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Abstract

I provide su¢ cient conditions and necessary conditions for stability of a structurally
heterogeneous economy under heterogeneous learning of agents. These conditions
are written in terms of the structural heterogeneity independent of heterogeneity in
learning. I have found an easily interpretable unifying condition which is su¢ cient
for convergence of an economy under mixed RLS/SG learning with di¤erent degrees
of inertia towards a rational expectations equilibrium for a broad class of economic
models and a criterion for such a convergence in the univariate case. The conditions
are formulated using the concept of a subeconomy and a suitably de�ned aggregate
economy. I demonstrate and provide interpretation of the derived conditions and
the criterion on univariate and multivariate examples, including two speci�cations
of the overlapping generations model and the model of simultaneous markets with
structural heterogeneity.

JEL Classi�cation: C62, D83, E10
Keywords: adaptive learning, stability of equilibrium, heterogeneous agents

�The major part of this paper was written while the author stayed as a visiting Ph.D. student
at the University of Cambridge, UK. The author expresses special thanks to his supervisor while
at Cambridge, Seppo Honkapohja, for continuous support of this research and immeasurable help
and advice. All errors are the author�s responsibility.
The author expresses thanks to the participants of the European Economics and Finance Society

(EEFS 2006) 5th Annual Conference �European Labour Markets, Trade and Financial Flows and
Economic Growth�in Heraklion, Crete, Greece, May, 18-21, 2006 and CEF 2006, Limassol, Cyprus,
June, 17-21, 2006 for valuable discussion.

yDmitri.Kolyuzhnov@cerge-ei.cz.
zCERGE�EI is a joint workplace of the Center for Economic Research and Graduate Education,

Charles University, and the Economics Institute of the Academy of Sciences of the Czech Republic.

1



Abstrakt

V této práci pµredkládám nutné a postaµcující podmínky pro stabilitu strukturálnµe
heterogenní ekonomiky pµri heterogenním uµcení agent°u. Tyto podmínky jsou urµceny
v pojmech strukturální heterogenity nehledµe na heterogenitu uµcení. Na�el jsem
snadno interpretovatelnou sjednocující podmínku, která je postaµcující pro konver-
genci ekonomiky pµri smí�enémRLS/SG uµcení s rozdílnými stupni setrvaµcnosti smµerem
k rovnováze racionálních oµcekávání pro �irokou tµrídu ekonomických model°u a kri-
terií pro konvergenci v pµrípadµe jedné promµenné. Podmínky jsou formulovány s
pouµzitím konceptu podekonomiky a vhodnµe de�nované agregátní ekonomiky. Pµred-
kládám interpretaci odvozených podmínek a kritérium pro pµríklady s jednou a více
promµenných, vµcetnµe modelu s pµrekrytím dvou generací a modelu souµcasných trh°u
se strukturální heterogenitou.
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1 Introduction

Until some time ago, works studying models of economic dynamics assumed rational

expectations of agents. However, the need to study models under bounded ratio-

nality of agents was well argumented in Sargent (1993). Later this approach was

also adopted (among others) in works of Evans and Honkapohja, and a standard

argument in defense of bounded rationality can be found in Evans and Honkapohja

(2001), as well as in Sargent (1993).

The rational expectations (RE) approach implies that agents have a lot of knowl-

edge about the economy (e.g., of the model structure and its parameter values).

However, in empirical work, economists who assume RE equilibria in their theo-

retical model do not know the parameter values and must estimate them econo-

metrically. According to the argument of Sargent (1993), it appears more natural

to assume that in a given economy agents face the same limitations. It is then

suggested to view agents as econometricians when forecasting the future state of

the economy. Each time agents obtain new observations, they update their forecast

rules. This approach introduces a speci�c form of bounded rationality captured by

the concept of adaptive learning.

The bounded rationality approach can serve several purposes, for example, to

test the validity of the RE hypothesis by checking if a given dynamic model con-

verges over time to the rational expectations equilibrium (REE) implied by the

model (under the RE hypothesis), or for equilibrium selection (in models with mul-

tiple equilibria). In both cases we have to analyze convergence of our model under

adaptive learning to a REE. To do this, we need to check certain stability conditions.

This introduces the area of my research: studying stability conditions in models with

adaptive learning.

Following the adaptive learning literature, I consider two possible algorithms

used to re�ect bounded rationality: the generalized recursive least squares (RLS)

and the generalized stochastic gradient (SG) algorithms. Both algorithms are exam-

ples of econometric learning.1 Each period agents update the parameter estimates

1One more type of econometric learning is Bayesian learning. See Honkapohja and Mitra (2006)
for references of other forms of learning �like bounded memory rules and non-econometric learning
(including computational intelligence algorithms).
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in the following way: the updated parameter estimate equals the previous estimate

plus a linear function of the most recent forecast error multiplied by the gain para-

meter, capturing how important is the forecast error to the agent. The description

of both algorithms can be found, for example, in Evans and Honkapohja (2001); Gi-

annitsarou (2003); Evans, Honkapohja and Williams (2005); and Honkapohja and

Mitra (2006).

The di¤erence between the two algorithms is that the RLS algorithm2 has two

updating equations: one for updating the parameters entering the forecast func-

tions, the other �for updating the estimates of the second moments matrix of these

parameters. The SG algorithm assumes this matrix �xed (re�ecting modeling of

"less sophisticated" agents).

The �rst papers taking the bounded rationality approach of Sargent (1993) con-

sidered an economy of a representative agent (assuming that all agents follow the

same learning algorithm, be it RLS or SG). Later, some works began to introduce

heterogeneity in the updating procedure. The idea was to check whether the repre-

sentative agent hypothesis (implied by homogenous learning) in learning in�uences

stability results. It has been demonstrated that, in general, stability under homo-

geneous learning does not imply stability under heterogeneous learning. Examples

of such works are Giannitsarou (2003), who assumed agents homogeneous in all

respects but the way they learn, and Honkapohja and Mitra (2006), who consider

a general setup assuming both structural heterogeneity and heterogeneous learn-

ing. Both papers study stability conditions of the economy. Honkapohja and Mitra

(2006) derive a general stability criterion, in which stability is de�ned both in terms

of the model structure and learning characteristics.

The di¤erence in learning characteristics across agents means heterogeneity in

learning. Among these learning characteristics are initial perceptions meaning that

agents may have di¤erent perceptions about the economy re�ected in di¤erent initial

values in their learning algorithms; the type of the updating algorithm: RLS or

SG (re�ecting "sophisticated" and "less sophisticated" agents, respectively); and

parameters of the updating algorithm (degree of inertia) � relative weights agents

2The RLS algorithm (non-generalized) can be obtained from OLS estimation of parameters by
rewriting it in the recursive form. The generalized RLS is derived from RLS by substituting the
gain sequence 1=t used in updating the regression coe¢ cients with any decreasing gain sequence.
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put on the most recent forecast error, while updating the parameter estimates in

their forecast functions (it can be called the speed of updating, re�ecting how agents

di¤er in their reaction to innovation).

A combination of all di¤erences in the learning characteristics described above

can be expressed by the type of learning when one part of agents uses the RLS

algorithm and the other part uses the SG algorithm, and all of them have di¤erent

degrees of inertia as well as di¤erent initial perceptions. Such type of learning algo-

rithm is called mixed RLS/SG learning with (possibly) di¤erent degrees of inertia.

In my paper I solve the following open question posed by Honkapohja and Mitra

(2006) � to �nd conditions for stability of a structurally heterogeneous economy

under mixed RLS/SG learning with (possibly) di¤erent degrees of inertia in terms

of structural heterogeneity only, independent of heterogeneity in learning.

Though Honkapohja and Mitra (2006) have formulated a general criterion for

such stability and have been able to solve for su¢ cient conditions for the case of

a univariate model (model with one endogenous variable), they did not derive the

conditions (necessary, and/or su¢ cient) in terms of the model structure only, in-

dependent of learning characteristics, for the general (multivariate) case with an

arbitrary number of agent types and any degree of inertia.

As, in essence, the criterion (in its su¢ ciency part) for stability of a structurally

heterogeneous economy under mixed RLS/SG learning by Honkapohja and Mitra

(2006) implies looking for su¢ cient conditions forD�stability of a particular stability

Jacobian matrix corresponding to the model, where, according to Johnson (1974, p.

54), �the D�stables are just those matrices which remain stable under any relative

reweighting of the rows or columns,�I use di¤erent sets of su¢ cient conditions forD�

stability of this Jacobian matrix and simplify them using a particular structure of the

model, and try to provide the derived conditions with some economic interpretation.

Speci�cally, in this paper I conduct a systematic analysis of this problem. First,

I analyze what has been done so far in mathematics on deriving su¢ cient conditions

for stability of a matrix in the most general setup of a matrix di¤erential equation:

_x = Ax + b, where A has the form D
, with D being a positive diagonal matrix.

It has turned out that the most general results can be grouped according to the

perspective from which the problem was approached.
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One group of results is based on the Lyapunov theorem3 and its application to

D�stability by the theorem of Arrow and McManus;4 another group is based on the

negative diagonal dominance condition which is su¢ cient for D�stability (McKenzie

theorem5); a third set of results can be derived from the characteristic equation

analysis, using Routh�Hurwitz necessary and su¢ cient conditions6 for negativity of

all eigenvalues of the polynomial of order n; and the last set of su¢ cient results can

be derived using an alternative de�nition of D�stability7 that allows to bypass the

Routh�Hurwitz conditions.

Among the approaches mentioned above, the ones that are based on the negative

diagonal dominance, the characteristic equation analysis, and the alternative de�-

nition (criterion) of D�stability turn out to be fruitful, each to a di¤erent extent.

(The condition based on the Lyapunov theorem looks very theoretical and econom-

ically intractable here.) Using the negative diagonal dominance and the alternative

de�nition of D�stability, I have derived the "aggregate economy stability" and the

"same sign" su¢ cient conditions. As for the characteristic equation analysis, I have

been able to derive a block of necessary conditions using the negativity of eigen-

values requirement, bypassing the Routh�Hurwitz conditions since they are quite

complicated and do not have economic interpretation.

I have studied each group of results in application to the particular setup of

models I am working with in order to make the procedure of testing for stability

more tractable and at the same time to attach some economic interpretation to this

very procedure. The conditions derived are then adapted by me to more simple cases

of the general framework considered, namely, univariate economy and structurally

homogeneous economy case.

Among the di¤erent su¢ cient conditions and necessary conditions that I have

derived, I would like to highlight an easily interpretable unifying condition which

is su¢ cient for convergence of a structurally heterogeneous economy under mixed

RLS/SG learning with di¤erent degrees of inertia towards a rational expectations

3See Theorem A.2 in Appendix A.2.
4See Theorem A.3 in Appendix A.2.
5See Theorem A.4 in Appendix A.3.
6See Theorem A.5 in Appendix A.4.
7See Theorem A.6 in Appendix A.5.
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equilibrium for a broad class of economic models and a criterion for such a conver-

gence in the univariate case. These conditions are formulated using the concept of

a subeconomy and a suitably de�ned aggregate economy.

The rest of the paper is structured as follows. In the next section I present the

environment I am working with: a structurally heterogeneous economy under mixed

RLS/SG learning of agents and introduce and explain the concept of ��stability

used to explain the stability of a structurally heterogeneous economy under mixed

RLS/SG learning for any (possibly di¤erent) degrees of inertia of agents. Section 3 is

devoted to su¢ cient conditions for such a stability, among which are the "aggregate

economy" and the "same sign" conditions. In Section 4, I present the necessary

conditions for ��stability8 that are based on the characteristic equation approach. In

Section 5, I demonstrate and provide an interpretation of the derived conditions and

the criterion on univariate and multivariate examples, including two speci�cations

of the overlapping generations model and the model of simultaneous markets with

structural heterogeneity. Section 6 concludes the paper.

2 The Model and Concept of ��stability

Deriving conditions for stability of a structurally heterogeneous economy under

mixed RLS/SG learning for any (possibly di¤erent) degrees of inertia of agents,

I naturally employ the general framework and notation from Honkapohja and Mi-

tra (2006), who were the �rst to formulate a general criterion for stability of a

structurally heterogeneous economy under mixed RLS/SG heterogeneous learning.

Structural heterogeneity here means that expectations and learning rules of di¤erent

agents are di¤erent, as well as may be di¤erent their fundamental characteristics,

such as preferences, endowments, and technology (as opposed to structural homo-

geneity, which corresponds to the assumption of a representative agent).

�Mixed RLS/SG learning�refers to persistently heterogeneous learning, de�ned

by Honkapohja and Mitra (2006) as the one arising when di¤erent agents use dif-

ferent types of learning algorithms. In the setup of Honkapohja and Mitra (2006)

these are RLS and SG algorithms.9

8The formal de�nition of this concept is given in the corresponding part of the paper.
9More on this (as well as some useful reference for a more detailed study of the terms) can
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The class of linear structurally heterogeneous models with S types of agents with

di¤erent forecasts is presented by

yt = �+
SP
h=1

AiÊ
h
t yt+1 +Bwt; (1)

wt = Fwt�1 + vt; (2)

where yt is an n�1 vector of endogenous variables, wt is a k�1 vector of exogenous
variables, vt is a vector of white noise shocks, Êh

t yt+1 are (in general, non-rational)

expectations of the vector of endogenous variables by agent h. It is further assumed

that F (k�k matrix) is such that wt follows stationary VAR(1) process withMw =

limt!1wtw
0
t being a positive de�nite matrix.

The vector form presented above is a reduced form of the model describing the

whole economy, i.e., it is an equation corresponding to the intertemporal equilibrium

of the dynamic model. In this model expectations of di¤erent agent types in�uence

the current values of endogenous variables.

I also stress the diagonal structure of matrices which I analyze, namely

F = diag(�1; :::; �k);Mw = lim
t!1

wtw
0
t = diag

�
�21
1��21

; :::;
�2k
1��2k

�
: (3)

Structural heterogeneity in the setup of Honkapohja and Mitra (2006) is ex-

pressed through matrices Ah, which are assumed to incorporate the mass �h of each

agent type. That is, Ah = �h � Âh, where Âh is de�ned as describing how agents of
type h respond to their forecasts. So these are the structural parameters charac-

terizing a given economy. Those may be basic characteristics of agents, like those

describing their preferences, endowments, and technology. Structural heterogeneity

means that all Âh�s are di¤erent for di¤erent types of agents. When Âh = A for all

h and
P
�h = 1; the economy is structurally homogenous.

In forming their expectations about the next period endogenous variables, agents

are assumed to believe that the economic system develops according to the following

model, which is called agents�perceived law of motion (PLM).

yt = ah;t + bh;twt: (4)

be found in Honkapohja and Mitra (2006). In order not to repeat Honkapohja and Mitra (2006),
I just brie�y present the general setup and the general criterion of stability results. For the full
presentation of the RLS/SG learning and the setup, please see Honkapohja and Mitra (2006).
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Mixed learning of agents is introduced as follows. Part of the agents, h = 1; S0,

are assumed to use the RLS learning algorithm, while others, h = S0 + 1; S, are

assumed to use the SG learning algorithm. Moreover, all of them are assumed to use

possibly di¤erent degrees of responsiveness to the updating function. These degrees

of responsiveness are presented by di¤erent degrees of inertia �h > 0, which, in

formulation of Giannitsarou (2003), are constant coe¢ cients before the deterministic

decreasing gain sequence in the learning algorithm, which is common for all agents.10

After denoting zt = (1; wt) and �h;t = (ah;t; bh;t); the formal presentation of the

learning algorithms in this model can be written as follows.

RLS: for h = 1; S0

�h;t+1 = �h;t + �h;t+1R
�1
h;tzt

�
yt � �0h;tzt

�0
(5a)

Rh;t+1 = Rh;t + �h;t+1
�
zt�1z

0
t�1 �Rh;t

�
(5b)

SG: for h = S0 + 1; S

�h;t+1 = �h;t + �h;t+1zt
�
yt � �0h;tzt

�0
: (6)

Honkapohja and Mitra (2006) show that stability of the REE, �t, in this model

is determined by the stability of the ODE:

d�h
d�

= �h (T (�
0)0 � �h) ; h = 1; S0 (7)

d�h
d�

= �hMz (T (�
0)0 � �h) ; h = S0 + 1; S; (8)

where Mz = limt!1Eztz
0
t =

�
1 0
0 Mw

�
and T (�0) is a mapping of the PLM para-

meters into the parameters of the actual law of motion (ALM)

yt =

�
�+

SP
h=1

Ahah;t;

�
SP
h=1

Ahbh;t

�
F +B

� �
1
wt

�
= T (�0)zt,

which is obtained when one plugs the forecast functions based on the agents�PLMs

(4)

Êh
t yt+1 = ah;t + bh;tFwt (9)

10Honkapohja and Mitra (2006) use a more general formulation of degrees of inertia as constant
limits in time of the expected ratios of agents�random gain sequences and the common deterministic
decreasing gain sequence satisfying certain regularity conditions.
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into the reduced form of the model (1) and (2). So,11

T (ah;t; bh;t) =

 
�+

SX
h=1

Ahah;t;

 
SX
h=1

Ahbh;t

!
F +B

!
. (10)

The conditions for stability of this ODE give the general criterion of stability

for this class of models presented in Proposition 5 in Honkapohja and Mitra (2006),

introduced (without proof) here for the reader�s convenience.

Criterion 1 (Proposition 5 in Honkapohja and Mitra (2006)) In the economy (1)

and (2), mixed RLS/SG learning converges globally (almost surely) to the minimal

state variable (MSV)12 solution if and only if matrices D1
 and Dw
F have eigen-

values with negative real parts, where

D1 =

0B@ �1In � � � 0
...

. . .
...

0 � � � �SIn

1CA ;
 =

0B@ A1 � In � � � AS
...

. . .
...

A1 � � � AS � In

1CA (11)

Dw =

0B@ Dw1 � � � 0
...

. . .
...

0 � � � DwS

1CA ;
Dwh = �hInk; h = 1; S0
Dwh = �h (Mw 
 In) ; h = S0 + 1; S


F =

0B@ F 0 
 A1 � Ink � � � F 0 
 AS
...

. . .
...

F 0 
 A1 � � � F 0 
 AS � Ink

1CA ,
with 
 denoting the Kronecker product.
In the "diagonal" environment I consider, the problem of �nding conditions for

stability of both D1
 and Dw
F under any (possibly di¤erent) degrees of inertia of

agents, � > 0; is simpli�ed to �nding stability conditions of D1
 and D1
�l ;where


�l is obtained from 
 by substituting all Ah with �lAh, where j�lj < 1 as wt follows
stationary VAR(1) process by the setup of the model (see Appendix A.6 for a more

detailed proof of Proposition 2 below).


�l =

0B@ �lA1 � In � � � �lAS
...

. . .
...

�lA1 � � � �lAS � In

1CA ;8l = 0; :::; k; (�0 = 1): (12)

11For details, please see Honkapohja and Mitra Honkapohja and Mitra (2006).
12As it is mentioned in ch. 8 of Evans and Honkapohja (2001), the concept of the MSV solution

was introduced by McCallum (1983) for linear rational expectations models. As is de�ned in Evans
and Honkapohja (2001), this is the solution that depends linearly on a set of variables (in our case
it is the vector of exogenous variables and the intercept); this solution is such that there is no other
solution that depends linearly on a smaller set of variables.

10



Proposition 2 (The criterion for stability of a structurally heterogeneous economy

under mixed RLS/SG learning for the diagonal environment case under any (possi-

bly di¤erent) degrees of inertia of agents, � > 0). In the structurally heterogeneous

economy (1), (2) and (3), mixed RLS/SG learning (5), (6) and (9) converges glob-

ally (almost surely) to an MSV REE solution for any (possibly di¤erent) degrees of

inertia of agents, � > 0; if and only if matrices D1
�l are stable for any � > 0,

where D1 and 
�l are de�ned in (11) and (12), respectively.

Proof. See Appendix A.6. �

I also use the special blocked� diagonal structure of matrix D1 which is the

feature of the dynamic environment in this class of models. In a sense these positive

diagonal D�matrices now may be called positive blocked� diagonal ��matrices. It

allows me to formulate the concept of ��stability by analogy to the terminology of

the concept of D�stability, studied for example in Johnson (1974).

De�nition 1 Given n; the number of endogenous variables, and S, the number

of agent types, ��stability is de�ned as stability of the structurally heterogeneous

economy (1) and (2) under mixed RLS/SG learning (5), (6) and (9) under any

(possibly di¤erent) degrees of inertia of agents, � > 0.

��stability, thus formulated, has the same meaning in models with heteroge-

neous learning described above as has the E�stability condition in models with

homogeneous RLS learning. The E�stability condition is a condition for asymp-
totic stability of an REE under homogeneous RLS learning. The REE of the model

is stable if it is locally asymptotically stable under the following ODE:

d�

d�
= T (�)� �; (13)

where � are the estimated parameters from agents PLMs, the T�map is de�ned in

(10), and � is a "notional" ("arti�cial") time. The �xed point of this ODE is the

REE of the model.
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3 Su¢ cient Conditions for ��stability

3.1 Aggregate Economy Conditions

Following the description of the approaches to stability in the introduction, I now

separately consider each of them. First, I follow the negative diagonal dominance

approach and it allows me to show that in the setting speci�ed above ��stability

depends on E�stability of the aggregate economy which is the upper boundary of

aggregate economies with weights of aggregation across agents, �, and weights of

aggregation across endogenous variables,  .

I have been encouraged by the result that follows from Propositions 2 and 3

in Honkapohja and Mitra (2006) that for stability under heterogeneous RLS or

SG learning with the same degrees of inertia, stability in the economy aggregated

across agent types (average economy) turns out to be crucial. Following Honkapohja

and Mitra (2006), who aggregated an economy across agents by introducing the

concept of average (aggregated across agents) economy, I also began to look for the

concept of an aggregate economy that has to be crucial for stability of a structurally

heterogeneous economy under mixed RLS/SG heterogeneous learning with di¤erent

degrees of inertia of agents. The basic idea is that there has to be a way to aggregate

an economy in an economically reasonable way, so that E�stability in the aggregate

economy is su¢ cient for ��stability in the original economy.

I proceed with aggregation of the economy starting from the following aggrega-

tion across agents used by Honkapohja and Mitra (2006):

yt = �+ AM ÊAV
t yt+1 +Bwt.

It turns out that it is convenient, in addition to the aggregation across agents above,

to consider aggregation across endogenous variables. The economy aggregated across

endogenous variables will no longer be a vector but a scalar, which means that it

can characterize many economies.

I rewrite the formulas used by Honkapohja and Mitra (2006) for average expec-

12



tations as

EAV
t yt+1 = (AM)�1

�
S

SP
h=1

1

S
AhE

h
t yt+1

�
AM = S

SP
h=1

1

S
Ah = S

SP
h=1

1

S
�hÂh.

After this, one can interpret the aggregation done by Honkapohja and Mitra

(2006) as follows: �rst, one takes the weight of each agent type in calculating aggre-

gate expectations of one representative agent to be equal to 1
S
and then multiplies

these expectations by S in order to be consistent with the model that consists of

S types of agents. (So that the size of the economy is preserved by replacing each

type of agent with a representative agent).

In general, when aggregating expectations one may use di¤erent weights for dif-

ferent types of agents that sum up to one in order to re�ect the relative importance

of a particular agent type expectation in the aggregate economy. So, in my aggre-

gation, I �rst create a representative agent type by averaging across all agent types

(assigning a weight to each type and summing over all types) and then I aggregate

over all types by multiplying the representative (average) agent type by S in order

to preserve the size of the aggregate economy.13

If I write the aggregate economy using di¤erent weights for aggregation of ex-

pectations across agents, I will get

ÊWeighted
t yt+1 =

�
AWeigted

��1�
S

SP
h=1

�hAhÊ
h
t yt+1

�
AWeigted = S

SP
h=1

�hAh = S
SP
h=1

�h�hÂh;

where �h > 0, h = 1; S are weights of single agent types used in calculating aggregate

expectations, such that
SX
h=1

�h = 1.

13The new dimension in weighting agent types, in addition to the mass of each agent type �h
incorporated in matrices Ah; may also have the following interpretation. I can assume that the
share of each agent type expectation in the average expectations of the population is determined
not only by their mass in the population (their physical share), but also by each type�s in�uence,
other than their share in the population (e.g., political or mass media power or other type of
in�uence in the social life of the whole population). By assigning additional weights to each agent
type I provide a measure of the share of in�uence of each agent type in the overall expectations,
bypassing the intermediate step of measuring the in�uence of each agent type on other agent types
separately.
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Next, given the weights of aggregation across endogenous variables  i > 0,
nP
i=1

 i = 1, and across agent types �h > 0,
SP
h=1

�h = 1 (and denoting ahij the el-

ement in the ith row and jth column of matrix Ah), I aggregate the economy in the

following way

yAGt =
P
i

 iyit =
P
i

 i�i +
P
h

S�h
P
i

 i
P
j

ahijÊ
h
t yjt+1 +

�P
i

 iB
i

�
wt =

=
P
i

 i�i + �AG ( ; �) ÊAG
t

�
yAGt+1

�
+

�P
i

 iB
i

�
wt, where

�AG ( ; �) = S
P
h

�h
P
i

 i
P
j

ahij; (14)

ÊAG
t

�
yAGt+1

�
= (

SP
h=1

S�h
P
i

 i
P
j

ahij| {z }
�h

)�1
SP
h=1

S�h
P
i

 i
P
j

ahij| {z }
�h

Êh
t yjt+1; (15)

and Bi denotes the ith row of B. So, using the derivations above I formulate the

following de�nition.

De�nition 2 Given the weights of aggregation across endogenous variables  i > 0,
nX
i=1

 i = 1, and across agent types �h > 0,
SX
h=1

�h = 1, the aggregate economy

for an economy described by (1), (2) and (3) is de�ned as

yAGt =
P
i

 i�i + �AG ( ; �) ÊAG
t

�
yAGt+1

�
+

�P
i

 iB
i

�
wt;

(2) and (3),

where �AG ( ; �) and EAG
�
yAGt+1

�
are de�ned in (14) and (15) respectively.

It is also useful to consider an economy that bounds above all possible economies

with all possible combinations of signs of ahij aggregated using weights  and �. This

is obviously our original aggregate model written in absolute values. When all ele-

ments in the model, ahij; endogenous variables and their expectations are positive,

this limiting model exactly coincides with the model considered. So, this is an at-

tainable supremum. Thus I have the following limiting aggregate model:

yAGt =
P
i

 iyit � yAGmodt =
P
i

 i jyitj �

14



�
P
i

 i j�ij+ �AGmod ( ; �) ÊAGmod
t

�
yAGmodt+1

�
+

�����P
i

 iB
i

�
wt

���� ; where
�AGmod ( ; �) = S

P
h

�h
P
i

 i
P
j

��ahij�� (16)

ÊAGmod
t

�
yAGmodt+1

�
= (

SP
h=1

S�h
P
i

 i
P
j

��ahij��| {z }
�h

)�1
SP
h=1

S�h
P
i

 i
P
j

��ahij��| {z }
�h

Êh
t jyjt+1j :(17)

De�nition 3 Given the weights of aggregation across endogenous variables  i > 0,
nP
i=1

 i = 1, and across agent types �h > 0,
SP
h=1

�h = 1, the limiting aggregate

economy for an economy described by (1), (2) and (3) is de�ned as

yAGmodt =
P
i

 i j�ij+ �AGmod ( ; �) ÊAGmod
t

�
yAGmodt+1

�
+

�����P
i

 iB
i

�
wt

���� ;
(2) and (3),

where �AGabs ( ; �) and E
AG
abs

�
yAGabst+1

�
are de�ned in (16) and (17) respectively.

Remark 1 If this limiting aggregate economy is E�stable, then all corresponding

aggregate economies with various combinations of signs of ahij are E�stable.

The structure of this limiting aggregate coe¢ cient �AGmod is as follows.
P
i

 i
��ahij��

is the coe¢ cient before the expectation of endogenous variable j in the aggregate

economy composed of one single agent type h. Notice that this coe¢ cient is calcu-

lated for the expectation of endogenous variable j, that enters the aggregate product

with coe¢ cient  j. So, I may name the ratio
P
i

 i
��ahij�� = j endogenous variable

j "own" expectations relative coe¢ cient. By looking at the values of these

coe¢ cients I will be able to judge the weight a particular agent type has in the econ-

omy in terms of the aggregate ��coe¢ cient. The next proposition is formulated in

terms of these relative coe¢ cients and stresses the fact that weights of agents in cal-

culating aggregate expectations have to be put into accordance with this economic

intuition in order to have stability under heterogeneous learning.

Proposition 3 If there exists at least one pair of vectors of weights for aggrega-

tion of endogenous variables  and weights � for aggregation of agents such that

15



r = 1 r = 2 r = 3 r = 4
Subset  �any, ��any  �any, � = 1

S
 = 1

n
, ��any  = 1

n
, � = 1

S

�AGmaxr = S
P
j

max
h;i

��ahij�� max
i

P
h

P
j

��ahij�� S
P
i

max
h;j

��ahij�� P
h

max
j

P
i

��ahij��
Table 1: Maximal aggregate ��coe¢ cients.

for each agent every endogenous variable�s "own" expectations relative coe¢ cient

is less than the weight of the agent used in calculating aggregate expectations, i.e.P
i

 i
��ahij�� = j < �h;8j;8h, then the economy described by (1), (2) and (3) is ��

stable.

Proof. See Appendix A.6. �

But this proposition above does not give a real rule of thumb (as it implies

looking for systems of weights) that could be used to say if a particular economy

is stable under heterogeneous learning. For this purpose I have constructed four

maximal aggregate ��coe¢ cients described below. If they are less than one, the

economic system is ��stable.

Thus I go even further looking for upper boundaries by considering not only any

possible signs of aij; but also values of weights  and �. These boundaries can be

derived for four di¤erent subsets of aggregate economies depending on the values of

weights  and �: with arbitrary weights of agents and endogenous variables, and

with either equal weights of agents 1
S
or equal weights of endogenous variables 1

n
, or

both. So, each aggregate economy from a particular subset of aggregate economies

is bounded above by the following maximal aggregate economy

yAGt =
P
i

 iyit � yAGmodt =
P
i

 i jyitj � yAGmaxt =

=
P
i

 i j�ij + �AGmaxr ÊAGmax
t

�
yAGmaxt+1

�
+

�����P
i

 iB
i

�
wt

����, where �AGmaxr is de-

�ned in Table 1.

First, let us prove that these maximal aggregate ��coe¢ cients are actually

upper boundaries for �AGmod ( ; �) = S
X
h

�h
X
i

 i
X
j

��ahij�� for di¤erent subsets of
aggregate economies. Formally, the result can be written in a form of the following

proposition.

Proposition 4 Maximal aggregate ��coe¢ cients de�ned in Table 1 are upper

16



boundaries for �AGmod ( ; �) = S
X
h

�h
X
i

 i
X
j

��ahij�� for the corresponding sub-
sets of aggregate economies.

Proof. See Appendix A.6. �

Now, it is possible to give the formal de�nition of the maximal aggregate

economy.

De�nition 4 Given the weights of aggregation across endogenous variables  i > 0,
nX
i=1

 i = 1, and across agent types �h > 0,
SX
h=1

�h = 1, the maximal aggregate

economy for an economy described by (1), (2) and (3) is de�ned as

yAGmaxt =
P
i

 i j�ij+ �AGmaxr ( ; �) ÊAGmax
t

�
yAGmaxt+1

�
+

�����
 X

i

 iB
i

!
wt

����� ;
(2) and (3),

where �AGmaxr ( ; �) is de�ned Table 1 and ÊAGmax
t

�
yAGmaxt+1

�
is de�ned to be equal

to ÊAGmod
t

�
yAGmodt+1

�
in (17).

Notice that each of the above�described boundaries is constructed in such a way

that it does not replicate the boundary for a broader set of aggregate models to

which this particular model belongs. It is possible to do so by applying the max

operator to di¤erent groupings of elements of sum and it becomes possible only

for a particular subset of aggregate models and which was not possible to apply to

a broader set. Under equal
��ahij�� = jaj all these maximal aggregate ��coe¢ cients

coincide with �AGmod ( ; �) = nS jaj. So, these are attainable maxima.
Thus I have managed to aggregate the economy into one dimension and to �nd

the limiting aggregate economies that bound all of such aggregate economies within

a particular subset. If one of these limiting aggregate economies is E�stable (i.e. if at

least one of the maximal aggregate ��coe¢ cients is less than one), then all aggregate

subeconomies from a particular subset of aggregate economies are E�stable. As I

have already mentioned the concept of a subeconomy, I shall now introduce its

formal de�nition as this concept is convenient to use in proofs and conditions for

��stability.

17



De�nition 5 A subeconomy (h1; :::; hp) of size p for an economy (1) and (2) is

de�ned as consisting only of a part of agents from the original economy:

yt = �+

pX
k=1

AikÊ
h
t yt+1 +Bwt; (18)

wt = Fwt�1 + vt; (19)

where (h1; :::; hp) � (1; :::; S) is a set of numbers of agent types present in the

subeconomy. A single economy is a particular case of a subeconomy with only one

type of agent.

Now I am ready to formulate the result which stresses the key role of E�stability

in the aggregate economy in stability of the original structurally heterogeneous econ-

omy under mixed RLS/SG learning with possibly di¤erent degrees of inertia (recall

Proposition 2 and Proposition 3 in Honkapohja and Mitra (2006)). The key result

is as follows.

Proposition 5 If one of the limiting aggregate economies is E�stable (i.e., one

of the maximal aggregate ��coe¢ cients is less than one), then the economy (1),

(2) and (3) is ��stable. Notice that all subeconomies are also ��stable under this
condition.

Proof. See Appendix A.6. �

This result gives a direct rule how to construct ��stable economies. I think that

this is quite a strong result that says that there is one economic unifying condition

(such as aggregate ��coe¢ cient less than one) such that when it holds true all the

economies with the same absolute values of ahij (with all possible combinations of

their signs) are ��stable.

This condition shows how robust is the stability of a model to a change in sign of

some coe¢ cients in the economy during the time. Also, �xing certain components in

these aggregate ��coe¢ cients, I may see how the value of other coe¢ cients is �exible

for the economy to remain ��stable. This can be useful in the case when one does

not know the exact sign of some coe¢ cient in matrix Ah, but may estimate that its

absolute value belongs to some interval with some probability (the situation typical
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for statistical interval estimation). As an example, the policy maker may know some

structural coe¢ cients in the economy and have to choose some parameters itself

(like the ones for the policy rule). This formula allows it to see what is the range of

parameters it may choose in order to make sure that the economy is ��stable.

It is possible to simplify the derived conditions for more simple cases, namely,

for a univariate model and a structurally homogeneous model.

Proposition 6 A univariate (n = 1) economy described by (1) and (2) is ��stable

for any combination of signs of coe¢ cients if and only if jA1j+ jA2j+ :::+ jAsj < 1:

Proof. Obvious: the necessary condition for 
 to be stable under any � is A1 +

::: + As < 1 It follows from the condition on the determinant of �
; which has to
be positive. This determinant equals � (A1 + :::+ As)+ 1. For the above condition

to hold true for any signs of Ah; h = 1; S, it is necessary and su¢ cient that jA1j +
jA2j+ :::+ jAsj < 1. �

Proposition 7 For a structurally homogeneous economy: Ah = �hA, �h > 0;
SX
h=1

�h =

1; to be ��stable it is su¢ cient that at least one of the following limiting aggregate

��coe¢ cients be less than one; max
i

X
j

jaijj and max
j

X
i

jaijj.

Proof. Direct application of Proposition 5. �

3.2 �Same Sign�Conditions

Following the steps of the proof of observation (iv) in Johnson (1974) (the formula-

tion of this observation is presented in Appendix A.5), which is, in fact, the alter-

native de�nition of D�stability, I get an alternative de�nition of blocked� diagonal

(Db)�stability, that is stability of Db
 for any positive blocked� diagonal matrix

Db. This alternative de�nition of Db�stability is then used to derive conditions for

��stability.

De�nition 6 (Db�stability) Matrix A of size nS � nS is Db�stable if DbA is

stable for any positive blocked�diagonal matrix Db = diag(�1; :::; �1; :::; �S; :::; �S).
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Proposition 8 (Alternative de�nition of Db�stability). Consider MnS(C); the set

of all complex nS � nS matrices, DbnS; the set of all nS � nS blocked�diagonal

matrices with positive diagonal entries. Take A 2 MnS(C) and suppose that there

is F 2 DbnS such that FA is stable. Then A is Db�stable if and only if A � iDb

is non�singular for all Db 2 DbnS. If A 2 MnS(R); �the set of all nS � nS real

matrices, then ��� in the above condition may be replaced with �+� since, for a
real matrix, any complex eigenvalues come in conjugate pairs.

Proof. (The proof is just a modi�cation of the proof of observation (iv) in Johnson

(1974) for my blocked�diagonal case) Necessity. Let A be Db�stable, that is EA

is stable for all positive blocked�diagonal E 2 DbnS. This means that �i cannot be
an eigenvalue of matrix EA for any E 2 DbnS. That is EA� iI is non�singular for

all E 2 DbnS, or A� iDb is non�singular for all Db = E�1 2 DbnS. Su¢ ciency. By

contradiction. Let A be notDb�stable. Thus, I have that there exists some E 2 DbnS

such that FA is stable, while EFA is not stable. By continuity, it follows that either

value, �i; is an eigenvalue of 1
�
(tE + (1� t)I)FA for some 0 < t � 1 and � > 0.

So, A� iDb is singular for Db = �F�1 (tE + (1� t) I)�1 2 DbnS. Contradiction. �

Taking F as an identity matrix, andD as diag( 1
�1
; :::; 1

�1
; :::; 1

�S
; :::; 1

�S
), �h > 0; h =

1; S; in the above proposition, I get the following necessary and su¢ cient condition

(criterion) for ��stability:

Proposition 9 (criterion for ��stability in terms of structural and learning het-

erogeneity) An economy described by (1), (2) and (3) is ��stable if and only if the

corresponding matrix 
, de�ned in (11), is stable and

det

�
SP
h=1

�
��lAh
1+ i

�h

�
+ I

�
= det

��
SP
h=1

1
1+ 1

�2
h

(��lAh) + I

�
� i

�
SP
h=1

1
�h

1+ 1

�2
h

(��lAh)
��

6= 0

8�h > 0; h = 1; S;8l = 0; 1; :::; k; (�0 = 1)

For the univariate case (n = 1) this condition simpli�es to 
 � stable and�
SP
h=1

1
1+ 1

�2
h

(��lAh) + 1
�

6= 0 or
SP
h=1

1
�h

1+ 1

�2
h

(��lAh) 6= 0;

or both;8�h > 0; h = 1; S;8l = 0; 1; :::; k; (�0 = 1):

20



The alternative de�nition of D�stability approach allows us to derive the

"same sign" conditions for the cases n = 1; 2 and necessary and su¢ cient conditions

for ��stability for n = 1.

Proposition 10 (Criterion for ��stability in the univariate case in terms of struc-

tural heterogeneity only) In the case n = 1; an economy described by (1), (2) and (3)

is ��stable if and only if the corresponding matrix 
, de�ned in (11), is stable and

at least one of the following holds true: the same sign condition (all Ah are greater

than or equal to zero and at least one is strictly greater than zero or all Ah are

less than or equal to zero and at least one is strictly less than zero), or all average

economies with A(h1;:::;hp) =
P

(h1;:::;hp)

Ah.corresponding to subeconomies (h1; :::; hp) of

all sizes p are not E�unstable and for each l = 0; 1; :::; k (�0 = 1) there exists at

least one average economy corresponding to subeconomy (h�1(l); :::; h
�
p(l)) in each size

p for which the stability coe¢ cient
P

(h�1(l);:::;h
�
p(l))

�lAi is strictly less than one.

Remark 2 Due to Proposition 2 of Honkapohja and Mitra (2006), E�stability/instability

of a particular average economy is necessary and su¢ cient for stability/instability of

the corresponding subeconomy under transiently heterogeneous SG learning, which

is determined by the stability of matrix 
(h1;::;hp). So, using this criterion, one may

use interchangeably the conditions for the stability of average economies or the con-

ditions for stability of subeconomies, whatever is more convenient in a particular

setting. By the same Proposition 2 of Honkapohja and Mitra (2006), the condi-

tion for stability of matrix 
 can also be considered as a condition for E�stability

of the "largest" (including all agents in calculating the average coe¢ cient) average

economy corresponding to the original economy.

Proposition 11 In the case n = 2, the economy described by (1), (2) and (3) is

��stable if the corresponding matrix 
, de�ned in (11), is stable and the following
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"same sign" condition holds true:

det (��lAi) � 0; [detmix (��lAi;��lAj) + detmix (��lAj;��lAi)] � 0; i 6= j;M1(��lAi) � 0

or

det (��lAi) � 0; [detmix (��lAi;��lAj) + detmix (��lAj;��lAi)] � 0; i 6= j;M1(��lAi) � 0;

8l = 0; 1; :::; k; (�0 = 1);

where mix (��lAi;��lAj) denotes a matrix of structural parameters of a pairwise�
mixed economy and is composed by mixing columns of a pair of matrices �lAi; �lAj,

for any i; j = 1; S.

Proof. See Appendix A.6. �

Remark 3 Unfortunately, though similar "same sign" conditions naturally follow

from the alternative de�nition of D�stability for cases n > 2; stability of 
 and

a similar "same sign" condition are not su¢ cient for ��stability in this case. For

example, a similar "same sign" condition for case n = 3 looks like

M3 (mix (��lAi;��lAj;��lAk)) > 0;M2(mix (��lAi;��lAj)) > 0;M1(��lAi) > 0

or

M3 (mix (��lAi;��lAj;��lAk)) < 0;M2(mix (��lAi;��lAj)) < 0;M1(��lAi) < 0;

8l = 0; 1; :::; k(�0 = 1)

Here, the Mn(mix()) operator means the sum of all possible principal minors of size

n of a particular mix between matrices.

4 Necessary Conditions for ��stability

The characteristic equation approach (which in my formulation leaves aside the

intractable Routh�Hurwitz conditions) has allowed me to derive strong necessary

conditions for ��stability that provide an easy test for non���stability of the model.

Note that necessary conditions do not require a diagonal structure of F and Mw.

Condition (?) All sums of the same-size principal minors of D1r (�
r) are non-
negative for all subeconomies r = (h1; :::; hp) for all p for all positive block�diagonal
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matrices D1r, where D1r and 
r de�ned similar to D1and 
 in (11) correspond to

a subeconomy of the economy under consideration.

Proposition 12 Necessary condition for ��stability: For the economy (1) and (2)

to be ��stable, it is necessary that Condition ( ?) holds true.

Proof. See Appendix A.6. �

The condition above can not be used as a test for non���stability, as it requires

checking all subeconomies�sums of minors for all possible D1r. That is why below

I have constructed a condition that has a direct testing application.

Proposition 13 Necessary condition for ��stability: For the economy (1) and

(2) to be ��stable, it is necessary that all sums of the same-size principal minors

of minus matrices corresponding to subeconomies (�
r) be non-negative for each
corresponding subeconomy r = (h1; :::; hp).

Proof. See Appendix A.6. �

I think that this is quite a strong necessary condition, which implies that a lot of

models will not satisfy it, and will not be ��stable. Note that stability of each single

economy and subeconomies is a su¢ cient condition for the condition above to hold

true. A weaker requirement that all subeconomies be not unstable (non-positive

real parts of eigenvalues) is also su¢ cient.

5 Economic Examples

5.1 Univariate Case

I exploit the same reduced form used as an example of a univariate model in

Honkapohja and Mitra (2006). Such a reduced form can be a result of equilib-

rium in a non-stochastic basic overlapping generations model (so-called Samuelson

model) developed in Chapter 4 of Evans and Honkapohja (2001). Here I develop it

for the heterogeneous agents case.

There are S types of agents in the economy, each of whom lives for two periods

(young and old). Population is constant: old agents who died in the second period
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are replaced with the same number of young agents in the next period. When

agents are young they work supplying labor nh;t and save the revenue obtained from

working; when they are old, they consume their savings in amount ch;t+1. Output

equals labor supply, so wage earned equals the same period price of the consumption

good. There is a constant stock of money, M , which is the only means of saving

in the economy. So, in a non-autarky case, there is trade in the economy between

generations: each period t, output produced by the young generation is sold to the

old agents on a competitive market using money.

Each agent h born at time t has a constant elasticity of substitution utility

function

Uh(ch;t+1; nh;t) =
(ch;t+1)

1��h

1� �h
� (nh;t)

1+"h

1 + "h
; �h; "h > 0:

Budget constraints for the �rst and second periods of the life of agent h are

ptnh;t = Mh;t

ph;et+1ch;t+1 = Mh;t;

respectively, where pt is the price of the good and Mh;t denotes the nominal savings

of agent h after the �rst period. ph;et+1 denotes expectations of the next period price

made today (they are taken to be point expectations, as the economy considered is

non�stochastic).

After solving the agent�s problem, the (real) saving function of the agent looks

like

Fh

 
ph;et+1
pt

!
�
 
ph;et+1
pt

!��1
�+"

=
Mh;t

pt
:

The market clearing condition equates total savings to the stock of money in the

economy each period

M

pt
=

SP
h=1

Fh

 
ph;et+1
pt

!
=

SP
h=1

 
ph;et+1
pt

!��1
�+"

, or

H(pt; (p
h;e
t+1)

S
h=1) �

M

pt
�

SP
h=1

Fh

 
ph;et+1
pt

!
=
M

pt
�

SP
h=1

 
ph;et+1
pt

!��1
�+"

= 0. (20)
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I use Taylor expansion to linearize this condition around the steady state pt+1 =

pt = �p =M=S,

~pt =
SP
h=1

24� @H

@pt

@H

@ph;et+1

�����
pt+1=pt=�p

35
| {z }

Ah

~ph;et+1:

@H
@pt
and @H

@ph;et+1
could be easily calculated using (20) and evaluated at the steady state.

Thus,

@H

@pt

����
pt+1=pt=�p

= �M
�p2
+
1

�p

SP
h=1

F 0h(1); (21)

@H

@ph;et+1

�����
pt+1=pt=�p

= �1
�p
F 0h(1), where

F 0h(1) =
�h � 1
�h + "h

.

So, Ah =
1��h
�h+"h

S+
P
h

�
1��h
�h+"h

� .14
It is possible to show, using the criterion for ��stability for univariate economies,

that this economy is always ��stable for any �h; �h > 0. Consequently, it is E�stable,

as well.

Proposition 14 The OLG economy de�ned above is ��stable.

Proof. I have Ah =
1��h
�h+"h

S+
P
h

�
1��h
�h+"h

� and �h; �h > 0. Writing down the second part of

the criterion in strict inequalities, I get:
P

h2(h1;:::;hp)
Ah < 1()

P
h2(h1;:::;hp)

1��h
�h+"h

SP
h=1

�h+1

�h+"h

�1 < 0

()
�

P
h=2(h1;:::;hp)

1
�h+"h

�
P

h2(h1;:::;hp)

�h
�h+"h

�
SP
h=1

"h
�h+"h

SP
h=1

�h+1

�h+"h

< 0 for any subeconomy (h1; :::; hp)

(including the original economy). For �h; �h > 0; the condition is always satis�ed.

�
14Notice, that Honkapohja and Mitra (2006) do not have minus before the �rst term in (21). My

derivations of the reduced form are algebraically analogous to their derivation, and I suspect they
lost this minus during derivation. Though their example for values of Ah remains valid for this
reduced form, the values of �h�s in agents CES utiliy functions in their overlapping generations
exchange economy could not be found in a plausible range (that is, �h < 1) for their speci�cation
of Ah�s.
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The behavior around the steady state equilibrium of the OLG exchange economy

considered by Honkapohja and Mitra (2006) is presented by the following system of

equations:

~pt =
SP
h=1

Ah~p
h;e
t+1, where (22)

Ah =
F 0h(1)

�M
�p
+
P
h

F 0h(1)
; F 0h(1) =

!2;h(2� �h) + !1;h�h
4(�h � 1)

;
M

�p
=
1

2

P
h

(!1;h � !2;h) ,

where !1;h and !2;h denote the endowment of a single good to the agent of type h

for its �rst and second periods of life, respectively. �h < 1 is a parameter of agent

of type h born in period t utility function of consumption in the �rst and the second

periods of its life: Uh(ch;t; ch;t+1) =
�
c
�h
h;t + c

�h
h;t+1

�1=�h.
Similarly to the OLG economy of the Samuelson type considered by me above,

it is possible to show that this economy is always E�stable. Moreover, for the

speci�cations satisfying !1;h > !2;h for all h = 1; S (all examples of Honkapohja and

Mitra (2006) satisfy this speci�cation), the criterion for ��stability for the univariate

economy (Proposition 10) allows me to say that the economy is ��stable.

Proposition 15 The OLG exchange economy (22) is E�stable. If !1;h > !2;h for

all h = 1; S, it is ��stable.

Proof. To prove the �rst part of the proposition, I may use only the condition on the

parameters of the utility function, �h < 1 and the condition that !1;h; !2;h > 0 From
the formula for F 0h(1) I get �h =

2!2;h+4F
0
h(1)

4F 0h(1)+!2;h�!1;h
< 1. It leads to inequality F 0h(1) <

!1;h�!2;h
4

. Using M
�p
= 1

2

SP
h=1

(!1;h � !2;h), I get
SP
h=1

F 0h(1) <
M
2�p
. Next using the formula

for Ah, I get
SP
h=1

F 0h(1) =
M
�p

P
AhP

Ah�1
< M

2�p
. As M

�p
> 0 (from its economic meaning),

I arrive at inequality
P

Ah+1P
Ah�1

< 0 that leads to �1 <
SP
h=1

Ah < 1. Condition

SP
h=1

Ah < 1 is the condition of E�stability. �

To prove the second part of the proposition, I �rst express Ah via �h,!1;h; !2;h. I have

Ah =
F 0h(1)

�M
�P
+

SP
h=1

F 0h(1)

. Substituting for F 0h(1) and
M
�P
I arrive atAh =

!2;h+!1;h
1��h

+!2;h�!1;h
SP
h=1

�
!2;h+!1;h

1��h
+!1;h�!2;h

� .
Writing down the second part of the criterion in strict inequalities I get:
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P
h�(h1;:::;hp)

Ah < 1 ()
�

P
h=2(h1;:::;hp)

!2;h+!1;h
1��h

�
SP
h=1
(!1;h�!2;h)+

P
h2(h1;:::;hp)

(!2;h�!1;h)

SP
h=1

�
!2;h+!1;h

1��h
+!1;h�!2;h

� < 0

for any subeconomy (h1; :::; hp), including the original economy. Since we have �h <

1; !1;h > !2;h � 0, the condition is always satis�ed. Q:E:D:

In addition, I will show howmy criterion works for the speci�cation of the reduced

form used by Honkapohja and Mitra Honkapohja and Mitra (2006). Let us say that

these values of Ah are possible for some other model. Honkapohja and Mitra (2006)

consider the following speci�cations: S = 3, A1 = 0:1, A2 = �0:2 and A3 = �0:5;
S = 3, A1 = �15, A2 = 0:5 and A3 = 0:6; S = 3, A1 = �15, A2 = 1:1 and A3 = 0:6.
Since I have been able to derive a criterion for ��stability in the univariate case,

I can say, looking only at the structure of the model, whether it is stable under all

types of heterogeneous learning, or not, without looking for examples with various

degrees of inertia of agents that violate convergence.

For the �rst speci�cation, applying the criterion for ��stability in the univariate

case, and �nding that the same sign condition is violated, one is left to check the

condition for stability of subeconomies: since the setup here is non�stochastic, one

is left to check that all average economies corresponding to subeconomies are not

unstable and at least one of them is stable, and it can be easily checked by considering

stability of the corresponding average economies. A1 = 0:1 < 1; A2 = �0:2; A3 =
�0:5 < 1; A1 + A2 = �0:1 < 1; A1 + A3 = �0:4 < 1; A2 + A3 = �0:7 < 1; A1 +

A2 + A3 = �0:6 < 1. So, all average economies corresponding to all subeconomies
(including the original economy) are E�stable. This means that economy is ��stable.

For the second speci�cation, using the criterion above, it is clear that the economy

will not be ��stable, as none of the conditions of the criterion is satis�ed: the same

sign condition is violated, and there exists an average economy corresponding to

subeconomy (2; 3) for which A(2;3) = A2 + A3 = 1:1 > 1, that is, this average

economy is E�unstable. Alternatively, one can easily check that eigenvalues of


(2;3) =

�
A2 � 1 A3
A2 A3 � 1

�
=

�
�0:5 0:6
0:5 �0:4

�
are �1 and 0:1, which violates the

stability conditions.

A similar situation is for the third speci�cation. The economy is not ��stable

since the conditions of the criterion are not satis�ed: the same sign condition is
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violated, as Ah�s have di¤erent signs, and there exist average economies correspond-

ing to subeconomies (2) and (2; 3) for which A(2) = A2 = 1:1 > 1 and A(2;3) =

A2 + A3 = 1:7 > 1, that is, these average economies are E�unstable. Alternatively,

one can check that eigenvalues of 
(2;3) =
�
A2 � 1 A3
A2 A3 � 1

�
=

�
0:1 0:6
1:1 �0:4

�
and of 
(2) = A2 � 1 = 0:1 are �1 and 0:7, and 0:1, respectively, which violates the
stability conditions.

In order to further demonstrate the power of the derived criterion for ��stability,

I will consider the case of more than 3 agents in the economy. Let us consider S = 6;

A1 = �0:1, A2 = �0:2, A3 = �0:5; A4 = �15, A5 = 0:5, A6 = 0:5.
The economy under this speci�cation is ��stable, notwithstanding that the same

sign condition is violated and there is an average economy corresponding to sube-

conomy (5; 6) for which A(5;6) = A5 + A6 = 1. The condition of the criterion is

satis�ed. Indeed, all A(h1;:::;hp) =
P

(h1;:::;hp)

Ah are less or equal than 1, and for each

size p there exists an average economy for which this coe¢ cient is strictly less than

one: for p = 1; A(1) = �0:1 < 1; for p = 2; A(1;2) = �0:3 < 1, for p = 3; A(1;2;3) =

�0:8 < 1, for p = 4; A(1;2;3;4) = �15:8 < 1, for p = 5; A(1;2;3;4;5) = �15:3 < 1, for

p = 6; A(1;2;3;4;5;6) = �14:8 < 1. So, even if the economy contains a subeconomy

which is E�unstable (lies on the boundary of the stability/instability) and the same

sign condition is violated, the whole economy can be ��stable.

5.2 Multivariate Case

I demonstrate the aggregate economy su¢ cient conditions on a model of simulta-

neous markets with structural heterogeneity15. The idea is to add more economic

interpretation to these conditions on an example of a particular multivariate model.16

The economic environment is given by the following equation:

pt = l + vdt + "t;

which is the demand function in matrix form for di¤erent goods j = 1; J .

pt is a J � 1 vector of prices, which are endogenous variables in this model, l is a
vector of intercepts, v is a J�J matrix which corresponds to the inverse of the matrix
15The author expresses sincere thanks to Seppo Honkapohja who suggested to use this example.
16��stability of a bivariate (New Keynesian) model under two types of optimal monetary policy

rules of a policy maker is considered in a companion paper (Bogomolova and Kolyuzhnov (2006)).
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of price e¤ects. d(t) is a vector of quantities of the J goods, "j;t = fj"j;t�1 + vj;t, "j;t

are demand shocks, jfjj < 1, and vj;t are independent white noise processes.
There are S types of suppliers with supply functions:

sht = gh + nhÊh
t�1pt; h = 1; S;

which depend on the expected price due to a production lag. Each supplier produces

all J goods. s(h; t) is a J � 1 vector of goods supplied by type h supplier.
It is further assumed that di¤erent outputs are produced in independent processes

by each producer h, so nh is a positive diagonal matrix. Expectations (non-rational,

in general) of prices are formed by each supplier at the end of period t � 1 before
the realization of the demand shock "t:

The market clearing condition, dt =
SP
h=1

sht ; leads to the following reduced form:

pt = l + v

�
SP
i=1

gi
�
+

SP
h=1

vnhÊh
t�1pt + "t:

For the case with equal weights of single agent types used in calculating aggregate

expectations, the aggregate stability su¢ cient condition for this model has the form

P
i

 i jvijj <
 j
Snhjj

;8j; h:

This condition can be derived by the direct application of Proposition 3 to the given

model.

I am going to show now that this su¢ cient condition for ��stability at the same

time is a su¢ cient condition for E�stability of the aggregate (univariate) cobweb

model. In order to show this, I have to derive, �rst, the aggregate supply and

demand curves using weights of aggregation across agents and expectations I used

to derive the su¢ cient conditions for ��stability above.
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So, the aggregate demand curve for the price index17 can be derived as follows:

Pt =
P
i

 ipit =

�P
i

 ivi1

�
d1t + :::+

�P
i

 iviJ

�
dJt +

P
i

 ili +
P
i

 i"it <

<

�P
i

 i jvi1j
�
d1t + :::+

�P
i

 i jviJ j
�
dJt +

P
i

 ili +
P
i

 i"it =

=

�P
i

 i jvi1j+ :::+
P
i

 i jviJ j
�

| {z }
rp

8><>:
 P

i

 ijvi1j
!
d1t+:::+

 P
i

 ijviJ j
!
dJtP

i

 ijvi1j+:::+
P
i

 ijviJ j

9>=>;| {z }
DAG

+
P
i

 ili+
P
i

 i"it =

= rpD
AG +

P
i

 ili +
P
i

 i"it:

Note that here, aggregating over the elements of the price vector, I obtain the

demand function in terms of the price index. This is an example of economic inter-

pretation of the aggregation procedure that I propose in my paper, in particular, of

assigning weights to the endogenous variables.

To derive the aggregate supply curve for the price index I, �rst, write the aggre-

gate (over all supplier types) supply equation:

P
h

sht =
P
h

gh +
P
h

nhÊh
t�1pt =

P
h

gh +

�P
h

nh
�
ÊAG
t�1pt:

Then I write equations for each component of the supply vector: the aggregate

supply of each product equations. So, for each product j,

P
h

shjt =
P
h

ghj +

�P
h

nhÊh
t�1pt

�
j

=
P
h

ghj +
�
n111 + :::+ nSJJ

�
Êaggreg
t�1 pjt :

Next, I aggregate over all supply equations using weights  j. Aggregating across

endogenous variables (prices) to get the price index, I �nally get the aggregate supply

17To get this function, I aggregate the individual demand functions, not the reduced form equa-
tions (in which case I would obtain an equation for the intertemporal equilibrium price index).
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curve for the aggregate model

ÊAG
t�1Pt: =

�
 1

n111+:::n
S
11

�P
h

sh1t+:::+
�

 J
n1JJ+:::n

S
JJ

�P
h

shJt�
P
j

 j

�P
h

ghj =
�
n111 + :::+ nSJJ

��
=

=
�

 1
n111+:::n

S
11
+ :::+  J

n1JJ+:::n
S
JJ

�
| {z }

rm

8<:
�

 1
n111+:::n

S
11

�P
h

sh1t+:::+

�
 J

n1
JJ

+:::nS
JJ

�P
h

shJt�
 1

n111+:::n
S
11

�
+:::+

�
 J

n1
JJ

+:::nS
JJ

�
9=;| {z }
�

SAG

�
P
j

 j

�P
h

ghj =
�
n111 + :::+ nSJJ

��
=

= rmS
AG �

P
j

 j

�P
h

ghj =
�
n111 + :::+ nSJJ

��
:

Thus, we have the following aggregate cobweb model in structural form:

Pt = rpD
AG +

P
i

 ili +
P
i

 i"it is the aggregate demand curve

ÊAG
t�1Pt = rmS

AG �
P
j

 j

�P
h

ghj =
�
n111 + :::+ nSJJ

��
is the aggregate supply curve,

where

rp =
P
i

 i jvi1j+ :::+
P
i

 i jviJ j

rm =
�

 1
n111+:::n

S
11
+ :::+  J

n1JJ+:::n
S
JJ

�
:

It is clear that from the su¢ cient condition for ��stability
P
i

 i jvijj <
 j
Snhjj

;8j; h,

follows
P
i

 i jvijj <
 j

Smax
h
fnhjjg ;8j and, in turn,

 j

Smax
h
fnhjjg <

 j
n1jj+:::n

S
jj
;8j. Thus, the

su¢ cient condition for ��stability in this class of models,
P
i

 i jvijj <
 j
Snhjj

;8j; h, is

the condition for E�stability of the aggregate cobweb model (rm > rp).

6 Conclusion

My paper to some extent resolves the open question posed by Honkapohja and Mitra

(2006). As has been mentioned, Honkapohja and Mitra (2006) provide a general

stability condition (criterion) for the case of persistently heterogeneous learning

� a joint restriction on matrices of structural parameters and degrees of inertia,

which implies that stability in such an economy is determined by the interaction of
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structural heterogeneity and learning heterogeneity. For the general (multivariate)

case, however, it was not possible to derive easily interpretable stability conditions

expressed in terms of an economy aggregated only across agent types. Honkapohja

and Mitra (2006) have derived su¢ cient conditions in terms of the structure of the

economy, but this condition is very general: it requires D�stability and H�stability

of the structural matrices.

In this paper, I attempt to �ll this gap and provide easily interpretable su¢ cient

and necessary conditions for such a stability. Based on the analysis of the negative

diagonal dominance, the alternative de�nition of D�stability, and the characteristic

equation analysis, I have been able to derive two groups of su¢ cient conditions and

one group of necessary conditions for ��stability, that is, stability under heteroge-

neous learning, independent of heterogeneity in parameters of learning algorithms.

I have found an easily interpretable unifying condition which is su¢ cient for con-

vergence of an economy under mixed RLS/SG learning with di¤erent degrees of

inertia towards a rational expectations equilibrium for a broad class of economic

models and a criterion for such a convergence in the univariate case. The conditions

are formulated using the concept of a subeconomy and a suitably de�ned aggregate

economy.

In particular, using the negative diagonal dominance (su¢ cient for D�stability)

and my concept of aggregating an economy (both across agent types and endogenous

variables), I have obtained su¢ cient conditions for ��stability expressed in terms of

E�stability of the aggregate economy and its structure. These were summarized

as the aggregate economy su¢ cient conditions. One of them can serve as a rule of

thumb for checking a model for ��stability.

I have found a unifying condition for the most general case of heterogeneous

learning in linear forward�looking models. Though it is quite restrictive, my main

achievement was to show that such a simple condition with the E�stability meaning

of some aggregate economy (a notion that has already proved useful as a condition

for stability under heterogeneous learning in previous learning literature) does exist

for a large class of models. The economic example provided in the end of the paper

demonstrates the application of the aggregate economy conditions.

Next, based on the analysis of the alternative de�nition of D�stability, I have
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obtained su¢ cient conditions on the structure of the economy summarized as the

�same sign" conditions. Further, based on the analysis of the characteristic equation

and the requirement for negativity of all eigenvalues (necessary and su¢ cient for

stability), I have derived a group of necessary conditions. Their failure can be used

as an indicator of non���stability.

Moreover, using the alternative de�nition of D�stability and the characteristic

equation approaches, I obtain the criterion for ��stability in the univariate case. On

the example of two types of OLG models I show that this criterion can be easily

used to test an economy for ��stability.
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A Appendix

Here I provide the reader with de�nitions and theorems adapted from mathemat-

ics literature that I used for deriving conditions for ��stability. These results are

structured according to the approach which is used for deriving stability conditions.

A.1 General de�nition of stability and D�stability of a ma-
trix

De�nition A.1 Matrix A is stable if all the solutions of the system of ordinary

di¤erential equations _x(t) = Ax(t) converge toward zero as t converges to in�nity.

Theorem A.1 Matrix A is stable if and only if all its eigenvalues have negative

real parts.

De�nition A.2 (D�stability) Matrix A is D�stable if DA is stable for any

positive diagonal matrix D.

A.2 Lyapunov theorem approach

Theorem A.2 (Lyapunov) A real n� n matrix A is a stable matrix if and only if
there exists a positive de�nite matrix H such that A0H +HA is negative de�nite.

Theorem A.3 (Arrow-McManus, 1958) Matrix A is D�stable if there exists a

positive diagonal matrix C such that A0C + CA is negative de�nite.

A.3 Negative diagonal dominance approach

De�nition A.3 (introduced by McKenzie) A real n�n matrix A is dominant diag-
onal if there exist n real numbers dj > 0; j = 1; :::; n, such that djjajjj >

P
dijaijj :

i 6= j); j = 1; : : : ; n This is called �column� diagonal dominance. �Row� diagonal

dominance is de�ned as the existence of di > 0 such that dijaiij >
P
djjaijj : j 6=

i); i = 1; : : : ; n.

Theorem A.4 (su¢ cient condition for stability, McKenzie, 1960): If an n � n

matrix A is dominant diagonal and its diagonal is composed of negative elements
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(aii < 0, all i = 1; : : : ; n), then the real parts of all its eigenvalues are negative, i.e.,

A is stable.

Corollary A.1 If A has negative diagonal dominance, then it is D�stable.

A.4 Characteristic equation approach

Theorem A.5 (Routh-Hurwitz necessary and su¢ cient conditions for negativity

of eigenvalues of a matrix) Consider the following characteristic equation

j�I � Aj= �n+b1�
n�1+:::+ bn�1�+ bn= 0

determining n eigenvalues � of a real n � n matrix A, where I is the identity

matrix. Then eigenvalues � all have negative real parts if and only if �1 > 0;�2 >

0; :::;�n > 0, where

�k =

�����������

b1 1 0 0 0 � � � 0
b3 b2 b1 1 0 � � � 0
b5 b4 b3 b2 b1 � � � 0
...

...
...

...
...

. . .
...

b2k�1 b2k�2 b2k�3 b2k�4 b2k�5 � � � bk

�����������
:

A.5 Alternative de�nition of D�stability approach

Theorem A.6 (From Observation (iv) in Johnson (1974)). Consider Mn(C); the

set of all complex n�n matrices, and Dn; the set of all n�n diagonal matrices with
positive diagonal entries. Take A 2 Mn(C) and suppose that there is an F 2 Dn

such that FA is stable. Then A is D�stable if and only if A� iD is non�singular

for all D 2 Dn. If A 2 Mn(R); the set of all n � n real matrices, then ��� in
the above condition may be replaced with �+�since, for a real matrix, any complex

eigenvalues come in conjugate pairs.
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A.6 Proofs of propositions

A.6.1 Proof of Proposition 2 (The criterion for stability of a structurally
heterogeneous economy under mixed RLS/SG learning for the
diagonal environment case under any (possibly di¤erent) degrees
of inertia of agents, � > 0)

We have to consider conditions for stability for any positive (�1; :::; �S) of the fol-

lowing matrices

D1
 =

0B@ �1In � � � 0
...

. . .
...

0 � � � �SIn

1CA
0B@ A1 � In � � � AS

...
. . .

...
A1 � � � AS � In

1CA
and

Dw
F =

0B@ Dw1 � � � 0
...

. . .
...

0 � � � DwS

1CA
0B@ F 0 
 A1 � Ink � � � F 0 
 AS

...
. . .

...
F 0 
 A1 � � � F 0 
 AS � Ink

1CA ;

where
Dwh = �hInk; h = 1; S0
Dwh = �h (Mw 
 In) ; h = S0 + 1; S

, F = diag(�1; :::; �k);Mw = diag
�

�21
1��21

; :::;
�2k
1��2k

�
:

The expression for Dw
F in the diagonal case looks as follows

Dw
F =

0B@ Dw1 � � � 0
...

. . .
...

0 � � � DwS

1CA
0B@ F 0 
 A1 � Ink � � � F 0 
 AS

...
. . .

...
F 0 
 A1 � � � F 0 
 AS � Ink

1CA =

= diag(�1; : : : ; �1| {z }
nk

; : : : ; �S0 ; : : : ; �S0| {z }
nk

;
�S0+1�

2
1

1��21
; : : : ;

�S0+1�
2
1

1��21| {z }
n

; : : : ;
�S0+1�

2
k

1��2k
; : : : ;

�S0+1�
2
k

1��2k| {z }
n

; : : :

: : : ;
�S�

2
1

1��21
; : : : ;

�S�
2
1

1��21| {z }
n

; : : : ;
�S�

2
k

1��2k
; : : : ;

�S�
2
k

1��2k| {z })
n

�

�

0BBBBBBBBBB@

�1A1 � In � � � 0 � � � �1AS � � � 0
...

. . .
... � � � ...

. . .
...

0 � � � �kA1 � In � � � 0 � � � �kAS
...

...
...

. . .
...

...
...

�1A1 � � � 0 � � � �1AS � In � � � 0
...

. . .
... � � � ...

. . .
...

0 � � � �kA1 � � � 0 � � � �kAS � In

1CCCCCCCCCCA
:
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After some permutations of rows and columns that do not change the absolute value

of the determinant of Dw
F ��I, I obtain that the following characteristic equation
for eigenvalues � of Dw
F

det [Dw
F � �I] = 0

is equivalent to

0 = det[diag((�1; : : : ; �1| {z }
n

; : : : ; �S0 ; : : : ; �S0| {z }
n

;
�S0+1�

2
1

1��21
; : : : ;

�S0+1�
2
1

1��21| {z }
n

; : : : ;
�S�

2
1

1��21
; : : : ;

�S�
2
1

1��21
)| {z }

n

; : : :

: : : ; (�1; : : : ; �1| {z }
n

; : : : ; �S0 ; : : : ; �S0| {z }
n

;
�S0+1�

2
k

1��2k
; : : : ;

�S0+1�
2
k

1��2k| {z }
n

; : : : ;
�S�

2
k

1��2k
; :::;

�S�
2
k

1��2k| {z }
n

))�

�diag(

2664
�1A1 � In � �In

�1
� � � �1AS

...
. . .

...

�1A1 � � � �1AS � In �
(1��21)�In

�S�
2
1

3775 ; : : :

: : : ;

2664
�kA1 � In � �In

�1
� � � �kAS

...
. . .

...

�kA1 � � � �kAS � In �
(1��2k)�In

�S�
2
k

3775)];
or, in matrix form:

0 = det

24 ~D1
�1 � �InS

~Dk
�k � �InS

35 = kQ
l=1

det
h
~Dl
�l � �InS

i
;

where

~Dl =

0BBBBBBBBB@

�1In � � � 0
. . .

�S0In
... �S0+1�

2
l

1��2l
In

...
. . .

0 � � � �S�
2
l

1��2l
In

1CCCCCCCCCA
;
�l =

0B@ �lA1 � In � � � �lAS
...

. . .
...

�lA1 � � � �lAS � In

1CA ;

l = 1; k:

Thus, the analysis of stability of Dw
F , de�ned in (11), is equivalent to the analysis

of stability of ~Dl
�l, 8l = 1; k:
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So, the analysis of the stability of Dw
F can be split into the analysis of the

stability of the unrelated matrix blocks. Changing notation �h :=
�h�

2
l

1��2l
> 0 for

h = S0 + 1; S for each case l = 1; k, I obtain that the analysis of stability ofDw
F for

any � > 0 is equivalent to the analysis of stability of k matrices D1
�l. Introducing

notation �0 = 1, I can write the general criterion for stability of a structurally

heterogeneous economy under mixed RLS/SG learning for the diagonal environment

case under any (possibly di¤erent) degrees of inertia of agents, � > 0 as follows:

D1
�l is stable for all l = 0; 1; :::; k. Q:E:D:

A.6.2 Proof of Proposition 3

Use "columns" negative diagonal dominance of 
�l, which is su¢ cient for the real

parts of eigenvalues of D1
�l to be negative; look for a condition which would be

su¢ cient for negative diagonal dominance in this setup. As weights for rows use

(�1( 1; :::;  n); :::; �s ( 1; :::;  n)), �i > 0;  h > 0;
P
i

 i = 1;
P
h

�h = 1:

For any l take any block h and any column j(
�la

h
jj � 1 < 0 - negative diagonal

�h j
���lahjj � 1�� > (�1 + :::+ �s)

P
i

 i
���lahij��� �h j

���lahjj�� - dominance 8j;8h;8l
m(
�la

h
jj � 1 < 0

��h j�lahjj + �h j > (�1 + :::+ �s)
P
i

 i
���lahij��� �h j

���lahjj�� 8j;8h;8l
m

Case 1

8><>:
0 � �la

h
jj < 1P

i

 i
���lahij�� < �h j

�1 + :::+ �S| {z }
=1

8j;8h;8l

[

Case 2

8><>:
�la

h
jj < 0P

i

 i
���lahij�� < �h j

�1 + :::+ �S| {z }
=1

� 2'h j

�1 + :::+ �S| {z }
=1

�la
h
jj 8j;8h;8l

Since in the second case �la
h
jj < 0; one may formulate the following su¢ cient

condition
P
i

 i
���lahij�� < �h j 8j;8h;8l. The condition 1 > �la

h
jj is implied by this

relation, and the condition of case 2 is also satis�ed. To prove that 1 > �la
h
jj, notice

that
P
i

 i
���lahij�� < �h j =)

P
i6=j

 ij�lahijj
 j| {z }
>0

+
���lahjj��| {z }
>0

< �h < 1 =)
���lahjj�� < 1 =)

�la
h
jj < 1.
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As j�lj < 1, the derived su¢ cient condition follows from
P
i

 i
��ahij�� < �h j 8j;8h,

that is, the condition for l = 0 (�0 = 1). So this condition alone is su¢ cient for � �

stability. This is the condition of Proposition 2. Q:E:D:

A.6.3 Proof of Proposition 4

1. �AGmod ( ; �)
��
��any
 �any

= S
X
h

�h
X
i

 i
X
j

��ahij�� �
� S

X
h

�h
X
j

X
i

 imax
h;i

��ahij�� = S
X
j

 X
h

X
i

�h i

!
| {z }

=1

max
h;i

��ahij�� = �AGmax1 :

2. �AGmod ( ; �)
��
��any
 =

1
S

= S
X
h

1

S|{z}
�h

X
i

 i
X
j

��ahij�� =X
h

X
i

 i
X
j

��ahij�� �
�
 X

i

 i

!
| {z }

=1

max
i

X
h

X
j

��ahij�� = �AGmax2

3. �AGmod ( ; �)
��
�=

1
n

 �any

= S
X
h

�h
X
i

1

n|{z}
 i

X
j

��ahij�� � S
X
i

1

n

X
h

X
j

�hmax
h;j

��ahij�� =
= S

X
i

1

n
max
h;j

��ahij��
 X

h

X
j

�h

!
| {z }

=n

= S
X
i

max
h;j

��ahij�� = �AGmax3

4. �AGmod ( ; �)
��
�=

1
n

 =
1
S

= S
X
h

1

S|{z}
�h

X
i

1

n|{z}
 i

X
j

��ahij�� =X
h

X
i

1

n

X
j

��ahij�� �
�
X
h

1

n

X
j

max
j

X
i

��ahij�� =X
h

max
j

X
i

��ahij�� 1nX
j

1| {z }
=1

= �AGmax4 ; Q:E:D:

A.6.4 Proof of Proposition 5

1. for �AGmax1 :

We have �AGmax1 = S
P
j

max
h;i

��ahij�� < 1 and have to prove that there exist weights
 and � such that

P
i

 ijahijj
 j

< �h 8j;8h:

Let us take �h =
1
S
8h, and  j = Smax

h;i

��ahij��+
>0z }| {

1� S
P
j

max
h;i

��ahij��
n

8j. These can
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be considered as weights since
SP
h=1

�h = 1; 0 < �h < 1 and
nP
j=1

 j = 1; 0 <  j < 1.

Notice that
 j
S
> max

h;i

��ahij�� =P
i

 imax
h;i

��ahij�� >P
i

 i
��ahij�� ;8j;8h, or, after rewrit-

ing:
P
i

 i
��ahij�� <  j �h|{z}

= 1
S

;8j;8h.

4. for �AGmax4 :

We have �AGmax4 = S
P
h

max
j

P
i

��ahij�� < 1 and have to prove that there exist

weights  and � such that

P
i

 ijahijj
 j

< �h 8j;8h:

Let us take  j =
1
n
8h, �h = max

j

P
i

��ahij�� +
>0z }| {

1�
P
h

max
j

P
i

��ahij��
S

8j. These are

weights as
SP
h=1

�h = 1; 0 < �h < 1 and
SP
j=1

 j = 1; 0 <  j < 1.

Notice that �h > max
j

P
i

��ahij�� >P
i

��ahij�� ;8j;8h, or, after rewriting:
P
i

1
nz}|{
 i
��ahij��

 j|{z}
1
n

=

P
i

 i
��ahij�� < �h;8j;8h.

To prove the proposition for �AGmax2 and �AGmax3 , I �rst derive a su¢ cient con-

dition for � �stability that follows from the "rows" diagonal dominance condition,

which is also su¢ cient for stability of matrices D1
�l. Therefore my derivation of

this condition resembles the steps in the proof of Proposition 2. As weights for

columns use (d1; :::; dn; :::; d1; :::; dn), di > 0;
P
i

di = 1

For any l take any block h and any row i:(
�la

h
ii � 1 < 0 - negative diagonal

di
���lahii � 1�� >P

h

P
j

dj
���lahij��� di

���lahii�� - dominance 8i;8h;8l
m(
�la

h
ii � 1 < 0

�di�lahii + di >
P
h

P
j

dj
���lahij��� di

���lahii�� 8i;8h;8l
m

Case 1

(
0 � �la

h
ii < 1P

h

P
j

dj
���lahij�� < di 8i;8h;8l

[
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Case 2

(
�la

h
ii < 0P

h

P
j

dj
���lahij�� < di � 2di�lahii 8i;8h;8l

Since in the second case �la
h
ii < 0; one may formulate the following su¢ cient

condition
P
h

P
j

dj
���lahij�� < di 8i;8h;8l. The condition 1 > �la

h
ii is implied by this

relation, and the condition of case 2 is also satis�ed. To prove that 1 > �la
h
ii,

notice that
P
h

P
j

dj
���lahij�� < di =)

P
h

P
j 6=i

dj
���lahij��| {z }

>0

+
P
h

di
���lahii��| {z }
>0

< di < 1 =)

���lahii�� < 1 =) �la
h
ii < 1.

As j�lj < 1, the derived su¢ cient condition follows from
P
h

P
j

dj
��ahij�� < di 8i;8h,

that is, the condition for l = 0 (�0 = 1). So this condition alone is su¢ cient for

��stability.

Next I use the derived su¢ cient condition to prove Proposition 2 for �2max and

�3max.

2. for �AGmax2 :

We have �AGmax2 = max
i

P
h

P
j

��ahij�� < 1 and have to prove that there exist weights
d = (d1; :::; dn; :::; d1; :::; dn), di > 0;

P
i

di = 1, such that
P
h

P
j

dj
��ahij�� < di 8i;8h.

Let us take dj = 1
n
8j.

Notice that
P
h

P
j

��ahij�� < max
i

P
h

P
j

��ahij�� < 1;8i;8h, or, after rewriting: P
h

P
j

1

n|{z}
dj

��ahij�� <
1

n|{z}
di

;8i;8h.

3. for �AGmax3 :

We have �AGmax3 = S
P
h

max
h;j

��ahij�� < 1 and have to prove that there exist weights
d = (d1; :::; dn; :::; d1; :::; dn), di > 0;

P
i

di = 1 such that
P
h

P
j

dj
��ahij�� < di 8i;8h.

Let us take di = Smax
h;j

��ahij�� +
>0z }| {

1� S
P
i

max
h;j

��ahij��
n

8i. These can be taken as

weights since
nP
i=1

di = 1; 0 < di < 1.

Notice that di > Smax
h;j

��ahij�� = nP
j=1

dj| {z }
=1

SP
h=1|{z}
=S

max
h;j

��ahij�� >X
h

X
j

dj
��ahij�� ;8i;8h.
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A.6.5 Proof of Proposition 10

For the case of n = 1, the condition for the alternative de�nition of D�stability

simpli�es the requirement for 
 to be stable and for at least one of the following to

hold true�
1
�1

1+ 1

�21

(��lA1) + :::+
1
�S

1+ 1

�2
S

(��lAS)
�
6= 0;�

1
1+ 1

�21

(��lA1) + :::+ 1
1+ 1

�2
S

(��lAS) + 1
�
6= 0 for all l = 0; 1; :::; k (�0 = 1):

The �rst "same sign" condition follows directly from the �rst inequality above.

The second condition that follows from the second inequality is proved below.

Necessity: Follows directly from the proof of Proposition 12. Just note that in

the univariate economy setup any sum of minorsMk consists of elements �h1�h2 :::�hk(��lAh1�
�lAh2� :::��lAhk+1) and that if the sum of nonnegative elements is strictly greater
than zero, then at least one of them has to be strictly positive:

Su¢ ciency: I have ��lAh1 � �lAh2 � ::: � �lAhp + 1 � 0 for any subeconomy
(h1; :::; hp) and for each group of subeconomies of size p, 9 h�1(l); :::; h�p(l)

...� �lAh�1 �

�lAh�2�:::��lAh�p+1 > 0, and have to prove that
�

1
1+ 1

�21

(��lA1) + :::+ 1
1+ 1

�2
S

(��lAS) + 1
�
6=

0.

I group separately the terms corresponding to non-positive �lAi�s and terms

corresponding to strictly positive �lAi�s.

Schematically, I will have"
1

1 + 1
�21

�
�lA

�
1

�
+ :::+

1

1 + 1
�2k

�
�lA

�
k

�#
| {z }

�0

+

"
1

1 + 1
�21

�
�lA

+
1

�
+ :::+

1

1 + 1
�2m

�
�lA

+
m

�#
| {z }

�1

�

1. If the �rst sum is strictly less than zero, then the whole expression is less than

zero. If the �rst sum is equal to zero, then the second sum (if there are any posi-

tive �lA
0s at all) has to be less than 1: for the whole economy I have to have that

��lA1 � �lA2 � ::: � �lAS + 1 > 0, that is, excluding zero �lA
0s I have to have

��lA+1 � ::: � �lA
+
m + 1 > 0, and also take into account that 0 < 1

1+ 1

�21

< 1, which

proves the su¢ ciency part of the second condition in Proposition 10.
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A.6.6 Proof of Proposition 11

For the case of n = 2, the inequality in the alternative de�nition of D�stability looks

as follows:

det

�
��lA1
1+ i

�1

+ :::+ ��lAS
1+ i

�S

+ I

�
= 1+det (��lA1)

1+ i
�1

+:::+det (��lAS)
1+ i

�S

+M1(��lA1)
1+ i

�1

+:::+M1(��lAS)
1+ i

�S

+

+ detmix

�
��lA1
1+ i

�1

; ��lA2
1+ i

�2

�
+ :::+ detmix

�
��lAS�1
1+ i

�S�1
; ��lAS
1+ i

�S

�
=

= 1 +

�
1� i

�1

1+ 1

�21

�2
det (��lA1) + :::+

�
1� i

�S

1+ 1

�2
S

�2
det (��lAS)+

+

�
1� i

�1

1+ 1

�21

�
M1(��lA1) + :::+

�
1� i

�S

1+ 1

�2
S

�
M1(��lAS) + :::+

+

�
1� i

�1

1+ 1

�21

��
1� i

�2

1+ 1

�22

�
[detmix (��lA1;��lA2) + detmix (��lA2;��lA1)] + :::+

+

 
1� i

�S�1
1+ 1

�2
S�1

!�
1� i

�S

1+ 1

�2
S

�
[detmix (��lAS�1;��lAS) + detmix (��lAS;��lAS�1)] 6= 0

for all l = 0; 1; :::; k; (�0 = 1):

Taking real and imaginary parts, one gets

Redet

�
��lA1
1+ i

�1

+ :::+ ��lAS
1+ i

�S

+ I

�
= 1 +

1� 1

�21�
1+ 1

�21

�2 det (��lA1) + :::+

+
1� 1

�2
S�

1+ 1

�2
S

�2 det (��lAS) + 1
1+ 1

�21

M1(��lA1) + :::+ 1
1+ 1

�2
S

M1(��lAS) + :::+

+
1� 1

�1�2�
1+ 1

�21

��
1+ 1

�22

� [detmix (��lA1;��lA2) + detmix (��lA2;��lA1)] + :::+

+
1� 1

�S�1�S�
1+ 1

�2
S�1

��
1+ 1

�2
S

� [detmix (��lAS�1;��lAS) + detmix (��lAS;��lAS�1)]
Imdet

�
��lA1
1+ i

�1

+ :::+ ��lAS
1+ i

�S

+ I

�
=

� 2i
�1�

1+ 1

�21

�2 det (��lA1) + :::+

+
� 2i
�S�

1+ 1

�2
S

�2 det (��lAS) + � i
�1

1+ 1

�21

M1(��lA1) + :::+
� i
�S

1+ 1

�2
S

M1(��lAS) + :::+

+
�i
�
1
�1
+ 1
�2

�
�
1+ 1

�21

��
1+ 1

�22

� [detmix (��lA1;��lA2) + detmix (��lA2;��lA1)] + :::+

+
�i
�

1
�S�1

+ 1
�S

�
�
1+ 1

�2
S�1

��
1+ 1

�2
S

� [detmix (��lAS�1;��lAS) + detmix (��lAS;��lAS�1)]
for all l = 0; 1; :::; k (�0 = 1) for all l = 0; 1; :::; k (�0 = 1).
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From the Im part of the determinant I see the "same sign" su¢ cient condition

for this case:

det (��lAi) � 0; [detmix (��lAi;��lAj) + detmix (��lAj;��lAi)] � 0; i 6= j;

M1(��lAi) � 0;
or

det (��lAi) � 0; [detmix (��lAi;��lAj) + detmix (��lAj;��lAi)] � 0; i 6= j;

M1(��lAi) � 0 for all l = 0; 1; :::; k (�0 = 1)
If all inequalities above are equalities to zero, then the real part equals 1, and

the su¢ cient condition for ��stability holds true.

A.6.7 Proof of Propositions 12 and 13

I consider � = D(�
). A necessary and su¢ cient condition for stability of this

matrix is that real parts of eigenvalues of D(�
) be greater than zero. And for
the condition on eigenvalues to hold true it is necessary that all sums of principal

minors of D (�
) grouped by the same size be greater than zero.
Indeed, the characteristic equation for eigenvalues of � has the form

det (� + I�) = det �+�Mn�1 + �
2Mn�2 + :::+ �

n�1M1 + �
n = 0, where � = ��

is the eigenvalue of �: and Mk is the sum of all principal minors of � of size k.

On the other hand, the same characteristic equation can be written in terms of

the product decomposition of the polynomial:

(�+ �1) � � � (�+ �n) = �1:::�n| {z }
>0

+:::+�n�2(�1�2 + :::+ �n�1�n)| {z }
>0

+�n�1(�1 + :::+ �n)| {z }
>0

+

�n = 0.

Thus, all Mk > 0.

By writing this condition in terms of D(�
), one gets that in each size group
the sum of minors is subdivided into groups of sums of minors that contain the

same number of columns of each block of (�
), i.e. Ai � I. The coe¢ cient before

such particular sum has the form (�h1)
j1 (�h2)

j2 :::
�
�hp
�jp . This coe¢ cient uniquely

speci�es the sum of minors by the size, the number of columns from each block,

and from which subeconomy it is formed, (h1; :::; hp). The size of minors in such a

group is equal to the total power of the coe¢ cients, j1 + :::+ jp, and the subscripts

of ��s denote from which block of (�
) columns are taken, while the power of each
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� indicates how many columns are taken from this particular block.

Let us �x one subeconomy (say, formed by blocks 1, 2, 3) and consider the limit

of inequalities for the sum of minors, with ��s for other blocks going to zero. Doing

the same operation for all subeconomies, I will get condition (*). The statement

in Proposition 13 is derived by setting all ��s for all subeconomies in Condition (*)

equal to 1.
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