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Abstract

In this paper we extend the analysis of optimal monetary policy rules in terms of
stability of an economy, started by Evans and Honkapohja (2003b), to the case of
heterogeneous private agents learning. Following Giannitsarou (2003), we pose the
question about the applicability of the representative agent hypothesis to learning.
This hypothesis was widely used in learning literature at early stages to demonstrate
convergence of an economic system under adaptive learning of agents to one of the
rational expectations equilibria in the economy. We test these monetary policy rules
in the general setup of the New Keynesian model that is a work horse of monetary
policy models today. It is of interest to see that the results obtained by Evans and
Honkapohja (2003b) for the homogeneous learning case are replicated for the case
when the representative agent hypothesis is lifted.
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Abstrakt

V tomto µclánku roz�iµrujeme analýzu optimálních monetárních pravidel z hlediska
stability ekonomiky, poprvé uvedené v práci Evanse a Honkapohji (2003b), na pµrí-
pad uµcení heterogenních soukromých agent°u. Pouµzívajíc práci Giannitsarou (2003)
si pokládáme otázku, zda je moµzné aplikovat hypotézu reprezentativních agent°u na
uµcení. Tato hypotéza byla velmi µcasto pouµzívána v dµrívµej�í literatuµre k demon-
straci konvergence ekonomického systému pµri adaptivním uµcení agent°u k jednomu z
rovnováµzných bod°u racionálních oµcekávání dané ekonomiky. Testujeme monetární
pravidla v obecném nastavení neokeynesiánského modelu, který je taµzným konµem
v�ech dne�ních model°u monetární politiky. Je také zajímavé sledovat výsledky
Evanse a Honkapohji (2003b) pro pµrípad homogenního uµcení, které jsou zopakovány
i v pµrípadµe, kdy hypotéza reprezentativních agent°u je opu�tµena.
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1 Introduction

The stabilization monetary policy design problem is very often studied in the New

Keynesian model. Using the environment of this model, we may study di¤erent

monetary policy rules to �nd out which is more e¢ cient in smoothing business cycle

�uctuations and also which monetary policy rule would not lead to indeterminacy of

equilibria in our model. For a comprehensive overview of various interest rate rules

in the New Keynesian model, one can address Woodford (2003). Also, very often

cited works on monetary policy design are Clarida, Gali and Gertler (1999, 2002).

Svensson (1999) gives a clear distinction between instrument and target rules and

implications of their use.

A number of recent studies also consider the New Keynesian model environment

with adaptive learning of agents. Examples are works of Evans and Honkapohja

(2003a, 2003b), Bullard and Mitra (2002) and Honkapohja and Mitra (2005) on

stability of an economy under various policy rules. Evans and Honkapohja (2003a,

2003b) take up the issue of stability under learning for optimal monetary policies in

economies with adaptive learning.

The concept of adaptive learning of agents in economic models is introduced as

a speci�c form of bounded rationality advocated by Sargent (1993). According to

the argument of Sargent (1993), it is more natural to assume that agents face the

same limitations economists face (in a sense that economists have to learn the model

structure and its parameter values themselves) and view agents as econometricians

when forecasting the future state of the economy.

Using adaptive learning in an economy makes it possible to test the validity of

the rational expectations hypothesis by checking if a given dynamic model converges

over time to the rational expectations equilibrium (REE) implied by the model. It

can also be used as a selection device in models with multiple equilibria. Even if

the model has a unique REE, it is still of interest to see if the rational expectations

(RE) hypothesis holds under learning, which is done by checking if our model under

learning converges to a given REE. In both cases (multiple or unique REE), one

has to check certain stability conditions. After this analysis of stability conditions,

the next step could be studying policy rules for e¤ectiveness and indeterminacy,
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assuming or making sure that the stability conditions on the model structure are

satis�ed.

That is why, before we start analyzing particular monetary policies for e¢ ciency

(evaluating a particular type of policy: Taylor rule, optimization�based rule with

or without commitment), we should take a general type of a linear policy feedback

rule, plug it into our structural form of the New Keynesian model and obtain some

general linear reduced form (RF) of this model. All things being equal (the same

structural equations: Phillips and IS curves), we can obtain di¤erent RFs depending

on the policy rule used by the policy maker. Hence, we obtain di¤erent REEs and

di¤erent stability results. Then we should study a given reduced form for stability

in order to see if a given REE is chosen. In this paper, we study the stability of a

New Keynesian model under the following classi�cation of policy rules introduced

by Evans and Honkapohja (2003b).

Depending on the assumptions of the central bank about the expectations of the

private agents (�rms, households), Evans and Honkapohja (2003b) divide all policy

rules into fundamentals�based rules and expectations�based rules. The fundamentals�

based rule is obtained if the policy maker assumes RE of private agents, while the

expectations�based rule takes into account possibly non�rational expectations of

agents (assuming that these expectations are observable to the central bank).1

We consider the stability question under the assumption of heterogeneous learn-

ing of agents. As has been shown in Giannitsarou (2003) and Honkapohja and

Mitra (2006), stability results may be di¤erent under homogeneous and heteroge-

neous learning. Honkapohja and Mitra (2006) also demonstrate that stability may

depend on the interaction of structural heterogeneity and learning heterogeneity,

and Honkapohja and Mitra (2005) examine how structural heterogeneity in the New

Keynesian model may a¤ect stability results under various types of policy rules.

Note that though Honkapohja and Mitra (2005) consider heterogeneity in learn-

ing in the New Keynesian model, their de�nition of heterogeneity implies a situation

1We should note here that in Taylor�type rules the current value of interest rate depends on
the current values of in�ation and output gap. In this paper we study stability under feedback
rules that are derived from the policy maker minimization problem, in particular, study their two
categories, according to Evans and Honkapohja (2003b): fundamentals�based and expectations�
based. Stability under Taylor�type rules, which do not fall under this classi�cation, will be studied
later in a separate work.
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when the central bank and private agents have (possibly) di¤erent learning algo-

rithms with (possibly) di¤erent parameters of these algorithms. They essentially

consider the situation when all private agents could be considered as one represen-

tative agent, and in this sense learning of private agents considered by Honkapo-

hja and Mitra (2005) is homogeneous. In some sense, the situation considered by

Honkapohja and Mitra (2005) could be called two-sided learning in a structurally

heterogeneous bivariate economy.

In this paper we do not consider learning of the central bank and assume, fol-

lowing Evans and Honkapohja (2003b), that the policy maker takes expectations of

private agents as given or assumes and knows the exact structure of their rational

expectations; at the same time we fully exploit the case when private agents have

heterogeneous learning. The case of the internal central bank forecasting (that in-

cludes Taylor rules) in a situation of heterogeneous learning of private agents, which

develops the model of Honkapohja and Mitra (2005) since Honkapohja and Mitra

(2005) consider only the situation of a representative private agent, is the topic of

our further research.

It turns out that under the fundamentals�based linear feedback policy rule

(optimization�based), learning in our model never converges to the REE of the

model. Evans and Honkapohja (2003b) demonstrate this instability result for the

homogeneous recursive least squares (RLS) and for the stochastic gradient (SG)

learning,2 while we obtain a similar instability result for the three types of hetero-

geneous learning considered by Giannitsarou (2003).

The other category of policy rules � expectations�based rules � is supposed to

react to agents�expectations. Under certain conditions, we can have stability under

such rules. Evans and Honkapohja (2003b) obtain a stability result for homogeneous

RLS or for SG learning. We obtain a stability result (with conditions on the model

structure) for the case of the three types of heterogeneous learning considered by

2Honkapohja and Mitra (2006) and we in this paper consider two possible algorithms used to
re�ect bounded rationality of agents: RLS and SG learning algorithms (which are examples of
econometric learning). Their description can be found, e.g., in Evans and Honkapohja (2001),
Honkapohja and Mitra (2006), Giannitsarou (2003), and Evans, Honkapohja and Williams (2005).
Both are used by agents to update the estimates of the model parameters. Essentially, the di¤erence
is as follows. The RLS algorithm has two updating equations: one� for updating parameters
entering the forecast functions, the other� for updating the second moments matrix (of the model
state variables). The SG algorithm assumes this matrix �xed.
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Giannitsarou (2003).

Originally, when heterogeneous learning in a general setup of self-referential lin-

ear stochastic models was studied by Giannitsarou (2003), the purpose of introducing

heterogeneous learning of agents was to see if the representative agents hypothesis

in�uences stability results, i.e., if one may always apply this hypothesis. For some

cases, it is demonstrated that it does make sense to consider the heterogeneous

setup. Our paper is about stability under monetary policy rules, so, though we, in

fact, prove that the representative agent hypothesis holds true for the New Key-

nesian model, the accent of our paper is shifted away from testing the importance

(in�uence) of the representative agent hypothesis.

We, essentially, apply the stability analysis of the model under heterogeneous

learning in the same manner the stability analysis of the model under homogeneous

(when all agents can be substituted with a representative agent) learning is applied

in Evans and Honkapohja (2003b).3 In our paper, we link the study of stability

conditions under a certain category of linear monetary policy rules of Evans and

Honkapohja (2003b) with the study of stability under heterogeneous learning of

Giannitsarou (2003).

We �rst show that in the New Keynesian�type of models, stability can be ana-

lyzed using the structural parameters, whatever the type of heterogeneous learning,

using the general criterion of Honkapohja and Mitra (2006). These results are the

structural matrix eigenvalues su¢ cient and necessary conditions for stability of a

structurally homogeneous model derived in this paper and the aggregate economy

su¢ cient conditions derived in Kolyuzhnov (2006), where the concept of stability

under heterogeneous learning, termed as ��stability, is introduced. Then we apply

these results to derive stability and instability results under heterogeneous learning

for the two categories of feedback rules: fundamentals�based and expectations�

3Evans and Honkapohja (2003b) study stability conditions under monetary policy rules for the
case of homogeneous learning. Their major input is (both for the one�sided learning and the two�
sided learning) to have shown that under fundamentals based rules the REE of the model is always
unstable, while under the expectations based rule there is always stability. In the two cases the
reduced form of the model is di¤erent, which has, as a consequence, the di¤erence in the stability
results. So, the policy implication of such a stability analysis is that, given the structure of the
model (the two structural New Keynesian equations), the central bank can in�uence (determine)
the outcome of its policy by selecting the appropriate optimal monetary policy: the one that
guarantees convergence to a particular REE.
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based, in the model with an arbitrary number of agent types.

Summarizing all the above, our work now looks, on the one hand, like a link

between the study of stability under monetary policy rules for homogeneous learn-

ing of Evans and Honkapohja (2003b) and the study of stability conditions under

heterogeneous learning of Giannitsarou (2003), � the link through the ��stability

conditions derived by us for the general setup of Honkapohja and Mitra (2006) and

through the general stability criterion of Honkapohja and Mitra (2006). On the

other hand, this study can serve as one more economic example demonstrating the

application of ��stability su¢ cient and necessary conditions.

The structure of the paper is as follows. In the next section we present the basic

New Keynesian model. In Section 3 we discuss the general stability results under

heterogeneous learning and the concept of ��stability introduced in Kolyuzhnov

(2006). In Section 4, we give necessary and su¢ cient conditions for ��stability for

structurally homogeneous models. Section 5 describes the two types of optimal

policy rules and the structure of the reduced forms under each type. In Section 6 we

provide stability and instability results for the types of optimal monetary policies

considered in application to the New Keynesian model. Section 7 concludes.

2 Model

The model that we consider is a general New Keynesian model with observable

stationary AR(1) shocks. The structural form of the model looks as follows

xt = c1 � �
�
it � bEt�t+1�+ bEtxt+1 + �01wt (1)

�t = c2 + �xt + � bEt�t+1 + �02wt, (2)

where the �rst equation is for the IS curve and the second equation is for the Phillips

curve. wt =
�
w1t ::: wkt

�0
is a vector of observable AR(1) shocks4,

wit = �iwit�1 + �it; j�ij < 1; �it � iid
�
0; �2i

�
; i = 1; k (3)

4Typically, New Keynesian models include only an observable component, which is assumed
to follow an AR(1) process. However, there are speci�cations including both observable and un-
observable shocks. For example, Evans and Honkapohja Evans et al. (2005), who study stability
rules under recursive least squares learning, include unobservable shocks to the New Keynesian
model equations. In our case a more general speci�cation with unobservable shocks would contain
additional term 
1�t in the IS curve and 
2�t in the Phillips curve, where �t =

�
�1t ::: �mt

�0
are unobservable shocks, �it � iid

�
0; 2i

�
, i = 1; :::;m, not correlated with observable shocks gt.
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To introduce heterogeneity in the model, we assume that we have S types of

private agents characterized by their share �h > 0 in the economy,
SP
h=1

�h = 1.

So, bEtxt+1 = SP
h=1

�h bEht xt+1, bEt�t+1 = SP
h=1

�h bEht �t+1, where bEht xt+1 and bEht �t+1 are
expectations (in general, non�rational) of private agent of type h made at time t

about the next period output gap and in�ation, respectively.

The model (1), (2) and (3) is a general formulation of models derived from

microfoundations that are considered in macroeconomics and monetary economics

literature. The two basic equations of the New Keynesian model, which are the

Phillips curve and the IS curve are derived from the optimal problems of the repre-

sentative household and the representative monopolistically competitive �rm, with

the assumption of Calvo (1983) pricing mechanism in the �rms�price�setting deci-

sion. So the two New Keynesian curves are derived using the optimality conditions

of the private agents (households and �rms). The derivation of these two curves

for the standard New Keynesian model setup can be found, e.g., in Walsh (2003).

The description of the New Keynesian model can also be found in Woodford (1996,

2003) and in Christiano, Eichenbaum and Evans (2001).

In solving their optimization problems, private agents are assumed to take the

interest rate (entering the IS curve equation) as given. The interest rate, in turn, is

set by the policy maker � the central bank. In various studies of monetary policy

issues (in the New Keynesian framework), it is normally assumed that the policy

maker uses some linear feedback rule to set the interest rate. In general, a feedback

Of course, these unobservables do not bring a di¤erence into the stability results (that is why
we omit them in the model analyzed), but introducing them into the setup has its own reasoning.
For example, it makes sense to introduce unobservable shocks into structural equations when we
consider central bank learning structural coe¢ cients of the model. If we have only observable
shocks (which play a role of just another regressor � some exogenous variable) as well as other
observable regressors, we will evaluate the equations� coe¢ cients exactly if we have a su¢ cient
number of observations. In this case learning is trivial: the convergence will be very quick if
initially we did not have enough observations, but gained them over a short period of time.
If we think of how these unobservable shocks can emerge at the micro foundations level, we may

think of the following economic interpretation. For example, let us assume that preference and
technology shocks consist of observable and unobservable components. As for preference shocks,
we can imagine a qualitative change in our preferences, such that we know how the shock has
changed our preferences qualitatively, but we cannot precisely measure this change quantitatively.
A similar interpretation can be given to the technological shock. What we have measured enters as
an observable component, while the measurement error (which always exists since we assume that
our quantitative measurement of any change is imprecise) is treated as an unobservable component.
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rule that is derived from the loss function minimization problem determines how

the interest rate reacts to the expected values of the model�s endogenous variables

(in�ation and output gap in the New Keynesian model) and the model�s exogenous

variables (various shocks, e.g., technology shock, preference shock, cost-push shock).

Instrument rules, like Taylor�type rules, are designed to respond to the target vari-

ables (e.g., in�ation and output gap). As is noted in the introduction, Taylor�type

rules will be considered in a separate study.

Plugging the feedback rule into the IS curve equation, we obtain the model

reduced form. Using the same New Keynesian equations (IS and Phillips curves),

we can obtain di¤erent reduced forms for di¤erent policy rules, i.e. other things

being equal, the reduced form structure depends on the policy rule. It depends

not only on the type of it (Taylor or optimization�based), but, as is demonstrated

by Evans and Honkapohja (2003b), on the assumption of the central bank about

private agents expectations, resulting either in the fundamentals�based or in the

expectations�based category of feedback rules.

After plugging some monetary policy rule of the central bank it, assuming that

the central bank knows expectations of private agents or assumes and knows the

form of rational expectations of agents (we will talk about the types of optimal

monetary policy rules later), the model can be written in the reduced form that has

a general representation of a bivariate system with a stationary AR(1) observable

shocks process

yt = �+ AÊtyt+1 +Bwt, (4)

yt =
�
�t xt

�0
(5)

and (3).

In what follows, for the derivation of our stability results we may allow for some

generalization (as it is just a matter of notation compared to the bivariate model)

and consider a multivariate (not just bivariate) system (4) with a stationary AR(1)

observable shocks process (3).

In our notation, the reduced form is written in such a way that it includes all

factors that appear in the structural form. This means that the absence of some

factor in the reduced form in our notation is expressed by the corresponding zero
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column of matrix B. Note that here we adopt such a notation in order to be able

later to consider di¤erent speci�cations of learning algorithms that include factors

from di¤erent sets.5 So our notation is the most general that can be.

In adaptive learning models of bounded rationality it is assumed that agents do

not know the rational expectations equilibrium and instead have their own under-

standing of the relation between variables in the model. The coe¢ cients in this

relation (that are called beliefs) are updated each period as new information on

observed variables arrives (in this respect agents are modeled as if they were sta-

tisticians, or econometricians ) For the beginning, we assume that agents have the

following perceived relation among the variables in the economy, which is called the

perceived law of motion (PLM)

yt = ah + �hwt,

with ah =
�
ah1 ah2

�0
;�h =

�
h11 h12 ::: h1k
h21 h22 ::: h2k

�
in the bivariate case,

that includes all components of wt. A bit later we weaken this assumption. Though

we assume that the parameters of the PLM may di¤er across agents, we assume

that the structure of the PLMs is the same for all agents. We may also write the

average (or aggregate) PLM using the weights of agents.

yt = a+ �wt, where a =
SP
h=1

�ha
h;� =

SP
h=1

�h�
h: (6)

Thus agents have the following forecast functions based on their PLMs

bEht yt+1 = ah + �hdiag(�1; :::; �k)wt

and consequently the average forecast function is given by

bEtyt+1 = SP
h=1

�h
�
ah + �hdiag(�1; :::; �k)wt

�
= a+ �diag(�1; :::; �k)wt. (7)

After plugging the average forecast function (7) corresponding to the average

PLM (6) into the reduced form (4), we derive the actual law of motion (ALM)

yt = Aa+ �+ (A�diag(�1; :::; �k) +Bwt) : (8)

5An example when a model reduced form may not include all shocks that are present as factors
in the model structural form can be found in Evans and Honkapohja (2003b), who used the New
Keynesian model setup of Clarida, Gali and Gertler (1999).
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The rational expectations equilibrium (REE) de�ned as Etyt+1 = bEtyt+1 = bEityt+1
(see, e.g., Sargent (1993) or Evans and Honkapohja (2001) for the meaning of the

RE concept) can be calculated by equating the parameters of the average PLM (6)

with the corresponding parameters of the ALM (8). If we de�ne the T�map as a

mapping of beliefs from the average PLM (6) to the ALM (8),

T (a;�) = (Aa+ �;A�diag(�1; :::; �k) +B) , (9)

we will be able to write the REE condition as T (a;�) = (a;�).

Now we will widen the set of PLMs considered. Let us start with the following

de�nition.

De�nition 1 The active factors set is a subset of a set of histories of wit up to

time t and a constant used by agents in their PLMs.6

Following the de�nition, we renumber the subscripts corresponding to regressors

that are included into agents�active factors set from 1 to k0, and denote the set

of subscripts taken from f1; :::; kg corresponding to the active factors set as eI. As-
suming, as before, that all agents have the same structure of their individual PLMs,

agents now are assumed to have the following average perceived law of motion (PLM)

yt = a+ e� ewt

with a =
�
a1 a2

�0
; e� = � e11 e12 ::: e1k0e21 e22 ::: e2k0

�
in the bivariate case,

where ewt consists of the components of wt included in agents�active factors set.
Consequently, T�map (9) can be rewritten as

eT (a; e�) = �Aa+ �;Ae�diag(�1; :::; �k) + eB� :
where eB consists of columns of matrix B that correspond to the active factors set.

Similarly, one may try to write the REE condition as eT (a; e�) = (a; e�): However,
in this case, it is clear that for the existence of a REE, agents have to include into

6Note that by the active factors set we mean not the variables that agents are actually aware
of at time t, but essentially those that are used by agents in their PLMs (a subset that may be
smaller than the subset of actually available variables).
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their active factors set those factors wit that correspond to non-zero columns of

matrix B in the reduced form. A PLM which consists only of such factors is a PLM

that corresponds to the so�called minimal state variable (MSV) solution. Also, in

the above PLMs we have used the following assumption.

Assumption 1 Agents include in their PLM of each endogenous variable all factors

from their active factors set.7

Essentially, Assumption 1 postulates that we may write each agent�s PLM equa-

tions in matrix form, without a priori setting coe¢ cients at some factors to zero. In

addition, we assume that all agents use the same set of factors (which in matrix form

means that they use the same vector). We also note here that a similar assump-

tion on the matrix formulation of PLMs has been made by Giannitsarou (2003) and

Honkapohja and Mitra (2006).8

The Propositions below state the necessary and su¢ cient conditions for the ex-

istence and for the uniqueness of a REE in a general multivariate model with sta-

tionary AR(1) observable shocks. These conditions are well-known, but we prefer

to state them here for the reader�s convenience. To formulate the following propo-

sitions, we return back to the initial numbering of shocks, denote the constant term

in the active factors set of agents as w0 and take �0 = 1 and B0 = �. So, now i

takes integer values from 0 to k. We will denote this set as I0 and the corresponding

set of subscripts taken from I0 = f0; 1; :::; kg as eI0. Note that the constant term is

always included as a factor in any active factors set, therefore 0 always belongs to

I0:

7So we exclude situations when agents do not include into the PLM equation of one endogenous
variable some factor having a zero coe¢ cient in matrix B of the reduced form, while including
the same factor in the PLM equation of the other endogenous variable, with this factor having a
non�zero coe¢ cient in matrix B of the reduced form. We assume that agents do not know the true
structure of the reduced form and use all the available information to form their expectations. So,
if one factor is present in one PLM equation, it is present in another PLM equation.

8Notice that here we also do not consider situations of the restricted perceptions equilibrium
(RPE), the discussion of which may be found, for example in Evans and Honkapohja (2001). In
our terminology, for the situation of the RPE, one has to assume that agents do not include into
their active factors set some of the factors that are present in a unique REE, that is, factors that
correspond to non�zero coe¢ cients in matrix B. Here we introduce the notion of the active factors
set only to allow for considering the PLMs not only corresponding to the MSV, but also those PLMs
that include more factors than enough to determine a unique REE. It is done to derive the "strong
��stability" or "strong ��instability result." (Compare to the notion of "strong E�stability" in the
homogeneous learing literature.)
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Proposition 1 (Necessary and su¢ cient conditions for existence of a REE) Under

Assumption 1, a REE solution exists if and only if agents�active factors set includes

among others all wi such that Bi 6= 0 in the reduced form and rank(�iA � I) =

rank(�iA� I; Bi _) for i such that det (�iA� I) = 0 and Bi 6= 0.

Proof. See Appendix A. �

Proposition 2 (Necessary and su¢ cient conditions for existence and uniqueness

of a REE): Under Assumption 1, a REE solution exists and is unique if and only

if agents�active factors set includes, among others, all wi such that Bi 6= 0 in the
reduced form and for all wi included, det (�iA� I) 6= 0:

Proof. See Appendix A. �

So, in what follows we always assume that Assumption 1 and the necessary and

su¢ cient conditions9 for existence of a REE hold true. Basically, we assume that in

both equations of their PLM, agents use at least all the regressors that appear in the

right�hand side of the reduced form (4), and that the REE solution (either unique

or multiple) exists under this PLM. That is, in principle, we consider all possible

PLMs that satisfy these conditions.

After specifying PLMs of agents and conditions for existence and uniqueness of

the REE we are ready to introduce heterogeneous learning of agents in the economy

considered and derive conditions for stability of the REE under this learning. Then

we use these conditions to study stability under heterogenous learning in the general

New Keynesian model when optimal monetary policy rules are applied.

3 Heterogeneous Learning and the Concept of ��
stability

The model (4) and (3) that we consider belongs to the class of multivariate forward�

looking economic models. Thus we naturally employ the general framework and

9The propositions above have a similar meaning to Proposition 1 of Honkapohja and Mitra
(2006): again, the condition requires matrices participating in the derivation of the RE values of
beliefs to be invertible. So, the above propositions stress that we are aware of cases when an REE
may not exist and of the conditions that are required for its existence (and uniquness).
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notation from Honkapohja and Mitra (2006), who were the �rst to formulate the

general criterion for stability of a multivariate forward�looking economy under het-

erogeneous learning.

Honkapohja and Mitra (2006) consider the class of linear structurally heteroge-

neous forward-looking models with S types of agents with di¤erent forecasts pre-

sented by

yt = �+
SP
h=1

AhÊ
h
t yt+1 +Bwt; (10)

wt = Fwt�1 + vt; (11)

where yt is an n�1 vector of endogenous variables, wt is a k�1 vector of exogenous
variables, vt is white noise, Êht yt+1 are (in general, non-rational) expectations of the

endogenous variable by agent type h, Mw = limt!1wtw
0
t is positive de�nite, and F

is such that wt follows a stationary VAR process.

The PLM is presented by (6). Part of agent types, h = 1; S0, is assumed to

use the RLS learning algorithm, while the rest, h = S0 + 1; S, are assumed to use

the SG learning algorithm.10 Moreover, all of them are assumed to use possibly

di¤erent degrees of responsiveness to the updating function that are presented by

di¤erent degrees of inertia �i > 0, constant coe¢ cients before the common for all

agents decreasing gain sequence in the learning algorithm.11

It is worth noting that the model (4) and (3) that we consider belongs to the

subclass of models considered by Honkapohja and Mitra (2006), namely, a class of

structurally homogeneous forward looking models. Structural heterogeneity in the

setup of Honkapohja and Mitra (2006) is expressed through matrices Ah, which are

assumed to incorporate mass �h of each agent type. That is, Ah = �h � Âh, where
Âh is de�ned as describing how agents of type h respond to their forecasts. So these

are the structural parameters characterizing a given economy. Those may be ba-

sic characteristics of agents, like the ones describing their preferences, endowments,

and technology. Structural heterogeneity means that all Âh�s are di¤erent for dif-

ferent types of agents. When Âh = A and
P
�h = 1; the economy is structurally

10Essentially, the part of agents using RLS are assumed to be more sophisticated in their
learning, because from the econometric point of view, the RLS algorithm is more e¢ cient since it
uses information on the second moments.
11Honkapohja and Mitra (2006) use a more general formulation of degrees of inertia.
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homogenous.

When we apply conditions for a structurally homogeneous economy, Ah = �hA,

where
SX
h=1

�h = 1, and 1 > �h > 0; to the model (10) and (11) considered by

Honkapohja and Mitra (2006), we get

yt = �+
SX
h=1

AhÊ
h
t yt+1 +Bwt = �+

SX
h=1

�hAÊ
h
t yt+1 +Bwt =

= �+ A

SX
h=1

�hÊ
i
tyt+1| {z }

Êavert yt+1

+Bwt,

which is exactly the formulation of the structurally homogeneous model considered

by Giannitsarou (2003).12 Thus conditions for stability valid for the (more general)

class of structurally heterogeneous forward�looking models remain valid for the class

of structurally homogeneous models.

After denoting zt = (1; wt) and �h;t = (ah;t;�h;t); the formal presentation of the

learning algorithms in this model can be written as follows.

RLS: for h = 1; S0

�h;t+1 = �h;t + �h;t+1R
�1
h;tzt

�
yt � �0h;tzt

�0
(12)

Rh;t+1 = Rh;t + �h;t+1
�
zt�1z

0
t�1 �Rh;t

�
SG: for h = S0 + 1; S

�h;t+1 = �h;t + �h;t+1zt
�
yt � �0h;tzt

�0
(13)

Honkapohja and Mitra (2006) show that stability of the REE, �t, in this model is

12Heterogeneous learning in the structurally homogeneous case was considered by Giannitsarou
(2003) for a more general class of self�referential linear stochastic models, which includes in itself
the case of forward�looking models. Since our setup does not assume lagged endogenous variables,
we concentrate on the structurally homogeneous case of forward�looking models that are a subclass
of models considered by Giannitsarou (2003) and at the same time are a special case of the setup
of Honkapohja and Mitra (2006).
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determined by stability of the ODE13:

d�h
d�

= �h (T (�
0)0 � �h) ; h = 1; S0

d�h
d�

= �hMz (T (�
0)0 � �h) ; h = S0 + 1; S,

where Mz = limt!1Eztz
0
t.

The conditions for stability of this ODE give the general criterion for stability

result for this class of models presented in Proposition 5 in Honkapohja and Mitra

(2006). In the economy (10) and (11), the mixed RLS/SG learning (12) and (13)

converges globally (almost surely) to the minimal state variable (MSV) solution if

and only if matricesD1
 andDw
F have eigenvalues with negative real parts, where

D1 =

0B@ �1In � � � 0
...

. . .
...

0 � � � �SIn

1CA ;
 =

0B@ A1 � In � � � AS
...

. . .
...

A1 � � � AS � In

1CA (14)

Dw =

0B@ Dw1 � � � 0
...

. . .
...

0 � � � DwS

1CA ;
Dwh = �hInk; h = 1; S0
Dwh = �h (Mw 
 In) ; h = S0 + 1; S


F =

0B@ F 0 
 A1 � Ink � � � F 0 
 AS
...

. . .
...

F 0 
 A1 � � � F 0 
 AS � Ink

1CA ;

with 
 denoting the Kronecker product.
Note, that agents in the setup of Honkapohja and Mitra (2006) are assumed to

use PLMs that correspond to the so-called MSV solution, i.e., include all factors that

appear in the right hand side of the reduced form. However, Honkapohja and Mitra

(2006) in their proof of conditions for stability of the system do not have restrictions

on the matrix B: This means that we may, in principle, consider additional factors in

learning that enter the reduced form with zero coe¢ cients in matrix B for all agents.

This means that we may consider the criterion conditions for all possible PLMs that

13In the general case, to obtain the associated ODE, one has to take the math expectation of
the RHS term (at the gain sequence) from the stochastic recursive algorithm (SRA) speci�cation
of a learning algorithm, with respect to the limiting distribution of the state vector. See Ch. 6.2 in
Evans and Honkapohja (2001) for assumptions on the learning rule and state dynamics that have
to hold so that we are able to apply the theory on SRA and local convergence analysis and the
general formula for ODE (6.5) on p. 126.
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include (among others) all factors that appear in the right hand side of the reduced

form, satisfying conditions for existence speci�ed in the previous chapter.

Kolyuzhnov (2006) shows that in the "diagonal" environment, namely

F = diag(�1; :::; �k);Mw = diag

�
�21

1� �21
; :::;

�2k
1� �2k

�
; (15)

which we consider in this paper, the problem of �nding stability conditions for both

D1
 andDw
F is simpli�ed to �nding stability conditions forD1
 andD1
�l;where


�l is obtained from 
 by substituting all Ah with �lAh, where j�lj < 1 as wt follows
a stationary VAR(1) process.


�l =

0B@ �lA1 � In � � � �lAS
...

. . .
...

�lA1 � � � �lAS � In

1CA ;8l = 0; :::; k; (�0 = 1): (16)

Kolyuzhnov (2006) uses a special blocked� diagonal structure of matrix D1;

which is the feature of the dynamic environment in this class of models. In a sense,

these positive diagonal D�matrices may now be called positive blocked� diagonal

��matrices. This makes it possible to formulate the concept of ��stability by anal-

ogy to the terminology of the concept of D�stability about matrices that remain

stable under multiplication by a diagonal matrix with positive elements, studied for

example in Johnson (1974).

De�nition 2 Given n; the number of endogenous variables, and S, the number

of agent types, ��stability is de�ned as stability of the economy under structurally

heterogeneous mixed RLS/SG learning for any (possibly di¤erent) degrees of inertia

of agents, � > 0.

��stability, thus formulated, has the same meaning in models with heteroge-

neous learning described above as has the E�stability condition in models with
homogeneous RLS learning. The E�stability condition is a condition for asymp-
totic stability of an REE under homogeneous RLS learning. The REE of the model

is stable if it is locally asymptotically stable under the following ODE:

d�

d�
= T (�)� �,
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where � are the estimated parameters from agents PLMs, T (�) is a mapping of the

PLM parameters into the parameters of the actual law of motion (ALM), which is

obtained when we plug the forecast functions based on the agents�PLMs into the

reduced form of the model, and � is a "notional" ("arti�cial") time. The �xed point

of this ODE is the REE of the model.14

Note that the ��stability concept comprises stability under the three types of

heterogeneous learning considered by Giannitsarou (2003). It is worth noting that

in the case of heterogeneous learning in a structurally homogeneous economy, which

we employ in the current setup, the criterion of Honkapohja and Mitra (2006) is

simpli�ed to conditions on the Jacobians considered by Giannitsarou (2003). First,

as has been discussed before, to get the structurally homogeneous economy as dis-

cussed before, one has to replace Ai in the setup of Honkapohja and Mitra (2006)

with � iA. After that, one has to make the following simpli�cations in the setup

corresponding to a particular type of heterogeneous learning considered.

The �rst type of heterogeneous learning is characterized by di¤erent initial per-

ceptions of agents and equal degrees of inertia. This type is termed transiently

heterogeneous learning by Honkapohja and Mitra (2006). The condition for stabil-

ity under this learning is easily derived from the criterion above by setting all ��s to

be equal, and setting S0 to S or to 0 in order to get transiently heterogeneous RLS

or SG learning, respectively.

The second type of heterogeneous learning considered by Giannitsarou (2003)

is such that agents use di¤erent degrees of inertia and the same type of learning

algorithm (RLS or SG). This is what Honkapohja and Mitra (2006) call persistently

heterogeneous learning in a weak form. The Jacobians for this case are easily de-

rived by setting S0 to S or to 0 in order to get heterogeneous RLS or SG learning,

respectively, and allowing for possibly di¤erent ��s.

The third type of heterogeneous learning considered by Giannitsarou (2003) is

14Notice that ��stability conditions on the Jacobian in the general forward�looking model of
Honkapohja and Mitra (2006) do not depend on the particular equilibrium point (in case of multiple
equilibria), because the system of di¤erential equations is linear in this setup, in which case the
�rst derivatives of the RHS of the associated ODE do not depend on a particular value of a RE
equilibrium. So if stability conditions are satis�ed for a given Jacobian, then all equilibrium points
are stable. Convergence to a particular point depends on the initial conditions. In this paper we
do not consider how equilibrium selection is made.
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Type of heterogeneity Type of learning Assumptions in the general
H&M (2006) model
structurally structurally
heterogeneous homogeneous
Ah = �hÂh Ah = �hA

I Di¤erent initial perceptions RLS �h = � for all h, S0 = S
(transiently heterogeneous SG �h = � for all h, S0 = 0
learning)
II Di¤erent degrees of inertia RLS S0 = S
(persistently heterogeneous SG S0 = 0
learning in a weak form)
III Di¤erent learning algorithms RLS and SG
(persistently heterogeneous
learning in a strong form)

Table 1: Types of heterogeneity in learning.

characterized by possibly di¤erent initial perceptions, possibly di¤erent degrees of

inertia, and by di¤erent agents using di¤erent learning algorithms (RLS or SG).

Such kind of learning Honkapohja and Mitra (2006) call persistently heterogeneous

learning in a strong form. The stability Jacobians for this case are derived by

writing the general criterion for stability for the structurally homogeneous case, i.e.,

by setting Ai = � iA.

The relation between the above�described formulations of the types of heteroge-

neous learning by Giannitsarou (2003) and by Honkapohja and Mitra (2006) can be

conveniently summarized in the following table15:

Notice that in the "diagonal" case (15), ��stability does not depend on S0. Thus

15Note that there is one type of heterogeneous learning that was not introduced by Giannit-
sarou (2003) and is introduced here. It is heterogeneity in degrees of inertia under which all
types of agents use the SG learning algorithm. Although Honkapohja and Mitra (2006) have the
general criterion for stability in this case (as discussed above), their formulation includes only
forward�looking models. In the general setup of self-referential structurally homogeneous mod-
els of Giannitsarou (2003), the stability conditions under such type of learning (in Giannitsarou
(2003) notation, naturally extended from her proofs) would depend on the stability of matrix
JSG2 (�f ) = diag (�1; :::; �S)
 I 
M (�f ) J

LS
1 (�f ), where �f is an REE, M (�f ) is de�ned simi-

larly toMz and JLS1 (�f ) is a Jacobian that de�nes stability in case of the �rst type of heterogeneity
(di¤erent initial perceptions of agents) when all agents use RLS learning. For details, see Giannit-
sarou (2003) . Again, it is clear that in the forward�looking case these conditions for stability fall
under the general stability criterion of Honkapohja and Mitra (2006) with S0 = 0 (see the table
above).
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if the economy (10), (11) and (15) is ��stable, it is stable under all three types of

heterogeneous learning and under RLS and SG homogeneous learning.

4 Conditions for ��stability of Structurally Ho-
mogeneous Models

After establishing the universal role of the concept of ��stability for stability under

all three types of heterogeneous learning discussed above, we present necessary and

su¢ cient conditions. First, we provide the reader with a set of su¢ cient conditions

for ��stability applicable to our setup, that is, for a class of structurally homogeneous

models. We present (without proofs) the so�called aggregate economy su¢ cient

condition for the case of a structurally homogeneous model and the "same sign"

su¢ cient condition for the case of a structurally heterogeneous bivariate economy

that were derived in Kolyuzhnov (2006)

Proposition 3 For the structurally homogeneous economy (4) and (3) to be ��

stable, it is su¢ cient that at least one of the following limiting aggregated ��coe¢ cients

(which are the coe¢ cients before the expectation term of a one�dimensional forward�

looking aggregate economy model. For details see Kolyuzhnov (2006)): max
i

X
j

jaijj

and max
j

X
i

jaijj are less than one, where aij denotes an element in the ith row and

the jth column of A.

Proposition 4 In case n = 2, the economy (10), (11) and (15) is ��stable if the

corresponding matrix 
, de�ned in (14), is stable and the following "same sign"

condition holds true:

det (��lAi) � 0; [detmix (��lAi;��lAj) + detmix (��lAj;��lAi)] � 0; i 6= j;M1(��lAi) � 0

or

det (��lAi) � 0; [detmix (��lAi;��lAj) + detmix (��lAj;��lAi)] � 0; i 6= j;M1(��lAi) � 0;

8l = 0; 1; :::; k; (�0 = 1);

where mix (��lAi;��lAj) denotes a matrix of structural parameters of a pairwise�
mixed economy and is composed by mixing columns of a pair of matrices �lAi; �lAj,

for any i; j = 1; S.
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It is also possible to derive some necessary conditions and su¢ cient conditions of

��stability in the structurally homogeneous case in terms of the values of eigenvalues

of the matrix of structural parameters of the reduced form, A. It is possible by the

direct application of the characteristic equation approach, when one requires that

all the roots of the polynomial (that are eigenvalues of the Jacobian matrix) be less

than zero for stability, the latter being equivalent to the well-known Routh�Hurwitz

conditions.

Proposition 5 If all eigenvalues of A are real and less than one, then the struc-

turally homogeneous system (4) and (3) with two agents is ��stable, that is, stable

under the three types of heterogeneous learning: agents with di¤erent initial percep-

tions with RLS or SG learning, agents with possibly di¤erent degrees of inertia with

RLS or SG learning, and agents with di¤erent learning algorithms, RLS and SG.

For the structurally homogeneous system (4) and (3) with any number of agents to

be ��stable, it is necessary that all real roots of A be less than one. This gives a

test for non���stability.

Proof. See Appendix A. �

In the proof of the proposition above, using the structure of the Jacobian matrices

in our setup, we have derived a su¢ cient condition for stability under all three types

of heterogeneous learning with two agent types. We did this using the criterion for

stability of Honkapohja and Mitra (2006). For the case of real roots of A, we have

shown that in this setup, the analysis of stability of a particular Jacobian turns

into the analysis of stability of A, which gives us very simple eigenvalues conditions.

Also, using the general criterion of Honkapohja and Mitra (2006), we have proved

here the necessary conditions for ��stability (the failure of which is su¢ cient for

non���stability) for the case of an arbitrary number of agent types.

5 Optimal Policy Rules and the Structure of the
Reduced Forms

After deriving and stating the conditions for stability under the three types of hetero-

geneous learning discussed in the previous section, we are ready to study the general
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New Keynesian model (1), (2) and (3) for stability under heterogenous learning when

optimal monetary policy rules are applied. Here we describe the types of optimal

policy rules that are analyzed in this study.

The policy maker is assumed to use the loss function minimization problem,

which comes from the �exible in�ation targeting approach (a policy regime adopted

in several countries in the 1990s), described and defended by Svensson (1999). The

central bank here has two options: adopt a discretionary policy, by solving the prob-

lem every period, or commit to a rule which is once and for all derived from the

minimization of the in�nite horizon loss function. Svensson (1999) and Cecchetti

(2001) advocate the �rst option, which is essentially commitment to a certain behav-

ior (minimizing the loss function) with reconsidering the optimal rule every period,

so that to take into account new information. They provide various arguments,

like ine¢ ciency (in general) of instrument rules designed to respond only to target

variables or the way monetary policy decisions are made in practice.

The in�nite horizon loss function of the policy maker for the �exible in�ation

targeting approach looks as follows.

1

2
Et

1X
i=0

�i
�
� (xt+i � �x)2 + (�t+i � ��)2

�
According to the discussion above, we assume the discretionary policy of the policy

maker and the problem of minimizing the loss function simpli�es to solving each

period

min
1

2

�
� (xt � �x)2 + (�t � ��)2

�
+Rt (17)

subject to

�t = c2 + �xt + Ft

(the central bank takes the remainder terms of the loss function Rt; and the con-

straint Ft = � bEt�t+1 + �2wt as given).

The classi�cation below of the loss�function�optimization�based rules into fundamentals�

based and expectations�based rules provided below is due to Evans and Honkapohja

(2003b). The derivation of these rules and the corresponding reduced forms is done

by Evans and Honkapohja (2003b) for a slightly more narrow setup than is assumed

22



here (we assume general structure of autoregressive shocks), therefore in the deriva-

tions that follow below we basically repeat their steps extending them for our setup.

5.1 Expectations�based Optimal Policy Rules

The expectations�based policy rule implies the central bank�s reaction to (possibly

non-rational) expectations of private agents, assuming that these expectations are

observable (or can be estimated). Its general form is it = �0+��Êt�t+1+�xÊtxt+1+

�0wwt: The coe¢ cients of this rule are obtained by solving the equilibrium conditions:

structural equations with non�rational expectations of private agents (1) and (2)

and the �rst order conditions (FOC) of the optimization problem of the central

bank (17), � (�t � ��) + � (xt � �x) = 0. Thus, the expectations�based policy rule

looks as follows:

it = �0 + ��Êt�t+1 + �xÊtxt+1 + �0wwt, where (18)

�0 = �
�
�2 + �

��1
��1

�
��� + ��x� �c2 �

�
�+ �2

�
c1
�
,

�� = 1 +
�
�2 + �

��1
��1��, �x = ��1, �w = ��1�1 +

�
�2 + �

��1
��1��2

After plugging this policy rule into the IS curve equation, we get the following

reduced form.

yt = cE + AEÊtyt+1 + �Ewt,

wt = Fwt�1 + �t,

yt =
�
�t xt

�0
, where F = diag(�i), j�ij < 1; �it � iid

�
0; �2i

�
; i = 1; n,

AE =

 
��
�
�2 + �

��1
0

���
�
�2 + �

��1
0

!
, (19)

cE =

�
c2 + � (c1 � ��0)

c1 � ��0

�
, �E =

 
�02

h
1� �2

�2+�

i
� �2

�2+�
�02

!

Note that the REE solution is not needed either for deriving matrix AE, or for

deriving the coe¢ cients of the optimal expectations�based policy rule. The REE

solution will be needed for deriving the optimal fundamentals�based policy rule, and

therefore will be derived in the corresponding part of the text.
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5.2 Fundamentals�based Optimal Policy Rules

In general, the fundamentals�based policy rule (not necessarily optimal) has the

form

it =  0 +

nX
i=1

 wiwit =  0 +  0wwt (20)

Later we show that there exists a unique fundamentals�based optimal policy rule in

this setup and derive this rule.

Plugging this policy rule into the structural form (1) and (2), we get the following

reduced form:

yt = cF + AF bEtyt+1 + �Fwt,

wt = Fwt�1 + �t,

yt =
�
�t xt

�0
, where F = diag(�i), j�ij < 1; �it � iid

�
0; �2i

�
; i = 1; n,

AF =

�
� + �� �
� 1

�
; (21)

cF =

�
c1 � � 0

c2 + � (c1 � � 0)

�
; �F =

�
� (�� 0w + �01) + �02

�� 0w + �01

�
:

The optimal fundamentals�based rule, under the central banks� discretionary

policy, is obtained from the loss function minimization, with the central bank as-

suming that private agents have RE. With the REE structure being yt = a+�wt, its

general form is it =  0+ 
0
wwt, where wt is a vector of exogenous variables. Using the

equilibrium conditions (economy�s structural equations (1) and (2), with the REE

structure entering them and the FOC of the central bank�s optimization problem),

we obtain the coe¢ cients of the REE and of the optimal fundamentals�based policy

rule.

To get the REE, one has to write the ALM using the Phillips curve (2), the

FOC of the central bank�s optimization problem and the PLM in the general form,

yt = a + �wt, and then according to the RE principle, equate coe¢ cients of the

resulting ALM (T�mapping) with the corresponding coe¢ cients of the PLM. The

resulting ALM looks like

�t =
c2 + � [��� + ��x]

�2 + �
+

��

�2 + �
[a1 + 11�1w1t + :::+ 1n�nwnt] +

�

�2 + �
�02wt

xt =
��� + ��x

�
� �

�
�t
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and the REE looks like

�t = a�1 +
nX
i=1

�1iwit (22)

xt = a�2 +
nX
i=1

�2iwit, where

a�1 =
c2 + � [��� + ��x]

�2 + � (1� �)
; a�2 =

��� + ��x

�
� �

�
a�1 =

��
�
c2 + (1� �) [��� + ��x]

�2 + � (1� �)
,

�1i =
��2i�i

� (1� ��i) + �2
; �2i = �

�

�
�1i = �

��2i�i
� (1� ��i) + �2

; i = 1; n:

To get the optimal fundamentals�based policy rule, one has to express it using

the IS curve (1), plugging in it the REE solution (22) derived above.

it = �
1

�

 
a�2 +

nX
i=1

�2iwit

!
+

 
a�1 +

nX
i=1

�1i�iwit

!
+
1

�

 
a�2 +

nX
i=1

�2i�iwit

!
+
1

�
�01wt

As a result, the optimal fundamentals�based policy rule looks like

it =  �0 +  �0wwt, where (23)

 �0 = a�1,  
�
w =

1

�

��
21 (�1 � 1) : : : 2n (�n � 1)

�
+ �1

�
+
�
11�1 : : : 1n�n

�
.

In both cases of optimal monetary policy rules, we plug the corresponding pol-

icy rule into the structural equations and obtain the corresponding reduced form of

the model. These reduced forms were studied for stability under homogeneous RLS

learning in the Clarida, Gali, and Gertler (1999, 2002) formulation of the New Key-

nesian model by Evans and Honkapohja (2003b) , who derived the stability results for

the expectations�based rule and the instability results for the fundamentals�based

rule. We study stability and instability for the two categories of rules under the

heterogeneous learning of private agents in the general setup of the New Keynesian

model (1), (2) and (3).

6 Stability Problem in the New Keynesian Model

After deriving the reduced forms corresponding to the optimal monetary policy

rules, we are ready to check them for ��stability. To do this we have to test the

resulting matrix A of the reduced form (19) or (21) for the applicability of the

25



su¢ cient and necessary conditions for ��stability. For the situation of the optimal

expectations�based policy rule we have the following result.

Proposition 6 The general New Keynesian model with a stationary AR(1) observ-

able shocks process (1), (2) and (3) is ��stable when the optimal expectations�based

policy rule (18) is applied.16

Proof. We know that the corresponding A matrix in the optimal expectations�

based policy rule case is AE =

 
��
�
�2 + �

��1
0

���
�
�2 + �

��1
0

!
. Using the su¢ cient condi-

tion in Proposition 4, we have that 
 is stable, since its eigenvalues are determined

from the following characteristic equation det
�
AE � I2 (1 + �)

�
(1 + �)2(S�1) = 0

and therefore, are equal to �1 and ��
�
�2 + �

��1 � 1, i. e., are negative, and we
have that det (��lAi) = 0; [detmix (��lAi;��lAj) + detmix (��lAj;��lAi)] = 0;
i 6= j; M1(��lAi) = ��l�h��

�
�2 + �

��1 � (�) 0;for all l = 0; 1; :::; k (�0 = 1), so

the "same sign" condition holds true. Notice that using the "aggregate economy"

su¢ cient condition from Proposition 3, we can write two aggregate ��coe¢ cients

in the expectations�based policy rule case. These are �max1 = max
i

X
j

jaijj =

max
n
��
�
�2 + �

��1
; ��

�
�2 + �

��1o
and �max2 = max

j

X
i

jaijj = � (�+ �)
�
�2 + �

��1
.

It is clear that both coe¢ cients are less than one if � � 1. So, the "aggregate econ-
omy" su¢ cient condition for ��stability is a more restrictive condition compared

to the "same sign" condition since it requires additional assumptions on the struc-

ture of the economy. However, it can be with success applied in more than two

dimensional economies where similar "same sign" conditions are not su¢ cient for

��stability (see Kolyuzhnov (2006)). �

Note that Evans and Honkapohja (2003b) have a similar result for homogeneous

learning. The proposition below presents the instability result for the situation of

the fundamentals�based monetary policy rule.

Proposition 7 The general New Keynesian model with a stationary AR(1) observ-

able shocks process (1), (2) and (3) is non���stable when the fundamentals�based

16This result is not very surprising as Evans et al. (2005) have a convergence result under the
optimal expectations�based policy rule when all agents use SG learning.
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policy rule (20) (as well as the optimal fundamentals�based policy rule (23)) is ap-

plied.

Proof. We know that the corresponding matrix A in the fundamentals�based policy

rule case is AF =

�
� + �� �
� 1

�
. Using the "eigenvalues" necessary condition

from Proposition 5,17 we get the eigenvalues of this matrix:.�1;2 = 1 + �+���1
2

�q�
�+���1

2

�2
+ ��. Both of these eigenvalues are real and eigenvalue �1 = 1 +

�+���1
2

+

q�
�+���1

2

�2
+ �� is greater than one. So, the su¢ cient condition for

non���stability is satis�ed. �

Again, Evans and Honkapohja (2003b) have a similar result for homogeneous

learning.

Proposition 6 means that the REE in this model, resulting after implement-

ing the optimal expectations�based policy rule, is stable under the recursive least

squares and the stochastic gradient homogeneous learning and the three types of

heterogeneous learning: agents with di¤erent initial perceptions with the RLS or

SG learning, agents with di¤erent degrees of inertia with RLS or SG learning, and

agents with di¤erent learning algorithms, RLS and SG. Proposition 7 claims that

the REE of this model with the fundamentals�based policy rule is always unstable

under any type of heterogeneous and homogeneous learning of agents.

7 Conclusion

We have used the environment of the New Keynesian model to explore the question

of stability of two categories of optimal monetary policy rules under the assumption

of heterogeneous learning of private agents.

These two categories were introduced by Evans and Honkapohja (2003b), and

this division is based on the assumption about the central bank�s perception of

private agents�expectations: RE or possibly non-rational. Under the central bank

17In principle, we could also use our necessary conditions for ��stability (derived in Kolyuzhnov
(2006)) to show the instability of the fundamentals�based rule. However, these may be more
di¢ cult to check than the necessary conditions on eigenvalues that we derived in this paper.
Besides, our eigenvalues necessary conditions work for the case of an arbitrary number of agent
types.
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assuming private agents to have RE, the fundamentals�based rule is obtained, while

the case of the central bank assuming possibly non-rational expectations of private

agents results in the expectations�based rule.

The purpose of this research was, on the one hand, to explore whether, given

structural homogeneity of the model, heterogeneity in learning of agents in�uences

the stability results implied by the application of either of the two categories of

policy rules.

Using the general criterion for stability of Honkapohja and Mitra (2006) and

the su¢ cient ��stability conditions derived in Kolyuzhnov (2006) for the case of

heterogeneous learning, we obtain results similar to those obtained by Evans and

Honkapohja (2003b) for the case of homogeneous learning. In particular, under the

fundamentals�based policy rule, the model economy is always unstable, so there

is no convergence to the associated REE of the model, while there is stability un-

der the optimal expectations�based rule and the economy converges to the REE

corresponding to the optimal monetary policy without commitment.

The above�described results have been obtained using only the structure of the

model, so there is no dependence on heterogeneity of any type considered. This

implies that in the New Keynesian model, the stability results are independent of

heterogeneity in learning, so the representative agent hypothesis is applicable in this

setup.

The method of analysis presented in this paper allows us to check the applica-

bility of this hypothesis in the case of heterogeneous leaning of private agents in the

New Keynesian economy under Taylor�type rules (the case of internal central bank

forecasting), which do not fall under the classi�cation of Evans and Honkapohja

(2003b). This issue will be considered in a separate study.
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A Appendix

A.1 Proof of Propositions 1 and 2

The PLM in general form is yt = a + �wt. If wi is not included in the PLM, it is

re�ected in the corresponding zero column of �. The REE conditions can be written

as (�iA� In)
�
1i : : : ni

�0
+Bi = 0, i 2 I0.

It is clear that in case i is not included into the active factors set, that is�
1i : : : ni

�0
= 0, then in order to have a REE solution, Bi has to be equal

to 0, so that one can omit only those factors in the PLM , that have a zero column

in B in the reduced form. Equivalently, it is clear that if Bi 6= 0, then, in order to
have a REE solution, one should not have

�
1i : : : ni

�0
= 0, that is, one has to

include wi into the active factors set.

In case i is included in the active factors set, that is
�
1i : : : ni

�0 6= 0, the
REE solution exists if and only if the following conditions holds true.

Bi = 0, or (Bi 6= 0 and det (�iA� I) 6= 0), or (Bi 6= 0 and det (�iA� I) = 0 and

rank(�iA� I) = rank(�iA� I; Bi _)).

Combining the two cases we get the statement in Proposition 1.

For Proposition 2, one has only to transform the last conditions to guarantee the

uniqueness of the solution.

In case i is included in the active factors set, that is
�
1i : : : ni

�0 6= 0, the
REE solution exists and is unique if and only if the following condition holds true.

det (�iA� I) 6= 0.

A.2 Proof of Proposition 5 (Necessary conditions and suf-
�cient conditions in terms of eigenvalues for the struc-
turally homogeneous case)

We have to study matrix D1
�l for stability under any �h > 0, where D1 and 
�l
are de�ned in (14) and (16), respectively. Thus we consider

det
�

�l �D�1

1 �I
�
= det

26664
�lA1 �

�
1 + �

�1

�
I � � � �lAS

...
. . .

...

�lA1 � � � �lAS �
�
1 + �

�S

�
I

37775 = 0,
8l = 0; :::; k; (�0 = 1),
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where Ah = �hA,
P
�h = 1.

It is clear from the structure of the matrix above that � = ��i0 is a root if and
only if at least one of the following holds true: �A is singular or there exists at least

one other �j that equals �i0. (If A is singular, then �h = ��h; h = 1; S are the roots.
That is, if none of ��0s is the root, then A is non-singular.)
Assume that A is non-singular and all �h�s are di¤erent, that is assume that

none of ��0s is the root. If there are roots other than ��0hs (the case of eigenvalues
�h = ��h < 0 is obvious), then they satisfy the characteristic equation for obtaining
the eigenvalues of D1
�l that are not equal to ��h:

det
�

�l �D�1

1 �I
�
= det

26664
�lA1 �

�
1 + �

�1

�
I � � � �lAS

...
. . .

...

�lA1 � � � �lAS �
�
1 + �

�S

�
I

37775 =
(subtracting the last row from other rows)

= det

26666666664

�
�
1 + �

�1

�
I 0 � � � 0

�
1 + �

�S

�
I

0 �
�
1 + �

�2

�
I � � � 0

�
1 + �

�S

�
I

...
...

. . .
...

...

0 0 � � � �
�
1 + �

�S�1

�
I

�
1 + �

�S

�
I

�lA1 �lA2 � � � �lAS�1 �lAS �
�
1 + �

�S

�
I

37777777775
=

(for � 6= �h 8h)

=

�
1 +

�

�1

�
� :::�

�
1 +

�

�S

�
det

266664
�I � � � 0 I
...

. . .
...

...
0 � � � �I I
�lA1�
1+ �

�1

� � � � �lAS�1�
1+ �

�S�1

� �lAS�
1+ �

�S

� � I

377775 =
(adding all columns to the last one)

=

�
1 +

�

�1

�
�:::�

�
1 +

�

�S

�
det

2666664
�I � � � 0 0
...

. . .
...

...
0 � � � �I 0

�lA1�
1+ �

�1

� � � � �lAS�1�
1+ �

�S�1

�
�
�lA1
1+ �

�1

+ :::+ �lAS
1+ �

�S

� I

�
3777775 =
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=

�
1 +

�

�1

�
� :::�

�
1 +

�

�S

�
(�1)n(S�1) det

"
�lA1
1 + �

�1

+ :::+
�lAS
1 + �

�S

� I

#
= 0:

As we consider � 6= ��h, the last equation is equivalent to

det

"
��lA1
1 + �

�1

+ :::+
��lAS
1 + �

�S

+ I

#
= 0, where Ah = �hA;

P
�h = 1.

After some calculations, we obtain

det

"
�lA

 
��1
1 + �

�1

+ :::+
��S
1 + �

�S

!
+ I

#
= 0,

and �nally

�l�k

 
�1

1 + �
�1

+ :::+
�S

1 + �
�S

!
= 1

for those �k, eigenvalues of A, that are not equal to zero. If all �k = 0, then A is a

zero matrix and the only eigenvalues of D
 are ��h�s.
As complex eigenvalues of a real matrix A come in conjugate pairs, the system

above is equivalent to8>><>>:
�l Re (�k) Re

�
�1

1+ �
�1

+ :::+ �S
1+ �

�S

�
� �l Im (�k) Im

�
�1

1+ �
�1

+ :::+ �S
1+ �

�S

�
= 1

�l Im (�k) Re

�
�1

1+ �
�1

+ :::+ �S
1+ �

�S

�
+ �l Re (�k) Im

�
�1

1+ �
�1

+ :::+ �S
1+ �

�S

�
= 0

for each pair of conjugate eigenvalues. In case of a real eigenvalue, Im (�k) = 0; the

corresponding system simpli�es to

�l Re (�k)

 
�1

1 + �
�1

+ :::+
�S

1 + �
�S

!
= �l�k

 
�1

1 + �
�1

+ :::+
�S

1 + �
�S

!
= 1

For any S we have that for eigenvalues � to be negative, it is necessary that
1

�l�k
�1

1
�l�k�1:::�S

> 0 and therefore that �l�k < 1;8l = 0; :::; k; (�0 = 1). As j�lj < 1;8l =

1; k, the latter condition is equivalent to �k < 1.

For S = 2, the system corresponding to a real eigenvalue looks as follows:8>><>>:
�l�k

�
�1

1+ �
�1

+ �2
1+ �

�2

�
= 1

�2 + �
1

�l�k

�
1
�1
+ 1
�2

�
�
�
�1
�2
+
�2
�1

�
1

�l�k�1�2

+
1

�l�k
�1

1
�l�k�1�2

= 0:
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The Routh�Hurwitz conditions for negativity of real parts of � are necessary and

su¢ cient and look as follows:8><>:
1

�l�k
�1

1
�l�k�1�2

> 0

1
�l�k

�
1
�1
+ 1
�2

�
�
�
�1
�2
+
�2
�1

�
1

�l�k�1�2

> 0
.

The system of inequalities above is equivalent to8<: �l�k < 1

�l�k <
1
�1
+ 1
�2

�1
�2
+
�2
�1

:
.

Since
1
�1
+ 1
�2

�1
�2
+
�2
�1

> 1, as 1��1
�1

+ 1��2
�2

> 0; the last system of inequalities is equivalent

to �l�k < 1;8l = 0; :::; k; (�0 = 1). As j�lj < 1;8l = 1; k, the latter condition is

equivalent to �k < 1.

Thus, we get the su¢ cient condition for stability for the case of S = 2, that all

eigenvalues of A are real and less than 1; and the necessary condition for stability

for any S is that all real eigenvalues of A have to be less than 1. Q:E:D:
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