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Abstract

In this paper, we study an imperfect monitoring model of duopoly under similar settings

as in Green and Porter (1984), but here firms do not know the demand parameters and learn

about them over time though the price signals. We investigate how a deviation from rational

expectations affects the decision making process and what kind of behavior is sustainable in

equilibrium. We find that the more common information firms analyze to update their beliefs,

the more room is for implicit coordination. This might propagate escapes from the Cournot-

Nash Equilibrium and the formation of cartels without explicit cooperative motives. In contrast

to Green and Porter (1984), our results show that in a model with learning, breakdown of a cartel

happens even without a demand shock. Moreover, in this model an expected price serves as an

endogenous price threshold, which triggers a price war. Finally, by investigating the durations of

the cooperative and price war phases, we find that in industries with a higher Nash equilibrium

output and a lower volatility of firm-specific shocks, it is easier to maintain a cartel and harder

to break it down.
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Abstrakt

V tomto článku studujeme nedokonalý monitorovaćı model duopol̊u v podobném prostřed́ı jako

Green a Porter (1984), zde ale firmy neznaj́ı parametry poptávky a poznávaj́ı je v čase pomoćı

cenových signál̊u. Zkoumáme, jak odchylka od racionálńıch očekáváńı ovliv̊nuje rozhodovaćı

proces a jaký druh chováńı je udržitelný v rovnováze. Zjǐst’ujeme, že č́ım jsou informace, které

firmy analyzuj́ı při aktualizováńı svých názor̊u, všeobecněǰśı, t́ım věťśı je prostor pro implicitńı

koordinaci. To m̊uže zvěťsit množstv́ı nik̊u z Cournot-Nashova ekvilibria a pośılit utvářeńı kartel̊u

bez explicitńıch motiv̊u pro kooperaci. Na rozd́ıl od Greena a Portera (1984) naše výsledky

ukazuj́ı, že v modelu s učeńım docháźı k rozpadu kartel̊u i bez poptávkového šoku. Nav́ıc v

tomto modelu očekávaná cena slouž́ı jako endogenńı hraničńı cena, která vyvolá cenovou válku.

Zkoumáńım délek trváńı kooperace a cenové války pak zjǐs?ujeme, že v odvětv́ıch s vyšš́ımi výstupy

Nashovy rovnováhy a nǐzš́ı volatilitou šok̊u specifických pro firmy je jednoduš́ı udržovat kartel a

těžš́ı ho rozb́ıt.
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The difficulty lies not so much in developing new ideas as in escaping from old ones...

– John Maynard Keynes, The General Theory of Employment Interest and Money, 1935

1 Introduction

In this paper, we study an imperfect monitoring model of duopoly where firms do not know the

demand parameters and learn about them over time though the price signals. Related literature

includes the work of Stigler (1964), Green and Porter (1984), Slade (1989), and Ellison and

Scott (2009). Stigler (1964) argues that a cartel might break down under imperfect information

with unobservable firm action as a consequence of secret price cutting, because the rivals fail

to distinguish between cheating and a negative demand shock. Green and Porter (1984) extend

Stigler’s ideas of secret price cutting by introducing imperfect information (only the price is

observable, but both the demand shock and rivals’ supply are not observable) into a dynamic

model of oligopoly. Green and Porter (1984) show that when structural parameters are known

and firms can calculate cooperative and Cournot-Nash equilibrium outcomes, we can have both

collusive and Cournot-Nash equilibria as a non-cooperative rational expectations equilibrium

outcome.1

In practice firms never actually know the demand curve (Balvers and Cosimano, 1990).

This implies that firms cannot calculate the Cournot-Nash equilibrium payoff and use it as

a benchmark punishment payoff to deter deviations from an agreed upon output. Therefore,

when structural parameters are unknown, the only sustainable equilibrium concept is the Nash

equilibrium.2 Nevertheless, we often observe tacit collusion and cooperative behavior in practice.

These observations lead us to consider the same model as Green and Porter (1984) but

with unknown structural parameters and study whether learning itself can create room for

implicit coordination and propagate cooperation. Moreover, we are interested in several other

issues such as What are the main determinants and facilitators of cooperative behavior when

structural parameters are unknown? Can we observe price wars? When do they occur? What

determines the durations of the cooperative and price war phases? Which industries are more

1Collusive equilibrium is supported by postulating the existence of a trigger price and a punishment period of
a fixed duration, during which firms switch to the Cournot-Nash equilibrium for fixed amount of time whenever
the price goes below the trigger price. After the fixed punishment period firms revert to the cartel-like behavior.
However, no mechanism that allows coordinating on the trigger price and the punishment duration is provided.
Abreu et al. (1986) extends Green and Porter’s analysis allowing for more general strategies and show that trigger
strategies are indeed optimal.

2Kaneko (1982) shows that in supergames when there is no monitoring and ”when a player does not even
know what single-period payoffs she has achieved thus far ... the only possible SPEs are strategy profiles that call
for single-shot Nash actions in all periods” (Friedman, 2000, p. 65).
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susceptible to cooperative behavior?

The extensive IO literature on learning can be classified into active-learning models, where

the researcher is concerned with whether the agents could learn the true state or whether the

deviations from complete learning remain significant in the long-run (Rothschild (1974), Balvers

and Cosimano (1990), Rustichini and Wolinsky (1995), Keller and Rady (1999)); experimenta-

tion models, where researchers are interested in when and how myopically optimal actions can

differ from the actions of agents who recognize that their current actions may influence their

future expectations (Grossman et al. (1977), Balvers and Cosimano (1990), Keller and Rady

(1999)); signal-jamming models, where rivals’ actions are unobservable and agents attempt to

manipulate their actions to affect the direction in which rivals update their beliefs (Riordan

(1985), Fudenberg and Tirole (1986), Mirman et al. (1993a)); and strategic information manip-

ulation models, where rivals’ actions are observable and agents cannot influence the direction

in which rivals update their beliefs but instead can affect the the informativeness of observed

signals and thus the extent to which rivals are likely to update their expectations3 (Sakai (1985),

Mirman et al. (1993b), Mirman et al. (1994)).

In this literature, unknown parameters are usually modeled as constants whose true values

are not observable by the firms. The firms have some prior beliefs over the distribution of possible

values of the parameters which are updated using Bayes’ law upon the arrival of new information.

In the models of active learning, however, the unknown parameters are often modeled as random

variables. This allows the researcher to asses learning in a changing environment where there is

positive probability that the unknown parameters may change. This often makes the learning

“perpetual”, or not ceasing even in the long run (Balvers and Cosimano, 1990, Rustichini and

Wolinsky, 1995). In our model unknown parameters are constants. However, our learning is

“perpetual” because we assume that the firms believe in the possibility of structural changes and

incorporate this belief into their estimation model. We use the same belief updating mechanism

— Bayes’ law — as the above learning models, but we are especially interested in the effect

of learning on optimal behavior and do not focus on the learning process per se. Therefore,

we assume that firms are not concerned with experimentation or signal-jamming when making

decisions and take their beliefs as remaining unchanged in the future. This makes firms in our

model anticipated rather than expected profit maximizers in the sense of Kreps (1998).

3Researchers study under what conditions it is optimal for agents to influence through their current actions,
the informativeness of observed signals to make it easier or more difficult to distinguish the “good” and “bad”
states of the demand.
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The firms in our paper adopt the Kalman filtering algorithm for belief updating. In our

linear model, the shocks are normally distributed, and using Kalman filter is equivalent to

using Bayes’ law for prior updating (Balvers and Cosimano, 1990, Sargent, 1999). There are

several papers from IO literature that use the Kalman filter for updating beliefs, among them

Slade (1989), Slade (1990), Balvers and Cosimano (1990). From this list the closest paper to

our work is by Slade (1989), who presents a way of generating price wars in a price-setting

duopoly with unknown demand parameters. In Slade’s model unknown parameters are random

variables and may change with some small probability. When demand parameters change, firms

start updating their beliefs about them using the Kalman filter, and this propagates price wars.

Similar to Green and Porter (1984), the price war in Slade (1989) arises as a consequence of some

exogenous process. Frequency of its occurrence is determined by the demand shocks or shifts

in demand parameters, since the history of actions does not alter the distribution of exogenous

shocks. We, however, show that even when unknown parameters are constant, price wars could

happen endogenously, as a result of belief updating. Our findings are consistent with Ellison

(1994), who reports that the Green and Porter model prediction that price wars happen only due

to exogenous shocks in equilibrium is not supported by the data. In our model, price wars occur

when the mean actual price falls below the mean forecasted price; thus, the mean forecasted

price serves as an endogenous trigger of a price war and firms do not have to commit a priori to

some agreed upon price trigger as in Green and Porter (1984).

Another difference that distinguishes our paper from Slade (1989) is as follows. In Slade

(1989) model, if the unknown parameters do not change quite often, the learning ceases and

the firms can calculate a new stationary Nash equilibrium. In our case learning never ceases;

therefore, the firms never know the true values of unknown parameters and thus are never able

to calculate the Nash equilibrium of the model. The recurrent escapes from a neighborhood of

the Nash equilibrium of our model occur in the direction of the cooperative equilibrium, while in

Slade’s model, the direction of belief updating is determined by the exogenous shift in demand

parameters.

In our model the equilibrium concept is the self-confirming equilibrium (SCE) developed

and studied by Fudenberg and Levine (1993, 2009) who found widespread application in the

models of adaptive learning, cf. Sargent (1999), Williams (2001), Cho et al. (2002), Williams

(2003), Kasa (2004), Sargent et al. (2009), and Ellison and Scott (2009). In these models, the

adaptive learning mechanism combined with the SCE concept is capable of generating recurrent
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rapid deviations of beliefs from the SCE followed by a slow return. These recurrent deviations,

called ‘escape dynamics’ after Sargent (1999), were used in the cited papers to explain various

economic phenomena such as price volatility, business cycles, disinflation, and currency crises.

The paper which is closest to ours from the adaptive learning literature is by Ellison and

Scott (2009), which studies a Hotelling’s duopoly model of non-renewable resource markets

under adaptive learning. They illustrate the possibility of escapes from the Nash equilibrium

towards a cooperative equilibrium and based on this explain the observed price volatility in non-

renewable resource markets. Ellison and Scott analyze escape dynamics using the large deviation

theory popularized and adopted for economic application by Williams (2001) and argue that the

observed escape from the NE is mostly due to resource scarcity. In contrast to Ellison and Scott

(2009), in this paper we show that occasional escapes may happen exclusively due to adaptive

learning without the presence of resource scarcity; thus, learning itself is capable of propagating

coordination on the cooperative equilibrium not only in exhaustible resource markets but also

in regular commodity markets when rivals’ supply is unobservable and firms do not know the

parameters of the inverse demand function.

Additionally, instead of focusing on price volatility generated by the self-referential learning

process, we investigate dependence of expected duration of different game stages — competition,

collusion, price war — on the structural parameters of the model. Based on a simple one-

dimensional Brownian motion approximation approach, developed in Kolyuzhnov et al. (2006),

we find simple analytical solutions for the belief thresholds that trigger escapes from Nash

equilibria, and using the approach we find an analytical expression of expected time before

escape to cooperation. Our analytical results based on the approximation using one-dimensional

Brownian motion are confirmed by the simulations of the original problem.

The rest of the paper is structured as follows. We first describe the model and the sustainable

equilibrium under Rational Expectations (RE). Then in Section 3, we develop firms’ control

problem, motivate and define the self-confirming equilibrium (SCE), show that the SCE coincides

with the Nash equilibrium (NE), give intuitive insights on possible sources of escapes from the

NE, and illustrate them by numerical simulations. In Section 4, we formally analyze the mean

and escape dynamics of beliefs, derive an analytical expressions of the belief trigger and derive

analytical expression for mean exit time from the NE. Next, in Section 5, we characterize the

nature of belief trajectories and study numerically the duration of the Cooperative Equilibrium

(CE) and price war as well as the mean exit time from the NE. Section 6 concludes.
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2 The Model Setup

Consider an oligopolistic industry comprised of two firms producing a single, homogeneous good.

It is assumed that firms possess homogeneous production technology with constant marginal cost

c. Each period, firm i produces qin = q̂in+ωin units of production where q̂in is controlled by the

firm and ωin a random disturbance. The controllable term q̂in is the expected profit maximizing

output while ωin is a firm-specific Gaussian shock, ωin ∼ N(0, σ2
2). The industry faces a linear

inverse demand schedule:

yn = a− bQn + ωn, (1)

where a and b are positive constants, Qn = qin + qjn is industry supply, and ωn is the aggregate

demand shock. In order to demonstrate that escapes could happen without an aggregate demand

shock, we set its variance to zero.

A firm does not know the intercept (a) and slope (b) of the inverse demand curve. Addition-

ally, it is uncertain regarding rivals’ supply. This industry structure may describe the situation in

many non-renewable resource extraction industries which are increasingly dominated by global

conglomerates, and the information about actual production levels is unreliable in the short run

as with, e.g., the OPEC countries’ oil production levels.

Because of uncertainty of the structural parameters (a and b), the firms depart from rational

expectations and use an adaptive learning algorithm to form expectations instead. The firms

attempt to learn the unknown parameters from past observations: they form perceptions about

the economic environment, construct beliefs about unknown parameters based on their percep-

tions and adopt a belief updating mechanism consistent with their belief system. Time varying

beliefs affect firms’ actions (quantity produced) which in turn affect prices. The firms then use

newly available price and quantity data points to update their beliefs.

This interconnection of price signals, beliefs and actions establishes a self-referential process.

Because of this self-referential nature under adaptive learning, our equilibrium concept is the

self-confirming equilibrium (SCE) developed and studied by Fudenberg and Levine (1993, 2009),

which was introduced into the adaptive learning literature by Sargent (1999). Typically, the SCE

is defined as a point where agents’ assumption of the orthogonality of the regression error term

to regressors is satisfied; therefore, even though the agents’ model of their economic environment

might be misspecified, at the SCE they do not have an incentive to revise their subjective model

which generates “correct” orthogonality prediction. In this paper, the agents will be using a
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misspecified model in their learning, which makes the SCE an equilibrium concept appropriate

for our purposes.

To define the SCE first of all we have to understand how a firm builds it subjective model

based on the rational expectations equilibrium of the game. Therefore, in the next section we

define the REE of our model and postpone the definition of the SCE till Section 3 where we

deal with a firm’s control problem. In our model, we do not consider strategic manipulations:

the firms are assumed to believe that they cannot influence the rivals’ decisions even indirectly

through the price signals, and thus derive their actions based purely on the currently estimated

demand function.

2.1 Equilibrium under Rational Expectations

In this subsection we abstract from learning, equip both firms with rational expectations, and

solve for the rational expectation equilibrium (REE) of the model. We consider both the non-

cooperative (Nash equilibrium (NE)) and the cooperative (collusive equilibrium (CE)) rational

expectations equilibria of our model, and then investigate the stability of each equilibrium in

our model settings under RE.

In the Nash equilibrium, each period the firm solves the following profit maximization prob-

lem taking the rivals’ output as given:

max
{q̂ik}∞n

E

[ ∞∑

k=n

βk−n(yk − c)qik
]

s.t. yk = a− b(qik + qjn).

Solving the above control problem for the symmetric equilibrium provides industry supply

and price in the Nash equilibrium:4

Q̄ =
2(a− c)

3b
, ȳ =

a+ 2c

3
. (2)

In the collusive equilibrium, the joint expected profit is maximized and the individual firms

4In the rest of the paper we use x̄ and x̃ for the equilibrium values of variable x in the NE and in the CE
respectively.
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share it equally since they are assumed to have the same marginal cost:

max
{Q̂k}∞n

E

[ ∞∑

k=n

βk−n(yk − c)Qk
]

s.t. yk = a− bQk,

Here, the symmetric collusive equilibrium industry supply and price are given as follows:

q̃ =
a− c

4b
, ỹ =

a+ c

2
. (3)

As is well known, the static joint profit maximization problem is not “stable”. There is

always temptation to produce more than the agreed upon output and undercut the price. Fried-

man (1971) provides the solution in supergames to this instability issue when the actions are

observable. He shows that when a certain relation between discount factor and the number of

firms holds, the CE can be sustained as an equilibrium by credible punishment threats.

However, we cannot use the oligopoly theory of Friedman (1971) in supergames to solve

for the rational expectation equilibrium of the model since here actions are not observable.

Moreover, uncertainty about structural parameters makes it impossible for firms to calculate

equilibrium payoffs such as monopoly and Cournot-Nash payoffs. This effectively mean that

firms do not have an equilibrium implied benchmark payoff such as the Cournot-Nash payoff to

revert to as a punishment to deter deviations from an agreed upon output.Therefore, firms also

cannot use the price-trigger strategies of Green and Porter (1984). These considerations make

it clear that in our setting only the NE can be sustained as an equilibrium concept.5

After considering the REE of the model and reviewing the instabilities involved in creating

the cartel, we are ready to introduce learning into the model and consider its implications for

equilibrium outcomes. However, if the equilibrium concept is NE, it is not clear whether the

collusive equilibrium can be observed in industries with the unobservability of rivals’ actions

and this is the question addressed in the following sections.

5For the same reason, Nash is the equilibrium concept in the models with private information about costs
(see for example Chakrabarti (2010) for further discussions).
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3 Learning the Self-confirming Equilibrium

3.1 The Firm’s Control Problem

Under adaptive learning a firm does not know the true parameters of the inverse demand curve

but estimates them from the history of realized prices and own quantities produced. Here, we

construct a firm control problem that governs the structure, estimation and consistency of its

beliefs.

Every firm understands that the only sustainable equilibrium strategy of the game is to

play the Nash strategy and that this is common knowledge. These assumptions lead the firms

to postulate the time-invariance of their average beliefs. This establishes them as anticipated

profit rather than expected profit maximizers in the sense of Kreps (1998), meaning that if we

define a vector γin = (γ0
in, γ

1
in)′ as a firm i’s belief about the intercept and slope of the inverse

demand function at the time period n, then the belief evolution equation can be written as

γin = γin−1 + ηin, (4)

where ηin ∼ N(0, Vi). A firm’s belief evolution equation (4) follows a locally constant random

walk process. This type of belief formation is commonly used in economic literature (see Stock

and Watson (1996), Sargent (1999), Cho et al. (2002)).

The absence of demand shocks and the time-invariance of beliefs lead firms to form the

perception that the rivals’ supply is time-invariant on average. This gives firms enough basis

to build a subjective model that is consistent both with their beliefs and with the REE of the

model. To distinguish between the “truth” and the firm’s perceptions about the economy, we

denote firm i’s observed price by yin.6 Based on the firm’s perception of constancy of rivals’

supply, the perceived law of motion (PLM) of price is given by the following equation:

yin = γ0
in + γ1

inqin + uin, (5)

where γ0
in = a− bq̂jn, γ1

in = −b, and uin = −bωjn.

At the beginning of each period, firms determine the controllable part (q̂in) of its own supply

6Here, yn = yin but yn and yin differ in how the total variation in price is decomposed into endogenous and
exogenous components off the equilibrium path.
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(qin) by solving the following optimization problem:

max
{q̂ik}∞n

Ê

[ ∞∑

k=n

βk−n(yik − c)qik|yn−1

]
(6)

s.t. yik = γ0
ik + γ1

ikqik + uik,

where β is a common discount factor, yn−1 is a history of realized prices up to the period n− 1,

yn = {y0, y1, y2, . . . , yn} and Ê[·] denotes the firm’s subjective expectation.

The expected profit maximization problem above assumes that a firm treats its beginning-of-

period beliefs about the structural parameters as the true ones and solves the control problem (6)

as if it had rational expectations.7 This assumption transforms the firm’s dynamic optimization

problem into a static one. Each period the firm solves the following static problem under the

subjective expectations conditional on the history of price signals:

π̂in = max
q̂in

Ê[(yin − c)qin|yn−1]

s.t. yin = γ0
in + γ1

inqik + uik.

(7)

The solution yields the firm’s supply function dependent on its current beliefs:

q̂in = max

{
Ê[γ0

in|yn−1]− c
−2 Ê[γ1

in|yn−1]
, 0

}
. (8)

A firm understands that its own action depends on its beliefs about the inverse demand

function parameters and needs to adopts some estimation model to estimate them. Based on

its perceptions and control problem, the firm builds the following estimation model:

yin = x′inγin + uin,

γin = γin−1 + ηin

(9)

where xin = (1, qin)′, uin ∼ N(0, σ2) and σ2 = b2σ2
2.

Each period, after the production decision is made, firms observe the price yn and use

Bayes’ law to update their beliefs γ̂in+1 = Ê[γin+1|yn] about the unknown parameters using

their estimation model (9). The optimal Bayesian updating framework, based on the estimation

model (9), is provided by the Kalman filtering technique and is described by the following

7In other words, under Ê[·] a firm fixes its future belief vectors at the current estimated value.
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recursive algorithm:

γ̂in+1 = γ̂in +
P̂in

1 + x′inP̂inxin
xin(yin − x′inγ̂in),

P̂in+1 = P̂in −
P̂inxinx

′
inP̂in

1 + x′inP̂inxn
+ σ−2Vi,

(10)

where P̂in = σ2 cov[γin − γ̂in].8

3.2 Self-confirming Equilibrium

The firm’s policy rule (8) under the PLM defines the actual law of motion (ALM) of the price

given the true relationship (1) between price, yn, and industry supply as follows:

yn = a− b[qin(γ̂in) + qjn(γ̂jn)]. (11)

Every firm treats the subjective model (5) it has in mind as if it were the true one. Therefore,

they take the errors uin to be orthogonal to the regressors xin. This orthogonality is generally

not observed in the data. However, there exists an equilibrium defined as a time-invariant

vector of parameters γ̄i for which the assumed orthogonality condition is satisfied, as the true

mathematical expectation with respect to ALM of price (11) is indeed zero:

E[xin(yn − x′inγi)] = 0. (12)

The Self-Confirming Equilibrium is defined as the unique symmetric vector of beliefs in which

both firms’ orthogonality assumptions are confirmed by observations.

Taking expectations in (12) produces the following expression:



γ0
i

γ1
i


 =



a− bE[qjn] + ρbE[qin]

−b− ρb


 , (13)

where ρ = cov[qjn, qin]/ var[qin].

In the SCE, the beliefs are fixed and thus there is no correlation between the firms’ actions,

8Note that such behavior is optimal only if the firm does not take into account the effect of its own learning
on its future beliefs and prices. In terms of Wieland (2000), the firms are engaged in “passive” learning.
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therefore ρ = 0. A unique self-confirming equilibrium is then given by

γ̄i = γ̄j = (γ̄0
i , γ̄

1
i )′ = (γ̄0

j , γ̄
1
j )′ =

(
2a+ c

3
,−b

)′
. (14)

From (8), at SCE both firms produce

q̄ ≡ q̂in(γ̄) = q̂jn(γ̄) =
a− c

3b
. (15)

The SCE thus coincides with the Nash equilibrium (2). The reason for this is the fact that

both equilibria are derived assuming that a firm considers rivals’ actions to be independent of its

own actions and constant over time. Therefore, deviation from the NE is equivalent to deviation

from the SCE. These two concepts will be used interchangeably in what follows in the paper.

The expression for ρ in (13) represents the linear estimate of the conjectural variation that

measures the degree of rivals’ reaction to the firm’s action. The belief that conjectural variation

is zero eliminates any incentives to deviate from the SCE.9 However, if conjectural variations

were non-zero, the beliefs would start to deviate from the SCE. A particular form of fast and

sudden deviations from SCE is called escapes in economic literature after Sargent (1999).

Since the beliefs are estimated, they are a vector random variable. As both firms use the

same price history and have the same PLM (5) to update beliefs, there are common factors in

the forecast errors made by firms. These common factors allow the firms’ beliefs to become

correlated. The correlation of beliefs implies correlation of actions and might become a source

for escaping from the SCE. Since firms are homogenous and use the same price signal to update

their beliefs we expect ρ to be non-negative during an escape.

As mentioned above, the escapes are fast, which can be explained by the presence of a

following positive feedback loop. If the firms’ beliefs become correlated sufficiently strongly (ρ

is sufficiently positive), the correlation between firms’ actions increases so much that the beliefs

are pushed even further from the SCE (ρ becoming even larger). Intuitively, we can think of the

limit point of the escape as the point where firms’ actions get perfectly correlated; ρ = 1. As

is known from IO literature, ρ equal to one corresponds to the cooperative equilibrium. Beliefs

that satisfy the orthogonality condition (12) with ρ = 1 have the form

γ̃i = γ̃j = (γ̃0
i , γ̃

1
i )′ = (γ̃0

j , γ̃
1
j )′ = (a,−2b)′ . (16)

9This point is proved in more rigorous way in Section 4.1, where we derive E-stability conditions of the SCE.
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Given this belief vector each firm’s produced output equals the CE output:

q̃ ≡ q̂in(γ̃) = q̂jn(γ̃) =
a− c

4b
.

Thus, we can think of escapes as movements from the Nash equilibrium towards the cooperative

equilibrium.

4 Escape Dynamics

In this section, we describe formally the most probable escape path and show that indeed

escapes happen towards the direction of cooperative equilibrium. We derive the price thresholds

that trigger the escapes from the Nash equilibrium towards the collusive equilibrium and vice

versa. Then, we characterize mean escape time analytically and investigate the factors affecting

the frequency of escapes. To study escape dynamics we draw on the approach developed in

Kolyuzhnov et al. (2006).

In Section 3.1, the Kalman filter updating scheme was provided as the belief updating mech-

anism. Another updating mechanism often used in the literature in models with structural

changes is constant gain recursive least squares learning (CG RLS), which is equivalent to

weighted least square (WLS) with the weights geometrically falling with the age of data points.

In order to facilitate the comparison with Ellison and Scott (2009), who use CG RLS, we follow

Sargent and Williams (2005) in designing a Kalman filter algorithm that asymptotically has the

same expected dynamics as the CG RLS. This equivalence is achieved if the belief updating

scheme (10) is approximated as follows:

γ̂in+1 = γ̂in + εPinxinuin,

γ̂jn+1 = γ̂jn + εPjnxjnujn,

Pjn+1 = Pjn + ε
(
σ−2

2 V̂i − PinMi(γin)Pin

)
,

Pjn+1 = Pjn + ε
(
σ−2

2 V̂j − PjnMj(γjn)Pjn

)
,

(17)

and matrix V̂i is selected so that V̂i = σ2
2Mi(γi)

−1. Here uin = yn − x′inγ̂in is a forecast error, ε

the gain in a constant gain algorithm, Mi(γin) = E[xinx
′
in], and Pin = ε−1P̂in. The expressions

for j are analogous. Thus the defined approximate Kalman filter is asymptotically equivalent to

the constant gain recursive least squares algorithm with gain ε. Evans et al. (2010, Proposition
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FIGURE 1: Simulated time path of price for different specifications of the slope parameter,
a = 2, σ2

2 = 0.01, ε = 0.005.

1, 2) show that the constant gain adaptive learning asymptotically approximates the optimal

Bayesian estimation procedure if the beliefs are given by(4). Even if the firm believes the

parameters γi to be constant over time, a form of the constant gain learning rule could be shown

to be the (maximally) robust optimal predictor.

Simulating the system (17), we observe in Figure 1 that if the beliefs escape the Self-

Confirming Equilibrium, they escape towards the cooperative equilibrium and then return back

to the SCE. Figure 2 shows that escape from the SCE γ̄ = (1.333,−0.100)′ (see (14)) happens

towards the belief vector γ̃ = (2.000,−0.200)′ (see (16)) that corresponds to full collusion. This

confirms our intuition in Section 3.2 about the limit point of escape in the belief space. More-

over, the escape dynamics towards the cooperative equilibrium lies along the line that connects

the cooperative and the Nash equilibrium beliefs.

The observed escapes from the SCE are not a result of the instability of the belief updating

process described by (17). To elaborate on this let us consider an average dynamics of (17)

which is constructed as follows. Fix the beliefs γi,j and Pi,j . Generate a process of prices yn

that would be obtained for these beliefs from equation (11). Then, take the expectation of

the right-hand side of (17) with respect to the probability distribution induced by the derived

stochastic process for yn. Repeat this process for all possible beliefs and form the following
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system of ordinary differential equations (ODE):

γ̇i = Piḡi(γi, γj)

γ̇j = Pj ḡj(γi, γj)

Ṗi = σ−2V̂i − PiMi(γi)Pi,

Ṗj = σ−2V̂j − PiMj(γj)Pj ,

(18)

where ḡi(γi, γj) = E[xin(yn − x′inγi)].

As discussed in Evans and Honkapohja (2001), solution paths of the resulting system of ODE

approximate the behavior of the real-time learning dynamics (which takes place in discrete

time) asymptotically as the gain parameter goes to zero. For more details on deriving the

approximating ODE for the Kalman filter that is asymptotically equivalent to the constant gain

RLS, consult Sargent and Williams (2005). The system (18) is referred to as the mean dynamics

ODE, and its solution paths are called mean dynamics trajectories or simply mean dynamics.

By construction, mean dynamics approximates the average behavior of the firm’s belief when

the updating process is given by (17).

A unique steady state of (18) is given by γ∗i = γ∗j = γ̄ and P ∗i = P ∗j = P̄ = M(γ̄)−1,

which coincides with the SCE. In Appendix A, it is shown that the steady state of the system

(18) is stable for any parameter values; we say that the SCE beliefs are E-stable. Evans and
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Honkapohja (2001) show that if a stationary point of the mean dynamics ODE is stable, then

the corresponding real-time dynamics with a decreasing gain converges to the stationary point

with a probability that could be made as close to one as desired. For initial beliefs within

a sufficiently small neighborhood of the SCE, the firms on average will have no incentives to

deviate from the Nash equilibrium. Instead, if the firms are using constant gain learning as in

this paper, they will not be able to learn the beliefs γ∗i,j = γ̄ and P ∗i,j = M(γ̄)−1 exactly, but

their beliefs will converge to an invariant distribution centered on
(
γ̄, P̄

)
. Given E-stability of

the SCE, we can say that the observed escapes are not due to its instability.

Simulations in Figure 1 clearly show that for some parameter values the beliefs may escape

the SCE towards cooperative equilibrium. It is likely, therefore, that a threshold exists such

that an escape from the SCE is triggered when the beliefs reach this threshold. We turn next to

finding this belief threshold and studying the likelihood of escape from the SCE as a function

of the structural parameters of the model.

4.1 Analysis of Mean Dynamics and Trigger of Cooperation

Since firms are homogeneous and their mean dynamics equations are the same, in order to find

the belief threshold, it suffices to restrict our analysis to a symmetric case where γj = γi. We

then analyze the following mean dynamics equations:

γ̇ = P ḡ(γ),

Ṗ = σ−2V̂ − PM(γ)P,

(19)

where the belief vector γ is two-dimensional.

Following Kolyuzhnov et al. (2006), the escapes in the system (19) occur predominantly

along the direction of the dominant eigenvector v̄ corresponding to the largest eigenvalue of P̄ .10

We restrict our attention to the line that starts at the SCE and extends in the direction v̄. In

parametric form, this line is given by the following expression:

Γ = {γ | γ = γ̄ + δv̄, δ ∈ R}. (20)

10If the constant gain parameter ε is not too small, the behavior of equation (17) is almost one–dimensional
because λ̄1, the dominant eigenvalue of P , is significantly larger than the second one. As a result, increments in
the equation (17), given by

Png(γn, ξn) =
∑

aiλivi ≈ a1λ1v1

are concentrated in a narrow conus formed around v1, the dominant eigenvector of P̄ (the eigenvalues and
eigenvectors of Pn are essentially the same as those of P̄ near the SCE). For similar ideas one can also consult
the method of principal component analysis.
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Because the dominant eigenvalue of P̄ (λ̄1 = 4545.40) is significantly larger than the second

one (λ̄2 = 0.02), solution paths of (19) along the escape route are likely to lie very close to Γ.

Therefore, Γ represents the dominant escape path.

The escape vector v̄ can be written as
(
(1− 1/λ̄1)−1q,−1

)T
, where λ̄1 is the largest eigen-

value of P̄ . The direction v̄ is closely aligned with the vector γ̃ − γ̄, whenever λ̄1 tends to

infinity. The latter can happen whenever σ2
2 tends to zero. Therefore, the likelihood of ob-

serving escapes from the Nash equilibrium (beliefs given by γ̄) towards exactly the cooperative

equilibrium (beliefs γ̃) is higher the lower is the volatility of firm-specific shocks.

The belief updating procedure minimizes volatility of a forecast error uin, which suggests

that the belief updating is sensitively dependent on the behavior of the mean forecast error.

Therefore, to find the belief trigger, we should understand how beliefs γ and the mean forecast

error u = E[uin] interact with each other. Since the right-hand side of the mean dynamics

equations (18) depends on ḡi(γi, γj) = E [xinuin] , the mean forecast error can be used to judge

whether the belief updating process is accelerating or stabilizing. When the mean forecast error

is growing fast the belief updating accelerates, while we should observe the opposite when the

growth of the mean forecast error slows down. Since we observe escapes from the SEC, even

though the SCE is a stable steady-state of the system (18), there should exist a neighborhood

of the SCE such that the mean forecast error is declining over time (u̇/u < 0) within it and

growing (u̇/u > 0) outside of it.

The above logic is illustrated in Figure 3 where mean belief trajectories are plotted with

different initial beliefs γ ∈ Γ together with the curves u̇ = 0 and u = 0 near the SCE. We see

that on the segment ANE of line Γ, the mean forecast error is declining; u̇/u < 0. If the initial

beliefs are located in this segment, the average forecast error is expected to decline, meaning

that beliefs are expected to move towards the SCE. However, for an initial belief γ ∈ Γ, outside

of the ANE segment, the beliefs diverge from the SCE since u̇/u > 0, and they are expected to

move along Γ towards the CE. We see that the neighborhood of γ̄, where u̇/u < 0, behaves like

the region of attraction of the SCE along the escape direction; outside of this region the beliefs

escape the Self-Confirming Equilibrium.

When firms escape the Nash equilibrium and start cooperating, the industry supply shrinks.

Therefore, the belief threshold γ∗ that triggers cooperation and at the same time escape from
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the SCE should satisfy the following equation:





u̇ = ∇u(γ) γ̇ > 0,

Q̇ = ∇Q(γ) γ̇ < 0.

The Q̇ < 0 restriction is redundant because the escape of beliefs from the SCE implies a co-

operative behavior: for γ ∈ Γ, u̇ > 0 implies Q̇ < 0. This implies that we can find the belief

threshold γ∗ ∈ Γ by solving an algebraic equation u̇ = 0 for δ∗:

u̇ = ∇u(γ̄ + δ∗v̄)P ḡ(γ̄ + δ∗v̄) = 0.

This yields the following approximate expression for δ∗:

δ∗ ≈ 6
σ2

2

q̄2
b. (21)

The analysis above and in the next section relies on the one-dimensional nature of escaping

beliefs to a significant degree. In case of a strictly one-dimensional dynamics, we could state

the following proposition regarding the direction and the size of deviation which triggers escape

from the neighborhood of the SCE.
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PROPOSITION 1 The escape from the SCE should occur in the direction given by the vector

v̄. The escape happens if the beliefs deviate from the SCE by more than δ∗ ‖v̄‖.

Because the true dynamics is not one-dimensional, both results in Proposition 1 are correct

only asymptotically, as the constant gain ε converges to zero. How good is the assumption

of one-dimensionality? In Figure 4 we plot histograms of directions of escape from the ball

E = {γ | ‖γ − γ̄‖ ≤ δ∗‖v̄‖} for different values of the constant gain ε.11 For every escape point

γesc, we write γesc − γ̄ as a vector proportional to (κ, 1). If the escapes happen exactly along

the direction v̄, κ equals −6.668. As is clear from the graph, simulated escapes are distributed

symmetrically around the theoretical direction; moreover, the distribution of escape directions

becomes concentrated around the mean as the value of the constant gain ε declines (Var(κ) is

increasing with ε). Therefore, considering the escape dynamics as essentially one-dimensional is

a valid approximation and could be used to derive the other values of interest.

4.2 Time Until Cooperation and Comparative Statics

In this section we use the expression for δ∗ to characterize the expected time until an escape to

cooperation happens and investigate its dependence on the structural parameters.

DEFINITION 1 The mean exit time from the NE is defined as a mean value of N ε where

N ε = inf{n | ‖γn − γ̄‖ > ‖γ∗ − γ̄‖}.

The mean exit time is the expected time until the beliefs leave the ball of radius ‖γ∗ − γ̄‖

around the SCE for the first time. This ball includes the region of attraction of the SCE. After

this time, a very fast transition to cooperation follows.

In addition to the mean dynamics approximation (18), it is possible to approximate the

real-time dynamics under adaptive learning by the following one-dimensional continuous time

diffusion process as described in Appendix B:12

dϕ̂t = −ϕ̂tdt+
√
ελΣ̄dzt, (22)

where ϕ̂t = v̂T (γt − γ̄)/‖v̂‖, γt =
(
γTin, γ

T
jn

)T
, λΣ̄ = 2b2σ2

2λ̄1, zt is a one-dimensional Wiener

process.

11The boundary of this ball, a sphere {γ | ‖γ− γ̄‖ = δ∗‖v̄‖}, intersects the line Γ at a distance δ∗ ‖v̄‖ from the
SCE.

12The diffusion process (22) is a special case of the well-known Ornstein-Uhlenbeck process.
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This approximation allows us to derive an analytical expression for the expected number of

real-time periods till escape, which is given in the following proposition.

PROPOSITION 2 The expected number of periods until an escape towards collusion happens

is inversely proportional to
(
q̄/
√
σ2

2

)4
, the fourth power of the standardized Nash output, and

inversely proportional to ε2, the square of the gain parameter:

E [N ε] ∼
(

q̄√
σ2

2/ε

)−4

. (23)

We find that the likelihood of cooperation (escape to cooperation is faster) is higher in in-

dustries with a higher Nash output q̄ and a lower volatility σ2
2 of firm-specific shocks. This

finding is rather intuitive. In industries with a higher Nash output q̄, the difference between
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FIGURE 5: Comparison of the analytically derived and simulated mean exit times from the NE
for different specifications of the model parameters.

the competitive and cooperative profits is greater.13 The latter makes collusion more attrac-

tive, leading firms to quit the competitive Nash equilibrium more easily: the expected number

of periods the competition could be supported becomes smaller. Since the firm-specific shocks

are independent, it is obvious that the higher their volatility, the less correlated firms’ actions

become. With a lower firm-specific shock variance, the share of uncertainty in the data gener-

ating process directly attributed to idiosyncratic shocks decreases, therefore increasing the role

of uncertainty related to belief updating which is common among firms. Increasing the share

of the common factor raises the probability of firms’ beliefs becoming correlated and thus the

likelihood of escape from the NE; expected escape time drops.

Finally, the gain parameter ε measures the speed with which the firms incorporate the new

information into their beliefs; lower ε means that the firms update their beliefs more slowly, and

it takes a longer stretch of accidental correlation to lead to the firms’ reaction.14 Therefore,

lower ε makes the competitive phase in the industry last longer.

The above discussion considered an approximated value of the expected escape time that was

derived using a one-dimensional approximation. Below we compare this analytical approxima-

13At NE, firm’s average output is q̄ and the price a
3
, giving an average profit of a2

9b
. At the CE, the average

profit is a2

8b
. Therefore, the profit difference is proportional to a2

9b
= q̄2b. (Here, for simplification, the marginal

cost c is set to zero.)
14Alternatively, think about the firms which could alternatively use constant gain updating equations (17)

with an infinite amount of data or run an OLS regression with T data points. In the OLS regression, the mean
age of a data point is T/2 . A constant gain learning algorithm is equivalent to a weighted Least Squares, where
the weight of a point τ periods old is proportional to (1− ε)τ , giving 1−ε

ε
as the mean age of a point when an

infinite amount of data is used. Thus, ε ≈ 2/T produces a similar average age of the data for the OLS and the
constant gain RLS. Therefore, lower ε is equivalent to using more data in forming the beliefs by OLS or forgetting
this data at a slower rate in constant gain RLS.
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It shows that the slopes of simulated and analytically derived mean exit in the space of 1/ε2 are
quite close to each other.

tion with the simulation evidence which demonstrates that the agreement is remarkably good.

In Figure 5 we present the average escape time obtained by simulating the original discrete-time

learning dynamics (17). One could see that the mean exit time from the Nash equilibrium is in-

creasing in the firm-specific shock volatility σ2
2 and decreasing in Nash output q as well as in the

constant gain parameter ε, exactly as predicted by the analytical expression (23). Additionally,

analytically derived and simulated mean exit times are remarkably close.

To illustrate even better the validity of our analytical approximation (23), in Figure 6 we

plot the expected escape time, expressed as a number of periods, against 1/ε2. Proposition 2

states that this dependence is given by a straight line with a certain slope. The graph indi-

cates, first, that average simulated escape times are indeed scaled as 1/ε2. Second, the observed

slope is remarkably close to the theoretically derived one. The figure unambiguously demon-

strates that the escape dynamics could indeed be derived from the behavior of one-dimensional

approximation with great precision.

5 Characterizing the Belief Trajectory

In this section we first characterize belief trajectories and define cooperative and price war

phases. Next, we do numerical analysis of durations of these phases and their functional depen-

dence on the model parameters.
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5.1 From Competition to Cooperation and Back: Forecast Errors

We can notice from Figure 1 and Figure 2 that the beliefs are characterized by fast and slow dy-

namics. When the beliefs escape the Nash equilibrium, the firms quickly learn how to cooperate

and rush towards the cooperative equilibrium: it can take less than ten periods from the time

beliefs leave the SCE region of attraction to their arrival in the neighborhood of the CE. After

the cooperative equilibrium is reached, the dynamics slows down dramatically. Below we give

the reason for these fast and slow dynamics and associate them to the cooperative and price war

phases defined subsequently in this section.

The belief updating procedure aims to minimize the forecast error, which implies that the

mean dynamics trajectory should be near points in the belief space where u = E[uin] = 0. The

beliefs satisfying the level curve u = 0 are given as

γ0 =
2bc− (2a− c)γ1

2b− γ1
. (24)

In Figure 7, we plot the beliefs satisfying the above equation (24) together with the mean

dynamics trajectory of beliefs derived from (19). From the figure we see that the mean forecast

error stays positive during the escape until the cooperative equilibrium is reached, then its value

remains for a while near zero and afterwards becomes negative when the belief trajectory crosses
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the u = 0 level curve. Moreover, during the escape the mean forecast error is large in absolute

value, which leads to fast belief revision. For the rest of the escape-cooperation-price war cycle,

the forecast error is rather small, leading to very slow evolution of beliefs.

The beliefs escape from the SCE when they happen to be outside of the Nash equilibrium

region of attraction. Intuitively, this may happen when a particular sequence of shocks induces

both firms to contract the supply simultaneously, subsequently leading to an increase of the

mean actual price y = E[yn]. Since firms try to minimize the mean forecast error u = E[uin] =

E[yin − Ê[yin|yn−1]], the increase of the mean actual price leads firms to update their beliefs

accordingly and to increase the mean forecasted price by contracting the supply. The latter

leads to a further increase in the mean expected price. This produces a period of upward price

spiral and increasingly cooperative behavior.

After a period of cooperation the gap between the mean actual price and the mean forecasted

price approaches zero and the beliefs are in a quasi-equilibrium for a while. Firms perceive this

situation as an equilibrium state, as their beliefs are approximately validated by the observations.

This period can be characterized as the cooperative phase.

However, the perception of the equilibrium state is destroyed when the mean forecast error

becomes negative. At this moment the mean actual price falls below the mean forecasted price

and the firms start to update their beliefs aggressively in order to reduce the mean price forecast.

They achieve this by expanding supply. The expansion of supply implies further decrease of the

average actual price, and the updating cycle continues to chase the data. This leads the industry

into a period of downward price spiral which moves the beliefs back toward the SCE. Since at

the SCE the mean forecast error is zero while during the price war it is negative, there is a point

where the absolute value of u stops declining (u̇/u becomes positive) and the belief system is

pushed into the attraction region of the Nash equilibrium.

The periods of increasing and decreasing price spirals can be characterized as cooperative

and the price war phases respectively. To be more specific, we define the cooperative phase as

the period of increasing price spiral together with the time spent in the neighborhood of the

cooperative equilibrium and the price war phase as the period of decreasing price spiral till the

time when the belief system appears in the attraction region of the NE. Here, we can find some

similarities to the Green and Porter model where it is the unanticipated demand shocks that

cause price wars when the price falls below the predefined trigger price. In our context the mean

forecast price serves as the trigger price, and the unanticipated fall of the mean actual price

25



below the mean forecasted price causes the price war. We thus find that the demand shock is

not necessarily the sole source causing price wars, and we could generate the wars even without

a demand shock.

5.2 Numerical Analysis of Durations

Our model allows us to investigate the dependence of the durations of cooperative and price war

phases on the model parameters. We use mean dynamics ODE (19) to calculate belief thresh-

olds that trigger respectively a price war and reversion to the NE. Therefore, for convenience

durations from the real-time dynamical system (17) are expressed in continuous time. For the

purposes of duration calculations we adopt the following definitions.

DEFINITION 2 The duration of the cooperation is defined as τ c = t2−t1 where t1 = inf{t|‖γt−

γ̄‖ > ‖γ∗ − γ̄‖} and t2 = inf{t|ut < 0}.

The Cooperative phase is defined as the period between the time when beliefs escape the NE for

the first time and the time the mean forecast error turns negative for the first time, triggering

a price war.

DEFINITION 3 The duration of the price war is defined as τpw = t3−t2 where t2 = inf{t|ut <

0} and t3 = inf{t|ut = minus}.

The price war is a period when the forecast error is negative and decreasing, forcing the firms

to increase output so that the actual price decreases, following the forecasts. The start of the

price war phase coincides with the end of cooperation.

We turn now to the numerical results. We depict the duration of the cooperation and the

price war phases in Figure 8. Both durations are increasing in the Nash equilibrium output q̄

and decreasing in volatility σ2
2 of the firm-specific shock. A higher q̄ increases the losses that

firms incur when the cooperation breaks down, as the profit difference between cooperative and

Nash equilibria is proportional to q̄2. Therefore, in industries with a higher q̄, it is harder to

break down a cartel. In industries with a higher σ2
2, the firms’ actions are less correlated. The

latter together with profit maximization implies a higher output and increases the likelihood of

initiating the price war. Moreover, in industries with higher firm-specific shock volatility σ2
2, the

cooperation could only be achieved for sufficiently high levels of the Nash equilibrium output q̄.

This is the other side of the difficulty of learning to cooperate as evidenced by mean expected

exit time discussed above.
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FIGURE 9: Durations of cooperation and price war phases as a function of normalized Nash
output, q̄/

√
σ2

2.

In Figure 9 and Figure 10 , we depict the same curves as in Figure 8 and Figure 5, respectively,

but with normalized Nash output, q̄N = q̄/
√
σ2

2, on the horizontal axes. We see that the

durations turn out to be a function of a single combination of parameters, q̄/
√
σ2

2. The durations

of cooperative and price war phases, compared to the mean exit time from the SCE, do not

depend on constant gain parameter ε since after beliefs escape the SCE, the model dynamics

are mainly governed by the mean dynamics. From (23), we see that mean exit time depends on

the expression q̄/
√
σ2

2/ε = q̄N
√
ε. To check this property we depict all the simulation results in

both panels of Figure 5 in Figure 10 with q̄N
√
ε on the horizontal axis. Indeed, we see that all

the average escape times from real-time dynamic simulations in Figure 5 are well approximated

by the inverse of the 4th power of q̄N
√
ε (solid line).
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The above findings are summarized in the following result. The result contains testable hy-

potheses about the dependence of durations of cooperative and price war phases on the structural

parameters of the model.

PROPOSITION 3 Durations of cooperative and price war phases are increasing functions of

the normalized Nash output, q̄N = q̄/
√
σ2

2. These durations are thus increasing with the industry

output q̄ and decreasing with the standard deviation of the idiosyncratic shock.

The Duration of the competitive phase is inversely proportional to the 4th power of q̄N
√
ε, thus

decreasing with the industry output q̄ and increasing with the standard deviation of the idiosyn-

cratic shock. The faster is the speed with which the firms update their beliefs, the lower is the

industry ability to maintain a competitive regime.15

As shown in Appendix B, the largest eigenvalue of P̄ is approximately equal to q̄2/σ2
2 =

(
q̄N
)2

. Due to the approximate one-dimensionality of the model, this eigenvalue is the most

important for both the real-time dynamics (17) and the mean dynamics (18). Therefore, mainly

the evolution of our model is a function of two parameters, normalized Nash output and (for

expected escape to cooperation time) the constant gain, which allows a very parsimonious de-

scription of the model dynamics.

15Sannikov and Skrzypacz (2007) show when information arrives continuously, under the same settings as in
Green and Porter (1984), collusion is impossible. However, under speed of updating we do not mean the frequency
of updating but the extent to which new information is incorporated into belief updating. In our model this is
measured by ε, the constant gain parameter.
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6 Conclusion

In the paper, we study the imperfect monitoring model of duopolistic industry in the sense of

Green and Porter (1984) but with unknown structural parameters. Firms build their perceptions

about the economy, form beliefs about unknown parameters, construct an estimation model and

update their beliefs when new price signals are revealed by the market. We show that when

firms take into account the possibility of structural changes in the estimation of parameters,

the beliefs of firms may become correlated and this may generate fast escapes from the Nash

equilibrium (NE) towards a collusive equilibrium (CE) and then a slow return back to the Nash

equilibrium. We show that the movement towards the collusive equilibrium constitutes collusive

behavior while movement back to the Nash constitutes a price war. The fast and slow dynamics

are explained by the behavior of the mean forecast error.

Model predictions leads to testable hypotheses about the dependence of the likelihood of

reversion to cooperation, and durations of the cooperative and price war phases on the structural

parameters. We expect that industries with the same normalized output have the same durations

of cooperative and price war phases as well as mean exit time from the NE. Moreover, industries

with a higher normalized output possess longer durations of cooperative and price war phases

but shorter mean exit times from the NE. Therefore, normalized output can serve as a measure

to rank industries with respect to durations of cooperative and price war phases as well as mean

exit times from the NE. In addition, we find that it is easier to form a cartel in industries where

firms are induced to analyze more common information.

Our results show that a cartel can break down not only due to exogenous factors as in

Green and Porter (1984) or Slade (1989) but also due to the endogenous dynamics involved

with the uncertainty introduced through the unknown structural parameters. Finally, we show

that firms do not have to a priori commit to some trigger strategies, and even though playing

Nash equilibrium strategies all the time, firms can implicitly coordinate on the length of the

duration of the punishment period and the price trigger that triggers cooperation when they

update beliefs about the unknown parameters of the inverse demand function.
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A E-stability of SCE

The SCE is E-stable when the Jacobian of the belief system (18) has all eigenvalues with negative

real parts. Define θ = (γ′i, γ
′
j , vec(Pi)

′, vec(Pj)
′)′, then the Jacobian of the system (18) takes the

following form:

J =




P̄i∂ḡi(γ̄)
∂γi

P̄i∂ḡi(γ̄)
∂γj

0 0

P̄j∂ḡj(γ̄)
∂γi

P̄j∂ḡj(γ̄)
∂γj

0 0

− vec
(
P̄i∂M(γ̄i)P̄i

∂γi

)
0 − vec

(
∂P̄iM(γ̄i)P̄i

∂Pi

)
0

0 − vec
(
P̄j∂M(γ̄j)P̄j

∂γj

)
0 − vec

(
∂P̄jM(γ̄j)P̄j

∂Pj

)



.

Since PMP is a quadratic matrix in P , the sufficient condition for E-stability is that the

following matrix has eigenvalues with negative real parts:

h̄γ =




P̄i∂ḡi(γ̄)
∂γi

P̄i∂ḡi(γ̄)
∂γj

P̄j∂ḡj(γ̄)
∂γi

P̄j∂ḡj(γ̄)
∂γj


 . (25)

It is straightforward to show that the matrix is of the form

h̄γ =




−1 0 −1/2 −q̄

0 −1 0 0

−1/2 −q̄ −1 0

0 0 0 −1



. (26)

All the eigenvalues of the matrix (26) (-1.5, -1, -1, -0.5) have negative real parts. Thus, the SCE

is E-Stable.

B Derivation of the Diffusion Equation for the Belief System

In addition to the mean dynamics approximation (18), it is possible to approximate the real-time

dynamics under adaptive learning by a continuous time diffusion process as follows. Stacking

together the system of stochastic difference equations (17) for both firms i and j, we can define

the following system:

θn+1 = θn + εH(θn, ζn), (27)
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where θn = (γTin, γ
T
jn, vech(Pin)T , vech(Pjn)T )T is a vector in which we stack both firms’ beliefs

and current estimates of the variance-covariance matrices, and ζn = (xTin, x
T
jn, ωin, ωjn)T is the

state vector.16

Evans and Honkapohja (2001) shows that for ε → 0, the time path of the system can be

approximated by the following diffusion:

dθt = h′θ(θ(t, θ0))(θt − θ(t, θ0))dt+
√
εΣ(θ(t, θ0))1/2dŴt, (28)

where θ(t, θ0) is the solution of the mean dynamics ODE with the initial condition θ0, h′θ(·) is

the Jacobian of E[H(θn, ζn)], Ŵt is a multi-dimensional Wiener process with dim(Ŵt) = dim(θ)

and Σ = cov[H(θn, ζn)].

Since the SCE is E-stable (see Appendix A), following Evans and Honkapohja (2001) it

suffices to analyze the time path of (28) around the SCE θ̄ which is a stable limit point of the

mean dynamics. In addition, one can neglect the dynamics of elements in Pin and Pjn since

they tend to change much more slowly than the beliefs γ and remain almost unchanged before

the escape. Considering only the dynamics in beliefs γ, the approximating diffusion becomes17

dϕt = h̄γϕtdt+
√
εΣ̄1/2dWt, (29)

where ϕt = γt− γ̄, γt =
(
γTin, γ

T
jn

)T
, Wt is a multi-dimensional Wiener process with dim(Wt) =

dim(ϕt), h̄γ = hTγ (θ̄), and Σ̄ = cov[Hγ(θ̄, ζn)].

The diffusion (29) is four-dimensional. Following Kolyuzhnov et al. (2006), we can transform

it into a one-dimensional diffusion. By pre-multiplying the above equation by vT and denoting

ϕ̂t = vTϕt, we obtain

dϕ̂t = −ϕ̂tdt+
√
ελΣ̄dzt, (30)

where λΣ̄ and v = v̂/ ‖v̂‖ are respectively the dominant eigenvalue and the standardized domi-

nant eigenvector of Σ̄, v̂ = (v̄T , v̄T )T ; zt is a one-dimensional Wiener process. A final transfor-

mation involves ignoring the term −ϕ̂t and setting it to zero; thus, the original real-time learning

dynamics is approximated by a one-dimensional Brownian motion.

This approximation is very useful because a very simple formula allows us to derive the

16Operator vech maps lower triangular part of a symmetric n × n matrix into a vector by fully stacking first
column, then the second column from the second element down, and so on till a single (n, n) element of a matrix
is added to the vector.

17See also Sargent and Williams (2005), pp. 376-377.
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time until the one-dimensional process (30) leaves any interval of the real line. For the interval

[−d; +d] , assuming that z(0) = 0, the expected time is given by the following formula: E [τ ε] =

d2

ελΣ̄
(see Karatzas and Sherve (1991, Eq. 5.62, p. 345)). The boundary of the interval d equals

ϕ̂∗ = δ∗vT v̂ =
√

2δ∗ ‖v̄‖. Finally, notice that to translate continuous time units, in which τ ε is

expressed, into the number of periods, we need to divide τ ε by ε.

Taking all of the above into account, the expected number of periods until an escape towards

cooperation happens is given by the following formula:

E [N ε] =
ϕ̂∗2

λΣ̄

1

ε2
=

(
δ∗

b

)2 1

ε2

= 36
σ4

2

q̄4

1

ε2
.

The formula uses the value of λΣ̄ = 2b2σ2
2λ̄1, where λ̄1 ≈ ‖v̄‖2 /σ2

2 is the dominant eigenvalue of

P̄ .

Thus, the final dependence of E [N ε] on the model parameters is given as

E [N ε] ∼
(

q̄√
σ2

2/ε

)−4

. (31)

The inverse dependance of the mean exit time on q/
√
σ2

2 can be justified by the following

observation:

q√
σ2

2

=
√

(λ̄1 − 1)(1− λ̄2), (32)

where λ̄1 and λ̄2 are respectively the largest and smallest eigenvalues of P̄ . Indeed, from (32)

we see that λ̄1 ≥ 1 and 0 ≤ λ̄2 < 1.

We can notice that an increase of q/
√
σ2

2 implies an increase of the ratio λ̄1/λ̄2. The latter

implies acceleration of belief generation along the direction of the dominant vector of P̄ and

therefore, on average, less time is needed to exit the attraction region. This explains why mean

exit time depends inversely on q/
√
σ2

2.
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