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Abstract

| present a model in which randomly matched pairs of people bargain over the division of
output in each period. Output can be consumed or stored for later consumption. People are
identical except possibly in wealth (i.e., the stored output). The one-period utility is linear
except for the starvation disutility (i.e., the additional drop in utility under no consumption).
The starvation disutility weakens the bargaining position of a poor person and strengthens that
of a rich person in an otherwise symmetric bargaining, providing the incentive to accumulate
wealth. Policies that deincentivize wealth accumulation (e.g., wealth tax, progressive income
tax) can make both the rich and the poor become better off.

Abstrakt

Prezentuji model, v némz nahodné vytvotfené pary opakované smlouvaji v kazdém obdobi 0
rozdéleni produktu. Produkt mize byt spotiebovan nebo uchovan pro pozdé€jsi spotiebu. Lidé
jsou identicti s moznou vyjimkou v podobé jejich bohatstvi (tj. mnozZstvi produktu
uchovaného z piedchozich obdobi). Jednoperiodova uzitkova funkce je linearni ve spotiebé
s vyjimkou ztraty uzitku z hladovéni (tj. dodate¢ny pokles uZzitku v pfipad€ nulové spotieby).
Tato ztrata uzitku oslabuje vyjednavajici pozici chudych a posiluje pozici bohatych. To
narusuje jinak symetricky charakter smlouvani a poskytuje motivaci k akumulaci bohatstvi.
Politiky, které snizuji tuto motivaci (napf. dan z bohatstvi, progresivni pfijmova dail), miZzou
dosahnout zlepseni uzitku bohatych i chudych.
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1. Introduction

In this paper, I consider bargaining advantages as a possible motive of accumulating wealth.
Wealth provides the wealth-holder a degree of security in case of no current income, thereby
strengthening the bargaining position of the wealth-holder in dividing the income from a
joint production. I model the sense of security in a particular way: The utility is linear in
consumption, except that there is a minimum consumption below which there is an added
drop in utility, which I call the starvation disutility. I consider the starvation disutility as
a simple but realistic metaphor that underlines the prospect of a person with no wealth or
current income. It also allows me to focus on the bargaining motive of wealth accumulation
aside from precautionary saving (i.e., self-insurance under uncertain marginal utility of
consumption), since in equilibrium everyone is guaranteed the minimum consumption and
the marginal utility of consumption is constant. I also assume that wealth is a stored
consumption good and not a productive asset in order to abstract from the investment-
return motive of wealth accumulation. The welfare implication of the bargaining motive of
wealth accumulation contrasts with that of the other motives in that a person’s bargaining
advantage is another person’s disadvantage. This provides a rationale for policies such as
a wealth tax and a progressive income tax.

That a person with no wealth has a weaker bargaining position in relation to a person
with some wealth can be understood in terms of risk preference: A more risk-averse person
has more to lose from the failure of reaching an agreement, so has a weaker bargaining
position. Kihlstrom, Roth, and Schmeidler (1981) shows that the more risk-averse party
receives a lower share of surplus in Nash bargaining: If person A’s utility over the share of
the surplus is an increasing and concave function of person B’s utility, person A receives
a lower share of surplus than person B in an otherwise symmetric Nash bargaining. In

the model of this paper, the one-period utility function over consumption is assumed to



be identical across the population, but the presence of the starvation utility leads to an
endogenously greater risk-averse preference over income for a person with less wealth.

In Krusell, Mukoyama, and Sahin (2010) and Bils, Chang, and Kim (2011), each
worker has the one-period utility function over consumption that exhibits the constant
relative risk aversion (i.e., u(c) = (¢! —1)/(1 — «) with v < 1), bargains over the wage
with the risk-neutral firm in each period, and can accumulate wealth. A worker with more
wealth becomes “locally” less risk-averse and thus improves his bargaining position and
obtains a higher wage. Thus there is a bargaining motive of accumulating wealth, which is
not (explicitly) recognized in the articles. The authors’ objective is to study the aggregate
properties of the models under the productivity and unemployment shocks, which leads to
the investment-return and the precautionary motives as well as the bargaining motive of
accumulating wealth. The bargaining motive of wealth accumulation appears to play a mi-
nor role in their quantitative exercises. As mentioned, in the model of this paper, there are
no investment-return or precautionary motives of wealth accumulation. Also, production
is modeled in terms of a decentralized random matching among identical people except
possibly in wealth. The intent is to portray the bargaining motive of wealth accumulation
and its welfare property, abstracting from the other motives of wealth accumulation or the
institutional arrangements that may cloud its logic.

This paper can be viewed as a variation in the literature that studies the concern
for a person’s relative standing in the society. A common approach is to model rela-
tive consumption. The concern for relative consumption may lead to socially excessive
consumption and, consequently, to the underaccumulation of wealth as argued by Frank
(1985). However, there could be an overaccumulation of wealth in order to finance ex-
cessive consumption in the future, as in Corneo and Jeanne (1998). In Konrad (1992),
people care about their relative wealth, which implies a negative externality of a person’s
wealth accumulation on the others. Thus wealth accumulation is socially excessive. In

Cole, Mailath, and Postlewaite (1992), relative wealth determines the marriage prospects,



leading to an overaccumulation of wealth absent social restrictions on the marriage pat-
terns. In this paper, relative wealth matters because the person with a greater wealth has

the advantage in bargaining with a person with less wealth.

2. The Model Economy

There are a large number of people. The size of the population is normalized to one. Each
person is randomly matched with another person every day. Each pair of matched people
can produce three apples. The two partners of a match bargain over the division of the
produced apples. An apple is indivisible. Each person’s one-period expected utility is
E[U(c)] where U(c) =c¢-I(c > 1) —u-I(c =0). Function I is an indicator function that
takes on the value of one if the stated condition holds, and zero otherwise. The parameter
u has a positive value and means the starvation disutility. Each person has the access to a
storage technology with the storage capacity of one apple. Each stored apple depreciates
fully with probability 6 overnight. The one-period budget constraint is c+s = w+y where
y is the number of apples earned today; w is equal to one if an apple was stored yesterday
and survived overnight, and to zero otherwise; and s is equal to one if an apple is stored
today, and to zero otherwise.

The expected discounted utility of a person with wealth w at the beginning of a period
can be written as:

Viw) =Y {)\(w’) S w(yiww’) max  {u(wty—s) + f/<s)}} (1)

o seEY (w+y)

where w,w’ € {0,1}; A(w’) is the share of population with w’ apples; 7(y;w,w’) is the
probability of taking y apples from production, given the person’s wealth w and the part-
ner’s wealth w’; Y(w + y) = {0, min{1,w + y}}; and V(s) is the utility of the person with

wealth s at the end of the period:

V(0) = BV (0); (2)



V(1) =p5-V(0)+B(1-05) V(1) (3)

The parameter 3 is the discount rate.
I assume the bargaining outcome to maximize the Nash product: for each (w,w’),

{m(y;w,w")}, solves

max { < Z m(y;w,w')- W(w+y)— W(w)) (Z m(y;w,w’) - W(w'+3—y)— W(w')) } (4)

y
subject to >, m(y; w,w’) = 1, where W (w+y) = maxser(wiy{u(w+y—s) +V(s)} is the
post-bargain utility, given the initial wealth w and the current-period income y. Note that
the outside option of each person is not to produce, possibly to consume a stored apple,
and to get rematched with a different partner the next day. The Nash bargaining solution
can be viewed as the equilibirum of a variation of the alternating-offers bargaining game in
Binmore, Rubinstein, and Wolinsky (1986). Suppose that when two people are matched,
there is a match-specific opportunity to produce, which disappears at a constant rate ¢ if
agreement is not reached: If ¢ units of time have passed without agreement, the probability
the opportunity will remain is e~%'. Further, if 7" units of time pass without agreement,
the opportunity disappears altogether and each person receives no income in the period.
Suppose that each round of offers takes 7 units of time, so that the maximum number of
rounds is N = T'/7. In the limit of N approaching infinity and 7 approaching zero, holding
T and ¢, the equilibrium division of output is equivalent to the Nash bargaining solution.
An equilibrium is the wealth distribution function A(w), the value functions, V(w),
V(w), and W (w+vy), and the income-probability function, m(y; w, w’), that together satisfy
(1) to (4).

2.1 The Benchmark: Equal Sharing of Output

Suppose that, instead of (4), each partner takes one apple for sure and takes the third

apple with probability one half regardless of the partners’ wealth levels: =(1;w,w’) =
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m(2;w,w’) = 1/2 for all w and w’. Since today’s saving decision has no effect on the
future income stream, the individual consumption/saving decision problem simplifies to
maximizing utility, given the exogenous stochastic income process. Note that each person’s
income will be at least one apple at all times; the utility is linear beyond one apple of

consumption; and (1 — §) < 1. Then, there is no reason to save any apples.

Proposition 1: Under equal sharing of output (i.e., m(1;w,w") = 7(2;w,w’) = 1/2 for

all w and w’), everyone consumes all of the apples earned during the day and stores none.
Proof: See Appendix.

The proposition shows that any saving in this model is due to the effect of wealth on
the sharing of output. Further, since 5(1 — §) < 1, any saving is inefficient in that the
aggregate utility (i.e., the sum of discounted utility across all people) is maximized when
each person consumes at least one apple and all apples are consumed in each period. The

welfare impact of implementing a policy of no saving will be detailed in Section 2.3.

2.2 The Equilibrium: Unequal Sharing of Output

Below I characterize the equilibrium. I consider three ranges of V(1) — V(0) and derive

the conditions on the parameter values that lead to each range in equilibrium.

Consume-All Equilibrium: V(1) — V(0) < 1

If V(1) — V(0) < 1, there will be no saving: s = 0 for all w and y. Further, A(0) = 1. We
have 7(1;w, w) = m(2;w,w) = 1/2 for all w; and W(w + y) = w+ y + V(0) for all w + y.
For the case of (w,w") = (1,0), I can take the first-order condition in (4) and show that

there are two possible solutions to the maximization problem. One solution is for each



partner to take one apple each and for one of the two partners to take the third apple

probabilistically: 7(1;1,0) + m(2;1,0) = 1 with the probability given by

ﬁEW(Q;l,O):min{l,l—;ﬁ}. (5)

Intuitively, the poor partner (i.e., the partner with w = 0) has a disadvantage in bargaining
since his outside option carries the starvation utility while the outside option of the rich
partner (i.e., the partner with w = 1) does not. From (1) and (5), we can express V(1) —

V(0) in terms of 7, and show that V(1) — V(0) < 1 iff

. 1
T< = —

1
B(1—6) 2 (6)

Equation (6) sets the upper limit to the rich person’s income so that the incentive to store

an apple is sufficiently small. From (5) and (6), we have:

min{l,l—;a}<ﬁ(ll_6)—%. (7)

The other solution to the maximization problem in (4) is for the poor partner to take

one apple and for one of the two partners to take remaining two apples probabilistically:
m(0;1,0) + 7(2;1,0) = 1. This changes the expressions on the righthand sides of (5) and
(6), but we obtain the same parameter restriction (7). Intuitively, once the poor partner
consumes one apple, the marginal utility of consuming a remaining apple is constant, so
the two variations of the lottery deliver the same expected utility to each partner and do
not affect the equilibrium conditions.

There are no solutions to (4) other than the above two. In particular, it is not a
solution for the rich partner (i.e., w = 1) to take two apples and for one of the two
partners to take the remaining one apple probabilistically. Given the starvation utility,
such an allocation can always be improved on (in terms of maximizing the Nash product)

by guaranteeing one apple to the poor partner. In summary, we have:



Proposition 2: The consume-all equilibrium (i.e., V(1) — V(0) < 1) exists if (7) holds. In
the consume-all equilibrium, the expected share of output is equal across partners in each
match and everyone consumes all of the apples earned during the day and stores none. In
the match of a poor person (i.e., a person with no stored apple) and a hypothetical rich
person (i.e., a person who has deviated from the equilibrium path by storing an apple),

the expected share of the rich partner’s output is greater than that of the poor partner.
Proof: See Appendix.

In (5), (6), and (7), the starvation disutility @ matters as a condition for the consume-all
equilibrium by affecting the bargaining outcome of taking the third apple. As u rises, the
probability of the rich partner taking the third apple rises, which raises the incentive to
store an apple. On the other hand, a lower time discount rate 3 or a higher depreciation
probability § lower the incentive to store an apple. Thus the consume-all equilibrium
requires the combination of a low enough starvation utility u, a low enough time discount

rate (3, and a high enough depreciation probability §.

Consume-Then-Save Equilibrium: 1 < V(1) = V(0) < 1+ 4

If1 < V(1)=V(0) < 1+, each person will save one apple if there any left after consuming
one apple: s = 0ifw+y < 1;and s = 1 ifw+y > 2. We have 7(1;w,w) = 7(2; w,w) = 1/2
for all w; W(0) = —a + V(0); W(1) =1+ V(0); and W(w +y) = w+y — 1+ V(1) for
all w+y > 2. Taking the first-order condition in (4), I can show that {m(y;1,0)}, is

summarized as: m(1;1,0) +7(2;1,0) =1 and

ﬁEW(Z;l,O):min{l,%~(1—‘7(1)—#‘7(0)—#%)}. (8)

We have:



V(1) = ((1 —N)-(1—7)+ %) (1+V(Q)+ ((1 —)\) -7+ %) (2+V(1)), (10)

where A = A(1). The expressions inside large brackets are the transition probabilities,
determined by the probability of being matched with a rich or a poor partner and the
probability of taking the third apple conditional on being matched with a rich or a poor
partner. Since the equilibrium is assumed to be a steady state, tomorrow’s rich people are
today’s rich people each of whom saves an apple, plus the subset of today’s poor people

each of whom saves an apple, discounted by the depreciation probability:

5\5)\(1):(1—6)(5\+(1—5\)(%+5\(1—7}))). (11)

Given the parameters, (3, 0, and 4, we can use equations (2), (3), (8), (9), (10), and (11)
to derive the equilibrium values of 7, 5\, and the value functions.

In order to find the conditions under which the consume-then-save equilibrium exists,
consider the case of some depreciation: § > 0. With the possibility of losing the stored
apple over night, there will be some poor people in equilibrium: A< 1. Then, (11) can be
rewritten as:

1 1 o 1
=3 315 1 % (12)
Equation (12) implies a negative association between 7 and X. From (2), (3), (9), (10),

and (12), I can derive:

1B+ 85/1-A)

Equation (13) implies a negative association between A and V(1) — V(0). Thus (12) and
(13) can be interpreted as follows. If the probability of the rich partner taking the third
apple, 7, were to rise exogenously, the chance of a poor person to become rich declines,
which leads to a reduced fraction of rich people in the population, A, and a larger benefit

of wealth, V(1) —V(0). In (13), observe that there is Ao € (0, 1) such that V(1) =V (0) > 1



iff A < Ag. Solving for Ag in (13) and then substituting the expression of A\ in (12), we
have

1 1
Bi-9) 2

T > T (14)

ift A < Ao.

Now consider the limiting case of no depreciation: 6 = 0. In (11), observe that with
no depreciation of stored apples, a rich person will never become poor so that there will
only be the rich people in equilibrium: A =1 regardless of 7. We can still show that
V(1) — V(0) > 1iff (14) holds with § = 0.

Now, we can derive the conditions on the parameters for the consume-then-save equi-
librium. Since 7 < 1, in (14) a necessary condition for an equilibrium with V(1)—V (0) > 1
is:

1 3
Bi—0) "2

In order to have # > m and V(1) — V(0) > 1, in (8), we need my < (1 4 @)/2 or:

ﬂ>u052(ﬁ—1). (16)

(15)

In summary, we have:

Proposition 3: The consume-then-save equilibrium (i.e., 1 < V(1) — V(0) < 14 @) exists
if (15) and (16) hold. In the consume-then-save equilibrium, each partner takes at least one
apple in any match, and each person stores one apple if there are any left after consuming
one apple. In the match of a poor person (i.e., a person with no stored apple) and a rich
person (i.e., a person with a stored apple), the probability of the rich person taking the

third apple is higher than one half.
Proof: See Appendix.

Note that (15) and (16) are the opposite of (7). Thus the consume-then-save equilibrium

requires the opposite of the condition for the consume-all equilibrium: the combination

10



of a high enough starvation disutility @, a high enough time discount rate 3, and a low

enough depreciation probability J, all of which raise the incentive to store an apple.

Save-Then-Consume Equilibrium: V(1) = V(0) > 1+ @

If f/(l) — V(O) > 1 + u, each person will save one apple if there any apples, and then
consume what remains: s =0 if w+y = 0; and s = 1 if w4+ y > 1. I can show that this

save-then-consume equilibrium does not exist.

Proposition 4: The save-then-consume equilibrium (i.e., V(1) — V(0) > 1+ @), in which
each person stores one apple if there are any apples, and then consumes any remaining

apples, does not exist.
Proof: See Appendix.

The intuition is that the incentive to store an apple in this economy is to avoid starvation
in case there is no income tomorrow, thereby raising the bargaining position tomorrow.
Note that the equilibrium is implicitly assumed to be stationary, i.e., the saving decision
depends only on current income and wealth. Then, the condition V(1) — V(0) > 1+ @
implies that a person stores an apple even at the cost of starving only to ensure that
he continue storing that apple tomorrow. By induction, storing an apple is to ensure
storing that apple forever. It is hard to imagine why such a behavior should strengthen

the bargaining position of the person.

The above three cases of V(1) — V(0) leaves two borderline cases, V(1) — V(0) = 1 and
V(1) = V(0) = 1+ @ First, consider the borderline case of V(1) — V(0) = 1: The
incentive to store an apple is at the threshold so that each person is indifferent between
consuming or storing an apple after having consuming one apple. Suppose that each

person stores an apple with probability ¢ if there are any after consuming one. We can
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show that such an equilibrium, call it the consume-then-save-randomly equilibrium, exists
if (7) holds with equality. In the consume-then-save-randomly equilibrium, the probability
of taking the third apple 7 is the same as under the consume-all or the consume-then-
save equilibrium (i.e., # given by (5) or by setting V(1) — V(0) = 1 in (8)). Further,
depending on ¢, the fraction of rich people A can take on any value between the value
under the consume-all equilibrium, equal to zero, and the value under the consume-then-
save equilibrium, given by (11). Thus, the consume-then-save-randomly equilibrium can be
viewed as a convex combination of the consume-all and the consume-then-save equilibria
with ¢ = 0 corresponding to the consume-all equilibrium and ¢ =1 to the consume-then-
save equilibrium.

Now consider the other borderline case of V(1) — V(0) = 1 + @: Each person is
indifferent between consuming an apple to avoid starvation and storing it despite the
starvation. Suppose that each person stores an apple with probability ¢ in such a situation.
Using a variation of the proof of Lemma 3, we can show that such an equilibrium, call it

save-randomly-then-consume equilibrium, does not exist under any parameter values.

Figure 1: Equilibrium Zones

Consume-

Consume-All

=]
=

Then-5ave

u] 2/3 1
Bl(1-G]

The various cases of V(1) — V(0) considered above show that the space of the param-

eters, 3, 9, and u, is divided into two zones, the zone of the consume-all equilibrium and

12



the zone of the consume-then-save equilibrium with the threshold given by (7). Figure 1
visualizes the two zones. If (7) holds with equality, the incentive to store an apple is at
the threshold (i.e., V(1) — V(0) = 1) and the consume-then-save-randomly equilibria, the
convex combinations of the consume-all and the consume-then-save equilibria, exist.
Consider the comparative statics of raising the value of @ starting from (the epsilon
above) zero, holding 3 and §. Initially, we are at the consume-all equilibrium zone. Recall
that there two possible lotteries, which deliver the same expected shares of output, in
dividing the output in a match between a poor person and a rich person (who is on an
off-equilibrium path since there are no rich people in equilibrium). Focus on the lottery
in which only the third apple is divided probabilistically in order to compare with the
consume-then-save equilibrium. Both the probability of a rich person taking the third
apple, 7, and the benefit of wealth, f/(l) — V(O), rise as u rises. If §(1 — ¢) is small
enough so that (15) does not hold, 7 reaches one eventually and a further rise in @ does
not affect the equilibrium. If 5(1 — §) is large enough so that (15) holds, we would cross
the threshold value % and switch to a consume-then-save equilibrium. Then, there will
suddenly be some rich people in the economy (A = Xg > 0). The probability of a rich
person taking the third apple, 7, is equal to 7y when % = ug, continues to rise as u rises,
and reaches one at some value ;. Similarly, the benefit of wealth, V(1) — V(0), continues
to rise as u rises, and reaches the maximum value when u = u;. Meantime, the fraction
of rich people X declines from Ao and reaches some minimum value A\ when u reaches 1.

Thereafter, a further rise of u does not affect the equilibrium.

2.3 Welfare and Policy Implication

Imagine the moment of making the consumption/saving decision (after the individual in-
come has been realized) under the consume-then-save equilibrium, and consider introducing

a (surprise) policy that induces people not to store any apples and to share output equally
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in each match from the next period, as in the consume-all equilibrium. One such policy
is a wealth tax: Each stored apple is taxed with the probability . In Figure 1, there is a
threshold § > § so that the equilibrium transits from a consume-then-save to a consume-all
equilibrium as ¢ rises and crosses 8. In order to induce no saving, it is sufficient that the
tax probability ¢ satisfy: (1—¢)(1—48) < (1—4). In equilibrium, no wealth taxes would be
collected since nobody would store an apple. An alternative policy is (the announcement
of) a progressive income tax/subsidy, for instance, a policy that subsidizes one apple to a
person with no income, and taxes a person with an income of three apples one apple. The
subsidy would eliminate the bargaining advantage of a rich person, so nobody would store
an apple, and everyone’s expected income after taxes and subsidies would be 3/2 apples as
in the consume-all equilibrium. There may be other policies that would lead to the same
outcome. Below, I will refer to any of these policies that induce no saving and the equal
sharing of output as the no-saving policy.

In order to assess the welfare impact of the no-saving policy, first consider a would-be-
rich person (i.e., a person who would have stored an apple under the consume-then-save
equilibrium). From (2), (3), (9), and (10), the expected discounted utility of such a person
under the consume-then-save equilibrium is:

=1 (1ra-naed - s wo-non), a9

where the subscript s denotes the consume-then-save equilibrium. Under the no-saving
policy, the expected discounted utility of the above would-be-rich person is the marginal
utility of consuming a second or a third apple (instead of storing it), which is equal to one,
plus the expected discounted utility under the equal sharing of output with no saving from

the next period, which is equal to:
P
1-p3

14



where the subscript ¢ denotes the consume-all equilibrium. Let €2 denote the utility gain

(loss) of the would-be-rich person upon the implementation of the no-saving policy:

Q

L+ Ve(0) = Vi(1). (18)

If the depreciation probability 6 = 0, the fraction of rich people X = 1 under the consume-
then-save equilibrium so that V,(1) = 3/2- /(1 — 3) in (17) and Q = 1 > 0 in (18). If
§ > 0, we can express V(1) in terms of 3, §, and A only, using (12) and (13). Given 8 and
8, the remaining parameter @ determines X in the range [A1, Ao], with a higher u leading
to a lower \, as discussed in Section 2.2. We can show that dV,(1)/0A < 0 within the
range of [A1, Ao], which implies that V(1) takes on the highest value when @ > %, so that
A= \. An interpretation is that as u rises, the one-period income gain of a rich person

(i.e., 14+ (1 —X) -7 in (17)) rises. The annuity value of the utility loss from eventually
losing the stored apple (i.e., 6/(3(1 —§)) - (Vs(1) — V4(0)) in (17)) also rises but this is a
second-order effect as it is due to the rise of the one-period income gain. Let €; denote
the value of 2 when @ > u; given 3 and 6. Then, 2 > ;. We can show that, somewhat
surprisingly, 1 > 0 for any 3 and J that satisfy (15). Then, Q > ©; > 0 for any £, 4,
and u under which the consume-then-save equilibrium exists. Therefore, a would-be-rich
person becomes better off upon the implementation of the no-saving policy.

Now, consider a would-be-poor person (i.e., a person who would not have stored an
apple under the consume-then-save equilibrium). The expected discounted utility of such a

person under the consume-then-save equilibrium is V4 (0). The expected discounted utility

of the person under the no-saving policy is V.(0). Since V(1) — V,(0) > 1, we have:
Vs(0) < Vs(1) =1 =V.(0) — Q < V.(0). (19)

Therefore, a would-be-poor people also becomes better off under the no-saving policy. In

summary, we have:

15



Proposition 5: Suppose that the economy is at a moment of making the consump-
tion/saving decision under the consume-then-save equilibrium, and that a policy that in-
duces no saving and the equal sharing of output is implemented unexpectedly. Then,

everyone in the economy becomes better off.
Proof: See Appendix.

Proposition 5 starkly shows the inefficiency of saving in this model. Recall that the only
motive for saving is to obtain a greater share of output tomorrow. Since the total output is
fixed, the advantage of wealth in bargaining is at the disadvantage of other people. Storing
an apple enables a person to receive the third apple with the probability of more than one
half when matched with a poor partner; it also enables the person to avoid receiving the
third apple with the probability of less than one half when matched with a rich partner.
Thus, storing an apple has a negative externality on both the poor and the rich people.
Consider the limiting case of no depreciation (§ = 0) to focus on the externality on the
rich people. With 6 = 0, there are only rich people (5\ = 1) and everyone receives the third
apple with the probability of one half in equilibrium. If everyone stops storing apples, each
person can consume one extra apple immediately and continue receiving the third apple
with the probability of one half from tomorrow. Therefore, everyone becomes better off
under the no-saving policy. Proposition 5 shows that the force of the externality is strong
enough so that everyone becomes better off whenever the economy is in a consume-then-

save equilibrium.

3. Extensions

In the previous section, I made a number of simplifying assumptions in order to make
the logic of the inefficiency of wealth accumulation clear. A notable assumption is that

matching is random. On the contrary, suppose that the poor are matched only with
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the poor and the rich are matched only with the rich. Then the output would be equally
divided in all matches, eliminating the incentive to accumulate wealth. An interpretation of
random matching is that a production opportunity arises for two randomly chosen people.
Random matching can be rephrased as the assumption that the production opportunities
arise for people of diverse wealth levels at least sometimes.

In the remainder of this section, I address two other assumptions, indivisibility of
output and the limited storage capacity. I relax these assumptions and derive the conditions

under which the equilibrium with a wealth accumulation exists.

3.1 Divisibility of Output

Suppose that each apple is divisible, so that dividing the output by a fraction of an apple
and storing a fraction of an apple are possible. The one-period utility is E[U(c)] where
Ul) =c-I(c>1)+(c— (1 —¢)-u)-I(c < 1), where ¢ is assumed to be any non-
negative value. This utility function is an expansion of the utility function in Section 2,
interpolating the utility values when c is not an integer. The one-period budget constraint
is ¢ + s = w + y, where s,w € [0, 1].

I will focus on the limiting case of no depreciation of stored apples (i.e., 6 = 0). Oth-
erwise, the model environment is the same as in Section 2. I will construct an equilibrium
where everyone maintains one stored apple (i.e., A= 1) as in the consume-then-save equi-
librium with no depreciation. In order to insure that there is no incentive for a person
to deviate from the equilibrium by saving less than one apple, I will characterize the off-
equilibrium path (i.e., the bargaining outcome and the consumption/saving pattern of a
person with less than one saved apple).

The utility of a person with wealth w at the beginning of a period is:

V(iw) = Zﬁ(y;w, 1) max {u(w+y—s)+p6V(s)} (1)

seY (w+
; (w+y)

17



where w € [0,1] and Y(w + y) = [0,min{1l,w + y}]. The bargaining outcome maximizes

the Nash product: for each w, {7(y;w, 1)}, solves

e { (X wlus 1) Wl ) = W) (Sl ) Wit —) - ww) b (ay

y y

where W(w +¥) = max,ey (wiy)lu(w +y—s)+ BV (s)}. An equilibrium is the value func-
tions, V(w) and W (w + y), and the income-probability function, 7(y;w, 1), that together
satisfy (1) and (4)".

The conjectured equilibrium properties are:
1<pV(A)-V(0)<l+u (20)

and

BV (w) =V(0)) Sw - BV(1) = V(0)) (21)

for all w € [0,1]. Equation (20) implies an incentive to store an apple after consuming
one. Equation (21) implies that everyone prefers a fair lottery of storing a whole apple or
none to the certainty of storing a fraction of an apple. Both of these properties mimic the
consume-then-save equilibrium in Section 2.

Using the consumption/saving pattern given by (20) and(21), we can deduce the
pattern of W (w) and then, drawing the utility frontiers under the feasible division of
output, deduce the pattern of the bargaining outcome. Figure 2 illustrates the expected
value of the sum of wealth and income, w + Zy ym(y;w, 1), as a function of wealth w. If a
person’s wealth is below w1, his wealth has no value since his income will be just sufficient
to avoid starvation regardless of his wealth. In maximizing (4)’, the solution is at a corner.
If a person’s wealth is between w; and ws,, his income is enough to consume an apple
and to save an apple with some probability. Thus obtaining an apple beyond starvation is
(endogenously) probabilistic reminiscent to the model in Section 2. If a person’s wealth is

between wy and w3, his wealth is enough to consume an apple and to save an apple with
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certainty. In maximizing (4)’, the solution is at another corner. If a person’s wealth is
above w3, his wealth is enough to consume more than an apple and to save an apple with

certainty.

Figure 2: Expected Sum of Wealth and Income as a Function of Wealth

2.5

Using the pattern of the bargaining outcome, we can further deduce the pattern of

the value function V(w), illustrated in Figure 3.

Figure 3: Expected Utility as a Function of Wealth

WLl

Wizl 1

wio)

In Figure 3, the dotted line is the righthand side of (21), multiplied by 1/8. In order

for (21) to be satisfied, the value function V(w) must lie below the dotted line for all
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w € (0,1). Observe that this is equivalent to V(w3) lying below the dotted line. Using

this observation, we can show that (21) is equivalent to:

B 3
Ty (2(1—[3)2 _1)‘ (22)

Further, given (22), (20) holds iff:

B>z (15)

GV )

Equation (15)" is equivalent to (15) for the case of 6 = 0 while (22) is more restrictive than

(16). In summary, we have:
Proposition 6: An equilibrium with A\(1) = 1 exists if (15)" and (22) hold.
Proof: See Appendix.

Thus the equilibrium in which everyone maintains one stored apple (i.e., A(1) = 1), as
in the consume-then-save equilibrium with 6 = 0 in Section 2, exists if the valuation of
future consumption is high enough (i.e., § large enough) and the starvation disutility is
high enough (i.e., u large enough). The threshold disutility is higher than in Section 2.
We can conjecture possible equilibria when the starvation disutility % is below the
threshold in (22). In Figure 3, the value function would rise above the dotted line. The
bargaining outcome would then feature the probabilistic allocation of a fraction of an apple
(instead of a whole apple) to a partner with additional flat segments in Figure 2, and the
consumption/saving behavior would feature storing a fraction of an apple. Regardless of
these complications in the off-equilibrium paths, the equilibrium with A\(1) = 1 may very
well exist for a segment of 4 below the threshold in (22). In this sense, the characterization
of the equilibrium in this section is for the special case of non-fractional saving, mimicking

the equilibrium in Section 2.
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3.2 Unlimited Storage Capacity

Now suppose that the storage capacity is unlimited so that the wealth w and the saving s
can take on any non-negative integers {0,1,2,...}. As in Section 3.1, assume that there is
no depreciation of stored apples (i.e., § = 0). Otherwise, maintain the same environment
as in Section 2. I will construct an equilibrium where everyone maintains a fixed number
of stored apples, i.e., A(w) = 1 for some w > 1. In order to insure that there is no incentive
for a person to deviate from the equilibrium, I will characterize the off-equilibrium path.
(i.e., the bargaining outcome and the consumption/saving pattern of a person with more
or less than w stored apples).
The utility of a person with wealth w at the beginning of a period is:

V(w) =Y wlyiw.w) max fu(w+y-s)+4V(s) 1y

where w € {0,1,...} and T(w+y) ={0,1,...,w+y}. The bargaining outcome maximizes

the Nash product: for each w, {7(y; w,w)}, solves

max { (3wl w, o)W (w+y) = W) (D wlysw,w) - W(w+3-y) ~ Ww)) } 0%

Yy Yy

where W(w + y) = maxXser(wiyp)tu(w +y —s) + V(s)}. An equilibrium is the wealth
level w, the value functions, V(w) and W(w + y), and the income-probability function,
m(y; w,w), that together satisfy (1)” and (4)".

The conjectured equilibrium properties are: A(w) = 1 for some w > 1;
1<pV(w—-n)—V(w-n—-1)<1l+u (23)
for all m € {0,1,...,w — 1};

BV(w—-n)—V(w—-n-1))<pV(w-n-1)—V(w—n-—2)) (24)
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for all n € {0,1,...,w — 2}; and
BV(w+n)—V(w+n-1)) <1 (25)

for all n > 1. Equation (23) is a generalized version of the condition, 1 < V(1) — V(0) <
1+ u, for the consume-then-save equilibrium in Section 2, and implies an incentive to save
an apple after consuming one when w < w. Equation (24) ensures that the bargaining
outcome takes the form of the probabilistic gain/loss of the third apple (rather than the
probabilistic gain/loss of multiple apples) so that a person with w < w probabilistically
accumulates one apple at a time. Equation (25) implies no incentive to store an apple
beyond w.

Given (23), (24), and (25), we can express V(w) in terms of 7(y;w,w). Also, we can
express W (w) in terms of V' (w) and then, taking the first-order condition in (4)”, express
7(y; w,w) in terms of V(w). We can then show that the conditions 8(V (w)—-V(w—1)) > 1

and B(V(w +1) — V(w)) < 1in (23) and (25) are equivalent to:

Eﬂ'oSﬁ'(ﬂ)—l)gﬁlgmin{laé_%’%}v

where 7(w —n) = 7(1;w — n,w) = 7(2;w,w — n). In words, 7w(w — n) is the probability
of a person with w taking the third apple in a match with a person with w — n. The first
inequality is a generalized version of (14) in Section 2: It is necessary for any equilibrium
with w > 1. The second inequality was absent in Section 2, since a storage capacity was
assumed in that section. Intuitively, a larger value of m(2;w,w — 1) implies a larger value
of B(V(w)—V(w—1)). The outside option of a person with w in bargaining with a person
with @ + 1 is negatively affected by a higher value of (V(w) — V(w — 1)). Thus, a high
enough value of B(V(w) — V(w — 1)) implies a small enough value of 7(2;w,w + 1) and a
large enough value of B(V(w+ 1) — V(w)). Since m(2;w,w — 1) < 1, a necessary condition

for the equilibrium with w > 1 is:

@
v
AR

(15)’



which is an analog of (15) in Section 2.

In order to find the equilibrium values of w, 7 (w), and u, we can first derive:

Al —7(w —n))
1—pa(w—n-—1)

g
(1 - pr(w—1))’

= 27(0 —n) — 1+ 5 (26)

which yields 7(w — n — 1) given 7(w — n). We can use (26) to derive the sequence of
(7(w—1),7(w—2),...,7(w—n)) starting from any value of 7#(w—1) € [mg, m1]. The value
of 7#(w — n) rises in n and there is a maximum value of n, call it n, with #(w —n) < 1.

Then, for any n € {1,2,...,n}, we can set w = n so that (7(0),7(1),...,7(w)) = (7

B

n),7(w—n-+1),...,7(w)). Given 7(0), @ is given by:

1

#(0) < 5 (1 —BV(@) — V(i — 1)) + ) (27)

with the strict equality if 7(0) < 1. Inequality (27) is a generalized version of (8). This al-
gorithm of finding the equilibrium can be understood intuitively as follows. The bargaining
advantage of a person with the equilibrium wealth is greater when matched with a person
with less wealth or, equivalently, a person with less wealth has a greater disadvantage in
bargaining with a person with the equilibrium wealth. These bargaining (dis)advantages
provide the incentive to accumulate wealth. Since the probability of taking the third apple
is bounded by one, the bargaining (dis)advantage is bounded and there is a maximum
wealth sustainable in equilibrium.

Analyzing the above algorithm of finding the equilibrium, we can derive some other
equilibrium properties. Observe that equilibria vary along two dimensions, w and 7r(w—1).
For w = 1, any @#(w — 1) = #(0) € [mo,m1] is supported as an equilibrium by some
value of u. As w rises, the equilibrium values of 7#(w — 1) may be truncated from the
above, since the sequence of 7(w) derived by (26) reaches the upper bound of one possibly
sooner for a higher value of 7#(w — 1) € [mp, m1]. There is a maximum equilibrium wealth,

call it w, so that for any w > @, there is no range of 7(w — 1) that supports w as an

equilibrium. For any w < @, let mo(w) € [mg, m1] denote the cutoff value so that w and any
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7(w — 1) € [mp, m2(w)] are supported as an equilibrium by some value of 4. Equation (26)
maps the range [mg, m2(w)] into a range of 7(0), [7(0)|(w,mp), 7(0)|(w, w2 (w))], where the
cutoff values, 7 (0)|(w, mp) and 7(0)|(w, w2 (w)), are higher for a higher w as long as they are
smaller than one. Further, (27) maps the range [7(0)|(w, m), 7(0)|(w, w2 (w))] into a finite
range of u, [a(w),u(w)], if 7(0)|(w,m2(w) < 1, and into an infinite range of u, [u(w), c0),
if 7(0)|(w, m2(w) = 1. The cutoff values, @(w) and @(w), are higher for a higher w, and if
the range of @ is infinite for some w, it is infinite for a higher w. In this sense, a greater
starvation disutility « supports a higher equilibrium wealth level w. Further, we can show
that @(w + 1) < @(w) so that the ranges {[a(w), &(w)]} s, indexed by w, overlap with each

other. Thus, the ranges of @ that support various values of w as equilibria form a single

contiguous set. In summary, we have:

Proposition 7: If (15)" holds, there is w > 1 such that, for any w € {1,2,...,@}, there
is a range of @, call it U(w), under which an equilibrium with A\(w) = 1 exists. The range
is either finite (i.e., U(w) = [u(w), a(w)]) or infinite (i.e., U(w) = [@(w),00)). The range
is increasing in w (i.e., w(w) < u(w + 1); a(w) < @(w + 1); and U(w + 1) is infinite if
U(w) is infinite). Further, the ranges are contiguous (i.e., u(w + 1) < @(w)) so that an

equilibrium with some w exists if U(@) is finite and u € [u(1), 4 (w)], or if U(®) is infinite

and u € [u(1),00).
Proof: See Appendix.

We can show that, for the case of w = 1, the equilibrium range of « is:

feman=[e (5-1) 5 (G-1)] <
i [ﬂ(l),oo):[l(%—l), 0 ) if 7y = 1.

The value of @(1) is the same cutoff value as in (16) in Section 2. The difference is that,

under the unlimited storage capacity assumed in this section, the equilibrium range of @
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may be truncated from the above in order to ensure that there is no incentive to save more

than one apple.

4. Conclusion

This paper presents a formal model of the bargaining motive of wealth accumulation and
characterized its welfare properties. The main assumption is the starvation disutility, which
weakens the bargaining position of a poor person and strengthens that of a rich person in
an otherwise symmetric bargaining, providing the incentive to accumulate wealth. Since
raising a person’s advantage in bargaining is possible only by reducing the advantage of
the others in the economy, wealth accumulation is inefficient. Policies such as a wealth tax
and a progressive income tax can improve the welfare.

The model is stylized in order to make the bargaining motive of wealth accumula-
tion and its welfare properties transparent. In reality, of course, there are other motives
for accumulating wealth such as returns from investing in capital and precautionary sav-
ing. These other motives of wealth accumulation seem conceptually separated from the
bargaining motive. Nonetheless, any convincing policy recommendations would need to

balance the policy implications of various motives of wealth accumulation.
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Appendix: Proofs of Propositions

Proof of Proposition 1

We have
V(0) = %Sggﬁ} (UL —-3s)+V(s)} + %Sggﬁ} {U@2-35)+V(s)};
V(1) = %Sggﬁ} {(U@2-3s)+V(s)} + %Sggﬁ} {UB—3s)+V(s)}.
Observe that
V(0) 2 5 - (UQ)+ V() + 5 (UQ) + V()
so that .
V1) =V(0) < 5 max {UQ2-s)-UQ)+V(s) -V (0)}
;1 max, {UB—5)—U©2)+V(s) - V(0)}
= max{1,V(1) — V(0)}
Then,
V(1) = V(0) = p(1 = §)(V(1) = V(0)) < A1 = ) max{1, V(1) - V(0)}
so that

V(1) =V (0) <B(1—-96) < 1.

This implies that s = 0 and ¢ = w + y and for all w and y.

Proof of Proposition 2

Consider first-order conditions when (w,w’) = (1,0) in (4). A first-order condition is

m(1;1,0) +7(2;1,0) = 1 and



with the strict equality if # = 7(2;1,0) < 1. Using that W(w 4+ y) = w + y + V(0)
for all w + y, we can show that (A1) is equivalent to (5) in the main text. Noting that
7(1;0,0) = 7(2;0,0) = 1/2 and A(0) = 1, we have:

Then,
V() = 7(0) = 51 = )V (1) - V(0) = 51 - 8) (5 + 7) <1

iff

- 1 1

TSB3a=5) 2 (6)
From (5) and (6), we have:

. 1+u 1 1
mln{l, 2 }<ﬁ(1—5)_§' (7)

Another first-order condition in (4) with (w,w’) = (1,0) is: 7(0;1,0) + 7(2;1,0) = 1 and
(W3) =Ww)Ew() + (1 - m)W(2) - W(0))

(A2)
HW (1) = W(2)(FEW(3) + (1 — 7)W(1) — W(1)) >0

with the strict equality if 7 = m(2;1,0) < 1. Repeating the above steps, we can show that
(A2) is equivalent to

- . 3+u

7 =m(2;1,0) = min< 1, . (A3)

and V(1) — V(0) < 1 iff

From (A3) and (A4), we also have (7).
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There are no first-order conditions, other than the above two, that yield additional solu-
tions. In particular, consider the following first-order condition: 7(2;1,0) 4+ 7(3;1,0) =1

and

(W(4) = W3)@W(0) + (1 —m)W(1) — W(0)) (45)
+(W(0) -W@)EWE) + (1 -m)W(3) -W(1)) <0

with the strict equality if 7 = w(3;1,0) > 0. We can show that (A5) is equivalent to 7 = 0.
Thus, only the corner solution is possible, but this only completes the corner solution in

(5) and (A3). Therefore, we have Proposition 2.

Proof of Proposition 3

Consider first-order conditions when (w,w’) = (1,0) in (4). A first-order condition is
m(1;1,0) + 7(2;1,0) = 1 and (A1) with the strict equality if # = 7(2;1,0) < 1. Using
that W(0) = —a + V(0); W(1) = 1+ V(0); and W(w +vy) = w+y — 1+ V(1) for all
w+y > 2, we can show that (A1) is equivalent to (8) in the main text. There are no first-
order conditions, other than (8), that yield additional solutions. In particular, consider the
following first-order condition: m(2;1,0) + 7(3;1,0) = 1 and (A5) with the strict equality
if 7 =m(3;1,0) > 0. We can show that (A5) is equivalent to @ = 0. Thus, only the corner

solution is possible, but this only completes the corner solution in (8).

Derivation of (9), (10), and (11) is as discussed in the main text. From (2), (3), (9), and

(10), we have:

V(1) = V(0) =81 -6)(V(1)-V(0) = T 5)(7%X_+ 1-%/2) (AG)
If =0, A\=1in (11). Then, (A6) becomes:
V) - T =5 (A7)
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In order to have V(1) — V(0) > 1, in (A7) the probability 7 needs to be sufficiently high:

N
\%

==

(A8)

DN

If 6 > 0, (11) and (A6) become (12) and (13), respectively. Derivation of (14) is as discussed

in the main text. Note that (14) nests (A8) as a special case of § = 0.

In (8), 7 is determined given V(1) — V(0). If § = 0, V(1) — V(0) is determined given 7
in (A7). If § > 0, A is determined given 7 in (12), and V(1) — V(0) is determined given \
in (13). Thus (8), (A7), (12), and (13) implicitly define a function, call it I', that takes a
value of V(1) — V(0) and returns another value of V(1) — V(0). The equilibrium value of

V(1) — V(0) is the one that satisfies: I'(V (1) — V(0)) = V(1) — V(0).

The derivation of (15) is as discussed in the main text. Assume that (15) holds from now

on. Consulting (8) and (14), let A be the value of V(1) — V(0) that solves:

1 1+a

Then, V(1) — V(0) < A in equilibrium if an equilibrium exists. A necessary condition for
an equilibrium with V(1) — V(0) > 1 is A > 1, which is equivalent to (16). Assume that
(16) holds from now on. Let A be the value of V(1) — V(0) that yields 7 = 1 in (8):

1 1
l==-(1-A
2 ( +

U

+

-

In (8), (A7), (12), and (13), observe that T(V (1) — V(0)) = T'(A) for all V(1) — V(0) < A.

If A< V(1)=V(0) < A, 7 decreases as V(1) — V(0) increases in (8). If § = 0, V(1) — V(0)
decreases as 7 decreases in (A7). If § > 0, A increases as 7 decreases in (12), and V (1)—=V (0)
decreases as A increases in (13). Thus, T is decreasing in V(1) =V (0) if A < V(1) =V (0) <

A. Consulting (14) and (16), we have I'(1) > 1 and I'(A) = 1. Further, I' is continuous
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and non-increasing if 1 < V(1) — V(0) < A. Therefore, there is a unique fixed point in

(1, A). Noting that A < 14 @ in (A9), we have Proposition 3.

Proof of Proposition 4

Consider first-order conditions when (w,w’) = (1,0) in (4). A first-order condition is
m(1;1,0) +7(2;1,0) = 1 and (A1) with the strict equality if 7 = 7(2;1,0) < 1. Using that
W(0)=—-a+V(0); W)= —-a+V(1); and W(w+y) =w+y — 1+ V(1), we can show

that (A1) is equivalent to

IN

7~T

% ’ (f/(l) +V(0) a). (A10)

1+u
There are no first-order conditions, other than (A10), that yield additional solutions. In
particular, consider the following first-order condition: m(2;1,0) + 7(3;1,0) = 1 and (A5)
with the strict equality if 7 = w(3;1,0) > 0. We can show that (A5) is equivalent to 7 = 0.
Thus, only the corner solution is possible, but this only completes the corner solution in

(A10).

We have:

V(0) = (% + A ﬁ)(—a + V(1) + (T +A-(1- fr)) (1+V(1));

V(1) = ((1 —N)-(1—7)+ %)(1+f/(1)) + ((1 — )7+ %)(2“7(1)).

Since everyone saves one apple in equilibrium, A= A(1) =1 —46. Then, we have:

V(1) - V(0) = 81— )(V(1) - V(0)) = 51 ) (m a1 - )+ LE

). (A11)
Substituting (A11) in (A10), we have:

—0)(1 4 du) — 2u(1 + u) -

< ( 1
= ta) - pl-0)1tall—0) 2

1
22

f (A12)
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Substituting (A12) in (A11), we have:

‘7(1)—‘7(0)<ﬁ(1—6)(1+g) <144

This is a contradiction. Therefore, we have Proposition 4.

Proof of Proposition 5

It was shown in the main text that > 0 when § = 0. If § > 0, given (17), we can express

V(1) in terms of 3, §, and X only, using (12) and (13):

%(1):%.(1+(%—1%) (1_[3/(1—X)i(1—ﬁ)/5)))' (A13)

Given 3 and 4, the remaining parameter u determines A in the range [\, \g|, corresponding

to a 7 in the range [7o, 1] according to (12). A higher @ leads to a higher 7 and a lower \

within the ranges. Taking the partial derivative of V(1) with respect to )\, we can show:

ov,(1) B 1 1
1)) <1—[3’2X2(ﬁ+(1—ﬁ)(1—b/5_1)<O

at any \ € [A1, Ao]- The second inequality uses the relation 1 — A > § that can be derived
from (12), (14), and (15) as follows. Define A to be the solution to (12) assuming 7 = 1/2:
A = (1-0)/(1+0). Since # > 1/2in (14), A < Ain (12). Then, 1-X > 1—-X = 26/(14+8) > §
since 6 < 1/3in (15). Thus, holding # and §, Vv, (1) decreases in ) or, equivalently, increases
in 4. The maximum value of f/s(l) is when \ = A, # =1, and @ > u;. Then, Q > Q,

where 7 denote the value of ) when u > @ given  and §. From (A13), we have:

w=1- 125 (o - 155) (- ammrazmm) 1)

Setting 7 = 1 in (12), we can derive:

6= % (A15)
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Note that A\; depends only on 6 and not on 3 or u. Now, we can substitute the above
expression of ¢ in terms of A1 in the expression of ©; in (Al4), and take the partial
derivative of €2y with respect to #. Doing so, we can show that, for any § with \; given

by (A15), £, takes the minimum value when

2 1 1 1—6-6/(1=X) \?
_ _ - . Al6
& max{3<1—5)’1+5 ((1+5)2 (1+0)(1—0/(1— A1) (A16)
The first argument is the minimum given by (15) and the second argument is always less
than 1. Finally, we can show that €; increases in ¢ in (A14) when A\; and [ are given by
(A15) and (A16), and Q3 — 0 as § — 0. Therefore, 1 > 0 for any 3 and §. Then, we
have: € > €y > 0 for any (3, d, and u. Therefore, a would-be-rich person becomes better

off upon the implementation of the no-saving policy.

It is shown in the main text that a would-be-poor person also becomes better off, as

summarized in (19). Therefore, we have Proposition 5.

Proof of Proposition 6

Equations (20) and (21) are consistent with the following consumption/saving pattern:
c=w+yand s =0ifw+y <1;and c = w+y—1land s =1 if w+y > 2. As a proof, observe
that U(w+y)—U(w+y—s) = s(1+u) > s-B(V(1)=V(0)) > B(V(s)=V(0)) if s < w+y < 1;
and U(w+y—s)—Uw+y—1)=1—s<(1—3s)-8(V(1)=V(0) <pWVQ)—-V(s)) if

w+y > 2 and s < 1. This consumption/saving pattern is equivalent to:
Ww+y) =—-u+1+a) (w+y)+LBV(0) (A17)

ifw+y <1;and
Ww+y)=w+y—1+ppV(1) (A18)

it w+y>2.
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Further, (20) implies: U(c) — U(1) = ¢ —1 < (¢ — 1) - B(V(1) = V(0)) if ¢ > 1; and
Ue)—U(1) = —(1— )1 +a) < (c—1)- BV(1) = V(0)) if ¢ < 1. For all w +y € [1,2],
using (21), we have: W (w +y)) — W(1) = max.{U(c) — UQ) + BV ((w +y —c) — V(0)} <
maxc{(c—1)-B(V(1)=V(0))+(w+y—c) - B(V(1)-V(0))} = (w+y—1)-8(V(1)-V(0)) =
(w+y—1)- (W(2) — W(1)) or equivalently,

Ww+y) <(w+y—1)-WE2)+2-w-y) W)

for all w+y € [1,2]. Then, the bargained sum of wealth and income, w + y, may proba-

bilistically take on the value of 1 or 2.
Further, (A17) and (A18) imply:
Wl +y) = Ww) = y(1 +3) > y- BV(L) = V(0)) = y(W(2) - W(1)
for all w € [0,1] and y € [0,1 — w]; and
Wlwty) - W) =wty—2< (wty—2) BV (1)~ V(0) = (w+y—2)(W(2) — W(1))

for all w € [0,1] and y € [2 — w, 3]. Then, possible output shares can be represented as a

convex set with linear frontiers in the first quadrant of a two dimensional space with the

axes of ) m(y;w, 1) and }° m(y; 1, w).

Redrawing the frontiers of possible output shares as w changes, we can conjecture the
following pattern of the bargaining outcome: there are w;, ws, and w3 with 0 < w; <
We < w3 < 1such that 7(g1 (w);w,1) =1if 0 < w < wy; 7(G1(w); w, 1) +7(g2 (w);w,1) =1
if 01 < w < We; w(Po(w);w,1) =1 if W < w < ws; 7(P3(w);w, 1) = 1if wg < w < 1,

where g1 (w), g2(w), and g3(w) solve: w + g1 (w) = 1; w + g2 (w) = 2;

W+ fo(w) = 2+ (419
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and

r(a(w);w,1) = L=

Wy — Wy

Given the assumed consumption/saving behavior, we have: V(1) = 3/2+5V (1) = 3/(2(1—
3); V(w) = wH+ga(w) =1+ V(1) if wz <w < 1; V(w) = 1+ 6V(1) = (2+8)/(2(1 - 3))

if we < w < ws;
V(w) =1+ B(7(@2(w);w, 1) - V(1) + (1 = 7(f2(w); w, 1)) - V(0))
if 1 <w <y and V(w)=1+6V(0)=1/(1-0)if 0 < w < ;.

From the above expressions of V(w), observe that g(V (1) — V(0)) = 3/(2(1 — 3)). Then,
(20) is equivalent to:

g _
1§m§1+u (A20)

From the above expressions of V' (w), (21) is equivalent to:

or to:

= . (A21)

Now, I will derive the expressions of wi, we, and ws. If w3 < w < 1, the first order

condition of maximizing the Nash product is:
W4 —g3(w)) = W(1) = (W(w + g3(w)) = W(w)) = 0.

Using (A18), we have:

_ 3 u(l—w)
= - 7. A22
o) = 5 — U (A22)
Comparing (A19) and (A22), we have:
N 1+u
Wa =
T 2+a



If Wy < w < Ws, the first order condition of maximizing the Nash product is:
(W(2)-W(Q)) (r(2—w;w,1)-W(24+w)+(1—7m(2—w; w,1))-W(3+w)—W(1))
+(W(24w)—W (3+w))- (7(2—w; w,1)- W (2)+(1—7(2—w; w,1))- W (1) - W (w)) =0.
Since 7(2 — wWa; e, 1) = 1, we have:
BV (1) = V(0)) - (w2 + B(V(1) = V(0))) = (1 + a)(1 —w2) + B(V(1) — V(0))

L POV
1+a+ B(V(1)—V(0)

(A23)

Similarly, since 7(2 — wy; w1, 1) = 0, we have:

BV (1) =V(0) - (1 +wi + V(1) = V(0) = (1 +a)(l —wn)

or

Given (A23), (A21) becomes (22). We can verify that 0 < Wy < W < w3 < 1 given (A20)
and (22). Finally, observe that the second inequality in (A20) holds if (22) holds and the

first inequality is equivalent to (15)". In summary, we have Proposition 6.

Proof of Proposition 7

Equations (23), (24), and (25) are consistent with the following saving/consumption pat-
tern: W(0) = —u+ BV (0); Ww+vy) =1+ V(w+y—-1)if w+y < w+ 1; and

Ww+y)=w+y—w+pV(w)ifw+y>w+1.

For (w,w") = (w, w+n) with n > 1, I can show that, holding 7(0; w, w+n)+m ,W+Hn) =

(1;w
1, the first order derivative of the Nash Product in (4)” with respect to m(1;w,w + n) is
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positive for all values of 7(1;w,w+n). Therefore, 7(0; w,w+n) = 0. Then, the first order

condition is 7(1;w,w +n) + 7(2;w,w +n) = 1 and

(W(@+2) — Ww+1)) (7 (@ +n) W@ +n+1)+(1— 7 (@+n) ) W@ +n+2)— W(@+n))
(A24)
(W@ +n+1) — W(@+n-+2)) (7 (@+n) W(d+2)+(1—7 (@+n)) W(d+1)— W(@)) <0

with the strict equality if 7#(w + n) = 7 (2;w,w + n) > 0.

For (w,w") = (w,w—n) with n > 1, T can show that, holding 7(2; w, w—n)+7(3; w,w—n) =
1, the first order derivative of the Nash Product in (4)” with respect to m(3;w,w — n) is
negative for all values of 7(3;w,w — n). Therefore, w(3;w,w — n) = 0. Then, the first

order condition is 7(1;w,w —n) + 7(2;w,w —n) =1 and

(W(@+2) — Ww-+1)) (7 (@ —n) WD —n+1) 4+ (1— 7 (@ —n) ) W@ —n+2)— W(@—n))

(A25)
+(Ww—n+1)—W(w—n+2)) (7 (w—n)W(w+2)+(1—7(w—n)) W(w+1)—-W(w)) >0
with the strict equality if 7(w —n) = 7(2;w,w —n) < 1.
Given the expressions of W (w), (A24) is equivalent to:
ot n)>1- SV (@ = Vw=1) (A26)

2

for n > 1. Observe that the right-hand side of (A26) is free of n. Then, 7 (w+n) = 7 (w+m)
and 71(w + n) = #(w +m) for all n,m > 1. Then, (V(w+n)—V(w+n—-1) =<1

for all n > 2. This verifies (25) for n > 2.

Given the expressions of W (w), (A25) is equivalent to:

_ 1 _ _ 1+a
7(0) < 5 (1 —BV(w)=V(w—-1))+ BV = V(O))) (27)
and
iy 1 _ o B(V(w—n)—V(w—n-—1))
W(w—n)gg(l—ﬁ(V(w)—V(w 1))+ﬁ(V(u_J—n+1)—V(u_)—n))) (A27)
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forn € {1,2,...,w —1}.

Now, the value functions can be written as:

V(o —n)=1+BGE@—n) V(@ —n)+ (1 —-7@—n) -V(@—-n+1);  (A28)
V(w) = g + BV (w); (A29)

and
Viw+n)=7(w+1)-(n+1)+ (1 —7@+1) (n+2)+6V(@),  (A30)

where n > 1.

In order for the first inequality in (23) to hold for n = 0, in (A28) and (A29), we need:

BV(w) = V(w—-1)) =

7f< >1 (A31)

2(1 — pir(w — 1))

or

DO | —

(’11_)—1)271'0

|-

¢

Since 7(w — 1) < 1, a necessary condition for the equilibrium with w > 1 is:

B> % (15)
In order for (25) to hold for n = 1, in (A29) and (A30), we need:
BV + 1) - V(@) =53~ #to+ 1) <1 (A32)
or
FD41) > g - %. (A33)
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From (A26) and (A31), #(w+ 1) > 1— 3/(4(1 — 3)). Combined with (A33), this implies
that 7w(w + 1) > 0 given (15). Then, (A26) holds with equality. Then, from (A33), (A31),
and (A26), we have:

: % } (A34)

DN |

_ ) 1
7(w—1)<m Emm{l,— —
s
The equilibrium value of 7 (w — 1) is limited to the range [my, 71|, given (14) and (A34).

In order for (24) to hold, in (A28) and (A29), further we need:

BV(w—n)=V(@w-n—-1) B —#(w—n)
5(V(u_)—n+1)—V(u_)—n))_1—ﬁﬁ(u—)_n_1)21 (A35)

or

F—n—1)— 70 —n)> = —1 (A36)

1
B
for all m € {1,2,...,w — 1}.

Note that (A36) implies that 7w(w —n) < 1 for all n € {1,2,...,w —1}. Then, (A27) holds
with equality. Then, from (A31), (A35), and (A27), we have:

Al —7(w —n))
1—pa(w—n-—1)

g
(1= pr(w—1))’

= 27(0 —n) — 1+ 5 (26)

which yields 7(w — n — 1) given 7(w — n).

Assume (15) and consider the following algorithm of finding the equilibrium values. Pick
a value of 7(w — 1) between 7y and m; in (14) and (A34). Then, (A32) and (A31) hold by
construction. Derive {7 (w — n)} for n > 2 from (26). From (A31) and (14), observe that
the righthand side of (26) is greater than 1. Then, (A36) holds. Given (A36), observe that
there is 7 > 1 so that 7(w—mn) < 1 and there is no 7#(w—n—1) < 1 that solves (26). Then,
the maximum possible equilibrium value of w is n. For any w < n, derive u that solves
(27) with equality given (A31) and (A35). Given (14), (15), and (A36), 7(0) > mp > 1/2.
Given (A31), B(V(w) —V(w—1) > 1. Then, 1+a > S(V(1) —V(0)) in (27). This verifies
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the second inequality in (23). Finally, set 7w(w) = 1/2; derive 7(w + 1) from (A26) and
(A31); and set 7(w + n) = 7(w + 1) for all n > 2. Then, by construction, w, @, and

{7(n)}n>0 are an equilibrium.

The above algorithm shows that any w € {1,2,...,n}, where i is determined by 7(w — 1),
is supported as an equilibrium by some value of . In order to keep track of the various
equilibria, let n|7(w — 1) denote 7 given 7 (w — 1). Let 7 (w)|(w,7(w — 1)) denote 7(w)
given w and 7(w —1). Similarly, let u|(w, 7(w —1)) denote u that solves (27) with equality,

given w and 7(w — 1). Let V(w)|(w, 7 (w — 1)) denote V(w) given w and 7 (w — 1).

{1,alr(w —1)}.

Observe that 7(w —n — 1) as a function of #(w — n) is continuous and increasing in
(26) so that 7(w)|(w,7(w — 1)) is continuous and increasing in 7(w — 1), holding w and
w, while 7(w — 1) € [mo,m]. Relatedly, the lefthand side of (26) or, equivalently, the
righthand side of (A35) as a function of 77 (w — 1) is continuous and increasing. Consulting
(A31), observe that V(1)|(w,7(w — 1)) — V(0)|(w,7(w — 1)) is continuous and increasing
in 77(w — 1). Putting these properties together, observe that u|(w, 7 (w — 1)) is continuous
and increasing in 7(w — 1) in (27). Then, if w < n|m; and @|(w, 7o) < @ < u|(w,m ) for
some u, there is x € (mp,m1) so that w < n|zr and u|z = u. Therefore, for any w < n|m;
and u € [u|(w,mp), u|(w,m )], there is 7w (w — 1) that is an equilibrium along with {7 (w)}

derived by the above algorithm.

Now suppose that 7(0)|(n|m,m1) = 1. Then, in (27), observe that any u > u|(n|m1,71)

along with the other equilibrium values associated with 7#(w — 1) = m; is an equilibrium
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by construction. Therefore, the range of u that supports the equilibrium with @ = n|m;
is extended to the infinite set [u|(n,m),00) if 7(0)|(n|m1,m1) = 1. Note that, for w <
n|my, the range of u that supports the equilibrium with @ is necessarily the finite set

[a|(w, 7o), u|(w, m1)] since @|(w, 1) is increasing in w.

Now suppose that fi|m; < 7n|mp. Then, for any w € {n|m + 1,7|mo}, 7(0)|(w,m) and
u|(w, my) exist while 7(0)|(w,71) and u|(w, 1) do not exist. Since @|(w, 7 (w — 1)) is con-
tinuous and increasing in 7(w — 1), there is 7(w — 1) € [mg,m], call it mo(w), so that
7(0)|(w, m2(w)) = 1. Then, any u € [u|(w, ), u|(w, m2(w))] supports some 7 (w — 1) €
[0, m2(w)] as an equilibrium by the above algorithm. Further, any u > u|(w, m2(w)) sup-
ports 7(w—1) = ma(w) as an equilibrium, repeating the reasoning in the above. Therefore,

for any w € {n|m + 1,7|m}, the range of u that supports the equilibrium with @ is nec-

essarily the infinite set [u|(w, mp), 00).

In the remainder of the proof, we will show that the union of the ranges of u that support
the equilibria with various values of w is contiguous, i.e., if x1 < x2 and if there are an
equilibrium with @ = x; and another equilibrium with @ = x2, there is an equilibrium
with & = z for any « € (z1,x2). The ranges of @ that support the equilibria with w €
{n|m1 + 1,n|m}, if any, are the infinite sets, so the union of these sets is contiguous. If
7(0)|(n|m,m) = 1, the range of u that supports the equilibrium with w = n|m is also
infinite so that the union of the ranges of u that support the equilibria with w € {n|m1, n|mo}
is contiguous. Therefore, the union of the ranges of u that support any equilibria is
contiguous if a|(w,m) < @|(w — 1,m) for any w with w < n|m, w — 1 < n|m, and

#O)(@ —1,m) < 1.

If ; =1, alm =1 and 7(0)|(7|71,m1) = m1 = 1 so that the union of the ranges of @ that

support any equilibria is contiguous. Consider the case of m; < 1 in the following. From
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(A35) and (26), we have:

BV(w—n)-V(w-n-1)

=27(w —n) — B
BV(@—nt1) —V(o—n) @-n =1+ (A3T)

(1 - pr(w—1))

Equation (A37) holds for n > 1; it also holds for n = 0 if #(w—1) = m since 7#(w) = 1/2 and

BV(w+1)—V(w)) =1if #(w—1) = m, given (A32), (A33), and (A34). From (A31) and
(14), B/(2(1—Pmp)) = 1. From (A26), (A33), (A31), (14), and (A34), 8/(2(1—pm1)) = 2mo.
Then, from (A37), we have:

Alw—1)|(w—1,m)  27(w)|(w —1,7) +2m — 1 . A(w)|(w —1,m1)

A(w = 1)|(w, mo) - 27t (w)|(w, mo) A(w)|(w, mo) ) (A38)

where w < w — 1, A(w)|(w,7(w — 1)) = B(V(w + 1)|(w, (0w — 1)) — V(w)|(w, 7 (w0 — 1))),
and V(w)|(w,7(w — 1)) is V(w) given w and 7 (w — 1). From (26), we can derive:
2

2w = D (,m0) = = +1 - m (A39)

and

2 90 + 1
27(w — 1)|(w,m1) +2m9 — 1 = = 4+ 279 — — — .
(w = DI(@,m1) + 2 5 2w (@, m) 1 2m0 — 1

Note that (A39) and (A40) define two functions, F' and G: 27 (w—1)|(w, m) = F(27(w)|(w,

(A40)

mo)) and 27 (w — 1)|(w, 1) 4+ 279 — 1 = G(27(w)|(w,m) + 2mp — 1). Further, note that
F(2) < G(z) for all z > 1. Let F'™1(2) = F(F'(2)) and G*T!(2) = G(G'()) for all t > 1.
Then, from (A38), we have:

Aw)|(w—1,m) G 12r(w—1)|(w—1,m)+2m0—1) A(w—1)|(w—1,m)

Aw)|(w,m) ozt (2 (o —1)| (0, m0)) A(w = 1)[(w, 7o)
_ G (2m) (A41)
Fw—w—1<2ﬂ.0)
>1,
where the second equality uses: #(w — 1)|(w — 1,m) = 1/2; #(w — 1)|(w,m) = 7o;

A(w—-1)|(w—1,m) = p(V(w)|(w—1,m)-V (0-1)|(w—1,m1)) = 1; and A(w—1)|(w, m) =
BV (w)|(w,mp) — V(w — 1)|(w,m)) = 1. From (27), (A38), and (A41), we have:

lt+af(w—1,m) 27%(0)|(w—1,m)+2m—1 AQ(w—-1,m)) G(2m)

Tal(om) 27#(0)| (. 70) A7) Fo(2mg)

42



if w < n|my and w — 1 < n|m. Therefore, the union of the ranges of 4 that support any

equilibria is contiguous.

In order to summarize, let © = n|my; u(w) = u|(w,m); and G(w) = u|(w,m). We then

have Proposition 7.
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