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Abstract 
 
I show that in a private value multi-unit uniform-price auction, the reservation price 
increases both the efficiency and revenue. In equilibrium the difference between the true 
value of a unit and the submitted bid (shading) is different for each unit; therefore, the 
seller cannot allocate units efficiently, i.e., to those who value them the most. When the 
seller increases the reservation price, the bidders increase their bids on the units with 
greater shading. Then more often the units are allocated among those who have higher 
values for them, that is, efficient, although some bidders with a low value do not 
participate in the auction. In contrast to some other auction formats, for a low range of 
reservation prices, the higher the reservation price, the higher is both the expected 
efficiency and revenue. 
 

Abstrakt 
 
Studie ukuzuje, že zvýšení minimální přijímané ceny pro účastníky více-objektové 
aukce s jednotnou cenou zvýší jak očekávaný výnos z aukce, tak efektivitu alokace 
prodávaných jednotek. Když účastníci používají rovnovážné strategie, tak v této aukci 
podávají objednávky, které jsou nižší než má je hodnota jednotky pro účastníka aukce. 
Navíc, protože je toto snížení různé pro jednotlivé jednotky, prodávající nemůže 
prodávané jednotky prodat efektivně – těm, pro něž je hodnota jednotek nejvyšší. Když 
prodávající zvýší minimální pijímanou cenu, účastníci aukce zvýší objednávky na 
jednotky, kde je snížení objednávky oproti honotě jednotky nejvyšší. Potom se 
prodávané jednotky častěji prodají těm účastníkům, kteří mají pro jednotky vyšší 
hodnotu, což je efektivnější, ačkoliv někteří účastníci s nízkou hodnotou pro jednotky se 
nezúčastní aukce. Oproti některým jiným aukčním prodejním způsobům, pokud je 
minimální přijímaná ceny v intervalu malých hodnot, tak v této aukci s jednotnou cenou 
platí, že čím vyšší je minimální přijímaná cena, tím vyšší je jak očekávaný výnos, tak 
efektivita alokace jednotek. 
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1. INTRODUCTION

An auction is an exchange mechanism with asymmetric information. It

can be treated as a game in which the seller offers one or more units (of

the same type) to the participants. The seller does not know the bidder’s

value of any particular unit, but he can set up an explicit set of institutional

rules determining resource allocation and prices on the basis of bids from the

auction participants. In Vickrey auctions (Vickrey (1961)) bidders reveal the

true valuation of each unit and the final allocation is efficient. Krishna (2002)

formulates conditions when the equilibrium in a multi-unit auction is efficient.

However, the equilibrium strategies in a multi-unit uniform-price auction do

not satisfy this condition (see Morgan (2001)).

This paper analyzes efficiency in a multi-unit auction with a positive reser-

vation price. The effect of reservation prices on a multi-unit auction is difficult

to assess in general (see Zheng (2008)). I demonstrate that the reservation

price is an important policy tool that may increase efficiency (or welfare) in

multi-unit uniform-price auctions. I show that the higher the reservation price

is, the higher is the seller’s revenue and the higher is the efficiency of a final

allocation of units that could be attained in a multi-unit uniform-price auction.

The only main important prerequisite of this result is that the reservation price

increases the bidder’s equilibrium strategy in a specific way that is inherent

to the uniform-price auction. Thus the reservation price effect on efficiency

is in contrast to other auction formats; e.g., the reservation price decreases

efficiency in the Vickrey auction and single-unit auctions with symmetric bid-

ders. Therefore it can be added to the list of results from mechanism design

and auction theory that fail to extend the single-unit/single-dimensional con-

text to the multi-unit/multi-dimensional one, e.g., Armstrong (1996), Perry

and Reny (1999), and Levin (2004).

For a benchmark of an auction game I follow the model with symmetric
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risk-neutral bidders who have independent-private values when the payment

is a function of bids alone as suggested by McAfee and McMillan (1987). The

only additional assumptions are that the seller offers more than one unit for

sale and the bidders demand two units that I call “initial” and “subsequent.”

This model has been analyzed in Engelbrecht-Wiggans and Kahn (1998a).

They show basic features of equilibrium strategies. I focus on the difference

between the bidder’s true value and the submitted bid which is called “shad-

ing” or “demand reduction” in the literature. In a uniform-price auction with

no reservation price, a different shading in strategies on initial and subsequent

units is present and prevents the seller from reaching a Pareto-efficient dis-

tribution of units. I show that when the seller sets some specific (optimal)

reservation price, the difference in shading on the initial and subsequent unit

decreases, which can prevent some inefficient allocations of units, and, more-

over, the seller gains higher revenue.

For illustration, imagine two bidders in an auction with 2 units for sale with

zero reservation price. Each bidder has two values v1,v2 and v
′
1, v

′
2 and submits

b1, b2 and b
′
1, b

′
2 for the two units the seller offers. If the values are such that

v′1 > v
′
2 > v1 > v2, then it is efficient if the first bidder wins both units. But

in many cases equilibrium strategic behavior forces the bidders to submit bids

with the ordering b′1 > b1 > b
′
2 > b2. If the seller increases the reservation price

above v1, the second bidder does not submit a bid above the reservation price,

and the first bidder wins both units, which is an efficient outcome.1 At the

same time revenue typically increases. This reasoning is valid for the multi-unit

uniform-price and to some extent for other multi-unit auctions if b1 > b
′
2 when

v1 < v
′
2. On the other hand, setting the reservation price too high introduces

inefficiency when the supply is greater than the number of submitted bids (e.g.,

1Throughout the text, the words “above” and “below” mean strictly above and strictly

below.
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v′1 > R > v
′
2 > v1 > v2). In summary, the seller faces a trade off between these

two sources of inefficiency and the total effect is ambiguous. In this paper I

show that the expected efficiency typically increases when the seller increases

the reservation price above 0 in the uniform-price auction.

I develop a model for a uniform-price auction when each bidder submits

two bids, but it is intuitive that a similar effect is present when each bidder

submits more bids. Moreover, a similar trade off is likely to be present in

other auction formats (e.g., pay-your-bid) when the higher reservation price

decreases shading difference across initial and subsequent units. These two

properties are present in the model of this paper, but it is a question of future

research to check these two properties formally for other multi-unit auctions.

In addition, the results of this paper also contribute to the literature on

efficient multi-unit auction design. Krishna (2002, Proposition 13.3.) argues

that equilibrium strategies cannot be efficient if a shading difference across

units is present. The seller who uses submitted bid ordering to allocate units

cannot attain efficient allocations when bidders use different shading across

initial and subsequent units. This paper, additionally, confirms that any means

that decreases shading differences can improve efficiency of the final allocation.

The reservation price is an example of such a mean in a multi-unit uniform-

price auction when the number of bidders is small.

The paper is organized as follows. At first I discuss the relationship of

this paper to other studies. Then, in the next section, I develop a model of a

uniform-price auction for n bidders, k units of supply, and a reservation price

R. I also derive expressions for the expected efficiency measures. In the rest

of the paper, I disentangle two sources of inefficiency, show the general condi-

tions when the optimal reservation price that maximizes efficiency is positive,

and demonstrate this main contribution of the paper with a simple example.

Finally, I conclude the paper.
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2. RELATION TO THE LITERATURE

Even in early studies (e.g. Back and Zender (1993)) the authors argued

that standard features of single-unit auctions cannot be easily extended to

multi-unit environments. To design an efficient multi-unit auction is a difficult

task, in general (see Zheng (2008) for a recent survey). In a common-value

context, Dasgupta and Maskin (2000), Perry and Reny (2002) and Perry and

Reny (2005) show how to a design an efficient auctions when values are interre-

lated, but only in a limited case when each bidder receives a single-dimensional

signal only. Jehiel and Moldovanu (2001) and Dasgupta and Maskin (2000)

show that efficiency is not attainable when values are interrelated and each

bidder’s information signal is multi-dimensional. For another detailed survey

see Klemperer (2000).

In a private-value multi-unit auction context, Ausubel and Cramton (1996)

emphasize that a uniform-price sealed-bid auction is not efficient unless the bid-

der’s value of each unit is the same. The Vickrey sealed bid-auction (Vickrey

(1961) and its dynamic counterpart (see Ausubel (2004)) are efficient. Finally,

Krishna (2002, Proposition 13.3.) argues that in any private-value multi-unit

auction “... equilibrium can be efficient if and only if bidding strategies are

separable and symmetric across both bidders and objects.”2 Therefore it seems

that the Vickrey multi-unit auction is the only sealed bid multi-unit efficient

auction in this context, but it is not often used in real life for various reasons

that were discussed in Morgan (2001). He also provides examples to compare

essential intuitive differences between multi-unit Vickrey and uniform-price

auctions both in private-value and common-value contexts. Some of the papers

mentioned above show that the uniform-price auction with multi-dimensional

2Krishna (2002) uses the term “symmetry in strategies across objects” to mean “absence

of the diference in shading across units” in my terminolgy. But I use the term symmetric

strategies to mean the “symmetry in strategies across bidders only” excluding “symmetry

in strategies across objects” to simplify the terminology of this paper.
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signals is not efficient even in a simple private value context.

From this point of view, this paper takes a completely different route to

analyze the optimal multi-unit auction design that is not as general but goes

further beyond the results of the existing literature including all the papers

mentioned above. The essential message of this paper is the suggestion that

a positive reservation price increases the seller’s revenue and increases the ef-

ficiency when the signals are multi-dimensional. It shows not only that one

cannot design a uniform-price multi-unit auction efficiently, but it also clearly

explains where is the efficiency lost and how to improve the efficiency, although

zero efficiency loss is not fully attained. Moreover, numerous studies includ-

ing Ausubel and Cramton (1996), Engelbrecht-Wiggans and Kahn (1998a),

Krishna (2002), Menezes and Monteiro (2005) and Zheng (2008) discuss the

so-called demand reduction effect or shading present in a multi-unit uniform-

price auction. This effect claims that the seller may often collect zero revenue

when bidders use equilibrium strategies in the uniform-price auction, and it is

considered to be the main drawback of this auction. The demand reduction

effect is also present in Engelbrecht-Wiggans and Kahn (1998a), who derive

essential features of equilibrium strategies that I use as a benchmark model.

It is not difficult to argue that setting a positive reservation price is an impor-

tant policy tool that operates against the “demand reduction” effect; i.e., the

higher the reservation price is, the higher the seller’s revenue is (see e.g., Back

and Zender (1993)). An important contribution of this paper is that increasing

the reservation price above zero not only diminishes the demand reduction and

increases the seller’s revenue but, in addition, also improves efficiency, which

has not been pointed out in the literature yet.

Jehiel and Moldovanu (2001a) use a simplified model of the private-value

uniform-price auction with only two bidders to argue that the seller, who

sells the units in bundles, collects more revenue than in an efficient auction.
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They, therefore, conjecture that bundling cannot be efficient because the seller

collects too much revenue. In my paper no bundling occurs, and one can

informally conjecture that in a multi-unit private-value uniform-price auction

the seller who sets a zero reservation price collects not enough revenue to be

efficient. Therefore, after increasing the reservation price the seller collects

more revenue and efficiency improves.

The effect of the reservation price on efficiency is less and less significant

as the number of bidders is larger and larger. It is intuitive if one realizes that

the reservation price can be treated as an additional submitted bid by the

seller (see Jackson and Swinkels (2005)). Moreover, it is in accordance with

the result by Swinkels (2001, section 5.2 and 5.3) who shows that the uniform-

price auction is asymptotically efficient as the number of bidders approaches

infinity. The same reasoning is valid for the model of this paper. Therefore,

the inefficiency improvement caused by the change in the reservation price

change decreases as the number of bidders approaches infinity.

Unfortunately, the result of this paper cannot be proved for any distribution

of values (see the discussion of conditions in section 4 and Appendix). On

the other hand, the effect of the positive reservation price on efficiency is

present whenever the “demand reduction” called “pooling of bids at zero” in

Engelbrecht-Wiggans and Kahn (1998a) is present in the auction and at the

same time the reservation price increases the subsequent strategy for a given

subsequent value. To ensure that the increase of the reservation price increases

the bidder’s subsequent strategy is intuitive and sufficient conditions on the

distribution of bidder’s values are provided.
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Figure 1: The effect of reservation price on bidding strategies. Dark shaded

area represents the integration range inMLoss formula below when the reser-

vation price is positive.

0 v̄0 v′2 v′1 v2 v1 v̄1 = v̄2

b2(v
′
2, 0)

b2(v2, 0)
b2(v

′
2, R)
R

b1(v
′
1, 0) = b1(v

′
1, R)

b2(v2, R)

b1(v1, 0) = b1(v1, R)

b1(·, ·)

b2(·, R) b2(·, 0)

In symmetric single-unit private value auctions, a revenue maximizing seller

sets the reservation price above the seller’s value, but it has negative effect on

efficiency (McAfee and McMillan (1987)). It is also supported by Menezes

and Monteiro (2005) and Krishna (2002)). In a multi-unit auction context the

later two studies, in addition, show that a uniform-price auction format gives

a bidder the incentive to reduce his subsequent bid in order to pay less for

the initial unit. This introduces inefficiency and revenue loses when the seller

sets the reservation price to zero because the bidders bid the true value on the

initial unit.

Therefore the seller who sets a positive reservation price offsets this ineffi-
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ciency that is inherent in the uniform-price auction. The positive reservation

price has a significant effect on the efficiency of multi-unit auctions. The effect

of the reservation price on efficiency is not the same for all multi-unit auction

formats. When the equilibrium difference in strategic shading on the initial

and subsequent units is not significant (e.g., in a Vickrey auction there is no

difference in shading), then any positive reservation price decreases efficiency.

Similarly to Jehiel and Moldovanu (2001a) I split sources of inefficiency

between the misallocation effect and supply restriction effect that I denote as

MLoss and ULoss, respectively, in Section 4. If the seller sets a positive reser-

vation price, then shading diminishes because each bidder strictly increases his

subsequent bid (see Figure 1) for any given subsequent value. Therefore, the

difference in shading across the initial and subsequent unit decreases (cf. the

dark area and the same area with the light shaded area added). Figure 1 il-

lustrates that the smaller the shaded area is, the smaller is the misallocation

inefficiency that I call MLoss. Note that if the shaded area fully disappears,

then the MLoss is zero and the necessary conditions for efficient multi-unit

auction provided by Krishna (2002) are valid. In other words, one can con-

sider the shaded area as a kind of measure closely related to misallocation

inefficiency. This source of inefficiency is diminished by the reservation price.

On the other hand, the positive reservation price increases the ULoss because

the bidders bid below the reservation price for their low values. In short, an es-

sential prerequisite for the effect studied in this paper is that each bidder bids

fairly below his value for some but not all units (Morgan (2005, p. 815)). A

question for future research is to what extent the same occurs for other auction

formats and under what conditions. Moreover, in some cases, the seller can

improve efficiency even more when setting different reservation prices for ini-

tial and subsequent units (a reservation price schedule) or relaxing the number

of submitted bids that each bidder can submits.
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In single-unit auctions, the reservation price decreases efficiency (McAfee

and McMillan (1987)). Swinkels (1999, pp. 509-510) noticed that multi-unit

demands introduce difference in shading across units which he calls endoge-

nous asymmetry. Comparisons of the uniform-price and pay-your-bid auctions

are difficult (cf. Katzman (1999)). Ausubel and Cramton (1996) show that

the efficiency ranking of pay-your-bid and the uniform-price is ambiguous. Le-

brun and Trimblay (2003) show that bidders submit a more aggressive bid

on the subsequent unit in the pay-your-bid auction. The shape of the equi-

librium strategy in uniform-price and pay-your-bid auctions (see Engelbrecht-

Wiggans and Kahn (1998a), McAdams (2006) and Engelbrecht-Wiggans and

Kahn (1998b)) suggests that the difference in shading on each unit is greater

in the uniform-price auction format. Therefore it seems that the uniform-

price auction outcome is more sensitive to the proper reservation price setting

than the pay-your-bid auction. The reason for this is that in the pay-your-bid

auction the subsequent bid influences the price of all previous units in the

uniform-price auction and, therefore, the bidders have an incentive to shade

their values more than in the pay-your-bid auction. This intuition is supported

by the case when the reservation price is 0 because in the uniform-price auc-

tion the bidders bid 0 for the low range of values but not in the pay-your-bid

auction (see Engelbrecht-Wiggans and Kahn (1998b)). The proper reservation

price setting requires more information gathering and strategic considerations

from the seller to design the auction.

3. THE MODEL OF THE UNIFORM-PRICE SEALED BID

AUCTION

I describe a model of multi-unit auctions with risk-neutral bidders having

continuous distributions of private values similarly as in Engelbrecht-Wiggans
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and Kahn (1998a), and Noussair (1995).3 Let us consider a seller who plans to

sell k (k ≥ 2) identical units to n (n ≥ 1) bidders each of whom submits two

bids. I assume that bidders are symmetric and omit the bidder’s index i unless

needed for clarity. Each bidder observes private information v = [v1, v2] which

is the initial and subsequent value of the unit the bidder can win. Moreover,

the subsequent value is less than or equal to the initial value for each bidder,

i.e., v1 ≥ v2.
4

Let G (v1, v2) , which has support on interval V = [0, v̄1]×[0, v̄2] , denote the

probability distribution function of the private values v1 and v2 where v̄1 and

v̄2 are the upper boundaries of the support.
5 I denote the marginal distribution

of initial and subsequent units as G1 (v1) and G2 (v2) , and their densities as

g1 (v1) and g2 (v2) .

The Game. Before the auction the seller announces the number of units

for sale and a reservation price R ∈ [0,∞). Each bidder submits two sealed

finite bids b1, b2 ∈ [0,∞) , that are denoted as b. If more than k bids are

submitted above the reservation price R, then the seller chooses the k highest

bids that win a unit in the auction. A tie occurs when the kth and k + 1st

highest bids are equal and the seller breaks such a tie randomly.6,7 The auction

price that each bidder pays for winning each unit is equal to k + 1st highest

bid. If less than k + 1 bids are submitted above or equal to the reservation

price R, then each of them wins a unit and pays the price R.

3A similar model was used by Noussair (1995), and Engelbrecht-Wiggans and Kahn

(1998a).
4If not, assume that the bidder orders the values for units without loss of generality.
5Symbol × means the Cartesian product. Note that v̄1 ≥ v̄2.
6A specific rule for breaking ties is not important. It is known that with "reasonable"

tie-breaking rules no ties occur in equilibrium. See Jackson and Swinkels (2005) and Bresky

(2008a) for details.
7The definition of the tie allows other bids to be tied with the kth and k + 1st highest

bids.

11



A bidder’s ex post payoff depends on the number of units he wins, J ,

the realization of his values, v, his bids, b, his opponent’s bids, b−, and the

reservation price, R,

π (v, b, b−, R) =
J∑

j=1

(vj − p (b, b−, R)) , (3.1)

where p (b, b−, R) is the uniform auction price paid for winning each unit.

Since the seller orders bids after submission, I assume without loss of gen-

erality that each bidder submits ordered bids b1 ≥ b2. I denote the set of

all these bid pairs as B. A pure strategy is a list of submitted bids based on

the observed information that bidder i knows before the auction, including

his private values, the reservation price, the distribution of all bidder values,

the number of units for sale, and the number of opponents. For the sake of

simplicity I will write the pure strategy as a function of private values only.

Then the pure strategy is a mapping b (·) : V → B (b(v) = [b1 (v) , b2 (v)]) such

that b1 (·) , and b2 (·) are measurable.

When opponents use strategies b− (·), then the ex ante pointwise payoff to

the bidder, whose values are v and who bids b, is

π (v, b|b− (·)) = E (π (v, b, b−, R)) . (3.2)

The expectations are taken over opponent values v−. The probability measure

of π (v, b, b−, R) is induced by the opponent strategies b− (·) and the random

tie-breaking rule if a tie occurs with positive probability. The detailed formula

is in Bresky (2008b), or Engelbrecht-Wiggans and Kahn (1998a). I use the

word payoff to mean the ex ante payoff when no confusion arises.

The bidder maximizes his payoff from a strategy b (·)

max
b(·)
E (π (v, b|b− (·))) , (3.3)

where the expectations are taken over v which induces the probability measure

of π (v, b|b− (·)) .
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Engelbrecht-Wiggans and Kahn (1998a) use and discuss mild conditions

on the distribution of values to guarantee the equilibrium strategies are “well-

behaved” (cf. Menezes and Monteiro (2005), Theorem 24)). To simplify the

analysis I will focus our attention on the perfect equilibria only. They were de-

fined and analyzed in Engelbrecht-Wiggans and Kahn (1998a).8,9 Throughout

the rest of the paper I take the liberty to use the result shown in Engelbrecht-

Wiggans and Kahn (1998a, section 3) on the shape of symmetric equilibrium

strategies. The strategies are depicted in Figure 1. For k = 3, · · · , 2 · n − 1,

I will assume that in symmetric equilibrium a bidder reveals his initial value

in the initial bid and the subsequent bid is an increasing function in reserva-

tion price R and value v2 and up to the range of values from [R, v̄0) when the

number of bidders is at least as high as the number of units.

b1 (v1, v2, R) = v1 for v1 ∈ [0, v̄1] , and

b2 (v1, v2, R) =






v2

R

b2 (v2, R)

for v2 ∈ [0, R)

for v2 ∈ [R, v̄0)

for v2 ∈ [v̄0, v̄2]

for some v̄0 ∈ [R, v̄2] ,(3.4)

where b2 (v2, R) is increasing in v2 and R and

v̄0 = 0 if R > 0 or 2n− 1 ≥ k.

The conditions A and B in the appendix derived in Engelbrecht-Wiggans

8For n = k ≥ 2 and R = 0 consider the following equilibrium without perfection

b1 (v1, v2, R) = v̄1 and b2 (v1, v2, R) = 0 (see explanation in Swinkels, Jeroen (2001, 5.1)

and Blume, Heidhues, Lafky, Münster, and Zhang (2009)). When taking this equilibrium

into account Theorem 4 below is valid with a stronger effect, but the notation and proofs of

Theorem 3 and 4 are more complicated.
9McAdams (2006) shows that every equilibrium strategy (pure or mixed) are equivalent

with pure weakly increasing ones in terms of the bidder’s and seller’s payoff, allocation

of units and distribution of bids. This result provides a justifiction for focusing on pure

equilibria.
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and Kahn (1998a) are sufficient to guarantee that the equilibrium strategies

have the form (3.4). One can easily check that the features of equilibrium

strategies remain the same even when the seller sets a positive reservation

price R.10 The intuition is that the reservation price can be considered as

additional bids of an additional bidder that does not affect qualitatively the

essential features of the strategies.

For illustration I will just argue that v̄0 = 0 when R > 0. By the way of

contradiction, assume that v̄0 ∈ (0, v̄2) and R > 0 and all bidders follow the

strategy (3.4). Consider the two bidders with subsequent value from [R, v̄0)

who bids R and assume that exactly k − 3 opponent bids of the other n − 2

opponent bidders are aboveR, which obviously occurs with positive probability

by condition A and the fact that bidders bid at or below their values in perfect

equilibrium. Then these k − 3 opponent bids are winning units, and the two

bidders initial bids are also winning a unit. Hence, the two subsequent bids

of the two bidders who bids R compete for one remaining unit. Therefore if

one of the two bidders increases his subsequent bid to R + ε, then he wins

surely in this situation, his payoff increases by a jump. Such a change in

subsequent bid can increase the price the bidder pays for his initial unit when

his subsequent bid is the first rejected bid. But the price increase can be made

arbitrarily small if ε is sufficiently close to 0. Therefore such a bidder is better

off when bidding R + ε insead of R which is a contradiction with equilibrium

best response. One can check that the arguments follow the same steps as in

Engelbrecht-Wiggans and Kahn (1998a, proof of Theorem 3.1).

The condition B is sufficient for v̄0 > 0 when R = 0 and k ≥ 3. The

condition C in the appendix is my additional assumption sufficient for the

symmetric equilibrium strategies b2 (v2, ·) to be increasing in R and continuous

in v2 for values v2 above R. Then the multi-unit auction poses equilibria for

10See Bresky (2008b) for details if necessary.
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which the final Theorem 4 is applicable. All the conditions A, B and C are

sufficient but not necessary in general, and I discuss them later.

For k = 2 the shape of equilibrium strategies can be more rich and I will

not analyze this case in general. In Example 2 below I show that the main

idea works even in this case when the distribution of values is uniform and the

demand reduction is present and the reservation price diminishes the demand

reduction. Now let me illustrate the equilibrium strategies of this game when

k = 2.

Example 1. Suppose two units are auctioned, both of the two bidders’ initial

and subsequent values (v1, v2) are uniformly distributed on {v|v̄ ≥ v1 ≥ v2 ≥ 0}

where v̄ = v̄1 = v̄2 is the upper boundary of the value support.11 Then it can

be verified that the following is a symmetric Nash equilibrium strategy12

b1 (v1, v2, R) = v1 and b2 (v1, v2, R) =





R if v2 > R

0 if v2 ≤ R
. (3.5)

I will assume that the seller does not assign any value for the units. The

seller can maximize revenue, efficiency, or a mixture of both. Let me denote

K as the number of bids greater than or equal to R. Then the seller’s revenue

Rev is

Rev(R) =





k · c if k < K

K ·R if k ≥ K
, (3.6)

where c is the k + 1st highest submitted bid.

11The density function is g (v1, v2) =
2
v̄2
if v̄ ≥ v1 ≥ v2 ≥ 0 and otherwise g (v1, v2) = 0.

Each bidder’s values are minimum and maximum of two independent draws from a uniform

distribution on the interval [0, v̄] .
12The first-order condition implies that 2b2(v2−b2) = 2v̄v2−v

2
2−b

2
2. It cannot be satisfied

for any b2 ∈ [R, v2] ⊆ (0, v̄). This often occurs in this multi-unit auction by Engelbrecht-

Wiggans and Kahn (1998a, Section 4 and Example 1).
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If the seller allocates all k units to those who value them the most, then

the total welfare that could be (potentially) distributed among all bidders is

PW =
k∑

j=1

wj, (3.7)

where wj is the jth highest value of all bidders’ initial and subsequent values.

But in an auction the seller allocates units according to submitted bids. As

the bidders do not necessarily reveal the true value in their subsequent bids,

the auction welfare that is distributed among all bidders is

AW =

min(k,K)∑

j=1

Wj, (3.8)

where K denotes the number of accepted bids andWj is the value correspond-

ing to the jth highest bid of all bidder’s initial and subsequent bids. In other

words, the values W1, . . . ,Wmin(k,K) are the winning values in the auction.

I introduce the following measure of expected efficiency (cf. with Palfrey

(1983), and Alsemgeest, Noussair and Olson (1998)) defined as13

W (R) =
E (AW )

E (PW )
=
E
(∑min(k,K)

j=1 Wj

)

E
(∑k

j=1wj

) . (3.9)

The expected efficiency loss in the auction I define as

Loss(R) = E (PW )−E (AW ) = E

(
k∑

j=1

wj

)

− E




min(k,K)∑

j=1

Wj



 . (3.10)

AW is a function of bidder’s strategies, and therefore efficiency and loss

also depend on the reservation price R.

13An alternative measure of efficiency is Eff(R) = E
(∑min(k,K)

j=1 Wj/
∑k
j=1wj

)
. Note

that Theorem 4, the final one, is valid even using this measure (cf. Swinkels (1999)).
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Lemma 1. The seller who maximizes the mean value of all bidder utility (3.8),

maximizes the expected auction efficiency or minimizes expected loss (3.10),

chooses the same optimal reservation price R.

arg max
0≤R≤v̄

E (AW ) = arg max
0≤R≤v̄

W (R) = arg min
0≤R≤v̄

Loss (R) . (3.11)

Let us assume a seller is somehow able to transfer the auction revenue

among bidders in a lump-sum way. Intuition would explain that the seller is

the government selling state property (e.g., radio frequency licenses or T-bills).

The government’s main goal should be not only to maximize the revenue or

minimize interest rate costs, but also to maximize the bidders’ welfare. The

ultimate criterion for the seller could place some weight t on revenue and weight

1− t on bidders’ welfare (0 ≤< t ≤ 1). Then, the society objective function is

t Rev (R) + (1− t)E (AW ) = t Rev (R) + (1− t) (E (PW )− Loss(R)) .

(3.12)

I will use the term to optimize efficiency loss or efficiency to mean any of

the equivalent measures in lemma 1 and the term welfare to mean (3.12).

4. THE EFFECT OF RESERVATION PRICE ON EFFICIENCY

In this section I disentangle two sources of efficiency loss. Then I show

that the effect of a reservation price increase on each source of inefficiency is

opposite and setting the reservation price above zero is typically optimal that

is the main point of the paper. I specify conditions when 0 is not an efficient

optimal reservation price and the seller who sets a positive reservation price

decreases expected efficiency loss when allocating the units to the bidders.

First note that the single-unit symmetric first-price auction is efficient if the

seller sets a zero reservation price. In a symmetric equilibrium, all bidders use

symmetric strategies, and if the reservation price is zero, there is no efficiency

loss in the final allocation. The multi-unit Vickrey auction is efficient if the
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seller sets a zero reservation price. In this auction all bidders use the same

(true-value revealing) strategy on all private values. If the seller sets a positive

reservation price in either of these two auctions, then the bidders with values

below the reservation price do not participate in the auction. This introduces

efficiency loss because the seller’s value of the units he does not sell in the

auction is zero.14

In the multi-unit uniform-price auction with zero reservation price, the

auction allocation is not efficient (see Engelbrecht-Wiggans and Kahn (1998a),

Noussair (1995)). One explanation is that a necessary condition for an effi-

cient auction method (Krishna (2002, Proposition 13.3.) is violated. Namely,

bidders do not apply the same mapping from value to bid (e.g., bidders do

not bid the true value both on the initial and subsequent value). Due to the

difference in shading across initial and subsequent units, the seller who uses

the bids to distribute units is not able to allocate them efficiently.

In section 1 I outlined that shading in equilibrium strategies (3.4) moti-

vates a bidder with high subsequent value to submit a bid below an opponent

bidder’s initial bid of low initial value (see Figure 1, and Figure 2 below). If

the seller specifies a reservation price, some of the bidders do not submit bids

above the reservation price, but the others submit higher bids and shade less

of their true values. This means that bids on subsequent units more precisely

reveal the true values, the initial and subsequent strategy of each bidder be-

come more symmetric and the seller allocates units efficiently more often (see

Figure 1). In other words, some misallocations caused by the shading differ-

ence in initial and subsequent strategies can be eliminated by properly setting

the reservation price.

14Note that the qualitative result is valid even if the seller assigns positive value to retained

units (Krishna (2002)).
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Figure 2: Efficiency loss MLoss with zero reservation price.

0

v̄

v′2

v̄ v1

v′2 < v1.⇒

No loss in this region.

In this region v′2 > v1.⇒

If b1 > b
′
2, and b1 wins,

but b′2 does not

then the loss is

v′2 − v1.

From the seller’s point of view, different cases can be identified when the

efficiency loss occurs according to the number of bids submitted. I distinguish

between misallocation effect and supply restriction effect similarly as in Jehiel

and Moldovanu (2001a). In each case the effect of the reservation price on

efficiency is different.

• Loss due to misallocated units that occurs when more than k submitted

bids are above R or at R. Due to the difference in shading across initial

and subsequent values, the highest submitted bids do not necessarily

correspond to the highest values and therefore units are not allocated to

the bidders with the highest values, MLoss.

• Loss due to unallocated units that occurs when less than k submitted

bids are above R or at R, ULoss.

Note that in the remaining case when exactly k submitted bids are above R
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or at R, no loss occurs. The reason is that in equilibrium (3.4) bidders submit

bids above R or at R if and only if their values are above R or at R. But then

the submitted bids correspond to the k highest values and the seller allocates

the units to the bidders with highest values that are efficient.15

Obviously an analog of ULoss is, but MLoss is not, present in a standard

single-unit auction symmetric equilibrium. In the symmetric single-unit auc-

tion with the reservation price, the loss occurs only if no bidder submits a bid

above R or at R, and the seller has no value for the unit when it is not sold

in the auction. In the uniform-price auction, ULoss occurs if not all k units

are sold in the auction because less than k bids are submitted above a too

high reservation price R. Given the shape of equilibrium strategies (3.4), this

means that if any value v (initial or subsequent) below the reservation price

is one of the k highest values, then ULoss occurs. Consider one bidder with

values v1, v2, then his values contribute to ULoss with the term

E (v1|R > v1& at most k − 1 opponents’ values are above v1) +

E (v2|R > v2& at most k − 2 opponents’ values are above v2) .

The expected value of this kind of loss, denoted as ULoss (R) , is characterized

by the following theorem (see proof in the Appendix).

Theorem 2. The expected value of ULoss is

ULoss (R) = n ·




R∫

0

v1Hk−1 (v1) dG1 (v1) +

R∫

0

v2Hk−2 (v2) dG2 (v2)



 , (4.1)

where Hl(x) is the probability distribution function of the event when at most

l out of the 2 · (n− 1) opponent values are above x.

Hl (x) = P (at most l out of 2n− 2 opponent values > x) (4.2)

15Recall also that no ties occur in equilibrium with positive probability and that is why

we need not analyze the case of ties (see Bresky (2008b) or Engelbrecht-Wiggans and Kahn

(1998a)).
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=
∑

0≤2i2+i1≤l
i1,i2≥0

(n− 1)!

i2!i1! (n− 1− i2 − i1)!
(1−G2 (x)))

i2 (G2 (x)−G1 (x))
i1 Gn−1−i2−i11 (x) .

ULoss (R) is increasing in R, and ULoss (0) = 0, and if G1 (·) and G2 (·) are

continuous, then ULoss (R) is continuous in R.

The MLoss is illustrated in Figure 2. Let me consider two bidders and

their opponents when 2 ≤ k ≤ 2 · (n− 1). I denote the initial value of the

first bidder as v1 and the subsequent value of the second bidder as v
′
2 and let

b1 be the bid of the first bidder on v1 and b
′
2 be the bid of the second bidder

on v′2. Efficiency loss MLoss occurs if it is defined in such a way that the

two values v′2, v1 of the two bidders contribute to it if v1 is one of the highest

values but v′2 is not and b
′
2 wins a unit but b1 does not. Given that bidders use

equilibrium strategies (3.4), let me consider that v′2 above R or at R and v1

such that v′2 > v1 > b
′
2, then I argue in the appendix that the difference v

′
2−v1

contributes to MLoss if and only if at least k − 2 opponent values are above

v′2, and at most k − 2 opponent values are above v1.
16 There are n · (n− 1)

of such combinations of the two bidders. Therefore the expected value of this

loss that I denote as MLoss (R) is characterized by the following theorem.

16One can check that if at least k − 2 opponent values are above v′2, and at most k − 2

opponent values are above v1, then b1 must win a unit but b
′

2 does not.
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Figure 3 : Marginal probability distribution terms.

0

v̄2

v̄1v1

v′2

1−G2 (v
′
2)

G2 (v
′
2)−G1 (v1)

G1 (v1)

initial value
below v′2

subsequent value

above v1
both values
below v1

both values
above v′2

Theorem 3. The formula for MLoss (R) is

MLoss (R) = n ·(n− 1) ·

v̄2∫

R

v′2∫

b2(v′2,R)

(v′2 − v1)Ω (v
′
2, v1) dG1 (v1) dG2 (v

′
2) ,

(4.3)

where Ω (v′2, v1) =
∑

0≤j≤⌊ k2⌋−1
0≤n−k+j

(n− 2)!

j! (k − 2j − 2)! (n− k + j)!
Ωj (v

′
2, v1) , and

Ωj (v
′
2, v1) = (1−G2 (v

′
2))

j
(G2 (v

′
2)−G1 (v1))

k−2j−2
Gn−k+j1 (v1) .

For k < 2n− 1, MLoss (R) is a decreasing function of R if the equilibrium

strategy b2 (v
′
2, R) is increasing in R for any v′2 ∈ (R, v̄2] .Moreover, if the equi-

librium strategy is continuous in R, and since G1 (·) and G2 (·) are continuous,

then MLoss (R) is continuous in R.
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The terms of Ωj (v
′
2, v1) are illustrated in Figure 3 and explained in the ap-

pendix. Let me illustrate the effect of reservation price change on the MLoss,

ULoss, Loss and welfare measure (3.12) in the following

Example 2. Let me consider the same settings as in example 1 with two

units for sale and two bidders with equilibrium strategies (3.5). In the case

that there are exactly two bids submitted above or at the reservation price,

they must correspond to the only two values above or at the reservation price

in equilibrium. Otherwise some bidder with value above the reservation price

would be better off bidding above or at the reservation price, or the bidder

who has value below the reservation price would be better off bidding below

the reservation price. In other words, the units are allocated to those who

value them the most.

Now consider the case that more than two bids, hence more than two values,

are above or at the reservation price. Let v1 and v2 be the values of the first

bidder, and v′1 and v′2 be the values of the second bidder. If v′1 > v
′
2 > v1 >

max (R, v2), or v1 > v2 > v
′
1 > max (R, v′2), then each bidder wins one unit,

but the final allocation is not efficient. Efficiency loss with zero reservation

price, when v′2 > v1, is represented by the above diagonal triangle on Figure 2.

Substituting the marginal probability distributions of initial and subsequent

values G1 (v1) = v
2
1, and G2 (v2) = v2 · (2− v2) to equation (4.1) the expected

value of efficiency loss is

MLoss (R) =
v̄

15
−
2

3

R2

v̄
+
4

3

R3

v̄2
−
R4

v̄3
+
4

15

R5

v̄4
.

Note also that if the seller would have set the reservation price in such a way

that v′1 > v
′
2 > R > max (v1, v2), or v1 > v2 > R > max (v′1, v

′
2), then only

two bids are submitted above or at the reservation price and it is efficient

as discussed before. Moreover, the seller raises higher revenue 2 · R. This

illustrates how the higher reservation price may improve both efficiency and

seller’s revenue.
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Now let me consider the case when less than two submitted bids, hence

less than two values, are above or at the reservation price and not all units are

sold in the auction. Then v1 of one bidder contributes to ULoss if and only if

min (v′1, R) > v1 > v
′
2 and v2 of the bidder contributes to ULoss if and only

if R > v2 > v
′
1. By (4.3) the expected loss is ULoss (R) = 3R4/v̄3− 12R5/5v̄4.

The expected value of total efficiency loss with the reservation price is just

a summation of MLoss and ULoss because they represent mutually disjoint

cases

Loss (R) =MLoss (R)+ULoss (R) =
v̄

15
−
2

3

R2

v̄
+
4

3

R3

v̄2
+2
R4

v̄3
−
32

5

R5

v̄4
.

The seller who minimizes this expression sets the reservation price at RE =

0.250v̄. For the sake of brevity I will just provide the formula for the seller’s

revenue:17

Rev(R) = R ·
(
2 ·
(
L2,0 + 2 · L1,1 + 2 · L0,2 + 2 · L1,0

)
+ 2 · L0,1 + 0 · L0,0

)
.

The maximum revenue is achieved at RR = 0.581v̄.

There exists some ex ante optimal reservation price maximizing the seller’s

ex ante revenue and a different ex ante optimal reservation price maximizing

ex ante efficiency. But these two optimum reservation prices do not coincide

(typically RE < RR). The seller sets a trade-off between these two criteria in

equilibrium. These two criteria define boundaries for the optimal reservation

price. The ultimate criterion for the seller could be (3.12), where t represents

the trade-off between revenue and efficiency loss. Intuitively one can imagine

that a unit gain in revenue can be distributed among bidders in such a way

that their welfare increases by t
1−t

units. For t = 1
2
, the optimal reservation

price is RW = 0.496.

17where Li2i1 = n!
i2!i1!(n−i2−i1)!v̄2n

(v̄ −R)2i2+i1 ·R2n−2i2−i1 is the probability that exactly

i1 (i1 = 0, 1, 2) bidders have their initial values above R and subsequent values below R,

exactly i2 (i2 = 0, · · · , n− i1) bidders have both values above R, and other n − i1 − i2

bidders have both values below R.
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It is intuitive that a positive reservation price usually increases a bidder’s

subsequent strategy and also the seller’s revenue, but I will not investigate the

effect on revenue in detail because it exceeds the scope of this paper. Let me

now investigate the effect of R onMLoss (R) and ULoss (R) if more than one

submitted bid cannot win (k = 2, · · · , 2n−2). Note that ifMLoss occurs, then

all k units are sold in the auction but if ULoss occurs, less than k units are sold.

Therefore they do not occur simultaneously and total Loss (R) is just the sum

of ULoss (R) andMLoss (R). Example 2 illustrates that a seller who optimizes

Loss (R) or any equivalent efficiency measure faces a trade off betweenMLoss

and ULoss. The following theorem (proved in the Appendix) shows that the

reservation price that minimizes the total expected loss is typically positive.

Theorem 4. Consider a symmetric equilibrium strategy increasing in R for

any R close enough to 0 when k = 2, · · · , 2n− 2. Assume that for some v̄0 > 0

and every v2 ∈ [0, v̄0] , the bidder bids 0 if the reservation price is 0. Then

MLoss (0)+ULoss (0) > MLoss (R)+ULoss (R) . Moreover assume that for

R slightly above 0, the strategy is continuous in R, and g1 (·) and g2 (·) exists

and satisfy the following condition:

lim
v→0+

vg2 (v) (G2 (v)−G1 (v))
iGk−1−i1 (v)

g1 (v)
= 0 for all i = 0, · · · , k − 2, (4.4)

then MLoss (R) + ULoss (R) is continuous and decreasing in R.

The theorem above imposes assumptions on the distribution of values and

the shape of equilibrium strategy. The condition (4.4) is not too restrictive

and can be relaxed in some cases. If the initial and subsequent values are

distributed as the minimum and maximum of some underlying distribution,

then condition (4.4) is satisfied for any distribution.18 Moreover, the other

18Let v1 = min (u1, u2) and v2 = max (u1, u2) where u1 and u2 have underlying probability

distribution function H (·) . Then G1 (v) = H2 (v) and G2 (v) = 2H (v) −H2 (v) , and the

limit term in condition (4.4) is 2vh(v)(2H(v)(1−H(v)))
i+1H2(k−1−i)(v)

2H(v)h(v) =

= 2iv (1−H (v))
i+1
H2k−3−i (v) which is 0 in the limit for any H (v) .
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conditions on the shape of the equilibrium strategy can be relaxed in the sense

that bidders need not bid 0 for values v2 ∈ [0, v̄0] when the reservation price is

0. In many cases it seems to be sufficient if the derivative ∂b2(0,0)
v2
is not large.

That implies less restrictive conditions on the distribution of bidder values and

allows us to apply theorem 4 if the number of bidders is less than the number

of units for sale when Corollary 5 below is not applicable.19 In summary, a

positive reservation price decreases efficiency loss in the uniform-price auction

in many cases.

In Engelbrecht-Wiggans and Kahn (1998a), it is shown that for most dis-

tributions including these with bounded g1 (·) on the neighborhood of 0 (see

condition B in the Appendix), it is typical to bid 0 for low subsequent val-

ues v2 ∈ [0, v̄0] in equilibrium if the seller sets a 0 reservation price and there

are at least as many bidders as units for sale (see also Menezes and Monteiro

(2005, Theorem 24)). The assumption that the reservation price increases the

strategy is intuitive, and Bresky (2008b) shows that it is valid for continuous

equilibrium strategies (see sufficient condition C in the Appendix this paper).

I summarize it in the following corollary.

Corollary 5. If g1 (·) and g2 (·) exists, and the distribution of values satisfies

conditions A, B, C and (4.4), and n ≥ k ≥ 3, then the seller who sets a positive

reservation price improves the expected efficiency of the final allocation.

An example when the density function satisfies all conditions of the corol-

19If α is lim supR0→0+
∂b2
∂R
(R0, R0) and k = 3, a sufficient condition to guaran-

tee that Loss is decreasing for R slightly above 0 is limR→0+
G1(R)

G2(Rα )−G2(R)
< ∞ and

limR→0+
G2(R)−G1(R)

G2(Rα )−G2(R)
< ∞. By L’Hopital’s rule this sufficient condition is valid for any

G (v1, v2) if α < 1 including n = 2. In other word, increse of R improves efficiency even

pooling of bids at 0 defined in Engelbrecht-Wiggans and Kahn (1998a) is not present.
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lary is

g =






2v2
v2
1

for 0 ≤ v2 ≤ v1 ≤
1
2

8v2 for 0 ≤ v2 ≤
1
2
, 1
2
≤ v1 ≤ 1

0 otherwise

⇒
G1 (b2) = b2 for b2 ∈ [0, 1]

G2 (v2) = 2v2 for v2 ∈
[
0, 1

2

]
.

Since there are no ties in equilibrium (see Engelbrecht-Wiggans and Kahn

(1998a) for details), the bidder’s payoff is continuous both in his strategy and

his opponent’s strategy. Therefore, the correspondence that assigns a set of all

symmetric equilibrium strategies to any given R is upper hemi-continuous in

R. Hence, an efficient optimal reservation price exists and it is often positive

according to Theorem 4.

Finally I show that if just one submitted bid cannot win (k = 2n−1), then

the efficient optimal reservation price is 0.

Theorem 6. If the number of units for sale is 2 · n − 1 = k ≥ 3, then the

reservation price maximizing efficiency RE is 0.

In this auction exactly one bid does not win a unit but determines the

auction price. The strategic considerations in this game are in some sense

dual to a single-unit second-price auction where exactly one bid wins a unit

but does not determine the auction price (see Engelbrecht-Wiggans and Kahn

(2002)).

5. CONCLUSION

Along with other recent work, this the paper illustrates that auctions

in which the individuals can purchase more than one unit and the seller sets

the reservation price differ in striking ways from auctions studied before. This

paper shows the significance of reservation price in a multi-unit auction with

independent private-value bidders, not only for revenue-gaining, but also for

efficiency or social welfare reasons. In a typical case, the outcome of the multi-

unit auction is not efficient. The reason for this is that bidders, although

27



symmetric, use different strategies on the initial and subsequent unit they

demand. This difference in strategies distorts efficiency in many cases (see

Krishna (2002)). A similar distortion is well-known in an English single-unit

auction with asymmetric bidders or in the case when the seller favors one group

of bidders over the rest of the bidders (see McAfee and McMillan (1987)). But

in a multi-unit auction the difference in strategies occurs even though the

bidders are symmetric, risk-neutral, independent private-valued, and payment

is a function of the bids alone (cf. with assumptions A1-A4 in McAfee and

McMillan (1987)).

One of the principal goals of the literature survey in Zheng (2008) is a trade

off between efficiency and revenue in auctions. In this paper I use a differen-

tial equation approach to derive a comparative statics result on the effect of

the reservation price on efficiency and revenue in the uniform-price multi-unit

auction. I disentangle two sources of efficiency loss because the reservation

price has two effects: 1) it excludes bidders with values below the reservation

price from the auction; and 2) it motivates the bidders to bid closer to their

true values above the reservation price. The former effect decreases revenue

and introduces efficiency loss if not enough bidder values, and hence bids, are

above the reservation price. The latter effect improves both the efficiency and

the revenue if enough values, and hence the bids, are submitted above the

reservation price. For low reservation prices, the latter case occurs more of-

ten and, therefore, an increase of the reservation price improves the efficiency.

This is in contrast to the single-unit first- and second-price auction models in

McAfee and McMillan (1987) with symmetric bidders. Palfrey (1983) shows

that the seller who sells units in bundles may increase revenue at the expense

of efficiency. In contrast, I show that a positive reservation price not far from

zero increases both revenue and efficiency in the uniform-price auction.

The influence of the reservation price depends on the level of shading or
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demand reduction on each unit. The shading varies for each auction format.

For the uniform—price auction, the effect of the reservation price on efficiency

is opposite than for the Vickrey auction, when the reservation price is not far

from 0. A question for future research is what effect prevails for other auction

formats (e.g., pay-your-bid) that has been only partially studied in the multi—

unit auction literature (Swinkels (1999), and Lebrun and Tremblay(2003)). It

seems that proper reservation price setting is an important mechanism design

tool to set up an optimal multi-unit auction when the number of bidders is

not large.

The efficient optimal reservation price depends on the number of bidders.

The marginal increase in efficiency is not too great if there are many bid-

ders in the auction, but it determines the kind of lower bound of the optimal

reservation price which maximizes both revenue and efficiency. Therefore, the

government as a seller who cares about both revenue and efficiency should

never set the reservation price below this lower bound.

Although I used an independent-private value assumption, this model is

applicable to other real uniform-price auctions because they are typically re-

garded as a mixture of independent private-value and common-value para-

digms. In this case there is no general auction mechanism to achieve ex post

efficiency. One application is to the auctions of licenses for the radio-frequency

spectrum (PCS) by the Federal Communication Commission (certainly there

are a lot of institutional details that make the analysis more complicated, see

Krishna and Rosenthal (1996)). Another important application is the uniform-

price auction of T-bill securities (T-bills) if the common-value assumption

seems not to be appropriate. Hortacsu and Kastl (2008) could not reject the

hypotheses of the private value component in 3-months T-bills. Moreover,

T-bill auctions can be treated as a partially independent value auction if the

secondary market is far enough from perfect liquidity, which is typical for
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emerging markets (e.g., the T-bill market in the Czech Republic and other

CEEC).

It seems, at least intuitively, that the reservation price increases efficiency

even if we enrich the model by a more complicated demand curve that has

uncertainty in every demanded unit or assuming interdependencies among the

bidder values (or signals). This intuition supports the result of Engelbrecht-

Wiggans and Kahn (1998a), who formed the transformation of a class of 3 unit

demand models into 2 unit demand models. Finally, although comparisons be-

tween the uniform-price and pay-your-bid auctions are difficult (cf. Katzman

(1999)) it seems that the uniform-price auction requires more information gath-

ering and strategic considerations from the seller to design the auction because

the auction outcome is more sensitive to an optimal reservation price than the

pay-your-bid auction.

6. APPENDIX

Proof of lemma 1. The optimization E (AW ) differs from criterion (3.9)

only by the multiplicative term 1
E(PW )

, which is independent of R. The opti-

mization E (AW ) differs from criterion (3.10) only by a linear transformation

with the additive term E (PW ) and the multiplicative term −1, which is in-

dependent of R.

Q.E.D.

Proof of theorem 2. The formula (4.2) is fairly intuitive. The term 1 −

G2 (x) is the probability that a bidder has both values above x. The term

G2 (x) − G1 (x) is the probability that a bidder has an initial value above

x and a subsequent value below x, and the term G1 (x) is the probability

that a bidder has both values below x. Each term in the summation (4.2)

is the probability that exactly 2i2 + i1 values of n − 1 bidders are above x.

This can be arranged by (n−1)!
i2!i1!(n−1−i2−i1)!

combinations when exactly i1 out of
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n− 1 bidders have their initial values above x and subsequent values below x,

exactly i2 out of n − 1 bidders have both values above x, and other bidders

out of n − 1 bidders have both values below x. The ULoss (R) in (4.1) is

n times the expected contribution of a single bidder’s initial and subsequent

values vj (j = 1, 2) that are below the reservation price and above the k− jth

highest opponent value. Finally note that standard properties of the primitive

function imply continuity and increasingness in R because R monotonically

influences only the integration range of nonnegative function.

A simple hint for deriving Hl (x) is to realize that the terms in the sum-

mation (4.2) are from 1 = ((1−G2 (x)) + (G2 (x)−G1 (x)) +G1 (x))
n−1 =

∑
2n−2≥2i2+i1≥0

i1,i2≥0

(n−1)!
i2!i1!(n−1−i2−i1)!

(1−G2 (x)))
i2 (G2 (x)−G1 (x))

i1 Gn−1−i2−i11 (x) .

It is similar to deriving the probability distribution function of order statistics

from 1 = ((1− F (x)) + F (x))n−1 =
∑

n−1≥j≥0
(n−1)!

j!(n−1−j)!
(1− F (x))j F n−1−j (x)

(cf. Wikipedia (2009)).

Q.E.D.

Proof of theorem 3. Efficiency loss is defined in such a way that the two

values v′2, v1 of the two bidders contribute to it if v1 is one of the highest

values but v′2 is not and b
′
2 wins a unit but b1 does not. Consider any pair of

two bidders. Let me denote as v1 the initial value of the first bidder and v
′
2

as the subsequent value of the second bidder. Since there are n · (n− 1) of

such different pairs, the integral in formula (4.3) is multiplied by n · (n− 1).

Next, all opponents of the two bidders I denote as O. Given the equilibrium

strategies (3.4), the difference v′2 − v1 contributes to MLoss if and only if:

1. v′2 is above the reservation price, and v
′
2 > v1 = b1 (v1, R) > b2 (v

′
2, R);

and

2. for some j = 0, · · · , ⌊k/2⌋ − 1 the value realizations of the opponents in

O are as follows: j subsequent’s opponent values are above v′2, n− k+ j
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initial values of another opponent’s are below v1, and k−2j−2 remaining

opponents’ initial values are above v1 and subsequent values are below

v′2
20

The inequalities in point 1 above is expressed in the range of integration in

formula (4.3). The probability of the realization of opponent values in point 2

above is expressed in Ωj (v
′
2, v1) . There are

(n−2)!
j!(n−k+j)!(k−2j−2)!

combinations of

each realizations in point 2. Since for any j �= j′, the cases in this point above

do not occur simultaneously, one can just sum up (n−2)!
j!(n−k+j)!(k−2j−2)!

Ωj (v
′
2, v1)

into Ω (v′2, v1) . Next, it is easy to check that the term Ω (v
′
2, v1) is the probabil-

ity that at least k−2 values of opponents in O are above v1 and at most k−2

values of opponents in O are above v2. Therefore v1 is one of the k highest

values but v′2 is not, and b1 is one of the k highest bids but b1 is not.
21 Finally

note that the standard properties of primitive function imply continuity and

increasingness in R because R monotonically influences only the integration

range of the nonnegative function.

A simple hint how for deriving Ω (v′2, v1) is to realize that the terms in the

summation (4.3) can be derived when expanding

1 = ((1−G2 (v
′
2)) + (G2 (v

′
2)−G1 (v1)) +G1 (v1))

n−2 similarly as I suggest in

the proof of theorem 2 (see also Wikipedia (2009)).

Q.E.D.

20The equilibrium strategies (3.4) ensures that for any j there are at least k− 2 opponent

bids and both bidder initial bids above b2 (v′2, R) and at most k − 2 opponent bids and the

second bidder’s initial bid are above b1 (v1, R) = v1, which implies that b1 (v1, R) wins but

b2 (v′2, R) does not.
21Note that since the initial value of both bidders, and hence bids, are above v′2, and also

the initial (but not subsequent) bid of the second bidder are above v1, there are at least k

bids above b′2 and at most k − 1 bids below b1 in total. In other words, b1 must win a unit

but b′2 does not.
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Proof of theorem 4. The fact that b2 (v2, R) ≥ R for v2 ≥ R implies that

MLoss (0)−MLoss (R) is at least

v̄0∫

R

R∫

0

(v2 − v
′
1)n (n− 1)Ω (v2, v

′
1) dG1 (v

′
1) dG2 (v2) . (6.1)

Let me rearrange the expression for the demand loss difference.

ULoss (0)− ULoss (R) =

v̄0∫

R

ULoss (0)− ULoss (R)

G2 (v̄0)−G2 (R)
dG2 (v2) .

Therefore MLoss (0) + ULoss (0)−MLoss (R)− ULoss (R) is at least

v̄0∫

R

n

R∫

0

[
(v2 − v) (n− 1)Ω (v2, v) g1 (v)−

vHk−1 (v) g1 (v)

G2 (v̄0)−G2 (R)
−
vHk−2 (v) g2 (v)

G2 (v̄0)−G2 (R)

]
dvdG2 (v2) .

I show that the integrand above consisting of three additive terms is positive

for any v sufficiently close to 0 and any k = 2, · · · , 2n− 2. At first note that

lim
v→0+

Ω (v2, v)

Gn−k1 (v)
= lim

v→0+

Ω0 (v2, v)

Gn−k1 (v)
= Gk−22 (v2) > 0 and lim

v→0+

vHk−1 (v)

Gn−k1 (v)
= 0.

Since limR→0+ G2 (v̄0) − G2 (R) > 0 and v2 − v > 0, the second term in the

integrand is negligible with respect to the first one for v sufficiently close to

0. Finally note that the third integrand term is negligible with respect to the

first one because lim
v→0+

vHk−2(v)g2(v)

Gn−k
1

(v)g1(v)
= 0, which is an implication of condition

(4.4).

Therefore MLoss (0) + ULoss (0) − MLoss (R) − ULoss (R) is positive

for any R sufficiently close to 0. Moreover if the strategy is continuous in R,

then MLoss (R) + ULoss (R) is continuous in R. Therefore it must be that

MLoss (R) + ULoss (R) is decreasing in the neighborhood of 0.

Q.E.D.

Comments to corollary 5. The conditions A, B, and C (below) on the distri-

bution of values used in this paper are discussed in more detail in Engelbrecht-

Wiggans and Kahn (1998a), Menezes and Monteiro (2005, Lemma 10, and
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Theorem 24) and Bresky (2008b). They are sufficient to guarantee that equi-

librium strategies are “well-behaved,” and if one relaxes them Theorem 4 is

anyway applicable in some cases.

The conditions A and B below guarantee that in equilibrium a bidder

reveals his initial value in the initial bid and the subsequent bid is an increasing

function of value v2 up to the range of v2 from [R, v̄0) when k ≤ n; (see equation

(3.4))

C�+��,��+ A. The distribution of the values of one bidder is independent of

the opponent value realization, and for every v2 > 0, there is a number ε > 0

such that for any valuation v1 G2 (v2|v1) > ε.

In other words, condition A says that for any v1 there is some chance that v2

is close to 0. This condition is valid if any open subset of V has a positive

measure.

Engelbrecht-Wiggans and Kahn (1998a) show that the next condition is

sufficient for the existence of an equilibrium strategy (3.4) with v̄0 > 0 when

the reservation price is 0 and there are at least as many bidders as units for

sale.

C�+��,��+ B. The marginal density g1 (v1) is bounded in some neighborhood

of 0.

Moreover, in the body of the paper I restrict the attention to auction games

with continuous subsequent equilibrium strategies in v2 which, moreover, im-

plies that the symmetric subsequent strategy is increasing in R. The idea is

similar to Lizzeri and Persico (2000) who study the first-price auctions with

reservation price. Bresky (2008b) shows that the two subsequent equilibrium

strategies cannot cross, otherwise a better response can be constructed. Then,

since it is equilibrium strategy to bid b2 (R,R) = R, it must be that b2 (v2, ·)

is increasing in R. The following condition is sufficient to guarantee that every

symmetric equilibrium strategy is continuous in v2 and increasing in R.
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C�+��,��+ C. The marginal density g2 (·) is weakly increasing and

(k − 1) g1 (b2) < g2 (b2) .

Note that if the bidders use symmetric strategies and reveal the initial

value in the bid, then π (v, b|b− (·)) depends only on G (·, ·) , v, b because the

bidder defeats subsequent bids of the opponents with a value below v2. The

reason is similar to the single-unit first-price auction symmetric equilibrium

in which a bidder’s marginal payoff can be expressed as a function of the

bidder’s value, the distribution of value and bid - but no opponent strategy

(see McAfee and McMillan (1987)). The parallel arguments are valid for the

uniform-price auction model of this paper. To understand how is condition

C related to continuity, note that if opponents use strategy b− (v) with shape

(3.4) such that b−2 (·) is not continuous at v2, then the bidder’s marginal

payoff at the discontinuity is nonnegative; i.e., ∂π (v, b|b− (·))∂b2≥ 0 for some

b2 ∈
(
limu→v=

2
b−2 (v2) , limu→v+

2
b−2 (v2)

)
. Next, if n ≥ k ≥ 2, then this in-

equality equation expands to

(v − b2)
∑⌊k−22 ⌋

i2=0
(n−1)!Ai2Bk−2−2i2 (b2)G

n−k+i2
1

(u1(b2))g1(b2)

i2!(k−2−2i2)!(n−k+i2)!
≥

≥
∑⌊k−12 ⌋

i2=0
(n−1)!Ai2 (b2)Bk−1−2i2 (b2)G

n−k+i2
1

(u1(b2))

i2!(k−1−2i2)!(n−k+i2)!
where u1 (·), and u2 (·) are the

inverse of opponent strategies b− (·) ; A (b2) = 1 − G2 (u2 (b2)) is the proba-

bility that the two bids of an opponent are above b2; B (b2) = G2 (u2 (b2)) −

G1 (u1 (b2)) is the probability that an opponent submits an initial bid above

and the subsequent bid below b2; and G1 (u1 (b2)) is the probability that two

bids of an opponent are are below b2. Note if the bidder uses the same strat-

egy as his opponents, then u2 (b2) = v2, and if the opponents bid the ini-

tial value in the initial bid, u1 (b2) = b2. It is independent of the opponent

strategy b− (·) (see Figure 3). Then comparing the corresponding summation

terms, one gets the following inequalities (k − 1− 2i2) g1 (b2) ≥
G2(v2)−G1(b2)

v2−b2
.

Using the mean value theorem on the right side of this inequality, one gets

(k − 1− 2i2) g1 (b2) ≥
G2(b2)−G1(b2)

v2−b2
+ g2

(
b̃
)
for some b̃ ∈ [b2, v2] that is incom-
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patible with condition C. Therefore, condition C implies that the subsequent

strategy is continuous and increasing in R. It is also obvious that condition C

can be relaxed but it is difficult to find another general condition.

Proof of theorem 6. If k = 2 · n − 1 ≥ 3 and R = 0, then at most

one bid does not win a unit. Since the strategy is increasing in a symmetric

equilibrium, to finish the proof note that the losing bid is the subsequent bid

of a bidder with the lowest value.

Q.E.D.
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