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Abstract 
In this paper we evaluate the empirical relevance of learning by private agents in an 

estimated medium–scale DSGE model. We replace the standard rational expectation 

assumption in the Smets and Wouters (2007) model by a constant gain learning 

mechanism. If agents know the correct structure of the model and only learn about the 

parameters, both expectation mechanisms result in a similar fit, and only the transition 

dynamics that are generated by specific initial beliefs are responsible for the differences 

between the two approaches. If, in addition, agents use only a reduced information set in 

forming the perceived law of motion, the implied model dynamics change and for some 

initial beliefs the marginal likelihood of the model is further improved. The learning 

models with the highest posterior probabilities add some additional persistence to the 

DSGE model that reduce the gap between the IRFs of the DSGE model and the more 

data-driven DSGE-VAR model. However, the additional dynamics that are introduced 

by the learning process do not systematically alter the estimated structural parameters 

related to the nominal and real frictions in the DSGE model. 
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Abstrakt 

V tomto článku odhadujeme empirickou relevanci učení soukromých agentů v 

odhadovaném středně velkém DSGE modelu. Nahrazujeme standardní předpoklad 

racionálního očekávání z modelu Smets a Wouters (2007) mechanismem konstantního 

učení. Pokud agenti znají správnou strukturu modelu a učí se pouze parametry, pak oba 

odhadovací mechanism ústí v podobný fit, pouze přechodová dynamika, která je jimi 

generovaná, může tyto dva přístupy odlišit. Pokud navíc agenti používají omezený 

informační set při formování vnímaného zákona pohybu, implikovaná dynamika 

modelu se změní a marginální likelihood funkce modelu je vylepšená. Avšak 

odhadovaný zisk v parametrech je malý, což naznačuje větší roli pro počáteční odhady 

při vylepšování fitu modelu. Učící modely s nejvyššími posteriori pravděpodobnostmi 

přidávají určitou setrvačnost do DSGE modelu, která redukuje rozdíl mezi odezvovými 

funkcemi DSGE modelu a DSGE-VAR modelu, který je více řízen daty. Na druhou 

stranu, dynamika přidaná učením systematicky nezmění odhadované strukturální 

parametry modelu spjaté s reálnými a nominálními nedokonalostmi v DSGE modelu. 

 
 



1 Introduction

In this paper, we evaluate the potential role of adaptive learning in an estimated

medium–sized DSGE model. In Smets and Wouters (2003, 2005, 2007) it was

shown that these models, when equiped with a rich set of frictions and a general

stochastic structure, explain the data relatively well. However, the DSGE–VAR

approach as applied in Del Negro et al. (2008) shows that these models are still

misspecified along various dimensions. Some of the responses to shocks in the

DSGE–VAR are characterised by a high persistence, which could be hard to obtain

under restrictions imposed by a DSGE model with real and nominal frictions. One

potential dimension of misspecification in these models might be the stringent as-

sumption of rational or model–consistent expectations. This assumption implies

that economic agents, when forming their expectations about future outcomes,

know exactly the structural model, its parameters, and the stochastic structure.

Endowing the agents with so much knowledge can be hardly considered realistic;

therefore, it is important to check the consequences of relaxing this assumption.

In this paper, we evaluate empirically the fit of a DSGE model while allowing the

agents to form their expectations under imperfect knowledge. More specifically,

we assume that private agents use adaptive learning: expectations of the forward–

looking variables are obtained as linear functions of past model variables. Coef-

ficients of these linear functions, commonly known as beliefs, are re–estimated

every period using a constant gain (perpetual learning) recursive least squares al-

gorithm. The beliefs about the relationship between expectations and current and

past variables adapt to the patterns recently observed in the data. Our approach is

similar to the exercise of Milani (2004), who in contrast to us uses a smaller model

which under rational expectations does not fit the data as well, and to the work

of Orphanides and Williams (2003-2007) who concentrate more on the monetary

policy implications of imperfect information and learning.

Several authors have suggested that adaptive learning can enhance the propaga-

tion mechanism of the DSGE models and generate the persistence that is otherwise

caused by these models’ frictions or the driving stochastic processes. For instance,

Orphanides and Williams (2005) illustrate how adaptive learning can lead to in-
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flation scares or to increased inflation persistence. Milani estimates a small scale

model both under RE and learning and shows that the learning reduces the scale

of structural frictions and results in an improved marginal likelihood relative to

the RE model.

We believe that the role of learning is probably smaller in a medium–scale model

that fits the data well, with the residuals close to white noise. When driven by thin

tail Gaussian innovations, dynamics under learning will not tend to deviate too

much from the RE outcomes at least if the initial beliefs are close to the RE beliefs:

the potential benefits of adaptive learning are related to the induced time varying

beliefs, but this variation is very much limited.

Learning constitues part of a model transmission mechanism. If it can indeed gen-

erate persistence that substitutes for the structural inertia sources present in the

DSGE models, it is interesting to understand the exact nature of such persistence.

The modified persistence can be observed after the agents’ beliefs have converged

to the limiting invariant distribution, in which case we can talk about learning’s

permanent effect. Another — transitional — effect is the result of movement from

specific initial beliefs towards the beliefs compatible with the invariant distribu-

tion; this effect disappears as soon as the transition is over. Given short samples

available for estimating DSGE models, distinguishing between permanent and

transitory effects can be hard.

The specific form of the initial beliefs is very difficult to discover because they

depend on historical observations that are not directly taken into account in the

likelihood function. We apply several procedures in this paper to estimate these

initial beliefs. They can be based on presample data information. Alternatively,

one can search for initial beliefs that maximise the likelihood of the in–sample

data. Here one can assume that the initial beliefs are consistent with the final esti-

mated model, or search for the specific initial beliefs that optimise the in–sample

likelihood through their impact on the transition dynamics. By disconnecting the

initial beliefs completely from the pre–sample observations, the last approach may

be driven by spurious correlations in the sample data.

The dynamics generated by the learning process is crucially influenced by the

assumptions about the information set that is used in forming the beliefs. An
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extreme assumption is that agents know the reduced form model but have to es-

timate its parameters. In this case, the agents will use the correct minimum state

variable (MSV) representation to estimate their expectations regressions. In our

case, this assumption impies that agents use a state vector containing 20 variables,

many of which are unobserved, forcing the agents to use estimates generated by

the recursive Kalman filter. In addition, the traditional adaptive learning approach

as applied in Evans and Honkapohja (2001) also assumes that agents know exactly

the exogenous driving processes. This case is referred to as the MSV learning

model, or MSV_L for short. We can further differentiate between a situation in

which the agents additionally learn about the constants (the inflation target, real

interest rate, deterministic trend growth rate) and the one where we assume that

the ‘correct’ values of these parameters are known. It may be more realistic to

assume that agents use only a limited information set to form their expectations.

In our setup, the most natural assumption would be that agents use only the ob-

served data in their belief regressions. This learning specification is referred to as

VAR learning, or VAR_L, in the sequel.

If learning increases the persistence of the model, the roots of the reduced form

model increase, implying that the probablity of roots exceeding one in absolute

value (and generating unstable outcomes) increases. Such events are supressed

by imposing a projection facility while updating the beliefs. These corrections

complicate the estimation procedure by introducing discontinuties in the likeli-

hood surface. In the empirical applications, we also estimate the gain parameter

that determines the speed of updating of expectation functions’ coefficients. The

gain is also related to the time horizon that agents take into account when updat-

ing their beliefs. Higher gains increases the probability that the dynamics of the

system hits the stability boundary during the learning process or that the moment

matrices take on unrealistic values. Such events further complicate our estima-

tions.

The learning is introduced at the level of the linearised Euler equations. The impli-

cations of learning for the agents’ budget constraints are therefore neglected. See

Preston (2005) for a more consistent treatment of learning in DSGE models.

The structure of the paper is as follows. First we briefly review the medium size
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DSGE model based on the work of CEE (2005) and estimated on US data in Smets

and Wouters (2007). The DSGE–VAR approach is used to indicate some of the po-

tential misspecification issues. Then we present the assumptions about the learn-

ing process that are considered in this paper. In section four, we evaluate the

potential role of learning in the model by studying the volatility and persistence

of the simulated data for different specifications of the beliefs and for different val-

ues of the learning horizon and gain parameter. In sections five and six, we turn

to estimating the model under MSV and VAR learning, respectively.

2 The model estimates under rational expectations

In this paper, we evaluate the potential role of adaptive learning dynamics in an

estimated medium-scale DSGE model. The model that we consider in this applica-

tion is the one estimated in Smets and Wouters (2007) applied to the US economy

over the period 1966-20051. This DSGE model contains many frictions that affect

both nominal and real decisions of households and firms. The model is based on

CEE (2005) and Smets and Wouters (2003). As in Smets and Wouters (2005), we

extend the model so that it is consistent with a balanced steady state growth path

driven by deterministic labour-augmenting technological progress. Households

maximise a non-separable utility function with two arguments (goods and labour

effort) over an infinite life horizon. Consumption appears in the utility function

relative to a time-varying external habit variable. Labour is differentiated by a

union, so that there is some monopoly power over wages, which results in an ex-

plicit wage equation and allows for the introduction of sticky nominal wages à la

Calvo. Households rent capital services to firms and decide how much capital to

accumulate given the capital adjustment costs they face. As the rental price of cap-

ital changes, the utilisation of the capital stock can be adjusted at increasing cost.

Firms produce differentiated goods, decide on labour and capital inputs, and set

prices, again according to the Calvo model. The Calvo model in both wage and

price setting is augmented by the assumption that prices that are not re-optimised

are partially indexed to past inflation rates. Prices are therefore set in function of

1We refer to Smets and Wouters (2007) for the formal presentation of the model.
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current and expected marginal costs, but are also determined by the past inflation

rate. The marginal costs depend on wages and the rental rate of capital. Similarly,

wages depend on past and expected future wages and inflation. In both goods

and labour markets we replace the standard Dixit-Stiglitz aggregator with an ag-

gregator which allows for a time-varying demand elasticity which depends on the

relative price as in Kimball (1995). As shown by Eichenbaum and Fischer (2007),

the introduction of this real rigidity allows us to estimate a more reasonable de-

gree of price and wage stickiness. The model also contains seven stochastic shocks

to technology, preferences and policy behaviour.

The model can be detrended with the deterministic trend and nominal variables

can be replaced by their real counterparts. The non–linear system is then lin-

earised around the stationary steady state of the detrended variables. The es-

timations are executed using Bayesian estimation methods. First, the mode of

the posterior distribution is estimated by maximising the log posterior function,

which combines the prior information on the parameters with the likelihood of the

data2. In a second step, the Metropolis–Hastings algorithm is used to get a com-

plete picture of the posterior distribution and to evaluate the marginal likelihood

of the model. The model is estimated using seven key macro–economic quarterly

US time series as observable variables: the log difference of real GDP, real con-

sumption, real investment and the real wage, log hours worked, the log difference

of the GDP deflator and the federal funds rate. The number of structural shocks

match with the number of observables that are used in estimation.

In Smets and Wouters (2007), this model was estimated under the hypothesis that

agents have rational expectations. It was shown that these models, when equiped

with a rich set of frictions and a general stochastic structure, are able to explain

the data relatively well and these model have a forecasting performance that is

comparable or even better than purely statistical VAR or BVAR models. However,

Del Negro et al. (2008) show that these models are still misspecified along various

dimensions. A combined DSGE–VAR model, where the restrictions of the DSGE

model are relaxed and treated as a prior restriction on a VAR model, produces a

higher marginal likelihood and performs even better in terms of out–of–sample

2See Smets and wouters (2007) for the discussion of the priors.
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forecasts. In addition, the estimated impulse–response functions of the DSGE–

VAR model give some indication of where the misspecification is situated. Here

we repeat this DSGE–VAR exercise on the model estimated in Smets and Wouters

(2007). The observed misspecification will serve as a benchmark to evaluate the

performance of the models under learning.

Table 1 summarise the estimation results for both the DSGE and the DSGE–VAR

approach. A fourth order VAR is used in the DSGE–VAR exercise. The DSGE–

VAR with the optimal marginal likelihood gives more or less equal weight to the

data and DSGE model (the hyperparameter λ = 1). The marginal likelihood of

the DSGE–VAR model is considerably higher than for the DSGE model3. The

mode, the mean and the 5 and 95 percentiles of the posterior distribution of the

parameters as obtained by the Metropolis-Hastings algorithm are reported.

{Insert Table 1}

In the DSGE model, the trend growth rate is estimated to be around 0.43, which

is somewhat smaller than the average growth rate of output per capita over the

sample. The posterior mean of the steady state inflation rate over the full sample

is about 3% on an annual basis. The mean of the discount rate is estimated to be

quite small (0.65% on an annual basis). The implied mean steady state nominal

and real interest rates are respectively about 6 % and 3% on an annual basis. In

the DSGE–VAR approach, the data are less informative about these constants: the

estimated mode for the growth rate is 0.38, for the inflation rate it is 2.6%, and for

the annual nominal rate it is it 5.3%.

A number of observations are worth making regarding the estimated processes for

the exogenous shock variables. Overall, the data appears to be very informative

about the stochastic processes for the exogenous disturbances. The productivity,

the government spending and the wage mark–up processes are estimated to be

the most persistent with an AR(1) coefficient of respectively 0.96, 0.98 and 0.97 in

the DSGE model and 0.95, 0.82 and 0.95 in the DSGE–VAR approach . The high

persistence of the productivity and wage mark–up processes implies that at long

3The reported marginal likelihood in Table 1 deviates from the one presented in Smets and
Wouters (2007) because we do not use a training sample in this exercise.
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horizons most of the forecast error variance of the real variables will be explained

by those two shocks. In contrast, both the persistence and the standard deviation

of the risk premium and monetary policy shock are relatively low (respectively

0.18 and 0.13 in the DSGE model and 0.44 and 0.15 in the DSGE–VAR approach ).

The estimated standard errors of the shocks are systematically lower in the DSGE–

VAR approach.

Turning to the estimates of the main behavioural parameters, we see that in the

DSGE model the mean of the posterior distribution is typically relatively close to

the mean of the prior assumptions. There are a few notable exceptions. Both the

degree of price and wage stickiness are estimated to be quite a bit higher than 0.5.

The average duration of wage contracts is somewhat less than a year; whereas the

average duration of price contracts is about 3 quarters. The mean of the degree

of price indexation (0.23) is on the other hand estimated to be much less then 0.5.

Also the elasticity of the cost of changing investment is estimated to be higher than

assumed a priori, suggesting an even slower response of investment to changes in

the value of capital. Finally, the posterior mean of the fixed cost parameter is es-

timated to be much higher than assumed in the prior distribution (1.62) and the

share of capital in production is estimated to be much lower (0.19). Overall, it ap-

pears that the data is quite informative on the behavioural parameters as indicated

by the lower variance of the posterior distribution relative to the prior distribution.

Two exceptions are the elasticity of labour supply and the elasticity of the cost of

changing the utilisation of capital, where the posterior and prior distributions are

quite similar. The DSGE–VAR parameters in general are close to the DSGE para-

meters, but the different demand components are estimated to be more sensitive

to the interest rate as both the investment adjustment cost and inverse of the in-

tertemporal rate of substitution are lower. The indexation of wages is somewhat

lower, but the indexation of prices is higher.

Finally, turning to the monetary policy reaction function parameters, the mean

of the long-run reaction coefficient to inflation is estimated to be relatively high

(2.03 in the DSGE and 1.77 in the DSGE–VAR). There is a considerable degree of

interest rate smoothing as the mean of the coefficient on the lagged interest rate is

estimated to be 0.82. Policy does not appear to react very strongly to the output
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gap level (0.09), but does respond strongly to changes in the output gap (0.22) in

the short run.

The resulting IRF’s indicate some significant deviations between the DSGE model

and the more data–driven DSGE–VAR approach. Figure 1 shows one interesting

dimension on which the standard REE–DSGE tend to be misspecified if we accept

the DSGE–VAR model as the benchmark. Following a monetary shock, the REE–

DSGE model predicts a relatively quick response of inflation with a peak response

within the year following the shock. The timing of the peak effect is very similar

to the one of output. In the DSGE–VAR model, inflation typically responds more

gradually with only a very weak, if any, response in the first quarters, followed by

a more persistent decline in inflation afterwards. This type of inflation response

is more standard for many of the SVAR experiments. This gradual and persistent

reaction of inflation following a monetary shock contrasts with the immediate and

very short–lived effect of the productivity shock on inflation. This contrasting

reaction of inflation present in the DSGE–VAR responses is of course quite difficult

to achieve in the DSGE model with rational expectations. They will serve as the

benchmark when discussing the estimation results for the models with learning.

{Insert Figure 1}

3 Learning setup

3.1 Updating of beliefs

We implement the adaptive learning within the DYNARE 3.064 MATLAB toolbox

which is used to estimate and simulate DSGE models. Our model is driven by the

exogenous driving processes xt,

xt = ρxt−1 + εt + θεt−1.

Including the innovation εt into the vector of exogenous processes wt = (xT
t , εT

t )
T,

the result can be written as an AR(1) process

wt = Γwt−1 +Πεt. (1)
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DYNARE represents our model in the following way:

A0

[
yt−1
wt−1

]
+ A1

[
yt
wt

]
+ A2Etyt+1 + B0εt = 0, (2)

where the vector yt includes endogenous variables of the model.4 The solution of

the model is provided by DYNARE as[
yt
wt

]
= T

[
yt−1
wt−1

]
+ Rεt. (3)

The equations (1) form part of the system (3). The solution (3) notationally differs

from the Minimum State Variable (MSV) solution, which for a system consisting

of (2) and (1) is usually written as

yt = a+ byt−1 + cwt.

The vector y contains a subset of state variables ys and variables that appear with

a lead in the model, y f .5 Deviating from the rational equilibrium (RE) assumption

and following Marcet and Sargent (1989) and Evans and Honkapohja (2001), we

assume that the agents forecast future values of the lead variables using a linear

function of the states and exogenous driving processes,

y f
t = αt−1 + βT

t−1

[
ys

t−1
wt

]
, (4)

where βT
t−1 does not necessarily coincide with the REE reduced form coefficients b

and c, but the functional form of the relationship between y f
t , ys

t−1, and wt exactly

corresponds to the MSV REE reduced form.6,7 Finally, the agents’ beliefs about

reduced form coefficients α and β are updated using a constant–gain variant of

the Recursive Least Squares (RLS). In our model, there are 12 forward–looking

4DYNARE variable jacobia_ contains the matrix
[
A0 A1 A2 B

]
.

5y f and ys could intersect.
6In the adaptive learning literature, this equation is called the Perceived Law of Motion (PLM).
7This type of learning, promoted by Evans and Honkapohja (2001), is called Euler equation learn-

ing: the agents forecast only immediate future variables which are typically present in Euler equa-
tions of firms and/or consumers. An alternative description of learning — long–horizon learning
— has been promoted recently by Bruce Preston: he considers agents forecasting economic vari-
ables (present in their budget constraint and exogenous to their decision–making) infinitely many
periods ahead.

For a theoretical discussion on these two approaches to adaptive learning, see Preston (2005)
and Honkapohja et al. (2002). For a discussion of effects of the learning type on the behavior of
estimated DSGE model, see Milani (2006) and references therein.
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variables, 11 endogenous state variables, and 9 exogenous stochastic processes

(with 2 moving average terms counted as exogenous processes). Therefore, αt−1

is a 12 × 1 vector, while βt−1 is a 20 × 12 matrix. Every period, the agents are

updating their beliefs in a constant gain RLS step:

φt = φt−1 + gR−1
t Zt−1(y

f
t − φT

t−1Zt−1)
T, (5a)

Rt = Rt−1 + g(Zt−1ZT
t−1 − Rt−1). (5b)

Here we denoted the data vector that the agents use in their regressions as Zt =(
1,
(
ys

t−1
)T , wT

t

)T
, and collected the beliefs into a single matrix φT =

(
α, βT

)
.8

3.2 Initial Beliefs

Equations (5) allow us to track the agents beliefs over time, if both the data and

the initial beliefs are known. As it turns out that the results are very sensitive to

the initial beliefs, we describe their selection in detail. We distinguish 4 ways of

determining the initial beliefs: three that are consistent with some REE, and one

that is based on regression estimates of the pre–sample data.

Any REE, given for example by (3), implies an equilibrium relation between the

forward–looking variables y f
t and the vector Zt. This relation is given by

E
[

ZtZT
t

]−1
· E
[
y f

t ZT
t

]
,

where the expectations E[] are also derived using the distribution implied by the

REE solution (see Del Negro et al 2008). This relation is used to initialise φ0. We

take E
[
ZtZT

t
]

as initial condition for the second moments matrix R0. One could

select the initial beliefs to always correspond to the REE which is implied by the

estimated parameter vector. We think that this way is the closest to the pure ra-

tional expectations, as the only source of differences with the REE is related to

the temporary deviations of beliefs from their REE values caused by in–sample

data fluctuations and the related stochasticity of the constant gain learning. The

second REE–consistent way of selecting the initial beliefs makes them consistent

with some REE, not necessarily the REE that corresponds to the optimized para-

meter vector. Another difference between the two methods is that in the first one,
8We discuss whether the constant should be present in Zt and φ below.
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initial beliefs always correspond to the current parameters, while in the second

they remain fixed during the optimization step. Finally, similarly to Milani (2005),

we could optimize the initial beliefs, together with other parameters of the model.

This is the third way of generating the initial beliefs.9

Regression–based initial beliefs, our fourth initialisation approach, are obtained by

running a regression of y f
t on Zt using pre–sample data. Usually, we pick the point

estimate rather than a random point from the distribution of regression estimates,

as proposed by Giannitsarou and Carseles–Poveda (2007).

In all estimations reported, we assume that the agents know both the law of mo-

tion (1) of the exogenous driving processes and the standard deviations of the

innovations εt.10 This is a standard assumption in the learning literature. An al-

ternative approach is to estimate exogenous processes separately and then use the

current beliefs about (1) in the updating step (5). We do not pursue this route here.

3.3 Beliefs and likelihood construction

In contrast to low–dimensional models studied by Milani (2005), Sargent, Williams,

and Zha (2006), or Vilagi (2007), our set–up exhibits a clear distinction between the

endogenous model variables and the observable variables which are used to esti-

mate the model. All variables in the MSV REE solution are model variables which

are not, in fact, observed. Therefore, we use output from the Kalman filter used

to construct the likelihood function for a particular combination of parameters on

both sides of the updating equation (5).11

9The difference between the second and the third way is that the REE in the 2nd way is based
on the data. We estimate the model under RE for a pre–sample time period to generate the REE
which is then used to form the initial beliefs used in the second method.

In contrast, the third way of forming initial beliefs is based on in–sample optimization of both
initial beliefs and the parameter values. Given the large dimensionality of our beliefs matrix (12×
21 for beliefs about reduced form parameters alone, plus beliefs about initial R which is a 21× 21
symmetric positively definite matrix), we form an auxilliary model which is exactly the same as
the estimated one but for parameter values; the parameter values of the auxilliary model are then
estimated together with the the main model parameters. The REE implied by the auxilliary model
is then used to construct the initial beliefs.

10In the third way of selecting the initial beliefs, this means that the auxilliary model shares with
the main model the parameter values related to the exogenous processes.

11In terms of Hamilton (1994), we use ŷs
t−1|t−1 and ŵt|t on the right and ŷ f

t|t on the left. In
principle, as time t progresses, the agents could revise their past filtered estimates and thus adjust
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All endogenous model variables have zero means. Therefore, the MSV solution

does not include the constant. Our baseline estimations take this into account

and use Z̃t =
((

ys
t−1
)T , wT

t

)T
as the data vector. However, if we assume that

the agents are also (implicitly) learning the values of the growth rates or inflation

target, we include the constant into (5). In addition, we also report the results of

estimations where the agents are using a PLM which does not coincide with the

MSV solution. In particular, they might include only the observed non–zero mean

variables into the PLM, in which case, inclusion of a constant into (5) is warranted

as well.

Given current beliefs, it is possible to derive the value of Ety
f
t+1 as a function of

a constant, yt, and wt. One can then solve equation (2) for
(
yT

t , wT
t
)T and derive a

time–varying VAR representation of the model:[
yt
wt

]
= µt + Tt

[
yt−1
wt−1

]
+ Rtεt.

The values of µt, Tt, and Rt are then used to form expectations of the next period

model variables in the Kalman filter. Thus, the estimation of a DSGE model un-

der adaptive learning reduces to calculating a time–varying law of motion for the

model and plugging it into the Kalman filter step, leaving the rest of the DYNARE

toolbox largely untouched.

The learning set–up just described allows an easy introduction of non–MSV learn-

ing. For example, we could allow our agents to forecast values of y f
t+1 using only

observable variables, yobs
t , or their model counterparts. Some of these variables are

not in the state vector12. Given that DYNARE provides equations (3) and (2) using

the whole vector y, not just its state subset, derivation of µt, Tt, and Rt does not

depend on using MSV or non–MSV solution. In the rest of the paper, we refer to

this type of learning with misspecified beliefs as the VAR learning (VAR_L) case.

values of φt used in the past. In other words, in every period the agents would use the smoothed
estimates of the model variables, and revise the whole sequence of beliefs held in the past. This
procedure would make better use of the available information; however, our current procedure
uses only filtered estimates.

12The observable variables include first differences of consumption, output, investment, real
wages, and levels of inflation, interest rates, and hours worked. These variables (together with a
constant) could be used to construct the PLM, but none of them is in the state vector. Alternatively,
we report estimations where we used model–based consumption, output, investment, real wages,
inflation, interest rates, and hours worked in the PLM instead. In this set, hours are not in the state
vector.
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3.4 Projection facility and computational issues

The procedure just described makes Tt a complicated function of the data, cur-

rent parameters, and beliefs. There is nothing preventing Tt from being explosive

(having one or several eigenvalues outside of a unit circle) for one or several pe-

riods. Often cited motivation for adaptive learning is an attempt to describe the

real world behavior of the agents; in practice, forecasters do not use explosive

models. The simplest method of dealing with explosive behavior of Tt is to ignore

the updating step which has resulted in undesirable roots, and use previous µt,

Tt, and Rt instead. This mechanism is very similar to the theoretical construct of

a projection facility described in Evans and Honakpohja (2001) which was used,

for example, by Orphanides & Williams (2007).13 We have to note, however, that

thus implemented projection facility results in discontinuous jumps in the likeli-

hood function: even for two very close parameter vectors the likelihood function

could differ significantly if one results in a sequence of {Tt}N
t=1 which is never ex-

plosive, while the other generates a sequense with at least one t such that Tt is

explosive. Such a non–continuous likelihood function results in significant com-

putational difficulties which are described later. Moreover, such discontinuities

arise also in the case when the projection facility is not implemented: allowing Tt

to be explosive even for very few periods leads to sharp deterioration in precision

of predicting the future values of y f , and thus to a much worse likelihood.

Another issue related to using the updating equation (5) is the sensitivity to the

value of “effective gain”, given as gR−1
t . Even if the gain parameter g is small, the

beliefs φ might be very sensitive to the data if the matrix R is “small” in the sense

that its smallest eigenvalues are very close to zero. If this is the case, instances of

Zt which are not orthogonal to the eigenvectors of R corresponding to the smallest

eigenvalues would lead to very large changes of beliefs φ. This extreme sensitivity

of the beliefs on the data leads to further complications in the likelihood function,

as close parameter vectors might result in very different behavior of {Tt}N
t=1 . We

13Usage of projection facility amounts to restricting beliefs φ to a small neighborhood of their
REE values. Discarding explosive Tt is equivalent to imposing a restriction on a highly non–linear
function of φ instead.

Here, we cannot impose restrictions on φ directly, because when y f and ys include different
variables, the forecasting rule is not a simple VAR. To transform the rule into VAR, one needs
information contained in the REE, specifically, the matrix T.
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discuss observable consequences of this sensitivity in later sections; in order to

mitigate somewhat the negative effect of it on the likelihood function, we use a

Ridge correction mechanism.14

As demonstrated by McCallum (2006), for models with time t information avail-

able (time–t dating of Evans and Honlapohja 2001), determinacy is a sufficient

condition for E–stability (of the MSV solution). Moreover, if more than one so-

lution is stable, then the unique solution derived using decreasing order of the

system eigenvalues, is E–stable. Our model belongs to the class considered by

McCallum (2006), DYNARE uses the solution which corresponds to eigenvalues

ordered in decreasing order, and the points in the parameter space which result in

indeterminate equilibria are heavily penalized by adding a large constant to the

likelihood function (and thus cannot be a result of the optimization). Thus, we

are guaranteed that the MSV solution is always stable. Note, however, that the

result does not necessarily hold if the agents are using a non–MSV PLM. Stability

conditions in this case have to be checked numerically for every constellation of

parameter values.

4 Simulation exercises

4.1 Simulated second moments

Before moving to the estimation of the models under learning, we illustrate the

potential role of learning in these medium–scale DSGE models through a set of

simulation experiments. We generate random data from the model under RE and

under different learning setups and compare the properties of the simulated data

to understand the impact of learning. Furthermore, we also consider the influ-

ence of the learning mechanism on the impulse response functions of some of the

stochastic shocks.

Four different assumptions about the learning process are evaluated in these sim-

ulation experiments:

14If at time t the smallest eigenvalue of Rt is less than some small λ, (R+ λI)−1 is used instead
of R−1 in the equation (5a). Here I is the identity matrix. In our estimations, λ is usually set to
1 · 10−5.
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1. the RE model as the benchmark model;

2. MSV learning with perfect information about the constants;

3. MSV learning where agents learn the constants as well; and

4. VAR–learning with beliefs about observed variables and a constant only.

In all these experiments the structural parameters of the model, including para-

meters of the exogenous stochastic processes, remain constant and equal to the

mode of the estimated RE model. For each learning mechanism, we consider dif-

ferent values of the gain parameters (0.01, 0.02 and 0.05) corresponding roughly

to a regression with forgetting half–length of 69, 34 and 14 periods.15 In order to

understand the influence of the initial beliefs on the simulation outcomes, we run

1000 simulations for each model; each simulations starts from a different initial

PLM (initial beliefs).16 Each simulation run is 1000 periods long. We report the

mean statistics for the first 150 observations and the last 150 observations in order

to distinguish the learning dynamics during the “transition” period, directly de-

pendent on the specific initialisation of the beliefs, from the dynamics due to the

“permanent” time–variation generated by the learning process.17 In all these sim-

ulations, we impose a projection facility and do not update the belief coefficients

if the model dynamics become explosive under the new beliefs. Observations that

push the eigenvalues of the system above one are therefore disregarded in the

learning process. As is often observed in simulated data under adaptive learning,

occasionally time series can deviate from their long–run averages to a significant

degree. In section 4.3, we discuss the impact of these events or “exits” on the

simulation results.

In Table 2, we report the volatility and persistence of the generated data. The

first two columns describe the output for the RE model. We present standard

deviations (for both the growth rate and levels) as well as autocorrelations for

15For a constant gain learning with the gain parameter g, weight of a data point t periods ago is
given as g (1− g)t . This weight decreases by 50% in T = − ln 2

ln(1−g) ≈
0.69

g periods.
16We draw 1000 parameter vectors from the posterior distribution of the model estimated under

RE, and use the resulting REE to construct initial beliefs.
17Statistics based on the simulation of one long sample are close to the permanent statistics

reported for the permanent dynamics here.
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the simulated counterparts of observed variables. Note that the volatilities for

the levels are systematically lower during the transition period because the state

variables are initialised at their steady state values.

{Insert Table 2}

The outcomes for the MSV learning model (with or without a constant) and with

a small (0.01) gain parameter remain almost identical to the outcomes under RE.

The additional variation that is related to the beliefs updating does not signif-

icantly increase the volatility or the persistence of the observable variables. This

is especially true for the permanent dynamics. For the transition dynamics, there

are very small changes: the standard deviation and the correlations tend to be

smaller during the transition period for the model with learning. For this small

gain parameter, it makes no difference whether the constant is included in the

belief regressions or not.

For higher values of the gain parameter, the standard deviations and the autocor-

relations of the simulated variables start to increase. This tendency is still mod-

erate during the transition period, where the influence of the initial beliefs and

the initial state vector remains very strong, but it becomes very pronounced for

the permanent dynamics. The increase is stronger in the case where agents are

also learning about the constants in the model. These effects remain rather mod-

erate for a gain of 0.02 (half forgetting in 8.5 years) but become very large if the

gain parameter is further increased to 0.05 (only 3.5 years are needed to halve the

weight of a data point in a regression). In relative terms, it is the volatilities of the

inflation and the interest rate that experience the strongest increase. In the sim-

ulations with a higher gain, the percentages of observations that are disregarded

by the projection facility increases quickly: while only 0.04% (0.05% for the model

with a constant) of the observations are disregarded for a gain of 0.01, this percent-

age increases to 0.37% (0.69%) for a gain of 0.02 and 13.8% (24.14%) for a gain of

0.05. With a higher gain, the roots of the model are more frequently approaching

one, which also explains why the standard deviations for the level variables tend
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to grow quickly in these cases. An additional source of increased variability for

larger gains is the so–called “exits” (see section 4.3).

Turning to the VAR learning model, we observe significant deviations even for

a small gain of 0.01. During the transition period, the standard deviations for

most of the variables increase, although for the permanent dynamics some of the

standard deviations tend to decline. The persistence in the series increases consid-

erably (with the exceptions of the wage changes). With higher gain, all standard

deviations and correlations tend to increase and this increase is more pronounced

than under the MSV beliefs, reflecting again the fact that the unit root and the

projection facility are more frequently hit under VAR learning. The percentage of

observations with the projection facility increases from 0.19% for a gain of 0.01 to

3.21% as the gain increases to 0.02 to 23.88% when the gain equals 0.05.

In Figure 2a and 2b, the typical behaviour of the simulated series are illustrated

under different learning assumptions. The two variables shown are the output

growth rate and the inflation rate. The MSV learning model with a small gain

produces the standard stationary series. As the gain increases to 0.05, in addition

to the extra volatility referred to above, we observe occasional large jumps which

quickly revert towards the neighborhood of the mean value. These jumps are the

“exits” which will be discussed later. As Figure 2b makes clear, under VAR_L the

exits could already be observed for a much smaller gain of 0.02.

{Insert Figure 2a and 2b}

4.2 Impulse responses with simulated beliefs

The impact of learning, and especially the role of the initial beliefs, on the model

dynamics can also be illustrated by looking at the impulse response functions.

Figures 3a and 3b show the IRF of output and inflation to monetary policy and

productivity shocks. The graphs contains the mode and the deciles of the distrib-

ution of the IRF evaluated at the start of the simulation where the beliefs are ini-

tialised through random draws from the posterior distribution of the RE model.18

18The graph contains pseudo impulse responses as in Williams (2003): given initial beliefs, a one
standard deviation shock is introduced, and behavior of the model is then traced while the beliefs
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These graphs, therefore, show the impact of imposing different initial beliefs on

the model keeping everything else constant. For MSV learning, pseudo–impulse

responses are located very close to the IRFs of the RE model. IRFs to a monetary

policy shock converge very fast, which is not surprising given the very low esti-

mated persistence of the monetary policy shock and tendency of the constant gain

learning to “forget” past data. Similarly to Williams (2003), we observe very little

effect of MSV learning with “realistically” distributed initial beliefs on the impulse

responses or second moments of the simulated time series.

{Insert Figure 3a and 3b}

The impulse responses under the VAR learning differ from the IRFs under RE

considerably more than under MSV_L, and the decile dispersion is also wider.

As in the MSV_L, decile dispersion for impulse responses to the monetary policy

shock decreases faster than for the productivity shock. Under VAR_L, the agents’

Perceived Law of Motion (and therefore, their expectations) differs substantially

from the RE reduced form, which explains this discrepancy.

To better understand the reason VAR learning generates second moments and

IRFs that are significantly different from those under RE, we can look at the agents’

expectations of future variables. In a linearised model these expectations are lin-

ear functions of past values of the state variables. Under rational expectations,

coefficients of these linear functions are fixed; adaptive learning allows them to

vary with time. Agents use the PLM to form expectations of the future vari-

ables. In Figures 4, we plot one–step ahead expectations for the RE model and the

three learning specifications used in this section. The expectations are taken from

one simulation run, choosen randomly out of the 1000 generated as described

above. As is obvious from Figure 4, the differential effect of MSV and VAR learn-

ing comes mainly from the way these types of learning affect expectations. Under

the MSV_L, impulse responses of both actual and expected inflation are very close

themselves change.

20



to those under the RE; the same result holds for other model variables.19 In con-

trast, with VAR learning, inflation expectations react differently. For a monetary

policy shock, inflation expectations are affected much less initially, but the effect

is longer lived20. The reason is that the RE–model consistent beliefs under VAR_L

imply that the agents assume the inflation process to be much more persistent than

under the RE: coefficient on past inflation in the inflation forecasting equation is

close to 0.8 rather than 0.2 for the REE. The resulting persistence in the realised in-

flation under VAR learning is higher than in the RE case. This higher persistence

under VAR learning might substitute for the structural frictions in the model.

{Insert Figure 4}

The impact of subsequent learning on these IR is very minor: for the MSV learning

and the gain values we considered, a one–standard error shock does not generate

any significant change in the beliefs. With VAR learning and gains of 0.02 or 0.05

there is already a noticeable impact on the impulse responses; again, we attribute

the difference to the different information content of agents’ PLM under these

two learning types, and correspondingly different expectations. An additional

source of the difference is related to the fact that the RE model–based beliefs under

VAR_L, in fact, are not correct even on average: equilibrium beliefs are given by

the Restrictive Perceptions Equilibrium (RPE) discussed in section 6. Therefore,

a temporary effect related to the evolution of the beliefs from their REE–based

values towards RPE values may play a role, especially for relatively large gains.

The temporary effect is illustrated in Figure 5, where we track behavior of the

inflation–on–inflation belief coefficient during a simulation run with gain equal

to 0.01. With MSV learning, this coefficient (and others) does not deviate much

from its REE value; in contrast, the evolution from the RE–model consistent beliefs

towards the RPE values is apparent under the VAR learning. In addition, the

beliefs are more volatile with VAR learning.

{Insert Figure 5}
19The impulse responses under MSV learning differ from those under the RE because we used

a random draw from the posterior distribution to construct agents’ beliefs in the learning model.
20The same dynamic profile applies for the productivity shock but the overall effect on inflation

is reinforced.
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4.3 Simulations and large deviations

As mentioned previously, occasionally a simulated time series exhibits a very large

deviation from its long–run average, which is typically reversed after a small num-

ber of periods. Such behavior was also observed in simulated data under learning

by Orphanides and Williams (2007) and Giannitsarou (2007).

We believe that such events could be described as exits or “large deviations”. If

the dynamics under learning is stable (E–stability of the equilibrium is a neces-

sary condition for stability of the learning dynamics), on average, beliefs should

equal their equilibrium values; they cannot deviate too far from the equilibrium

for long periods of time. However, constant gain (perpetual) learning introduces

permanent stochasticity into the model, as beliefs can never be exactly equal to

their equilibrium values.

Suppose that a sequence of shocks hits a simulated model in such a way that the

beliefs move in (approximately) the same direction period after period and leave

some neighborhood of the equilibrium beliefs. Agents’ expectations will shift as

a result, which might also be manifested in observed variables moving far from

their equilibrium values. Clearly, such a situation cannot continue indefinitely:

observing such sequence of shocks is unlikely. Theory of large deviations [Dembo

and Zetouni (1998), Freidlin and Wentsel (1998)] studies properties of such “rare

events”; their probabilities “have asymptotics of the form exp
{
−Cε−2} as ε → 0

(rough asymptotics, i.e., not up to equivalence but logarithmic equivalence)”, see

Freidlin and Wentsel (1998). For an application of the large deviations theory to

models of adaptive learning with constant gain see Cho, Williams, and Sargent

(2002) and Kolyuzhnov, Bogomolova, and Slobodyan (2006), among others.

One of the basic predictions of the large deviations theory is that if the system is

started near the equilibrium point, number of periods necessary to observe the

first crossing of the boundary of a given neighborhood of the equilibrium (called

first exit time τ) is distributed exponentially. As a result, probability of the first

exit happening after N periods is given as

Pr(τ ≥ N) ∼ e−λN.
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Therefore, a very simple check to see if the extreme events in the simulation could

be “rare” large deviations is to plot the logarithm of empirical probability that the

first escape time is greater than N (logarithm of the share of simulation runs that

escaped after N) versus N. In these coordinates one should see a downward slop-

ing straight line. Figure 6 illustrates this hypothesis based on simulation results

from a MSV learning model with a constant and a gain of 0.03. A large devia-

tion is defined as a realisation where a state vector variable takes on a value that

exceeds four times the standard deviations (observed in the REE) away from the

steady state. The results show that indeed, we do observe the straight line for a

large range of N. The fit is especially good if we exclude simulation runs where

projection facility was used too often.21 Theoretical calculation of the parameter

of exponential distribution η is a very complicated procedure that will not be at-

tempted in this paper. Similar results are obtained for the VAR_L model with a

constant, if the model is started at the Restricted Perceptions Equilibrium (RPE)

beliefs; for a discussion of the RPE under VAR_L , see section 6.

{Insert Figure 6}

The exits affect measured standard deviations and autocorrelation of the simu-

lated time series, as is illustrated in Table 3. For example, output growth simu-

lated under MSV learning with gain equal to 0.02 has ‘transitional’ standard de-

viation of 0.941 and a ‘permanent’ one equal to 0.962; when runs with exits are

removed, these numbers reduce to 0.938 and 0.946, respectively. Effect of exits

on autocorrelations of the simulated data is minor. Exits have larger effect on the

‘permanent’ standard deviations; as a result, after taking them into account, the

difference between ‘transitional’ and ‘permanent’ numbers becomes smaller for

all the simulated variables. We believe this is due to the fact that even if state vari-

ables (approximately) revert back to their sample averages after an exit, the beliefs

do not necessarily do so, and the dynamics after the exit is, in fact, different than

the one before it. Eliminating simulated runs with exits reduces this effect.

21Using projection facility changes dynamics of the model. Therefore, if it is used too often, we
deal with a significantly different system; such runs cannot be compared directly to the runs where
projection facility was used seldom, if at all.
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For simulated time series under VAR learning with gain of 0.02, excluding ex-

its does not lead to convergence of measured standard deviations for the ‘transi-

tional’ and ‘permanent’ dynamics; the opposite effect is often observed. In addi-

tion, measured autocorrelations often reduce after the exited runs are removed.

We attribute this behavior to the fact that RE model–based beliefs do not consti-

tute an equilibrium under VAR_L; therefore, when the gain is sufficiently large,

‘transitional’ and ‘permanent’ dynamics are, in fact, different, as the beliefs drift

towards their RPE values.

{Insert Table 3}

5 Estimation under MSV learning

In this section, we present the estimation results for the case of MSV learning,

when the agents use the correct reduced form of the model to form expectations

about future variables but have to learn the exact values of the parameters. We use

constant gain (perpetual) Least Squares learning and estimate the gain parameter

jointly with the rest of the model parameters. We distinguish between the case

where agents have full information about the constants — parameters that de-

termine the steady state deterministic growth rate, inflation rate and real interest

rate, and the case where they also have to learn about these constants. In practice,

this means that we consider belief regression with and without a constant term. In

order to illustrate the sensitivity of the results to the assumptions about the initial

beliefs, we consider the four alternative setups described in detail in section (3.3).

In all these cases, the priors on the parameters are the same as in the RE model. As

we also estimate the gain coefficient, there is one additional prior: a Gamma dis-

tribution with mean 0.035 and standard deviation 0.03. This implies that the prior

mode for the gain is slightly less than 0.01, but the prior is quite uninformative so

that the gain parameter can take on higher and lower values as well.

24



5.1 MSV learning with a model–consistent initialisation of be-
liefs

In this learning specification the forecasting equations use the complete set of vari-

ables that make up the MSV solution of the model under RE, and the initial beliefs

are consistent with the REE of the estimated model. The estimation results are

reported in Table 4 and are very similar to the results for the RE model in Table 1.

Both the posterior distribution of the parameters and the marginal likelihood of

the model are extremely close to the REE estimates.

{Insert Table 4}

This similarity is not really surprising for two main reasons. First, the initial beliefs

are consistent with the REE implied by the estimated model. And second, the

information available to the agents for updating of the belief parameters comes

close to the information available to the rational agents. Every period the agents

use currently best (filtered) estimates of all the variables appearing in the MSV

solution; they also are assumed to know the parameters of the exogenous shock

processes. The belief coefficients are updated by regressing the forward variables

up to time t on the best estimates for the exogenous processes for time t and on

the best estimates of the lagged values of the endogenous state variables. But

given that the REE model does rather well in fitting the data, without any strong

evidence of instability over sub–samples and without any remaining correlation

in the estimated innovations, there is no reason for the model under learning to

deviate systematically from the belief parameters implied by the RE model. As

a result, the time variation in the beliefs from which the learning model could

benefit is negligible in this setup. Consistent with the above observations, the

gain parameter is estimated rather imprecisely: the 10% and 90% bounds of the

posterior distribution for the gain are 0.0 and 0.034 with the mean around 0.018.

As can be seen from Table 4, inclusion of a constant in the belief equations, which

reflects alternative assumption on the agents’ knowledge about the model con-

stants, does not matter in this setup. The estimated parameters and the marginal

likelihood are insensitive to the presence of a constant in the belief equations.

25



The marginal likelihoods of the learning and RE models are very similar, meaning

that the data is not able to distinguish the two models.22 Comparing marginal

likelihoods across models is complicated and can be very sensitive to the way

the priors are defined (see Del Negro and Schorfheide 2008). In this application,

the close similarity between the RE and the learning model allows us to conclude

that their relative posterior probability is very close to the prior probability. This

marginal likelihood will serve as the benchmark to evaluate the alternative speci-

fications of the learning process.

5.2 MSV learning with optimised initial beliefs

Our second specification of the learning process derives the initial beliefs from

a REE of a model which is not necessary the same as the model estimated in–

sample. These initial beliefs are chosen to optimise the in–sample fit of the model

with learning. As described previously, we estimate two models simultaneously:

the ‘initial belief’ model is used only to construct the initial beliefs, and the ‘real’

model is utilised to evaluate the data. Consistent with the hypothesis, retained

in all our learning models, that economic agents know the parameters of the ex-

ogenous stochastic processes that drive the economy, we estimate only the behav-

ioural parameters of the initial belief model and impose the same stochastic para-

meters in both models. We derive the initial beliefs from an alternative structural

model in order to save on the number of estimated parameters.23

{Insert Table 5}

As one could expect, the model with optimised initial beliefs outperforms all other

MSV–L models and the RE model in terms of marginal likelihood.24 Note that this

22The mode of the posterior distribution under learning is significantly higher than the one un-
der the RE, but this is mainly due to the fact that there is an additional parameter, the learning
gain, in the parameter set of the learning model.

23For MSV learning without constant, dimensionality of the beliefs space is 20× 12 = 240 co-
efficients in the forecasting functions plus 20× 19/2+ 20 = 210 elements of the second moments
matrix. Estimating a separate model for the beliefs adds only 20 extra parameters.

24This marginal likelihood is calculated conditional on the estimated beliefs: during the MCMC
sampling process, we keep the initial beliefs fixed at the estimated mode. We use this procedure to
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difference in the marginal likelihood is much smaller than the difference between

the posterior modes of these models. The likelihood function of the model with

optimised initial beliefs is characterised by an irregular surface that creates severe

computational problems : the surface is extremely steep in many directions and

the optimisation process gets easily stuck at some local optimum. In addition, the

MCMC sampling converges very slowly. The relatively high value of the gain,

which is estimated at 0.017 with a posterior distribution that varies between 0.006

and 0.021, is the prime source of these complications. A high gain implies that

the coefficients of the forecasting equations are very volatile. Small changes in the

parameters of the model can result in large adjustments to the updated beliefs,

which can lead to extreme consequences for the likelihood. To illustrate the role of

the high gain, we considered the same model with the gain fixed at a small value of

0.002. Most of the computational problems disappear in this case. Fixing the gain

has no cost in terms of marginal likelihood, although the posterior mode of this

model is considerably lower than for the one with the estimated gain. This result

suggests that the benefit in terms of the marginal likelihood and the additional

explanatory power are mainly derived from the specific initial beliefs (which differ

from the REE), and not from the time variation induced by adaptive learning.

Turning attention to the estimated parameters we can say that the interest elas-

ticity of investment is high (investment adjustment cost is low), risk aversion σc

is low but the habit persistence coefficient η is relatively high. At the same time,

the investment shock is more volatile and less persistent, while the price mark–up

shock is estimated to be very persistent. Comparing the estimated parameters in

the ‘initial belief’ and the ‘real’ models, we note that the price and wage stickiness

and the price indexation coefficients are all lower in the ‘real’ model than in the

model estimated under RE, while the opposite holds for price stickiness and in-

dexation in the ‘initial belief’ model. Monetary policy rule in the ‘real’ model is

characterised by a stronger reaction to the inflation, output gap, and past interest

rate (interest rate smoothing) than in the ‘initial belief’ one.

make the marginal likelihood of this model directly comparable to the other models estimated in
this paper.
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The implications of the estimated parameters and beliefs for the IRF of the pro-

ductivity and monetary policy shock are illustrated in Figure 7. At the start of the

sample, IRFs correspond to the estimated initial beliefs. The time-variation in the

IRFs is driven by the updating of the beliefs. For comparison, the constant IRFs of

the RE model are plotted on the same graph as a thick black line.

{Insert Figure 7}

Although there are large changes in the underlying individual belief coefficients,

the IRFs are relatively stable over time. For both shocks, the impact on output is

in general similar to that under the RE. However, while for productivity the im-

pact is declining slightly over time, the effect of the monetary policy shock tends

to increase as time progresses. The effect of the productivity shock on inflation

is more time–varying. The impact effect on inflation is similar to that in the RE

model, but it disappears faster in the learning model than in the RE model. Ex-

actly the opposite holds for the monetary policy shock on inflation: in the learning

model, inflation tends to react more gradually, with the peak effect arriving sev-

eral quarters later than in the RE model. This difference in the inflation response

is especially striking at the end of the sample, where contemporaneous reaction of

inflation is almost zero and the peak effect occurs more than one year later (and

definitely after the peak response in output).25

Note that this more gradual response of inflation to the monetary shock is not in-

duced by the structural parameters that influence the inflation dynamics: relative

to the model estimated under RE, the price and wage stickiness is lower while the

indexation parameters are the same in the ‘real’ model with learning. On the other

hand, the ‘initial belief’ model is characterised by higher stickiness and higher in-

dexation. But it is mainly the updating of these beliefs over time that enforces the

gradual reaction of inflation to the policy shocks. This is remarkable given that

25The impact of the optimised beliefs under MSV learning are much stronger than the one dis-
cussed in the simulation session (see Figure 3a), where the beliefs were drawn from the posterior
distribution of the RE model. The estimated "initial belief" parameters deviate indeed considerably
from the RE model.
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the monetary policy shock is assumed to be known by the agents and appear ex-

plicitly in their belief equations under MSV learning. It is also very interesting

to see how the beliefs tend to postpone the reaction of inflation to the monetary

policy shock while they lower the persistence in the inflation reaction following

the productivity shock.

Milani (2006) finds that the structural inertia in his model is systematically re-

duced when learning is introduced. We can only partially confirm his results: the

estimated price and wage stickiness and the adjustment cost of investment are all

lower under MSV learning with optimised initial beliefs model, the indexation pa-

rameters are more or less unchanged and only the habit persistence coefficient is

larger with adaptive learning. The persistence of the exogenous shocks stays also

largely the same with the exception of the persistence of the investment shock

which becomes much lower.

5.3 MSV beliefs with presample model initialisation

An alternative way to derive the initial coefficients of the MSV beliefs is to estimate

a RE model over a sample that preceedes the actual estimation period. Therefore,

we estimated a RE model over the pre–sample period (1948:2-1964:4), and used

the moment matrices implied by the resulting REE to fix the initial beliefs for the

estimation of the MSV learning model over the sample (1966:1-2005:4).

Restricting the initial beliefs to be consistent with the pre–sample REE reduces the

estimated marginal likelihood relative to our benchmark case with in–sample REE

consistent beliefs (see Table 6). The estimated gain is quite high with a mode at

0.024. As explained in section 5.2, such a high gain generates a complex likelihood

function that leads to severe computational problems. The posterior mode of this

model is higher than in the benchmark case, suggesting that the pre–sample REE

contains some potentially useful information about the in–sample initial beliefs.

This information is however very sensitive to specific parameter constellations

and this parameter uncertainty reduces the marginal likelihood.26

26MSV learning models tend to generate second moment matrices with tiny smallest eigen-
values, necessitating usage of the ridge correction mechanism. In such cases, beliefs are usually

29



{Insert Table 6}

In Figure 8 we plot the time–varying IRFs for the productivity and the monetary

shock. Note the following features. First, the initial beliefs are somewhat out of

line with what the model prefers, resulting in large adjustments of the belief co-

efficients early in the sample; this results in significant time variation of the IRFs,

especially for inflation. The estimated pre–sample model differs in many direc-

tions from the in–sample one. For instance, the persistence of the price and wage

shocks is very different from that observed in other models, price stickiness is very

low and indexation modest. These features of the initial beliefs result in strong re-

action of inflation to the shocks in the beginning of the sample. Second, output

responds in this model stronger to the productivity shock than in the model with

optimised beliefs or RE model. Third, the reaction of inflation to productivity

shocks increases over time, but contrary to the model with optimised beliefs this

responce gradually becomes more persistent and hump shaped. Fourth, the max-

imum responce of both output and inflation to the monetary shock decreases in

magnitude over time, the impact effect also decreases, but the hump shaped re-

action increases over time. At the end of the sample the IRF tends to converge

towards the responses generated by the RE model rather than to these of the MSV

learning model with optimised beliefs.

{Insert Figure 8}

5.4 MSV beliefs with presample regression initialisation

The fourth method of generating initial beliefs uses a least squares regression of

the forecasting equations using the pre–sample data. These regressions include a

set of unobserved variables that can only be produced by an estimated model. We

use the filtered series from the pre–sample RE model to generate the data needed

to run the regressions.

strongly adjusted in the early in–sample periods, and overfitting of the initial data might become
an issue.

30



Under this approach, the initial beliefs are such that beliefs adjust even stronger

early in the sample than with the pre–sample REE model initialisation of section

5.3. Depending on the length of the pre–sample, the estimated gain parameter

is extremely high, varying between 0.04 to 0.06, and this leads again to various

computational difficulties. For example, optimisation routines are finding local

rather than global optima, MCMC do not converge or converge very slowly, and

the approximation of the marginal likelihood yields very low values relative to

the mode of the likelihood.

6 Estimation with VAR learning

Up to now we considered models in which private agents know the correct spec-

ification of the model, but learn about the values of the belief parameters. Here

we drop the assumption that private agents know the correct specification, and

instead assume that agents use only the limited list of variables in their belief

equations. We assume that agents use the same list of seven observable variables

as we do in our estimation of the overall model. This form of misspecified belief

equations is probably a more realistic approximation of the actual information set

available to economic agents. The potential implications of this misspecification

in the beliefs on the model dynamics and the implied model dynamics have been

discussed in the simulation exercises already. In order to form expectations about

the forward variables in the model, agents run regressions on the seven observed

variables and a constant. However, we assume that these regressions are specified

in levels and not in first differences, which imply that agents use the filtered values

for the level variables of the observables, while we use the first differences of four

of these variables in our measurement equations. In this section we only consider

applications in which the belief equations contain a constant, meaning that private

agents have to learn not only on the slope parameters of the belief regression but

also the levels which depend on the steady state inflation, growth and real interest

rate. We refer to this setup of the beliefs as VAR learning. Similarly to the case of

MSV learning, we also consider different ways of constructing the initial beliefs at

the start of the sample.
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VAR learning has several implications in the adaptive learning set–up. First, E–

stability of the equilibrium is not guaranteed any longer, as the result of MacCal-

lum applies only to the MSV case. However, for parameter values close to the

REE, E–stability is obtained. Second, using a different information set for forming

forecasts may influence the equilibrium laws of motions themselves, and makes

the RE model consistent beliefs different from those that would obtain on aver-

age in an infinitely long simulation. In the appendix, we provide a more detailed

discussion of these issues.

6.1 VAR learning with model consistent initial beliefs

Table 7 summarizes the estimated parameters, while Figure 9 shows the implied

IRF functions.

{Insert Table 7}

{Insert Figure 9}

First of all, VAR learning with a model consistent initialisation of the beliefs gener-

ates a marginal likelihood that is slightly higher than that for the benchmark MSV

learning and the REE model. However, contrary to the model with MSV learn-

ing and model consistent initial beliefs, where the estimated learning gain is quite

high and estimated imprecisely, the estimated gain for the mis–specified VAR be-

liefs is extremely small with a narrow posterior distribution. The other estimated

parameters remain very close to the ones in the benchmark and the REE model.

One exception is the very low degree of price indexation.

The small gain parameter implies that the IRFs remain stable over time. The out-

put reaction is relatively similar to the REE model. Relative to the MSV learning

case, the response of inflation to the productivity shock is further enhanced but

remains quite short–lived. For the monetary policy shock the reaction of inflation

is quite different: the overall response is small, and the impact effect is decreasing

over time while the persistence in the response is increasing over time. Both trends

are similar to those observed for MSV learning with optimised initial beliefs.
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Numerical simulations of the E–stability ODE under VAR learning with constant

(derived in the Appendix) show that for parameter values close to the REE and

the initial beliefs close to the RE–model consistent ones, dynamics under learning

is expected to remain stable. However, divergence is often observed if the simu-

lations are started with beliefs about constants which are not equal to zero as in

the RE–model consistent case. Simulations show that beliefs about constants are

especially volatile. Therefore, if some data point makes the agents to assume a

particularly large constant value in some forecasting equations, further evolution

of the beliefs might become unstable. During the estimation procedure, such sit-

uations are most probably associated with very low likelihood values. The very

low value of the estimated gain guarantees that within the 160 periods (length of

the sample used for estimation) beliefs about constants do not reach values which

are likely to trigger instability. An alternative explanation for the low estimated

gain is that the average evolution of beliefs from their RE–model consistent val-

ues towards the RPE values is inconsistent with the data in our sample; a low gain

then guarantees that the beliefs do not move in this undesirable direction too fast.

6.2 VAR learning with optimised initial beliefs

This specification of the learning process produces the best marginal likelihood

and outperforms substantially the REE model (See Table 8). The marginal likeli-

hood comes close to the values that are produced by the best fitting DSGE–VAR

model. The structural parameters of the model are again close to the REE model

and the benchmark learning model. The gain parameter is estimated to be very

small and varying between 0.001 and 0.003.

{Insert Table 8}

{Insert Figure 10}

The IRFs are again relatively stable and close to the ones of VAR learning with

model consistent beliefs.The inflation response to the monetary policy shock is

33



again interesting: while in the beginning of the sample the response is very close

to those of the REE model, the reaction gradually adjusts driven by the beliefs

updating and at the end of the sample the IRF becomes again much more gradual

and persistent.

The high marginal likelihood of this model delivers strong evidence in favour

of beliefs that deviate significantly from the rational expectations hypothesis of

model consistent expectations. The conclusion that the gain in the fit comes mainly

from the initial beliefs, is also confirmed by the marginal likelihood of this model

where the initial optimised beliefs are kept constant over the complete sample.

The small gain also suggests that the beliefs are not materially changed accord-

ing to the constant gain learning schedule. Therefore, it might be useful to test

whether alternative and more efficient learning procedures (such as Kalman filter)

are performing better in this context. However, one should note that the updating

is more important under the VAR beliefs than under the MSV beliefs even for very

low gain parameters, because the residuals in the forecasting equations are larger

and probably contain a more systematic component than under the MSV beliefs.

This conjecture is also confirmed by the important changes in the IRF of inflation

to the monetary shock. Although there is considerable updating in this model,

no computational problems were encountered, which is probably related to the

fact that the 2nd moments matrix doesn not have very small eigenvalues, and thus∥∥∥R−1
t

∥∥∥ is never too large .

6.3 VAR learning with presample based initial beliefs

The VAR learning with initial beliefs derived from the RE model estimated using

the pre–sample data does a poor job in terms of marginal likelihood. As for the

model with MSV learning and pre–sample based beliefs, the learning gain is very

high (0.016 vs 0.001 for both RE–model consistent and optimised VAR beliefs) in

order to allow the beliefs to adjust and to move away from the imposed initial

beliefs.

{Insert Table 9}
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{Insert Figure 11}

The IRF shows a reaction in output that is still in line with the other models, al-

though the impact of the monetary shock on output is very high in this model,

probably reflecting initially high belief coefficient on inflation in the output fore-

casting equation. The reaction of inflation fluctuates a lot over time. The response

of inflation to the productivity shock in the beginning of the sample is strongly

negative but at the end inflation does not seem to react at all on impact. The re-

action of inflation to the policy shock is already gradual in the beginning of the

sample and over time the impact effect becomes even positive, but with an ex-

tremely persistent negative effect after several quarters. This response is similar

to the often observed price puzzle in SVAR models. Again, we attribute this sig-

nificant time variation to the fast adjustment of beliefs from the values imposed by

the pre–sample RE model. We also checked whether the choice of the presample

period was responsable for the observed divergence between the initial beliefs and

the beliefs consistent with the in–sample data. If we use only data from 1955 up to

1965 to construct initial beliefs (instead of 1948-1965), the model fit improves. We

conclude that the data points before 1955 affected the data generating process in a

way that is at odds with the one that prevailed in later periods, at least under the

assumption that the agents are to include only the seven observable variables into

their forecasting equations.

7 Conclusions

The above results illustrate that several of the models with learning fit the data

equally well or even better than the RE model. The best performing learning mod-

els generate marginal likelihoods that come close to that of the optimal DSGE–

VAR model. Specific initial beliefs contribute significantly to this result, which

proves that the model–consistent expectation imposed by the rational expecta-

tions hypothesis is too restrictive. The best performing models are the ones where

the initial beliefs are optimised to explain the in–sample data, consistent with pre-

vious results in the literature. Limiting the set of variables used in the forecasting
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equations to a list of observed macro–variables can generate models that explain

the data better than models with MSV beliefs that use the complete set of observed

and unobserved state variables implied by the REE. We generally observe a con-

siderable updating in the belief equations in response to the systematic forecast

errors. However, the best–fitting models tend to have rather low estimated gain,

which suggests that it is the initial beliefs different from the RE–model consistent

ones that bring about improvement in the marginal likelihood, rather than the be-

liefs updating of the constant gain learning type per se. On the other hand, choos-

ing the initial beliefs that are too far away from the optimal ones leads to higher

estimated gains that facilitate evolution towards better forecasting equations. Our

results leave open a possibility that using alternative learning algorithms such as

Kalman filter, which can converge faster than constant gain learning, see Sargent

and Williams (2005), could modify the tentative conclusion about higher impor-

tance of initial beliefs than of the learning process itself.

In terms of IRFs our discussion was limited to the implications of the produc-

tivity and the monetary policy shock. The implications for the other shocks still

need to be documented. The implications for the productivity and the monetary

policy shock are very promising: the learning models are able to generate an infla-

tion response to productivity shocks that is very rapid and short lived, while the

response to monetary shocks is slow but very persistent. These results also over-

come some of the major shortcomings of the REE–DSGE models as indicated by

the DSGE–VAR methodology for identifying misspecification. Having forecasting

equations that differ significantly from those implied by the REE seems to be the

key to this result.

The additional dynamics that are introduced by the learning process do not sys-

tematically alter the estimated structural parameters of the DSGE model. This

result contradicts earlier claims in the literature, but is again in line with the re-

sults from the DSGE–VAR methodology which indicate misspecification but no

systematic bias in the structural parameters.

36



8 References

Cho, I.-K., N. Williams and T.J. Sargent (2002), “Escaping Nash Inflation”, Review

of Economic Studies, Vol. 69(1), p. 1-40.

Christiano, L.J., M. Eichenbaum and C.L. Evans (2005), “Nominal Rigidities and

the Dynamic Effects of a Shock to Monetary Policy”, Journal of Political Economy,

Vol. 113(1), p. 1–45.

Del Negro, M. and F. Schorfheide (2008). "Forming priors for DSGE models (and

how it affects the assessment of nominal rigidities)," Journal of Monetary Economics,

Vol. 55(7), p. 1191-1208 .

Del Negro, M., F. Schorfheide, F. Smets and R. Wouters (2007), "On the Fit of New

Keynesian Models", Journal of Business & Economic Statistics, Vol. 25(2), p. 123-143.

Dembo, A. and O. Zeitouni (1998), "Large Deviations Techniques and Applica-

tions". Springer.

Eichenbaum, M. and J. Fisher (2007), “Estimating the Frequency of Re–optimization

in Calvo–Style Models”, Journal of Monetary Economics, Vol 54 (7), p. 2032-2047.

Evans, G.W. and S. Honkapohja (2001), "Learning and Expectations in Macroeco-

nomics". Princeton University Press.

Freidlin, M.I. and A.D. Wentzell (1998), "Random Perturbation of Dynamical Sys-

tems". Springer-Verlag.

Giannitsarou, C., and E. Carceles–Poveda (2007), "Adaptive Learning in Practice",

Journal of Economic Dynamics and Control, Vol. 31(8), p. 2659-2697.

Honkapohja, S., K. Mitra, and G. W. Evans (2002), "Notes on agents’ behavioral

rules under adaptive learning and recent studies of monetary policy", mimeo.

Kimball, M.S. (1995), “The Quantitative Analytics of the Basic Neomonetarist Model”,

Journal of Money, Credit, and Banking, Vol. 27(4), p. 1241–77.

Marcet, A. and T. J. Sargent (1989), "Convergence of least squares learning mech-

anisms in self-referential linear stochastic models," Journal of Economic Theory, Vol.

48(2), p. 337-368.

37



McCallum, B.T. (2006), "E–Stability vis–a–vis Determinacy Results for a Broad

Class of Linear Rational Expectations Models," NBER Working Papers 12441.

Milani, F. (2005), "Learning, Monetary Policy Rules, and Macroeconomic Stabil-

ity", Journal of Economic Dynamics and Control, Vol. 32(10), p. 3148-3165.

Milani, F. (2006), "A Bayesian DSGE Model with Infinite-Horizon Learning: Do

"Mechanical" Sources of Persistence Become Superfluous?", International Journal of

Central Banking, Iss. 6.

Orphanides, A., and J. C. Williams (2003), "Imperfect Knowledge, Inflation Expec-

tations, and Monetary Policy", NBER Working Paper No. W9884.

Orphanides, A., and J. C. Williams (2005), "Inflation scares and forecast–based

monetary policy", Review of Economic Dynamics, Vol. 8, 498-527.

Orphanides, A., and J. C. Williams (2007), "Robust Monetary Policy With Imper-

fect Knowledge", ECB Working Paper No. 764.

Preston, B. (2005), "Learning About Monetary Policy Rules When Long-Horizon

Expectations Matter", International Journal of Central Banking, Vol. 1.

Sargent, T., and N. Williams (2005), "Impacts of Priors on Convergence and Escape

from Nash Inflation", Review of Economic Dynamics, Vol. 8(2): 360-391.

Sargent, T., N. Williams and T. Zha (2006). "Shocks and Government Beliefs: The

Rise and Fall of American Inflation," American Economic Review, Vol. 96(4), p. 1193-

1224.

Smets, F. and R. Wouters (2003), “An Estimated Dynamic Stochastic General Equi-

librium Model of the Euro Area”, Journal of the European Economic Association,

Vol.1(5), p. 1123–75.

Smets, F. and R. Wouters (2005), “Comparing Shocks and Frictions in U.S. and

Euro Area Business Cycles: A Bayesian DSGE Approach”, Journal of Applied Econo-

metrics, Vol. 20(2): 161–83.

Smets, F. and R. Wouters (2007), "Shocks and Frictions in US Business Cycles: A

Bayesian DSGE Approach", American Economic Review, Vol 97(3), p. 586-606.

38



Vilagi, B. (2007), Adaptive Learning and Macroeconomic Persistence: Comparing

DSGE models of the Euro Area. Mimeo.

Williams, N. (2003), "Adaptive Learning and Business Cycles", mimeo.

A VAR Learning: E–Stability and Mean Dynamics

For simplicity, we present the results for the case without a constant. The logic

will carry through if we were to include it.

As stated previously, VAR learning implies that the agents use the following PLM:

yt = bzt−1, (6)

where zt is a subset of the model endogenous variables. zt selects specific endoge-

nous variables, zt = Hyt

The agents’ PLM (6), inserted into the model equations27

yt = βEtyt+1 + δyt−1 + κwt,

wt = ρwt−1 + εt,

produces the Actual Law of Motion (ALM)

yt = (I − βbH)−1 δyt−1 + (I − βbH)−1 κwt, (7)

yt = (T̃y, T̃w) ·
(

yT
t−1, wT

t

)T
. (8)

For comparison, if the agents started from the PLM that corresponds to the MSV,

yt = byt−1 + cwt,

the resulting ALM would be

yt = (I − βb)−1 δyt−1 + (I − βb)−1 (βcρ+ κ)wt. (9)

The ALM under VAR learning differs from the MSV solution; moreover, there is

only one parameter vector b, which could be used to set parameters of the PLM

27These equations are, in fact, the same as (3): the structure of the model is such that the terms
at wt−1 and εt in (3) combine to produce exactly κwt.
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and ALM equal to each other. This implies that the usual method of undetermined

coefficients could not be used to derive the stationary point of the map from PLM

to ALM. To derive this point, we need to calculate the E–stability ODE first and

then look at its stationary point(s). Restricting the PLM to a subset of the vari-

ables is associated with Restrictive Perceptions Equilibrium (RPE), see Evans and

Honkapohja (2001, Ch. 13.1.2). Moreover, one of the variables in z is not present

in the MSV set of variables and it is likely to contain some information from the

variables excluded from the RPE set; thus, we do expect that in equilibrium this

variable will be used in the forecasting equations. Therefore, the equilibrium in

question is, in fact, a mixure of the under– and over–parameterisation. For lack of

a better term, we shall continue calling it RPE.

Let’s consider the problem of E–stability. The updating equations could be written

as

bt = bt−1 + gR−1
t zt−1(y

f
t − bT

t−1Zt−1)
T = (10a)

bt−1 + gR−1
t zt−1

(
(T̃y, T̃w) ·

(
yT

t−1, wT
t

)T
− bT

t−1zt−1

)T
, (10b)

Rt = Rt−1 + g(zt−1zT
t−1 − Rt−1). (10c)

Taking limits and expectations on the right hand side, we obtain that the E–stability

differential equations are

db
dτ

= T̃yE
[
yt−1, zT

t−1

]
R−1 + T̃wE

[
wt, zT

t−1

]
R−1 − b, (11a)

dR
dτ

= E
[

Zt−1ZT
t−1

]
− R. (11b)

The equation for R is globally stable around the equilibrium point R = M =

E
[
zt−1zT

t−1
]
= HE

[
yt−1yT

t−1
]

HT. The variance–covariance matrices E
[
yt−1, zT

t−1
]

and E
[
wt, zT

t−1
]

are themselves complicated functions of b, as they are determined

from (7) as a solution to matrix Lyapunov equation. Thus, the right–hand side

of the E–stability ODE is a highly nonlinear function of T̃y and T̃w, which are, in

turn, nonlinear functions of b. It is very likely that the resulting RPE differs sig-

nificantly from the RE–model consistent beliefs. The ODE is highly dimensional:

in case without the constant, its dimension equals 112. Linearization of (11) and

calculation of eigenvalues needed to determine local E–stability is likely to result
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in an extremely complicated expression that will not contain any intuitive results.

Therefore, we turn to numerical simulations to find the equilibrium and to deter-

mine whether it is E–stable.

Numerical simulations of the mean dynamics ODE (11) show that if one starts

from the RE–model consistent beliefs, the resulting RPE is stable, whether the

constant is included into the vector z or not. The RPE is very different from the

RE–model consistent beliefs. In particular, the variance–covariance matrix im-

plies smaller variances, and the response of some forward–looking variables to

the observables is much stronger than at the REE. However, when we simulate

the ODE for the case with constant and initialise the beliefs about the constants

with some non–zero vector, a sort of “quasi–stability” is observed: for a while, the

beliefs seem to converge to the equilibrium values, but then fast divergence starts.

Given that the mean dynamics ODE is nonlinear with more than one hundred di-

mensions, we are not ready to claim that this behavior indicates small region of

attraction of the strongly E–stable equilibrium, especially in the direction of be-

liefs about the constants. A purely numerical divergence might become an issue.

However, if the system is so close to the instability boundary that small numerical

errors might push MATLAB ODE solver into divergence, small numerical errors

made by the agents operating in real time may lead to the same result (divergence).

We advance two hypotheses for the estimated gain value under VAR learning

being so small. The first hypothesis is that the central tendency of beliefs evolution

(the mean dynamics) is not compatible with the data under VAR learning, and the

mean dynamics path from the RE–model consistent beliefs to the RPE generates

beliefs that are not conductive to good model fit. The second hypothesis points to

learning about the constants as the main culprit, because numerical simulations of

the mean dynamics indicate that it might lead to instability.

To test the first hypothesis, we simulate the mean dynamics ODE (11) starting

from the RE–model consistent beliefs and sample the resulting path at t = 0.5, 1,

2, and 3. We then estimate our model with gain set to zero and setting initial (and

fixed) beliefs equal to these sampled values. The resulting posterior mode is -843,

-863, -907, and -951, respectively, vs. -839 achieved if the beliefs are fixed at their

41



RE–model consistent values.28 We consider this result a partial confirmation of

the hypothesis: evolution of beliefs towards RPE makes them incompatible with

the data we use to estimate the model.

To understand whether learning about the constants is problematic, we estimate

the model starting from the RE–model consistent beliefs but fixing the gain at

0.01. After the estimation, the beliefs change significantly, moving towards the

RPE values; in particular, the diagonal elements of the matrix of second moments

are much closer to the RPE than to the RE–model values. At the same time, the

constants in the forecasting equations are believed to be large; in numerical simu-

lations, such values could lead to the “quasi–stability” described above. If, indeed,

the data forces beliefs outside of some region of attraction, the only way to prevent

this is to make the gain parameter small. Hovewer, an argument against the sec-

ond hypothesis is that estimation without constants (where instability related to

learning the constants is absent) produces very similar results, with the estimated

gain equal to 0.001 and the posterior mode about -839.

Evaluating the body of evidence from numerical simulations and estimation ex-

ercises described above, we believe that the mean dynamics trajectory connecting

RE–model consistent beliefs with the RPE beliefs is incompatible with the data,

which leads to the gain being estimated at the lower end of the allowed interval.

The very presense of VAR learning changes the resulting equilibrium. An evolu-

tion of beliefs from their initial values towards the RPE makes the beliefs, and as a

result the transmission mechanism of the model, incompatible with the observed

data. An interesting question is whether some other set of variables used in fore-

casting equations might generate a RPE better aligned with the data, but this is

beyond the scope of this paper.

B Data appendix

The model is estimated using seven key macro-economic time series: real GDP,
28The relationship between continuous time units of the mean dynamics and discrete time peri-

ods of the real time learning is given as t = Ng, where g is the gain. For the gain of 0.01, which is
slightly less than the estimates for MSV learning and on the lower end of the range used in other
studies, t =0.5, 1, 2, and 3 correspond to 50, 100, 200, and 300 periods.
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consumption, investment, hours worked, real wages, prices and a short-term in-

terest rate. GDP, consumption and investment are taken from the US Department

of Commerce - Bureau of Economic Analysis databank. Real Gross Domestic

Product is expressed in Billions of Chained 1996 Dollars. Nominal Personal Con-

sumption Expenditures and Fixed Private Domestic Investment are deflated with

the GDP-deflator. Inflation is the first difference of the log of the Implicit Price

Deflator of GDP. Hours and wages come from the BLS (hours and hourly com-

pensation for the NFB sector for all persons). Hourly compensation is divided by

the GDP price deflator in order to get the real wage variable. Hours are adjusted

to take into account the limited coverage of the NFB sector compared to GDP (the

index of average hours for the NFB sector is multiplied with the Civilian Employ-

ment (16 years and over) . The aggregate real variables are expressed per capita

by dividing with the population over 16. All series are seasonally adjusted. The

interest rate is the Federal Funds Rate. Consumption, investment, GDP, wages

and hours are expressed in 100 times log. The interest rate and inflation rate are

expressed on a quarterly basis corresponding with their appearance in the model.
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Table 1: Marginal likelihood of DSGE versus DSGE-VAR model as indication of
misspecification

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Benchmark REE-DSGE model DSGE-VAR model ( =1)_________________________  ___________________________________  ___________________________________

 Prior distribution Posterior distribution Posterior distribution_________________________  ___________________________________ ____________________________________
Distr. Mean St.Dev. Mode Mean 5 percent 95 percent Mode Mean 5 percent 95 percent________________________________________________________________________________________________________________________________________________________________

a Beta 0.50 0.20 0.96 0.96 0.94 0.98 0.95 0.93 0.89 0.99
b Beta 0.50 0.20 0.18 0.22 0.08 0.36 0.44 0.50 0.20 0.76
g Beta 0.50 0.20 0.98 0.98 0.96 0.99 0.82 0.77 0.61 0.96
q Beta 0.50 0.20 0.71 0.71 0.62 0.81 0.51 0.50 0.32 0.68
r Beta 0.50 0.20 0.13 0.15 0.04 0.24 0.15 0.16 0.04 0.25
p Beta 0.50 0.20 0.90 0.89 0.81 0.97 0.69 0.56 0.21 0.85
w Beta 0.50 0.20 0.97 0.97 0.95 0.99 0.95 0.74 0.56 0.98
p Beta 0.50 0.20 0.74 0.70 0.55 0.86 0.59 0.54 0.26 0.83
w Beta 0.50 0.20 0.89 0.85 0.76 0.94 0.81 0.53 0.18 0.85
ag Normal 0.50 0.25 0.53 0.52 0.38 0.67 0.52 0.52 0.35 0.69

Normal 4.00 1.50 5.49 5.74 3.97 7.42 3.84 3.89 2.37 5.69
c Normal 1.50 0.38 1.40 1.38 1.17 1.59 1.16 1.20 0.86 1.54

Beta 0.70 0.10 0.71 0.71 0.64 0.78 0.66 0.63 0.51 0.73
w Beta 0.50 0.10 0.74 0.71 0.60 0.81 0.69 0.73 0.62 0.85
l Normal 2.00 0.75 1.92 1.84 0.92 2.79 1.89 1.77 0.81 2.77
p Beta 0.50 0.10 0.66 0.65 0.56 0.74 0.65 0.64 0.57 0.72
w Beta 0.50 0.15 0.59 0.59 0.39 0.78 0.51 0.52 0.29 0.76
p Beta 0.50 0.15 0.23 0.24 0.10 0.38 0.39 0.46 0.20 0.75

Beta 0.50 0.15 0.55 0.55 0.36 0.72 0.51 0.53 0.35 0.74
Normal 1.25 0.13 1.62 1.61 1.48 1.74 1.53 1.55 1.41 1.69

r Normal 1.50 0.25 2.03 2.04 1.75 2.33 1.77 1.76 1.33 2.06
Beta 0.75 0.10 0.82 0.81 0.77 0.85 0.78 0.78 0.74 0.85

ry Normal 0.13 0.05 0.08 0.09 0.05 0.13 0.08 0.11 0.04 0.20
r y Normal 0.13 0.05 0.22 0.22 0.18 0.27 0.21 0.21 0.17 0.27

Gamma 0.63 0.10 0.82 0.79 0.61 0.96 0.65 0.68 0.50 0.85
Gamma 0.25 0.10 0.16 0.17 0.08 0.26 0.20 0.23 0.10 0.36

L Normal 0.00 2.00 -0.10 0.53 -1.30 2.33 0.01 -0.11 -1.50 1.26
Normal 0.40 0.10 0.43 0.43 0.41 0.45 0.38 0.39 0.26 0.53
Normal 0.30 0.05 0.19 0.19 0.16 0.22 0.18 0.19 0.15 0.22

Gain Gamma 0.035 0.03
a Invgamma 0.10 2.00 0.45 0.46 0.41 0.51 0.41 0.40 0.35 0.47
b Invgamma 0.10 2.00 0.24 0.24 0.20 0.28 0.16 0.16 0.10 0.21
g Invgamma 0.10 2.00 0.52 0.53 0.48 0.58 0.37 0.38 0.32 0.43
q Invgamma 0.10 2.00 0.45 0.45 0.37 0.53 0.46 0.48 0.36 0.62
r Invgamma 0.10 2.00 0.24 0.24 0.22 0.27 0.18 0.18 0.15 0.21
p Invgamma 0.10 2.00 0.14 0.14 0.11 0.17 0.14 0.15 0.12 0.20
w Invgamma 0.10 2.00 0.24 0.24 0.21 0.28 0.20 0.19 0.13 0.23________________________________________________________________________________________________________________________________________________________________

Posterior Mode -841.46 -834.17
Log Data Density (Laplace) -923.05 -897.77
Log Data Density (Mod.Harm.Mean) -922.15 -897.78________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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Table 2: Simulation results for the different learning models and different gain parameters
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Table 3: Simulation results controlling for escape dynamics

be
lie

fs 
ba

se
d o

n M
SV

 re
gre

ss
ion

 + 
cte

be
lie

fs 
ba

se
d o

n V
AR

(1)
 re

gre
ss

ion
 + 

cte

 = 
0.0

1
 = 

0.0
2

 = 
0.0

1
 = 

0.0
2

inc
lud

ing
 es

ca
pe

s
ex

clu
din

g e
sc

ap
es

inc
lud

ing
 es

ca
pe

s
ex

clu
din

g e
sc

ap
es

inc
lud

ing
 es

ca
pe

s
ex

clu
din

g e
sc

ap
es

inc
lud

ing
 es

ca
pe

s
ex

clu
din

g e
sc

ap
es

tra
ns

itio
n

sta
ble

tra
ns

itio
n

sta
ble

tra
ns

itio
n

sta
ble

tra
ns

itio
n

sta
ble

tra
ns

itio
n

sta
ble

tra
ns

itio
n

sta
ble

tra
ns

itio
n

sta
ble

tra
ns

itio
n

sta
ble

sta
nd

ard
 de

via
tio

ns

y
0.9

4
0.9

5
0.9

4
0.9

4
0.9

4
0.9

6
0.9

4
0.9

5
0.9

8
0.8

8
0.9

6
0.8

8
1.2

4
1.1

2
1.0

7
0.8

8
c

0.6
8

0.6
9

0.6
8

0.6
9

0.6
8

0.7
4

0.6
8

0.7
0

0.7
7

0.7
5

0.7
5

0.7
4

1.0
5

1.1
9

0.8
8

0.7
6

i
2.3

8
2.4

0
2.3

8
2.4

0
2.4

0
2.5

2
2.3

9
2.4

1
1.7

8
1.5

3
1.7

3
1.5

2
2.3

8
3.3

5
2.0

8
1.8

6
w

0.5
5

0.5
6

0.5
5

0.5
6

0.5
6

0.5
7

0.5
5

0.5
6

0.6
1

0.5
1

0.5
8

0.5
1

0.7
8

0.6
9

0.6
4

0.5
6

L
2.2

0
2.4

4
2.2

0
2.4

4
2.2

6
2.5

0
2.2

5
2.4

5
3.0

0
2.4

3
2.9

2
2.4

1
3.4

4
3.4

1
3.1

6
2.3

8
0.4

8
0.5

2
0.4

8
0.5

2
0.5

0
0.5

7
0.4

9
0.5

2
0.7

6
0.5

6
0.7

1
0.5

5
1.2

0
1.3

5
0.9

1
0.6

6
R

0.5
4

0.5
6

0.5
4

0.5
6

0.5
4

0.5
9

0.5
4

0.5
6

0.6
9

0.6
0

0.6
7

0.5
9

0.8
9

1.5
1

0.7
7

0.7
9

y
4.1

4
4.5

4
4.1

3
4.5

5
4.2

2
4.6

4
4.2

2
4.5

7
5.2

7
4.2

7
5.1

5
4.2

4
5.8

2
5.9

3
5.4

2
4.1

6
c

3.5
9

4.2
0

3.5
8

4.2
0

3.6
8

4.3
8

3.6
8

4.2
4

5.1
6

4.4
4

5.0
5

4.4
2

6.0
0

6.0
5

5.4
5

4.0
4

i
10

.79
11

.50
10

.78
11

.50
10

.97
12

.09
10

.93
11

.54
12

.46
12

.30
12

.19
12

.15
14

.32
25

.67
13

.93
14

.08
w

2.3
2

2.4
7

2.3
2

2.4
7

2.3
5

2.5
4

2.3
5

2.4
7

2.7
7

2.2
8

2.7
1

2.2
9

3.0
2

3.6
7

2.8
4

2.6
7

au
toc

orr
ela

tio
ns

y
0.2

6
0.2

8
0.2

6
0.2

8
0.2

6
0.2

9
0.2

6
0.2

8
0.3

9
0.3

0
0.3

9
0.3

0
0.5

1
0.3

9
0.4

8
0.3

0
c

0.2
9

0.3
2

0.2
9

0.3
2

0.2
9

0.3
3

0.2
9

0.3
2

0.5
4

0.5
3

0.5
3

0.5
3

0.6
5

0.5
8

0.6
3

0.5
3

i
0.5

9
0.5

9
0.5

9
0.5

9
0.5

9
0.6

0
0.5

9
0.5

9
0.7

7
0.7

3
0.7

7
0.7

2
0.8

0
0.7

8
0.8

1
0.7

6
w

0.1
4

0.1
7

0.1
4

0.1
7

0.1
5

0.1
7

0.1
5

0.1
7

0.2
0

0.1
2

0.1
9

0.1
3

0.3
3

0.2
9

0.3
0

0.2
4

L
0.9

6
0.9

7
0.9

6
0.9

7
0.9

6
0.9

7
0.9

6
0.9

7
0.9

8
0.9

6
0.9

8
0.9

6
0.9

7
0.9

7
0.9

8
0.9

6
0.8

0
0.8

3
0.8

0
0.8

3
0.8

1
0.8

3
0.8

1
0.8

3
0.8

5
0.8

4
0.8

5
0.8

4
0.8

6
0.8

8
0.8

7
0.8

7
R

0.8
9

0.9
0

0.8
9

0.9
0

0.8
9

0.9
0

0.8
9

0.9
0

0.9
2

0.9
0

0.9
2

0.9
0

0.9
3

0.9
4

0.9
3

0.9
3

46



Table 4: Regression results for MSV learning with model-consistent initialisation of beliefs

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Learning with MSV beliefs (excl. constants) Learning with MSV beliefs (incl. constants)_________________________  ___________________________________  ___________________________________

 Prior distribution Posterior distribution Posterior distribution_________________________ ____________________________________  ___________________________________
Distr. Mean St.Dev. Mode Mean 5 percent 95 percent Mode Mean 5 percent 95 percent________________________________________________________________________________________________________________________________________________________________

a Beta 0.50 0.20 0.96 0.96 0.94 0.98 0.96 0.96 0.94 0.98
b Beta 0.50 0.20 0.20 0.23 0.07 0.36 0.20 0.23 0.08 0.37
g Beta 0.50 0.20 0.97 0.97 0.96 0.99 0.97 0.97 0.96 0.99
I Beta 0.50 0.20 0.71 0.72 0.62 0.82 0.72 0.72 0.61 0.82
r Beta 0.50 0.20 0.13 0.16 0.05 0.26 0.13 0.16 0.05 0.26
p Beta 0.50 0.20 0.90 0.89 0.81 0.97 0.90 0.89 0.81 0.97
w Beta 0.50 0.20 0.97 0.97 0.95 0.99 0.97 0.97 0.95 0.99
p Beta 0.50 0.20 0.74 0.68 0.50 0.85 0.74 0.68 0.52 0.85
w Beta 0.50 0.20 0.89 0.84 0.74 0.94 0.89 0.85 0.76 0.94
ag Normal 0.50 0.25 0.53 0.53 0.39 0.68 0.53 0.53 0.38 0.67

Normal 4.00 1.50 5.30 5.67 3.90 7.35 5.30 5.65 3.94 7.33
c Normal 1.50 0.38 1.40 1.34 1.12 1.55 1.40 1.35 1.13 1.57

Beta 0.70 0.10 0.71 0.72 0.65 0.79 0.71 0.72 0.66 0.79
w Beta 0.50 0.10 0.74 0.70 0.60 0.82 0.74 0.71 0.61 0.81
l Normal 2.00 0.75 2.03 1.92 0.96 2.88 2.03 1.97 0.98 2.93
p Beta 0.50 0.10 0.67 0.65 0.56 0.75 0.67 0.65 0.56 0.74
w Beta 0.50 0.15 0.62 0.59 0.38 0.80 0.62 0.59 0.39 0.80
p Beta 0.50 0.15 0.20 0.22 0.09 0.34 0.20 0.22 0.08 0.34

Beta 0.50 0.15 0.53 0.55 0.37 0.73 0.53 0.55 0.37 0.74
Normal 1.25 0.13 1.61 1.61 1.48 1.75 1.61 1.61 1.48 1.74

r Normal 1.50 0.25 2.00 2.02 1.74 2.32 2.00 2.02 1.72 2.30
Beta 0.75 0.10 0.82 0.81 0.77 0.85 0.82 0.81 0.77 0.85

ry Normal 0.13 0.05 0.09 0.08 0.05 0.12 0.09 0.09 0.05 0.12
r y Normal 0.13 0.05 0.22 0.22 0.17 0.26 0.22 0.22 0.17 0.26

Gamma 0.63 0.10 0.78 0.81 0.63 0.97 0.78 0.80 0.63 0.97
Gamma 0.25 0.10 0.15 0.17 0.07 0.27 0.15 0.17 0.07 0.26

L Normal 0.00 2.00 0.34 -0.02 -1.67 1.56 0.33 0.02 -1.69 1.61
Normal 0.40 0.10 0.44 0.43 0.41 0.45 0.44 0.43 0.41 0.45
Normal 0.30 0.05 0.19 0.19 0.16 0.22 0.19 0.19 0.16 0.22

Gain Gamma 0.035 0.03 0.012 0.018 0.001 0.034 0.012 0.019 0.002 0.036

a Invgamma 0.10 2.00 0.45 0.45 0.41 0.50 0.45 0.45 0.41 0.50
b Invgamma 0.10 2.00 0.24 0.24 0.20 0.28 0.24 0.24 0.20 0.28
g Invgamma 0.10 2.00 0.52 0.53 0.48 0.58 0.52 0.53 0.48 0.58
I Invgamma 0.10 2.00 0.45 0.45 0.37 0.53 0.45 0.45 0.37 0.54
r Invgamma 0.10 2.00 0.24 0.24 0.22 0.27 0.24 0.24 0.22 0.27
p Invgamma 0.10 2.00 0.14 0.14 0.11 0.17 0.14 0.14 0.11 0.17
w Invgamma 0.10 2.00 0.24 0.24 0.20 0.28 0.24 0.24 0.20 0.28________________________________________________________________________________________________________________________________________________________________

Posterior Mode -837.52 -837.51
Log Data Density (Laplace) -922.61 -922.48
Log Data Density (Mod.Harm.Mean) -922.56 -922.65________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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Table 5: Regression results for MSV learning with optimised initial beliefs

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
MSV beliefs - Optimised initialisation Initial Belief Model_________________________  ___________________________________  ___________________________________

 Prior distribution Posterior distribution Posterior distribution_________________________  ___________________________________ ____________________________________
Distr. Mean St.Dev. Mode Mean 5 percent 95 percent Mode________________________________________________________________________________________________________________________________________________________________

a Beta 0.50 0.20 0.98 0.96 0.94 0.99
b Beta 0.50 0.20 0.16 0.23 0.13 0.32
g Beta 0.50 0.20 0.97 0.98 0.96 0.99
I Beta 0.50 0.20 0.32 0.45 0.33 0.56
r Beta 0.50 0.20 0.11 0.15 0.05 0.26
p Beta 0.50 0.20 0.96 0.93 0.88 0.97
w Beta 0.50 0.20 0.97 0.97 0.95 0.99
p Beta 0.50 0.20 0.87 0.84 0.78 0.90
w Beta 0.50 0.20 0.79 0.72 0.64 0.81
ag Normal 0.50 0.25 0.54 0.53 0.41 0.66

Normal 4.00 1.50 2.83 4.33 3.06 5.54 3.81
c Normal 1.50 0.38 0.93 0.99 0.85 1.12 1.30

Beta 0.70 0.10 0.79 0.80 0.75 0.84 0.69
w Beta 0.50 0.10 0.64 0.63 0.57 0.69 0.68
l Normal 2.00 0.75 1.46 1.61 0.80 2.35 1.97
p Beta 0.50 0.10 0.60 0.63 0.59 0.67 0.77
w Beta 0.50 0.15 0.59 0.53 0.33 0.71 0.59
p Beta 0.50 0.15 0.18 0.22 0.10 0.34 0.51

Beta 0.50 0.15 0.46 0.38 0.27 0.49 0.62
Normal 1.25 0.13 1.56 1.60 1.50 1.71 1.25

r Normal 1.50 0.25 1.95 1.91 1.58 2.22 1.70
Beta 0.75 0.10 0.84 0.84 0.80 0.88 0.64

ry Normal 0.13 0.05 0.14 0.13 0.07 0.18 0.03
r y Normal 0.13 0.05 0.21 0.19 0.15 0.24 0.15

Gamma 0.63 0.10 0.59 0.61 0.50 0.73 0.57
Gamma 0.25 0.10 0.27 0.26 0.14 0.38 0.25

L Normal 0.00 2.00 1.20 0.92 -0.14 2.00 1.26
Normal 0.40 0.10 0.45 0.43 0.41 0.45 0.45
Normal 0.30 0.05 0.18 0.18 0.16 0.19 0.19

Gain Gamma 0.04 0.03 0.02 0.01 0.01 0.02

a Invgamma 0.10 2.00 0.46 0.47 0.42 0.52
b Invgamma 0.10 2.00 0.26 0.25 0.22 0.28
g Invgamma 0.10 2.00 0.51 0.53 0.48 0.58
I Invgamma 0.10 2.00 0.66 0.61 0.53 0.68
r Invgamma 0.10 2.00 0.23 0.24 0.21 0.26
p Invgamma 0.10 2.00 0.14 0.14 0.12 0.16
w Invgamma 0.10 2.00 0.24 0.23 0.20 0.26________________________________________________________________________________________________________________________________________________________________

Posterior Mode 804.01
Log Data Density (Laplace) -888.99
Log Data Density (Mod.Harm.Mean) -910.97________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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Tabel 6: Regression results for MSV learning with initial beliefs based on a pre-sample
model

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
MSV beliefs - presample initialisation Pre-Sample Belief Model_________________________  ___________________________________  ___________________________________

 Prior distribution Posterior distribution Posterior distribution_________________________ ____________________________________  ___________________________________
Distr. Mean St.Dev. Mode Mean 5 percent 95 percent Mode________________________________________________________________________________________________________________________________________________________________

a Beta 0.50 0.20 0.97 0.97 0.95 0.99 0.87
b Beta 0.50 0.20 0.93 0.94 0.91 0.97 0.97
g Beta 0.50 0.20 0.99 0.99 0.98 1.00 0.88
I Beta 0.50 0.20 0.40 0.44 0.35 0.52 0.47
r Beta 0.50 0.20 0.05 0.07 0.01 0.12 0.31
p Beta 0.50 0.20 0.96 0.96 0.93 0.99 0.52
w Beta 0.50 0.20 0.98 0.97 0.95 0.98 0.46
p Beta 0.50 0.20 0.73 0.65 0.55 0.75 0.42
w Beta 0.50 0.20 0.77 0.71 0.66 0.78 0.51
ag Normal 0.50 0.25 0.57 0.56 0.43 0.70 0.64

Normal 4.00 1.50 3.11 4.61 3.20 6.05 3.62
c Normal 1.50 0.38 1.13 1.04 0.85 1.22 0.94

Beta 0.70 0.10 0.62 0.68 0.64 0.73 0.52
w Beta 0.50 0.10 0.58 0.60 0.54 0.66 0.83
l Normal 2.00 0.75 1.73 1.86 1.14 2.60 1.69
p Beta 0.50 0.10 0.53 0.53 0.46 0.61 0.41
w Beta 0.50 0.15 0.49 0.45 0.29 0.63 0.43
p Beta 0.50 0.15 0.52 0.52 0.34 0.69 0.37

Beta 0.50 0.15 0.45 0.42 0.35 0.48 0.50
Normal 1.25 0.13 1.51 1.48 1.39 1.57 1.58

r Normal 1.50 0.25 1.97 1.97 1.71 2.26 1.30
Beta 0.75 0.10 0.79 0.78 0.74 0.81 0.97

ry Normal 0.13 0.05 0.16 0.16 0.12 0.19 0.15
r y Normal 0.13 0.05 0.26 0.26 0.22 0.30 0.06

Gamma 0.63 0.10 0.46 0.47 0.40 0.55 0.57
Gamma 0.25 0.10 0.20 0.27 0.12 0.39 0.21

L Normal 0.00 2.00 2.59 2.61 2.11 3.13 0.90
Normal 0.40 0.10 0.45 0.45 0.42 0.49 0.58
Normal 0.30 0.05 0.21 0.20 0.19 0.21 0.20

Gain Gamma 0.04 0.03 0.02 0.02 0.02 0.03

a Invgamma 0.10 2.00 0.46 0.48 0.43 0.53 0.59
b Invgamma 0.10 2.00 0.10 0.11 0.09 0.12 0.05
g Invgamma 0.10 2.00 0.52 0.53 0.48 0.58 0.91
I Invgamma 0.10 2.00 0.58 0.56 0.50 0.61 0.81
r Invgamma 0.10 2.00 0.23 0.24 0.21 0.27 0.09
p Invgamma 0.10 2.00 0.20 0.19 0.17 0.21 0.43
w Invgamma 0.10 2.00 0.28 0.27 0.23 0.31 0.35________________________________________________________________________________________________________________________________________________________________

Posterior Mode 830.57
Log Data Density (Laplace) -915.54
Log Data Density (Mod.Harm.Mean) -944.37________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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Table 7: Regression results for VAR learning with model-consistent initialisation of beliefs

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
VAR beliefs - REE initialisation_________________________  ___________________________________

 Prior distribution Posterior distribution_________________________  ___________________________________
Distr. Mean St.Dev. Mode Mean 5 percent 95 percent________________________________________________________________________________________________________________________________________________________________

a Beta 0.50 0.20 0.95 0.95 0.93 0.98
b Beta 0.50 0.20 0.19 0.22 0.08 0.35
g Beta 0.50 0.20 0.99 0.98 0.97 1.00
I Beta 0.50 0.20 0.54 0.54 0.45 0.64
r Beta 0.50 0.20 0.12 0.15 0.05 0.25
p Beta 0.50 0.20 0.91 0.88 0.82 0.95
w Beta 0.50 0.20 0.97 0.95 0.90 0.99
p Beta 0.50 0.20 0.57 0.59 0.41 0.76
w Beta 0.50 0.20 0.88 0.81 0.72 0.91
ag Normal 0.50 0.25 0.51 0.51 0.36 0.67

Normal 4.00 1.50 3.89 4.18 2.63 5.79
c Normal 1.50 0.38 1.37 1.34 1.10 1.59

Beta 0.70 0.10 0.72 0.73 0.65 0.81
w Beta 0.50 0.10 0.74 0.72 0.62 0.82
l Normal 2.00 0.75 2.14 2.03 1.03 3.01
p Beta 0.50 0.10 0.68 0.68 0.60 0.76
w Beta 0.50 0.15 0.61 0.55 0.36 0.75
p Beta 0.50 0.15 0.07 0.14 0.05 0.23

Beta 0.50 0.15 0.46 0.49 0.30 0.66
Normal 1.25 0.13 1.64 1.63 1.50 1.76

r Normal 1.50 0.25 1.95 1.98 1.68 2.29
Beta 0.75 0.10 0.82 0.81 0.77 0.86

ry Normal 0.13 0.05 0.09 0.09 0.05 0.12
r y Normal 0.13 0.05 0.22 0.22 0.17 0.25

Gamma 0.63 0.10 0.76 0.79 0.60 0.95
Gamma 0.25 0.10 0.15 0.16 0.07 0.25

L Normal 0.00 2.00 0.47 0.33 -1.40 2.23
Normal 0.40 0.10 0.42 0.42 0.39 0.45
Normal 0.30 0.05 0.18 0.19 0.16 0.22

Gain Gamma 0.035 0.030 0.001 0.002 0.000 0.004

a Invgamma 0.10 2.00 0.45 0.46 0.41 0.50
b Invgamma 0.10 2.00 0.28 0.29 0.26 0.32
g Invgamma 0.10 2.00 0.52 0.53 0.48 0.58
I Invgamma 0.10 2.00 0.90 0.92 0.83 1.00
r Invgamma 0.10 2.00 0.24 0.25 0.22 0.27
p Invgamma 0.10 2.00 0.06 0.08 0.06 0.11
w Invgamma 0.10 2.00 0.28 0.28 0.25 0.31________________________________________________________________________________________________________________________________________________________________

Posterior Mode 834.61
Log Data Density (Laplace) -921.74
Log Data Density (Mod.Harm.Mean) -921.65________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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Table 8:  Regression results for VAR learning with optimised initial beliefs

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
VAR beliefs - Optimised initialisation Initial Belief Model_________________________  ___________________________________  ___________________________________

 Prior distribution Posterior distribution Posterior distribution_________________________ ____________________________________ ____________________________________
Distr. Mean St.Dev. Mode Mean 5 percent 95 percent Mode________________________________________________________________________________________________________________________________________________________________

a Beta 0.50 0.20 0.96 0.95 0.92 0.99
b Beta 0.50 0.20 0.12 0.14 0.04 0.25
g Beta 0.50 0.20 0.97 0.97 0.95 0.99
I Beta 0.50 0.20 0.56 0.55 0.44 0.65
r Beta 0.50 0.20 0.12 0.16 0.04 0.26
p Beta 0.50 0.20 0.95 0.93 0.88 0.98
w Beta 0.50 0.20 0.88 0.80 0.62 0.97
p Beta 0.50 0.20 0.57 0.59 0.45 0.75
w Beta 0.50 0.20 0.67 0.58 0.38 0.80
ag Normal 0.50 0.25 0.52 0.52 0.36 0.68

Normal 4.00 1.50 3.39 3.74 2.37 5.09 3.02
c Normal 1.50 0.38 1.01 1.06 0.77 1.33 1.14

Beta 0.70 0.10 0.74 0.74 0.64 0.83 0.73
w Beta 0.50 0.10 0.71 0.73 0.65 0.81 0.57
l Normal 2.00 0.75 2.33 2.31 1.26 3.30 1.44
p Beta 0.50 0.10 0.62 0.62 0.55 0.69 0.62
w Beta 0.50 0.15 0.57 0.53 0.35 0.73 0.43
p Beta 0.50 0.15 0.07 0.10 0.03 0.16 0.26

Beta 0.50 0.15 0.50 0.49 0.27 0.69 0.40
Normal 1.25 0.13 1.58 1.59 1.45 1.72 1.37

r Normal 1.50 0.25 1.85 1.84 1.53 2.15 1.70
Beta 0.75 0.10 0.85 0.86 0.82 0.90 0.57

ry Normal 0.13 0.05 0.12 0.12 0.06 0.17 0.04
r y Normal 0.13 0.05 0.20 0.20 0.16 0.25 0.17

Gamma 0.63 0.10 0.74 0.75 0.58 0.94 0.74
Gamma 0.25 0.10 0.19 0.21 0.10 0.32 0.21

L Normal 0.00 2.00 -0.60 -0.54 -2.05 0.81 -0.49
Normal 0.40 0.10 0.42 0.42 0.40 0.44 0.42
Normal 0.30 0.05 0.17 0.18 0.15 0.21 0.26

Gain Gamma 0.035 0.030 0.001 0.002 0.001 0.003

a Invgamma 0.10 2.00 0.46 0.47 0.42 0.51
b Invgamma 0.10 2.00 0.27 0.27 0.24 0.30
g Invgamma 0.10 2.00 0.52 0.53 0.48 0.57
I Invgamma 0.10 2.00 0.91 0.93 0.84 1.02
r Invgamma 0.10 2.00 0.23 0.23 0.21 0.26
p Invgamma 0.10 2.00 0.06 0.07 0.05 0.08
w Invgamma 0.10 2.00 0.29 0.29 0.26 0.32________________________________________________________________________________________________________________________________________________________________

Posterior Mode 821.12
Log Data Density (Laplace) -903.91
Log Data Density (Mod.Harm.Mean) -904.29________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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Table 9:  Regression results for VAR learning with initial beliefs based on a pre-sample
model

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
VAR beliefs - Pre-sample initialisation Initial Belief Model_________________________  ___________________________________  ___________________________________

 Prior distribution Posterior distribution Posterior distribution_________________________ ____________________________________ ____________________________________
Distr. Mean St.Dev. Mode Mean 5 percent 95 percent Mode________________________________________________________________________________________________________________________________________________________________

a Beta 0.50 0.20 0.97 0.96 0.93 0.99 0.87
b Beta 0.50 0.20 0.21 0.22 0.09 0.34 0.97
g Beta 0.50 0.20 0.99 0.99 0.99 1.00 0.88
I Beta 0.50 0.20 0.65 0.66 0.56 0.77 0.47
r Beta 0.50 0.20 0.11 0.14 0.04 0.24 0.31
p Beta 0.50 0.20 0.93 0.89 0.80 0.97 0.52
w Beta 0.50 0.20 0.68 0.70 0.52 0.91 0.46
p Beta 0.50 0.20 0.68 0.64 0.50 0.79 0.42
w Beta 0.50 0.20 0.49 0.49 0.24 0.72 0.51
ag Normal 0.50 0.25 0.54 0.53 0.38 0.68 0.64

Normal 4.00 1.50 4.25 4.64 3.13 6.18 3.62
c Normal 1.50 0.38 1.06 1.11 0.88 1.34 0.94

Beta 0.70 0.10 0.79 0.78 0.72 0.84 0.52
w Beta 0.50 0.10 0.75 0.75 0.69 0.82 0.83
l Normal 2.00 0.75 2.62 2.55 1.58 3.50 1.69
p Beta 0.50 0.10 0.61 0.63 0.51 0.74 0.41
w Beta 0.50 0.15 0.47 0.47 0.29 0.66 0.43
p Beta 0.50 0.15 0.57 0.59 0.40 0.80 0.37

Beta 0.50 0.15 0.51 0.49 0.29 0.69 0.50
Normal 1.25 0.13 1.57 1.57 1.44 1.71 1.58

r Normal 1.50 0.25 1.78 1.75 1.43 2.08 1.30
Beta 0.75 0.10 0.87 0.87 0.84 0.91 0.97

ry Normal 0.13 0.05 0.13 0.13 0.07 0.19 0.15
r y Normal 0.13 0.05 0.20 0.20 0.16 0.24 0.06

Gamma 0.63 0.10 0.70 0.75 0.56 0.93 0.57
Gamma 0.25 0.10 0.18 0.21 0.09 0.34 0.21

L Normal 0.00 2.00 0.44 0.69 -0.70 2.14 0.90
Normal 0.40 0.10 0.44 0.43 0.40 0.47 0.58
Normal 0.30 0.05 0.18 0.18 0.15 0.21 0.20

Gain Gamma 0.035 0.030 0.016 0.017 0.012 0.022

a Invgamma 0.10 2.00 0.46 0.46 0.41 0.51 0.59
b Invgamma 0.10 2.00 0.29 0.29 0.26 0.32 0.05
g Invgamma 0.10 2.00 0.52 0.53 0.48 0.58 0.91
I Invgamma 0.10 2.00 0.95 0.97 0.88 1.07 0.81
r Invgamma 0.10 2.00 0.23 0.24 0.21 0.26 0.09
p Invgamma 0.10 2.00 0.20 0.20 0.18 0.23 0.43
w Invgamma 0.10 2.00 0.29 0.30 0.27 0.33 0.35________________________________________________________________________________________________________________________________________________________________

Posterior Mode 859.07
Log Data Density (Laplace) -946.19
Log Data Density (Mod.Harm.Mean) -938.17________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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Figure 1: IRF of a monetary policy and a productivity shock on inflation: DSGE versus
DSGE-VAR
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Grey line: the benchmark DSGE-VAR IRF (mode in bold and 90% interval).
Black line: the REE-DSGE IRF.
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Figure 2a: Simulation profile for MSV learning with different gains:
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Table 2b: Simulation profile for VAR learning and different gains:
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Figure 3a : IRF for a  monetary policy and a productivity shock on output and inflation: MSV
learning for different initial beliefs (gain=.02)
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Gray line : IRF for different initial beliefs based on draws from the estimated posterior distribution of the REE model (median
and 10-90% deciles)
Black line: median for the DSGE-REE model.
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Figure 3b : IRF for a  monetary policy and a productivity shock on output and inflation: VAR
learning for different initial beliefs (gain=.02)
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Gray line : IRF for different initial beliefs based on draws from the estimated posterior distribution of the REE model (median
and 10-90% deciles)
Black line: median for the DSGE-REE model.
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Figure 4: Differences in the reaction of realised and expected inflation following a monetary
policy shock under RE and learning
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Figure 5: Simulated belief coefficients under different learning mechanisms: coefficient of
lagged inflation in the inflation belief regression (starting from the beliefs of the REE model,
and gain=0.01)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

100 200 300 400 500 600 700 800 900 1000

REE MSV MSV+cte VAR

59



Figure 6: Relation between logarithm of non-escape probability and first escape time
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Simulations with MSV+cte learning and gain = 0.03. A large deviation is defined as a realisation where a state vector
variable takes on a value that exceeds four times the standard deviations (observed in the REE) away from the steady state.
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Figure 7: Impulse Response Functions for the MSV model with optimised initial beliefs
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Figure 8: Impulse Response Functions for the MSV model with pre-sample based initial
beliefs
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Figure 9: Impulse Response Functions for the VAR beliefs with model consistent initial
beliefs
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Figure 10: Impulse Response Functions for the VAR beliefs with optimised initial beliefs
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Figure 11: Impulse Response Functions for the VAR beliefs with pre-sample based initial
beliefs
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