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Abstract 

This paper proposes a mechanism leading to rigid pricing as an optimal strategy. It applies a 
framework of rational inattention to study the pricing strategies of a monopolistic seller 
facing a consumer with limited information capacity. The consumer needs to process 
information about prices, while the seller is perfectly attentive. It turns out that the seller 
chooses to price discretely even for a continuous range of unit input costs, i.e. charges a finite 
set of different prices only. The price usually stays constant when unit input cost changes 
only a little. The seller does so to provide the consumer with easily observable prices and 
thus stimulate her to consume more. In the model's dynamic version, this mechanism implies 
that prices respond to cost shocks with a delay. 

Abstrakt 

Tento článek navrhuje mechanizmus generující rigidní ceny jako optimální strategii. Používá 
teorii racionální nepozornosti ke studiu cenových strategií monopolistického prodejce, jehož 
zákazníci mají omezenou informační kapacitu. Spotřebitelé musí informace o cenách 
zpracovávat, zatímco prodejce má všechny informace přesné. Ukazuje se, že prodejce 
schválně vybírá pouze z několika různých cen, a to i pokud se jeho vstupní náklady pohybují 
ve spojitém intervalu. Cena pak obvykle zůstává konstantní pokud se vstupní náklady změní 
pouze o trochu. Prodejce volí tuto strategii, aby byly ceny pro spotřebitele lépe 
pozorovatelné, a ti potom spotřebovávají více. V dynamické verzi modelu tento 
mechanizmus způsobuje zpožděné reakce cen na šoky.  
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1 Introduction

This paper studies the implications of consumers’ inattentiveness to sellers’

choices of pricing strategies. The framework of rational inattention - which

was introduced by Sims in [10], [11] and [12] - assumes that agents have limited

information capacity. The presented model allows for full flexibility of informa-

tion processing3.

Consumers often do not realize what a product’s exact price is at the moment

of a purchase decision. However, they certainly have some knowledge about the

price and pay more attention to some prices than they do to others. Some

consumers often grab certain products in a supermarket without even looking

at their prices. Many of us at least read price’s first few digits, while ignoring

the cents. Typically, we implicitly assume that prices end with .95 or .99. If

the number of cents is actually 85, we may not spot it and still keep our initial

guess. Sometimes, we read just the first digit only or none at all.

If it is unpleasant, i.e. costly, to inspect prices and if uncertainty about the

true price can discourage consumption, then sellers could try to accommodate

consumers with more predictable prices. It might be optimal for the seller not

to respond to every minor change of input cost. Such frequent price changes

would require consumers to pay lots of attention to the price, and if they did

not want to, then they could rather decide to consume less.

In the model, which is presented in the following sections, the consumer has

limited information capacity. She processes information about a price set by a

monopolistic seller and decides how much of the seller’s product to purchase.

The seller chooses his pricing strategy in advance and commits to it. The

strategy defines what price is charged at each particular unit input cost. The

pricing strategy together with the distribution of unit input costs then determine

the distribution of prices. The consumer knows the distribution of prices; it

forms her prior knowledge about prices.

When the seller designs a pricing strategy, he realizes that the consumer has

limited information capacity and that the strategy forms the consumer’s prior.

The more dispersed the pricing is, the more difficult it is for the consumer to
3No specific constraints on the shape of received signals, such as gaussianity, are imposed.

For more details of such a setup see Matějka [6]
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observe the true realized price. If the consumer has a specific preferences and is

uncertain about the true value of price, then he might relocate a portion of her

spending towards other products. This behavior is an analog to precautionary

savings. Therefore, there is a preference for the distribution of prices to be rather

concentrated. In turns out that the seller often chooses a few finite subintervals

of the range of unit input costs and charges one price in each of the subintervals

only. The seller benefits from a consumer having better knowledge about prices,

which makes her consume more.

After analyzing the static model, the paper continues with a discussion of

the potential implications of this mechanism for dynamic models of pricing.

Taking some standard properties of knowledge refinement through a limited

capacity channel as given, it is shown that it is optimal for sellers to respond

to aggregate shocks sluggishly. The idea is that while consumers gradually

learn about the nature of a shock, they refine their knowledge about the seller’s

potential responses to it. The seller desires to price in line with consumers’

expectations and thus, the slower consumers learn, the slower he changes the

price. By doing so, consumers’ knowledge about the price is more precise and

consumption thus increases.

Assessing nominal rigidities is at the heart of New Keynesian economics.

Traditional explanations of nominal rigidities are based on explicit costly ad-

justment of prices (menu cost models) or even on a complete inability to alter

prices between two a priori given moments (Calvo models). More recently, there

has been lots of interest in the nominal rigidities implied by the seller’s inabil-

ity to process or acquire perfect information. Mackowiak and Wiederholt[4],

Woodford[14] and Matějka[6], study pricing of rationally inattentive sellers.

Reis[9] adopts a sticky information approach, which was introduced in Mankiw

and Reis[5]. All of these models have frictions microfounded on the sellers’ side.

This paper, on the other hand, analyzes the implications of consumers’ inat-

tentiveness for patterns of pricing. In reality, consumers can often possess less

information about prices than sellers about their input costs - especially in mar-

kets where sellers offer just one product, but consumers need to compare prices

of several different sellers. The proposed mechanism resembles the explana-

tion of nominal rigidities via the existence of implicit contracts between sellers
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and consumers4, which are related to consumers’ preferences for stable nominal

prices. Blinder[1], and also Fabiani et al.[3], found through a series of interviews

with price-setters that implicit contracts are likely to be one of the prominent

reasons for prices to be sticky.

2 The Model

A rationally inattentive consumer interacts with a monopolistic seller. The

consumer processes information about the price, p, of the seller’s product and

then decides how much of the good to consume, c. The seller incurs a stochastic

unit input cost, µ, and applies his pre-selected pricing strategy to determine

what price to charge. At the chosen price, the seller provides whatever amount

the consumer wishes to buy.

Information processing generates a transformation of prior knowledge into

posterior knowledge. Prior knowledge is what the consumer knows before she

starts processing information. The consumer is rational, the probability dis-

tribution of prices representing her prior knowledge coincides with the true

distribution of prices, which is given by the seller’s pricing strategy.

In other papers on rational inattention, Sims [12] and Mateějka [6], the prior

was fully determined by a pdf g. We will however be concerned with cases

where the price distribution has lumps of probability located at single points;

such distributions do not have a pdf with respect to a Lebesgue measure. We will

therefore describe the true distribution of prices by its probability measure ωp;

a pdf of prices with respect to this measure is then gT (p) = 1. Prior knowledge

has a pdf gK(p) with respect to ωp. By assuming that the consumer is rational,

we require gK(p) = 1.

The consumer derives utility from consuming the seller’s product and a bas-

ket of other goods. After purchasing from the seller, she automatically spends

all that is left of the initial nominal endowment, e, on purchasing the basket.

Let both the endowment and the basket’s price be known and equal to 1. Let

the indirect utility from consuming an amount c at a price p be denoted by

U(p, c). In this paper, the utility U(p, c) will mostly take the form of either a
4See Nakamura and Steinsson[8]. They provide an explanation for the coexistence of a

rigid regular price and frequent deviations from it based on consumers’ habits in single goods.
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CES aggregator, or its limit version.

U1(p, c) =
(
a · cr + (1− a) · (1− pc)r

)1/r

, (1)

where a ∈ (0, 1) is a share parameter and r = 1 − 1/θ is the elasticity of

substitution, θ ∈ (1,∞). A scaled aggregator’s limit as the share parameter a

approaches zero is:

U2(p, c) = c1−1/θ − pc. (2)

A rationally inattentive consumer chooses what pieces of information to pro-

cess. Then, she decides how much to consume based on her posterior knowledge

about price. Given the distribution of prices, the optimal pieces of information

together with optimal consumption responses form a consumer’s strategy.

The seller in turn considers all consumer’s strategies as responses to his

pricing strategies and selects the optimal pricing to maximize his expected profit,

E[Π] = E[c · (p− µ)]. (3)

A seller’s pricing strategy is a rule determining what price to charge at an

incurred unit input cost. Given a distribution of input costs, a pricing strategy

determines a distribution of prices and thus the consumer’s prior knowledge.

The seller moves first. In equilibrium, a pricing strategy maximizes the seller’s

profit, while the consumer’s strategy is an optimal response to a price distribu-

tion determined by the seller.

The timing of events is as follows:

1. The seller picks his pricing strategy once and for all.

2. The chosen pricing strategy determines the distribution of prices and forms

the consumer’s prior knowledge.

3. The consumer picks her strategy of information processing and consump-

tion responses.

4. The seller’s unit input cost is drawn by nature; price and consumption are

executed according to the pre-selected pricing and consumption strategies.
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2.1 Inattentive Consumer

The consumer is rationally inattentive. She chooses how much of the seller’s

product to purchase, while everything that is left of her initial endowment is

automatically used to purchase a basket of other goods.

Since the consumer is inattentive, she needs to processes information about

the actual price before deciding on the consumption amount. She starts with

some prior knowledge about price. After she has processed new information,

her posterior knowledge is given by another distribution that is typically more

concentrated.

Under rational inattention, the agent’s ability to process information is lim-

ited, but she is still completely free to process the pieces of information she

cares about the most. This model takes full advantage of the flexibility of ratio-

nal inattention, which provides a rigorous treatment of information processing

with respect to different forms of the prior. The prior coincides with the true

distribution of prices,

gK(P ) = gT (P ) = 1. (4)

In general, the consumer chooses what pieces of information about price

to process based on i)What she knew in advance, ii)the relative importance of

various pieces of information - given by the form of her utility function, iii) The

actual realized price, and iv)the realization of a noise component.

The consumer’s decision strategy is fully described by a joint distribution of

p and c, given by a pdf f(P,C) and probability measures ωp and ωc. They define

both the choices of signals and the choices of consumption responses to realized

posteriors. A conditional distribution of price P given c represents a posterior

about P leading to a selected amount of consumption equal to c, while a f(C|p)

together with ωc determine a distribution of consumption given a realized price,

p. The consumers is given a marginal distribution of p. What she is left to

choose is the collection of conditional distributions of consumption c.

Definition 1 The consumer’s problem: Let U(P,C) be the indirect utility

function and κ be the consumer’s information capacity. A pdf gK(P ) with respect

to a given probability measure of price ωp determines the prior about price . The

consumer’s response strategy {f(P,C), ωc} is then a solution to the following

6



optimization problem.

{f(P,C), ωc} = arg max
f ′(·,·),ω′c

∫
p

∫
c

U(p, c)f ′(p, c)ω′c(dc)ωp(dp), (5)

subject to ∫
c

f ′(p, c)ω′c(dc) = gK(p) a.s.ωp (6)

f ′(p, c) ≥ 0, ∀p, c (7)

I(P ;C) ≤ κ. (8)

I(P ;C) is mutual information between random variables P and C, defined as

I(P ;C) = H(P )−H(P |C) =

=
∫
pc

∫
pc

f ′(p, c) log
( f ′(p, c)
gK(p)f ′(c)

)
ω′c(dc)ωp(dp). (9)

(6) requires consistency with prior knowledge and (7) states the non-negativity

of a probability distribution. (8) is the information constraint.

The condition expectation of consumption given a price now takes the form:

E[C|p] =
∫
cf(c|p)ωc(dc). (10)

2.2 Monopolistic Seller

In general, the seller could be optimizing his pricing strategy in a class of mixed

strategies by choosing a distribution of prices for each single input cost. How-

ever, it is shown in Lemma 5 in Appendix B that only a pure pricing strategy

can be optimal.

Let a pricing strategy, p̃(µ), be a function determining a unique value of

the price given a realized unit input cost. The selected strategy maximizes the

expectation of profit Π,

Π = c · (p− µ), (11)

where c is the sold amount, i.e. the consumer’s consumption.

If the consumer observed the price exactly, her consumption would be a

function of the realized price only - independent of other prices in the seller’s

pricing strategy. However, when a consumer is constrained by limited informa-

tion capacity, consumption also depends on her prior knowledge about price, i.e.
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on the whole probability distribution of prices. It was discussed in the previous

section that the distribution of prices influences the choice of the consumer’s

decision strategy. Prior knowledge affects what forms of information the con-

sumer processes and thus partially shapes her final decision on how much to

consume. Therefore, the seller does not set optimal prices on a cost by cost

basis. The pricing strategy at one cost influences the consumer’s behavior at all

prices. The seller selects the whole pricing strategy simultaneously, considering

the cross-effects of charging a specific price at one given realized input cost on

the consumer’s responses to other prices charged at different input costs. The

overall distribution of prices is determined by the pricing strategy p̃ together

with the distribution of unit input costs given by a pdf h(µ). The probability

that the price belongs to a certain interval equals the total probability of input

costs that generate prices falling into such an interval. The probability measure

of a set A of prices thus equals the following:

ωp(A) =
∫
S

h(µ)dµ, S = {µ : p̃(µ) ∈ A}. (12)

Definition 2 The seller’s problem: The seller chooses a pricing strategy

p̃(µ) that maximizes the expected profit.

p̃(µ) = arg max
p̃′

Ep̃′ [Π] = arg max
p̃′

∫
E[C|p̃′(µ)] · (p̃′(µ)− µ)h(µ)dµ. (13)

h(µ) is a given distribution of unit input costs. The expected consumption,E[C|p̃′(µ)],

is given by (10) for a consumer’s decision strategy,f , which is a solution to the

consumer’s problem, (5)-(8), such that prior knowledge coincides with the true

distribution of prices, (4), and the distribution of prices is determined by the

pricing strategy, (12).
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3 Solutions

3.1 Consumer’s Response Strategy

This section studies the properties of the solutions to the consumer’s problem,

(5) − (8). It also discusses how the consumer’s responses change when a price

distribution becomes more concentrated or when precision of signals on price

improves.

If the information constraint (8) is not binding, then the setup takes the form

of a standard perfect information maximization problem. Posterior distributions

are arbitrarily precise; and they degenerate to delta functions at the true values

of price. Conditional distributions of C given p degenerate at c = copt(p), where

copt(p) is the perfect information demand function.

copt(p) = arg max
c′

U(p, c′), (14)

(15)

For a CES utility, U1, the perfect-information demand function is

copt(p) =
1

(1/a− 1)θpθ + a2p
(16)

while for U2, it is

copt(p) =
(

θ

θ − 1

)−θ
p−θ. (17)

However, it is much more difficult to solve the consumer’s problem when

constraint (8) binds. I was not able to find analytical solutions to the consumer’s

problem (5) − (8) in general. Therefore, I rely on semi-quantitative insights

and on numerical solutions5. The properties of the consumer’s responses are

summarized in points C1− C4.

C1: The consumer targets copt(p), but imperfectly. Both perfect

information demand functions, (16) and (17), are strictly decreasing and convex.

The expected consumption is decreasing even if the consumer has a limited

information capacity.
5The original problem (5) − (8) was discretized into the corresponding finite dimensional

convex problem. Details of the numerical method are described in Appendix C
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Figure 1: Joint distribution of prices and consumption, θ = 3, κ = 1 bit

Proposition 1 If an indirect utility function U(p, c) satisfies ∂2U
∂c∂p < 0 and

κ > 0, then E[C|p] is a strictly decreasing function of p in the support of the

prior on p. Both U1 or U2 satisfy the assumption above.

Proof: This is a trivial application of Lemmata 1, 2 and 4 in Appendix A.

Figure 1 shows a numerical solution for the utility function U2, price uni-

formly distributed in (1, 3), and the information capacity κ = 1. Both graphs

present the same joint pdf f(p, c). The dashed curve in the left graph repre-

sents the optimal demand function, copt(p). On the right, it is well visible that

the consumer decides to process three different realizations of signals only. The

three signals lead to three different values of consumption6. Prices between 1

and 2 usually generate a signal implying the lowest consumption, sometimes

they lead to the middle signal; and almost never to the last signal. The last

signal carries information that the price is quite likely very high.

The consumer would like to collapse the joint distribution of price and con-

sumption on the copt(p) curve, but she can not, since she is not able to acquire

perfect signals. Imperfect and noisy signals generate sub-optimal responses.

The joint distribution is therefore dispersed around the optimal curve.

The higher the consumer’s information capacity is, the closer to the optimal
6Discreteness is discussed in Sims [12], Matějka and Sims [?] and Matějka([6]
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Figure 2: Joint distribution of prices and consumption, θ = 3, κ = 2 bit

curve her responses are. Figure 2 presents a numerical solution when κ = 2. The

responses may seem quite imperfect. However, in comparison with the solution

under perfect information, the consumer loses 1.15% if κ = 1 and 0.06% when

κ = 2, which corresponds to only 0.6% and 0.03% reductions in consumption7.

C2: The consumer processes more information at lower values of

prices. Figures 1 and 2 show that the consumer chooses to acquire relatively

tighter signals when the price is low. She does so to minimize losses from

imperfect knowledge; the losses are potential higher at lower prices. It is shown

in [6] that an agent processes more information when the loss factor, L(p), is

higher.

L(p) = −
(
dcopt(p′)
dp′

)2
d2U(p, c)
dc2

, at c = copt(p), p′ = p. (18)

The change in utility due to misjudging a price p by a small amount ε is approx-

imately equal to −L(p)ε2/2. The loss factor takes an especially simple form for

the utility function U2:

L(p) ∝ p−θ−1, (19)

7This amount does not include utility effects of the indirect part (−pc)
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which is a decreasing function of p. Processing information about low prices is

more valuable.

C3: Under certain conditions, the consumer chooses to consume

less if prices are more dispersed. Lemma 3 in the appendix states that if

∂U(p, c)
∂c

exists and is concave in p, (20)

then the consumer chooses to consume more when she has acquired a prefect

signal on price than when the acquired signal has the same expectation but

is more dispersed. In other words, a completely inattentive agent chooses to

consume more when price is totally rigid than when it is volatile about the

same expectation.

The consumer fears that she loses disproportionately on consuming too little

of the other goods, in case the seller’s price turns out to be unexpectedly high.

Therefore, she rather consumes more of the basket of other goods with a known

price.

With a fixed information capacity, or a convex cost of processing information,

more dispersed prices and thus prior knowledge imply less accurate posterior

knowledge about the price. Therefore, volatile prices drive consumption down.

Consumers prefer and reward stable prices.

This effect is an analog to precautionary saving in a standard savings prob-

lem with a stochastic stream of endowments. If uncertainty about future en-

dowments increases, precautionary saving increases, too. In our model, the role

of future consumption amounts is played by a consumption of the basket - un-

certainty about the amount is driven by uncertainty about the seller’s price, i.e.

by what is going to be left of the initial endowment after purchasing the seller’s

product.

The assumptions of Lemma 3 are satisfied by the CES utility function,(1);

it is verified in the proof of Lemma 4. However, U2 does not satisfy (20), since

∂U2(p, c)/∂c is linear in p.

c = arg max
c′

Ep[U2(P, c′)] = arg max
c′

Ep[c′1−1/θ − Pc′] (21)

⇒ c = (1− 1/θ)θEp[P ]−θ, (22)
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where Ep[·] is the expectation operator given a distribution of p. For U2, con-

sumption depends on the expectation Ep[P ] only; shape of the distribution has

no extra effect on the choice of optimal consumption. U2 is a scaled version of

a limiting case of CES if a → 0; it is when a portion of the initial endowment

spent on the seller’s product is negligible.

What is really needed for a dispersion of prices to have a negative effect

on expected consumption is risk aversion in the spent amount. Let the utility

function have, for the sake of simplicity, the following form,

U(p, c) = cr − (pc)2 r ∈ (0, 1). (23)

This function differs from U2 in its second term. Considering utility to be

derived from consuming two different goods, the second term represents an ad

hoc form of disutility from consuming less of a second good when more of the

first is purchased. For U1, the disutility is linear in the amount spent on the

first good if and only if a = 0 or a = 1.

The optimal amount of consumption for a completely inattentive agent has

to satisfy the first order condition:

dEp[U(P, c)]
dc

= rcr−2 − 2Ep[P 2] = 0. (24)

If no information is processed, the agent’s posterior equals her prior, g(p).

c =
2
r
Ep[P 2]1/(r−2) =

2
r

(
Ep[P ]2 + V arp[P ]

)1/(r−2)
. (25)

With a fixed expectation of price, consumption is a decreasing function of price’s

variance.

C4: The consumer’s expected consumption increases if she pro-

cesses more information, especially about lower prices. While the ob-

servation C3 is concerned with different price distributions, the point C4 dis-

cusses different collections of signals on the same distribution. C3 states that if

a seller keeps the expected price fixed and narrows the distribution down, then a

consumer will tend to consume more. On the other hand, C4 claims that given

the same distribution, more is consumed when the consumer acquires tighter

signals.
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Let a distribution of prices be given. If a demand curve is a strictly convex

function of expected price only, then expectation of consumption responses to

perfect signals is higher than a consumption response to a mixed signal of all

prices. This is a trivial application of Jensen inequality.

The statement can be further refined to any collection of imperfect signals.

Expectation of consumption is an integral over all possible signals that can be

realized. For the utility function U2, we get the following:

Es[C] = (1− 1/θ)θEs
[
Ep|s[P |s]−θ

]
. (26)

Es[·] is the expectation operator given a distribution of signals s, while Ep|s[·]

denotes expectation given a distribution of prices conditioned on a specific signal

s. If signals are not perfect, then a strict Jensen inequality holds:

(1− 1/θ)θEs
[
Ep|s[P |s]−θ

]
< (1− 1/θ)θEs

[
Ep|s[P−θ|s]

]
=

= (1− 1/θ)θEp[P−θ] = Ep[copt(P )]. (27)

Therefore,

Es[C] < Ep[copt(P )]. (28)

Responses to perfect signals lead to a higher expected consumption. Although

we have shown it analytically for U2 only, the result is likely to hold for U1 too,

since its main driver is the convexity of a demand function. The higher the

convexity, the more extra consumption is generated by additional information

processed. As will be discussed later, a seller can respond to this feature of the

consumer’s behavior by making prices rigid in areas of low convexity of demand

(high prices) to save the consumer’s information capacity for regions of high

convexity (low prices).

C3 motivates the seller to keep the price distribution more concentrated.

On the other hand, C4 motivates him to make high prices more rigid than low

ones. He does so to make the consumer especially attentive to price discounts,

i.e. to sales.
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3.2 Seller’s Pricing Strategies

While selecting an optimal pricing strategy, a seller considers the stochastic

properties of unit input costs and the consumer’s responses to different strate-

gies.

By modifying the pricing strategy together with the whole distribution of

prices, the seller stimulates a consumer to process different pieces of information,

attain different posterior knowledge and thus respond differently, potentially

even to the same realized and imperfectly observed true price.

Let us first inspect optimal pricing in two extreme cases, κ =∞ and κ = 0,

which can be studied analytically.

Consumer’s information capacity is unlimited, κ =∞: The consumer knows

the realized price exactly. Her demand for the good depends on its actual

price only, not on the whole distribution of prices. Demand always equals the

consumer’s optimal demand, copt(p). Therefore, the seller sets an optimal price

for each cost separately, he does not need to consider the implications of the

shape of the prior distribution for the shape of the posterior.

For instance, if θ = 2 and a = 1/2, given an input cost µ, then the maximal

profit is achieved by p = µ +
√
µ+ µ2. For a ∈ (0, 1), the optimal pricing

strategy is

p̃(µ) = µ+

√( a

1− a

)2

µ+ µ2, (29)

while the optimal pricing for the utility function U2 is

p̃(µ) =
θ

θ − 1
µ. (30)

Both strategies, (29) and (30), are continuous and strictly increasing functions

for all non-negative costs.

Zero information capacity, κ = 0: The consumer can not process any in-

formation. Her posterior knowledge equals her prior knowledge given by the

overall distribution of prices. Therefore, given a prior, the posterior knowledge

is always the same, regardless of what the actual price is - the seller fully deter-
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mines the consumer’s posterior knowledge. Optimal prices for different input

costs cannot be set independently of each other.

The following proposition is an implication of Lemma 3 in the appendix.

Proposition 2 Let a utility function be CES, U1. If κ = 0, then an optimal p̃

must be constant - the seller charges the same price for all unit input costs.

Proof: Let us assume that a non-constant p̃1 is an optimal strategy. Such a

strategy delivers a non-degenerate distribution of prices, with a pdf g1(p). Since

the consumer has zero information capacity, her posterior knowledge equals her

prior (its pdf also equals g1(p)). Given this posterior knowledge, she chooses

an amount c to maximize expected utility. With no information specific to the

actual price p, the consumer always selects the same c, regardless of the realized

price.

Let p̃2(µ) = p̄ be an alternative pricing strategy, where p̄ is the mean price

of p̃1. Let c′ be a consumption that is realized when p̃2 is applied. Lemma 3 in

the appendix states that

c < c′. (31)

Consumption rises if the constant pricing strategy is used. Moreover,

Ep̃1 [Π] = c · Ep̃1 [p− µ] <

< c′ · Ep̃1 [p− µ] = c′ · (p̄− µ̄) = Ep̃2 [Π], (32)

so the seller’s expected profit rises, too. No non-constant pricing can be opti-

mal.QED.

These two extreme cases illustrate two main forces acting on the choice of

the pricing strategy. If the information constraint is binding, the consumer’s

response to each single cost depends on the whole distribution of prices, too. The

seller then tends to choose more condensed pricing, realizing that consumption

is likely to fall when the signal on price is more dispersed. This force reflects

the property C3 - the consumer’s cautiousness.

On the other hand, any time the information capacity is positive, the con-

sumer does acquire some refined knowledge about the actual price. The second

force realizes the consumer’s demand as a function of the level of the price - it
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makes the seller desire to price differently for different input costs. This force

dominates at higher information capacities, and is the only one at play when

κ = ∞, while cautiousness is the main driver if κ = 0, when the consumer can

not distinguish between prices at all.

Setups with a finite information capacity were studied numerically. Analyt-

ical solutions are not in general available even just for the consumer’s problem

under constraints on information capacity. So, it is well out of reach at the

moment to study the seller’s optimization over pricing strategies when coupled

with the problem of an inattentive consumer. Numerical methods that were

applied are described in the appendix.

Finite information capacity, CES utility. Figure 3 shows numerical solutions

for CES with θ = 2 and four different levels of information capacity. The solid

line in each graphs represents a perfect-information pricing strategy, (29). The

optimal pricing strategies are imperfectly concentrated around this line. The

higher the information capacity, the closer the seller’s strategy and the perfect-

information strategy are.

The upper left picture, when a consumer is completely inattentive, is a

manifestation of Proposition 2 - the optimal pricing strategy is constant and the

price is completely rigid. If the information capacity increases, pricing becomes

more flexible. For κ = 1, the seller chooses to charge two different values, for

κ = 2 it is four values. Pricing is completely flexible when the capacity is

unlimited; a numerical solution tracks the analytical solution (29) very closely.

In all four cases, the seller chooses a strategy of maximal entropy such that a

consumer can still observe price exactly. 1 bit of information capacity allows the

consumer to distinguish between two different values, while 2 bits distinguish

between four of them. The seller recognizes that a more concentrated prior

allows tighter posterior knowledge, which in the case of CES leads to higher

consumption. In general, we should expect that the more attentive the consumer

is, the more flexible pricing strategy the seller selects.

Finite information capacity, utility function U2. Optimal pricing strategies
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Figure 3: Pricing strategies, CES, θ = 2
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Figure 4: Pricing strategies, U2, κ = 1, left: θ = 3, right: θ = 10

for the utility function U2,(2), are shown in Figure 4. Information capacity is 1

bit. Pricing is less rigid than for CES in Figure 3, but it is still not completely

flexible. U2 does not satisfy the assumptions of Lemma 3. Making the whole

prior more concentrated does not generate higher consumption. Unlike for CES,

pricing is not rigid at all input costs.

However, the seller does prefer to price rigidly at the highest input costs.

Selecting one high price instead of several of them prevents a consumer from

processing information about which one of the high prices is the realized one.

The seller does so to stimulate a consumer to use most of her information

capacity at lower prices. C4 discusses that consumption increases if signals

become tighter. The effect is stronger if the convexity of a demand function is

higher. This feature of the consumer’s behavior motivates the seller to vary the

flexibility of his strategy between different levels of input costs. Rigid pricing in

regions of low demand convexity saves on the consumer’s information capacity,

which will then be used in regions of high convexity. For U2, convexity is a

decreasing function of price.

Rigid high prices allow the consumer to use more information capacity when

the price is low. In other words, the consumer can pay more attention to sales,

which in turn benefits the seller.

Finite information capacity, LQ utility. Let the utility have the following
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Figure 5: Pricing strategies, LQ utility function, κ = 1

form:

U(p, c) = −c2 + 2c− pc. (33)

This utility does not satisfy the assumptions of Proposition 2, moreover, the

convexity of the induced demand function is constant,

copt(p) = 1− p

2
. (34)

None of the drivers towards pricing rigidity mentioned above are present. Figure

5 presents a numerical solution for κ = 1 and the analytical solution for κ =∞.

Pricing is completely flexible even if the consumer’s information capacity is low,

p̃(µ) = 1 +
µ

2
. (35)

Let us summarize the discussion above.

S1: The seller’s pricing strategy is an imperfect approximation of

his perfect-information strategy.

S2: Preference for discreteness: there is is an apparent tendency toward

rigidity of prices. Only a few distinct values are to be charged even when unit

input cost takes values in a continuous interval.

S3: The rigidity of pricing is higher if the consumer’s information

capacity is lower: rationally inattentive consumers reward stable prices.
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S4: The rigidity of high prices increases if the convexity of the

demand function decreases with prices more rapidly: the importance

of proper attention to sales increases; the seller accommodates the consumer to

process more information about low prices.
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4 Dynamic Models

This section outlines the potential implications of consumers’ inattention for

dynamic models of pricing. A complete formalization of such models is unfor-

tunately well beyond a scope of this paper. A proper dynamic extension of the

static model presented earlier would be too demanding to solve even numeri-

cally. While in the static version, the seller’s strategy is a function on a space

of unit input costs, strategies in the dynamic version would take the form of

functionals on a space of all the paths of unit input costs to a space of all the

price paths. Optimal prices can turn out to be serially correlated even if the

input cost is i.i.d. Instead of constructing a fully-fledged dynamic model, we set

up a couple of illustrative models.

1. The following section presents a model with a serially correlated unit in-

put cost yielding rigid prices. The drivers of these results are the same

as those presented in the analysis of the static model: consumers reward

stable prices with increased consumption. The seller chooses to price dis-

cretely to make prices easily observable. Although this model is again

based on imperfect processing of information, we make simplifying as-

sumptions that prevent consumers from processing information gradually.

Prior knowledge about prices is fixed in time.

2. The next section, on the other hand, sheds light on the implications of the

gradual refinement of knowledge in time. There is either a positive or a

negative shock to an aggregate component of the seller’s input cost in pe-

riod 0. Consumers have limited information capacity and learn about the

shock’s true realization only gradually, exogenously of the seller’s actions.

It turns out that the seller prices in line with the consumers’ expectations:

he changes his price as sluggishly as consumers learn about the shock. The

seller does so to better utilize consumers’ knowledge and decrease their un-

certainty about the price.

Drawing on these results, we conclude the section by discussing implications

of rational inattention for more complex models.
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4.1 Discrete Prices in a Dynamic Setting

This model, DynA, is going to take the same analytic form as the original

static model formulated in Definition 2. Assumptions I make will imply that

consumers keep their priors about prices fixed, which will make the consumer’s

side of the problem static.

A consumer is periodically endowed with a nominal endowment, e. She first

visits the seller’s store and then automatically spends the rest of the endowment

on other products during the time that is remaining until the next endowment.

There is no savings beyond the moment of the next endowment. The number

of consumers arriving to the store each period is constant. The time intervals

between successive endowments have the same length for all consumers, but the

phases of their arrivals are not synchronized.

I make the following assumptions.

i) Consumers process information about the seller’s price when they visit the

store only.

ii) Unit input cost changes on a much quicker time scale than that on which

consumers visit the store.

iii) The stochastic process of unit input costs is ergodic. The limiting distri-

bution of the unit input cost has bounded support and is independent of

current and past unit input costs. For instance, the cost does not have a

long-term trend. However, the input cost can be i.i.d. or serially corre-

lated.

The seller incurs a stochastic unit input cost and applies his pre-selected

pricing strategy. The strategy determining the price to be charged could in

general be a function of current as well as past unit input costs. However,

due to the assumptions above, the consumer’s prior knowledge about the price

at the moment when she enters the store is independent of any information

she processed in the past - it always coincides with the limiting (long-term)

distribution of prices, which is fixed. In such a case, the seller’s optimal pricing

strategy is a function of the current unit input cost only. The strategy together

with the limiting distribution of costs determines the limiting distribution of

prices.
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Figure 6: Simulated price series, CES, θ = 2, a = 0.5, stable cost

Although the setting was originally dynamic, the consumer’s problem again

takes the form of (5)-(8), where prior g is the limiting distribution of prices. The

seller chooses an optimal p̃(µ). Realized prices are then determined by successive

application of p̃(µ), even if the unit input cost, µ, is serially correlated.

Definition 3 Model DynA: takes the same form as the seller’s problem for-

mulated in Definition 2, except that h(µ) is the limiting distribution of input

costs:

h(µ) = lim
T→∞

1
T

=
∫ T

0

h(µ, t)dt, (36)

where h(µ, t) is a prior on costs at time t, which is determined by the properties

of the stochastic process of the unit input cost.

A simulated price series for θ = 2 and a = 0.5 is shown in Figure 6. The

picture compares optimal pricing when consumer’s information capacity is κ = 1

with fully flexible pricing at κ = ∞. The series of flexible prices fully reveals

the realized unit input costs, while optimal prices when κ = 1 take two different

values only. The lower value of the price is selected anytime µ drops below 1.

I simply generated a serially correlated µ from a stochastic process with

a long-term distribution that is uniform in (0.8, 1.2) 8, and then successively

applied the appropriate pricing strategy, which is presented in the upper right

graph of Figure 3.

Figure 8 shows a simulated time series of prices for a = 0.25 - the corre-

sponding optimal pricing strategy is on the left in Figure 7. A lower share

parameter implies more flexible pricing; prices take 3 different values. Finally,
8For purposes of the simulation, it is only the specific form of the cost-path realization

that is important, not the properties of the underlining stochastic process.
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Figure 7: Pricing strategies, CES, θ = 2

Figure 8: Simulated price series, CES, θ = 2, a = 0.25, stable cost

Figure 9 presents price series for a = 0.25, but this time the underlining unit

input cost is more volatile. The resulting prices change their values more often.

4.2 Delayed and Smoothed Adjustments to Aggregate Shocks

Rationally inattentive agents learn about new innovations slowly. While the

gradual refinement of information was completely neglected in the previous sec-

Figure 9: Simulated price series, CES, θ = 2, a = 0.25, volatile cost
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tion (consumers did not learn at all), it is the main theme in this one. Consumers

gradually refine their knowledge about stochastic variables. If there is a shock

to an aggregate variable and if the seller’s input cost is correlated with this vari-

able, then the seller chooses to respond to such a shock gradually - he chooses

to price in line with the consumer’s expectations.

Imagine a consumer has some partial knowledge about shocks to energy

prices. She also knows that energy prices are the main determinant of the input

cost for her favorite local sauna club. The consumer’s expectations about the

admission prices to the sauna vary with what she knows about the current prices

of energy. The sauna owner might postpone new price changes until consumers

expect them to occur.

The model DynB has these features:

i) The input cost is drawn from a binary distribution in the period 0.

ii) The consumer’s knowledge of the seller’s cost evolves independently of the

seller’s actions. Knowledge is gradually refined.

iii) The seller’s price is a function of the unit input cost and the time elapsed

from the initial shock.

Let the seller’s unit input cost be equal to an aggregate variable A. The

seller is small and has a negligible influence on the consumer’s knowledge about

shocks to A - the knowledge evolves independently from the seller’s pricing

responses to A. A is drawn from a symmetric binary distribution {AL, AH}

in the period 0 and stays constant forever after. Consumers know that one of

the two possible shocks is realized, but need to process information to find out

which one it is. Such a setting with a one-time shock is both simpler to solve

and yet illustrative enough to document the implications of gradual knowledge

adjustment.

In fully-fledged models under rational inattention, we would specify con-

sumers’ preferences and allow them to choose what pieces of information to

process. I will, however, assume one specific form of information structure. The

qualitative properties of the results do not rest on this assumption.

Let us assume that the consumer’s knowledge in period t has the same form

as if the consumer acquired one signal through a binary channel with a noise
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level X(t). X(t) is decreasing in t, which models knowledge refinement9. With

increasing time, there is a higher probability that agents receive the correct

signal. Posterior knowledge is thus more concentrated.

If A = AH , then the probability that an agent receives the correct sig-

nal, (A = AH), is 1 − X(t). The posterior knowledge of an agent having

received such a signal is {P(AL) = X(t),P(AH) = 1 − X(t)}. The poste-

rior knowledge of agents who received the corrupted signal, (A = AL), is

{P(AL) = 1−X(t),P(AH) = X(t)}.

The seller chooses his pricing strategy. Unlike in the earlier sections of this

paper, the strategy is not a function of the input cost only. The consumer’s

knowledge evolves even after period 0, when the input cost is kept fixed. Differ-

ent consumer’s knowledge can imply a different optimal pricing response to the

same input cost. The pricing strategy takes the form p = p̃(A, {g(A)}) = p̃(A, t),

where {g(A)} is the distribution of knowledge10 in the population of consumers.

{g(A)} is determined by X(t), which is pinned down by time t. The strategy

can be expressed using two functions, p̃L(t) and p̃H(t), each corresponding to

one level of unit input cost:

p =

 p̃L(t) if A = AL,

p̃H(t) if A = AH .
(37)

Consumers are rational, they know the form of p̃L(t) and p̃H(t). Together

with their knowledge about the aggregate shock (A determines which one of

p̃L(t) and p̃L(t) is to be applied), the pricing strategy generates the consumer’s

prior on price. More specifically, the pricing strategy forms the prior’s support,

while knowledge about A determines the relative probabilities of its two points.

The term prior reflects knowledge ”before” a consumer processes information

about the seller’s price, but it is ”after” she has processed information about the

aggregate shock. Since the consumer’s knowledge about A is independent of the

seller’s actions, optimal prices at different levels of X(t) can be set independently

of each other.

9No sequence of signals across periods is considered, just one signal, which gets tighter in

latter periods.
10It is actually a distribution of distributions.
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Definition 4 Model DynB: X(t) is given for all t ∈ {0..∞}; it is a non-

increasing function . For each t, the seller chooses p̃L(t) and p̃H(t), maximizing

the expectation of his profit

{p̃L(t), p̃H(t)} = arg max
{p̃′L(t),p̃′H(t)}{

1
2 (p̃′L(t)−AL)(

(1−X(t))E[C|t, AL] +X(t)E[C|t, AH ]
)

+ 1
2 (p̃′H(t)−AH)(

X(t)E[C|t, AL] + (1−X(t))E[C|t, AH ]
)}
. (38)

The expression for expected profit weights the true realizations of AL and AH

and also the consumer’s priors generated by receiving signals on AL or AH .

E[C|t, AL] denotes the consumption expectation when a consumer’s prior is de-

termined by a signal pointing to AL with a noise level X(t) - the corresponding

prior is {g(p̃L(t)), g(p̃L(t))} = {1 − X(t), X(t)}. On the other hand, a prior

determining E[C|t, AH ] is {1 − X(t), X(t)}. The consumption expectation is

evaluated from a solution to the original consumer’s problem (5)-(8) with the

appropriate prior.

For each X(t), the numerical representation of the optimal pricing strategy

can be found simply by evaluating the expected profit for all combinations of

{p̃L(t), p̃H(t)}. Let noise decrease at the following rate:

X(t) = 0.5− 0.05t, ∀t ∈ {0..10}. (39)

If the realized value is A = AH , then the seller’s price gradually increases

until it reaches the full information price in period 10. Otherwise, it gradually

decreases. For simplicity, let κ = 0. Consumers do not process any additional

information about the seller’s price, they only use their knowledge about the

aggregate variable. If κ > 0, the same optimal prices would correspond to higher

levels of X.

Figure 10 presents the optimal pricing strategies as a function of time t, for

CES utility(U1), a = 0.5, θ = 2 AL = 0.8 and AH = 1.2.

Consumers possess very little knowledge about A in early periods. They

know the seller’s pricing strategy, but have difficulties distinguishing between
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Figure 10: Gradual price adjustment to aggregate shock, θ = 2.

the two different values of prices, p̃L(t) and p̃H(t), that can be realized in the

particular period. If X(t) = 0, consumers always acquire the correct signal, then

the seller sets the perfect information optimal prices, which are represented by

the dash-dotted bounds. If X(t) = 0.5, consumers can not tell at all which of

the two prices was realized - in such a case, the seller chooses to set one price

only. Like in the static model, consumers consume more when they are less

uncertain about prices. With the increasing probability of the correct signal,

optimal prices p̃L(t) and p̃H(t) are set further and further away from each other.

Figure 11 shows the same solution with the x-axes scaled differently. In this

case, it is the amount of information capacity used that increases linearly with

time rather than the level of noise decreasing linearly. This scale is probably

the more natural one.

κ(t) = t/10, ∀t ∈ {0..10}, (40)

κ(t) = 1 +X(t) logX(t) + (1−X(t)) log (1−X(t)). (41)

The second equation relates the capacity of a binary channel to the resulting

level of noise. The noise level, X(t), is a convex function of information capacity.

Very little capacity is needed to decrease the noise from 0.5 to 0.45, a bit more

from 0.45 to 0.4, etc.
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Figure 11: Gradual price adjustment, scaled to information amount

4.3 Implications

4.3.1 Staggered Price Changes

Under rational inattention, price changes can also be sluggish and yet staggered,

unlike in DynB, where price responses were smooth.

A support S of the consumer’s prior consists of price-points p that lie in the

range of the pricing function p̃(µ).

S =
{
p : ∃µ; p̃(µ) = p

}
. (42)

The seller desires to limit the prior’s entropy. In DynA, he chooses to charge

the same price for intervals of the unit input cost.

In DynB, priors evolve according to the evolving pricing strategy p̃(t, µ). The

time component is present due to consumers’ gradual collection of information

about the period-zero shock. Consumers know the seller’s pricing strategy as

a function of time and also how much time has elapsed since the moment the

shock occurred. Therefore, they construct their priors directly from price points

that can be charged at that specific period.

S(t) =
{
p : ∃µ; p̃(t, µ) = p

}
. (43)

Even if DynB was solved for a continuous interval of unit input costs, p̃(t, µ)

would likely be a piece-wise constant function of µ (at a fixed time t). However,

30



since p̃ can vary continuously with time t, the impulse responses of realized

prices can be smooth, just like in Figure 10.

Optimal pricing strategies in more complex models with rationally inatten-

tive consumers would, however, likely feature staggered rather than smooth

price adjustments. This can arise if consumers can not fully identify the exact

moment when a shock occurred. For instance, we could model an infinite hori-

zon problem with potential shocks in each period and assume that consumers

do gradually learn about shocks just like in DynB, but they can misjudge the

moment of a shock by at most one period. If successive shocks are always dis-

tant enough, so they do not interfere, then the sellers pick a pricing strategy

as a function of the shock’s form and of a time elapsed from the shock. In this

case, the consumer’s prior takes the following form.

S(t) =
{
p : ∃µ,∃∆ ∈ {−1, 0, 1}; p̃(t+ ∆, µ) = p

}
, (44)

where t− 1, t, t+ 1 are possible numbers of periods from the shock as perceived

by the consumer. The support is generated by price values corresponding to

three different time levels. In order to decrease the support’s entropy, the seller

needs to coordinate price values across periods. Moreover, price points in all

periods are bound together through the succession of these three-period kernels.

A possible solution is a pricing strategy gradually responding to new shocks yet

constant on finite time intervals. Price responses would be delayed and sluggish,

but spread over a couple of discrete jumps only.

What we really need to get the staggered price adjustment is a noise compo-

nent in the rate of information acquisition. However, this component is present

if agents process information through channels of limited information capac-

ity. It is only the average rate of information that is bounded by the agent’s

information capacity, but realized rates do deviate from this quantity.

4.3.2 Rigidity of Real and Nominal Variables

The results presented in this section have another appealing implication. This

is that consumer’s inattentiveness suffices to generate both nominal and real

rigidities. As Sims[10] notes, this overall rigidity is an important feature of data

that both classical as well as early New Keynesian models fail to generate. Al-
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though more recent New Keynesian models do display real rigidity, they usually

achieve it via explicit and often ad hoc assumptions of real frictions.

Sims claims that models with inattentive agents on the supply and the de-

mand side of the economy would reconcile with the observed general rigidity of

variables. Early New Keynesian models postulating rigidity of prices typically

imply an immediate increase in output as a response to monetary expansion.

The expansion of monetary aggregates raises nominal demand, which under

rigid prices also increases demand. Output is then assumed to satisfy demand

exactly, and thus to immediately respond to nominal shocks.

It is straightforward to realize that introducing a constraint on the con-

sumer’s information capacity in a New Keynesian model would generate real

rigidity. If a consumer chooses a level of consumption while processing infor-

mation somewhat slowly, then she can not adjust her demand instantaneously

after a shock. She responds only as quickly as she learns about the shock.

Moreover, this paper discusses that such a constraint on the consumer’s side

generates nominal rigidity, too. However, nominal movements are in fact in

the seller’s discretion. The consumer’s inattention is therefore a driver of the

rigidity of both nominal as well as real variables.
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5 Conclusion

This paper proposes a mechanism leading to rigid pricing as an optimal strategy.

It shows that consumers’ limited abilities to process information can motivate

sellers to keep their prices rigid.

The presented models apply the framework of rational inattention to study

the pricing strategies of a monopolistic seller facing a consumer with limited

information capacity. The consumer needs to process information about prices,

while the seller is perfectly attentive. It turns out that the seller chooses to price

discretely even for a continuous range of unit input costs, i.e. the seller charges

a finite set of different prices only. He does so to provide the consumer with

easily observable prices and thus stimulate her to consume more. In dynamic

models, this mechanism, in addition, implies that prices respond to cost shocks

sluggishly.

Solutions to the model’s dynamic version, the price series presented in Fig-

ures 6 and 8, resemble some real time series of prices quite well11. Prices often

stay constant for a while and attain just a few different values in the long run.

The frequency of switching between different values can be both high or low

depending on the volatility of the underlining unit input cost.

The model’s dynamic version generates sluggish responses of prices to aggre-

gate shocks. Sellers wait with a price change until consumers learn about the

nature of the shock in order not to surprise consumers with the change. It is

also implied that consumers’ inattention can generate rigidity of both nominal

as well as real variables. This feature is in agreement with the data.

Limited information capacity has been a driver of rigidities in a number of

recent papers. However, in this one, it is the consumer who finds it difficult

to process information, not the seller. This interaction between a price-setting

seller and a rationally inattentive consumer makes the model possible to solve

in very simple settings only. On the other hand, the information constraint on

the consumer’s, rather than the seller’s, side certainly has some intuitive appeal

- especially in markets where sellers offer just one product, but consumers need

to compare the prices of several different sellers.

11See for example Eichenbaum, Jaimovich and Rebelo [2].
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Appendices

A Consumer

Definition 5 Let h(c) be a marginal distribution of c. A pair of functions

{F1(c), F2(c)} has the m-property over h(c), iff ∃m; s.t.∀c, h(c) > 0 : F1(c) <

F2(c) if c < m, and F1(c) > F2(c) if c > m.

Lemma 1 Let f(c|p) be a conditional distribution of a solution to (5)-(8) and

let p1 < p2,s.t g(p1) > 0 and g(p2) > 0. If ∂2U(p,c)
∂c∂p < 0, then {F1(c) :=

f(c|p1), F2(c) := f(c|p2)} have the m-property.

Proof: A first order condition for a solution of (5)-(8) is

f(c|p) = h(c) exp(U(p, c)/λ)w(p), (45)

where h(c) is the marginal distribution of c, λ > 0 is a Lagrange multiplier

on the information constraint, (8), and w(p) is a normalization parameter. If

g(p) > 0, then w(p) > 0.
∂2U(p,c)
∂c∂p < 0 and p1 < p2 implies that

(
U(p1, c) − U(p2, c)

)
is increasing

in c; it can cross zero at most once. Adding a constant independent of c, we

find that
(
U(p1, c)/λ + log(w(p1))

)
−
(
U(p2, c)/λ − logw(p2)

)
also has to be

increasing and crosses zero at most once. Since exponentiation is a monotone

transformation,

exp(U(p1, c)/λ)w(p1)− exp(U(p2, c)/λ)w(p2) (46)

also has at most one 0 and is of the opposite sign on either side of some value

m for c. But from (45) we know that the above expression, multiplied by h(c),

is just f(c|p1) − f(c|p2). Therefore over the set of c values at which h(c) > 0,

f(c|p1)−f(c|p2) has the claimed properties. The pair {F1(c) = f(c|p1), F2(c) =

f(c|p2)} has the m-property. QED.

Lemma 2 If a pair {F1(c) = f(c|p1), F2(c) = f(c|p2)} has the m-property and

if κ > 0, then E[C|p] is a decreasing function of p.

Proof:

E[C|p1]− E[C|p2] =
∫
c<m

(f(c|p1)− f(c|p2)) cωc(dc) +
∫
c>m

(f(c|p1)− f(c|p2)) cωc(dc) ≥
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≥
∫
c<m

(f(c|p1)− f(c|p2))mωc(dc) +
∫
c>m

(f(c|p2)− f(c|p1)) cωc(dc) =

= −
∫
c>m

(f(c|p1)− f(c|p2))mωc(dc) +
∫
c>m

(f(c|p1)− f(c|p2)) cωc(dc) ≥

=
∫
c>m

(f(c|p1)− f(c|p2)) (c−m)ωc(dc) ≥ 0. (47)

Both inequalities hold assuming the m-property. In the last equality, we used

that f(c|p) integrates to 1 for any p. If κ > 0, then a distribution of c is

non-degenerate and the strict inequality holds. QED.

Lemma 3 If U(p, c) is concave in c, and ∂U(p,c)
∂c exists and is strictly concave

in p, then a perfect signal on a price p∗ leads to a higher optimal c then an

imperfect signal h(p) with the same expectation equal to p∗.

Proof: The perfect signal on p∗ leads to a consumption amount c∗, which satisfies(
∂U(p, c)
∂c

)
c=c∗

= 0. (48)

The optimal response c∗∗ to the imperfect signal h(p) satisfies

Eh(p)

[
∂U(p, c)
∂c

]
c=c∗∗

= 0. (49)

Since ∂U(p,c)
∂c is assumed to be strictly concave, the following holds due to the

Jensen inequality

0 = Eh(p)

[
∂U(p, c)
∂c

]
c=c∗∗

<

(
∂U(p∗, c)

∂c

)
c=c∗∗

, (50)

which by comparing with (48) implies:(
∂U(p, c)
∂c

)
c=c∗

<

(
∂U(p, c)
∂c

)
c=c∗∗

. (51)

The last inequality together with the concavity of U(p, c) in c implies

c∗ > c∗∗. (52)

QED.

Lemma 4 (a) If p > 0, c > 0, a ∈ (0, 1), e > cp and θ ∈ (1,∞), then the CES

utility U1, (1), satisfies the assumptions of both Lemmata 1 and 3.

(b) If p > 0, c > 0 and θ ∈ (1,∞), then the utility U2, (2), satisfies the

assumptions of Lemma 1 but not of Lemma 3.
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Proof: let r = 1 − 1/θ, r ∈ (0, 1). All multiplicative terms in the following

expressions are positive.

∂2U1(p, c)
∂c∂p

= −
[
(1− a)(e− cp)r−2

(
acr + (1− a)(e− cp)r

)1/r

×
(

(1− a)(e− cp)r+1 + cra(e− cp) + crae(1− r)
)]

× 1(
acr + (1− a)(e− cp)r

)2

< 0, (53)

∂2U1(p, c)
∂c2

= −
(1− a)acr−2(1− r)e2(e− pc)r−2

(
acr + (1− a)(e− pc)r

)1/r

(acr + (1− a)(e− pc)r)2
< 0, (54)

∂2

∂p2

(U1(p, c)
∂c

)
= −(1− a)(1− r)ac1+r(e− pc)r−1

(
acr + (1− a)(e− pc)r

)1/r

×

(
(1− a)r(e− pc)r+1 + 2(1− a)re(e− pc)r + acr(3e− pc− re)

)
(
acr + (1− a)(e− pc)r

)3

< 0. (55)

∂2U2(p, c)
∂c∂p

= −1. (56)

However, U2 is linear in p:

∂2

∂p2

(U2(p, c)
∂c

)
= 0. (57)

QED.

B Seller

The seller’s pricing strategy defines what prices are to be charged at a given

realized unit input cost. Such a strategy, potentially mixed, is given by a col-

lection of conditional distributions H(P |µ) for all realizable input costs µ. A

joint distribution H(P, µ) summarizes both the collection of these conditionals

together with an inherited distribution of unit input costs, H(µ).

Lemma 5 Let a pdf h(µ) of a given distribution of the unit input cost exist and

let also the assumptions of Proposition 1 be satisfied (a demand function E[C|p]
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is always a strictly decreasing function of price p). If H(P, µ) is a pricing strat-

egy maximizing the seller’s profit, then the corresponding conditional strategies

H(P |µ) must be trivial distributions for all µ except for a set of measure zero,

i.e. any optimal pricing strategy can be represented by a function p̃(µ).

Proof: A pricing strategy affects E[C|p] through an overall distribution of prices

only, regardless of what price is charged at what unit input cost. If the seller

modifies his pricing strategy in such a way that the resulting marginal distri-

bution of prices stays fixed, then the expectation E[C|p] does not change. For

such a fixed price distribution:

E[Π] = E
[
Ec[C|p](p− µ)

]
= Ep

[
Ec[C|p]p

]
− Eµ

[
Ec[C|p]µ

]
= K − Eµ

[
Ec[C|p]µ

]
, (58)

where K is a constant depending on the marginal distribution of p only. The

maximal profit is achieved when the expectation of the total cost Eµ
[
E[C|p]µ

]
is minimized, which is when low values of µ are aligned with high values of

E[C|p] and vice versa. Since E[C|p] is decreasing, then the highest prices must

be charged at the highest costs. We now show that the distributions H(P |µ)

must be degenerate almost surely. If there is a positive measure of µ’s (and thus

an uncountable number of these points) such that the distributions H(P |µ) are

supported by more than one point, then sets spanned by the supports of these

distributions must necessarily overlap. Low prices are not perfectly aligned

with lost costs. In such a case, the probability mass can be relocated to correct

this misalignment, while keeping both marginals fixed. The resulting pricing

strategy would lead to a higher profit. QED.

C Numerics

Let the range of unit input costs be represented by Nµ cost points. A discretized

version of a pricing strategy is characterized by prices, {p̃i}
Nµ
i=1, at the cost points

{µi}
Nµ
i=1. Price values are allowed to vary continuously, Nµ = 10. The expected

profit corresponding to a particular pricing strategy is evaluated via solving the
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following discretized version of the consumer’s problem (5)− (8).

{fij}
Np,Nc
i=1,j=1 = arg max

f ′

Np,Nc∑
i=1,j=1

U(pi, cj)f ′ij , (59)

subject to

Nc∑
j=1

f ′ij = gi, ∀i (60)

f ′ij ≥ 0, ∀i, j (61)
Np,Nc∑
i=1,j=1

f ′ij log
f ′ij

gi(
∑Np
k=1 f

′
kj)

≤ κ. (62)

Nc is a number of consumption points and Np a number of price points. This

system is not difficult to solve numerically. (62) is a concave constraint defining

a convex feasible set, while all other constraints as well as the objective are

linear. Therefore, Nc can be quite large, Nc = 300, unlike Nµ. One can use any

of the standard steepest-descent-based search algorithms, which are available

even in R or Matlab. I use an optimization language AMPL together with a

solver LOQO. It is easy to define the optimization problems in AMPL, while

the computations are performed by the provided solver. LOQO applies interior-

point methods, [13], which are efficient in solving large optimization problems

of this type.

The seller’s optimization task, however, is not concave; the problem might

posses multiple local maxima. Therefore, some global optimization method has

to be used. I chose a version of simulated annealing, which is a simple random

search method. Any iteration of a pricing strategy leading to an increase in the

seller’s profit is accepted. On the other hand, unfavorable changes in profit are

accepted with successively decreasing probability. The system ”cools” down,

and the upward shifts of the objective are gradually more and more preferred.

This approach allows for escaping local maxima.

The algorithm consists of the following steps.

1. Initialize:

(a) time t := 0,

(b) initialize a pricing strategy, {p̃i}
Nµ
i=1,
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(c) evaluate the profit, Π, corresponding to {p̃i}
Nµ
i=1 - solve the discretized

version of the consumer’s problem, (59)-(62), for {gj}
Np
j=1 generated

by {p̃i}
Nµ
i=1; Np is a number of different values of prices in {p̃i}

Nµ
i=1;

Np ≤ Nµ.

2. Adjust time: t := t+ ∆t.

3. Adjust the system’s temperature: T (t) = at−b

• typical values of the constant a, b in all computations: a ∈ (10, 100), b ∈

(1, 3)

• simulated annealing often uses exponential cooling, power law how-

ever ensures better convergence results

4. Draw {p̃′i}
Nµ
i=1, a perturbation of {p̃i}

Nµ
i=1

(a) draw k from {1..Nµ}, specifying which price value is to be changed

(b) draw x from a uniform distribution over (0, 1), it determines a mag-

nitude of a price change

(c) perturb p̃′k := p̃k + RT 1/3(2x − 1), where R is a constant related to

a width of the range of optimal flexible prices

(d) draw y from a uniform distribution over (0, 1),

if y < 0.05 and k > 1 then p̃′k=p̃k−1,

if y > 0.95 and k < Nµ then p̃′k = p̃k+1,

these two conditions ensure that situations with more prices collapsed

on the same value are visited with a positive probability, prices are

otherwise perturbed over a continuous range,

5. Evaluate the new profit Π′ corresponding to the new strategy {p̃′i}
Nµ
i=1.

6. Let test := exp(Π′ −Π)/(ΠT ).

7. Draw z from a uniform distribution over (0, 1).

8. If z ≤ test, then adjust: {p̃i}
Nµ
i=1 := {p̃′i}

Nµ
i=1 and Π := Π′.

9. If t < tmax, go to 2.
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