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Constant Bet Size? Don't Bet on It! Testing

Expected Utility Theory on Betfair Data∗

Franti²ek Kop°iva†

CERGE�EI‡

Abstract

I analyze the risk preferences of bettors using data from the world's largest

betting exchange, Betfair. The assumption of a constant bet size, commonly

used in the current literature, leads to an unrealistic model of bettors' deci-

sion making as a choice between a high return - low variance and low return -

high variance bet, automatically implying risk-loving preferences of bettors.

However, the data show that bettors bet di�erent amounts on di�erent odds.

Thus, simply by introducing the computed average bet size at given odds I

transform the bettor's decision problem into a standard choice between low

return - low variance and high return - high variance bets, and I am able to

correctly estimate the risk attitudes of bettors. Results indicate that bettors

on Betfair are either risk neutral (tennis and soccer markets) or slightly risk

loving (horse racing market). I further use the information on the average bet

size to test the validity of Expected utility theory (EUT). The results suggest

that, when facing a number of outcomes with di�erent winning probabilities,

bettors tend to overweight small and underweight large di�erences in prob-

abilities, which is in direct contradiction to the linear probability weighting

function implied by EUT.
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Abstrakt

V £lánku se zabývám analýzou chování sázejících na nejv¥t²í online burze

sázek - Betfair. Cílem této analýzy je bliº²í pochopení jednoho ze základních

kamen· ekonomické teorie - rozhodování lidí v podmínkách nejistoty a jejich

p°ístup k riziku. Sázení je jednou z mála situací v reálném ºivot¥, které se

pro ov¥°ování r·zných teorií o chování lidí v rámci rizika a nejistoty p°ímo vy-

bízí. V²echny dosavadní studie na toto téma v²ak opomíjely jeden podstatný

fakt v rozhodování sázka°· - p°i výb¥ru sázky hraje významnou roli nejen

daný kurz, ale také vý²e sázky. Vyuºitím dat z online burzy sázek nejen o

výsledných kurzech na danou sázkovou p°íleºitost ale i o, z dat vypo£tených

pr·m¥rn¥, vsazených £ástkách, tato studie velmi významn¥ p°ispívá k analýze

chování v rámci rizika a nejisoty. Studie, za pouºití nov¥ navrºené metodolo-

gie, testuje platnost jednoho z hlavních p°edpoklad· EUT o racionálním p°ís-

tupu k pravd¥podobnostem. Moje výsledky nazna£ují, ºe sázka°i dávají p°i

rozhodování v rámci rizika malým rozdíl·m v pravd¥podobnostech blízko nule

vy²²í váhu neº £ist¥ racionáln¥ smý²lející £lov¥k a naopak velkým rozdíl·m v

pravd¥podobnostech výrazn¥ niº²í váhu neº £ist¥ racionáln¥ smý²lející £lov¥k.
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1 Introduction

Expected utility theory (EUT) is considered to be one of the keystones of mod-

ern economic theory, yet its validity has been challenged by a large number of

studies. The most prominent critique of EUT concerns the assumption that prob-

ability enters linearly into people's preferences over lotteries . As pointed out by

Tversky and Kahneman (1992), the impact of the probability on the preferences

over lotteries also depends on its distance from the so-called reference points -

certainty and impossibility. This notion became the building block of behavioral

theories1 of decision making under risk and uncertainty, and led to the introduction

of non-linear probability weighting functions.

A number of experiments document that behavioral theories are able to explain

decision making under risk and uncertainty remarkably better than can EUT. There

are, however, few empirical studies which assess the validity either of EUT or of

behavioral theories in real situations. An innovative strand of empirical literature

on this topic analyzes price data (odds) from betting markets2. These papers gen-

erally try to explain the existence of favorite-long shot bias3, where bets on low

probability outcomes of events have a lower expected return than bets on high

probability outcomes; an observation which is not consistent with standard EUT

under the classic risk-averse utility function assumption. To explain this inconsis-

tency, two lines of argument have been used - either positing a risk-loving utility

function under EUT, or introducing probability weighting functions in behavioral

theories (Snowberg and Wolfers 2010).

The main drawback of previous studies on betting markets is, however, the

1See for example Tversky and Kahneman (1992) - Cumulative prospect theory (CPT); and
Quiggin (1982)- Rank-dependent expected utility theory (RDEU).

2Weitzman (1965), Ali (1977), Kanto, Rosenqvist, and Suvas (1992), Hamid, Prakash, and
Smyser (1996), Golec and Tamarkin (1998), Jullien and Salanie (2000), Bradley (2003), Gandhi
(2008), Snowberg and Wolfers (2010).

3Favorite-long shot bias is one of the most prominent empirical regularities observed on betting
data and was �rst noted by Gri�th (1949) in horse racing betting markets.
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absence of data on bet size. With the exception of Bradley (2003), they all posit

an implicit assumption that bettors place the same amount of money on outcomes

with di�erent odds (i.e. that the bet size is constant irrespective of the probability of

the outcome). As discussed in the next section, if we allow bettors to bet di�erent

amounts on outcomes with di�erent odds, their decision problem is transformed

into a standard choice between low return - low variance and high return - high

variance bets. Thus, the existence of long shot bias can be consistent with the

standard risk-averse utility function under EUT, and need not resort to behavioral

theories for explanation.

I design a novel empirical test to assess the validity of EUT vs. behavioral

theories using information on how much bettors bet on di�erent outcomes of a

particular event. Further, applying data from the world's largest betting exchange,

Betfair, to a wide range of events (tennis, soccer and horse races), for which out-

comes span the whole range of winning probabilities, allows me to analyze decision

under risk and uncertainty under various scenarios. I draw conditioned subsamples

based on the occurrence of a favorite in the event (i.e. event with/without a clear

favorite),4 using odds as a proxy for the objective probabilities of winning. These

subsamples, and particularly the ratio of bets on di�erent outcomes among events,

provide rich information to test whether bettors weight probabilities linearly. As

the conditioned subsamples fundamentally di�er in their probability ranges of out-

comes, �nding substantial di�erences in how bettors assess the probabilities and

determine the ratio of bet sizes on di�erent outcomes in these conditioned sub-

samples strictly contradicts the linear probability weighting function assumption

in EUT.

The paper is structured as follows. Section 2 analyzes the implications of the

4Conditioning on races with high-probability winning horses was used �rst by Golec and
Tamarkin (1998) to address the problem of racetrack betting data, which consist of relatively
few favorites (high-probability results) compared to the number of underdogs.

4



constant bet size assumption; section 3 outlines the methodology and estimation

strategy. Data description is provided in section 4, section 5 presents and discusses

the results and section 6 concludes

2 Constant Bet Size Assumption

In recent years, the emergence of literature that analyzes the behavior of bettors

on betting markets has fostered great progress in the understanding of decision

making under risk and uncertainty. Early studies analyzing the risk preferences of

bettors treat all events (races) as identical, group them by di�erent characteristics,

e.g. by odds intervals or position of a horse in the race (see for example Ali

(1977) and Kanto, Rosenqvist, and Suvas (1992)), and conduct their analysis on

the aggregated values. A further advance in the �eld was introduced by Jullien and

Salanie (2000) who design a new methodology which does not require aggregation

because, as they argue, betting behavior may di�er with di�erent characteristics

of the particular horse race event. Given the limited availability of data, however,

these papers all rely on the assumption of a representative bettor and constant

bet size, i.e. they estimate the preferences of an average or marginal bettor who

is indi�erent about betting the same amount on di�erent outcomes of a particular

event. ?) relaxed this assumption by assuming a pool of heterogeneous agents who

di�er in their preferences over the horses. E�ectively, however, he estimates the

behavior of several marginal bettors who are indi�erent between betting on two

outcomes instead of betting on all outcomes.

The underlying assumption of the previous studies implies that, under EUT, a

marginal bettor facing an event with two outcomes is indi�erent between betting

on the favorite or on the underdog. Assume a horse race with just two horses, one

favorite with a probability of winning pF and decimal odds5 OF , and one underdog

5Bookmakers in Europe, the UK and the US have di�erent standards of displaying odds.
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with probability pU (pU = 1 − pF ) and odds OU , where pU < pF and OU > OF .

The marginal bettor bets a constant amount B (i.e., bet size is constant). Then,

the marginal bettor is indi�erent between betting on the favorite vs. betting on

the underdog if and only if

EUF = pFu(M + (OF − 1)B) + (1− pF )u(M −B) (1)

= u(M + (OU − 1)B) + (1− pU)u(M −B) = EUU

pFu(M + (Of − 1)B)− pUu(M + (OU − 1)B) = (pF − pU)u(M −B)

In the presence of long shot bias the return on the favorite is higher than that on

the underdog:

pF (M + (OF − 1)B) + (1− pF )(M −B) > pU(M + (OU − 1)B) + (1− pU)(M −B)

pF (M + (OF − 1)B)− pU(M + (OU − 1)B) > (pF − pU)(M −B) (2)

Without loss of generality we can assume that M −B = 0 and u(0) = 0. Thus,

u(M + (OU − 1)B)

u(M + (OF − 1)B)
=

pF
pU

>
(M + (OU − 1)B)

(M + (OF − 1)B)
(3)

As M +(OU −1)B > M +(OF −1)B, the utility function has to be convex at least

in some range of the interval (M +(OF − 1)B,M +(OU − 1)B) - i.e., the marginal

bettor has to exhibit risk-loving preferences.

Following the same line of thought, Snowberg and Wolfers (2010) point out that,

in the presence of long shot bias and without assuming a non-linear probability

weighting function, one has to allow for the risk-loving preferences of a marginal

Further in the text I use the European style of odds, also called decimal odds. Odds OE = 1.40
imply that the bet will bring payo� (OE−1)B = 0.40B if the outcome wins and −B if the outcome
loses. In the UK odds are usually displayed in the form OUK = x/y = 2/5 s.t. OE = (x+ y)/y.
In the US odds are displayed in the form +X or −X where the negative odds are for those bets
where the payo� is lower than the bet. In our case the US odds are OUS = −X = −250 ;
OE = 1 + 100/X if the US odds are negative and OE = 1 +X/100 if the US odds are positive.
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bettor under EUT. They recognize that using information on price data (odds)

alone for simple bets (e.g., a bet on the winner of a horse race) is not su�cient to

con�rm the validity of EUT vs. behavioral theories. Instead, they compare the price

data on simple bets - win bets and compound bets - exactas, trifectas and quinellas

(exotic bets on the order of the �rst two or three horses and on the two horses to

come �rst in the race in either order) and �nd evidence in favor of behavioral

theories. Therefore, they conclude that the long shot bias is mainly driven by the

misperception of probabilities rather than by the risk-loving preferences of rational

bettors.

Nevertheless, these previous studies lack important information, namely how

much people bet on di�erent outcomes with di�erent winning probabilities. The

only study to account for bet size in the analysis of bettors' behavior is Bradley

(2003). As he does not have data on bet size, he performs his analysis using the

imputed optimal bet size of a representative bettor. By assuming that the only

utility that a bettor has from a bet is derived from expected return and variance,

he computes the optimal bet as an argument for the maximum weighted expected

utility given the probabilities and odds. However, he still does not consider the

main reason for including bet size, namely how it changes the estimates of the

revealed risk preferences of the marginal bettor. If one allows the marginal bettor

to bet amount BF on the favorite and BU on the underdog, the above stated key

formula for identi�cation of his risk preferences changes to

EUF = pFu(M + (OF − 1)BF ) + (1− pF )u(M −BF )

= pUu(M + (OU − 1)BU) + (1− pU)u(M −BU) = EUU (4)

Let me de�ne the following function for the ensuing analysis

F(θ,BF , BU , pF , pU , OF , OU ,M) = EUF − EUU (5)
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where θ represents the risk preference parameter of the utility function. Contrary

to the previous case, conditional on the ratio of the average bet sizes on the two

outcomes, equation (4) may have no, one, or two solutions under standard util-

ity assumptions. Henceforward, all examples are produced under EUT with the

standard CARA utility function assumption u(x, θ) = (1 − e−θx)/θ, where θ > 0

corresponds to risk-averse preferences.6

In the �rst step, I focus on the analysis of the fair odds case (i.e., no long shot

bias present). Under EUT the risk-neutral bettor should be willing to bet any

amount of money, which is unrealistic. Therefore, it is more reasonable to de�ne

a risk-neutral bettor in terms of the bet size ratio as the limit case between a

risk-loving and risk-averse bettor (see Figure 1 below).

Figure 1: Bet size ratio with fair odds

Note: The �gure depicts the di�erence of expected utility of betting on the favorite
and betting on the underdog under fair odds, with the bet size on the favorite on
the horizontal axis, for di�erent risk aversity parameters θ of the CARA utility
function. The di�erence is illustrated in an example, where the probability of the
favorite winning is 90% and the probability of the underdog winning is 10%. The
arrows illustrate the shift towards less risk-averse values of parameter θ.

Mathematically, the risk-neutral bettor would choose, under fair odds, the ratio:

6One would get similar results with the standard CRRA utility function u(x, ρ) = x(1−ρ)/(1−
ρ).
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BF/BU = limθ→0(BF/B(U) such that F (θ, BF , B(U), . . .) = 0), with solution

BF/BU =
pF√

pF (1− pF )

/ pU√
pU(1− pU)

In the case with two outcomes, the previous expression boils down to

BF/BU = pF/pU as pF + pU = 1

In the example depicted in Figure 1, this corresponds to the BF = 90 (bet ratio

9:1). This analysis can be used to derive the risk preferences of the bettor from the

ratio of bets that I would observe in the data without long shot bias. In Figure 2,

I distinguish two possible cases of bet ratios BF/BU : 1.) BF/BU ≤ 1: This case

corresponds to the constant bet size assumption (thick line in Figure 2). In this

case, equation 4 has one closed solution in θ = 0 and one limit solution for θ → ∞.

However, the above analysis implies that the ratio of those bets consistent with the

behavior of a risk-neutral bettor is de�nitely higher than 1. Thus, I pick the limit

solution θ → ∞ as the correct one and interpret the risk preferences of the marginal

bettor who bets constant amounts on both outcomes as extremely risk averse.7 2.)

BF/BU > 1: In line with the previous argument, the risk preferences continuously

shift from extremely risk averse to extremely risk loving. Based on the bet size

ratio we can distinguish two cases: if the bet size ratio is lower than that chosen by

the risk-neutral bettor, then the marginal bettor is risk averse (Figure 2, dashed

line); whereas if the bet size ratio is higher, we can infer that the marginal bettor

has risk-loving preferences (Figure 2, dot-and-dashed line), with a risk-neutral ratio

of bets between them (Figure 2, thin line).

In the second step, the analysis is generalized for the presence of long shot bias.

7This behavior may also be interpreted as a decision to bet a certain amount of money but an
unwillingness to bet/lose any more money than that. Such behavior will be more consistent with
immense risk-averse preferences than with risk neutral preferences.
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Figure 2: Eliciting risk preferences from bet size ratio under fair odds

Note: The �gure depicts the di�erence of expected utility of betting on the favorite
and betting on the underdog under fair odds with the risk aversity parameter θ
of the CARA utility function on the horizontal axis, given the bet size on the
favorite and on the underdog. The di�erence is illustrated in an example, where
the probability of the favorite winning is 90%, and the probability of the underdog
winning is 10%.

Similar to the case with fair odds, the main assumption is that the ratio BF/BU

, consistent with the indi�erence of the marginal bettor, increases with decreasing

risk aversion. Thus, if I �nd a solution that does not satisfy this assumption I

consider it to be inconsistent.

As presented in Figure 3, there exists a range (θincmin, θ
inc
max) of risk parameter

theta, which corresponds to inconsistent solutions (roots) of equation 4.8 In this

range, the lower risk aversion is connected to lower bet size ratio, contradicting

the basic assumption. To better illustrate the inconsistency, Figure 4 depicts 6

lines corresponding with decreasing θ from strongly risk-averse (line 1) to strongly

8One can show that if equation 4 has one inconsistent solution, it has a consistent solution
(including the limit solution θ → ∞).
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Figure 3: Eliciting risk preferences from bet size ratio under long shot odds

Note: The �gure depicts the di�erence of expected utility of betting on the favorite
and betting on the underdog under long shot bias with the risk aversity parameter
θ of the CARA utility function on the horizontal axis, given the bet size on the
favorite and on the underdog. Long shot bias is present, i.e., odds on the favorite are
1.05 (with the probability of the favorite winning 90%), and odds on the underdog
are 7 (probability of winning 10%), leading to an expected return of -0.06% on the
favorite and -0.3% on the underdog.

risk-loving (line 6) preferences. Moving away from strongly risk-averse preferences,

the bet size ratio increases until it reaches its maximum (line 2), marked as ratio

max in the �gure for θ = θincmax (from the previous Figure 3).

Decreasing θ even further, the bet size ratio starts to decrease (lines 3, 4 and 5

in Figure 3.4). These lines correspond to inconsistent values of θ within the range

(θincmin, θ
inc
max). Finally, starting at θ

inc
min (representing risk-loving preferences), the bet

size ratio starts increasing again (θ < θincmin; line 6). At this point the bet size ratio

has reached its minimum for risk-loving preferences, marked as ratio min in Figure

4. For the ratio of bets between (ratio max; ratio min), no solution to equation 4

exists.
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Figure 4: Bet size ratio under long shot bias

Note: The �gure depicts the di�erence of expected utility of betting on the favorite
and betting on the underdog under long shot bias with the bet size on the favorite
on the horizontal axis, given the risk aversity parameter θ of the CARA utility
function. The di�erence is illustrated in an example, where the probability of the
favorite winning is 90% and the probability of the underdog winning is 10%. Lines
are numbered from most risk averse (1) to least risk averse/most risk loving (6).

It should be stressed that the solution for constant bet size lies within the range

of inconsistent solutions with θ < 0 (Figure 3, thick dark line). This has led authors

who held to the constant bet assumption to the erroneous conclusion that bettors

have to exhibit risk-loving preferences under EUT.

3 Methodology

The microstructure of Betfair as a typical betting exchange di�ers from the

classic betting markets, and in certain respects it is more like �nancial markets.

Every market on the exchange (for example the event on the winner of a horse

race) consists of several outcomes with ex-ante objective probabilities of happening

12



p1, . . . , pN . For every outcome of the event bettors have two options: To place a

bet that the outcome will happen - the back bet in Betfair terminology; or to place

a bet that the outcome will not happen - the lay bet. The Betfair betting exchange

is designed as an order-driven market where bettors can place either limit orders

or market orders. Market order means that the bettor just chooses a side (buy or

sell on classic markets, back or lay on Betfair), a particular outcome, and a bet

size. The bet is then matched at the best possible price available on the market.

Limit order means that the bettor is not satis�ed with any market odds available

at the moment and chooses not only the side, outcome, and volume, but also the

odds at which he is willing to bet. The bet then waits on the market until it is

matched by some other bettor. Therefore, when placing a limit order, the bettor

has to decide whether to place a back or lay bet and has to stipulate the odds

and bet size. On the other hand, when placing a market order, the bettor hits the

odds already available on the market and chooses just the bet size and side of the

market.

Assume that the bettor decides to place a back bet (the outcome will happen) on

outcome 1 of volume one dollar at odds O1. With probability p1, outcome 1 occurs

and the bet yields pro�t (1 − τ)R1 = (1 − τ)(O1 − 1), where τ is the commission

(2-5%) that Betfair charges on the net winnings. If outcome 1 does not occur the

bettor will lose one dollar. If the bettor places a lay bet (the outcome will not

happen) on outcome 1 of volume one dollar at odds O1, the bet yields pro�t (1−τ)

dollars if outcome 1 does not occur and loss −R1 if outcome 1 occurs. As I focus

on those markets with one possible winner, the probabilities p1, . . . , pN sum up to

one. Thus, backing an outcome at odds is actually the same as laying all the other

outcomes at respective odds.

Generally, bettors may have di�erent prior beliefs about the underlying proba-

bilities of winning of the outcomes. However, they update their beliefs using market

13



prices. Therefore, in equilibrium, all bettors can use the odds to infer the true un-

derlying probabilities of the outcomes. Further, bettors can be divided into three

main categories - common bettors, bookmakers, and traders. I assume that the

majority of Betfair customers (more than 2 million people) may be characterized

as common bettors, who typically bet only on one outcome and mostly place back

market orders. I discuss this particular assumption and its implications on the

results in the Appendix.

The other two types of bettors - bookmakers and traders - are professional

bettors who use the Betfair markets for making a pro�t. I assume that bookmakers

post mostly large volume limit orders and only occasionally use market orders to

balance their portfolios.9 I consider them to be risk neutral, as they basically try

to balance their liabilities and earn a pro�t from the spread. The third type of

bettor, traders, are similar to bookmakers. Their main concern, however, is not to

make money from the spread but to identify arbitrage opportunities. Therefore,

they place both limit and market orders, open and close their positions, and earn

their pro�t from the di�erences of the asset price over time. These bettors are,

therefore, usually placing large volume orders and the size of their bets is balanced

with respect to the odds, i.e., they are also acting as risk-neutral bettors.

In September 2008 Betfair introduced a new policy of "premium charges", re-

quiring customers who consistently win to pay at least 20% of their total pro�ts

in commission or other charges. Although this rule was aimed at bookmakers and

traders, Betfair claimed that it a�ected less than 0.5% of its customers. Since,

according to this statement, bookmakers and traders make up less than 0.5% of all

bettors, I direct my attention to the majority - common bettors - when analyzing

the risk attitude of the general population of bettors.

9In analyzing the in-trade soccer markets, Gil and Levitt (2007) point out that the endoge-
nously emerged market makers were on one side of the trade for 65 percent when the markets
were inplay, i.e. betting during the running event.
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Due to the di�erences in market microstructure and in the behavior of bettors

on di�erent sports markets I analyze the tennis, soccer and horse race events sepa-

rately. My empirical methodology follows the seminal paper of Jullien and Salanie

(2000). For each event the common bettors face the following successive decisions:

1. The bettor decides whether or not to bet;

2. Conditional on the characteristics of the event, outcomes, and subjective

probabilities of winning, the bettor decides how much he would be willing to

bet on every outcome;

3. After observing the odds the bettor chooses which outcome in the event he

will bet on.

The decisions in the �rst and second steps depend on both the event/outcome

parameters and the personal characteristics of each bettor. All bettors have their

own motives for betting and as no information about their personal characteristics

is known, I do not model this decision. Further, I assume that the decisions of

common bettors can be represented by the behavior of a representative agent -

marginal bettor - with initial wealth M . The marginal bettor is able to anticipate

from the equilibrium odds the true probability of winning of particular outcomes

in the event. Furthermore, under EUT, for every two outcomes i, j on the market

with given odds Oi and Oj, probabilities pi and pj, and average bet sizes Bi and

Bj, the marginal bettor with given utility function and risk preference parameter

θ is indi�erent between betting on these two outcomes, such that

piu(M+Bi(1−τ)Ri, θ)+(1−pi)u(M−Bi, θ) = pju(M+Bj(1−τ)Rj, θ)+(1−pj)u(M−Bj, θ).

As the probabilities sum up to one, I obtain the analytical solution for proba-

bilities in the form

15



pi =

1 +
N∑
j=1

u(M −Bj, θ)

u(M +Bj(1− τ)Rj, θ)− u(M −Bj, θ)

N∑
j=1

1

u(M +Bj(1− τ)Rj, θ)− u(M −Bj, θ)

− u(M −Bi, θ)

u(M +Bi(1− τ)Ri, θ)− u(M −Bi, θ)
(6)

As I do not observe any information about the wealth or income of the marginal

bettor, I use the CARA utility function in the form u(x, θ) = (1−e−θx)/θ; otherwise

the parameter estimates would be based either on the arbitrary choice of wealth

M , or would have to be estimated as an additional parameter. Each pi is uniquely

de�ned by the set of Bi's, Ri's, and θ. Therefore, similarly to Jullien and Salanie

(2000), θ is estimated by Maximum Likelihood Estimation using formula (6) of the

probability of the winning outcome. The likelihood function is then a sum of logs

of probabilities for ex-post winners pW from each match:

L(θ) =
C∑
c=1

log pw(R
c
1, . . . , R

c
N , B

c
1, . . . , B

c
N , θ)

One of the key assumptions of alternative behavioral theories of decision mak-

ing under uncertainty is that probabilities enter the formula of expected utility in

a non-linear form. In other words, bettors have a non-linear probability weighting

function. It is possible, however, to test the validity of EUT without explicitly for-

malizing the alternative theories. If the assumption of a linear weighting function of

EUT is correct, then the estimated risk aversion parameters of the marginal bettor

should be the same regardless of the winning probabilities of players/teams/horses.

Therefore, for each sport I draw two subsamples: one with the presence of strong

favorites (and large di�erences in winning probabilities between outcomes) and the

other without a favorite (and small di�erences in winning probabilities between

outcomes). Under the null hypothesis, EUT holds and therefore the estimates on
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the subsamples should not be statistically di�erent from each other. If the results

di�er, EUT can be rejected in favor of theories with non-linear weighting functions

of probabilities.

4 Data

I use aggregated historical data from the world's largest betting exchange, Bet-

fair, for all tennis, soccer and horse race winners' markets between June 2004 and

December 2008. All the studies described in Section 2 analyze the risk preferences

of bettors only on horse race markets. However, horse race events usually consist of

a large number of outcomes (horses) with a low probability of winning and only a

few outcomes with a high probability of winning. This could lead to a situation in

which I would estimate the risk preferences of bettors just on those bets with a low

probability of winning. As pointed out by Forrest and McHale (2007), however,

the tennis betting markets possess the nice feature of having a nearly complete

distribution of events with outcomes over the whole probability range. Using data

from the tennis and soccer markets, then, allows me to analyze the behavior of

bettors facing the complete set of probabilities.

For each outcome on every market and for each odds at which at least one

bet was placed, the data from Betfair include information on: the number of bets

placed, total volume matched, date and time of the �rst and last matched bet on

given odds, scheduled and actual start of the event, indicator of inplay bets10 and

indicator of the winning outcome. Although on Betfair one can also place bets

during the matches, I only use data on those bets that were placed before the start

of the match or race, so as to analyze the ex-ante risk attitudes rather than the

reaction of bettors to news from the ongoing match.

Recent studies on the risk attitude of bettors (e.g. (Jullien and Salanie 2000);

10Bets placed after the event has started
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(Gandhi 2008)) have employed starting prices - the odds valid at the start of the

event. At betting exchange markets there are, however, always two values of odds

- back and lay. Moreover, the odds tend to �uctuate even before the start of the

event; using just the �nal value of odds would result in loss of information about

the volume matched and the number of bets placed at odds slightly di�erent than

the �nal odds.11 I therefore use the weighted average of odds (by volume matched)

at which at least one bet was placed during the last two hours preceding the start of

the match for soccer and tennis, and during the last �ve minutes preceding the start

of the race for horse racing. The aim was to determine a time interval reasonably

long enough to encompass small �uctuations of odds around equilibrium, yet still

short enough to screen out large changes of odds signaling that the market is not in

equilibrium.12 The di�erent lengths of time intervals for soccer, tennis, and horse

racing re�ect the di�erent microstructure of the markets in these sports. Due to

the lower number of soccer and tennis markets, as well as the lower number of

outcomes on these markets and longer time intervals between these events, the

odds on soccer and tennis markets do not often exhibit large �uctuations before

the start of the event.

The liquidity of Betfair markets varies tremendously, being as low as two bets

with ¿4 volume matched to as high as 42,421 bets and ¿9,496,375 volume matched.

Due to the lack of liquidity, I further restrict the analysis to those markets at which

at least 20 bets have been placed on each outcome of the event. In the case of tennis

and soccer matches the number of outcomes is given, yet for horse races the number

of outcomes di�ers for each race. Thus, to ensure that all the outcomes of horse

race events are accounted for, I ruled out those events where the sum of imputed

probabilities was lower than 0.98 and considered only those events where the total

11I e�ectively treat these small �uctuations as if the market was already in equilibrium.
12I considered intervals in the range of 2 minutes - 10 hours before the start of the match. I

chose the longest interval in which the average �uctuation of probability representation of odds
(i.e. imputed probability equal to the inverse value of odds) was still lower than 3%.
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number of outcomes (horses) was lower than or equal to 13.13 All these steps

restricted the analysis to 17,371 tennis match winner markets, 70,831 soccer match

winner markets, and 59,386 horse race winner markets.

For further analysis of the risk preferences of marginal bettors, I use the average

bet size computed as the volume matched over the number of bets from all odds

at which at least one bet was made during the relevant time interval preceding the

start of the event. The volume matched encompasses both the volume of market

and limit matched orders on the back and lay side, and the number of bets is the

sum of both back and lay bets. So, in fact, I use the average size of both back and

lay bets. Average bet size varies remarkably with odds, suggesting that bettors

bet di�erent amounts on di�erent odds, and justifying the importance of including

the bet size in analysis. The average bet sizes for all three sports are presented in

Figure 8 in the Appendix.

With the available data I am not able to distinguish between the average back

bet size and the average lay bet size as I do not have information on the number

of back or lay orders. Thus, in further estimation I assume that the computed

average bet size corresponds to the average back bet size. In the Appendix I

provide a mathematical proof that under plausible assumptions on the behavior of

bettors this approach delivers reliable and correctly interpreted estimation results.

As pointed out before, a usual characteristic of betting market data is the so-

called favorite-long shot bias. Smith, Paton, and Williams (2006) suggest that

favorite-long shot bias should be lower on betting exchanges. My data are conso-

nant with this, as they exhibit smaller long shot bias on horse race markets (see

Figure 5). Still, Figures 6 and 7 in the Appendix show the presence of fairly strong

long shot bias on the tennis and soccer match winner markets.

13Races with more than 13 horses account for less than 8% of the total number of races
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Figure 5: Expected return per dollar bet on horse races at Betfair

Note: number of observations used: 59,386 horse races.

5 Results

In the �rst part, I focused on the importance of accounting for bet size in the

analysis of risk preferences of bettors. As discussed above, when we use just price

data, the estimates are driven solely by the long shot bias. In Table 1 the estimates

of risk aversion for bettors, assuming constant bet size, are presented. The results

indicate that the marginal bettor has risk-loving preferences, a �nding similar to

that of Jullien and Salanie (2000).

Further, the estimated coe�cient θB consists of both the parameter of risk

aversion θ and the average bet size B, which is ¿20 for horse racing, ¿45 for soccer,

and ¿107 for tennis. This implies that the estimates of the risk aversion parameter θ

on di�erent sports at Betfair are of comparable size, but all of them are signi�cantly

smaller than the estimates of Jullien and Salanie (2000). One reason may be the

higher competition among bookmakers at Betfair markets, but also that as part of
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Table 1: Estimates of risk aversion parameter of CARA utility function, assuming
constant bet size.

Market θB S.D. p-value 95%CIlower 95%CIupper
Tennis -0.036 0.011 0.001 -0.058 -0.015
Soccer -0.015 0.005 0.001 -0.024 -0.006
Horse races -0.003 0.001 0.000 -0.004 -0.002

Note: number of observations used in the estimation: tennis - 17,371 obs., soccer -
70, 831 obs., horse races - 59,386 obs.

the data cleaning procedure I discarded all events with fewer than 20 bets on any

of the outcomes and therefore screened out low liquidity markets, i.e. ones facing

lower competition among bookmakers.

As explained in Section 2, bet size is key to the analysis of bettors' behavior, as

bettors do not usually bet the same amount on di�erent odds. Indeed, accounting

for bet size dramatically changes the results for all sport types, as presented in

Table 2. These di�erences between the markets on di�erent sports raise questions

about the appropriateness of EUT.

Table 2: Estimates of risk aversion parameter of CARA utility function, accounting
for di�erent bet size.

Market θ S.D. p-value 95%CIlower 95%CIupper
Tennis -0.0003 0.0002 0.225 -0.0009 0.0002
Soccer 0.0001 0.0001 0.222 -0.0001 0.0003
Horse races -0.0005 0.0001 0.000 -0.0006 -0.0004

Note: number of observations used in the estimation: tennis - 17,371 obs., soccer -
70, 831 obs., horse races - 59,386 obs.

In the second step I test the key di�erence between EUT and behavioral theories,

namely the assumption that bettors have a linear probability weighting function. If

the EUT model of bettors' behavior is correct, we should obtain the same estimates

of risk preferences over the whole range of probabilities. Therefore, I draw two

types of subsamples from the data on each sport. The �rst type is a subsample
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with favorites, where I condition the selection of events on the presence of a strong

favorite. Due to the di�erent number of outcomes in the particular sport14, I include

the event in the sample only if there are: (a) a tennis player with odds lower than

1.25 in tennis (imputed probability of winning greater than 80%); (b) a team with

odds lower than 2.0 in soccer (imputed probability of winning greater than 50%);

and (c) a horse with odds lower than 3.0 in the horse race (imputed probability of

winning greater than 33%). I use the odds as a proxy for the objective probabilities

of winning. The second type of subsample consists of events without any favorite,

i.e. I include the event in the sample only if both players have odds greater than 1.5

for tennis (imputed probability of winning lower than 66%); if all outcomes have

odds greater than 2.3 in soccer (imputed probability of winning lower than 43%);

and if all horses in the race have odds greater than 4.0 in the horse races (imputed

probability of winning lower than 25%). Under EUT, the risk preferences of the

representative bettor should not di�er regardless of whether he is betting on an

event with a strong favorite or on an event without large di�erences in the winning

probabilities of outcomes. Therefore, by comparing the results of the two types

of subsamples I can easily test whether a marginal bettor has a linear weighting

function of probabilities.

Table 3: Tennis markets - Estimates of risk aversion parameter of CARA utility
function on subsamples de�ned by the presence of favorite, accounting for bet size

Market θ S.D. p-value 95%CIlower 95%CIupper
All events -0.0003 0.0002 0.225 -0.0009 0.0002
-with favorites 0.0004 0.0004 0.277 -0.0003 0.0011
- no favorites -0.0013 0.0005 0.007 -0.0023 -0.0004

Note: number of observations used in the estimation: tennis - 17,371 obs., soccer -
70, 831 obs., horse races - 59,386 obs.

14There are two players for tennis, three outcomes for soccer and usually more than six outcomes
for horse races leading to signi�cant di�erences in the objective probabilities of winning between
the outcomes in these sports.
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Table 4: Estimates of risk aversion parameter of CARA utility function, accounting
for di�erent bet size.

Market θ S.D. p-value 95%CIlower 95%CIupper
All events 0.0001 0.0001 0.222 -0.0001 0.0003
- with favorites 0.0003 0.0001 0.011 -0.0001 0.0005
- no favorites -0.0004 0.0002 0.030 -0.0008 -0.0001

Note: number of observations used in the estimation: tennis - 17,371 obs., soccer -
70, 831 obs., horse races - 59,386 obs.

The results for tennis, soccer and horse races are presented in Tables 3-5. Esti-

mates of the risk aversion parameter for the subsamples with a favorite and without

a favorite are signi�cantly di�erent from each other for all three sports. I can there-

fore reject the null hypothesis of a linear probability weighting function in favor

of its non-linear counterparts. Details of the estimation for particular sports are

discussed below.

Results for tennis and soccer indicate that the ratio of the bets on outcomes

with small di�erences in probabilities is higher than the ratio consistent with the

behavior of risk-neutral bettors. This might suggest that people overweight small

di�erences in probabilities. On the other hand, the opposite is true on markets

with strong favorites, where the ratio of the amount placed on the more probable

outcome to the amount placed on the less probable outcome is lower in comparison

with risk-neutral bettors. This might suggest that people either underweight large

di�erences in probabilities or simply underweight the large probabilities near the

reference point 1. Another possible explanation is that bettors have restrictions

on their maximum bet size; that is, when the model of risk-neutral bettors implies

remarkably high bets for high probable outcomes, the maximum bet size may func-

tion as a binding constraint, resulting in a signi�cantly lower bet ratio of bets on

events with strong favorites than on events without any favorites. In both cases,

however, I can reject the hypothesis that the marginal bettor at Betfair has a linear
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weighting function of probabilities.

These results bring further insight to the theories of Tversky and Kahneman

(1992). They assume that people underweight large probabilities and overweight

small probabilities, i.e., that zero and certainty serve as reference points from which

people o�set their perception of probabilities. My results suggest that even partic-

ular outcomes serve each other as reference points, which leads to observed over-

weighting of small di�erences in probabilities and underweighting of large di�er-

ences in probabilities.

Table 5: Horse race markets - Estimates of risk aversion parameter of CARA utility
function on subsamples de�ned by the presence of a favorite, accounting for bet
size

Market θ S.D. p-value 95%CIlower 95%CIupper
All events -0.0005 0.0001 0.000 -0.0006 0.0004
- with favorites -0.0008 0.0001 0.000 -0.0009 -0.0007
- no favorites -0.0002 0.0001 0.109 -0.0004 0.0001

Note: number of observations used in the estimation: tennis - 17,371 obs., soccer -
70, 831 obs., horse races - 59,386 obs.

The results from horse racing markets also support the observation that bettors

do not weight probabilities linearly. However, as suggested by the results in the

�rst step, in the case of horse races the behavior of bettors seems to follow a

di�erent pattern than in tennis or soccer. Bettors still slightly overweight the small

di�erences between probabilities of winning of horses in events without any strong

favorite, yet they overweight the middle-sized di�erences in probabilities between

underdogs and favorites even more. The rationale for this result lies in the higher

number of outcomes on the horse race market and thus the lower absolute values of

implied probabilities as well as their di�erences. In such a market structure, unlike

the tennis and soccer markets, the implied probabilities never cross the threshold

where the underweighting behavior of bettors prevails.
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6 Conclusion

This paper makes several contributions to the literature on decision making

under risk and uncertainty. Using an extensive dataset from the world's largest

betting exchange, Betfair, I show that bettors bet di�erent amounts on di�erent

odds, and that bet size is key to explaining their attitude towards risk. I abandon

the assumption of constant bet size commonly used in the literature and provide

corrected estimates of the risk preferences of bettors which, indeed, di�er signi�-

cantly from previous studies.

This research also has broader implications for the general analysis of behavior

under uncertainty, particularly for discussions regarding the validity of EUT. My

results suggest that, when facing a number of outcomes with di�erent winning

probabilities, bettors tend to overweight small and underweight large di�erences

in probabilities, which is in direct contradiction to the linear probability weighting

function implied by EUT. These �ndings can be presented as a re�nement on

Tversky and Kahneman (1992), who report the same behavior of agents with respect

to absolute values of probabilities. My results also support the theory of reference

points in decision making under uncertainty. However, they indicate that people

may use more reference points than the generally accepted 0 and 1, as the outcomes

might serve as each other's reference points.
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Appendix

I assume that bookmakers and traders act as risk-neutral agents and that their

orders are larger than the orders of common bettors.15 On the other hand, common

bettors who just choose the outcome mostly place back market orders. As the �rst

two types of bettors are risk neutral, the estimates will be driven by the risk

preferences of the common bettors, and will be biased towards risk neutrality. I

assume that all common bettors are placing back bets, i.e., betting that a particular

player will win, and that matching of the bets is done mostly by bookmakers who

stand outside the model. Nevertheless, on real betting exchanges the common

bettors can be observed on both sides of the market. In the further text I analyze

the e�ect of the simplifying assumption on the validity of the results.

Let us assume that proportion m of all bets are backs and 1−m are lays. Given

the total number of bets on a favorite (NF ) and an underdog (NU) I can compute

the corresponding number of backs (BF and BU) and lays (LF and LU) as

#BF = mNF ; LF = (1−m)NF

#BU = mNU ; LU = (1−m)NU .

Because there are only two players and I assume that odds OF and OU are fair,

it holds that OF = OU

OU−1
and RF = 1

RU
. Thus, I can express the cross-relations

between the average back bet (BF , BU) and lay bet (LF , LU) on the favorite and

15On Betfair, the volume of a lay order is de�ned not as the liability of a lay bettor, but as his
pro�t which equals the stake of the bettor on the back side of the trade.
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the underdog, respectively, as

LF = BU(OU − 1)LU = BF (OF − 1)

Total matched volumes on the favorite and the underdog (V OLF , V OLU) are equal

to

V OLF = V OLBF + V OLLF = #BFBF +#LFLF = mNFBF + (1−m)NFLF =

= mNFBF + (1−m)NFBU(OU − 1)

V OLU = V OLBU + V OLLU = #BUBU +#LULU = mNUBU + (1−m)NULU =

= mNUBU + (1−m)NUBF (OF − 1)

Solving for BF and BU gives

BF =
(1−m)NF (OU − 1)V OLU −mNUV OLF

NFNU(1− 2m)

BU =
(1−m)NU(OF − 1)V OLF −mNFV OLU

NFNU(1− 2m)

I am interested in how the average back bet size changes with a di�erent proportion

of backing bettors on the market. Taking derivatives of BF and BU with respect

to m I get

∂BF

∂m
=

NF (OU − 1)V OLU −NUV OLF

NFNU(1− 2m)2

∂BU

∂m
=

(NU(OF − 1)V OLF −NFV OLU

NFNU(1− 2m)2

∂BF

∂m
> 0 ⇔ (OU − 1) >

NU

NF

V OLF

V OLU

=

V OLF

NF

V OLU

NU

=
Bcomp

F

Bcomp
U

∂BU

∂m
> 0 ⇔ (OF − 1) >

NF

NU

V OLU

V OLF

=

V OLU

NU

V OLF

NF

=
Bcomp

U

Bcomp
F

where Bcomp
F = V OLF/NF and Bcomp

U = V OLU/NU denote the average back bet
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sizes under the assumption that m = 1, i.e., that all bettors are backing, which

I used in my estimates. BF and BU are continuous on the range of m ∈ (0.5; 1⟩.

Therefore if m > 0.5 and the results of my estimation suggest that the bettors are

risk averse, the following inequalities hold16:

Bcomp
F

Bcomp
U

<
pF
pU

=
1− pU
pU

= (OU − 1)

(OU − 1) >
Bcomp

F

Bcomp
U

⇒ ∂BF

∂m
> 0 ⇒if m>0.5 BF < Bcomp

F

Bcomp
U

Bcomp
F

>
pU
pF

=
1− pF
pF

= (OF − 1)

(OF − 1) <
Bcomp

U

Bcomp
F

⇒ ∂BU

∂m
< 0 ⇒if m>0.5 BU > Bcomp

U

Combining the fact that BF < Bcomp
F and BU > Bcomp

U results in inequality

BF

BU

<
Bcomp

F

Bcomp
U

<
pF
pU

This means that use of the right average back bet size would lead to an even higher

risk aversion estimate. Similarly, if the results suggest that the marginal bettor is

risk loving, I can reiterate the previous analysis as follows:

Bcomp
F

Bcomp
U

>
pF
pU

=
1− pU
pU

= (OU − 1)

(OU − 1) <
Bcomp

F

Bcomp
U

⇒ ∂BF

∂m
< 0 ⇒if m>0.5 BF > Bcomp

F

Bcomp
U

Bcomp
F

<
pU
pF

=
1− pF
pF

= (OF − 1)

(OF − 1) >
Bcomp

U

Bcomp
F

⇒ ∂BU

∂m
> 0 ⇒if m>0.5 BU > Bcomp

U

BF

BU

>
Bcomp

F

Bcomp
U

>
pF
pU

16Within the utilized CARA utility framework, the ratio of bets of a risk-neutral bettor satis�es
the condition BF /BU = pF /pU .
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In both cases, use of average betting size computed under the assumption that

m = 1 biases the results towards risk-neutral preferences. Thus, as long as the

real proportion of common bettors on the back side of the market is higher than

0.5, it is reasonable to conclude that my estimate of risk aversion/risk love is a

lower/upper bound of a real value.

I have also performed an empirical check of my assumptions through the analysis

of bets on 60 markets of the 2006 soccer World Cup for which I have available

information on the number of back and lay bets. According to this data, the share

of "backers" on the market orders is larger than the share of "layers". The share of

back bets ranges from 60% to 90% with an average 73% share of all observed bets

for 180 outcomes (3 outcomes per market) of match winner markets, and ranges

from 60% to 96% with an average 86% share of all observed bets for 1020 outcomes

(17 outcomes per market) of the correct score markets. The average lay bet sizes

are always remarkably larger than the average back bet sizes.
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Figure 6: Expected return per dollar bet on tennis at Betfair

Note: number of observations used: 17,371.

Figure 7: Expected return per dollar bet on soccer at Betfair

Note: number of observations used: 70,831.
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Figure 8: Average bet size at Betfair with respect to imputed probability

Note: number of observations used: tennis - 17, 371 obs., soccer - 70, 831 obs.,
horse races - 59, 386 obs.
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