

)
, ηa ∼ N (0, 1), and ua, ηa are independent. By

the assumed monotonicity we have γh > γl, it follows that
√

γh
γh+1 >

√
γl

γl+1 , and the agent

has more control in the high state than in the low one.

The result now follows for all three examples from Corollary 1.

Proof of Proposition 2. By Lemma 1,

Eε L(p,m+ ε) = Eε

[∫ m+ε

p
v′′(s)(s− p)ds

]
.

Since
d

dm
Eε

[∫ m+ε

p
v′′(s)(s− p)ds

]
= Eε

[
v′′(m+ ε)(m+ ε− p)

]
,

the first-order condition for the interior optimal m gives (7).

Proof of Proposition 3. By Lemma 1,

d

dm
Eε L(p,m+ ε) = Eε

[
v′′(m+ ε)(m+ ε− p)

]
.

Assume by contradiction that m ≤ p. Since v′′(p) is decreasing and m − σ − p < 0, we

have:

d

dm
Eε L(p,m+ ε) < Eε

[
v′′(m+ σ)(m+ ε− p)

]
= v′′(m+ σ)(m− p) ≤ 0.

Since the constraint m ≤ 1− σ is not binding, the established inequality, d
dm Eε L(p,m+

ε) < 0, violates the necessary first-order condition for the loss minimization.

Proof of Lemma 3. For any given m(·), the payoff optimization implies that c(u,m) =
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a∗q(m),u, where q(m) = E[p | m(p) = m]. For any two posteriors q < q, the difference

between the losses across the two posteriors is

L(p, q′)− L(p, q) =

∫ q′

q
v′′(s)(s− p)ds.

The last expression is linear in p, and therefore there exists p∗ ∈ [0, 1] such that the

posterior q is optimal below p∗ and q is optimal above p∗.

Proof of Proposition 4. We prove the statement of the proposition under the condition

v′′(p) > v′′(1− p) for all p < 1/2. (11)

The monotonicity of v′′(p) assumed in the proposition implies (11).

Recall that q(p∗) = E [p | p < p∗] and q(p∗) = E [p | p ≥ p∗]. Note that the symmetry

of the density of p implies q(p∗) < 1/2 < q(p∗) for any p∗ ∈ (0, 1). Define

q (p; p∗) =


q(p∗) if p ≥ p∗,

q(p∗) if p < p∗.

q(p, p∗) denotes the agent’s posterior when the objective probability is p and the threshold

probability is p∗.

We compare the payoff of the agent who uses the threshold p∗ with the payoff of an

agent who has only the prior information about p. By the symmetry of the prior density

of p, this last agent attaches probability E p = 1/2 to the high state and her expected

payoff is:

v (1/2) = Ep V (q (p; p∗) , 1/2) .

The expected payoff to the agent who observes whether p < p∗ or p ≥ p∗ is Ep v (q (p; p
∗))

and the optimal partition maximizes this value over p∗. We rewrite this objective function

as:

Ep v (q (p; p
∗)) = v (1/2) + Ep [v (q (p; p

∗))− v (1/2)]

= v (1/2) + Ep [v (q (p; p
∗))− V (q (p; p∗) , 1/2)]

= v (1/2) + Ep L (q (p; p∗) , 1/2) .
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0 1
s

hHs,p*L

hHs,p*L hHs,1-p*L

q(p∗)q(p∗)

Figure 3: p∗ < 1/2. Thick line: h(s, p∗). Dashed line: h(s, 1 − p∗) = h(1 − s, p∗). Note
that h(s, 1− p∗) ≤ h(s, p∗) for s ≤ 1/2.

Notice that Pr(p < p∗) = q(p∗)−1/2
q(p∗)−q(p∗) and Pr(p ≥ p∗) =

1/2−q(p∗)

q(p∗)−q(p∗) . Thus, the threshold

p∗ maximizes the objective

o (p∗) :=
q(p∗)− 1/2

q(p∗)− q(p∗)
L
(
q (p∗) , 1/2

)
+

1/2− q(p∗)

q(p∗)− q(p∗)
L (q (p∗) , 1/2) . (12)

Substituting (2) for L(q, 1/2) into (12) gives

o (p∗) =

∫ 1

0
v′′(s)h (s, p∗) ds,

where

h (s, p∗) =



0 if p < q(p∗),

q(p∗)−1/2
q(p∗)−q(p∗)

(
s− q (p∗)

)
if q(p∗) ≤ p < 1/2,

1/2−q(p∗)

q(p∗)−q(p∗) (q (p
∗)− s) if 1/2 ≤ p < q(p∗),

0 if p > q(p∗).

(13)

The function h(s, p∗) is continuous piecewise-linear in s, as depicted in figure 3.

Let us now prove that o(p∗) > o(1− p∗) when p∗ < 1/2. For such p∗, the symmetry of

the density of p implies that q(p∗) < 1− q(p∗). The definition (13) of h then implies

h(s, p∗) > h(1− s, p∗) for all p∗ < 1/2, s < 1/2. (14)

Note also that by the symmetry of φ(p), it follows that:

h(s, p∗) = h(1− s, 1− p∗) for all p∗, s ∈ (0, 1).
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We now obtain

o(p∗)− o(1− p∗) =

∫ 1

0
v′′(s) (h (s, p∗)− h (s, 1− p∗)) ds

=

∫ 1

0
v′′(s) (h (s, p∗)− h (1− s, p∗)) ds

=

∫ 1/2

0

(
v′′(s)− v′′(1− s)

) (
h (s, p∗)− h (1− s, p∗)

)
ds.

The first bracket in the last integral is positive by condition (11). When p∗ < 1/2, the

second bracket is positive by (14). We have thus established that p∗ > 1/2 cannot be

optimal. Hence, p∗ ≤ 1/2.

It remains for us to prove that p∗ ̸= 1/2. Let

w (p∗, ql, qh) =

∫ p∗

0
V (p, ql)φ(p)dp+

∫ 1

p∗
V (p, qh)φ(p)dp

stand for the expected payoff when the agent forms belief ql for p < p∗ and belief qh for

p ≥ p∗. The agent’s objective is Ep v (q (p; p
∗)) = w

(
p∗, q (p∗) , q (p∗)

)
. Notice that

d

dp∗
Ep v (q (p; p

∗)) = w1

(
p∗, q (p∗) , q (p∗)

)
= φ(p∗)

(
V
(
p∗, q (p∗)

)
− V (p∗, q (p∗))

)
= φ(p∗)

(
V
(
p∗, q (p∗)

)
− v(p∗)− V (p∗, q (p∗)) + v(p∗)

)
= φ(p∗)

(
L (p∗, q (p∗))− L

(
p∗, q (p∗)

))
,

where w1 in the first line stands for the partial derivative with respect to the first argument.

The first equality follows from the optimality of the Bayesian posteriors and from the

Envelope Theorem. Observe that, by the symmetry of φ, it follows that q(1/2) = 1 −

q(1/2). Thus,

d

dp∗
Ep v (q (p; p

∗))

∣∣∣∣
p∗=1/2

= φ (1/2)
(
L
(
1/2, 1− q (1/2)

)
− L

(
1/2, q (1/2)

))
= φ (1/2)

(∫ 1−q(1/2)

1/2
v′′(s)(s− 1/2)ds−

∫ q(1/2)

1/2
v′′(s)(s− 1/2)ds

)

= φ (1/2)

(∫ 1−q(1/2)

1/2

(
v′′(s)− v′′(1− s)

)
(s− 1/2)ds

)
,

and the last integral is negative by condition (11). Thus, p∗ = 1/2 cannot satisfy the
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first-order condition necessary for the optimum.

Proof of Proposition 5. We compare the solutions to two problems. Let Q∗ = {q(p) : p ∈

[0, 1]} be the set of the stochastic perceptions used by the agent. The payoff-maximizing

perception must solve

q(p) ∈ arg max
q∈Q∗

E [−L(p,q)] .

In contrast, the precision-maximizing perception solves

q̂(p) ∈ arg max
q∈Q∗

E
[
−L̂(p,q)

]
,

where

L̂(p, q) =
v′′(p)

2
(q − p)2 =

∫ q

p
v′′(p)(s− p)ds.

The expression L̂(p, q) differs from the square of the perception error only by the multi-

plicative factor v′′(p)/2, which does not affect the solution of the precision optimization.

First, note that the objective function −L(p, q) has increasing differences in (p, q).

Indeed, by Lemma 1,

−L(p, q′) + L(p, q) =

∫ q′

q
(p− s)v′′(s)ds,

which increases in p when q′ > q. Thus, the objective E [−L(p,q)] has increasing dif-

ferences (with q ordered by the stochastic dominance order). Therefore, by Theorem 1

in Van Zandt (2002), the payoff-maximizing perception q(p) is non decreasing in p with

respect to the stochastic order.

Further, note that the objective−L(p, q) has larger payoff differences than the objective

−L̂(p, q). Indeed, using Lemma 1,

−L(p, q′) + L(p, q)−
(
−L̂(p, q′) + L̂(p, q)

)
=

∫ q′

q
(s− p)

(
v′′(p)− v′′(s)

)
ds.

The last expression is positive if q′ > q because v′′ is decreasing. Thus, the objective

E [−L(p,q)] has larger payoff differences than E
[
−L̂(p,q)

]
. This means that, using ≻ to

denote the first-order stochastic dominance order, for any p and q′ ≻ q,

E
[
−L(p,q′)

]
− E [−L(p,q)] > E

[
−L̂(p,q′)

]
− E

[
−L̂(p,q)

]
.
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Therefore, by Theorem 1 in Van Zandt (2002), q(p) ≽ q̂(p) for all p and for all solutions

q(p) and q̂(p) of the two problems. Since, by assumption, q(p) does not solve the precision

optimization problem, it must be that q(p) ≻ q̂(p). Since q̂(p) ∈ Q∗, there exists p̂ ∈ [0, 1]

such that q̂(p) = q(p̂) and because q(p) is non decreasing, p̂ < p for all such p̂.

Proof of Proposition 6. It suffices to prove the proposition for the case Eu[u(a, h)] =

Eu[u(a, l)], because v(1) increases with an upward shift of the distribution of u(a, h).

More control in the high state implies that Varu[u(a, h)] > Varu[u(a, l)]. Together with

Eu[u(a, h)] = Eu[u(a, l)] and normality, this implies that the payoffs in the high state are a

mean-preserving spread of the payoffs in the low state. By convexity of the max function,

v(1) = Emax
a

{u(a, h)} > Emax
a

{u(a, l)} = v(0).

By Corollary 2, the optimal perception is biased upwards. Hence, the bias is optimistic.

Proposition 7 was proved in Steiner and Stewart (2016); see their Theorem 1. Here,

we briefly sketch the proof of the proposition using the analytical approach of this paper.

Let v(p) = Ert,rd max{π(p)rt + (1− π(p))rd, s}. By Proposition 3 (reversing the labels of

the states), it suffices to prove that v′′(p) is increasing. Since π(p) is a linear mapping that

attains values in (1/2, 1), it suffices to prove that ṽ′′(π) is increasing on (1/2, 1), where

ṽ(π) = Ert,rd max{πrt + (1− π)rd, s}. Observe that

ṽ′(π) = Ert,rd

[
(rt − rd) 1πrt+(1−π)rd≥s

]
.

where 1πrt+(1−π)rd≥s is 1 if πrt + (1 − π)rd ≥ s, and zero otherwise. One can verify

that ṽ′′(π) = λ(π)w(π), where w(π) is the likelihood of the tie πrt + (1 − π)rd = s, and

λ(π) = E
[
(rt − rd)

2 | πrt + (1− π)rd = s
]
. Steiner and Stewart (2016) provide explicit

forms of w(π) and λ(π) and prove that if s > 31/4 then λ(π)w(π) is increasing on (1/2, 1);

see their Lemma 2.

Proof of Lemma 4. Using insight (3) from the beginning of the proof of Lemma 1, it follows
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that:

v′(p) = Eu

[
u(a∗p,u, h)− u(a∗p,u, l)

]
= Eu

[
ua∗p,u + τhηa∗p,u − ua∗p,u − τlηa∗p,u

]
= (τh − τl) Eu ηa∗p,u . (15)

Recall that τ(p) = pτh + (1− p)τl. The agent chooses action 1 if −τ(p)η > δ, and chooses

action 2 if −τ(p)η < δ. Thus,

Eu ηa∗p,u =

∫
{(η1,η2,δ):−τ(p)η>δ}

η1f(δ)ϕ(η)dδdη1dη2 +

∫
{(η1,η2,δ):−τ(p)η<δ}

η2f(δ)ϕ(η)dδdη1dη2

=

∫
R2

ϕ(η)

(∫ −τ(p)η

−∞
η1f(δ)dδ +

∫ ∞

−τ(p)η
η2f(δ)dδ

)
dη1dη2,

and

d

dp
Eu ηa∗p,u =

∫
R2

ϕ(η)
(
− η1f

(
− τ(p)η

)
(τh − τl)η + η2f

(
− τ(p)η

)
(τh − τl)η

)
dη1dη2

= (τh − τl)

∫ ∞

−∞
ϕ(η)η2f

(
− τ(p)η

)
dη.

Substitution of the last line into (15) gives (10).

Proof of Lemma 5. The result follows from (10): it follows from τh > τl that τ(p) is

increasing in p, which implies that f
(
− τ(p)η

)
is decreasing in p for all p and η.

Proof of Lemma 6. The symmetry of g implies f(δ) = f(−δ) for all δ. Thus, for arbitrary

t ∈ R,

f(δ) =

∫ ∞

−∞
g(x+ t, x+ t+ |δ|)dx =

∫ ∞

−∞
g(x+ t, x+ t− |δ|)dx. (16)

Consider δ, δ′ such that |δ′| > |δ|, and let z = |δ′| − |δ| > 0. Using (16), we get:

2
(
f(δ)− f(δ′)

)
=

∫ ∞

−∞
g (u, u+ |δ|)+g (u− z, u− z − |δ|)−g

(
u, u− |δ′|

)
−g
(
u− z, u− z + |δ′|

)
du.

Since

u+ |δ| = u− z + |δ′| and u− |δ′| = u− z − |δ|,

the supermodularity of g implies that the last integrand is positive.
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Abstrakt 

Studujeme systematické chyby ve vnímání v rámci suboptimálních strategií vnímání. 

Ekonomický agent správně pozoruje parametr, který je relevantní pro mnoho jeho rozhodnutí, 

ale není schopen zapamatovat si veškeré informace do doby rozhodnutí. Konstruktér 

rozhodovacího procesu vybírá strategii vnímání, která determinuje chyby ve vnímání. Pakliže 

je ztráta informací nevyhnutelná z titulu omezeného vnímání, pak (při splnění dalších 

podmínek) optimální strategie vnímání obsahuje iluzi kontroly, přílišnou sebedůvěru a 

optimismus. 
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